This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

footnotetext: ©   Nikolai  V.  Ivanov,   2020.  Neither  the work reported  in  the present paper ,  nor  its preparation were supported  by  any  corporate entity.

Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains

Nikolai  V.  Ivanov

Contents
A.1.   Introduction 2  
A.2.   A  Leray  theorem  for  infinite chains 6  
A.3.   Compactly  finite and l1l_{\hskip 0.70004pt1}-homology 12  
A.4.   Extensions of  coverings and l1l_{\hskip 0.70004pt1}-homology 19  
A.5.   Removing  weakly l1l_{\hskip 0.70004pt1}-acyclic subspaces 20  
Appendix.   Double complexes 26  
References   27

The paper  is  devoted  to an adaptation of  author’s approach  [I3I_{3}]  to  Leray  theorems  in  bounded cohomology  theory  to  infinite chains.   The paper  may  be considered as a continuation of  the paper  [I3I_{3}],   but  depends on  it  mostly  for  the motivation of  proofs.   Among  the main results are a stronger and  more general  form of  Gromov’s  Vanishing-finiteness  theorem and a generalization of  the first  part  of  his  Cutting-of  theorem.   The proofs do not  depend on any  tools specific for  the bounded cohomology and l1l_{\hskip 0.63004pt1}-homology  theory,   but  use  the fact  that l1l_{\hskip 0.63004pt1}-homology depend only  on  the fundamental  group.   

1. Introduction

Locally,  compactly,  and  star  finite families.   A  family  of  subsets  𝒰={Ui}iI\mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\}_{\hskip 0.70004pti\hskip 0.70004pt\in\hskip 1.39998ptI}  of  a set  XX  is  a map  iUiXi\hskip 3.99994pt\longmapsto\hskip 3.99994ptU_{\hskip 0.70004pti}\hskip 3.00003pt\subset\hskip 3.99994ptX  from a set  II  to  the set  of  all  subsets of  XX.   The  family  𝒰\mathcal{U}  is  said  to be  star  finite  if  for every iIi\hskip 1.99997pt\in\hskip 3.00003ptI  the intersection  UiUjU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}  is  non-empty  for only  a  finite number of  jIj\hskip 1.99997pt\in\hskip 3.00003ptI.   Usually,   but  not  always,  only  the set {Ui|iI}\{\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt|\hskip 1.99997pti\hskip 1.99997pt\in\hskip 1.99997ptI\hskip 3.00003pt\}  matters,  and  we write U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} instead of  “U=UiU\hskip 3.99994pt=\hskip 3.99994ptU_{\hskip 0.70004pti}  for some  iIi\hskip 1.99997pt\in\hskip 3.00003ptI”.

Let XX be a  topological  space and 𝒰={Ui}iI\mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\}_{\hskip 0.70004pti\hskip 0.70004pt\in\hskip 1.39998ptI} be a family  of  subsets of  XX.   The  family  𝒰\mathcal{U} is  said  to be  locally  finite  if  for every xXx\hskip 1.99997pt\in\hskip 1.99997ptX there exists an open neighborhood VV of  xx such  that xUx\hskip 1.99997pt\in\hskip 1.99997ptU and VUiV\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing for only  a  finite number of  iIi\hskip 1.99997pt\in\hskip 3.00003ptI,   and  compactly  finite  if  for every  compact  ZXZ\hskip 1.99997pt\subset\hskip 1.99997ptX  the intersection  ZUiZ\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing  for only  a  finite number of  iIi\hskip 1.99997pt\in\hskip 3.00003ptI.   For  locally  compact  spaces  the notions of  locally  finite and compactly  finite families are equivalent.   Eventually  our assumptions will  imply  that  XX  is  locally  compact,   but  we prefer  to be precise about  which  finiteness condition  is  used.   Gromov  [Gro],  Löh  and  Sauer  [LSLS],  and  Frigerio  and  Moraschini  [F M]  call  compactly  finite  families  “locally  finite”.

Coverings.   The family  𝒰\mathcal{U}  is  said  to be a  covering  of  XX  if  the union  iIUi\cup_{\hskip 0.70004pti\hskip 0.70004pt\in\hskip 1.39998ptI}\hskip 1.99997ptU_{\hskip 0.70004pti}  is  equal  to  XX.   For a covering  𝒰\mathcal{U}  we will  denote by  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  the collection of  all  non-empty  finite intersection of  elements of  𝒰\mathcal{U}.   A covering  𝒰\mathcal{U}  is  said  to be  open if  every  UiU_{\hskip 0.70004pti}  is  open,   and  proper  if  the interiors  intUi\operatorname{int}\hskip 1.49994ptU_{\hskip 0.70004pti}  form a covering  of  XX  and  the closures of  the sets  UiU_{\hskip 0.70004pti}  are compact.   Clearly,   if  there exists a proper covering  of  XX,   then  XX  is  locally  compact.   It  is  easy  to see  that  a proper covering  is  compactly  finite  if  and  only  if  it  is  star finite.

Locally  and compactly  finite singular  chains and  homology.   Recall  that  a singular nn-simplex  in  XX  is  a continuous map  σ:ΔnX\sigma\hskip 1.00006pt\colon\hskip 1.00006pt\Delta^{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX.   Let  Sn(X)S_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  be  the set  of  singular nn-simplices in  XX.   A subset  ISn(X)I\hskip 1.99997pt\subset\hskip 1.99997ptS_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  said  to be  locally  finite  if  the family  of  images  {σ(Δn)}σI\{\hskip 1.99997pt\sigma\hskip 1.00006pt(\hskip 1.00006pt\Delta^{n}\hskip 1.49994pt)\hskip 1.99997pt\}_{\hskip 1.39998pt\sigma\hskip 0.70004pt\in\hskip 1.39998ptI}  is  locally  finite,   and  compactly  finite  if  this family  is  compactly  finite.   An  infinite  singular nn-chain  in  XX  is  defined as a  formal  sum

(1.1) c=σSn(X)aσσ\quad c\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pt\sigma\hskip 1.39998pt\in\hskip 1.39998ptS_{\hskip 0.25002ptn}\hskip 0.70004pt(\hskip 1.04996ptX\hskip 1.04996pt)}\hskip 1.99997pta_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\sigma

with coefficients  aσAa_{\hskip 0.70004pt\sigma}\hskip 1.99997pt\in\hskip 1.99997ptA,   where  AA  is  some abelian  group.   Let Cninf(X,A)C_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.49994pt)  be  the group of  such chains.   The chain cc  is  said  to be  locally  finite  if

𝒮c={σ(Δn)|σSn(X),aσ0}\quad\mathcal{S}_{\hskip 0.70004ptc}\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt\sigma\hskip 1.00006pt(\hskip 1.49994pt\Delta^{n}\hskip 1.49994pt)\hskip 3.00003pt\bigl{|}\hskip 3.00003pt\sigma\hskip 1.99997pt\in\hskip 1.99997ptS_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pta_{\hskip 0.70004pt\sigma}\hskip 3.99994pt\neq\hskip 3.99994pt0\hskip 3.00003pt\bigr{\}}

is  locally  finite,   and  compactly  finite  if  𝒮c\mathcal{S}_{\hskip 0.70004ptc}  is  compactly  finite.   The groups of  locally  and  compactly  finite chains are denoted  by  Cnlf(X,A)C_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.49994pt)  and  Cncf(X,A)C_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.49994pt)  respectively.   It  is  easy  to see  that  every  locally  finite chain  is  compactly  finite.   If  cc  is  compactly  finite chain,   then  in  the usual  formula for  the boundary  c\partial\hskip 1.00006ptc  the coefficient  in  front  of  each singular simplex  is  a  finite sum.   Therefore  the boundaries  c\partial\hskip 1.00006ptc  of  compactly  finite chains,   and  hence of  locally  finite chains,   are  well  defined.   Since a singular simplex  has only  finite number of  faces,   the boundary  of  a  locally  finite singular chain  is  locally  finite,   and  the boundary  of  a  compactly  finite singular chain  is  compactly  finite.   This  leads  to  two  types of  singular  homology  groups based on  in  infinite chains,   namely  the homology  groups  Hlf(X,A)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.49994pt)  based on  locally  finite chains,   and  the homology  groups  Hcf(X,A)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.49994pt)  based on  compactly  finite chains.   From now on we will  assume  that  A=𝐑A\hskip 3.99994pt=\hskip 3.99994pt\mathbf{R}  and  omit  the coefficient  group.

The norms of  infinite singular  chains.   The l1l_{\hskip 0.70004pt1}-norm  c\|\hskip 1.99997ptc\hskip 1.99997pt\|  of  the singular chain  (1.1)  is

c=σSn(X)|aσ|.\quad\|\hskip 1.99997ptc\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pt\sigma\hskip 1.39998pt\in\hskip 1.39998ptS_{\hskip 0.25002ptn}\hskip 0.70004pt(\hskip 1.04996ptX\hskip 1.04996pt)}\hskip 1.99997pt|\hskip 1.99997pta_{\hskip 0.70004pt\sigma}\hskip 1.99997pt|\hskip 3.00003pt.

It  may  happen  that  c=\|\hskip 1.99997ptc\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\infty.   The l1l_{\hskip 0.70004pt1}-norm  h\|\hskip 1.99997pth\hskip 1.99997pt\| of  a homology  class  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  or  hHlf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  defined as  h=infc\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\inf\hskip 3.00003pt\|\hskip 1.99997ptc\hskip 1.99997pt\|,   where  the infimum  is  taken over  all  chains cc representing  the homology class hh.   Again,   it  may  happen  that  h=\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\infty.

Singular l1l_{\hskip 0.70004pt1}-homology.   For  an  integer  n0n\hskip 1.99997pt\geqslant\hskip 1.99997pt0  let  Ln(X)L_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)  be  the vector space  of  infinite singular nn-chains with  real  coefficients having  finite l1l_{\hskip 0.70004pt1}-norm.   Such chains are called  l1l_{\hskip 0.70004pt1}-chains  of  dimension nn.   The l1l_{\hskip 0.70004pt1}-norm  turns  Ln(X)L_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)  into a  Banach  space.   The vector space  Cn(X)C_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)  of  finite singular nn-chains in  XX  is  dense in  Ln(X)L_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)  and  the boundary  operator

:Cn(X)Cn1(X)\quad\partial\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 1.04996ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)

extends by continuity  to  a map  :Ln(X)Ln1(X)\partial\hskip 1.00006pt\colon\hskip 1.00006ptL_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL_{\hskip 1.04996ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt),   also called  the  boundary  operator.   These boundary  operators  turn  L(X)L_{\hskip 1.04996pt\bullet}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)  into a chain complex.   The homology of  is  complex are knows as  l1l_{\hskip 0.70004pt1}-homology  of  XX  and are denoted  by  Hl1(X)H_{\hskip 0.70004pt*}^{{\hskip 0.70004ptl_{\hskip 0.50003pt1}}}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt).   The real  vector spaces  Hnl1(X)H_{\hskip 0.70004ptn}^{{\hskip 0.70004ptl_{\hskip 0.50003pt1}}}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)  inherit l1l_{\hskip 0.70004pt1}-norms from  Ln(X)L_{\hskip 1.04996ptn}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt),   but  in  general  are not  Banach  spaces,   because non-zero l1l_{\hskip 0.70004pt1}-homology  classes may  have l1l_{\hskip 0.70004pt1}-norm equal  to 0.

Acyclicity of  subsets.   As  in  [I3I_{3}],   let  us  call  a  topological  space  XX  boundedly  acyclic  if  its bounded cohomology  are isomorphic  to  the bounded cohomology  of  a point.   This property  is  equivalent  to XX being  path connected and  its fundamental  group being boundedly  acyclic in an obvious sense.   By  a  theorem of  Sh.  Matsumoto  and  Sh.  Morita  [MMMM]  the space  XX  is  boundedly  acyclic  if  and  only  if  it  is  path connected and  Hl1(X)=0H_{\hskip 0.70004pt*}^{{\hskip 0.70004ptl_{\hskip 0.50003pt1}}}\hskip 0.50003pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0  for  n1n\hskip 1.99997pt\geqslant\hskip 1.99997pt1.   See also  [I3I_{3}],   Theorem  5.1  for a proof.   In  this paper  we are dealing only  with  homology  and  will  call  boundedly  acyclic spaces and  groups  l1l_{\hskip 0.70004pt1}-acyclic.

In  [I3I_{3}]  a path connected  subset  ZZ of  XX  was called  weakly  boundedly  acyclic  if  the image of  the inclusion  homomorphism  π1(Z,z)π1(X,z)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.49994pt)\hskip 1.49994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.49994pt)  is  boundedly  acyclic,   i.e.  is  l1l_{\hskip 0.70004pt1}-acyclic in our current  terminology.   The ambient  space XX was fixed.   Now  we need a more flexible  version of  this notion.   Suppose  that  ZYXZ\hskip 1.99997pt\subset\hskip 1.99997ptY\hskip 1.99997pt\subset\hskip 1.99997ptX.   The subset  ZZ  is  said  to be  weakly l1l_{\hskip 0.70004pt1}-acyclic  in  YY  if  the image of  the homomorphism  π1(Z,z)π1(Y,z)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.49994pt)\hskip 1.49994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.49994pt)  is  l1l_{\hskip 0.70004pt1}-acyclic.

Acyclicity of  families and coverings.   Let 𝒰\mathcal{U} be a family  of  subsets  of  XX.   It  is  said  to be  l1l_{\hskip 0.70004pt1}-acyclic  if  every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  is  l1l_{\hskip 0.70004pt1}-acyclic.   A covering 𝒰\mathcal{U} of  XX  is  said  to be  l1l_{\hskip 0.70004pt1}-acyclic  (as a covering )  if  the family  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  is  l1l_{\hskip 0.70004pt1}-acyclic.

A  family  𝒰\mathcal{U}  is  said  to be  almost  l1l_{\hskip 0.70004pt1}-acyclic  if  every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  is  l1l_{\hskip 0.70004pt1}-acyclic,   except ,  perhaps,   of  a single exceptional  element  Ue𝒰U_{\hskip 0.35002pte}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   A covering 𝒰\mathcal{U} of  XX  is  said  to be  almost  l1l_{\hskip 0.70004pt1}-acyclic  if  the family  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  is  almost  l1l_{\hskip 0.70004pt1}-acyclic and  the exceptional  set  UeU_{\hskip 0.35002pte} belongs  to  𝒰\mathcal{U}.

We need an analogue of  weakly  boundedly  acyclic coverings from  [I3I_{3}].   Requiring  sets  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  to be weakly l1l_{\hskip 0.70004pt1}-acyclic in  XX  is  not  sufficient  for working  with compactly  finite chains.

A family 𝒰\mathcal{U} of  subsets  of  XX  is  said  to be  weakly l1l_{\hskip 0.70004pt1}-acyclic  if  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  a subset  U+XU_{\hskip 0.70004pt+}\hskip 1.99997pt\subset\hskip 1.99997ptX  is  given,   such  that  UU+U\hskip 1.99997pt\subset\hskip 1.99997ptU_{\hskip 0.70004pt+},   the set  UU  is  weakly l1l_{\hskip 0.70004pt1}-acyclic  in  U+U_{\hskip 0.70004pt+},   and  the family  of  subsets  U+U_{\hskip 0.70004pt+}  is  compactly  finite.   A  finite number of  subsets  U+U_{\hskip 0.70004pt+}  can  be equal  to  XX.   A covering 𝒰\mathcal{U} of  XX  is  said  to be  weakly l1l_{\hskip 0.70004pt1}-acyclic  if  the family  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  is  weakly l1l_{\hskip 0.70004pt1}-acyclic.

Similarly,   a  family  𝒰\mathcal{U}  is  said  to be  almost  weakly l1l_{\hskip 0.70004pt1}-acyclic  if  subsets  U+XU_{\hskip 0.70004pt+}\hskip 1.99997pt\subset\hskip 1.99997ptX  with  the properties  listed  above are given  for  every subset  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   except ,  perhaps,   of  a single exceptional  set  Ue𝒰U_{\hskip 0.35002pte}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   A covering 𝒰\mathcal{U} of  XX  is  said  to be  almost  weakly  l1l_{\hskip 0.70004pt1}-acyclic  if  the family  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  is  almost  weakly  l1l_{\hskip 0.70004pt1}-acyclic and  the exceptional  set  UeU_{\hskip 0.35002pte} belongs  to  𝒰\mathcal{U}.

Infinite chains  in  simplicial  complexes.   A simplicial  complex SS  is  said  to be  star  finite  if  each  its simplex  is  contained  in  only  a finite number of  simplices.   Equivalently,  SS  is  star  finite  if  the family  of  its  simplices  is  star  finite.   If  𝒰\mathcal{U}  is  a family  of  subsets of  XX,   then  𝒰\mathcal{U}  is  star  finite  if  and  only  if  the nerve  N𝒰N_{\hskip 1.04996pt\mathcal{U}}  of  𝒰\mathcal{U}  is  star  finite.

An  infinite nn-chain  of  a simplicial  complex SS  is  a potentially  infinte formal  sum of  nn-simplices of  SS  with coefficients in some abelian  group  AA.   If  SS  is  star  finite,   then  the usual  formula defines  the boundaries  c\partial\hskip 1.00006ptc  of  infinite nn-chains of  SS.   This  leads  to homology  groups  Hinf(S,A)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptS\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.49994pt)  based on  infinite chains.   We will  always assume  that  A=𝐑A\hskip 3.99994pt=\hskip 3.99994pt\mathbf{R}.

Leray  homomorphisms.   Suppose  that  𝒰\mathcal{U}  is  a star  finite proper covering of  XX.   Let  N𝒰N_{\hskip 1.04996pt\mathcal{U}}  be  the nerve of  𝒰\mathcal{U}.   Then  there  is  a canonical  Leray  homomorphism

l𝒰:Hcf(X)Hinf(N𝒰).\quad l_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN_{\hskip 1.04996pt\mathcal{U}}\hskip 1.49994pt)\hskip 3.00003pt.

See  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   The  first  Leray  theorem  for Hcf(X)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  the following  theorem.

Theorem  A.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering,   and  that  𝒰\mathcal{U} is  countable and  weakly l1l_{\hskip 0.70004pt1}-acyclic.   If  a  compactly  finite  homology  class  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  the  Leray  homomorphism  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.   

The second  Leray  theorem  is  concerned  with almost  weakly l1l_{\hskip 0.70004pt1}-acyclic coverings.

Theorem  B.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering,   and  that  𝒰\mathcal{U} is  countable and  almost  weakly l1l_{\hskip 0.70004pt1}-acyclic.   If  a  compactly  finite  homology  class  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  the  Leray  homomorphism  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h<\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\infty.   

See  Theorems  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  and  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  respectively.   These  results are motivated  by  Gromov’s  Vanishing-Finiteness  theorem.   See  [Gro],   Section  4.2.   Like  Leray  theorems of  [I3I_{3}],  Theorems  A  and  B  are deduced  from an abstract  Leray  theorem,   Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   The proofs are elementary  and are based on an adaptation of  the methods of  [I1I_{1}],  [I2I_{2}],  and  [I3I_{3}]  to compactly  finite chains.   The same methods  lead  to a proof  of  the  Vanishing-Finiteness  theorem.   See  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.

The assumptions of  Theorems  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  and  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  are much  weaker  than  Gromov’s.   In  the  Vanishing-Finiteness  theorem  the space  XX  is  assumed  to be a manifold,   instead of  l1l_{\hskip 0.70004pt1}-acyclicity  the stronger  amenability  property  is  used,   and  it  is  assumed  that  hHncf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  for some nn  strictly  larger  than  the dimension of  N𝒰N_{\hskip 1.04996pt\mathcal{U}}.

Gromov’s  proof  of  the  Vanishing-Finiteness  theorem  was recently  reconstructed  by  R.  Frigerio  and  M.  Moraschini  [F M].   Their  proof  is  based on  Gromov’s  theories of  multicomplexes and of  diffusion of  chains,   and  is  far from  being elementary.   Technical  difficulties forced  Frigerio  and  Moraschini  to  consider only  triangulable spaces,   although  they  conjectured  that  this assumption  is  superfluous.   Theorems  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  and  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  together  imply  this conjecture.

Removing  subspaces.   Let  XX  be a  topological  space,   and  let  YXY\hskip 1.99997pt\subset\hskip 1.99997ptX  be a closed subset.   There exists natural  (in an  informal  sense)  chain  maps

rY:Ccf(X)Ccf(XY).\quad r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.99997pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)\hskip 3.00003pt.

See  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   The maps  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  depend on many choices,   but  the maps

rY:Hcf(X)Hcf(XY).\quad r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY\hskip 1.04996pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)\hskip 3.00003pt.

induced  by  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  does not  depend on  these choices.   Suppose now  that  YY  is  presented as  the union of  a  family  𝒵\mathcal{Z}  of  pair-wise disjoint  compact  subspaces of  XX.   Suppose  further  that  for  every  Z𝒵Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}  a compact  neighborhood  CZC_{\hskip 1.04996ptZ}  of  ZZ  is  given,   and  that  the neighborhoods  CZC_{\hskip 1.04996ptZ}  are pair-wise disjoint.   Suppose  that  every  CZC_{\hskip 1.04996ptZ}  is  Hausdorff  and  path connected.

Theorem  C.   Suppose  that  𝒵\mathcal{Z} is  countable and  the  family  of  sets  CZC_{\hskip 1.04996ptZ}  is  weakly  l1l_{\hskip 0.70004pt1}-acyclic.   Then  rY(h)h\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt\geqslant\hskip 3.99994pt\|\hskip 1.99997pth\hskip 1.99997pt\|  for every  homology  class  hHncf(X)h\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   

See  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   Implicitly  this  theorem  is  concerned  with  the covering of  XX  by  XYX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY  and  the sets  CZC_{\hskip 1.04996ptZ}.   Since  this covering  is  very simple,   there  is  no need  to involve  it  or  related  double complexes explicitly.   Theorem  C  was motivated  by  Gromov’s  Cutting-of  theorem  from  [Gro],   Section  4.2,   and easily  implies  its  first  claim.   See  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.

2. A  Leray  theorem  for  infinite  chains

Generalized  chains.   Let XX be a  topological  space.   Let subX\operatorname{\textit{sub}}\hskip 1.99997ptX be  the category  having  subspaces of  XX  as objects and  inclusions  YZY\hskip 1.99997pt\subset\hskip 3.00003ptZ  as morphisms.   Let  ee_{\hskip 0.70004pt\bullet}  be  a covariant  functor  from  subX\operatorname{\textit{sub}}\hskip 1.99997ptX  to augmented chain complexes of  modules over a ring  RR.   The  functor  ee_{\hskip 0.70004pt\bullet}  assigns  to a subspace ZXZ\hskip 1.99997pt\subset\hskip 3.00003ptX a  complex

(2.1)    0{\displaystyle 0}R{R}e0(Z){e_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt)}e1(Z){e_{\hskip 1.04996pt1}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt)}e2(Z){e_{\hskip 1.04996pt2}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt)},{\hskip 3.99994pt\ldots\hskip 3.99994pt\hskip 3.99994pt,}d0\scriptstyle{\displaystyle\hskip 3.99994ptd_{\hskip 1.04996pt0}\hskip 1.99997pt}d1\scriptstyle{\displaystyle\hskip 3.99994ptd_{\hskip 1.04996pt1}\hskip 3.99994pt}d2\scriptstyle{\displaystyle\hskip 3.99994ptd_{\hskip 1.04996pt2}\hskip 3.99994pt}d3\scriptstyle{\displaystyle\hskip 3.99994ptd_{\hskip 1.04996pt3}\hskip 3.99994pt}

For every  YZY\hskip 1.99997pt\subset\hskip 1.99997ptZ  there  is  a  inclusion  morphism  e(Z)e(Y)e_{\hskip 1.04996pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.00006pte_{\hskip 1.04996pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt).   Elements  of  eq(Z)e_{\hskip 0.35002ptq}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt) are  thought  as  generalized qq-chains  of  ZZ.

The double complex of  a covering.   Let 𝒰\mathcal{U} be a star  finite covering  of  XX  and  let  NN  be  its  nerve.   For  p0p\hskip 1.99997pt\geqslant\hskip 1.99997pt0  let  NpN_{\hskip 0.70004ptp}  be  the set  of  pp-dimensional  simplices of  NN.   For  p,q0p\hskip 0.50003pt,\hskip 3.00003ptq\hskip 1.99997pt\geqslant\hskip 1.99997pt0  let

cp(N,eq)=σNpeq(|σ|).\quad c_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004ptq}\hskip 1.49994pt)\hskip 3.99994pt\hskip 3.99994pt=\hskip 3.99994pt\hskip 3.99994pt\prod\nolimits_{\hskip 1.39998pt\sigma\hskip 1.39998pt\in\hskip 1.39998ptN_{\hskip 0.50003ptp}}\hskip 1.99997pte_{\hskip 0.70004ptq}\hskip 0.50003pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\hskip 3.00003pt.

So,   an element ccp(N,eq)c\hskip 1.99997pt\in\hskip 1.99997ptc_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004ptq}\hskip 1.49994pt) is  a  family of  generalized qq-chains

c:σcσeq(|σ|),\quad c\hskip 1.00006pt\colon\hskip 1.00006pt\sigma\hskip 3.99994pt\longmapsto\hskip 3.99994ptc_{\hskip 0.70004pt\sigma}\hskip 3.99994pt\in\hskip 3.99994pte_{\hskip 0.70004ptq}\hskip 0.50003pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\hskip 3.00003pt,

where  σNp\sigma\hskip 1.99997pt\in\hskip 1.99997ptN_{\hskip 0.70004ptp},   thought  as an  infinite formal  sum

c=σNpcσ.\quad c\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pt\sigma\hskip 1.39998pt\in\hskip 1.39998ptN_{\hskip 0.50003ptp}}\hskip 1.99997ptc_{\hskip 0.70004pt\sigma}\hskip 3.00003pt.

For every  p>0p\hskip 1.99997pt>\hskip 1.99997pt0  (and  sometimes for p=0p\hskip 3.99994pt=\hskip 3.99994pt0 also)  there  is  a canonical  morphism

δp:cp(N,e)cp1(N,e),\quad\delta_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 0.70004ptp\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt)\hskip 3.00003pt,

defined as follows.   Let  σNp\sigma\hskip 1.99997pt\in\hskip 1.99997ptN_{\hskip 0.70004ptp}.   For each  face  iσ\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma  there  is  an  inclusion  morphism

Δσ,i:e(|σ|)e(|iσ|).\quad\Delta_{\hskip 1.39998pt\sigma\hskip 0.35002pt,\hskip 0.70004pti}\hskip 3.00003pt\colon\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994pt|\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 1.99997pt|\hskip 1.49994pt)\hskip 3.00003pt.

For  cσeq(|σ|)c_{\hskip 0.70004pt\sigma}\hskip 1.99997pt\in\hskip 1.99997pte_{\hskip 0.70004ptq}\hskip 0.50003pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)  we set

δp(cσ):iσ(1)iΔσ,i(cσ)eq(|iσ|)and\quad\delta_{\hskip 0.35002ptp}\hskip 1.00006pt\left(\hskip 1.49994ptc_{\hskip 0.70004pt\sigma}\hskip 1.49994pt\right)\hskip 1.99997pt\colon\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.00006pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997pt\Delta_{\hskip 1.39998pt\sigma\hskip 0.35002pt,\hskip 0.70004pti}\hskip 1.00006pt\left(\hskip 1.49994ptc_{\hskip 0.70004pt\sigma}\hskip 1.49994pt\right)\hskip 3.99994pt\in\hskip 3.99994pte_{\hskip 0.70004ptq}\hskip 0.50003pt\left(\hskip 1.49994pt|\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\quad\ \mbox{and}
δp(cσ):τ0\quad\delta_{\hskip 0.35002ptp}\hskip 1.00006pt\left(\hskip 1.49994ptc_{\hskip 0.70004pt\sigma}\hskip 1.49994pt\right)\hskip 1.99997pt\colon\hskip 1.99997pt\tau\hskip 3.99994pt\longmapsto\hskip 3.99994pt0

if  τiσ\tau\hskip 3.99994pt\neq\hskip 3.99994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma  for every  ii.   The map  δp\delta_{\hskip 0.35002ptp}  extends  to  the direct  product  cp(N,eq)c_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004ptq}\hskip 1.49994pt)  by  linearity .   In order  to see  that  such an extension  to be well  defined  we need  to know  that  for every  ρNp1\rho\hskip 1.99997pt\in\hskip 3.00003ptN_{\hskip 0.70004ptp\hskip 0.70004pt-\hskip 0.70004pt1}  only  a  finite number of  expressions  (1)iΔσ,i(cσ)(\hskip 1.00006pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997pt\Delta_{\hskip 1.39998pt\sigma\hskip 0.35002pt,\hskip 0.70004pti}\hskip 1.00006pt\left(\hskip 1.49994ptc_{\hskip 0.70004pt\sigma}\hskip 1.49994pt\right)  need  to be summed  to get  the value of  δp(cσ)\delta_{\hskip 0.35002ptp}\hskip 1.00006pt\left(\hskip 1.49994ptc_{\hskip 0.70004pt\sigma}\hskip 1.49994pt\right)  on  ρ\rho.   But (1)iΔσ,i(cσ)(\hskip 1.00006pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997pt\Delta_{\hskip 1.39998pt\sigma\hskip 0.35002pt,\hskip 0.70004pti}\hskip 1.00006pt\left(\hskip 1.49994ptc_{\hskip 0.70004pt\sigma}\hskip 1.49994pt\right) enters  this sum only  if  ρ=iσ\rho\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma  for  some  σNp\sigma\hskip 1.99997pt\in\hskip 3.00003ptN_{\hskip 0.70004ptp}  and  some ii.   Since  the covering  𝒰\mathcal{U}  is  star  finite,   its  nerve  NN  is  also star  finite,   and  hence  there  is  indeed only  a finite number of  such  ρ,i\rho\hskip 0.50003pt,\hskip 1.99997pti.   Therefore  δp\delta_{\hskip 0.35002ptp}  is  indeed  well  defined.   As usual,   we agree  that  ||=X|\hskip 1.99997pt\varnothing\hskip 1.99997pt|\hskip 3.99994pt=\hskip 3.99994ptX,   but  this argument  does not  work for  p=0p\hskip 3.99994pt=\hskip 3.99994pt0  and  ρ=\rho\hskip 3.99994pt=\hskip 3.99994pt\varnothing.   In  order  to define  δ0\delta_{\hskip 0.70004pt0}  one needs  to be able  to speak about  infinite generalized chains.

The fact  that  each  Δσ,i\Delta_{\hskip 1.39998pt\sigma\hskip 0.35002pt,\hskip 0.70004pti}  are  morphisms of  complexes implies  that  δp\delta_{\hskip 0.35002ptp}  is  a  morphism also of  complexes.   The  double complex  c(N,e)c_{\hskip 1.04996pt\bullet}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt\bullet}\hskip 1.49994pt)  of  the covering  𝒰\mathcal{U}  is  the double complex

(2.2)       c0(N,e0){\displaystyle c_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt0}\hskip 1.49994pt)}c0(N,e1){c_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)}{\hskip 3.99994pt\ldots\hskip 3.99994pt}c1(N,e0){c_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt0}\hskip 1.49994pt)}c1(N,e1){c_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)}{\hskip 3.99994pt\ldots\hskip 3.99994pt}c2(N,e0){c_{\hskip 1.04996pt2}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt0}\hskip 1.49994pt)}c2(N,e1){c_{\hskip 1.04996pt2}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)}{\hskip 3.99994pt\ldots\hskip 3.99994pt}{\ldots\vphantom{C_{\hskip 1.04996pt2}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)}}{\ldots\vphantom{C_{\hskip 1.04996pt2}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)}},{\quad\vphantom{C_{\hskip 1.04996pt2}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)},}

where  the horizontal  arrows are  the products of  the maps  did_{\hskip 0.70004pti}  and  the vertical  arrows are  the maps  δi\delta_{\hskip 0.70004pti}.   Let  t(N,e)t_{\hskip 1.04996pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)  be  the  total  complex of  c(N,e)c_{\hskip 1.04996pt\bullet}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt\bullet}\hskip 1.49994pt).   Let  Cinf(N)=Cinf(S,R)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptS\hskip 0.50003pt,\hskip 1.99997ptR\hskip 1.49994pt)  be  the complex of  infinite  simplicial  chains of  NN  with coefficients  in  RR.   It  is  well  defined  because  NN  is  star  finite.   Let  Hinf(N)=Hinf(N,R)H_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 1.99997ptR\hskip 1.49994pt)  be  the homology  of  this complex.   Since  δ0\delta_{\hskip 0.70004pt0}  is  not  defined,   we will  replace  e(X)e_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  by  the cokernel  elf(X,𝒰)e_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  of  the homomorphism

δ1:c1(N,e)c0(N,e).\quad\delta_{\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt)\hskip 3.00003pt.

Then  we can define  δ0\delta_{\hskip 0.70004pt0}  as  the canonical  map  c0(N,e)elf(X,𝒰)c_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   Since  (2.2)  is  commutative,   the maps  did_{\hskip 0.70004pti}  induce canonical  maps

di:eilf(X,𝒰)ei1lf(X,𝒰)\quad d_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006pte_{\hskip 0.70004pti}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)

turning  elf(X,𝒰)e_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  into a complex.   Let  H~lf(X,𝒰)\widetilde{H}_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  be  the homology  of  this complex.   The boundary  maps  d0d_{\hskip 1.04996pt0}  and  δ1\delta_{\hskip 0.70004pt1}  lead  to morphisms

λe:t(N,e)Cinf(N)andτe:t(N,e)elf(X,𝒰),\quad\lambda_{\hskip 0.70004pte}\hskip 1.99997pt\colon\hskip 1.99997ptt_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)\quad\ \mbox{and}\quad\ \tau_{\hskip 0.70004pte}\hskip 1.99997pt\colon\hskip 1.99997ptt_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt,

where  it  is  understood  that  the augmentation  term  is  removed  from  elf(X,𝒰)e_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).

Acyclic coverings.   Clearly,  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  is  the collection of  all  sets of  the form  |σ||\hskip 1.99997pt\sigma\hskip 1.99997pt|  with  σ\sigma\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing.   The covering  𝒰\mathcal{U}  is  said  to be  ee_{\hskip 0.35002pt\bullet}-acyclic   if  e(Z)e_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt)  is  exact  for every  Z𝒰Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}^{\hskip 0.70004pt\cap}.

2.1. Lemma.   If  𝒰\mathcal{U}  is  star  finite and  ee_{\hskip 0.35002pt\bullet}-acyclic,   then  λe:t(N,e)Cinf(N)\lambda_{\hskip 0.70004pte}\hskip 1.00006pt\colon\hskip 1.00006ptt_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)  induces an  isomorphism of  homology  groups.   

Proof.   If  𝒰\mathcal{U}  is  ee_{\hskip 0.35002pt\bullet}-acyclic,   then  for every  simplex  σ\sigma\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing  the complex  (2.1)  is  exact .   Since  the  term-wise products of  exact  sequences are exact,   this implies  that  every  row  of  the double complex  (2.2)  is  exact  and  d0d_{\hskip 1.04996pt0}  induces an  isomorphism of  the complex  Cinf(N)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)  with  the kernel  of  the morphism of  complexes  d1:c(N,e1)c(N,e0)d_{\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt0}\hskip 1.49994pt).   It  remains  to apply  a well  known  theorem about  double complexes.   See  Theorem  A.2  in  [I3I_{3}].    \blacksquare

Infinite singular  chains.   Suppose  that  a  space Δ\Delta is  fixed and  maps  s:ΔYs\hskip 1.00006pt\colon\hskip 1.00006pt\Delta\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptY  are  treated as singular simplices.   A  finite singular  chain  is  a finite formal  sum of  singular  simplices with coefficients in  RR.   The RR-module of  finite singular chains  in  YY  is  denoted  by  c(Y)c\hskip 1.49994pt(\hskip 1.49994ptY\hskip 1.49994pt).   An  infinite singular  chain  is  a finite or  infinite formal  sum of  singular  simplices with coefficients in  RR,   and  the RR-module of  infinite singular chains  in  YY  is  denoted  by  cinf(Y)c^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.49994pt(\hskip 1.49994ptY\hskip 1.49994pt).

Let  us  turn  to singular chains  in  XX  and subsets of  XX.   A singular  simplex ss  in  XX  is  called  small   if  s(Δ)Us\hskip 1.00006pt(\hskip 1.49994pt\Delta\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptU  for  some  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   and an  infinite singular chain  in  XX  is  called  small   if  all  its  singular  simplices with non-zero coefficients are small.   Suppose  that  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  a  finite singular chain  γUc(U)\gamma_{\hskip 0.70004ptU}\hskip 1.99997pt\in\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt)  is  given.   Then,   since  𝒰\mathcal{U}  is  a star  finite,   the sum

γ=U𝒰γU\quad\gamma\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\gamma_{\hskip 0.70004ptU}

is  a  well  defined  infinite chain.   Clearly,  γ\gamma  is  small.   If  𝒰\mathcal{U}  is  an  open covering ,   then  γ\gamma  is  locally  finite.   When  a chain  γ\gamma  can  be represented  by  such sum,   we  say  that  γ\gamma  is  𝒰\mathcal{U}-finite.   Let  clf(X,𝒰)c^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 1.99997pt\mathcal{U}\hskip 1.49994pt)  be  the RR-module of  𝒰\mathcal{U}-finite chains.   Let  us  consider  now  the modules

cp(N,c)=σNpc(|σ|),\quad c_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)\hskip 3.99994pt\hskip 3.99994pt=\hskip 3.99994pt\hskip 3.99994pt\prod\nolimits_{\hskip 1.39998pt\sigma\hskip 1.39998pt\in\hskip 1.39998ptN_{\hskip 0.50003ptp}}\hskip 1.99997ptc\hskip 1.00006pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\hskip 3.00003pt,

where  p1p\hskip 1.99997pt\geqslant\hskip 1.99997pt-\hskip 1.99997pt1.   The maps  δp:cp(N,c)cp1(N,c)\delta_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 0.70004ptp\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt),  p>0p\hskip 1.99997pt>\hskip 1.99997pt0,   are defined as before.   Moreover ,   now  we can define  δ0\delta_{\hskip 1.04996pt0}  in  the same way,   except  that  now  the  target  of  δ0\delta_{\hskip 1.04996pt0}  is  cinf(X)c^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt),   not  c(X)c\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt).   Clearly,  clf(X,𝒰)c^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  is  equal  to  the image of

δ0:c0(N,c)cinf(X),\quad\delta_{\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 3.00003pt,

and  δ0\delta_{\hskip 1.04996pt0}  is  the composition of  the inclusion  clf(X,𝒰)cinf(X)c^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  with a  canonical  map

δ¯0:c0(N,c)clf(X,𝒰).\quad\overline{\delta}_{\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt.

Clearly,   δ¯0\overline{\delta}_{\hskip 1.04996pt0}  is  surjective.   As usual,  δp1δp=0\delta_{\hskip 0.35002ptp\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\delta_{\hskip 0.35002ptp}\hskip 3.99994pt=\hskip 3.99994pt0  for  every  p1p\hskip 1.99997pt\geqslant\hskip 1.99997pt1.

2.2. Lemma.   If  𝒰\mathcal{U}  is  star  finite,   then  the  following  sequence  is  exact :

   0{\displaystyle 0}clf(X,𝒰){c^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}c0(N,c){c_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)}c1(N,c){c_{\hskip 1.04996pt1}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)}.{\hskip 3.99994pt\ldots\hskip 3.99994pt.}δ¯0\scriptstyle{\displaystyle\hskip 3.99994pt\overline{\delta}_{\hskip 1.04996pt0}\hskip 1.99997pt}δ1\scriptstyle{\displaystyle\hskip 3.99994pt\delta_{\hskip 1.04996pt1}\hskip 1.99997pt}δ2\scriptstyle{\displaystyle\hskip 3.99994pt\delta_{\hskip 1.04996pt2}}

Proof.   It  is  sufficient  to  construct  a contracting  chain  homotopy

k0:clf(X,𝒰)c0(N,c),\quad k_{\hskip 1.39998pt0}\hskip 1.00006pt\colon\hskip 1.00006ptc^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)\hskip 1.00006pt,\quad\
kp:cp(N,c)cp+1(N,c),\quad k_{\hskip 1.04996ptp}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 1.04996ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 1.04996ptp\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)\hskip 1.00006pt,

where  p0p\hskip 1.99997pt\geqslant\hskip 1.99997pt0.   The construction  is  almost  the same as in  the case of  direct  sums  (instead of  products).   Cf.  [I3I_{3}],   Lemma  3.1.   For every  small  singular simplex ss let  us  choose a subset  Us𝒰U_{\hskip 0.70004pts}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  such  that  s(Δ)Uss\hskip 1.49994pt(\hskip 1.00006pt\Delta\hskip 1.00006pt)\hskip 1.99997pt\subset\hskip 3.00003ptU_{\hskip 0.70004pts}  and  let  usu_{\hskip 0.35002pts}  be  the corresponding  vertex of  NN.   If  s(Δ)|σ|s\hskip 1.00006pt(\hskip 1.00006pt\Delta\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|  for some  σNp\sigma\hskip 1.99997pt\in\hskip 1.99997ptN_{\hskip 0.70004ptp},   then  sσs\hskip 1.00006pt*\hskip 1.00006pt\sigma  denotes ss considered as an element  of  c(|σ|)c\hskip 1.49994pt(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt).

Let  us  define  kpk_{\hskip 1.04996ptp} on  the chains of  the form  sσs\hskip 1.00006pt*\hskip 1.00006pt\sigma  first.   Suppose  that  σNp\sigma\hskip 1.99997pt\in\hskip 1.99997ptN_{\hskip 0.70004ptp} and  ss  be a singular qq-simplex such  that  s(Δq)|σ|s\hskip 1.00006pt(\hskip 1.00006pt\Delta^{\hskip 0.35002ptq}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|.   Let  ρ=σ{us}\rho\hskip 3.99994pt=\hskip 3.99994pt\sigma\hskip 1.00006pt\cup\hskip 1.00006pt\{\hskip 1.49994ptu_{\hskip 0.70004pts}\hskip 1.49994pt\}.   Then  s(Δ)|σ|Us=|ρ|s\hskip 1.00006pt(\hskip 1.00006pt\Delta\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pts}\hskip 3.99994pt=\hskip 3.99994pt|\hskip 1.99997pt\rho\hskip 1.99997pt|  and,   in  particular ,  ρ\rho  is  a simplex.   If  usσu_{\hskip 0.70004pts}\hskip 1.99997pt\in\hskip 3.00003pt\sigma,   then  ρ\rho  is  a pp-simplex.   Otherwise,  ρ\rho  is  a (p+1)(\hskip 1.00006ptp\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)-simplex and  σ=aρ\sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.35002pta}\hskip 1.49994pt\rho  for some  aa.   Let

kp(sσ)=0ifusσ,\quad k_{\hskip 1.04996ptp}\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.00006pt*\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0\quad\ \mbox{if}\quad\ u_{\hskip 0.70004pts}\hskip 1.99997pt\in\hskip 3.00003pt\sigma\hskip 3.00003pt,
kp(sσ)=(1)asρc(|ρ|)ifusσ.\quad k_{\hskip 1.04996ptp}\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.00006pt*\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)^{\hskip 0.70004pta}\hskip 1.99997pts\hskip 1.00006pt*\hskip 1.00006pt\rho\hskip 3.99994pt\in\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994pt|\hskip 1.99997pt\rho\hskip 1.99997pt|\hskip 1.49994pt)\quad\ \mbox{if}\quad\ u_{\hskip 0.70004pts}\hskip 1.99997pt\not\in\hskip 3.00003pt\sigma\hskip 3.00003pt.

As  in  the case of  δp\delta_{\hskip 0.70004ptp},   the star  finitness of  𝒰\mathcal{U} and NN allows  to extend  kpk_{\hskip 1.04996ptp}  to cp(N,c)c_{\hskip 1.04996ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)  by  linearity.   In  order  to verify  that kk_{\hskip 0.70004pt\bullet}  is  a contracting  homotopy  it  is  sufficient  to check  that

δp+1(kp(γ))+kp1(δp(γ))=γ\quad\delta_{\hskip 0.70004ptp\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt\bigl{(}\hskip 1.49994ptk_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt+\hskip 3.99994ptk_{\hskip 0.70004ptp\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\bigl{(}\hskip 1.99997pt\delta_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\gamma

when  γ\gamma  has  the  form  γ=sσ\gamma\hskip 3.99994pt=\hskip 3.99994pts\hskip 1.00006pt*\hskip 1.00006pt\sigma.   But  this case  is  exactly  the same as for direct  sums.    \blacksquare

Classical  singular  chains.   The above discussion applies,   in  particular ,   to  the case  Δ=Δq\Delta\hskip 3.99994pt=\hskip 3.99994pt\Delta^{q},   the standard  geometric qq-simplex.   In  this case we will  denote  cp(N,c)c_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptc\hskip 1.49994pt)  and  clf(X,𝒰)c^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  by

Cpinf(N,Cq)andCqlf(X,𝒰)\quad C_{\hskip 0.70004ptp}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC_{\hskip 0.70004ptq}\hskip 1.49994pt)\quad\ \mbox{and}\quad\ C_{\hskip 0.70004ptq}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)

respectively.   The boundary  maps  did_{\hskip 0.70004pti}  turn  Clf(X,𝒰)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  into a complex.   Let  Hlf(X,𝒰)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  be  the homology  of  this complex.   The morphisms

   Cinf(N){\displaystyle C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}t(N,C){t_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.00006pt)}Clf(X,𝒰){C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}λC\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 1.39998ptC}}τC\scriptstyle{\displaystyle\tau_{\hskip 1.04996ptC}\hskip 3.99994pt}

lead  to homomorphisms of  cohomology  groups,

   Hinf(N){\displaystyle H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,C){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.00006pt)}Hlf(X,𝒰){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}λC\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 1.39998ptC\hskip 0.70004pt*}}τC\scriptstyle{\displaystyle\tau_{\hskip 1.04996ptC\hskip 0.70004pt*}\hskip 3.99994pt}

where  H(N,C)H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.00006pt)  is  the homology  of  t(N,C)t_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.00006pt).   If  𝒰\mathcal{U}  is  star  finite,   Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  implies  that  the columns of  (2.2)  are exact.   Together  with  the  already  used  theorem about  double complexes  this implies  that  τC\tau_{\hskip 1.04996ptC\hskip 0.70004pt*}  is  an  isomorphism.   This  leads  to  the canonical  homomorphism

(2.3) λCτC1:Hlf(X,𝒰)Hinf(N).\quad\lambda_{\hskip 1.39998ptC\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\tau_{\hskip 1.04996ptC\hskip 0.70004pt*}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\colon\hskip 1.99997ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)\hskip 3.00003pt.

In  general,   one cannot  replace here  Hlf(X,𝒰)H_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  by  some homology  independent  of  𝒰\mathcal{U}.

Comparing  classical  and  generalized chains.   Suppose  that  the functor  ee_{\hskip 0.70004pt\bullet}  is  equipped  with a natural  transformation  φ:Ce\varphi_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt\bullet}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004pt\bullet}.   Then  φ\varphi  induces a map  H(Y)H~(Y)H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widetilde{H}_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt)  for every  Y𝒰Y\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   where  H~(Y)\widetilde{H}_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt)  is  the  homology  of  the complex  e(Y)e_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt).   In  particular ,  φ\varphi  induces a map  H(X)H~(X)H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widetilde{H}_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt),   but  this  is  not  what  we are interested  in  now.   Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  implies  that  the complex  Clf(X,𝒰)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  is  canonically  isomorphic  to  the cokernel  of

δ1:C1inf(N,C)C0inf(N,C).\quad\delta_{\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 1.04996pt1}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt.

In  view of  the definition of  elf(X,𝒰)e_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  this  leads  to a canonical  homomorphism

φ:Clf(X,𝒰)elf(X,𝒰)\quad\varphi_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)

and  hence  to a  comparison  homomorphism

(2.4) φ:Hlf(X,𝒰)H~lf(X,𝒰)\quad\varphi_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)

in  homology  groups.   This  is  the map  we are interested  in.

2.3. Theorem.   If  𝒰\mathcal{U}  is  a  star  finite  ee_{\bullet}-acyclic  covering,   then  the  comparison  homomorphism  (2.4)  can  be  factored  through  the  canonical  homomorphism  (2.3).   

Proof.   The natural  transformation  φ\varphi_{\hskip 0.70004pt\bullet}  defines  homomorphisms

φq(|σ|):Cq(|σ|)eq(|σ|),\quad\varphi_{\hskip 0.70004ptq}\hskip 1.00006pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004ptq}\hskip 0.50003pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pte_{\hskip 0.70004ptq}\hskip 0.50003pt\left(\hskip 1.49994pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.49994pt\right)\hskip 3.00003pt,

which,   in  turn,   lead  to a morphism

φ:C(N,C)C(N,e)\quad\varphi_{\hskip 0.70004pt\bullet\hskip 0.70004pt\bullet}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptC_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt

of  double complexes.   In  turn,  φ\varphi_{\hskip 0.70004pt\bullet\hskip 0.70004pt\bullet}  leads  to a  morphism  Φ:C(N,C)t(N,e)\Phi_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptt_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)  of  total  complexes.   Clearly ,   the diagram

   Cinf(N){\displaystyle C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}t(N,C){t_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.49994pt)}Clf(X,𝒰){C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}Cinf(N){C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}t(N,e){t_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)}elf(X,𝒰).{e_{\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt.}=\scriptstyle{\displaystyle\hskip 1.99997pt=}Φ\scriptstyle{\displaystyle\hskip 1.99997pt\Phi_{\hskip 0.70004pt\bullet}}τC\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\tau_{\hskip 1.04996ptC}\hskip 3.99994pt}λC\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 1.04996ptC}}φ\scriptstyle{\displaystyle\hskip 1.99997pt\varphi_{\hskip 0.70004pt\bullet}}τe\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\tau_{\hskip 0.70004pte}}λe\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 0.70004pte}}

is  commutative and  leads  to  the following  commutative diagram of  homology  groups

   Hinf(N){\displaystyle H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,C){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.49994pt)}Hlf(X,𝒰){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}Hinf(N){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,e){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)}H~lf(X,𝒰),{\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt,}=\scriptstyle{\displaystyle\hskip 1.99997pt=}Φ\scriptstyle{\displaystyle\hskip 1.99997pt\Phi_{\hskip 0.70004pt*}}τC\scriptstyle{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\displaystyle\hskip 3.99994pt\hskip 1.99997pt\tau_{\hskip 1.04996ptC\hskip 0.70004pt*}\hskip 3.99994pt}λC\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 1.04996ptC\hskip 0.70004pt*}}φ\scriptstyle{\displaystyle\hskip 1.99997pt\varphi_{\hskip 0.70004pt*}}τe\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\tau_{\hskip 0.70004pte\hskip 0.70004pt*}\hskip 3.99994pt}λe\scriptstyle{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 0.70004pte\hskip 0.70004pt*}}

where  H(N,e)H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)  denotes  the cohomology  of  the  total  complex  t(N,e)t_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt).

The red arrows are isomorphisms.   Indeed,   since  the covering  𝒰\mathcal{U}  is  ee_{\bullet}-acyclic,  λe\lambda_{\hskip 0.70004pte\hskip 0.70004pt*}  is  an  isomorphism  by  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains,   and  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  implies  that  τC\tau_{\hskip 1.39998ptC\hskip 0.70004pt*}  is  always an  isomorphism,   as we already  pointed out.   By  inverting  these  two arrows we get  the commutative diagram

   Hinf(N){\displaystyle H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,C){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.49994pt)}Hlf(X,𝒰){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}Hinf(N){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,e){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte\hskip 1.49994pt)}H~lf(X,𝒰).{\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt.}=\scriptstyle{\displaystyle\hskip 1.99997pt=}Φ\scriptstyle{\displaystyle\hskip 1.99997pt\Phi_{\hskip 0.70004pt*}}φ\scriptstyle{\displaystyle\hskip 1.99997pt\varphi_{\hskip 0.70004pt*}}

It  follows  that  Hlf(X,𝒰)H~lf(X,𝒰)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widetilde{H}_{*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  factors  through  the canonical  homomorphism

   Hlf(X,𝒰){\displaystyle H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}H(N,C){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.49994pt)}Hinf(N).{H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)\hskip 3.00003pt.}

The  theorem  follows.    \blacksquare

3. Compactly  finite  and  l1l_{\hskip 1.00806pt1}-homology

Singular l1l_{\hskip 0.70004pt1}-chains.   Recall  that  for a  topological  space  YY  we denote  by  Lq(Y)L_{\hskip 1.04996ptq}\hskip 0.50003pt(\hskip 1.49994ptY\hskip 1.49994pt)  the real  vector space of  infinite singular qq-chains in  YY  having  finite l1l_{\hskip 0.70004pt1}-norm.   These chains are called  l1l_{\hskip 0.70004pt1}-chains  of  dimension qq.   There are obvious inclusions  Cq(Y)Lq(Y)C_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 3.00003ptL_{\hskip 1.04996ptq}\hskip 0.50003pt(\hskip 1.49994ptY\hskip 1.49994pt).   The boundary  maps in  C(Y)C_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt)  extend  by  continuity  to L(Y)L_{\hskip 1.04996pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt),  turning  L(Y)L_{\hskip 1.04996pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt) into a complex.   Its homology  are denoted  by  Hl1(Y)H_{\hskip 0.70004pt*}^{{\hskip 0.70004ptl_{\hskip 0.50003pt1}}}\hskip 0.50003pt(\hskip 1.49994ptY\hskip 1.49994pt).   In  this section  we will  apply  the  theory  of  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  to  e=Le_{\hskip 0.70004pt\bullet}\hskip 3.99994pt=\hskip 3.99994ptL_{\hskip 1.04996pt\bullet}.

Let  𝒰\mathcal{U} be a star  finite covering  of  XX.   The complex  Llf(X,𝒰)L_{\hskip 1.04996pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  admits a description similar  to  the definition of  Clf(X,𝒰)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   Namely,   suppose  that  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  an  l1l_{\hskip 0.70004pt1}-chain  γULq(U)\gamma_{\hskip 0.70004ptU}\hskip 1.99997pt\in\hskip 1.99997ptL_{\hskip 1.04996ptq}\hskip 0.50003pt(\hskip 1.49994ptU\hskip 1.49994pt)  is  given.   Then,   since  𝒰\mathcal{U}  is  a star  finite,   the sum

γ=U𝒰γU\quad\gamma\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\gamma_{\hskip 0.70004ptU}

is  a  well  defined  infinite chain.   Let  qlf(X,𝒰)\mathcal{L}_{\hskip 0.70004ptq}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  be  the vector space of  such chains.

The inclusions  Lq(U)Cqinf(X)L_{\hskip 1.04996ptq}\hskip 0.50003pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004ptq}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  lead  to a map

δ0:C0inf(N,Lq)Cqinf(X)\quad\delta_{\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004ptq}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004ptq}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)

having  qlf(X,𝒰)\mathcal{L}_{\hskip 0.70004ptq}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  as  the image.   Let

δ¯0:C0inf(N,Lq)qlf(X,𝒰)\quad\overline{\delta}_{\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004ptq}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptq}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt

be  the map resulting  from changing  the  target  of  δ0\delta_{\hskip 1.04996pt0}.

3.1. Lemma.   The  following  sequence  is  exact :

   0{\displaystyle 0}qlf(X,𝒰){\mathcal{L}_{\hskip 0.70004ptq}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}C0inf(N,Lq){C_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004ptq}\hskip 1.49994pt)}C1inf(N,Lq){C_{\hskip 1.04996pt1}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004ptq}\hskip 1.49994pt)}.{\hskip 3.99994pt\ldots\hskip 3.99994pt.}δ¯0\scriptstyle{\displaystyle\hskip 3.99994pt\overline{\delta}_{\hskip 1.04996pt0}\hskip 1.99997pt}δ1\scriptstyle{\displaystyle\hskip 3.99994pt\delta_{\hskip 1.04996pt1}\hskip 1.99997pt}δ2\scriptstyle{\displaystyle\hskip 3.99994pt\delta_{\hskip 1.04996pt2}}

Proof.   The proof  is  completely  similar  to  the proof  of  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   On  the chains of  the form  sσs\hskip 1.00006pt*\hskip 1.00006pt\sigma  the chain  homotopy  kpk_{\hskip 1.04996ptp}  is  defined as before.   The fact  that  𝒰\mathcal{U}  is  star  finite ensures  that  this definition extends  to  l1l_{\hskip 0.70004pt1}-chains.   The homotopy  identity  holds on  the chains of  the form  sσs\hskip 1.00006pt*\hskip 1.00006pt\sigma  by  the same reason as before and  hence holds on all  l1l_{\hskip 0.70004pt1}-chains.    \blacksquare

3.2. Corollary.   The map  δ¯0\overline{\delta}_{\hskip 1.04996pt0}  induces an  isomorphism  Llf(X,𝒰)qlf(X,𝒰)L_{\hskip 1.04996pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptq}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   \blacksquare

3.3. Lemma.   If  𝒰\mathcal{U} is  a star  finite proper covering,   then a small  chain  is  𝒰\mathcal{U}-finite  if  and  only  if  it  is  compactly  finite.

Proof.   Let  us  prove  the  “if”  part  first.   Given a small  chain γ\gamma,   let  us  write  it  as a formal  sum

γ=iIaiσi\quad\gamma\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 0.70004pti\hskip 0.70004pt\in\hskip 0.70004ptI}\hskip 1.99997pta_{\hskip 0.70004pti}\hskip 1.00006pt\sigma_{\hskip 0.70004pti}

of  small  simplices σi\sigma_{\hskip 0.70004pti}  with coefficients  ai0a_{\hskip 0.70004pti}\hskip 3.99994pt\neq\hskip 3.99994pt0.   We may  assume  that  σiσj\sigma_{\hskip 0.70004pti}\hskip 3.99994pt\neq\hskip 3.99994pt\sigma_{j}  if  iji\hskip 3.99994pt\neq\hskip 3.99994ptj.   For every  iIi\hskip 1.99997pt\in\hskip 3.00003ptI  let  us  choose  U(i)𝒰U\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  such  that  σi\sigma_{\hskip 0.70004pti}  is  a simplex  in  U(i)U\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt).   For  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  let

γU=U(i)=Uaiσi.\quad\gamma_{\hskip 0.70004ptU}\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 0.70004pt(\hskip 0.70004pti\hskip 1.04996pt)\hskip 1.39998pt=\hskip 2.10002ptU}\hskip 1.99997pta_{\hskip 0.70004pti}\hskip 1.00006pt\sigma_{\hskip 0.70004pti}\hskip 3.00003pt.

Clearly,  γ\gamma is  equal  to  the sum of  chains  γU\gamma_{\hskip 0.70004ptU}.   If  γ\gamma  is  a compactly  finite chain,   then every  γU\gamma_{\hskip 0.70004ptU}  is  a  finite chain,   and  hence  γ\gamma  is  𝒰\mathcal{U}-finite.

Let  us  prove  the  “only  if”  part.   If  γ\gamma  is  a 𝒰\mathcal{U}-finite chain,   then  γ=U𝒰γU\gamma\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\gamma_{\hskip 0.70004ptU},   where each  γU\gamma_{\hskip 0.70004ptU}  is  a  finite chain  in  UU.   If  ZXZ\hskip 1.99997pt\subset\hskip 1.99997ptX  is  compact,   then  ZZ  is  contained  in  the union of  finitely  many  sets  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Since  𝒰\mathcal{U}  is  star  finite,   this implies  that  ZZ  intersects only  finitely  many  sets  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Since each  γU\gamma_{\hskip 0.70004ptU}  is  a  finite chain,   it  follows  that  only  finitely  many  simplices entering  γ\gamma  with non-zero coefficients intersect  ZZ.   Hence  γ\gamma  is  compactly  finite.    \blacksquare

3.4. Lemma.   If  𝒰\mathcal{U} is  a star  finite proper covering,   then  the map  Hlf(X,𝒰)Hcf(X)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  induced  by  the inclusion  Clf(X,𝒰)Ccf(X)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  an  isomorphism.   

Proof.   By  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  the complex  Clf(X,𝒰)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  is  equal  to  the subcomplex of  small  chains of  the complex  Ccf(X)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt).   Hence  the  lemma  is  an analogue for compactly  finite chains of  a classical  theorem of  Eilenberg  [E]  about  finite chains.   Eilenberg’s  proof  is  presented  in  many  textbooks  (see,   for example,   [Sp],   Theorem  4.4.14),   although  is  rarely  attributed  to  Eilenberg.   Eilenberg’s  proof  applies  to our situation  without  any changes.    \blacksquare

Comparing  compactly  finite  and l1l_{\hskip 0.70004pt1}-chains.   As  in  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains,   let  H~lf(X,𝒰)\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  be  the homology of  the complex Llf(X,𝒰)L_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   There  is  a canonical  comparison  homomorphism

(3.1) φ:Hlf(X,𝒰)H~lf(X,𝒰).\quad\varphi_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt.

If  the assumptions of  Lemmas  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  and  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  hold,   we can  interpret  φ\varphi_{\hskip 0.70004pt*} as a homomorphism

(3.2) φ:Hcf(X)H~lf(X,𝒰)\quad\varphi_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt

and  the canonical  homomorphisms  (2.3)  as  a  homomorphism  l𝒰:Hcf(X)Hinf(N)l_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt).

3.5. Lemma.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper  covering.   If  𝒰\mathcal{U} is  l1l_{\hskip 0.70004pt1}-acyclic,   then  the comparison homomorphisms  (3.1)  and   (3.2)  can  be  factored  through  l𝒰l_{\hskip 0.70004pt\mathcal{U}}.   

Proof.   Since LL_{\hskip 0.70004pt\bullet}-acyclicity  is  the same as l1l_{\hskip 0.70004pt1}-acyclicity,   this  follows  from  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.    \blacksquare

3.6. Theorem.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering,   and  that  𝒰\mathcal{U} is  countable and  l1l_{\hskip 0.70004pt1}-acyclic.   If  a  homology  class  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.   

Proof.   Suppose  that  hHncf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}}.   By  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  the homology  class hh can  be represented  by  a cycle  γCnlf(X,𝒰)\gamma\hskip 1.99997pt\in\hskip 1.99997ptC_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  implies  that

φ(h)=0H~nlf(X,𝒰).\quad\varphi_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.99994pt\in\hskip 3.99994pt\widetilde{H}_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.00003pt.

By  Corollary  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains   the map  δ¯0\overline{\delta}_{\hskip 1.04996pt0}  induces an  isomorphism  between H~lf(X,𝒰)\widetilde{H}_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt) and  the homology  of  the complex lf(X,𝒰)\mathcal{L}_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   It  follows  that  the inclusion  Cnlf(X,𝒰)nlf(X,𝒰)C_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptn}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  takes  the cycle γ\gamma representing  hh  to a boundary.   In  other  terms,

γ=β\quad\gamma\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.49994pt\beta

for  some  βn+1lf(X,𝒰)\beta\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   By  the  definition  of  n+1lf(X,𝒰)\mathcal{L}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt),

β=U𝒰βU\quad\beta\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 3.00003pt\beta_{\hskip 0.70004ptU}\hskip 3.00003pt

for some chains  βULn+1(U)\beta_{\hskip 0.70004ptU}\hskip 1.99997pt\in\hskip 1.99997ptL_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003pt(\hskip 1.49994ptU\hskip 1.49994pt).   Let  us  choose an arbitrary  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0.   Since  𝒰\mathcal{U}  is  countable,   there exists a family  of  real  numbers  εU>0\varepsilon_{\hskip 0.70004ptU}\hskip 1.99997pt>\hskip 1.99997pt0,  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},    such  that

U𝒰εU=ε.\quad\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptU}\hskip 3.99994pt=\hskip 3.99994pt\varepsilon\hskip 3.00003pt.

Since  βU<\|\hskip 1.99997pt\hskip 0.50003pt\beta_{\hskip 0.70004ptU}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty  for every  UU,   every  chain  βU\beta_{\hskip 0.70004ptU}  can  be presented as a sum  βU=αU+ωU\beta_{\hskip 0.70004ptU}\hskip 3.99994pt=\hskip 3.99994pt\alpha_{\hskip 0.70004ptU}\hskip 1.99997pt+\hskip 1.99997pt\omega_{\hskip 0.70004ptU}  of  two chains  αU,ωULn+1(U)\alpha_{\hskip 1.04996ptU}\hskip 1.00006pt,\hskip 3.99994pt\omega_{\hskip 0.70004ptU}\hskip 1.99997pt\in\hskip 1.99997ptL_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003pt(\hskip 1.49994ptU\hskip 1.49994pt)  such  that  αU\alpha_{\hskip 1.04996ptU}  is  finite and  ωU<εU\|\hskip 1.99997pt\hskip 0.50003pt\omega_{\hskip 0.70004ptU}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptU}.   Let

α=U𝒰αUandω=U𝒰ωU.\quad\alpha\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\alpha_{\hskip 1.04996ptU}\quad\ \mbox{and}\quad\ \omega\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\omega_{\hskip 0.70004ptU}\hskip 3.00003pt.

Then  αCn+1lf(X,𝒰)Cn+1cf(X)\alpha\hskip 1.99997pt\in\hskip 3.00003ptC_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptC_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  and  ωn+1lf(X,𝒰)\omega\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   Now,  γ=β\gamma\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.49994pt\beta  implies  that

γ=α+ω\quad\gamma\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 1.00006pt\omega

and  hence  γα=ω\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006pt\omega.   Therefore

γα=ω(n+1)ω\quad\|\hskip 1.99997pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997pt\hskip 0.50003pt\partial\hskip 1.00006pt\omega\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\|\hskip 1.99997pt\omega\hskip 1.99997pt\|
(n+1)U𝒰ωU\quad\phantom{\|\hskip 1.99997pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997pt\hskip 0.50003pt\partial\hskip 1.00006pt\omega\hskip 1.99997pt\|\hskip 1.99997pt}\leqslant\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\|\hskip 1.99997pt\omega_{\hskip 0.70004ptU}\hskip 1.99997pt\|
<(n+1)U𝒰εU=(n+1)ε.\quad\phantom{\|\hskip 1.99997pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997pt\hskip 0.50003pt\partial\hskip 1.00006pt\omega\hskip 1.99997pt\|\hskip 1.99997pt}<\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 3.00003pt\varepsilon_{\hskip 0.70004ptU}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\varepsilon\hskip 3.00003pt.

Hence hh  can be represented  by  chains with arbitrarily  small  norm,   i.e.  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.    \blacksquare

3.7. Theorem.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering,   and  that  𝒰\mathcal{U} is  countable and  almost  l1l_{\hskip 0.70004pt1}-acyclic.   If  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h<\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\infty.   

Proof.   Let  Ue𝒰U_{\hskip 0.35002pte}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  be  the exceptional  set,   the one which  is  allowed  not  to be  l1l_{\hskip 0.70004pt1}-acyclic.   By  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  the homology  class hh can  be considered as an element  of  Hnlf(X,𝒰)H_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  and  represented  by a chain  γCnlf(X,𝒰)\gamma\hskip 1.99997pt\in\hskip 1.99997ptC_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  for some nn.   Let  us consider  the commutative diagram

   Hinf(N){\displaystyle H_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,C){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptC\hskip 1.49994pt)}Hlf(X,𝒰){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}Hinf(N){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}H(N,L){H_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL\hskip 1.49994pt)}H~lf(X,𝒰){\widetilde{H}_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}=\scriptstyle{\displaystyle\hskip 1.99997pt=}Φ\scriptstyle{\displaystyle\hskip 1.99997pt\Phi_{\hskip 0.70004pt*}}λC\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 1.04996ptC\hskip 0.70004pt*}}τC1\scriptstyle{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\displaystyle\hskip 3.99994pt\hskip 1.99997pt\tau_{\hskip 1.04996ptC\hskip 0.70004pt*}^{\hskip 0.70004pt-\hskip 0.70004pt1}}φ\scriptstyle{\displaystyle\hskip 1.99997pt\varphi_{\hskip 0.70004pt*}}τL\scriptstyle{\displaystyle\hskip 3.99994pt\hskip 1.99997pt\tau_{\hskip 0.70004ptL\hskip 0.70004pt*}\hskip 3.99994pt}λL\scriptstyle{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\displaystyle\hskip 3.99994pt\hskip 1.99997pt\lambda_{\hskip 0.70004ptL\hskip 0.70004pt*}}

similar  to  the diagrams used  in  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   Since  𝒰\mathcal{U}  is  not  assumed  to be l1l_{\hskip 0.70004pt1}-acyclic,   the homomorphism  λL\lambda_{\hskip 0.70004ptL\hskip 0.70004pt*}  may  be not  invertible.   But  since  l𝒰(h)=0l_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0,

h~=Φ(τC1(h))Hn(N,L)\quad\widetilde{h}\hskip 3.99994pt=\hskip 3.99994pt\Phi_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994pt\tau_{\hskip 1.04996ptC\hskip 0.70004pt*}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt\in\hskip 3.99994ptH_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL\hskip 1.49994pt)

belongs  to  the kernel  of  λL\lambda_{\hskip 0.70004ptL\hskip 0.70004pt*}.   Hence  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  implies  that  h~\widetilde{h}  belongs to  the image of

Hn(C0inf(N,L))Hn(N,L).\quad H_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.99997ptC_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004pt\bullet}\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003ptL\hskip 1.49994pt)\hskip 3.00003pt.

Since among  sets  in  𝒰\mathcal{U}  only  UeU_{\hskip 0.35002pte}  can  be not  l1l_{\hskip 0.70004pt1}-acyclic,  h~\widetilde{h}  belongs  to  the image of  the homology of  the summand  L(Ue)L_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002pte}\hskip 1.49994pt)  of  C0inf(N,L)C_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004pt\bullet}\hskip 1.00006pt).   It  follows  that  there exists an l1l_{\hskip 0.70004pt1}-cycle

γLn(Ue)C0inf(N,Ln)\quad\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt\in\hskip 1.99997ptL_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002pte}\hskip 1.49994pt)\hskip 3.99994pt\subset\hskip 3.99994ptC_{\hskip 1.04996pt0}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.00006ptN\hskip 0.50003pt,\hskip 3.00003ptL_{\hskip 0.70004ptn}\hskip 1.00006pt)

such  that  h~\widetilde{h}  is  equal  to  the l1l_{\hskip 0.70004pt1}-homology  class of  γ\gamma\hskip 0.50003pt^{\prime}  and  hence  τL(h~)\tau_{\hskip 0.70004ptL\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\widetilde{h}\hskip 1.99997pt)  is  equal  to  the homology  class of  the cycle  γ\gamma^{\prime}  considered as an element  of  lf(X,𝒰)\mathcal{L}_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).

Now  the commutativity  of  the right  square of  the above diagram  implies  that  φ(h)\varphi_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)  is  equal  to  the homology  class hh\hskip 0.50003pt^{\prime}  of  γ\gamma\hskip 0.50003pt^{\prime}.   It  follows  that  γγ\gamma\hskip 1.99997pt-\hskip 1.99997pt\gamma^{\prime}  is  a  boundary  in  lf(X,𝒰)\mathcal{L}_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt).   As  in  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains,   for every  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  there exist  chains  αCn+1lf(X,𝒰)\alpha\hskip 1.99997pt\in\hskip 3.00003ptC_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  and  ωn+1lf(X,𝒰)\omega\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)  such  that  ω<ε\|\hskip 1.99997pt\omega\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon  and

γγ=α+ω,\quad\gamma\hskip 1.99997pt-\hskip 1.99997pt\gamma\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 1.00006pt\omega\hskip 3.00003pt,

i.e.  γα=γ+ω\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 1.00006pt\omega.   The cycle  γα\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha  is  𝒰\mathcal{U}-finite  and  represents  hh.   On  the other  hand  γ<\|\hskip 1.99997pt\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty  and  ω<ε\|\hskip 1.99997pt\omega\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon,   and  hence  γα<\|\hskip 1.99997pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty.   Therefore  h<\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty.    \blacksquare

4. Extensions  of  coverings  and  l1l_{\hskip 1.00806pt1}-homology

Extensions of  coverings.   Let  𝒰\mathcal{U}  be a covering of  XX  and  XX\hskip 0.50003pt^{\prime}  be a  space containing  XX.   Recall  (see  [I3I_{3}],   Section  4)  that  an  extension of  𝒰\mathcal{U}  to  XX\hskip 0.50003pt^{\prime}  is  a map  UUU\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptU\hskip 0.50003pt^{\prime}  assigning  to every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  a subset  UXU\hskip 0.50003pt^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptX\hskip 0.50003pt^{\prime}  such  that  UX=UU\hskip 0.50003pt^{\prime}\hskip 1.00006pt\cap\hskip 1.00006ptX\hskip 3.99994pt=\hskip 3.99994ptU  in  such a way  that  the collection  𝒰\mathcal{U}\hskip 0.50003pt^{\prime} of  the sets UU\hskip 0.50003pt^{\prime}  is  a covering of  XX\hskip 0.50003pt^{\prime}.   The set  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  uniquely  determines  the extension,   i.e.  the map  UUU\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptU\hskip 0.50003pt^{\prime}  and  is  identified  with  it.   There  is  an obvious simplicial  map  N𝒰N𝒰N_{\hskip 1.04996pt\mathcal{U}}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptN_{\hskip 1.04996pt\mathcal{U}\hskip 0.35002pt^{\prime}}.

The extension  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  is  said  to be  nerve-preserving  if  this map  is  a simplicial  isomorphism,   which  is  then  treated as  the identity.   If  σ\sigma  is  a simplex of  N𝒰N_{\hskip 1.04996pt\mathcal{U}},   then  |σ||\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 0.50003pt^{\prime}  denotes  the intersection of  sets  UU\hskip 0.50003pt^{\prime}  corresponding  to  the vertices of  σ\sigma.   Clearly,  |σ||σ||\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt|\hskip 1.99997pt\sigma\hskip 1.99997pt|\hskip 0.50003pt^{\prime}  is  a map  𝒰𝒰\mathcal{U}^{\hskip 0.70004pt\cap}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{U}\hskip 0.50003pt^{\prime\hskip 0.70004pt\cap}.

Suppose  that  𝒰\mathcal{U}  is  a weakly l1l_{\hskip 0.70004pt1}-acyclic covering of  XX.   By  [I3I_{3}],   Corollary  4.2,   there exists a space  XXX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\supset\hskip 1.99997ptX  and a nerve-preserving  extension  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  of  𝒰\mathcal{U}  to  XX\hskip 0.50003pt^{\prime}  such  that  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  is  l1l_{\hskip 0.70004pt1}-acyclic and  the inclusion  XXX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX^{\prime}  induces an  isomorphism of  the fundamental  groups.   Therefore  XXX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX^{\prime}  induces isometric isomorphisms  in  bounded cohomology.   By  a  theorem of  Cl.  Löh  [LL]  this implies  that  XXX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX^{\prime}  induces isometric isomorphisms  in  l1l_{\hskip 0.70004pt1}-homology.

Moreover ,   if  𝒰\mathcal{U}  is  open,   then  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  can  be assumed  to be also open.   See  [I3I_{3}],   Corollary  4.2.   The same argument  shows  that  if  the interiors  intU\operatorname{int}\hskip 1.49994ptU,  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},  cover  XX,   then  one can assume  that  the interiors  intU\operatorname{int}\hskip 1.49994ptU\hskip 0.50003pt^{\prime}  cover  XX\hskip 0.50003pt^{\prime}.   Also,   one can assume  that  intUintU\operatorname{int}\hskip 1.49994ptU\hskip 0.50003pt^{\prime}\hskip 1.99997pt\supset\hskip 1.99997pt\operatorname{int}\hskip 1.49994ptU,   where  the first  interior  is  taken  in  XX\hskip 0.50003pt^{\prime}  and  the second  in  XX.   See  [I3I_{3}],   the end of  the proof  of  Theorem  4.1.   We will  need also  the following  simple property  of  the construction of  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}.

4.1. Lemma.   Let  UU+U\hskip 1.99997pt\longmapsto\hskip 1.99997ptU_{\hskip 0.70004pt+} be  the map  establishing  that  the covering  𝒰\mathcal{U}  is  weakly  l1l_{\hskip 0.70004pt1}-acyclic.   Then  there exists a retraction  r:XXr\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  such  that  r(U)U+r\hskip 1.49994pt(\hskip 1.49994ptU\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 3.00003ptU^{\hskip 0.70004pt+}  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}^{\hskip 0.70004pt\cap}.   

Proof.   For  every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}^{\hskip 0.70004pt\cap}  the subset  UXU\hskip 0.50003pt^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptX\hskip 0.50003pt^{\prime}  is  obtained  from UU by  attaching discs along  loops contractible  in XX and  then attaching  some  “collars”  to ensure  that  intUintU\operatorname{int}\hskip 1.49994ptU\hskip 0.50003pt^{\prime}\hskip 1.99997pt\supset\hskip 1.99997pt\operatorname{int}\hskip 1.49994ptU.   See  [I3I_{3}],   the proof  of  Theorem  4.1.   Under  our assumptions  the  loops used  to attach discs  to UU are contractible in  U+U^{\hskip 0.70004pt+}.   It  follows  that  there exists a retraction  r:XXr\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  such  that  r(U)U+r\hskip 1.49994pt(\hskip 1.49994ptU\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 3.00003ptU^{\hskip 0.70004pt+}  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.    \blacksquare

4.2. Theorem.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering  and  that  𝒰\mathcal{U} is  countable and  weakly l1l_{\hskip 0.70004pt1}-acyclic.   If  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.

Proof.   Let  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  be  the extension of  the covering  𝒰\mathcal{U}  to a space  XXX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\supset\hskip 1.99997ptX  as above.   The closures of  the sets  UU\hskip 0.50003pt^{\prime}, where  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   may  be not  compact  because,   in  general,  UU\hskip 0.50003pt^{\prime}  is  obtained  from  UU  by  attaching an  infinite number of  discs and  “collars”.   Therefore  the covering  𝒰\mathcal{U}\hskip 0.50003pt^{\prime}  is  not  proper  in  general,   and we cannot  apply  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  to  it.

But  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  applies with only  minor  modifications.   Let  us  represent  the homology  class hh  by  a cycle

γCnlf(X,𝒰)Clf(X,𝒰).\quad\gamma\hskip 1.99997pt\in\hskip 1.99997ptC_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.99994pt\subset\hskip 3.99994ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.

The cycle  γ\gamma  defines also a  homology  class  hHnlf(X,𝒰)h\hskip 0.50003pt^{\prime}\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 0.50003pt^{\prime}\hskip 1.49994pt).   Clearly,   the diagram

   Hlf(X,𝒰){\displaystyle H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)}Hinf(N){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}Hlf(X,𝒰){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 0.50003pt^{\prime}\hskip 1.49994pt)}Hinf(N){H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)}l𝒰\scriptstyle{\displaystyle l_{\hskip 0.70004pt\mathcal{U}}}=\scriptstyle{\displaystyle\hskip 1.00006pt=}l𝒰\scriptstyle{\displaystyle l_{\hskip 0.70004pt\mathcal{U}\hskip 0.35002pt^{\prime}}}

is  commutative.   Since  l𝒰(h)=0l_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0,   this  implies  that  l𝒰(h)=0l_{\hskip 0.70004pt\mathcal{U}\hskip 0.35002pt^{\prime}}\hskip 1.00006pt(\hskip 1.00006pth\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.   Together  with  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  this  implies  that  h=0h\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt0,   i.e.  γ\gamma  is  a boundary  in  the chain complex  Llf(X,𝒰)L_{\hskip 1.04996pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 0.50003pt^{\prime}\hskip 1.49994pt).

In  view  of  Corollary  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  this  implies  that  γ\gamma  is  a boundary  in  lf(X,𝒰)\mathcal{L}_{\hskip 1.04996pt\bullet}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 0.50003pt^{\prime}\hskip 1.49994pt),   i.e.

γ=β\quad\gamma\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.49994pt\beta\hskip 3.00003pt

for  some  βn+1lf(X,𝒰)\beta\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 0.50003pt^{\prime}\hskip 1.49994pt).   Then

β=U𝒰βU\quad\beta\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 3.00003pt\beta_{\hskip 0.70004ptU}\hskip 3.00003pt

for some chains  βULn+1(U)\beta_{\hskip 0.70004ptU}\hskip 1.99997pt\in\hskip 1.99997ptL_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003pt(\hskip 1.49994ptU\hskip 0.50003pt^{\prime}\hskip 1.49994pt).   Arguing  as  in  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains,   let  us  choose an arbitrary  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  and  represent  ε\varepsilon  as a sum  ε=U𝒰εU\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptU}  of  positive numbers  εU>0\varepsilon_{\hskip 0.70004ptU}\hskip 1.99997pt>\hskip 1.99997pt0.   Next,   let  us  represent  each  βU\beta_{\hskip 0.70004ptU}  as a sum  βU=αU+ωU\beta_{\hskip 0.70004ptU}\hskip 3.99994pt=\hskip 3.99994pt\alpha_{\hskip 0.70004ptU}\hskip 1.99997pt+\hskip 1.99997pt\omega_{\hskip 0.70004ptU}  of  chains  αU,ωULn+1(U)\alpha_{\hskip 0.70004ptU}\hskip 1.00006pt,\hskip 3.99994pt\omega_{\hskip 0.70004ptU}\hskip 1.99997pt\in\hskip 1.99997ptL_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003pt(\hskip 1.49994ptU\hskip 1.49994pt)  such  that  αU\alpha_{\hskip 0.70004ptU}  is  finite and  ωU<εU\|\hskip 1.99997pt\hskip 0.50003pt\omega_{\hskip 0.70004ptU}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptU}.   Let

ω=U𝒰ωUandα=U𝒰αU.\quad\omega\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\omega_{\hskip 0.70004ptU}\quad\ \mbox{and}\quad\ \alpha\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt\alpha_{\hskip 0.70004ptU}\hskip 3.00003pt.

For  every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  the chain  r(αU)r_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\alpha_{\hskip 0.70004ptU}\hskip 1.49994pt)  is  a chain  in  U+U^{\hskip 0.70004pt+}.   Since  the family  of  sets  U+U^{\hskip 0.70004pt+}  is  compactly  finite,   the infinite chain

r(α)=U𝒰r(αU)\quad r_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\alpha_{\hskip 0.70004ptU}\hskip 1.49994pt)

is  well  defined and compactly  finite.   Since rr  is  a retraction,

γ(r(α))=r(γ)(r(α))\quad\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.49994pt\bigl{(}\hskip 1.49994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.49994pt\bigl{(}\hskip 1.49994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}
=r(γ)r(α)=r(γα).\quad\phantom{\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.49994pt\bigl{(}\hskip 1.49994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt}=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptr_{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial\hskip 1.00006pt\alpha\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.49994pt\bigr{)}\hskip 3.00003pt.

But  γα=ω\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006pt\omega  and  ω(n+1)ω<(n+1)ε\|\hskip 1.99997pt\partial\hskip 1.00006pt\omega\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\|\hskip 1.99997pt\omega\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\varepsilon.   It  follows  that

r(γα)γα<(n+1)ε.\quad\|\hskip 1.99997ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\gamma\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt\alpha\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\varepsilon\hskip 3.00003pt.

Hence  hh  can  be represented  by  chains with arbitrarily  small  norm,   i.e.  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.    \blacksquare

4.3. Theorem.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering  and  that  𝒰\mathcal{U} is  countable and  almost  weakly l1l_{\hskip 0.70004pt1}-acyclic.   If  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h<\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\infty.

Proof.   The proof  differs from  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  is  the same way  as  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  differs from  the proof  of  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.   We  leave  the details  to  the reader .    \blacksquare

Compactly  amenable families.   The  l1l_{\hskip 0.70004pt1}-acyclicity  is  implied  by  a stronger  property,   namely,   the amenability.   Suppose  that  ZYXZ\hskip 1.99997pt\subset\hskip 1.99997ptY\hskip 1.99997pt\subset\hskip 1.99997ptX  and  ZZ  is  path connected.   The subset  ZZ  is  said  to be  amenable  in  YY  if  the image of  the map  π1(Z,z)π1(Y,z)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.49994pt)\hskip 1.49994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.49994pt)  is  amenable.

A family  𝒰\mathcal{U}  of  subsets of  XX  is  said  to be  compactly  amenable  if  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  a subset  U+XU_{\hskip 0.70004pt+}\hskip 1.99997pt\subset\hskip 1.99997ptX  is  given,   such  that  UU+U\hskip 1.99997pt\subset\hskip 1.99997ptU_{\hskip 0.70004pt+},   the set  UU  is  amenable  in  U+U_{\hskip 0.70004pt+},   and  the family  of  subsets  U+U_{\hskip 0.70004pt+}  is  compactly  finite.   A covering  𝒰\mathcal{U}  is  said  to be  compactly  amenable  if  it  is  compactly  amenable as a  family  and elements of  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  are path connected.

Since subgroups of  amenable groups are amenable,   if  ZZ\hskip 0.50003pt^{\prime}  is  a  path connected subset  of  a set  ZZ  amenable  in  YY,   then  ZZ\hskip 0.50003pt^{\prime}  is  also amenable in  YY.   At  the same  time amenable groups are l1l_{\hskip 0.70004pt1}-acyclic.   It  follows  that  a compactly  amenable covering  is  compactly  l1l_{\hskip 0.70004pt1}-acyclic.

4.4. Theorem.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering  and  𝒰\mathcal{U} is  countable and  compactly  amenable.   If  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.

Proof.   In view of  the remarks preceding  the  theorem,   this follows  from  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.    \blacksquare

Almost  compactly  amenable  families.   A  family  𝒰\mathcal{U}  of  subsets of  XX  is  said  to be  almost  compactly  amenable  if  subsets  U+XU_{\hskip 0.70004pt+}\hskip 1.99997pt\subset\hskip 1.99997ptX  with  the same properties  as in  the definition of  compactly  amenable families are given  for  every subset  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   except ,  perhaps,   of  a single exceptional  set  Ue𝒰U_{\hskip 0.35002pte}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   A covering  𝒰\mathcal{U}  is  said  to be  almost  compactly  amenable  if  it  is  almost  compactly  amenable as a  family  and elements of  𝒰\mathcal{U}^{\hskip 0.70004pt\cap}  are path connected,   except,   perhaps,   the set  UeU_{\hskip 0.35002pte}.   Clearly,   an almost  compactly  amenable covering  is  almost  weakly l1l_{\hskip 0.70004pt1}-acyclic.

4.5. Theorem.   Suppose  that  𝒰\mathcal{U} is  a star  finite proper covering  and  𝒰\mathcal{U} is  countable and  almost  compactly  amenable.   If  hHcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}},   then  h<\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\infty.

Proof.   In view of  the remarks preceding  the  theorem,   this follows  from  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains.    \blacksquare

Families compactly  amenable  in  the sense of  Gromov.   Gromov’s  definitions of  amenable subsets and  coverings are slightly  different.   Let  us  say  that  ZZ  is  amenable  in  the sense of  Gromov  in  YY  if  every  path connected component  of  ZZ  is  amenable in  YY  in our sense.

A family  𝒰\mathcal{U}  is  compactly  amenable  in  the sense of  Gromov  if  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  a subset  U+XU_{\hskip 0.70004pt+}\hskip 1.99997pt\subset\hskip 1.99997ptX  is  given,   such  that  UU+U\hskip 1.99997pt\subset\hskip 1.99997ptU_{\hskip 0.70004pt+},   the set  UU  is  amenable in  the sense of  Gromov  in  U+U_{\hskip 0.70004pt+},   and  the family  of  subsets  U+U_{\hskip 0.70004pt+}  is  compactly  finite.

A  family  𝒰\mathcal{U}  is  almost  compactly  amenable  in  the sense of  Gromov  if  subsets  U+XU_{\hskip 0.70004pt+}\hskip 1.99997pt\subset\hskip 1.99997ptX  with  the same properties  as in  the definition of  compactly  amenable families  in  the sense of  Gromov are given  for  every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   except ,  perhaps,   of  finitely  many exceptional  sets.   Gromov  [Gro]  uses  the  term  sequence  “amenable”  at  infinity  for  a  slightly  different  notion.

The main difference of  Gromov’s  version of  these notions  is  the  lack of  any  assumptions of  path connectedness.   Still,   a  large part  of  our  theory  survives in  this context.

Let  us  relax  the assumption of  ee_{\hskip 0.70004pt\bullet}-acyclicity  of  the covering  𝒰\mathcal{U}  in  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  by  the assumption  that  the homology  groups of  complexes  e(Z)e_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 1.49994pt)  with  Z𝒰Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}^{\hskip 0.70004pt\cap}  vanish  in dimensions  >0>\hskip 1.99997pt0.   Then,   in order  to keep  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains,   we need  to replace  the complex  Cinf(N)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt)  by  the cokernel  of  the horizontal  boundary  operator

d1:c(N,e1)c(N,e0).\quad d_{\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptc_{\hskip 1.04996pt\bullet}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt1}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptc_{\hskip 1.04996pt\bullet}\hskip 0.50003pt(\hskip 1.49994ptN\hskip 0.50003pt,\hskip 3.00003pte_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 3.00003pt.

We will  denote  this cokernel  by  CC_{\hskip 0.70004pt\bullet},   and  denote by  HH_{\hskip 0.70004pt*}  its homology  groups.   These homology  groups play  now  the role of  Hinf(N)H_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{inf}}\hskip 1.00006pt(\hskip 1.49994ptN\hskip 1.49994pt).   With  these changes  the arguments of  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  still  work and  show  that  the comparison  homomorphism

φ:Hplf(X,𝒰)H~plf(X,𝒰)\quad\varphi_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptp}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\widetilde{H}_{\hskip 0.70004ptp}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.00006pt(\hskip 1.99997ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)

factors  through a canonical  map  Hlf(X,𝒰)HH_{\hskip 0.70004pt*}^{\hskip 0.70004pt\operatorname{l{\hskip 0.17496pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\mathcal{U}\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH_{\hskip 0.70004pt*}.   Clearly,  Cp=0C_{\hskip 0.70004ptp}\hskip 3.99994pt=\hskip 3.99994pt0  if  p>dimNp\hskip 1.99997pt>\hskip 1.99997pt\dim\hskip 1.49994ptN.   Therefore  Hp=0H_{\hskip 0.35002ptp}\hskip 3.99994pt=\hskip 3.99994pt0  for  p>dimNp\hskip 1.99997pt>\hskip 1.99997pt\dim\hskip 1.49994ptN.   It  follows  that  φ\varphi_{\hskip 0.70004pt*}  is  equal  to 0  for  p>dimNp\hskip 1.99997pt>\hskip 1.99997pt\dim\hskip 1.49994ptN.

Now  for a homology  class  hHpcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004ptp}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  we can  require  that  p>dimNp\hskip 1.99997pt>\hskip 1.99997pt\dim\hskip 1.49994ptN  instead of  requiring  that  hh  belongs  to  the kernel  of  l𝒰l_{\hskip 0.70004pt\mathcal{U}}.

4.6. Theorem.   Let  𝒰\mathcal{U} is  a star  finite proper covering  which  is  countable and  compactly  amenable in  the sense of  Gromov.   If  hHpcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004ptp}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  and  p>dimNp\hskip 1.99997pt>\hskip 1.99997pt\dim\hskip 1.49994ptN,   then  h=0\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0.    \blacksquare

4.7. Theorem.   Let  𝒰\mathcal{U} is  a star  finite proper covering  which  is  countable and  almost  compactly  amenable in  the sense of  Gromov.   If  hHpcf(X)h\hskip 1.99997pt\in\hskip 3.00003ptH_{\hskip 0.70004ptp}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)  and  p>dimNp\hskip 1.99997pt>\hskip 1.99997pt\dim\hskip 1.49994ptN,   then  h<\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\infty.

Proof.   In  this situation only  one additional  step  is  needed.   Namely,   one needs  to replace exceptional  sets by  their union.    \blacksquare

5. Removing  weakly  l1l_{\hskip 1.00806pt1}-acyclic  subspaces

The restriction  homomorphisms.   Let  XX  be a  topological  space,   and  let  YXY\hskip 1.99997pt\subset\hskip 1.99997ptX  be a closed subset.   Let  us  construct  some chain  maps

rY:Ccf(X)Ccf(XY).\quad r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.99997pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)\hskip 3.00003pt.

Let  σ:ΔnX\sigma\hskip 1.00006pt\colon\hskip 1.00006pt\Delta^{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  be a singular nn-simplex.   If  σ(Δn)Y\sigma\hskip 1.00006pt(\hskip 1.00006pt\Delta^{n}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptY,   then  rY(σ)=0r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0.   Otherwise σ1(XY)\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)  is  a non-empty  open subset  of  Δn\Delta^{n}.   Let  us  triangulate  this subset  by  some geometric  (rectilinear)  simplices and  linearly  order  the vertices of  this  triangulation.   Then every  nn-dimensional  simplex α\alpha of  the  triangulation defines an affine singular simplex  α\alpha^{\prime}  in  Δn\Delta^{n}  and a singular nn-simplex  σα:ΔnXY\sigma\hskip 1.00006pt\circ\hskip 1.49994pt\alpha^{\prime}\hskip 1.00006pt\colon\hskip 1.00006pt\Delta^{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY.   Let  rY(σ)r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.00006pt)  be  the sum of  all  these singular simplices  σα\sigma\hskip 1.00006pt\circ\hskip 1.49994pt\alpha^{\prime}.   The chain  rY(σ)r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.49994pt\sigma\hskip 1.00006pt)  is  compactly  finite because a compact  subset  of  σ1(XY)\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)  intersects only  a finite number of  simplices of  the  triangulation.   The map  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  extends  by  linearity  to  Ccf(X)C_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  and  maps compactly  finite chains in  XX  to compactly  finite chains in  XYX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY.

In  general,   such a map  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  does not  commute with  the boundary  operators,   i.e.  is  not  a chain  map.   In order  to ensure  that  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  is  a chain  map one needs to construct  the above  triangulations recursively,   starting  with  the  tautological  triangulations for 0-simplices.   If  triangulations are already  constructed  for singular  mm-simplices with  m<nm\hskip 1.99997pt<\hskip 1.99997ptn  and σ\sigma  is  a singular nn-simplex,   then  Δnσ1(XY)\partial\hskip 1.00006pt\Delta^{n}\hskip 1.00006pt\cap\hskip 1.49994pt\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)  is  already  triangulated and  one can extend  this  triangulation  to  a  triangulation of  σ1(XY)\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt).   By  continuing  in  this way  we will  get  a map  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  commuting  with  the boundary  operators.

The resulting  map rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY} depends on  the choice of  these  triangulations.   But  different  choices  led  to chain-homotopic chain  maps.   Given  two choices of  triangulations,   a chain  homotopy  between  the corresponding  maps  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  can  be constructed similarly  to  the maps  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  themselves.   Namely,   for every singular nn-simplex σ\sigma  the  two  triangulations of  σ1(XY)\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)  can  be considered as a  triangulation of  σ1(XY)×{0,1}\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)\hskip 1.00006pt\times\hskip 1.00006pt\{\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt\},   and one needs  to extend  this  triangulation  to  σ1(XY)×[0,1]\sigma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt].   If  these  extensions are constructed  recursively,   then  they  will  define a chain  homotopy  between  two maps  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}.   Therefore  the map

rY:Hcf(X)Hcf(XY).\quad r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY\hskip 1.04996pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt)\hskip 3.00003pt.

induced  by  rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  does not  depend on  the choice of  triangulations.   We will  assume  that  a choice of  triangulations  is  fixed and rYr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}  is  the corresponding  map.

5.1. Lemma.   Let  AA  be a  topological  space and  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   Suppose  that  Hnl1(A)=0H^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.   Then  there exists a constant  KK  with  the following  property.   If  zz  is  an l1l_{\hskip 0.70004pt1}-cycle in  AA,   then  z=uz\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptu  for some l1l_{\hskip 0.70004pt1}-chain uu such  that  uKz\|\hskip 1.99997ptu\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997ptK\hskip 1.00006pt\|\hskip 1.99997ptz\hskip 1.99997pt\|.   

Proof.   This  observation  is  due  to  Matsumoto  and  Morita  [MMMM].   Let  us  consider  the boundary  operator  :Cn+1l1(A)Cnl1(A)\partial\hskip 1.00006pt\colon\hskip 1.00006ptC^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt).   By  the assumption,   its  image  is  the subspace  Znl1(A)Z^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)  of  cycles.   Since  the  latter  is  defined as  the kernel  of  a bounded operator,   it  is  closed and  hence  is  a  Banach  space.   The kernel  of  \partial  is  the subspace of  cycles Zn+1l1(A)Z^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt).   Therefore  \partial  induces a  linear  isomorphism

:Cn+1l1(A)/Zn+1l1(A)Znl1(A).\quad\partial\hskip 0.50003pt^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptC^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\left/\hskip 1.00006ptZ^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\right.\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptZ^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt.

Since  \partial\hskip 0.50003pt^{\prime}  is  bounded,   the open  mapping  theorem  implies  that  its inverse  is  bounded.   Let  KK\hskip 0.50003pt^{\prime}  be  the norm of  the inverse.   Then  for every  zZnl1(A)z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)  there exists an element  uu^{\prime}  of  the above quotient  such  that  z=uz\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 0.50003pt^{\prime}\hskip 0.50003ptu^{\prime}  and  the norm of  uu^{\prime}  is  Kz\leqslant\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\|\hskip 1.99997ptz\hskip 1.99997pt\|.   By  the definition of  the norm on a quotient  of  a  Banach  space  by  a closed subspace,   for every  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  there  is  a representative  uu  of  uu^{\prime}  such  that  uKz+ε\|\hskip 1.99997ptu\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\|\hskip 1.99997ptz\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon.   If  z>0\|\hskip 1.99997ptz\hskip 1.99997pt\|\hskip 1.99997pt>\hskip 1.99997pt0,   we can  take  ε=z\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997ptz\hskip 1.99997pt\|.   If  z=0\|\hskip 1.99997ptz\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt0,   then  z=0z\hskip 3.99994pt=\hskip 3.99994pt0  and  u=0u\hskip 3.99994pt=\hskip 3.99994pt0  is  a representative of  uu^{\prime}.   In  both cases  u(K+1)z\|\hskip 1.99997ptu\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt(\hskip 1.49994ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\|\hskip 1.99997ptz\hskip 1.99997pt\|.   Since  u=u=z\partial\hskip 0.50003ptu\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 0.50003pt^{\prime}\hskip 1.00006ptu^{\prime}\hskip 3.99994pt=\hskip 3.99994ptz,   we can  take  K=K+1K\hskip 3.99994pt=\hskip 3.99994ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt1.    \blacksquare

5.2. Lemma.   Let  AA  be a  topological  space and  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   Suppose  that  

Hnl1(A)=Hn1l1(A)=0.\quad H^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptH^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.

Then  for every  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  there exists  δ>0\delta\hskip 1.99997pt>\hskip 1.99997pt0  with  the following  property.    If  aa  is  a finite nn-chain  in  AA  and  a<δ\|\hskip 1.99997pt\partial\hskip 1.00006pta\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\delta,   then  there exist  a  finite chain  aa^{\prime}  such  that  aa=ba^{\prime}\hskip 1.99997pt-\hskip 1.99997pta\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 0.50003ptb  for some finite chain  bb  and  a<ε\|\hskip 1.99997pta^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon.   

Proof.   Let  KK  be  the constant  having  the property  of  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  with  n1n\hskip 1.99997pt-\hskip 1.99997pt1  in  the role of  nn.   The boundary  a\partial\hskip 1.00006pta  is  a finite cycle and  hence an l1l_{\hskip 0.70004pt1}-cycle.   Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  implies  that  a=d\partial\hskip 1.00006pta\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptd  for  some l1l_{\hskip 0.70004pt1}-chain  dd  such  that  dKa\|\hskip 1.99997ptd\hskip 0.50003pt\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997ptK\hskip 1.00006pt\|\hskip 1.99997pt\partial\hskip 1.00006pta\hskip 1.99997pt\|.   Clearly,  dad\hskip 1.99997pt-\hskip 1.99997pta  is  an l1l_{\hskip 0.70004pt1}-cycle of  dimension  nn.   By  the assumption  dad\hskip 1.99997pt-\hskip 1.99997pta  is l1l_{\hskip 0.70004pt1}-homologous  to 0,   i.e.  da=ed\hskip 1.99997pt-\hskip 1.99997pta\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006pte  for some l1l_{\hskip 0.70004pt1}-chain  ee.   Let  δ>0\delta\hskip 1.99997pt>\hskip 1.99997pt0  be such  that  Kδ<εK\hskip 1.00006pt\delta\hskip 1.99997pt<\hskip 1.99997pt\varepsilon,   and  let  us  choose  δ>0\delta\hskip 0.50003pt^{\prime}\hskip 1.99997pt>\hskip 1.99997pt0  such  that

Kδ+(n+2)δ<ε.\quad K\hskip 1.00006pt\delta\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt)\hskip 1.00006pt\delta\hskip 0.50003pt^{\prime}\hskip 3.99994pt<\hskip 3.99994pt\varepsilon\hskip 3.00003pt.

Let  us  represent  ee  as a  sum  e=b+be\hskip 3.99994pt=\hskip 3.99994ptb\hskip 3.00003pt+\hskip 1.99997ptb\hskip 0.50003pt^{\prime},   where  bb  is  a  finite  chain  and  bδ\|\hskip 1.99997ptb\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 3.99994pt\delta\hskip 0.50003pt^{\prime},   and  let  a=a+ba^{\prime}\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 0.50003ptb.   Then  aa=ba^{\prime}\hskip 1.99997pt-\hskip 1.99997pta\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 0.50003ptb,  aa^{\prime}  is  a  finite chain,   and  a=dba^{\prime}\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 0.50003ptb\hskip 0.50003pt^{\prime}.   Hence

ad+bKa+(n+2)b<ε.\quad\|\hskip 1.99997pta^{\prime}\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997ptd\hskip 0.50003pt\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\|\hskip 1.99997pt\partial\hskip 0.50003ptb\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994ptK\hskip 1.00006pt\|\hskip 1.99997pt\partial\hskip 1.00006pta\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt)\hskip 1.00006pt\|\hskip 1.99997ptb\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\varepsilon\hskip 3.00003pt.

The  lemma  follows.    \blacksquare

5.3. Lemma.   Let  CC  be a subspace of  a  topological  space  DD  and  let  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   Suppose  that  CC  is  path connected  and  weakly l1l_{\hskip 0.70004pt1}-acyclic  in  DD.   For every  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  there exists  δ>0\delta\hskip 1.99997pt>\hskip 1.99997pt0  with  the following  property.   If  cc  is  a finite chain  in  CC  and  c<δ\|\hskip 1.99997pt\partial\hskip 1.00006ptc\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\delta,   then  there exist  a  finite chain  cc^{\prime}  in  DD  such  that  cc=bc^{\prime}\hskip 1.99997pt-\hskip 1.99997ptc\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptb  for some finite chain  bb  and  c<ε\|\hskip 1.99997ptc^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon.   

Proof.   Let  CC\hskip 0.50003pt^{\prime}  be  the result  of  attaching discs  to  CC  along  a set  of  loops such  that  their  homotopy  classes generate  the kernel  of  the inclusion  homomorphism

π1(C,x)π1(D,x),\quad\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptC\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptD\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.49994pt)\hskip 3.00003pt,

where  xAx\hskip 1.99997pt\in\hskip 1.99997ptA.   Then  π1(C,x)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptC\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.49994pt)  is  amenable and  hence  the bounded cohomology  H^(C)\widehat{H}^{\hskip 1.04996pt\bullet}\hskip 0.50003pt(\hskip 1.49994ptC\hskip 0.50003pt^{\prime}\hskip 1.49994pt)  are zero.   By  a well  known  theorem of  Matsumoto  and  Morita  [MMMM]  (see also  [I3I_{3}]  for a  proof )  this implies  that  Hl1(C)=0H^{\hskip 0.70004ptl_{\hskip 0.50003pt1}}_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.   By  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  there exist  a chain aa  in  CC\hskip 0.50003pt^{\prime}  such  that  aa=za^{\prime}\hskip 1.99997pt-\hskip 1.99997pta\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptz  for  some finite chain zz  in  CC\hskip 0.50003pt^{\prime}  and  a<ε\|\hskip 1.99997pta^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon.   It  remains  to  turn  a,za^{\prime}\hskip 0.50003pt,\hskip 3.00003ptz  into chains  in  DD  while keeping  its  properties.   Let  D=CDD\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994ptC\hskip 0.50003pt^{\prime}\hskip 1.00006pt\cup\hskip 1.00006ptD.   Since  the  loops used  to attach discs  to CC are contractible in  DD,   there exists a  retraction  r:DDr\hskip 1.00006pt\colon\hskip 1.00006ptD\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptD.   Let  c=r(a)c^{\prime}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pta\hskip 1.49994pt).   Then  ca<ε\|\hskip 1.99997ptc^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt\|\hskip 1.99997pta\hskip 0.50003pt\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon,   the chain  b=r(z)b\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)  is  finite,   and

cc=r(a)r(c)=r(ac)=r(z)=r(z).\quad c^{\prime}\hskip 1.99997pt-\hskip 1.99997ptc\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pta\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pta\hskip 1.99997pt-\hskip 1.99997ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\partial\hskip 1.00006ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptr_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 3.00003pt.

The  lemma  follows.    \blacksquare

Supports  and  parts  of  singular  chains.   For a singular simplex  σ:ΔnX\sigma\hskip 1.00006pt\colon\hskip 1.00006pt\Delta^{n}\hskip 1.49994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  let  σ¯=σ(Δn)\overline{\sigma}\hskip 3.99994pt=\hskip 3.99994pt\sigma\hskip 1.00006pt(\hskip 1.49994pt\Delta^{n}\hskip 1.49994pt).   The  support  supp(c)\mathop{\mbox{{supp}}}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  of  the singular chain  (1.1)  is  defined as  the union

suppc(c)=aσ0σ¯.\quad\mathop{\mbox{{supp}}}\hskip 1.00006ptc\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigcup\nolimits_{\displaystyle\hskip 1.99997pta_{\hskip 0.70004pt\sigma}\hskip 1.99997pt\neq\hskip 1.99997pt0}\hskip 3.00003pt\overline{\sigma}\hskip 3.00003pt.

For a subset  YXY\hskip 1.99997pt\subset\hskip 1.99997ptX  the  YY-part  c|Yc\hskip 1.49994pt|\hskip 1.00006ptY  of  the singular chain  (1.1)  is  defined as  the chain

c|Y=σ¯Yaσσ.\quad c\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pt\overline{\sigma}\hskip 1.39998pt\cap\hskip 1.39998ptY\hskip 1.39998pt\neq\hskip 1.39998pt\varnothing}\hskip 3.00003pta_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\sigma\hskip 3.00003pt.

If  cc  is  compactly  finite,   then  c|Yc\hskip 1.49994pt|\hskip 1.49994ptY  is  also compactly  finite.   The  intersection  cYc\hskip 1.00006pt\cap\hskip 1.00006ptY  is

cY=σ¯Yaσσ.\quad c\hskip 1.00006pt\cap\hskip 1.00006ptY\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pt\overline{\sigma}\hskip 1.39998pt\subset\hskip 1.39998ptY}\hskip 3.00003pta_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\sigma\hskip 3.00003pt.

Clearly,   c=c|Y+c(XY)c\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.99997pt+\hskip 1.99997ptc\hskip 1.00006pt\cap\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt).

Surgery  of  chains.   Recall  that  YY  is  a closed subset  of  XX.   Suppose  that  ZZ  is  a compact  component  of  YY  and  that  CC  be a compact  Hausdorff  neighborhood  of  ZZ  disjoint  from  YZY\hskip 1.99997pt\smallsetminus\hskip 1.99997ptZ.   Suppose  that  γ\gamma  is  a compactly  finite cycle  in  XYX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY.   We would  like  remove  from  γ\gamma  some part  contained  in  CC  and  replace  it  by  a finite chain  in  XX  without  noticeably  increasing  the norm.

More precisely,   given  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0,   we would  like  to find  an open set  UCU\hskip 1.99997pt\subset\hskip 1.99997ptC  and a finite chain  ψ\psi  in  XX  such  that  (γU)=ψ\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006pt\psi  and  ψ<ε\|\hskip 1.99997pt\psi\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon.   Since  γ=γ|XU+γU\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt|\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptU\hskip 1.99997pt+\hskip 1.99997pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU  is  a cycle,   the chain  γ|XU+ψ\gamma\hskip 1.49994pt|\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptU\hskip 1.99997pt+\hskip 1.99997pt\psi  is  also a cycle and  its  norm  <γ+ε<\hskip 1.99997pt\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon.   If  the part  γU\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU  removed  from  γ\gamma  and  the chain  ψ\psi  depend only  on  γ|C\gamma\hskip 1.49994pt|\hskip 1.49994ptC,   this operation could  be performed  for several  components  ZZ  simultaneously.

In our applications all  components of  YY  will  be compact  and  γ\gamma  will  represent  the homology  class  rY(h)r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY\hskip 1.04996pt*}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)  for some  hHcf(X)h\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt\bullet}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   In  this case we would  like  to get  a representative of  hh  after  performing  this operation for all  components of  YY  simultaneously.

5.4. Lemma.   Let  δ>0\delta\hskip 3.00003pt>\hskip 3.00003pt0.   Then  for  every  compactly  finite cycle  γ\gamma  in  XYX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY  such  that  γ<\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty  there  exists  an open  neighborhood  UU of  ZZ  contained  in  CC  and  such  that

((γU)<δ.\quad\|\hskip 1.99997pt(\hskip 1.49994pt\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\hskip 1.99997pt\delta\hskip 3.00003pt.

Proof.   Since  γ<\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty,   for every  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  one can  write γ\gamma as a sum  γ=γ+γ′′\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\gamma\hskip 0.50003pt^{\prime\prime}  of  a  finite chain  γ\gamma\hskip 0.50003pt^{\prime}  and a chain  γ′′\gamma\hskip 0.50003pt^{\prime\prime}  such  that  γ′′<ε\|\hskip 1.99997pt\gamma\hskip 0.50003pt^{\prime\prime}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon.   Since  γ\gamma\hskip 0.50003pt^{\prime}  is  finite,   the support  suppγ\mathop{\mbox{{supp}}}\hskip 1.00006pt\gamma\hskip 0.50003pt^{\prime}  is  compact  and  hence  the intersection  CsuppγC\hskip 1.00006pt\cap\hskip 1.00006pt\mathop{\mbox{{supp}}}\hskip 1.00006pt\gamma\hskip 0.50003pt^{\prime}  is  also compact.   Since  CC  is  Hausdorff ,   this  intersection  is  closed  and  its complement  UU  in  CC  is  open.   Clearly,   every  simplex  contained  in  UU  and entering  γ\gamma  with a non-zero coefficient  enters γ′′\gamma\hskip 0.50003pt^{\prime\prime} with  the same coefficient.   It  follows  that  γUγ′′<ε\|\hskip 1.99997pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt\|\hskip 1.99997pt\gamma\hskip 0.50003pt^{\prime\prime}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\varepsilon.   Let  nn  be  the dimension of  γ\gamma and  let  us  take  ε=δ/(n+1)\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\delta/(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt).   Then  ((γU)(n+1)γU<δ\|\hskip 1.99997pt(\hskip 1.49994pt\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt\|\hskip 1.99997pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\delta.    \blacksquare

Families of  compact  subspaces.   Now  we need  to impose further  restrictions on  YY.   Suppose  that  YY  is  presented as  the union of  a  family  𝒵\mathcal{Z}  of  pair-wise disjoint  compact  subspaces of  XX.   Suppose  further  that  for  every  Z𝒵Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}  a compact  neighborhood  CZC_{\hskip 1.04996ptZ}  of  ZZ  is  given,   and  that  the neighborhoods  CZC_{\hskip 1.04996ptZ}  are pair-wise disjoint.   Suppose  that  every  CZC_{\hskip 1.04996ptZ}  is  Hausdorff  and  path connected.   Let  VZV_{\hskip 1.04996ptZ}  be  the interior of  CZC_{\hskip 1.04996ptZ}  and  VV  be  the union of  all  sets  VZV_{\hskip 1.04996ptZ}.

5.5. Lemma.   Let  hHncf(X)h\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  and  let  γ\gamma  be a compactly  finite chain  in  XYX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY  representing  the homology  class  rY(h)r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt).   Let  XXYX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY  be a  closed  set  containing   XVX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptV.   Then  there exists  a compactly  finite chain  ss  in  VV  such  that  γ|X+s\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pts  is  a cycle representing  hh.   

Proof.   Let  cCncf(X)c\hskip 1.99997pt\in\hskip 1.99997ptC_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  be a cycle representing  hh.   Then

(5.1) γ=rY(c)+β\quad\gamma\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 1.00006pt\beta

for some chain  βCn+1cf(XY)\beta\hskip 1.99997pt\in\hskip 1.99997ptC_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY\hskip 1.49994pt).   Let

γ=γ|X,r=rY(c)|X,andβ=β|X.\quad\gamma\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt,\quad\ r\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt,\quad\ \mbox{and}\quad\ \beta\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\beta\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt.

If  τ\tau  is  a  face of  some simplex σ\sigma entering  β\beta with non-zero coefficient  and  τX\tau\hskip 1.00006pt\cap\hskip 1.00006ptX\hskip 0.50003pt^{\prime}\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing,   then also  σX\sigma\hskip 1.00006pt\cap\hskip 1.00006ptX\hskip 0.50003pt^{\prime}\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing.   Therefore  (5.1)  implies  that

γ=r+(β)|X.\quad\gamma\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994ptr\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994pt\partial\hskip 1.49994pt\beta\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt.

Let  FF  be  the boundary  of  XX\hskip 0.50003pt^{\prime}.

The difference

d=β(β)|X\quad d\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.49994pt\beta\hskip 0.50003pt^{\prime}\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\partial\hskip 1.49994pt\beta\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}

is  a  sum of  faces τ\tau of  simplices σ\sigma such  that  τX=\tau\hskip 1.00006pt\cap\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\varnothing  and  σX\sigma\hskip 1.00006pt\cap\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing.   This  implies  that  σF\sigma\hskip 1.00006pt\cap\hskip 1.49994ptF\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing  and  hence  σCZ\sigma\hskip 1.00006pt\cap\hskip 1.49994ptC_{\hskip 1.04996ptZ}\hskip 3.99994pt\neq\hskip 3.99994pt\varnothing  for some  Z𝒵Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}.   Together  with  τX=\tau\hskip 1.00006pt\cap\hskip 1.49994ptX\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\varnothing  this implies  that  τ\tau  is  a simplex  in  VZCZV_{\hskip 1.04996ptZ}\hskip 1.99997pt\subset\hskip 1.99997ptC_{\hskip 1.04996ptZ}.   Since  β\beta  is  a compactly  finite chain,   it  follows  that  dCZd\hskip 1.00006pt\cap\hskip 1.00006ptC_{\hskip 1.04996ptZ}  is  a  finite chain  for every  ZZ  and  dd  is  a compactly  finite chain  in  VV.   Clearly,

γ+d=r+β.\quad\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997ptd\hskip 3.99994pt=\hskip 3.99994ptr\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 1.49994pt\beta\hskip 0.50003pt^{\prime}\hskip 3.00003pt.

The construction of  rY(c)r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)  shows  that  there exists a  chain ss\hskip 0.50003pt^{\prime} in  VV  such  that  r+sr\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pts\hskip 0.50003pt^{\prime}  is  a cycle subdividing  cc  and  s|VZs\hskip 0.50003pt^{\prime}\hskip 1.49994pt|\hskip 1.99997ptV_{\hskip 1.04996ptZ}  is  a  finite chain  for every  Z𝒵Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}.   It  follows  that  r+sr\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pts\hskip 0.50003pt^{\prime}  is  a cycle representing  hh  and  ss\hskip 0.50003pt^{\prime}  is  a compactly  finite chain.   Since  dd  is  also compactly  finite,   the chain  s=d+ss\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.99997pt+\hskip 1.99997pts\hskip 0.50003pt^{\prime}  is  compactly  finite.   Clearly,

γ+s=γ+d+s=r+s+β\quad\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pts\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997ptd\hskip 1.99997pt+\hskip 1.99997pts\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994ptr\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pts\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\partial\hskip 1.49994pt\beta\hskip 0.50003pt^{\prime}\hskip 3.00003pt

and  hence  γ+s\gamma\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pts  is  a cycle representing  hh.   The  lemma  follows.    \blacksquare

5.6. Theorem.   Suppose  that  𝒵\mathcal{Z}  is  countable and  for  every  Z𝒵Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z} a set  Z+Z_{\hskip 1.04996pt+}  is  given,   such  that  CZC_{\hskip 1.04996ptZ}  is  weakly l1l_{\hskip 0.70004pt1}-acyclic  in  Z+Z_{\hskip 1.04996pt+}.   If  the family  of  sets  Z+Z_{\hskip 1.04996pt+} is  compactly  finite,   then

rY(h)h\quad\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt\geqslant\hskip 3.99994pt\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.00003pt

for every  homology  class  hHncf(X)h\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004ptn}^{\hskip 0.70004pt\operatorname{c{\hskip 0.35002pt}f}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   

Proof.   If  rY(h)=\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\infty,   there  is  nothing  to prove.   Suppose  that  rY(h)<\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 1.99997pt\infty.   Let  us  fix an arbitrary ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0.   Then  there exists a compactly  finite cycle  γ\gamma  in  XYX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY  such  that

γ<rY(h)+ε\quad\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon

and  γ\gamma  represents  the homology  class  rY(h)r_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt).   Since  𝒵\mathcal{Z}  is  countable,

ε=Z𝒵εZ\quad\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptZ}

for some numbers  εZ>0\varepsilon_{\hskip 0.70004ptZ}\hskip 1.99997pt>\hskip 1.99997pt0.   For every  Z𝒵Z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}  let  δZ\delta_{\hskip 1.04996ptZ}  be some number  >0>\hskip 1.99997pt0  such  that  the conclusion of  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  holds  for

CZ,Z+,εZ,andδZ\quad C_{\hskip 1.04996ptZ}\hskip 1.00006pt,\quad Z_{\hskip 1.04996pt+}\hskip 1.00006pt,\quad\varepsilon_{\hskip 0.70004ptZ}\hskip 1.00006pt,\quad\mbox{and}\quad\delta_{\hskip 1.04996ptZ}

in  the roles  of  C,D,εC\hskip 0.50003pt,\hskip 3.99994pt\hskip 1.00006ptD\hskip 0.50003pt,\hskip 3.99994pt\hskip 1.00006pt\varepsilon  and  δ\delta  respectively.

By  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  for  every  ZZ  there exists an open  neighborhood  UZU_{\hskip 0.70004ptZ}  of  ZZ  in  CZC_{\hskip 1.04996ptZ}  such  that

(5.2) ((γUZ)<δZ.\quad\|\hskip 1.99997pt(\hskip 1.49994pt\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU_{\hskip 1.04996ptZ}\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\hskip 1.99997pt\delta_{\hskip 1.04996ptZ}\hskip 3.00003pt.

Let  UU  be  the union of  the neighborhoods  UZU_{\hskip 1.04996ptZ}  and  let  X=XUX\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptU.   By  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  there exists  a compactly  finite chain  ss  in  VV  such  that  γ|X+s\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pts  is  a cycle representing  hh.   Since  VZ,UZCZV_{\hskip 0.70004ptZ}\hskip 1.00006pt,\hskip 3.00003ptU_{\hskip 1.04996ptZ}\hskip 1.99997pt\subset\hskip 1.99997ptC_{\hskip 1.04996ptZ}  and  the sets  CZC_{\hskip 1.04996ptZ}  are pair-wise disjoint,

γU=Z𝒵γUZandsV=Z𝒵sVZ.\quad\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU_{\hskip 1.04996ptZ}\quad\ \mbox{and}\quad\ s\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997pts\hskip 1.00006pt\cap\hskip 1.00006ptV_{\hskip 1.04996ptZ}\hskip 3.00003pt.

Since  γ|X+s\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pts  and  γ=γ|X+γU\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU  are cycles,

(γU)=(γ|X)=(sV)\quad\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.49994pt(\hskip 1.49994pts\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 1.49994pt)

and  hence  (γUZ)=(sVZ)\partial\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.00006pt\cap\hskip 1.00006ptU_{\hskip 1.04996ptZ}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.49994pt(\hskip 1.49994pts\hskip 1.00006pt\cap\hskip 1.00006ptV_{\hskip 1.04996ptZ}\hskip 1.49994pt)  for  every  ZZ.   In  view of  the choice of  δZ\delta_{\hskip 1.04996ptZ},   the inequality  (5.2)  together  with  Lemma  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  imply  that  for  every  ZZ  there exists a  finite chain  ψZ\psi_{\hskip 1.04996ptZ}  in  Z+Z_{\hskip 1.04996pt+}  such  that  ψZ(sVZ)\psi_{\hskip 1.04996ptZ}\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pts\hskip 1.00006pt\cap\hskip 1.00006ptV_{\hskip 1.04996ptZ}\hskip 1.49994pt)  is  the boundary  of  a  finite chain  bZb_{\hskip 1.04996ptZ}  in  Z+Z_{\hskip 1.04996pt+}  and  ψZ<εZ\|\hskip 1.99997pt\psi_{\hskip 1.04996ptZ}\hskip 1.99997pt\|\hskip 1.99997pt<\hskip 3.00003pt\varepsilon_{\hskip 1.04996ptZ}.   Let

ψ=Z𝒵ψZandb=Z𝒵bZ.\quad\psi\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997pt\psi_{\hskip 1.04996ptZ}\quad\ \mbox{and}\quad\ b\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997ptb_{\hskip 1.04996ptZ}\hskip 3.00003pt.

Then  ψs=b\psi\hskip 1.99997pt-\hskip 1.99997pts\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptb  and  hence

γ|X+ψ=γ|X+s+(ψs)=γ|X+s+b.\quad\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pt\psi\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pts\hskip 3.00003pt+\hskip 3.00003pt(\hskip 1.49994pt\psi\hskip 1.99997pt-\hskip 1.99997pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pts\hskip 3.00003pt+\hskip 3.00003pt\partial\hskip 1.00006ptb\hskip 3.00003pt.

Since  the family  of  the sets  Z+Z_{\hskip 1.04996pt+}  is  compactly  finite,  ψ\psi  and  bb  are compactly  finite chains.   It  follows  that  γ|X+ψ\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 3.00003pt+\hskip 3.00003pt\psi  is  a compactly  finite cycle representing  hh.   At  the same  time

ψZ𝒵ψZZ𝒵εZ=ε\quad\|\hskip 1.99997pt\psi\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 1.00006pt\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997pt\|\hskip 1.99997pt\psi_{\hskip 1.04996ptZ}\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 1.00006pt\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998ptZ\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{Z}}\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptZ}\hskip 3.99994pt=\hskip 3.99994pt\varepsilon

and  hence

γ|X+ψγ|X+ψ\quad\|\hskip 1.99997pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\psi\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\|\hskip 1.99997pt\psi\hskip 1.99997pt\|
γ|X+εγ+ε\quad\phantom{\|\hskip 1.99997pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\psi\hskip 1.99997pt\|\hskip 3.99994pt}\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon
<rY(h)+ε+ε=rY(h)+2ε.\quad\phantom{\|\hskip 1.99997pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt+\hskip 1.99997pt\psi\hskip 1.99997pt\|\hskip 3.99994pt<\hskip 3.99994pt\|\hskip 1.99997pt\gamma\hskip 1.49994pt|\hskip 1.99997ptX\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 3.99994pt}<\hskip 3.99994pt\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt\varepsilon\hskip 3.00003pt.

Since  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  is  arbitrary,   it  follows  that  hrY(h)\|\hskip 1.99997pth\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997ptr_{\hskip 0.70004pt\smallsetminus\hskip 0.70004ptY}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.99997pt\|.    \blacksquare

Gromov’s  Cutting-of  theorem.   In  this  theorem  (see  [Gro],   Theorem  (2)  in  Section  4.2)  Gromov  assumes  that  XX  is  a manifold,  YY  is  the union of  a sequence of  disjoint  compact  submanifolds  YiY_{\hskip 0.35002pti},  i𝐍i\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N},   possibly  with  boundary,   every  YiY_{\hskip 0.35002pti}  is  amenable  in  XX  in  the sense of  Gromov,   and  the family  {Yi}i𝐍\{\hskip 1.49994ptY_{\hskip 0.35002pti}\hskip 1.49994pt\}_{\hskip 1.39998pti\hskip 0.70004pt\in\hskip 0.70004pt\mathbf{N}}  is  almost  compactly  amenable in  the sense of  Gromov  in  XX  (see  Section  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  for  the definitions).   Since a compact  manifold can  have only  finitely  components,   under  these assumptions  the family  of  components of  YY  is  compactly  amenable and  hence  is  compactly l1l_{\hskip 0.70004pt1}-acyclic.   Since components  ZZ  of  YY  are submanifolds,   standard  results imply  the existence of  compact  neighborhoods  CZC_{\hskip 1.04996ptZ}  with  the properties required above.   Therefore  Theorem  Leray  theorems  for  l1l_{\hskip 0.35002pt1}-norms  of  infinite  chains  applies  under  Gromov’s  assumptions.   Its conclusion  is  the same as  Gromov’s  inequality  hh\|\hskip 1.99997pth\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997pth\hskip 1.99997pt\|.

A .  Double  complexes

Double complexes.   In order  to deal  with almost  l1l_{\hskip 0.70004pt1}-acyclic coverings,   we need  a complement  to  the  theorem about  double complexes.   Let  K,K_{\hskip 0.70004pt\bullet\hskip 0.35002pt,\hskip 0.70004pt\bullet}  be a double complex with differentials  d:Kp,qKp,q1d\hskip 1.00006pt\colon\hskip 1.00006ptK_{\hskip 0.70004ptp\hskip 0.35002pt,\hskip 0.70004ptq}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK_{\hskip 0.70004ptp\hskip 0.35002pt,\hskip 0.70004ptq\hskip 0.70004pt-\hskip 0.70004pt1}  and  δ:Kp,qKp1,q\delta\hskip 1.00006pt\colon\hskip 1.00006ptK_{\hskip 0.70004ptp\hskip 0.35002pt,\hskip 0.70004ptq}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK_{\hskip 0.70004ptp\hskip 0.70004pt-\hskip 0.70004pt1\hskip 0.35002pt,\hskip 0.70004ptq}.   Let  TT_{\hskip 0.70004pt\bullet}  be  the  total  complex of  K,K_{\hskip 1.04996pt\bullet\hskip 0.35002pt,\hskip 0.70004pt\bullet},   and  EpE_{\hskip 0.70004ptp}  be the cokernel of  d:Kp,1Kp,0d\hskip 1.00006pt\colon\hskip 1.00006ptK_{\hskip 1.04996ptp\hskip 0.35002pt,\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK_{\hskip 1.04996ptp\hskip 0.35002pt,\hskip 0.70004pt0},   i.e.

Ep=Kp,0/d(Kp,1).\quad E_{\hskip 0.70004ptp}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptK_{\hskip 1.04996ptp\hskip 0.35002pt,\hskip 0.70004pt0}\hskip 1.00006pt\bigl{/}d\hskip 1.00006pt\left(\hskip 1.99997ptK_{\hskip 1.04996ptp\hskip 0.35002pt,\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 3.00003pt.

Recall  that  δ\delta  induces homomorphisms  δE:EpEp1\delta_{\hskip 1.04996ptE}\hskip 1.99997pt\colon\hskip 1.99997ptE_{\hskip 0.70004ptp}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004ptp\hskip 0.70004pt-\hskip 0.70004pt1}  turning  EE_{\hskip 0.70004pt\bullet}  into  a  complex.   Clearly,  EE_{\hskip 0.70004pt\bullet}  is  a  quotient  of  TT_{\hskip 0.70004pt\bullet},   and  K0,K_{\hskip 1.04996pt0\hskip 0.35002pt,\hskip 0.70004pt\bullet}  with  the differential  dd  is  a subcomplex of  TT_{\hskip 0.70004pt\bullet}.

A  . 1. Lemma.   If  the complexes  (Kp,,d)(\hskip 1.99997ptK_{\hskip 0.70004ptp\hskip 0.35002pt,\hskip 0.70004pt\bullet}\hskip 0.50003pt,\hskip 1.99997ptd\hskip 1.99997pt)  with  p>0p\hskip 1.99997pt>\hskip 1.99997pt0  are exact,   then  the  kernel  of  the map  H(T)H(E)H_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptT_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptE_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)  is  contained  in  the image of  the map  H(K0,,d)H(T)H_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptK_{\hskip 1.04996pt0\hskip 0.35002pt,\hskip 0.70004pt\bullet}\hskip 0.50003pt,\hskip 1.99997ptd\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt\bullet}\hskip 1.00006pt(\hskip 1.49994ptT_{\hskip 0.70004pt\bullet}\hskip 1.49994pt).   

Proof.   The  proof  is  completely  similar  to  the proof  of  injectivity  in  the proof  of  Theorem  A.2  in  [I3I_{3}].   We  leave details  to  the reader .    \blacksquare

References

  • [E] S.  Eilenberg,   Singular homology theory,   Annals  of  Mathematics,   V.  45,   No.  3  (1944),   407 – 447.
  • [F M] R.  Frigerio,   M.  Moraschini,   Gromov’s  theory of  multicomplexes  with applications  to bounded cohomology  and simplicial  volume,   2018,   150  pp.   ArXiv : 1808.07307v3.
  • [Gro] M.  Gromov,   Volume and bounded cohomology,   Publicationes  Mathematiques  IHES,   V.  56,  (1982),   pp.  5 – 99.
  • [I1I_{1}] N.V.  Ivanov,   Foundations of the bounded cohomology theory,   Research  in  topology,   5,   Notes  of  LOMI  scientific  seminars,   V.  143  (1985),   pp.  69 – 109.
  • [I2I_{2}] N.V.  Ivanov,   Notes on  bounded cohomology theory,   2017,   95  pp.   
    ArXiv : 1708.05150v2.
  • [I3I_{3}] N.V.  Ivanov,   Leray  theorems  in  bounded cohomology theory,   2020,   58  pp.   
    ArXiv : 2012.08038.
  • [LL] C.  Löh,   Isomorphisms in l1l^{\hskip 0.70004pt1}-homology ,   Münster  Journal  of  Mathematics,   V.  1  (2008),   pp.  237 – 266.
  • [LSLS] C.  Löh,   R.  Sauer,   Bounded cohomology  of  amenable covers via classifying spaces,   L’Enseignement  Mathematique,   V.  66  (2020),   151 – 172.
  • [MMMM] Sh.  Matsumoto,   Sh.  Morita,   Bounded cohomology of certain groups of homeomorphisms,   Proc. of the American Mathematical Society,   V.  94,   No.  3  (1985),   539 – 544.
  • [Sp] E.  Spanier,   Algebraic  topology,   2nd printing,   Springer-Verlag  Berlin  Heidelberg  New York   1989,   xvi,  528  pp.

December 14 ,   2020

https :/​/​nikolaivivanov.com

E-mail :   nikolai.v.ivanov @ icloud.com