This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Level attraction from interference in two-tone driving

Alan Gardin [email protected] Quantum and Nano Technology Group, School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France    Guillaume Bourcin IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France    Christian Person IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France    Christophe Fumeaux School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia    Romain Lebrun Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France    Isabella Boventer Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France    Giuseppe C. Tettamanzi Quantum and Nano Technology Group, School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia    Vincent Castel IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France
Abstract

Coherent and dissipative couplings, respectively characterised by energy level repulsion and attraction, each have different applications for quantum information processing. Thus, a system in which both coherent and dissipative couplings are tunable on-demand and in-situ is tantalising. A first step towards this goal is the two-tone driving of two bosonic modes, whose experimental signature was shown to exhibit controllable level repulsion and attraction by changing the phase and amplitude of one drive. However, whether the underlying physics is that of coherent and dissipative couplings has not been clarified, and cannot be concluded solely from the measured resonances (or anti-resonances) of the system. Here, we show how the physics at play can be analysed theoretically. Combining this theory with realistic finite-element simulations, we deduce that the observation of level attraction originates from interferences due to the measurement setup, and not dissipative coupling. Beyond the clarification of the origin of level attraction attributed to interference, our work demonstrates how effective Hamiltonians should be derived to appropriately describe the physics.

I Introduction

The coherent coupling between two systems corresponds to the coherent exchange of energy between them, and is characterised by energy level repulsion (also known as normal-mode splitting or an anti-crossing). This phenomenon is ubiquitous in physics, spanning the classical coupling of two harmonic oscillators Novotny (2010) to the coupling of bosonic quasi-particles with two-level systems Weisbuch et al. (1992) or other bosonic modes Dobrindt et al. (2008). With respect to quantum information processing, coherent coupling allows converting quantum information between light and solid-state degrees of freedom, and is therefore an elementary building block of quantum communication Gisin and Thew (2007); Kimble (2008); Lachance-Quirion et al. (2019). On the other hand, dissipative coupling Lu et al. (2023a); Wang and Hu (2020); Harder et al. (2021), characterised by energy level attraction instead, arises due to the indirect coupling of two modes mediated by a common reservoir Wang et al. (2019); Metelmann and Clerk (2015); Clerk (2022) (e.g. a strongly dissipative auxiliary mode Yu et al. (2019), a photonic environment Yao et al. (2019a, b); Bleu et al. (2024), metallic leads Kubala and Konig (2002)). The merging of energy levels characterising dissipative couplings leads to exceptional points Heiss (2012); Zhang et al. (2017); Zhang and You (2019); Hurst and Flebus (2022), which can be useful for topological energy transfer Xu et al. (2016), and improved sensitivity for quantum metrology and quantum sensing applications Cao and Yan (2019); Yu et al. (2020). Furthermore, balancing coherent and dissipative couplings, using dissipation engineering and synthetic gauge fields for instance, allows breaking time-reversal symmetry and thus create non-reciprocal devices Wang et al. (2019); Metelmann and Clerk (2015); Clerk (2022); Koch et al. (2010); Sliwa et al. (2015); Fang et al. (2017); Huang et al. (2021). Therefore, building a system in which both coherent and dissipative couplings co-exist and are tunable would be useful to access all the aforementioned applications in a unique versatile platform. However, while both coherent and dissipative couplings can co-exist in a single platform, their tunability is usually not practical. For instance, in cavity magnonics implementations Yao et al. (2019b, a), this requires mechanical rotation of the cavity or of a static magnetic field.

In a system with both coherent and dissipative couplings, the energy spectrum should exhibit both level repulsion and attraction, respectively. A two-tone driving scheme proposed by Grigoryan et al. Grigoryan et al. (2018) suggested theoretically that such an energy spectrum could be obtained by driving simultaneously two coherently-coupled bosonic modes. In a subsequent work, the same authors predicted a tunable cavity-mediated dissipative coupling taking advantage of the same principle Grigoryan and Xia (2019). Furthermore, two experiments by Boventer et al. Boventer et al. (2019, 2020) implemented the original proposal Grigoryan et al. (2018), and confirmed tunable level repulsion and attraction in the reflection spectrum.

These results were promising, since it is usually expected that the response of a system to excitations at frequencies close to their normal modes leads to resonances (or anti-resonances), with various possible line shapes informing on the underlying physics Barnthaler et al. (2010); Limonov et al. (2017). Notably, in these experiments Boventer et al. (2019, 2020), the control is performed through the phase and amplitude of a microwave drive, which is better for integration, for instance compared to the vector magnet required in Yao et al. (2019b, a). However, inspection of the experimental signature alone is not sufficient because it may not be related to the energy levels. For instance, while dissipative coupling implies level attraction in a variety of platforms such as optomechanics Lu et al. (2023b), Aharonov-Bohm interferometers Kubala and Konig (2002) or semiconductor microcavities Bleu et al. (2024), alternative physics can also lead to level attraction, as exemplified in optomechanics Bernier et al. (2018) or spinor condensates Bernier et al. (2014). Furthermore, the model used in the original proposal Grigoryan et al. (2018) was phenomenological, and as such it only reproduces the experimental observable, but cannot be used to conclude on the underlying physics. Thus, the physics at play in two-tone driving remains unclear.

In this work, we model a two-tone driving experiment, similar to those of Boventer et al. (2019, 2020). Our starting point is the closed-system Hamiltonian of two coherently coupled bosonic modes, whose spectrum is that of level repulsion. To model the two-tone driving and the experimentally accessible quantities, we use quantum Langevin equations (QLEs) and the input-output formalism Gardiner and Collett (1985) (section II). This theoretical treatment allows to find an analytical expression for the experimental signature, where both level repulsion and attraction can occur, in contrast with the sole level repulsion expected from the closed-system Hamiltonian. In section III, we use the analytical expressions of section II to understand the origin of the tunable level repulsion and attraction. These insights guide our finite-element simulations of a realistic setup, and allows us to confirm that level attraction can be attributed to an anti-resonance due to the destructive interference between the reflection and transmission coefficients. While this explains the level attraction, it does not completely eliminate the possibility of dissipative coupling. To clarify the physics in the presence of the drives, we derive the open-system effective Hamiltonian of the two-tone driven system, and show that the physics remains exclusively that of coherent coupling, despite the observation of level attraction. We conclude in section V.

Refer to caption
Figure 1: Schematic of a two-tone driving experiment using a two-post re-entrant cavity Bourhill et al. (2020) loaded with a ferromagnetic sphere made of Yttrium-Iron-Garnet. Ports 1 and 3 are always active and drive respectively the cavity and magnon modes. The cavity is connected to a vector network analyser (VNA) to measure the reflection at Port 1 and the transmission through Port 2. Inset (a): the YIG sphere is placed at the centre of a loop made by soldering the inner and outer conductor of a coaxial cable, itself placed between the two posts where the cavity mode’s magnetic field is strongest. In the picture, the loop is in the (x,z)(x,z) plane, and the YIG sphere is biased along 𝐳^\hat{\mathbf{z}} by the static magnetic field 𝐇0\mathbf{H}_{0}. Inset (b): antenna used to excite the cavity modes.

II Theoretical model and experimental observables

Quantum Langevin equations.

We consider the experimental setup of fig. 1, where a ferromagnetic sphere made of Yttrium-Iron-Garnet (YIG) is placed inside a microwave cavity. The second-quantised Hamiltonian of the system enclosed inside the cavity is that of the lowest-order magnon mode (quantised spin wave) coupled to a single cavity mode, described by Harder et al. (2021)

Hsys=ωccc+ωmmm+(gcm+gcm),H_{\text{sys}}=\hbar\omega_{c}c^{\dagger}c+\hbar\omega_{m}m^{\dagger}m+\hbar\quantity(gcm^{\dagger}+g^{*}c^{\dagger}m), (1)

where g/2πg/2\pi is the (complex) coherent coupling strength Flower et al. (2019); Gardin et al. (2023a) between the cavity mode (operators c,cc,c^{\dagger}) and the magnon mode (operators m,mm,m^{\dagger}). The frequency of the cavity mode ωc/2π\omega_{c}/2\pi is fixed by the cavity’s geometry, while the ferromagnetic resonance of the magnon is tuned by a static magnetic field 𝐇0=H0𝐳^\mathbf{H}_{0}=H_{0}\hat{\mathbf{z}} as ωm=γ|𝐇0|\omega_{m}=\gamma\absolutevalue{\mathbf{H}_{0}} where γ/2π=28{\gamma}{/2\pi}=28 GHz/T is the gyromagnetic ratio.

The quantum Langevin equations (QLEs) allow to model the coupling of the cavity system described by eq. 1 to the environment, to model intrinsic dissipation or external drives. To model the intrinsic damping of the cavity mode cc and the magnon mode mm, we assume that they each couple to a different bosonic bath with coupling constants κc/2π\kappa_{c}/2\pi and κm/2π\kappa_{m}/2\pi. As per fig. 1, the cavity system described by eq. 1 is coupled to three ports pip_{i}, labelled from 1 to 3, where the first two ports couple only to the cavity mode (with real-valued coupling constants κ1/2π\kappa_{1}/2\pi and κ2/2π\kappa_{2}/2\pi and phases ϕ1,ϕ2\phi_{1},\phi_{2} Bourcin et al. (2024)) and the third couples only to the magnon mode (real-valued coupling constant κ3/2π\kappa_{3}/2\pi with phase ϕ3\phi_{3}). Physically, the coupling of the magnon to port 3 is due to the Zeeman interaction with the magnetic field created by the loop of port 3. The QLE for the cavity and magnon modes then read (see appendix A for details)

c˙\displaystyle\dot{c} =iω~ccigmκccinκ1eiϕ1p1inκ2eiϕ2p2in,\displaystyle=-i\widetilde{\omega}_{c}c-ig^{*}m-\sqrt{\kappa_{c}}c^{\text{in}}-\sqrt{\kappa_{1}}e^{i\phi_{1}}p_{1}^{\text{in}}-\sqrt{\kappa_{2}}e^{i\phi_{2}}p_{2}^{\text{in}}, (2)
m˙\displaystyle\dot{m} =iω~mmigcκmminκ3eiϕ3p3in,\displaystyle=-i\widetilde{\omega}_{m}m-igc-\sqrt{\kappa_{m}}m^{\text{in}}-\sqrt{\kappa_{3}}e^{i\phi_{3}}p_{3}^{\text{in}}, (3)

where ω~c=ωciκc+κ1+κ22\widetilde{\omega}_{c}=\omega_{c}-i\frac{\kappa_{c}+\kappa_{1}+\kappa_{2}}{2} and ω~m=ωmiκm+κ32\widetilde{\omega}_{m}=\omega_{m}-i\frac{\kappa_{m}+\kappa_{3}}{2}. In the QLEs, cinc^{\text{in}} and minm^{\text{in}} account for intrinsic damping and have zero mean cin=min=0\expectationvalue{c^{\text{in}}}=\expectationvalue{m^{\text{in}}}=0, while piinp_{i}^{\text{in}} represent the inputs from the ports.

Two-tone reflection and transmission.

We now assume that p1inp_{1}^{\text{in}} and p3inp_{3}^{\text{in}} correspond to coherent drives at the same frequency, albeit with a phase and amplitude difference written p3in=δeiϕp1in\expectationvalue{p_{3}^{\text{in}}}=\delta e^{i\phi}\expectationvalue{p_{1}^{\text{in}}}. We also perform a semi-classical approximation and neglect quantum fluctuations, which amounts to only considering expectation values. Using the input-output formalism (see appendix B for details), the reflection at Port 1 when Port 3 is active is found to be

r1(ω)\displaystyle r_{1}(\omega) =p1out|p2in=0p1in\displaystyle=\frac{\left.\expectationvalue{p_{1}^{\text{out}}}\right|_{\expectationvalue{p_{2}^{\text{in}}}=0}}{\expectationvalue{p_{1}^{\text{in}}}} (4)
=1iκ1Δ~mκ1+gκ3ei(ϕ3ϕ1)δeiϕΔ~cΔ~m|g|2\displaystyle=1-i\sqrt{\kappa_{1}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}+g^{*}\sqrt{\kappa_{3}}e^{i(\phi_{3}-\phi_{1})}\delta e^{i\phi}}{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\absolutevalue{g}^{2}} (5)

where Δ~c=ωω~c\widetilde{\Delta}_{c}=\omega-\widetilde{\omega}_{c} and Δ~m=ωω~m\widetilde{\Delta}_{m}=\omega-\widetilde{\omega}_{m}. By comparing with the expressions of the standard S-parameters (detailed in appendix C), we note that the reflection r1r_{1} can also be written r1(ω)=S11+δeiϕS13r_{1}(\omega)=S_{11}+\delta e^{i\phi}S_{13} which is expected given the linearity of the problem.

Refer to caption
((a))
((b))
((c))
((d))
((e))
((f))
((g))
Figure 2: Normalised reflection amplitude |R1|\absolutevalue{R_{1}} at Port 1 for increasing values of δ0=κ1κ3|g|δ\delta_{0}=\frac{\sqrt{\kappa_{1}\kappa_{3}}}{\absolutevalue{g}}\delta from top to bottom, and a dephasing ϕ=π\phi=\pi (first column) and ϕ=0\phi=0 (second column) between the drives of Port 1 and Port 3. The solid lines correspond to the real part of the zeros ω~±\widetilde{\omega}_{\pm} of the denominator of R1R_{1}, given by eq. 9, while the dashed lines correspond to the zeros Ω~±\widetilde{\Omega}_{\pm} of the nominator of R1R_{1}.

For δ0\delta\neq 0, the reflection coefficient r1r_{1} can be greater than one, because it is only normalised to the input power from Port 1, thus neglecting that of Port 3. Following the setup of fig. 1, and taking the power out of Port 1 as a reference, the VNA outputs a power 1+δ21+\delta^{2}, so we can renormalise the reflection to R1(ω)=11+δ2r1(ω)R_{1}(\omega)=\frac{1}{\sqrt{1+\delta^{2}}}r_{1}(\omega). Similarly, we can calculate the normalised transmission coefficient through Port 2 when both Port 1 and Port 3 are active, and we find (appendix D)

T2(ω)\displaystyle T_{2}(\omega) =11+δ2p2out|p2in=0p1in=S21+δeiϕS231+δ2.\displaystyle=\frac{1}{\sqrt{1+\delta^{2}}}\frac{\left.\expectationvalue{p_{2}^{\text{out}}}\right|_{\expectationvalue{p_{2}^{\text{in}}}=0}}{\expectationvalue{p_{1}^{\text{in}}}}=\frac{S_{21}+\delta e^{i\phi}S_{23}}{\sqrt{1+\delta^{2}}}. (6)

We plot |R1|\absolutevalue{R_{1}} in fig. 2 and |T2|\absolutevalue{T_{2}} in fig. 3 with the parameters ωc/2π=10\omega_{c}/2\pi=10 GHz, |g|/2π=20\absolutevalue{g}/2\pi=20 MHz, κc/2π=κm/2π=1\kappa_{c}/2\pi=\kappa_{m}/2\pi=1 MHz, κ1/2π=κ2/2π=10\kappa_{1}/2\pi=\kappa_{2}/2\pi=10 MHz, κ3/2π=5\kappa_{3}/2\pi=5 MHz, φ=argg=π2\varphi=\mathrm{arg}\,g=-\frac{\pi}{2} and ϕ1=ϕ2=ϕ3=0\phi_{1}=\phi_{2}=\phi_{3}=0. The reflection R1R_{1} exhibits controllable level repulsion and attraction depending on the amplitude δ\delta of the drives and the dephasing ϕ\phi, mirroring the experimental results of Boventer et al. (2019, 2020). On the other hand, we notice that the transmission T2T_{2} only shows level repulsion, despite the system being driven in exactly the same way: between R1R_{1} and T2T_{2}, only the measurement location changes, and thus the physics should be the same. In the next section, we will attribute the observed level attraction to interference.

Refer to caption
Figure 3: Normalised transmission amplitude |T2|\absolutevalue{T_{2}} through Port 2 for ϕ=π\phi=\pi and ϕ=0\phi=0, and increasing values of δ0\delta_{0} from top to bottom. The parameters and legends used are identical to those of fig. 2.

III Analysis and validation by finite-element simulations

Analysis of the two-tone reflection coefficient.

An advantage of the input-output formalism is that it allows us to understand analytically the spectral features of fig. 2. Indeed, by writing r1(ω)=N(ω)/D(ω)r_{1}(\omega)=N(\omega)/D(\omega) in terms of a nominator NN and a denominator DD, the denominator can be factorised as

D(ω)\displaystyle D(\omega) =ω2(ω~c+ω~m)ω+ω~cω~m|g|2\displaystyle=\omega^{2}-\quantity(\widetilde{\omega}_{c}+\widetilde{\omega}_{m})\omega+\widetilde{\omega}_{c}\widetilde{\omega}_{m}-\absolutevalue{g}^{2} (7)
=(ωω~+)(ωω~)\displaystyle=\quantity(\omega-\widetilde{\omega}_{+})\quantity(\omega-\widetilde{\omega}_{-}) (8)

where

ω~±=ω~c+ω~m2±(ω~cω~m)2+4|g|22\widetilde{\omega}_{\pm}=\frac{\widetilde{\omega}_{c}+\widetilde{\omega}_{m}}{2}\pm\frac{\sqrt{\quantity(\widetilde{\omega}_{c}-\widetilde{\omega}_{m})^{2}+4\absolutevalue{g}^{2}}}{2} (9)

are the complex-valued solutions of the quadratic eq. 7.

On the other hand, the nominator NN can be written as

N(ω)\displaystyle N(\omega) =ω2(ω~c+ω~m)ω+ω~cω~mG2\displaystyle=\omega^{2}-\quantity(\widetilde{\omega}_{c}^{\prime}+\widetilde{\omega}_{m})\omega+\widetilde{\omega}_{c}^{\prime}\widetilde{\omega}_{m}-G^{2} (10)

where we defined ω~c=ω~c+iκ1\widetilde{\omega}_{c}^{\prime}=\widetilde{\omega}_{c}+i\kappa_{1} and

G\displaystyle G =|g|1+κ1κ3|g|δei(ϕ+ϕ3ϕ1+π2argg),\displaystyle=\absolutevalue{g}\sqrt{1+\frac{\sqrt{\kappa_{1}\kappa_{3}}}{\absolutevalue{g}}\delta e^{i\quantity(\phi+\phi_{3}-\phi_{1}+\frac{\pi}{2}-\arg{g})}}, (11)

with argg\arg{g} is the phase of the complex number gg. Comparing eqs. 7 and 10, we see that the nominator can be factored similarly to the denominator as N(ω)=(ωΩ~+(δ,ϕ))(ωΩ~(δ,ϕ))N(\omega)=(\omega-\widetilde{\Omega}_{+}(\delta,\phi))(\omega-\widetilde{\Omega}_{-}(\delta,\phi)), where the complex frequencies Ω~±(δ,ϕ)\widetilde{\Omega}_{\pm}(\delta,\phi) are formally identical to eq. 9, after replacing ωcωc\omega_{c}\mapsto\omega_{c}^{\prime} and |g|G\absolutevalue{g}\mapsto G. Finally, we obtain

r1(ω)=(ωΩ~+(δ,ϕ))(ωΩ~(δ,ϕ))(ωω~+)(ωω~).r_{1}(\omega)=\frac{\quantity(\omega-\widetilde{\Omega}_{+}(\delta,\phi))\quantity(\omega-\widetilde{\Omega}_{-}(\delta,\phi))}{\quantity(\omega-\widetilde{\omega}_{+})\quantity(\omega-\widetilde{\omega}_{-})}. (12)

In general, the observed resonances and anti-resonances of eq. 12 are a combined effect of both the numerator NN and the denominator DD. However, as discussed below, and numerically illustrated in fig. 2, the spectral features are well characterised by the poles (zeroes ω~±\widetilde{\omega}_{\pm} of DD) and zeroes (zeroes Ω~±\widetilde{\Omega}_{\pm} of NN) of r1r_{1}. Notably, it is sufficient to solely examine the zeroes Ω~±\widetilde{\Omega}_{\pm} to understand the resonances, and the poles ω~±\widetilde{\omega}_{\pm} to understand the anti-resonances, independently of each other.

For small dissipation rates κi\kappa_{i}, the imaginary part of ω~±\widetilde{\omega}_{\pm} is small compared to its real part. Therefore, in eq. 12, when ω\omega is close to ω±=Re{ω~±}\omega_{\pm}=\Re{\widetilde{\omega}_{\pm}}, the denominator |D|\absolutevalue{D} of |R1|\absolutevalue{R_{1}} almost vanishes, leading to a resonance behaviour (maxima) of |R1|\absolutevalue{R_{1}}. Furthermore, ω±\omega_{\pm} corresponds to the spectrum of the Hamiltonian of eq. 1, and hence this resonance behaviour is expected to give information about the spectrum of the closed-system. As shown by the solid lines in figs. 2 and 3, the spectrum is that of coherent coupling, characterised by energy level repulsion with an angular frequency gap 2|g|2\absolutevalue{g}. Hence, the denominator of |R1|\absolutevalue{R_{1}}, or equivalently its resonances, does inform on the underlying physics.

The situation is different for the nominator NN of R1R_{1}, which leads to anti-resonances. Indeed, while the expressions of ω~±\widetilde{\omega}_{\pm} and Ω~±\widetilde{\Omega}_{\pm} are formally identical, the anti-resonance coupling strength G/2πG/2\pi for Ω~±\widetilde{\Omega}_{\pm} is complex-valued (while it is real-valued, |g|/2π\absolutevalue{g}/2\pi, for ω~±\widetilde{\omega}_{\pm}) which can lead to level attraction. To see this more clearly, it is convenient to introduce the effective amplitude δ0=κ1κ3|g|δ\delta_{0}=\frac{\sqrt{\kappa_{1}\kappa_{3}}}{\absolutevalue{g}}\delta and the effective phase ϕ0=ϕ1ϕ3+arggπ2\phi_{0}=\phi_{1}-\phi_{3}+\arg{g}-\frac{\pi}{2} of Port 3. We can then rewrite eq. 11 as

G=g1+δ0ei(ϕϕ0).G=g\sqrt{1+\delta_{0}e^{i\quantity(\phi-\phi_{0})}}. (13)

Therefore, when ϕϕ0=0\phi-\phi_{0}=0 the anti-resonance coupling strength G/2πG/2\pi is real-valued and increases as δ0\delta_{0} increases, leading to an increase in level repulsion (see the dashed lines in the first column of fig. 2). On the other hand, when ϕϕ0=π\phi-\phi_{0}=\pi, G/2πG/2\pi is real-valued when δ0<1\delta_{0}<1 and diminishes when δ0\delta_{0} increases. Eventually, when δ0>1\delta_{0}>1, the G/2πG/2\pi becomes purely imaginary due to taking the square root of a negative number, leading to level attraction. In the limiting case where δ0=1\delta_{0}=1, we have G=0G=0 and we obtain two uncoupled anti-resonances as shown in fig. 2(g) (horizontal at the cavity mode frequency and diagonal at the magnon’s frequency ωm/2π\omega_{m}/2\pi). As can be seen from the dashed lines in fig. 2, these spectral features indeed correspond to anti-resonances (minima of |R1|\absolutevalue{R_{1}}) at the frequencies Ω±\Omega_{\pm}. Physically, these frequencies Ω±\Omega_{\pm} are determined by the interference between the nominators of S11S_{11} and S13S_{13} since r1(ω)=S11+δeiϕS13r_{1}(\omega)=S_{11}+\delta e^{i\phi}S_{13}. Hence, the input-output formalism shows that while the denominator of |R1|\absolutevalue{R_{1}} informs on the physics, the nominator is interference-based. Furthermore, the denominators of both R1R_{1} and T2T_{2} are identical (see appendix D for the detailed expression), leading to similar resonant behaviour following the coherent coupling spectrum. However, their anti-resonance behaviours differ because their nominators differ (see appendix D).

Refer to caption
Figure 4: Plots of the normalised reflection and transmission amplitudes |R1|,|T2|\absolutevalue{R_{1}},\absolutevalue{T_{2}} using the numerical values of the S parameters obtained using COMSOL. Note that contrary to fig. 2 we varied the amplitude δ\delta at Port 3 instead of the effective amplitude δ0\delta_{0}, because the latter depends on the unknown parameters κ1,κ3\kappa_{1},\kappa_{3}.

Concerning the occurrence of level attraction, we note that it requires the total phase ϕ+ϕ3ϕ1+π2argg\phi+\phi_{3}-\phi_{1}+\frac{\pi}{2}-\mathrm{arg}\,g equal to π\pi. Physically, this is determined by the magnon-photon coupling phase argg\mathrm{arg}\,g, the coupling of the cavity and magnon modes to the probes (ϕ1\phi_{1} and ϕ3\phi_{3}), and the chosen phase difference ϕ\phi between Port 1 and Port 3. The strength of level attraction itself is determined by |G||G|, which depends on |g||g| and the ratio κ1κ3g\frac{\sqrt{\kappa_{1}\kappa_{3}}}{g}, i.e. the magnon-photon coupling strength and the coupling to the ports.

Numerical finite element results.

The input-output formalism provides interesting insights thanks to the resulting analytical expressions. However, it remains a toy-model of a two-tone driving experiment. Instead, a realistic modelling, taking into account the geometry of the cavity and of the ports, can be perfomed using COMSOL Multiphysics®, a finite element modelling software. We use a two-post re-entrant cavity Goryachev et al. (2014); Kostylev et al. (2016), similar to that sketched in fig. 1, in which the loop antenna of Port 3 is inserted from the bottom of the cavity (see appendix H for more details). At the location of the YIG sphere, the cavity mode’s magnetic field is purely along the 𝐱^\hat{\mathbf{x}} axis Bourhill et al. (2020). In our analysis, we assumed that Port 3 does not couple to the cavity mode, which requires us to orient the loop antenna so that it generates a magnetic field orthogonal to the cavity mode. Thus, noting 𝐧^\hat{\mathbf{n}} the normal to the plane of the loop, we need 𝐧^\hat{\mathbf{n}} to be in the (x,z)(x,z) plane. Furthermore, since only the components orthogonal to the static magnetic field H0𝐳^H_{0}\hat{\mathbf{z}} contribute to the coupling between Port 3 and the magnon, κ3/2π\kappa_{3}/2\pi is maximum when 𝐧^=𝐲^\hat{\mathbf{n}}=\hat{\mathbf{y}}.

We first numerically calculated the S parameters for different values of 𝐇0\mathbf{H}_{0} using COMSOL, as detailed in appendix H. From these two SS parameters, we can plot R1R_{1} and T2T_{2} after normalising r1(ω)=S11+δeiϕS13r_{1}(\omega)=S_{11}+\delta e^{i\phi}S_{13} and t2(ω)=S21+δeiϕS23t_{2}(\omega)=S_{21}+\delta e^{i\phi}S_{23}, and we obtain the results of fig. 4, which successfully reproduce the input-output theory results of figs. 2 and 3. As a further verification, we also performed a fully two-tone experiment in COMSOL for δ=12\delta=12, and the results were identical to those of the second and fourth rows of fig. 4.

IV Physical interpretation

In sections II and III, we have considered the experimentally accessible observables, i.e. the reflection and transmission amplitudes. We have confirmed that the resonances of R1R_{1} and T2T_{2} follow energy level repulsion, suggesting coherent coupling physics. As the same time, we saw that the anti-resonances of R1R_{1} can lead to level attraction, which begs the question of which physics is effectively taking place. The physics can be inferred from the dynamics of the cavity and magnon modes in the presence of the two coherent drives, given by the quantum Langevin equations. Therefore, to derive the effective Hamiltonian, we write the QLEs eqs. 2 and 3 in the semi-classical approximation where operators are replaced by their expectation values. Recalling that cin=min=0\expectationvalue{c^{\text{in}}}=\expectationvalue{m^{\text{in}}}=0, the QLEs read

c˙\displaystyle\dot{c} =iω~ccigmκ1eiϕ1p1inκ2eiϕ2p2in,\displaystyle=-i\widetilde{\omega}_{c}c-igm-\sqrt{\kappa_{1}}e^{i\phi_{1}}p_{1}^{\text{in}}-\sqrt{\kappa_{2}}e^{i\phi_{2}}p_{2}^{\text{in}}, (14)
m˙\displaystyle\dot{m} =iω~mmigcκ3eiϕ3p3in.\displaystyle=-i\widetilde{\omega}_{m}m-igc-\sqrt{\kappa_{3}}e^{i\phi_{3}}p_{3}^{\text{in}}. (15)

In both a reflection and transmission measurement, port 2 is not driven, so we set p2in=0p_{2}^{\text{in}}=0. On the other hand, p1inp_{1}^{\text{in}} and p3inp_{3}^{\text{in}} correspond to coherent drives at frequency ω/2π\omega/2\pi with amplitudes \mathcal{E} and δeiϕ\delta e^{i\phi}\mathcal{E}. Thus, further defining 1=κ1/2πeiϕ1\mathcal{E}_{1}=\sqrt{\kappa_{1}/2\pi}e^{i\phi_{1}}\mathcal{E} and 3=κ3/2πeiϕ3δeiϕ\mathcal{E}_{3}=\sqrt{\kappa_{3}/2\pi}e^{i\phi_{3}}\mathcal{E}\delta e^{i\phi}, the QLEs become, from appendix B,

c˙\displaystyle\dot{c} =iω~ccigm1eiωt,\displaystyle=-i\widetilde{\omega}_{c}c-igm-\mathcal{E}_{1}e^{-i\omega t}, (16)
m˙\displaystyle\dot{m} =iω~mmigc3eiωt.\displaystyle=-i\widetilde{\omega}_{m}m-igc-\mathcal{E}_{3}e^{-i\omega t}. (17)

From these equations, we find that the effective non-hermitian Hamiltonian (recall that ω~c,ω~m\widetilde{\omega}_{c},\widetilde{\omega}_{m}\in\mathbb{C})

Heff\displaystyle H_{\text{eff}} =ω~ccc+ω~mmm+(gcm+gcm)\displaystyle=\hbar\widetilde{\omega}_{c}c^{\dagger}c+\hbar\widetilde{\omega}_{m}m^{\dagger}m+\hbar\quantity(gcm^{\dagger}+g^{*}c^{\dagger}m) (18)
+i(1ceiωth.c)+i(3meiωth.c)\displaystyle+i\hbar\quantity(\mathcal{E}_{1}ce^{i\omega t}-\mathrm{h.c})+i\hbar\quantity(\mathcal{E}_{3}me^{i\omega t}-\mathrm{h.c})

where h.c\mathrm{h.c} stands for the hermitian conjugate terms, gives Heisenberg equations of motion identical to eqs. 16 and 17. Thus, the physics described by eq. 18 is identical to that given by the QLEs. After a rotating frame transformation to remove the time-dependence and displacement operations (see appendix G for details), this Hamiltonian is unitarily equivalent to

Heff=Δ~cccΔ~mmm+(gcm+gcm).H_{\text{eff}}^{\prime}=-\hbar\widetilde{\Delta}_{c}c^{\dagger}c-\hbar\widetilde{\Delta}_{m}m^{\dagger}m+\hbar\quantity(gcm^{\dagger}+g^{*}c^{\dagger}m). (19)

Formally similar to the closed-system Hamiltonian of eq. 1, this effective Hamiltonian describes a coherent coupling physics, with a spectrum corresponding to level repulsion. Since HeffH_{\text{eff}}^{\prime} describes the physics of the cavity system in the presence of coherent drives, we conclude that the physics of two-tone driving indeed corresponds to coherent coupling, even though the reflection coefficient can show level attraction due to interference-based anti-resonances. Therefore, the anti-resonance frequencies Ω±/2π\Omega_{\pm}/2\pi (dashed lines in fig. 2) do not correspond to the spectrum of the system, which are instead given by ω±/2π\omega_{\pm}/2\pi (solid lines in fig. 2). Notably, the anti-resonance coupling G/2πG/2\pi is merely a convenient quantity to understand the attraction and repulsion of the anti-resonances, but it does not represent a physical coupling. For instance, when δ0=1\delta_{0}=1, the magnon and cavity modes are still coherently coupled with coupling strength g/2πg/2\pi, even though G=0G=0 and level crossing is observed (see fig. 2(g)).

In the two-tone driving system studied here, the anti-resonances leading to level attraction come from interferences between S11S_{11} and S13S_{13}, but anti-resonances can also appear in one-tone driven systems as experimentally demonstrated by Rao et al. Rao et al. (2019). Notably, these anti-resonances can exhibit different coupling behaviour recently analysed by Bourcin et al. (2024), and suggest energy level repulsion and attraction with a magnon mode. These behaviours are associated with the numerators of the transmission coefficient, and therefore they are not associated to a physical coherent and dissipative coupling (even though they do allow to fit experimental data). Importantly, it is incorrect to derive an effective Hamiltonian from this numerator alone, as it is not associated with a physical dynamics.

V Conclusion

To conclude, we have showed that when two bosonic modes are simultaneously driven, the resonances in reflection and transmission indeed inform on the normal modes of the system, while the observed anti-resonances in reflection are due to interference physics, and are unrelated to the normal modes of the coupled system. Therefore, there is no dissipative coupling physics in this system, which makes the two-tone driving scheme unsuitable for the in-situ control of coherent and dissipative couplings. Still, realising such an all-microwave control remains a relevant research direction, due to the promising applications it would unlock.

It is worth mentioning that an interference-based level attraction was recently used in a cavity magnonics system to experimentally achieve a nearly perfect single-beam absorption of 96 % Rao et al. (2021). However, it once again required a vector magnet, whereas in the present work, we achieved similar physics through a flexible two-tone driving instead. Thus, it is of interest to explore the possibilities offered by two-tone driving for coherent perfect absorption, which we leave for future work.

Finally, while we considered a cavity magnonics system as a physical realisation of two coupled bosonic modes, many other systems, such as intersubband polaritons Ciuti et al. (2005) or cavity optomechanics in the red-detuned regime Aspelmeyer et al. (2014), reduce to a similar Hamiltonian (the Dicke model Hepp and Lieb (1973) after employing the Holstein-Primakoff transformation Holstein and Primakoff (1940) and the rotating wave approximation Le Boité (2020)). While the details of how such modes would be coherently driven would differ, the derivations employed here are very general and may prove useful to analyse the physics in other open systems.

Acknowledgements.
We acknowledge financial support from Thales Australia and Thales Research and Technology. This work is part of the research program supported by the European Union through the European Regional Development Fund (ERDF), by the Ministry of Higher Education and Research, Brittany and Rennes Métropole, through the CPER SpaceTech DroneTech, by Brest Métropole, and the ANR projects ICARUS (ANR-22-CE24-0008) and MagFunc (ANR-20-CE91-0005). The scientific colour map oslo Crameri (2021) was used to prevent visual distortion of the data and exclusion of readers with colourvision deficiencies Crameri et al. (2020).

Appendix A Derivation of the quantum Langevin equations

System definition.

In this note, we derive the quantum Langevin equations of the coupled magnon/photon cavity system under the rotating wave approximation, which is valid for |g|ωc,ωm\absolutevalue{g}\ll\omega_{c},\omega_{m} Frisk Kockum et al. (2019); Le Boité (2020), where g/2πg/2\pi is the coupling strength. We recall that the most general Hamiltonian describing a coupled magnon-photon system reads Flower et al. (2019)

Hsys=ωccc+ωmmm+(gcm+gcm),H_{\text{sys}}=\hbar\omega_{c}c^{\dagger}c+\hbar\omega_{m}m^{\dagger}m+\hbar(gcm^{\dagger}+g^{*}c^{\dagger}m), (20)

where g/2πg/2\pi is complex-valued due to potential coupling phases Gardin et al. (2023a).

The intrinsic losses of the cavity and magnon modes (respectively due to radiative losses and the Gilbert damping) can be modelled by coupling to two bosonic baths described by the Hamiltonians

Hbath,intrinsic\displaystyle H_{\text{bath,intrinsic}} =dωωaωaω+dωωbωbω,\displaystyle=\int_{\mathbb{R}}\differential{\omega}\hbar\omega a_{\omega}^{\dagger}a_{\omega}+\int_{\mathbb{R}}\differential{\omega}\hbar\omega b_{\omega}^{\dagger}b_{\omega}, (21)
Hcav–bath,intrinsic\displaystyle H_{\text{cav--bath,intrinsic}} =dωiκc2π(caωcaω)+dωiκm2π(cbωcbω).\displaystyle=\int_{\mathbb{R}}\differential{\omega}i\hbar\sqrt{\frac{\kappa_{c}}{2\pi}}\quantity(ca_{\omega}^{\dagger}-c^{\dagger}a_{\omega})+\int_{\mathbb{R}}\differential{\omega}i\hbar\sqrt{\frac{\kappa_{m}}{2\pi}}\quantity(cb_{\omega}^{\dagger}-c^{\dagger}b_{\omega}). (22)

Here, we have assumed frequency-independent (Markov approximation) and real-valued coupling rates κc/2π,κm/2π\kappa_{c}/2\pi,\kappa_{m}/2\pi to the baths.

Additionally, the cavity system is coupled to the environment through three ports, used to inject and sense microwave fields. We label them as Port 1, Port 2, and Port 3. To model the coupling of the magnon and cavity modes to the ports, we again couple them to a bosonic bath, but this time we allow the coupling rates to be complex-valued to model potential dephasing of the microwaves through the coaxial cables or due to the antenna geometry Bourcin et al. (2024). Therefore, we assume that the cavity mode couples to Ports 1 and 2 with coupling constants κ1/2π,κ2/2π\kappa_{1}/2\pi,\kappa_{2}/2\pi, and phases ϕ1,ϕ2\phi_{1},\phi_{2}, while the magnon couples to Port 3 only, with coupling constant κ3/2π\kappa_{3}/2\pi and phase ϕ3\phi_{3}. For the sake of completeness, we further consider that the cavity mode can couple to Port 3 with coupling constant ζκ3/2π\zeta\kappa_{3}/2\pi and phase ϕ3\phi_{3}^{\prime}, where ζ\zeta a dimensionless constant. The continuous-frequency bosonic bath of port ii is described by creation and annihilation operators pi,ω,pi,ωp_{i,\omega}^{\dagger},p_{i,\omega} with Hamiltonian

Hbath,ports=i=13dωωpi,ωpi,ω.H_{\text{bath,ports}}=\sum_{i=1}^{3}\int_{\mathbb{R}}\differential{\omega}\hbar\omega p_{i,\omega}^{\dagger}p_{i,\omega}. (23)

while the interaction between the bath and the cavity system is modelled by

Hcav–bath,ports\displaystyle H_{\text{cav--bath,ports}} =dωiκ12π(cp1,ωeiϕ1cp1,ωeiϕ1)+dωiκ22π(cp2,ωeiϕ2cp2,ωeiϕ2)\displaystyle=\int_{\mathbb{R}}\differential{\omega}i\hbar\sqrt{\frac{\kappa_{1}}{2\pi}}\quantity(cp_{1,\omega}^{\dagger}e^{-i\phi_{1}}-c^{\dagger}p_{1,\omega}e^{i\phi_{1}})+\int_{\mathbb{R}}\differential{\omega}i\hbar\sqrt{\frac{\kappa_{2}}{2\pi}}\quantity(cp_{2,\omega}^{\dagger}e^{-i\phi_{2}}-c^{\dagger}p_{2,\omega}e^{i\phi_{2}}) (24)
+dωiκ32π(mp3,ωeiϕ3mp3,ωeiϕ3)+dωiζκ32π(cp3,ωeiϕ3cp3,ωeiϕ3).\displaystyle\quad+\int_{\mathbb{R}}\differential{\omega}i\hbar\sqrt{\frac{\kappa_{3}}{2\pi}}\quantity(mp_{3,\omega}^{\dagger}e^{-i\phi_{3}}-m^{\dagger}p_{3,\omega}e^{i\phi_{3}})+\int_{\mathbb{R}}\differential{\omega}i\hbar\sqrt{\frac{\zeta\kappa_{3}}{2\pi}}\quantity(cp_{3,\omega}^{\dagger}e^{-i\phi_{3}}-c^{\dagger}p_{3,\omega}e^{i\phi_{3}^{\prime}}).

Thus, the total Hamiltonian of the joint cavity system and environment is

H\displaystyle H =Hsys+Hbath,intrinsic+Hcav–bath,intrinsic+Hbath,ports+Hcav–bath,ports.\displaystyle=H_{\text{sys}}+H_{\text{bath,intrinsic}}+H_{\text{cav--bath,intrinsic}}+H_{\text{bath,ports}}+H_{\text{cav--bath,ports}}. (25)

Equation of motions.

The Heisenberg equation of motion for p1,ωp_{1,\omega} is

p˙1,ω(t)=iωp1,ω(t)+κ12πeiϕ1c(t).\dot{p}_{1,\omega}(t)=-i\omega p_{1,\omega}(t)+\sqrt{\frac{\kappa_{1}}{2\pi}}e^{-i\phi_{1}}c(t). (26)

The formal solution for an arbitrary t0<tt_{0}<t is

p1,ω(t)=eiω(tt0)p1,ω(t0)+t0tdtκ12πeiϕ1c(t)eiω(tt),p_{1,\omega}(t)=e^{-i\omega(t-t_{0})}p_{1,\omega}(t_{0})+\int_{t_{0}}^{t}\differential{t^{\prime}}\sqrt{\frac{\kappa_{1}}{2\pi}}e^{-i\phi_{1}}c(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}, (27)

and by analogy we deduce that

p2,ω(t)=eiω(tt0)p2,ω(t0)+t0tdtκ22πeiϕ2c(t)eiω(tt),p_{2,\omega}(t)=e^{-i\omega(t-t_{0})}p_{2,\omega}(t_{0})+\int_{t_{0}}^{t}\differential{t^{\prime}}\sqrt{\frac{\kappa_{2}}{2\pi}}e^{-i\phi_{2}}c(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}, (28)
p3,ω(t)\displaystyle p_{3,\omega}(t) =eiω(tt0)p3,ω(t0)+t0tdtκ32πeiϕ3m(t)eiω(tt)+t0tdtζκ32πeiϕ3c(t)eiω(tt),\displaystyle=e^{-i\omega(t-t_{0})}p_{3,\omega}(t_{0})+\int_{t_{0}}^{t}\differential{t^{\prime}}\sqrt{\frac{\kappa_{3}}{2\pi}}e^{-i\phi_{3}}m(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}+\int_{t_{0}}^{t}\differential{t^{\prime}}\sqrt{\frac{\zeta\kappa_{3}}{2\pi}}e^{-i\phi_{3}^{\prime}}c(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}, (29)
aω(t)\displaystyle a_{\omega}(t) =eiω(tt0)aω(t0)+t0tdtκc2πc(t)eiω(tt),\displaystyle=e^{-i\omega(t-t_{0})}a_{\omega}(t_{0})+\int_{t_{0}}^{t}\differential{t^{\prime}}\sqrt{\frac{\kappa_{c}}{2\pi}}c(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}, (30)
bω(t)\displaystyle b_{\omega}(t) =eiω(tt0)bω(t0)+t0tdtκm2πm(t)eiω(tt).\displaystyle=e^{-i\omega(t-t_{0})}b_{\omega}(t_{0})+\int_{t_{0}}^{t}\differential{t^{\prime}}\sqrt{\frac{\kappa_{m}}{2\pi}}m(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}. (31)

Taking t0t_{0}\to-\infty and using tdtf(t)δ(tt)=12f(t)\int_{-\infty}^{t}\differential{t^{\prime}}f(t^{\prime})\delta(t-t^{\prime})=\frac{1}{2}f(t), the Heisenberg equation of motion for mm is

m˙(t)\displaystyle\dot{m}(t) =iωmm(t)igc(t)κm2πdωbω(t)κ32πeiϕ3dωp3,ω(t)\displaystyle=-i\omega_{m}m(t)-igc(t)-\sqrt{\frac{\kappa_{m}}{2\pi}}\int_{\mathbb{R}}\differential{\omega}b_{\omega}(t)-\sqrt{\frac{\kappa_{3}}{2\pi}}e^{i\phi_{3}}\int_{\mathbb{R}}\differential{\omega}p_{3,\omega}(t) (32)
=iωmm(t)igc(t)κmmin(t)κm2πt0tdtm(t)dωeiω(tt)\displaystyle=-i\omega_{m}m(t)-igc(t)-\sqrt{\kappa_{m}}m^{\text{in}}(t)-\frac{\kappa_{m}}{2\pi}\int_{t_{0}\to-\infty}^{t}\differential{t^{\prime}}m(t^{\prime})\int_{\mathbb{R}}\differential{\omega}e^{-i\omega\quantity(t-t^{\prime})}
κ3eiϕ3p3in(t)κ32πt0tdt(m(t)+ei(ϕ3ϕ3)ζc(t))2πδ(tt)\displaystyle\quad-\sqrt{\kappa_{3}}e^{i\phi_{3}}p_{3}^{\text{in}}(t)-\frac{\kappa_{3}}{2\pi}\int_{t_{0}\to-\infty}^{t}\differential{t^{\prime}}\quantity(m(t^{\prime})+e^{i(\phi_{3}-\phi_{3}^{\prime})}\sqrt{\zeta}c(t^{\prime}))2\pi\delta(t-t^{\prime}) (33)
=iω~mm(t)(ig+ei(ϕ3ϕ3)ζκ32)c(t)κmmin(t)κ3eiϕ3p3in(t),\displaystyle=-i\widetilde{\omega}_{m}m(t)-\quantity(ig+e^{i(\phi_{3}-\phi_{3}^{\prime})}\sqrt{\zeta}\frac{\kappa_{3}}{2})c(t)-\sqrt{\kappa_{m}}m^{\text{in}}(t)-\sqrt{\kappa_{3}}e^{i\phi_{3}}p_{3}^{\text{in}}(t), (34)

with ω~m=ωmiκm+κ32\widetilde{\omega}_{m}=\omega_{m}-i\frac{\kappa_{m}+\kappa_{3}}{2},

piin(t)=limt012πdωeiω(tt0)pi,ω(t0),p_{i}^{\text{in}}(t)=\lim_{t_{0}\to-\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\differential{\omega}e^{-i\omega(t-t_{0})}p_{i,\omega}(t_{0}), (35)

and

cin(t)=limt012πdωeiω(tt0)aω(t0),min(t)=limt012πdωeiω(tt0)bω(t0).c^{\text{in}}(t)=\lim_{t_{0}\to-\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\differential{\omega}e^{-i\omega(t-t_{0})}a_{\omega}(t_{0}),\quad m^{\text{in}}(t)=\lim_{t_{0}\to-\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\differential{\omega}e^{-i\omega(t-t_{0})}b_{\omega}(t_{0}). (36)

Note that we defined the input fields following the original convention of Gardiner and Collett (1985), but a different choice, with a minus sign instead, can also be made. This only changes the phase reference for the ports, and does not impact our results. Indeed, one can formally check that changing piinpiinp_{i}^{in}\mapsto-p_{i}^{in} implies c~c~\widetilde{c}\mapsto-\widetilde{c} (see e.g. equation (B7)). As a consequence, one finds that r1r1r_{1}\mapsto-r_{1} and t2t2t_{2}\mapsto-t_{2}, leading to a phase shift of π\pi which is unobservable when considering the reflection and transmission amplitudes.

Similarly, the Heisenberg equation of motion for cc reads

c˙(t)\displaystyle\dot{c}(t) =iωcc(t)igm(t)κc2πdωaω(t)\displaystyle=-i\omega_{c}c(t)-ig^{*}m(t)-\sqrt{\frac{\kappa_{c}}{2\pi}}\int_{\mathbb{R}}\differential{\omega}a_{\omega}(t)
κ12πeiϕ1dωp1,ω(t)κ22πeiϕ2dωp2,ω(t)ζκ32πeiϕ3dωp3,ω(t)\displaystyle\quad-\sqrt{\frac{\kappa_{1}}{2\pi}}e^{i\phi_{1}}\int_{\mathbb{R}}\differential{\omega}p_{1,\omega}(t)-\sqrt{\frac{\kappa_{2}}{2\pi}}e^{i\phi_{2}}\int_{\mathbb{R}}\differential{\omega}p_{2,\omega}(t)-\sqrt{\frac{\zeta\kappa_{3}}{2\pi}}e^{i\phi_{3}^{\prime}}\int_{\mathbb{R}}\differential{\omega}p_{3,\omega}(t) (37)
=iωcc(t)igm(t)ei(ϕ3ϕ3)ζκ32m(t)κc+κ1+κ2+ζκ32c(t)\displaystyle=-i\omega_{c}c(t)-ig^{*}m(t)-e^{i(\phi_{3}^{\prime}-\phi_{3})}\sqrt{\zeta}\frac{\kappa_{3}}{2}m(t)-\frac{\kappa_{c}+\kappa_{1}+\kappa_{2}+\zeta\kappa_{3}}{2}c(t)
κccin(t)κ1eiϕ1p1in(t)κ2eiϕ2p2in(t)ζκ3eϕ3p3in(t)\displaystyle\quad-\sqrt{\kappa_{c}}c^{\text{in}}(t)-\sqrt{\kappa_{1}}e^{i\phi_{1}}p_{1}^{\text{in}}(t)-\sqrt{\kappa_{2}}e^{i\phi_{2}}p_{2}^{\text{in}}(t)-\sqrt{\zeta\kappa_{3}}e^{\phi_{3}^{\prime}}p_{3}^{\text{in}}(t) (38)
=iω~cc(t)g~m(t)κccin(t)κ1eiϕ1p1in(t)κ2eiϕ2p2in(t)ζκ3eiϕ3p3in(t).\displaystyle=-i\widetilde{\omega}_{c}c(t)-\widetilde{g}^{\prime}m(t)-\sqrt{\kappa_{c}}c^{\text{in}}(t)-\sqrt{\kappa_{1}}e^{i\phi_{1}}p_{1}^{\text{in}}(t)-\sqrt{\kappa_{2}}e^{i\phi_{2}}p_{2}^{\text{in}}(t)-\sqrt{\zeta\kappa_{3}}e^{i\phi_{3}^{\prime}}p_{3}^{\text{in}}(t). (39)

where we defined ω~c=ωciκc+κ1+κ2+ζκ32\widetilde{\omega}_{c}=\omega_{c}-i\frac{\kappa_{c}+\kappa_{1}+\kappa_{2}+\zeta\kappa_{3}}{2} and g~=giζκ32ei(ϕ3ϕ3)\widetilde{g}^{\prime}=g^{*}-i\sqrt{\zeta}\frac{\kappa_{3}}{2}e^{i(\phi_{3}^{\prime}-\phi_{3})}. Similarly defining g~=giζκ32ei(ϕ3ϕ3)\widetilde{g}=g-i\sqrt{\zeta}\frac{\kappa_{3}}{2}e^{i(\phi_{3}-\phi_{3}^{\prime})}, we can rewrite the Heisenberg equation of motions as

m˙\displaystyle\dot{m} =iω~mmg~cκmmin(t)κ3eiϕ3p3in(t),\displaystyle=-i\widetilde{\omega}_{m}m-\widetilde{g}c-\sqrt{\kappa_{m}}m^{\text{in}}(t)-\sqrt{\kappa_{3}}e^{i\phi_{3}}p_{3}^{\text{in}}(t), (40)
c˙\displaystyle\dot{c} =iω~ccig~mκccin(t)κ1eiϕ1p1in(t)κ2eiϕ2p2in(t)ζκ3eiϕ3p3in(t),\displaystyle=-i\widetilde{\omega}_{c}c-i\widetilde{g}^{\prime}m-\sqrt{\kappa_{c}}c^{\text{in}}(t)-\sqrt{\kappa_{1}}e^{i\phi_{1}}p_{1}^{\text{in}}(t)-\sqrt{\kappa_{2}}e^{i\phi_{2}}p_{2}^{\text{in}}(t)-\sqrt{\zeta\kappa_{3}}e^{i\phi_{3}^{\prime}}p_{3}^{\text{in}}(t), (41)

which are the QLEs given in the main text.

Appendix B Calculation of the reflection at Port 1

Frequency-space solutions.

We now perform a semi-classical approximation, and replace operators by their expectation value. Recalling that cin=min=0\expectationvalue{c^{\text{in}}}=\expectationvalue{m^{\text{in}}}=0, the QLEs simplify to

m˙\displaystyle\dot{m} =iω~mmig~cκ3eiϕ3p3in(t),\displaystyle=-i\widetilde{\omega}_{m}m-i\widetilde{g}c-\sqrt{\kappa_{3}}e^{i\phi_{3}}p_{3}^{\text{in}}(t), (42)
c˙\displaystyle\dot{c} =iω~ccig~mκ1eiϕ1p1in(t)κ2eiϕ2p2in(t)ζκ3eiϕ3p3in(t),\displaystyle=-i\widetilde{\omega}_{c}c-i\widetilde{g}^{\prime}m-\sqrt{\kappa_{1}}e^{i\phi_{1}}p_{1}^{\text{in}}(t)-\sqrt{\kappa_{2}}e^{i\phi_{2}}p_{2}^{\text{in}}(t)-\sqrt{\zeta\kappa_{3}}e^{i\phi_{3}^{\prime}}p_{3}^{\text{in}}(t), (43)

and in frequency space,

iωm~=iω~mm~ig~c~κ3eiϕ3p~3in,\displaystyle-i\omega\widetilde{m}=-i\widetilde{\omega}_{m}\widetilde{m}-i\widetilde{g}\widetilde{c}-\sqrt{\kappa_{3}}e^{i\phi_{3}}\widetilde{p}_{3}^{\text{in}}, (44)
iΔ~cc~=ig~m~κ1eiϕ1p~1inκ2eiϕ2p~2inζκ3eiϕ3p~3in,\displaystyle-i\widetilde{\Delta}_{c}\widetilde{c}=-i\widetilde{g}^{\prime}\widetilde{m}-\sqrt{\kappa_{1}}e^{i\phi_{1}}\widetilde{p}_{1}^{\text{in}}-\sqrt{\kappa_{2}}e^{i\phi_{2}}\widetilde{p}_{2}^{\text{in}}-\sqrt{\zeta\kappa_{3}}e^{i\phi_{3}^{\prime}}\widetilde{p}_{3}^{\text{in}}, (45)

with Δ~c=ωω~c\widetilde{\Delta}_{c}=\omega-\widetilde{\omega}_{c} and Δ~m=ωω~m\widetilde{\Delta}_{m}=\omega-\widetilde{\omega}_{m}. In particular, the first equation gives

m~=g~c~iκ3eiϕ3p~3inΔ~m,\displaystyle\widetilde{m}=\frac{\widetilde{g}\widetilde{c}-i\sqrt{\kappa_{3}}e^{i\phi_{3}}\widetilde{p}_{3}^{\text{in}}}{\widetilde{\Delta}_{m}}, (46)

which inserted in the second equation leads to

c~=g~m~iκ1eiϕ1p~1iniκ2eiϕ2p~2iniζκ3eiϕ3p~3inΔ~c\displaystyle\widetilde{c}=\frac{\widetilde{g}^{\prime}\widetilde{m}-i\sqrt{\kappa_{1}}e^{i\phi_{1}}\widetilde{p}_{1}^{\text{in}}-i\sqrt{\kappa_{2}}e^{i\phi_{2}}\widetilde{p}_{2}^{\text{in}}-i\sqrt{\zeta\kappa_{3}}e^{i\phi_{3}^{\prime}}\widetilde{p}_{3}^{\text{in}}}{\widetilde{\Delta}_{c}} (47)
c~=iA(ω)[Δ~mκ1eiϕ1p~1in+Δ~mκ2eiϕ2p~2in+(g~eiϕ3+ζeiϕ3Δ~m)κ3p~3in]\displaystyle\widetilde{c}=\frac{-i}{A(\omega)}\quantity[\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}e^{i\phi_{1}}\widetilde{p}_{1}^{\text{in}}+\widetilde{\Delta}_{m}\sqrt{\kappa_{2}}e^{i\phi_{2}}\widetilde{p}_{2}^{\text{in}}+\quantity(\widetilde{g}^{\prime}e^{i\phi_{3}}+\sqrt{\zeta}e^{i\phi_{3}^{\prime}}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\widetilde{p}_{3}^{\text{in}}] (48)

where A(ω)=Δ~cΔ~mg~g~A(\omega)=\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}.

Input-output relations.

To derive the input-output relations, we first write the formal solution of p1,ωp_{1,\omega} for t<t1t<t_{1} as

p1,ω(t)=eiω(tt1)p1,ω(t1)tt1dtκ12πeiϕ1c(t)eiω(tt).p_{1,\omega}(t)=e^{-i\omega(t-t_{1})}p_{1,\omega}(t_{1})-\int_{t}^{t_{1}}\differential{t^{\prime}}\sqrt{\frac{\kappa_{1}}{2\pi}}e^{-i\phi_{1}}c(t^{\prime})e^{-i\omega\quantity(t-t^{\prime})}. (49)

and we have on the one hand

dωp1,ω(t)=2π(p1in(t)+κ12eiϕ1c(t)),\int_{\mathbb{R}}\differential{\omega}p_{1,\omega}(t)=\sqrt{2\pi}\quantity(p_{1}^{\text{in}}(t)+\frac{\sqrt{\kappa_{1}}}{2}e^{-i\phi_{1}}c(t)), (50)

and on the other

dωp1,ω(t)=2π(p1,ωout(t)κ12eiϕ1c(t)),\int_{\mathbb{R}}\differential{\omega}p_{1,\omega}(t)=\sqrt{2\pi}\quantity(p_{1,\omega}^{\text{out}}(t)-\frac{\sqrt{\kappa_{1}}}{2}e^{-i\phi_{1}}c(t)), (51)

so that the input-output relation is

p1out(t)=p1in(t)+κ1eiϕ1c(t).p_{1}^{\text{out}}(t)=p_{1}^{\text{in}}(t)+\sqrt{\kappa_{1}}e^{-i\phi_{1}}c(t). (52)

We can similarly derive

p2out(t)\displaystyle p_{2}^{\text{out}}(t) =p2in(t)+κ2eiϕ2c(t),\displaystyle=p_{2}^{\text{in}}(t)+\sqrt{\kappa_{2}}e^{-i\phi_{2}}c(t), (53)
p3out(t)\displaystyle p_{3}^{\text{out}}(t) =p3in(t)+κ3eiϕ3m(t)+ζκ3eiϕ3c(t).\displaystyle=p_{3}^{\text{in}}(t)+\sqrt{\kappa_{3}}e^{-i\phi_{3}}m(t)+\sqrt{\zeta\kappa_{3}}e^{-i\phi_{3}^{\prime}}c(t). (54)

Modelling coherent drives.

To examine the reflection and transmission, we consider that p1p_{1}, coupling to the cavity mode, is a coherent drive at frequency ωd/2π\omega_{d}/2\pi. Such a coherent drive is expected to reproduce the classical dynamics through the use of coherent states Fox (2006). Formally, the state space for p1p_{1} is the product of the Fock space of the bath operators p1,ωp_{1,\omega} for each frequency ω/2π\omega/2\pi. Formally, the state of the bath is the tensor product ω|ψω\bigotimes_{\omega\in\mathbb{R}}\ket{\mathcal{\psi}_{\omega}}, where |ψω\ket{\mathcal{\psi}_{\omega}} is the state of the bosonic mode described by the annihilation operator p1,ωp_{1,\omega}. If we assume a coherent drive, then only the mode of frequency ωd/2π\omega_{d}/2\pi has a non-vanishing number of excitation, which we take to be a coherent state |ωd\ket{\mathcal{E}_{\omega_{d}}}. Formally, |ψω=|0\ket{\psi_{\omega}}=\ket{0} if ωωd\omega\neq\omega_{d}, and |ψω=|ωd\ket{\psi_{\omega}}=\ket{\mathcal{E}_{\omega_{d}}} if ω=ωd\omega=\omega_{d}. Hence, p1=ωd|p1|ωd=ωd\expectationvalue{p_{1}}=\matrixelement{\mathcal{E}_{\omega_{d}}}{p_{1}}{\mathcal{E}_{\omega_{d}}}=\mathcal{E}_{\omega_{d}}\in\mathbb{C}, since we recall that coherent states are eigenstates of annihilation operators Fox (2006). We make a similar approximation for Port 3 driving the magnon, albeit with a different amplitude and phase, and hence p3=δeiϕωd\expectationvalue{p_{3}}=\delta e^{i\phi}\mathcal{E}_{\omega_{d}}.

A convenient choice for the coherent state ωd\mathcal{E}_{\omega_{d}} is ωd=limt0αeiωdt0\mathcal{E}_{\omega_{d}}=\lim_{t_{0}\to-\infty}\alpha e^{-i\omega_{d}t_{0}} with \mathcal{E}\in\mathbb{R}. Indeed, in the time-domain this gives for instance

p1in(t)\displaystyle\expectationvalue{p_{1}^{\text{in}}(t)} =ωd|p1in(t)|ωd\displaystyle=\matrixelement{\mathcal{E}_{\omega_{d}}}{p_{1}^{\text{in}}(t)}{\mathcal{E}_{\omega_{d}}} (55)
=limt0αeiωdt0|12πdωeiω(tt0)p1,ω(t0)|eiωdt0\displaystyle=\lim_{t_{0}\to-\infty}\matrixelement{\alpha e^{i\omega_{d}t_{0}}}{\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\differential{\omega}e^{-i\omega(t-t_{0})}p_{1,\omega}(t_{0})}{\mathcal{E}e^{-i\omega_{d}t_{0}}} (56)
=limt0eiωdt0|12πeiωd(tt0)αeiωdt0|eiωdt0\displaystyle=\lim_{t_{0}\to-\infty}\matrixelement{\mathcal{E}e^{i\omega_{d}t_{0}}}{\frac{1}{\sqrt{2\pi}}e^{-i\omega_{d}(t-t_{0})}\alpha e^{-i\omega_{d}t_{0}}}{\mathcal{E}e^{-i\omega_{d}t_{0}}} (57)
=2πeiωdt\displaystyle=\frac{\mathcal{E}}{\sqrt{2\pi}}e^{-i\omega_{d}t} (58)

where in the third line we used the fact that a coherent state is an eigenstate of the annihilation operator, and that p1,ω|eiωdt0=0p_{1,\omega}\ket{\mathcal{E}e^{-i\omega_{d}t_{0}}}=0 if ωωd\omega\neq\omega_{d}.

Expression of the reflection coefficient.

From p1in(t)=2πeiωdt\expectationvalue{p_{1}^{\text{in}}(t)}=\frac{\mathcal{E}}{\sqrt{2\pi}}e^{-i\omega_{d}t}, we see that p~1in(ω)=δ(ωωd)\expectationvalue{\widetilde{p}_{1}^{\text{in}}(\omega)}=\mathcal{E}\delta(\omega-\omega_{d}). Thus, assimilating ω\omega to the frequency of the drive, the reflection at Port 1 reads

r1(ω)\displaystyle r_{1}(\omega) =p~1outp~1in|p~2in=0=1+κ1eiϕ1c~|p~2in=0p~1in\displaystyle=\left.\frac{\widetilde{p}_{1}^{\text{out}}}{\widetilde{p}_{1}^{\text{in}}}\right|_{\widetilde{p}_{2}^{\text{in}}=0}=1+\sqrt{\kappa_{1}}e^{-i\phi_{1}}\frac{\left.\widetilde{c}\right|_{\widetilde{p}_{2}^{\text{in}}=0}}{\widetilde{p}_{1}^{\text{in}}} (59)
=1iκ1Δ~mκ1A(ω)iκ1eiϕ1(g~eiϕ3+ζeiϕ3Δ~m)κ3A(ω)p~3inp~1in\displaystyle=1-i\sqrt{\kappa_{1}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}}{A(\omega)}-i\sqrt{\kappa_{1}}e^{-i\phi_{1}}\frac{\quantity(\widetilde{g}^{\prime}e^{i\phi_{3}}+\sqrt{\zeta}e^{i\phi_{3}^{\prime}}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}}{A(\omega)}\frac{\widetilde{p}_{3}^{\text{in}}}{\widetilde{p}_{1}^{\text{in}}} (60)
=1iκ1Δ~mκ1+(g~ei(ϕ3ϕ1)+ζei(ϕ3ϕ1)Δ~m)κ3δeiϕA(ω)\displaystyle=1-i\sqrt{\kappa_{1}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}+\quantity(\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{1})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{1})}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\delta e^{i\phi}}{A(\omega)} (61)

Notice that for κ3=0\kappa_{3}=0, i.e. only the cavity mode is driven, the expression for the reflection reduces to the S11S_{11} parameter.

Normalisation.

For a standard coherent state |\ket{\mathcal{E}}, the mean number of particle is given by ||2\absolutevalue{\mathcal{E}}^{2}. Here, the unit of the ports pk\expectationvalue{p_{k}} are ω\sqrt{\omega}, which can be seen by considering the quantum Langevin equations. Hence, for the ports, ||2\absolutevalue{\mathcal{E}}^{2} is a number of photons per second, which can be linked with the power of the drive PP by

=Pωd.\mathcal{E}=\sqrt{\frac{P}{\hbar\omega_{d}}}. (62)

Given that p3=δeiϕp1\expectationvalue{p_{3}}=\delta e^{i\phi}\expectationvalue{p_{1}}, we deduce that the power difference between Port 1 and Port 3 is given by δ2\delta^{2}, which allows to renormalise the expression of the reflection and transmission.

Appendix C Expression of the reflection at Port 1 with standard S-parameters

In this note, we derive the expressions of the standard S-parameters, when only one port is active at a time. Assuming that port 3 is not active, i.e. p3in=0\expectationvalue{p_{3}^{\text{in}}}=0 (which corresponds to δ=0\delta=0), the reflection r1r_{1} and transmission t2t_{2} coefficients of eqs. 61 and 69 reduce to

S11(ω)\displaystyle S_{11}(\omega) =1iΔ~mκ1Δ~cΔ~mg~g~,\displaystyle=1-i\frac{\widetilde{\Delta}_{m}\kappa_{1}}{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}}, (63)
S21(ω)\displaystyle S_{21}(\omega) =iΔ~mκ1κ2ei(ϕ1ϕ2)Δ~cΔ~mg~g~.\displaystyle=-i\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}\kappa_{2}}e^{i(\phi_{1}-\phi_{2})}}{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}}. (64)

which are the standard S parameters for a two-port cavity. Note that by symmetry we also have

S12(ω)=iΔ~mκ1κ2ei(ϕ2ϕ1)Δ~cΔ~mg~g~,S22(ω)=1iΔ~mκ2Δ~cΔ~mg~g~.S_{12}(\omega)=-i\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}\kappa_{2}}e^{i(\phi_{2}-\phi_{1})}}{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}},\quad S_{22}(\omega)=1-i\frac{\widetilde{\Delta}_{m}\kappa_{2}}{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}}. (65)

Similarly, using eq. 48 we find

S13(ω)\displaystyle S_{13}(\omega) =p~1outp~3in|p~1in=p~2in=0=κ1eiϕ1c~|p~1in=p~2in=0p~3in=iκ1κ3g~ei(ϕ3ϕ1)+ζei(ϕ3ϕ1)Δ~mA(ω),\displaystyle=\left.\frac{\widetilde{p}_{1}^{\text{out}}}{\widetilde{p}_{3}^{\text{in}}}\right|_{\widetilde{p}_{1}^{\text{in}}=\widetilde{p}_{2}^{\text{in}}=0}=\sqrt{\kappa_{1}}e^{-i\phi_{1}}\frac{\left.\widetilde{c}\right|_{\widetilde{p}_{1}^{\text{in}}=\widetilde{p}_{2}^{\text{in}}=0}}{\widetilde{p}_{3}^{\text{in}}}=-i\sqrt{\kappa_{1}\kappa_{3}}\frac{\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{1})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{1})}\widetilde{\Delta}_{m}}{A(\omega)}, (66)

and hence

r1(ω)=S11+δeiϕS13=1iκ1Δ~mκ1+(g~ei(ϕ3ϕ1)+ζei(ϕ3ϕ1)Δ~m)κ3δeiϕA(ω)r_{1}(\omega)=S_{11}+\delta e^{i\phi}S_{13}=1-i\sqrt{\kappa_{1}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}+\quantity(\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{1})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{1})}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\delta e^{i\phi}}{A(\omega)} (67)

which matches with the equation given in the main text for ζ=0\zeta=0.

Appendix D Calculation of the transmission

Using the results of the input-output theory above, the transmission through Port 2 when Port 1 and 3 are active is calculated to be

t2(ω)\displaystyle t_{2}(\omega) =p~2outp~1in|p~2in=0=κ2eiϕ2c~|p~2in=0p~1in\displaystyle=\left.\frac{\widetilde{p}_{2}^{\text{out}}}{\widetilde{p}_{1}^{\text{in}}}\right|_{\widetilde{p}_{2}^{\text{in}}=0}=\sqrt{\kappa_{2}}e^{-i\phi_{2}}\frac{\left.\widetilde{c}\right|_{\widetilde{p}_{2}^{\text{in}}=0}}{\widetilde{p}_{1}^{\text{in}}} (68)
=iκ2Δ~mκ1ei(ϕ1ϕ2)+(g~ei(ϕ3ϕ2)+ζei(ϕ3ϕ2)Δ~m)κ3δeiϕA(ω).\displaystyle=-i\sqrt{\kappa_{2}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}e^{i(\phi_{1}-\phi_{2})}+\quantity(\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{2})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{2})}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\delta e^{i\phi}}{A(\omega)}. (69)

Thus, the normalised transmission at Port 2 is T2=11+δ2t2T_{2}=\frac{1}{\sqrt{1+\delta^{2}}}t_{2}.

Expression with S parameters.

Furthermore, from eq. 66, we see that S23S_{23} can be obtained from S13S_{13} by replacing (κ1,ϕ1)(κ2,ϕ2)(\kappa_{1},\phi_{1})\mapsto(\kappa_{2},\phi_{2}), and thus we have

S23(ω)\displaystyle S_{23}(\omega) =p~2outp~3in|p~1in=p~2in=0=κ2eiϕ2c~|p~1in=p~2in=0p~3in=iκ2κ3g~ei(ϕ3ϕ2)+ζei(ϕ3ϕ2)Δ~mA(ω).\displaystyle=\left.\frac{\widetilde{p}_{2}^{\text{out}}}{\widetilde{p}_{3}^{\text{in}}}\right|_{\widetilde{p}_{1}^{\text{in}}=\widetilde{p}_{2}^{\text{in}}=0}=\sqrt{\kappa_{2}}e^{-i\phi_{2}}\frac{\left.\widetilde{c}\right|_{\widetilde{p}_{1}^{\text{in}}=\widetilde{p}_{2}^{\text{in}}=0}}{\widetilde{p}_{3}^{\text{in}}}=-i\sqrt{\kappa_{2}\kappa_{3}}\frac{\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{2})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{2})}\widetilde{\Delta}_{m}}{A(\omega)}. (70)

Hence, comparing eq. 69 with eqs. 64 and 70 we conclude that t2=S21+δeiϕS23t_{2}=S_{21}+\delta e^{i\phi}S_{23}.

Zeros of the nominator.

The zeros of the nominator of T2T_{2} are given by

(ωω~m)[κ1ei(ϕ1ϕ2)+ζκ3ei(ϕ3ϕ2)δeiϕ]+(giζκ32ei(ϕ3ϕ3))ei(ϕ3ϕ2)κ3δeiϕ=0\displaystyle(\omega-\widetilde{\omega}_{m})\quantity[\sqrt{\kappa_{1}}e^{i(\phi_{1}-\phi_{2})}+\sqrt{\zeta\kappa_{3}}e^{i(\phi_{3}^{\prime}-\phi_{2})}\delta e^{i\phi}]+\quantity(g^{*}-i\sqrt{\zeta}\frac{\kappa_{3}}{2}e^{i(\phi_{3}^{\prime}-\phi_{3})})e^{i(\phi_{3}-\phi_{2})}\sqrt{\kappa_{3}}\delta e^{i\phi}=0 (71)

i.e.

ω\displaystyle\omega =ω~m+(giζκ32ei(ϕ3ϕ3))eiϕ3κ3δeiϕκ1eiϕ1+ζκ3eiϕ3δeiϕ.\displaystyle=\widetilde{\omega}_{m}+\frac{\quantity(g^{*}-i\sqrt{\zeta}\frac{\kappa_{3}}{2}e^{i(\phi_{3}^{\prime}-\phi_{3})})e^{i\phi_{3}}\sqrt{\kappa_{3}}\delta e^{i\phi}}{\sqrt{\kappa_{1}}e^{i\phi_{1}}+\sqrt{\zeta\kappa_{3}}e^{i\phi_{3}^{\prime}}\delta e^{i\phi}}. (72)

Appendix E Expression of the reflection at Port 2 and the transmission at Port 1

In the main text, we only consider that Port 1 is being driven, while Port 2 is passive and used as a probe. In this note, we exchange the role of Port 1 and Port 2 to check that the results are identical. Thus, we now have p2in(t)=2πeiωdt\expectationvalue{p_{2}^{\text{in}}(t)}=\frac{\mathcal{E}}{\sqrt{2\pi}}e^{-i\omega_{d}t}, p3in=δeiϕp1in\expectationvalue{p_{3}^{\text{in}}}=\delta e^{i\phi}\expectationvalue{p_{1}^{\text{in}}}, and p2in=0\expectationvalue{p_{2}^{\text{in}}}=0. The reflection at Port 2 is

r2(ω)\displaystyle r_{2}(\omega) =p~2outp~2in|p~1in=0=1+κ2eiϕ2c~|p~1in=0p~2in\displaystyle=\left.\frac{\widetilde{p}_{2}^{\text{out}}}{\widetilde{p}_{2}^{\text{in}}}\right|_{\widetilde{p}_{1}^{\text{in}}=0}=1+\sqrt{\kappa_{2}}e^{-i\phi_{2}}\frac{\left.\widetilde{c}\right|_{\widetilde{p}_{1}^{\text{in}}=0}}{\widetilde{p}_{2}^{\text{in}}} (73)
=1iκ2Δ~mκ2+(g~ei(ϕ3ϕ2)+ζei(ϕ3ϕ2)Δ~m)κ3δeiϕA(ω),\displaystyle=1-i\sqrt{\kappa_{2}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{2}}+\quantity(\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{2})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{2})}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\delta e^{i\phi}}{A(\omega)}, (74)

and hence it is formally identical to r1r_{1} after replacing the index 1 by 2. For the transmission through Port 1,

t1(ω)\displaystyle t_{1}(\omega) =p~1outp~2in|p~1in=0=κ1eiϕ1c~|p~1in=0p~2in\displaystyle=\left.\frac{\widetilde{p}_{1}^{\text{out}}}{\widetilde{p}_{2}^{\text{in}}}\right|_{\widetilde{p}_{1}^{\text{in}}=0}=\sqrt{\kappa_{1}}e^{-i\phi_{1}}\frac{\left.\widetilde{c}\right|_{\widetilde{p}_{1}^{\text{in}}=0}}{\widetilde{p}_{2}^{\text{in}}} (75)
=iκ1Δ~mκ2ei(ϕ2ϕ1)+(g~ei(ϕ3ϕ1)+ζei(ϕ3ϕ1)Δ~m)κ3δeiϕA(ω).\displaystyle=-i\sqrt{\kappa_{1}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{2}}e^{i(\phi_{2}-\phi_{1})}+\quantity(\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{1})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{1})}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\delta e^{i\phi}}{A(\omega)}. (76)

Appendix F Effective coupling strength and crosstalk

For non-vanishing coupling of Port 3 to the cavity mode, ζ0\zeta\neq 0, we recall that the reflection coefficient given by eq. 61 is

r1(ω)\displaystyle r_{1}(\omega) =N(ω)D(ω)=1iκ1Δ~mκ1+(g~ei(ϕ3ϕ1)+ζei(ϕ3ϕ1)Δ~m)κ3δeiϕA(ω)\displaystyle=\frac{N(\omega)}{D(\omega)}=1-i\sqrt{\kappa_{1}}\frac{\widetilde{\Delta}_{m}\sqrt{\kappa_{1}}+\quantity(\widetilde{g}^{\prime}e^{i(\phi_{3}-\phi_{1})}+\sqrt{\zeta}e^{i(\phi_{3}^{\prime}-\phi_{1})}\widetilde{\Delta}_{m})\sqrt{\kappa_{3}}\delta e^{i\phi}}{A(\omega)} (77)
=Δ~cΔ~mg~g~iκ1Δ~mig~κ1κ3ei(ϕ3ϕ1)δeiϕiΔ~mζκ1κ3ei(ϕ3ϕ1)δeiϕΔ~cΔ~mg~g~.\displaystyle=\frac{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}-i\kappa_{1}\widetilde{\Delta}_{m}-i\widetilde{g}^{\prime}\sqrt{\kappa_{1}\kappa_{3}}e^{i(\phi_{3}-\phi_{1})}\delta e^{i\phi}-i\widetilde{\Delta}_{m}\sqrt{\zeta}\sqrt{\kappa_{1}\kappa_{3}}e^{i(\phi_{3}^{\prime}-\phi_{1})}\delta e^{i\phi}}{\widetilde{\Delta}_{c}\widetilde{\Delta}_{m}-\widetilde{g}\widetilde{g}^{\prime}}. (78)

The nominator is

N(ω)\displaystyle N(\omega) =ω2(ω~c+ω~m)ω+ω~cω~mg~g~iκ1(ωω~m)ig~κ1κ3δei(ϕ+ϕ3ϕ1)i(ωω~m)ζκ1κ3δei(ϕ+ϕ3ϕ1)\displaystyle=\omega^{2}-\quantity(\widetilde{\omega}_{c}+\widetilde{\omega}_{m})\omega+\widetilde{\omega}_{c}\widetilde{\omega}_{m}-\widetilde{g}\widetilde{g}^{\prime}-i\kappa_{1}\quantity(\omega-\widetilde{\omega}_{m})-i\widetilde{g}^{\prime}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}-\phi_{1})}-i\quantity(\omega-\widetilde{\omega}_{m})\sqrt{\zeta}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}^{\prime}-\phi_{1})} (79)
=ω2(ω~c+i[κ1+ζκ1κ3δei(ϕ+ϕ3ϕ1)]+ω~m)ω+(ω~c+i[κ1+ζκ1κ3δei(ϕ+ϕ3ϕ1)])ω~m\displaystyle=\omega^{2}-\quantity(\widetilde{\omega}_{c}+i\quantity[\kappa_{1}+\sqrt{\zeta}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}^{\prime}-\phi_{1})}]+\widetilde{\omega}_{m})\omega+\quantity(\widetilde{\omega}_{c}+i\quantity[\kappa_{1}+\sqrt{\zeta}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}^{\prime}-\phi_{1})}])\widetilde{\omega}_{m} (80)
g~g~ig~κ1κ3δei(ϕ+ϕ3ϕ1)\displaystyle\quad-\widetilde{g}\widetilde{g}^{\prime}-i\widetilde{g}^{\prime}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}-\phi_{1})}
=ω2(ω~c′′+ω~m)ω+ω~c′′ω~mG~2\displaystyle=\omega^{2}-\quantity(\widetilde{\omega}_{c}^{\prime\prime}+\widetilde{\omega}_{m})\omega+\widetilde{\omega}_{c}^{\prime\prime}\widetilde{\omega}_{m}-\widetilde{G}^{2} (81)

where ωc′′=ωc+i[κ1+ζκ1κ3δei(ϕ+ϕ3ϕ1)]\omega_{c}^{\prime\prime}=\omega_{c}+i\quantity[\kappa_{1}+\sqrt{\zeta}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}^{\prime}-\phi_{1})}] and, recalling that g=|g|eiφg=\absolutevalue{g}e^{i\varphi},

G~\displaystyle\widetilde{G} =g~g~+ig~κ1κ3δei(ϕ+ϕ3ϕ1)\displaystyle=\sqrt{\widetilde{g}\widetilde{g}^{\prime}+i\widetilde{g}^{\prime}\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}-\phi_{1})}} (82)
=(giζei(ϕ3ϕ3)κ32)(giζei(ϕ3ϕ3)κ32)+i(giζei(ϕ3ϕ3)κ32)κ1κ3δei(ϕ+ϕ3ϕ1)\displaystyle=\sqrt{\quantity(g-i\sqrt{\zeta}e^{i(\phi_{3}-\phi_{3}^{\prime})}\frac{\kappa_{3}}{2})\quantity(g^{*}-i\sqrt{\zeta}e^{-i(\phi_{3}-\phi_{3}^{\prime})}\frac{\kappa_{3}}{2})+i\quantity(g^{*}-i\sqrt{\zeta}e^{-i(\phi_{3}-\phi_{3}^{\prime})}\frac{\kappa_{3}}{2})\sqrt{\kappa_{1}\kappa_{3}}\delta e^{i(\phi+\phi_{3}-\phi_{1})}} (83)
=|g|1+κ1κ3|g|δei(ϕ+ϕ3ϕ1+π2φ)ζκ3|g|(ζ4κ3|g|+icos(φ+ϕ3ϕ3)κ1κ32|g|δei(ϕ+ϕ3ϕ1)).\displaystyle=\absolutevalue{g}\sqrt{1+\frac{\sqrt{\kappa_{1}\kappa_{3}}}{\absolutevalue{g}}\delta e^{i(\phi+\phi_{3}-\phi_{1}+\frac{\pi}{2}-\varphi)}-\frac{\sqrt{\zeta}\kappa_{3}}{\absolutevalue{g}}\quantity(\frac{\sqrt{\zeta}}{4}\frac{\kappa_{3}}{\absolutevalue{g}}+i\cos(\varphi+\phi_{3}^{\prime}-\phi_{3})-\frac{\sqrt{\kappa_{1}\kappa_{3}}}{2\absolutevalue{g}}\delta e^{i(\phi+\phi_{3}^{\prime}-\phi_{1})})}. (84)

The first two terms under the square root correspond to the formula given in the main text, which corresponds to ζ=0\zeta=0. In fig. 5 we plot the reflection coefficient with parameters identical to those used in the main text, where κ3/g=1/2\kappa_{3}/g=1/2.

Refer to caption
Refer to caption
((a))
((b))
Figure 5: Plot of the reflection amplitude |R1|\absolutevalue{R_{1}} for ζ=0.1\zeta=0.1 (left) and ζ=0.5\zeta=0.5 (right), with other parameters as in figure 2 of the main text. The dashed lines corresponds to ζ0\zeta\neq 0 (they are exactly the same as in figure 2 of the main text) while the dots corresponds to ζ=0\zeta=0.

Appendix G Simplification of the effective Hamiltonian

The effective Hamiltonian in the main text reads

Heff=ω~ccc+ω~mmm+g(cm+cm)+i(1ceiωth.c)+i(3meiωth.c).H_{\text{eff}}=\hbar\widetilde{\omega}_{c}c^{\dagger}c+\hbar\widetilde{\omega}_{m}m^{\dagger}m+\hbar g\quantity(cm^{\dagger}+c^{\dagger}m)+i\hbar\quantity(\mathcal{E}_{1}ce^{i\omega t}-\mathrm{h.c})+i\hbar\quantity(\mathcal{E}_{3}me^{i\omega t}-\mathrm{h.c}). (85)

To simplify the calculations, we define ϵc=i1\epsilon_{c}=i\mathcal{E}_{1} and ϵm=i3\epsilon_{m}=i\mathcal{E}_{3}, and we obtain

Heff=ω~ccc+ω~mmm+g(cm+cm)+(ϵcceiωt+ϵcceiωt)+(ϵmmeiωt+ϵmmeiωt).H_{\text{eff}}=\hbar\widetilde{\omega}_{c}c^{\dagger}c+\hbar\widetilde{\omega}_{m}m^{\dagger}m+\hbar g\quantity(cm^{\dagger}+c^{\dagger}m)+\hbar\quantity(\epsilon_{c}ce^{i\omega t}+\epsilon_{c}^{*}c^{\dagger}e^{-i\omega t})+\hbar\quantity(\epsilon_{m}me^{i\omega t}+\epsilon_{m}^{*}m^{\dagger}e^{-i\omega t}). (86)

In a frame rotating with the drive, which corresponds to the unitary transformation U=exp[iωdt(cc+mm)]U=\exp\quantity[i\omega_{d}t\quantity(c^{\dagger}c+m^{\dagger}m)], we obtain

Heff=Δ~ccc+Δ~mmm+g(cm+cm)+(ϵcc+ϵcc)+(ϵmm+ϵmm),H_{\text{eff}}=\hbar\widetilde{\Delta}_{c}c^{\dagger}c+\hbar\widetilde{\Delta}_{m}m^{\dagger}m+\hbar g\quantity(cm^{\dagger}+c^{\dagger}m)+\hbar\quantity(\epsilon_{c}^{*}c+\epsilon_{c}^{*}c^{\dagger})+\hbar\quantity(\epsilon_{m}^{*}m+\epsilon_{m}^{*}m^{\dagger}), (87)

with the detunings Δ~c=ω~cωd\widetilde{\Delta}_{c}=\widetilde{\omega}_{c}-\omega_{d}, Δ~m=ω~mωd\widetilde{\Delta}_{m}=\widetilde{\omega}_{m}-\omega_{d}.

Let us consider the driving terms as a perturbation VV, and split the Hamiltonian of eq. 87 into H=H0+VH=H_{0}+V where

H0\displaystyle H_{0} =Δccc+Δmmm+g(cm+cm),\displaystyle=\hbar\Delta_{c}c^{\dagger}c+\Delta_{m}m^{\dagger}m+\hbar g\quantity(cm^{\dagger}+c^{\dagger}m), (88)
V\displaystyle V =(ϵcc+ϵcc)+(ϵmm+ϵmm).\displaystyle=\hbar\quantity(\epsilon_{c}c+\epsilon_{c}^{*}c^{\dagger})+\hbar\quantity(\epsilon_{m}m+\epsilon_{m}^{*}m^{\dagger}). (89)

We try to find a Schrieffer-Wolf transformation Schrieffer and Wolff (1966) U=eΛU=e^{\Lambda} with Λ=(λccλcc)+(λmmλmm)\Lambda=(\lambda_{c}c-\lambda_{c}^{*}c^{\dagger})+(\lambda_{m}m-\lambda_{m}^{*}m^{\dagger}), and λc,λm\lambda_{c},\lambda_{m} constants to determine such that V+[Λ,H0]=0V+\quantity[\Lambda,H_{0}]=0. Note that Λ=Λ\Lambda^{\dagger}=-\Lambda, such that eΛe^{\Lambda} is unitary. We have

V+[Λ,H0]\displaystyle V+\quantity[\Lambda,H_{0}] =ϵcc+ϵcc+ϵmm+ϵmm\displaystyle=\epsilon_{c}c+\epsilon_{c}^{*}c^{\dagger}+\epsilon_{m}m+\epsilon_{m}^{*}m^{\dagger}
+[λccλcc,Δccc]+[λccλcc,g(cm+cm)]\displaystyle\quad+\quantity[\lambda_{c}c-\lambda_{c}^{*}c^{\dagger},\hbar\Delta_{c}c^{\dagger}c]+\quantity[\lambda_{c}c-\lambda_{c}^{*}c^{\dagger},\hbar g\quantity(cm^{\dagger}+c^{\dagger}m)]
+[λmmλmm,Δmmm]+[λmmλmm,g(cm+cm)]\displaystyle\quad+\quantity[\lambda_{m}m-\lambda_{m}^{*}m^{\dagger},\hbar\Delta_{m}m^{\dagger}m]+\quantity[\lambda_{m}m-\lambda_{m}^{*}m^{\dagger},\hbar g\quantity(cm^{\dagger}+c^{\dagger}m)] (90)
=ϵcc+ϵcc+ϵmm+ϵmm\displaystyle=\epsilon_{c}c+\epsilon_{c}^{*}c^{\dagger}+\epsilon_{m}m+\epsilon_{m}^{*}m^{\dagger}
+Δc(λcc+λcc)+g(λcm+λcm)\displaystyle\quad+\hbar\Delta_{c}\quantity(\lambda_{c}c+\lambda_{c}^{*}c^{\dagger})+\hbar g\quantity(\lambda_{c}m+\lambda_{c}^{*}m^{\dagger})
+Δm(λmm+λmm)+g(λmc+λmc)\displaystyle\quad+\hbar\Delta_{m}\quantity(\lambda_{m}m+\lambda_{m}^{*}m^{\dagger})+\hbar g\quantity(\lambda_{m}c+\lambda_{m}^{*}c^{\dagger}) (91)
=[(ϵc+Δcλc+gλm)c+(ϵc+Δcλc+gλm)c]\displaystyle=\hbar\quantity[\quantity(\epsilon_{c}+\Delta_{c}\lambda_{c}+g\lambda_{m})c+\quantity(\epsilon_{c}^{*}+\Delta_{c}\lambda_{c}^{*}+g\lambda_{m}^{*})c^{\dagger}] (92)
+[(ϵm+gλc+Δmλm)m+(ϵm+gλc+Δmλm)m].\displaystyle\quad+\hbar\quantity[\quantity(\epsilon_{m}+g\lambda_{c}+\Delta_{m}\lambda_{m})m+\quantity(\epsilon_{m}^{*}+g\lambda_{c}^{*}+\Delta_{m}\lambda_{m}^{*})m^{\dagger}].

Imposing V+[Λ,H0]=0V+\quantity[\Lambda,H_{0}]=0 (Schrieffer-Wolff condition) leads to

{ϵc+Δcλc+gλm=0ϵc+Δcλc+gλm=0ϵm+gλc+Δmλm=0ϵm+gλc+Δmλm=0,\begin{cases}\epsilon_{c}+\Delta_{c}\lambda_{c}+g\lambda_{m}=0\\ \epsilon_{c}^{*}+\Delta_{c}\lambda_{c}^{*}+g\lambda_{m}^{*}=0\\ \epsilon_{m}+g\lambda_{c}+\Delta_{m}\lambda_{m}=0\\ \epsilon_{m}^{*}+g\lambda_{c}^{*}+\Delta_{m}\lambda_{m}^{*}=0\end{cases}, (93)

where we recognise that we get twice the same constraints by hermiticity. We can reduce the system to

{ϵc+Δcλc+gλm=0ϵm+gλc+Δmλm=0,{gϵc+gΔcλc+g2λm=0Δcϵm+gΔcλc+ΔcΔmλm=0,\begin{cases}\epsilon_{c}+\Delta_{c}\lambda_{c}+g\lambda_{m}=0\\ \epsilon_{m}+g\lambda_{c}+\Delta_{m}\lambda_{m}=0\\ \end{cases},\quad\begin{cases}g\epsilon_{c}+g\Delta_{c}\lambda_{c}+g^{2}\lambda_{m}=0\\ \Delta_{c}\epsilon_{m}+g\Delta_{c}\lambda_{c}+\Delta_{c}\Delta_{m}\lambda_{m}=0\\ \end{cases}, (94)
{Δcϵmgϵc+(ΔcΔmg2)λm=0gλc=ϵmΔmλm,{λm=ΔcϵmgϵcΔcΔmg2λc=ϵmgΔmgΔcϵmgϵcΔcΔmg2.\begin{cases}\Delta_{c}\epsilon_{m}-g\epsilon_{c}+\quantity(\Delta_{c}\Delta_{m}-g^{2})\lambda_{m}=0\\ g\lambda_{c}=-\epsilon_{m}-\Delta_{m}\lambda_{m}\\ \end{cases},\quad\begin{cases}\lambda_{m}=\frac{\Delta_{c}\epsilon_{m}-g\epsilon_{c}}{\Delta_{c}\Delta_{m}-g^{2}}\\ \lambda_{c}=-\frac{\epsilon_{m}}{g}-\frac{\Delta_{m}}{g}\frac{\Delta_{c}\epsilon_{m}-g\epsilon_{c}}{\Delta_{c}\Delta_{m}-g^{2}}\\ \end{cases}. (95)

The resulting Hamiltonian is

H\displaystyle H^{\prime} =H0+12[Λ,V]+12[Λ,[Λ,V]]+𝒪(Λ3)\displaystyle=H_{0}+\frac{1}{2}\quantity[\Lambda,V]+\frac{1}{2}\quantity[\Lambda,\quantity[\Lambda,V]]+\mathcal{O}(\Lambda^{3}) (96)
=Δccc+Δmmm+g(cm+cm)\displaystyle=\hbar\Delta_{c}c^{\dagger}c+\hbar\Delta_{m}m^{\dagger}m+\hbar g\quantity(cm^{\dagger}+c^{\dagger}m) (97)
+12[λccλcc,(ϵcc+ϵcc)]+12[λmmλmm,(ϵmm+ϵmm)]\displaystyle\quad+\frac{1}{2}\quantity[\lambda_{c}c-\lambda_{c}^{*}c^{\dagger},\hbar\quantity(\epsilon_{c}c+\epsilon_{c}^{*}c^{\dagger})]+\frac{1}{2}\quantity[\lambda_{m}m-\lambda_{m}^{*}m^{\dagger},\hbar\quantity(\epsilon_{m}m+\epsilon_{m}^{*}m^{\dagger})]
=Δccc+Δmmm+g(cm+cm)+2(λcϵc+λcϵc+λmϵm+λmϵm).\displaystyle=\hbar\Delta_{c}c^{\dagger}c+\hbar\Delta_{m}m^{\dagger}m+\hbar g\quantity(cm^{\dagger}+c^{\dagger}m)+\frac{\hbar}{2}\quantity(\lambda_{c}\epsilon_{c}^{*}+\lambda_{c}^{*}\epsilon_{c}+\lambda_{m}\epsilon_{m}^{*}+\lambda_{m}^{*}\epsilon_{m}).

Note that the transformation is exact, since higher order commutators vanish (indeed, this is simply a displacement transformation). Furthermore, the last term is simply a constant energy offset with not physical effect, so it can be discarded.

The transformed Hamiltonian HH^{\prime} tells us that under coherent driving of both photons and magnons, the spectrum is equivalent to that of the undriven Hamiltonian HH after the replacements (ωc,ωm(ω~cωd,ω~mωd)(\omega_{c},\omega_{m}\mapsto(\widetilde{\omega}_{c}-\omega_{d},\widetilde{\omega}_{m}-\omega_{d}), with ωd/2π\omega_{d}/2\pi the frequency of the drive. Hence, the standard level repulsion is obtained, and no level attraction can occur.

Appendix H Finite element modelling results

Cavity design.

In this note, we detail the numerical results obtained using the RF module COMSOL Multiphysics® to simulate the two-tone driving experiment described by figure 1 in the main text. In the main text, p1inp_{1}^{\text{in}} and p3inp_{3}^{\text{in}} are defined as the signals output by the vector network analyser. Due to differing cable lengths or the geometry of the microwave probes, these signals can be dephased modelled using the phases ϕ1\phi_{1} and ϕ3\phi_{3}. To limit these effects as much as possible, we chose to use identical probes for Port 1 and Port 3. To that effect,the probe for Port 3 is inserted from the bottom of the cavity instead of on the side, as pictured in fig. 6.

S parameters.

We first performed a frequency domain simulation to obtain the S-parameters of the cavity, shown in fig. 7. As expected, we observe energy level repulsion due to the coherent coupling of the photon and magnon in both reflection and transmission. Therefore, these simulations show that the physics of this system match with that predicted by the Hamiltonian model of equation (1) of the main text. We also note the presence of higher-order magnon modes corresponding to diagonal lines offset from the ferromagnetic frequency ωm/2π\omega_{m}/2\pi. This is especially the case for S33S_{33}, potentially due to the non-uniform magnetic field generated by the loop antenna.

Estimation of δ\delta and ϕ0\phi_{0}.

Next, we used the numerical values of S11S_{11} and S13S_{13} to compute and plot R1=S11+δeiϕS13R_{1}=S_{11}+\delta e^{i\phi}S_{13} for a range of δ\delta and ϕ\phi. The results, plotted in fig. 8, allow us to estimate very simply numerically which value of δ\delta and ϕ\phi are required to obtain level repulsion or attraction. We see that level repulsion and attraction are clearly visible for δ=12\delta=12 and ϕ{π,0}\phi\in\quantity{\pi,0} as predicted by the theory. This implies that the phase offset ϕ0=ϕ1ϕ3+arggπ2\phi_{0}=\phi_{1}-\phi_{3}+\arg{g}-\frac{\pi}{2} in this system is ϕ0=π\phi_{0}=\pi since level repulsion is obtained when ϕϕ0=πϕ0=0\phi-\phi_{0}=\pi-\phi_{0}=0. Alternatively, one can extract the linewidths κ1/2π,κ3/2π\kappa_{1}/2\pi,\kappa_{3}/2\pi and the coherent coupling |g|/2π\absolutevalue{g}/2\pi from the S-parameters of fig. 7, and then use δ0=κ1κ3|g|δ\delta_{0}=\frac{\sqrt{\kappa_{1}\kappa_{3}}}{\absolutevalue{g}}\delta to estimate δ\delta. Then, one needs to sweep the dephasing ϕ\phi between the two drives to determine the phase offset ϕ0\phi_{0}.

Refer to caption
Refer to caption
Figure 6: Model of the two-post cavity we used in the COMSOL Multiphysics® simulations. The probes for Port 1 and Port 3 are an exact copy (dimensions and materials) limiting the effects of potential dephasings ϕ1\phi_{1} and ϕ3\phi_{3}.
Refer to caption
Figure 7: Numerical calculations of the amplitude of the SS parameters of the cavity. The polaritonic frequencies ω±/2π\omega_{\pm}/2\pi are given by equation (8) of the main text, and describe level repulsion, the signature of coherent coupling physics. The fit parameters are a coupling strength of g/2π=210g/2\pi=210 MHz and a cavity resonance at ωc/2π=7.853\omega_{c}/2\pi=7.853 GHz.
Refer to caption
Figure 8: Numerical calculations of the reflection R1R_{1} using the S parameters obtained using COMSOL Multiphysics®. The legend is common to all figures The fit parameters are identical to this in fig. 7.
Refer to caption
((a))
((b))
((c))
((d))
Figure 9: Numerical calculations of the reflection at Port 1 with Port 3 active (R1R_{1}) using COMSOL Multiphysics® for δ=12\delta=12. (a-b) Evaluation of R1R_{1} from the S parameters using R1=S11+δeiϕS13R_{1}=S_{11}+\delta e^{i\phi}S_{13}. By definition of the S parameters, these are essentially a combination of one-tone simulations. (c-d) Fully two-tone simulation where both Port 1 and Port 3 are simultaneously active.

Having determined a suitable δ\delta, we can now perform a true two-tone driving experiment by enabling both Port 1 and Port 3 in COMSOL Multiphysics®. The results for δ=12\delta=12 (figs. 9(c) and 9(d)) are compared with the manual evaluation of R1R_{1} using the S parameters (figs. 9(a) and 9(b)). We observe a perfect agreement between the two.

References