This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Law of the logarithm for the maximum interpoint distance constructed by high-dimensional random matrix

Haibin Zhang School of Mathematics, Jilin University, Changchun 130012, China Yong Zhang School of Mathematics, Jilin University, Changchun 130012, China Xue Ding The corresponding address: [email protected] School of Mathematics, Jilin University, Changchun 130012, China
Abstract

Suppose {Xi,k;1ip,1kn}\left\{X_{i,k};1\leq i\leq p,1\leq k\leq n\right\} is an array of i.i.d. real random variables. Let {p=pn;n1}\left\{p=p_{n};n\geq 1\right\} be positive integers. Consider the maximum interpoint distance Mn=max1i<jp𝑿i𝑿j2M_{n}=\max_{1\leq i<j\leq p}\left\|\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right\|_{2} where 𝑿i\boldsymbol{X}_{i} and 𝑿j\boldsymbol{X}_{j} denote the ii-th and jj-th rows of the p×np\times n matrix p,n=(Xi,k)p×n\mathcal{M}_{p,n}=\left(X_{i,k}\right)_{p\times n}, respectively. This paper shows the laws of the logarithm for MnM_{n} under two high-dimensional settings: the polynomial rate and the exponential rate. The proofs rely on the moderation deviation principle of the partial sum of i.i.d. random variables, the Chen–Stein Poisson approximation method and Gaussian approximation.

Keywords Maximum interpoint distance, law of the logarithm, Chen–Stein Poisson approximation, moderation deviation, Gaussian approximation

Mathematics Subject Classification: Primary 60F15; secondary 60B12.

1 Introduction

Consider a nn-dimensional population represented by a random vector 𝑿\boldsymbol{X} with mean 𝝁\boldsymbol{\mu} and covariance matrix 𝚺n=𝑰n\boldsymbol{\Sigma}_{n}=\boldsymbol{I}_{n}, where 𝑰n\boldsymbol{I}_{n} is the n×nn\times n identity matrix. Let p,n=(𝑿1,,𝑿p)=(Xi,k)1ip,1kn\mathcal{M}_{p,n}=\left(\boldsymbol{X}_{1},\dots,\boldsymbol{X}_{p}\right)^{\prime}=\left(X_{i,k}\right)_{1\leq i\leq p,1\leq k\leq n} be a p×np\times n random matrix whose rows are an independent and identically distributed (i.i.d.) random sample of size pp from the population 𝑿\boldsymbol{X}. Write 2\left\|\cdot\right\|_{2} for the Euclidean norm on n\mathbb{R}^{n}. Let

Mn=max1i<jp𝑿i𝑿j2M_{n}=\max_{1\leq i<j\leq p}\left\|\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right\|_{2} (1)

denote the maximum interpoint distance or diameter. It is clear that the resulting value of MnM_{n} will be maximized if we choose two vectors 𝑿i\boldsymbol{X}_{i} and 𝑿j\boldsymbol{X}_{j} with nearly opposing directions and nearly the largest magnitudes, that is, MnM_{n} is mainly obtained by outliers. Therefore, this makes MnM_{n} less useful for goodness of fit tests, but may be appropriate for detecting outliers.

In the past thirty years, several authors mainly studied the limiting distribution of the largest interpoint distance MnM_{n}. For the multidimensional situation, Matthews and Rukhin [15] assumed that 𝑿1,,𝑿p\boldsymbol{X}_{1},\dots,\boldsymbol{X}_{p} are independent standard normal random vectors in n\mathbb{R}^{n} and obtained the asymptotic distribution of MnM_{n}. Henze and Klein [7] generalized the result of Matthews and Rukhin [15] by embedding the multivariate normal distribution into the symmetric Kotz type distribution and corrected some errors. Jammalamadaka and Janson [9] considered a more general spherically symmetric distribution and proved that MnM_{n} with a suitable normalization asymptotically obeys a Gumbel type distribution.

If the distribution of 𝑿\boldsymbol{X} has an unbounded support, Henze and Lao [8] proved that the limiting distribution of MnM_{n} is none of the three types of classical extreme-value distributions (Gumbel, Weibull and Fréchet distributions) when the distribution function FF of |𝑿||\boldsymbol{X}| satisfies 1F(s)=sαL(s)1-F(s)=s^{-\alpha}L(s) as ss\to\infty for some α>0\alpha>0 and some slowly varying function LL. Demichel et al. [4] obtained the asymptotic behavior of MnM_{n} when the random vector 𝑿\boldsymbol{X} in n\mathbb{R}^{n} has an elliptical distribution.

In the bounded case, Appel et al. [2] discovered if 𝑿\boldsymbol{X} has a uniform distribution in a planar set with unique major axis and sub-x\sqrt{x} decay of its boundary at the endpoints, then the limiting distribution of MnM_{n} is a convolution of two independent Weibull distributions. Furthermore, Appel and Russo [1] investigated the case where i.i.d. points are uniformly distributed on the surface of a unit hypersphere in n\mathbb{R}^{n} and derived the limiting distribution of the maximum pairwise distance. Mayer and Molchanov [16] proved that the limiting distribution of MnM_{n} is a Weibull distribution when pp i.i.d. points are uniformly distributed in the unit nn-dimensional ball. Lao [11] further assumed that 𝑿\boldsymbol{X} obeys some distributions in the unit square, the uniform distribution in the unit hypercube, and the uniform distribution in a regular convex polygon. Jammalamadaka and Janson [9] obtained a Gumbel limit distribution for MnM_{n} if 𝑿1,,𝑿p\boldsymbol{X}_{1},\dots,\boldsymbol{X}_{p} are i.i.d. n\mathbb{R}^{n}-valued random vectors with a spherically symmetric distribution. Schrempp [19] relaxed the condition to that random points are in a nn-dimensional ellipsoid with a unique major axis. Furthermore, Schrempp [20] considered the case where random points are in a nn-dimensional set with a unique diameter and a smooth boundary at the poles. Tang et al. [22] assumed 𝑿1,,𝑿p\boldsymbol{X}_{1},\dots,\boldsymbol{X}_{p} are a random sample from a nn-dimensional population with independent sub-exponential components and obtained the limiting distribution of MnM_{n}. Heiny and Kleemann [6] showed that MnM_{n} converges weakly to a Gumbel distribution under some moment assumptions and corresponding conditions on the growth rate of pp.

The aforementioned papers mainly focus on the asymptotic distribution of MnM_{n} as well as relaxing the range of pp relative to nn. The logarithmic law for MnM_{n} remains largely unknown. In this paper, we assume that the sample size p=pnp=p_{n} depends on the population dimension nn. We will study the strong limiting theorems for the maximum interpoint distance MnM_{n} under two high-dimensional cases. They are the polynomial rate with pnp_{n}\to\infty and 0<c1pn/nτc2<0<c_{1}\leq p_{n}/n^{\tau}\leq c_{2}<\infty and the exponential rate with pnp_{n}\to\infty and logpn=o(nβ)\log p_{n}=o(n^{\beta}) where c1c_{1}, c2c_{2}, τ\tau and β\beta are positive constants. Furthermore, we generalize the result for MnM_{n} to the maximum interpoint lql^{q}-norm distance and perform a Monte Carlo simulation to validate our main results.

The laws of the logarithm for different statistics have previously been studied by some authors, including Jiang [10] (sample correlation matrix), Li and Rosalsky [12] (sample correlation matrix), and Ding [5] (random tensor). In addition, we refer to Li [13], Modarres [17], Modarres and Song [18], and Song and Modarres [21] for several other investigates on interpoint distance.

The plan of this paper is as follows. The main results will be stated in Section 2. In Section 3, we show some technical lemmas and prove the main results. The lql^{q}-norm distance and simulation results are given in Section 4.

2 Main results

Throughout this paper, let p,n=(Xi,k)1ip,1kn\mathcal{M}_{p,n}=(X_{i,k})_{1\leq i\leq p,1\leq k\leq n} be a p×np\times n random matrix where {Xi,k;1ip,1kn}\{X_{i,k};1\leq i\leq p,1\leq k\leq n\} are i.i.d. random variables with mean EX1,1=μEX_{1,1}=\mu and variance Var(X1,1)=σ2>0\operatorname{Var}\left(X_{1,1}\right)=\sigma^{2}>0, let 𝑿1,𝑿2,,𝑿p\boldsymbol{X}_{1},\boldsymbol{X}_{2},\dots,\boldsymbol{X}_{p} be the pp rows of p,n\mathcal{M}_{p,n}. And some notations will be used in this paper. The symbol 𝑃\overset{P}{\rightarrow} implies convergence in probability, 𝑑\overset{d}{\rightarrow} means convergence in distribution, and a.s.\to\text{a.s.} means almost sure convergence. For two sequences of positive numbers {xn}\left\{x_{n}\right\} and {yn}\left\{y_{n}\right\}, xn=O(yn)x_{n}=O\left(y_{n}\right) implies lim supn|xn/yn|<\limsup_{n\to\infty}|x_{n}/y_{n}|<\infty, xn=o(yn)x_{n}=o\left(y_{n}\right) means limnxn/yn=0\lim_{n\to\infty}x_{n}/y_{n}=0. We write xnynx_{n}\sim y_{n} if limnxn/yn=1\lim_{n\to\infty}x_{n}/y_{n}=1, and xnynx_{n}\lesssim y_{n} if there exists a universal constant c>0c>0 such that lim supnxn/ync\limsup_{n\to\infty}x_{n}/y_{n}\leq c. In addition, CC is a constant and may vary from line to line.

We first study the law of the logarithm for MnM_{n} under the assumption that pp is a polynomial power of nn.

Theorem 2.1.

Assume

(i) 0<c1p/nτc2<for anyτ>0;\displaystyle(i)\ 0<c_{1}\leq p/n^{\tau}\leq c_{2}<\infty\ \text{for}\text{ any}\ \tau>0;
(ii)E|X1,1|8τ+8+ϵ<forsomeϵ>0;\displaystyle(ii)\ E|X_{1,1}|^{8\tau+8+\epsilon}<\infty\ \text{for}\ \text{some}\ \epsilon>0;
(iii)Corr(|X1,1X2,1|2,|X1,1X3,1|2)<1/3;\displaystyle(iii)\ \mathrm{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})<1/3;

where c1c_{1} and c2c_{2} are constants not depending on nn. Then, the following holds as nn\to\infty:

Mn22nE|X1,1|22(E|X1,1|4+(E|X1,1|2)2)nlogp2a.s.\frac{M_{n}^{2}-2nE|X_{1,1}|^{2}}{\sqrt{2(E|X_{1,1}|^{4}+(E|X_{1,1}|^{2})^{2})n\log{p}}}\to 2\quad\text{a.s.} (2)

Then, we will consider that pp is an exponential power of nn.

Theorem 2.2.

Assume

(i)Eet0|X1,1|2α<for some 0<α1/2,t0>0;\displaystyle(i)\ Ee^{t_{0}|X_{1,1}|^{2\alpha}}<\infty\ \text{for some}\ 0<\alpha\leq 1/2,\ t_{0}>0;
(ii)logp=o(nα2α);\displaystyle(ii)\ \log{p}=o\left(n^{\frac{\alpha}{2-\alpha}}\right);
(iii)Corr(|X1,1X2,1|2,|X1,1X3,1|2)<1/3.\displaystyle(iii)\ \mathrm{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})<1/3.

Then, (2) holds as \to\infty.

If 𝑿\boldsymbol{X} obeys Nn(𝟎,𝑰n)N_{n}\left(\boldsymbol{0},\boldsymbol{I}_{n}\right), then E|X1,1|2=1E|X_{1,1}|^{2}=1 and E|X1,1|4=3E|X_{1,1}|^{4}=3. Therefore, Theorems 2.1 and 2.2 have the following implication.

Corollary 2.3.

Let 𝐗1,,𝐗p\boldsymbol{X}_{1},\dots,\boldsymbol{X}_{p} be a random sample from the standard multivariate normal population. Assume logp=o(nβ)\log{p}=o(n^{\beta}) for any β(0,1/3]\beta\in(0,1/3] as nn\to\infty. Then, the following holds as nn\to\infty:

Mn22n22nlogp2a.s.\frac{M_{n}^{2}-2n}{2\sqrt{2n\log{p}}}\to 2\quad\text{a.s.}
Remark 2.4.

Note that the results of Theorems 2.1 and 2.2 still hold for arbitrary mean E𝐗=μ𝐞E\boldsymbol{X}=\mu\boldsymbol{e} where 𝐞=(1,,1)n\boldsymbol{e}=\left(1,\dots,1\right)^{\prime}\in\mathbb{R}^{n}, since MnM_{n} is invariant under translation of the vectors 𝐗1,,𝐗p\boldsymbol{X}_{1},\dots,\boldsymbol{X}_{p}. Therefore, without loss of generality, we assume {Xi,k;1ip,1kn}\{X_{i,k};1\leq i\leq p,1\leq k\leq n\} are i.i.d. random variables with mean EX1,1=μ=0EX_{1,1}=\mu=0 in the proofs. By some calculations, we have

Corr(|X1,1X2,1|2,|X1,1X3,1|2)\displaystyle\mathrm{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})
=\displaystyle= Cov(|X1,1X2,1|2,|X1,1X3,1|2)Var(|X1,1X2,1|2)\displaystyle\frac{\mathrm{Cov}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})}{\mathrm{Var}(|X_{1,1}-X_{2,1}|^{2})}
=\displaystyle= E|X1,1|4(E|X1,1|2)22(E|X1,1|4+(E|X1,1|2)2).\displaystyle\frac{E|X_{1,1}|^{4}-(E|X_{1,1}|^{2})^{2}}{2(E|X_{1,1}|^{4}+(E|X_{1,1}|^{2})^{2})}.

So the condition Corr(|X1,1X2,1|2,|X1,1X3,1|2)<1/3\mathrm{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})<1/3 is equivalent to E|X1,1|4<5(E|X1,1|2)2E|X_{1,1}|^{4}<5(E|X_{1,1}|^{2})^{2} as shown by Tang et al. [22].

Remark 2.5.

In the proof of Theorem 2.1, distinct techniques are employed compared to earlier works like Jiang [10] and Ding [5], which utilized the moderate deviation of the partial sum of i.i.d. random variables. Instead we use the Gaussian approximation (Zaĭtsev [23], Theorem 1.1) in this paper.

3 Proofs

3.1 Some technical tools

We first show the Chen–Stein Poisson approximation method, which is a special case of Theorem 1 from Arratia et al. [3].

Lemma 3.1.

Let II be an index set and {Bα;αI}\left\{B_{\alpha};\alpha\in I\right\} be a set of subsets of II, that is, BαIB_{\alpha}\subset I for each αI\alpha\in I. Let {ηα;αI}\left\{\eta_{\alpha};\alpha\in I\right\} be random variables. For a given tt\in\mathbb{R}, set λ=αIP(ηα>t)\lambda=\sum_{\alpha\in I}P\left(\eta_{\alpha}>t\right). Then we have

|P(maxαIηαt)eλ|(1λ1)(b1+b2+b3),\left\lvert P\left(\max\limits_{\alpha\in I}\eta_{\alpha}\leq t\right)-e^{-\lambda}\right\rvert\leq\left(1\wedge\lambda^{-1}\right)\left(b_{1}+b_{2}+b_{3}\right),

where

b1\displaystyle b_{1} =αIβBαP(ηα>t)P(ηβ>t),b2=αIαβBαP(ηα>t,ηβ>t),\displaystyle=\sum\limits_{\alpha\in I}\sum\limits_{\beta\in B_{\alpha}}P\left(\eta_{\alpha}>t\right)P\left(\eta_{\beta}>t\right),\quad b_{2}=\sum\limits_{\alpha\in I}\sum\limits_{\alpha\neq\beta\in B_{\alpha}}P\left(\eta_{\alpha}>t,\eta_{\beta}>t\right),
b3\displaystyle b_{3} =αIE|P{ηα>tσ(ηβ;βBα)}P(ηα>t)|,\displaystyle=\sum_{\alpha\in I}E\lvert P\left\{\eta_{\alpha}>t\mid\sigma\left(\eta_{\beta};\beta\notin B_{\alpha}\right)\right\}-P\left(\eta_{\alpha}>t\right)\rvert,

and σ(ηβ;βBα)\sigma\left(\eta_{\beta};\beta\notin B_{\alpha}\right) is the σ\sigma-algebra generated by {ηβ;βBα}\left\{\eta_{\beta};\beta\notin B_{\alpha}\right\}. In particular, if ηα\eta_{\alpha} is independent of {ηβ;βBα}\left\{\eta_{\beta};\beta\notin B_{\alpha}\right\} for each α\alpha, then b3=0b_{3}=0.

The following lemma is about the moderate deviation of the partial sum of i.i.d. random variables (Linnik [14]).

Lemma 3.2.

Suppose that {ζ,ζk;k=1,,n}\left\{\zeta,\zeta_{k};k=1,\dots,n\right\} is a sequence of i.i.d. random variables with Eζ=0E\zeta=0 and Eζ2=1E\zeta^{2}=1. Define Sn=k=1nζkS_{n}=\sum_{k=1}^{n}\zeta_{k}.

(1) If Eet0|ζ|α<Ee^{t_{0}|\zeta|^{\alpha}}<\infty for some 0<α10<\alpha\leq 1 and t0>0t_{0}>0. Then

limn1xn2logP(Snnxn)=12\lim_{n\rightarrow\infty}\frac{1}{x_{n}^{2}}\log P\left(\frac{S_{n}}{\sqrt{n}}\geq x_{n}\right)=-\frac{1}{2}

for any xnx_{n}\rightarrow\infty, xn=o(nα2(2α))x_{n}=o\left(n^{\frac{\alpha}{2(2-\alpha)}}\right).

(2) If Eet0|ζ|α<Ee^{t_{0}|\zeta|^{\alpha}}<\infty for some 0<α1/20<\alpha\leq 1/2 and t0>0t_{0}>0. Then

P(Snnxn)1Φ(xn)1\frac{P\left(\frac{S_{n}}{\sqrt{n}}\geq x_{n}\right)}{1-\Phi(x_{n})}\rightarrow 1

holds uniformly for 0xno(nα2(2α))0\leq x_{n}\leq o\left(n^{\frac{\alpha}{2(2-\alpha)}}\right).

3.2 Proof of Theorem 2.1

Now we are in a position to prove Theorem 2.1.

Proof.

Review Remark 2.4. Then, without loss of generality, we prove the theorem by assuming {Xi,k;1ip,1kn}\{X_{i,k};1\leq i\leq p,1\leq k\leq n\} are i.i.d. random variables with mean EX1,1=μ=0EX_{1,1}=\mu=0. Recall (1). Write

Mn2=max1i<jpn𝑿i𝑿j22=max1i<jpnk=1n|Xi,kXj,k|2.\displaystyle M_{n}^{2}=\max_{1\leq i<j\leq p_{n}}\left\|\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right\|_{2}^{2}=\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\left|X_{i,k}-X_{j,k}\right|^{2}. (3)

Define

ηijk:=|Xi,kXj,k|2E|X1,1X2,1|2Var(|X1,1X2,1|2)=|Xi,kXj,k|22E|X1,1|22(E|X1,1|4+(E|X1,1|2)2).\eta_{ijk}:=\frac{\left|X_{i,k}-X_{j,k}\right|^{2}-E|X_{1,1}-X_{2,1}|^{2}}{\sqrt{\mathrm{Var}(|X_{1,1}-X_{2,1}|^{2})}}=\frac{\left|X_{i,k}-X_{j,k}\right|^{2}-2E|X_{1,1}|^{2}}{\sqrt{2(E|X_{1,1}|^{4}+(E|X_{1,1}|^{2})^{2})}}.

It is obvious that

Eηijk=0andVar(ηijk)=1\displaystyle E\eta_{ijk}=0\quad\text{and}\quad\text{Var}\left(\eta_{ijk}\right)=1

for each kk. Then, we find that

max1i<jpnk=1nηijk=Mn22nE|X1,1|22(E|X1,1|4+(E|X1,1|2)2).\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\eta_{ijk}=\frac{M_{n}^{2}-2nE|X_{1,1}|^{2}}{\sqrt{2(E|X_{1,1}|^{4}+(E|X_{1,1}|^{2})^{2})}}. (4)

Define

η^ijk:=ηijkI{|ηijk|ns}E(ηijkI{|ηijk|ns}),\hat{\eta}_{ijk}:=\eta_{ijk}I_{\{|\eta_{ijk}|\leq n^{s}\}}-E(\eta_{ijk}I_{\{|\eta_{ijk}|\leq n^{s}\}}), (5)

where 0<s<1/20<s<1/2. To prove Theorem 2.1, it is sufficient to show that

lim supnmax1i<jpnk=1nη^ijknlogpn2a.s.,\limsup_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\hat{\eta}_{ijk}}{\sqrt{n\log{p_{n}}}}\leq 2\quad\text{a.s.}, (6)
lim infnmax1i<jpnk=1nη^ijknlogpn2a.s.\liminf_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\hat{\eta}_{ijk}}{\sqrt{n\log{p_{n}}}}\geq 2\quad\text{a.s.} (7)

and

limnmax1i<jpn|k=1n(ηijkη^ijk)|nlogpn=0a.s.\lim_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\left|\sum_{k=1}^{n}\left(\eta_{ijk}-\hat{\eta}_{ijk}\right)\right|}{\sqrt{n\log{p_{n}}}}=0\quad\text{a.s.} (8)

We will complete the proof with three steps.

Step 1: proof of (6). Given ε(0,1)\varepsilon\in(0,1), set mτ,ε=2/(τε)m_{\tau,\varepsilon}=2/(\tau\varepsilon). For any integer m>mτ,εm>m_{\tau,\varepsilon}, we have

maxnm<l(n+1)mmax1i<jplk=1lη^ijk\displaystyle\max_{n^{m}<l\leq(n+1)^{m}}\max_{1\leq i<j\leq p_{l}}\sum_{k=1}^{l}\hat{\eta}_{ijk}\leq max1i<jp(n+1)mmaxnm<l(n+1)mk=1lη^ijk\displaystyle\max_{1\leq i<j\leq p_{(n+1)^{m}}}\max_{n^{m}<l\leq(n+1)^{m}}\sum_{k=1}^{l}\hat{\eta}_{ijk} (9)
\displaystyle\leq max1i<jp(n+1)mk=1nmη^ijk+Ψnm,\displaystyle\max_{1\leq i<j\leq p_{(n+1)^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}+\Psi_{n^{m}},

where

Ψnm\displaystyle\Psi_{n^{m}} =max1i<jp(n+1)mmaxnm<l(n+1)m|k=1lη^ijkk=1nmη^ijk|\displaystyle=\max_{1\leq i<j\leq p_{(n+1)^{m}}}\max_{n^{m}<l\leq(n+1)^{m}}\left|\sum_{k=1}^{l}\hat{\eta}_{ijk}-\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}\right| (10)
=max1i<jp(n+1)mmax1h<(n+1)mnm|k=1hη^ijk|.\displaystyle=\max_{1\leq i<j\leq p_{(n+1)^{m}}}\max_{1\leq h<(n+1)^{m}-n^{m}}\left|\sum_{k=1}^{h}\hat{\eta}_{ijk}\right|.

Set cn1=(4+ε)logpnmc_{n1}=\sqrt{\left(4+\varepsilon\right)\log{p_{n^{m}}}} and δn1=1/(logpnm)\delta_{n1}=1/(\log{p_{n^{m}}}). Then, we have

P(max1i<jp(n+1)mk=1nmη^ijk>(4+ε)nmlogpnm)p(n+1)m2P(1nmk=1nmη^12k>cn1).\displaystyle P\left(\max_{1\leq i<j\leq p_{(n+1)^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}>\sqrt{\left(4+\varepsilon\right)n^{m}\log{p_{n^{m}}}}\right)\leq p_{(n+1)^{m}}^{2}\cdot P\left(\frac{1}{\sqrt{n^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{12k}>c_{n1}\right).

Note that |η^ijk|ns|\hat{\eta}_{ijk}|\leq n^{s}. By Theorem 1.1 from Zaĭtsev [23], there exists a random variable ξN(0,Var(η^ijk))\xi\sim N(0,\text{Var}(\hat{\eta}_{ijk})) such that

P(1nmk=1nmη^12k>cn1)P(ξ>cn1+δn1)Cexp(Cnmδn1nsm),P\left(\frac{1}{\sqrt{n^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{12k}>c_{n1}\right)\geq P\left(\xi>c_{n1}+\delta_{n1}\right)-C\text{exp}\left(-C\frac{\sqrt{n^{m}}\delta_{n1}}{n^{sm}}\right), (11)
P(1nmk=1nmη^12k>cn1)P(ξ>cn1δn1)+Cexp(Cnmδn1nsm).P\left(\frac{1}{\sqrt{n^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{12k}>c_{n1}\right)\leq P\left(\xi>c_{n1}-\delta_{n1}\right)+C\text{exp}\left(-C\frac{\sqrt{n^{m}}\delta_{n1}}{n^{sm}}\right). (12)

For the exponential term, we have

p(n+1)m2exp(Cnmδn1nsm)exp(2mτClog(n+1)Cn(m2sm)/2logpnm)p_{(n+1)^{m}}^{2}\cdot\text{exp}\left(-C\frac{\sqrt{n^{m}}\delta_{n1}}{n^{sm}}\right)\leq\text{exp}\left(2m\tau C\log{(n+1)}-\frac{Cn^{(m-2sm)/2}}{\log{p_{n^{m}}}}\right) (13)

as nn\to\infty. By the formula that limxP(N(0,1)x)=12πxex2/2\lim_{x\to\infty}P\left(N\left(0,1\right)\geq x\right)=\frac{1}{\sqrt{2\pi}x}e^{-x^{2}/2}, we get

p(n+1)m2P(ξ>cn1±δn1)\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot P\left(\xi>c_{n1}\pm\delta_{n1}\right) (14)
\displaystyle\leq p(n+1)m2P(ξVar(η^ijk)>cn1±δn1)\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot P\left(\frac{\xi}{\sqrt{\text{Var}(\hat{\eta}_{ijk})}}>c_{n1}\pm\delta_{n1}\right)
\displaystyle\sim p(n+1)m2[1Φ(cn1±δn1)]\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot\left[1-\Phi\left(c_{n1}\pm\delta_{n1}\right)\right]
\displaystyle\sim p(n+1)m22π(cn1±δn1)e(cn1±δn1)22\displaystyle~{}\frac{p_{(n+1)^{m}}^{2}}{\sqrt{2\pi}\left(c_{n1}\pm\delta_{n1}\right)}e^{-\frac{\left(c_{n1}\pm\delta_{n1}\right)^{2}}{2}}
\displaystyle\sim p(n+1)m22πcn1ecn122=o(1nmτε/2)\displaystyle~{}\frac{p_{(n+1)^{m}}^{2}}{\sqrt{2\pi}c_{n1}}e^{-\frac{c_{n1}^{2}}{2}}=o\left(\frac{1}{n^{m\tau\varepsilon/2}}\right)

as nn\to\infty. We use the fact that Var(η^ijk)Var(ηijk)=1\text{Var}(\hat{\eta}_{ijk})\leq\text{Var}(\eta_{ijk})=1 in the above inequality. By (11)–(14), we can obtain

n=1P(max1i<jp(n+1)mk=1nmη^ijk>(4+ε)nmlogpnm)<\sum_{n=1}^{\infty}P\left(\max_{1\leq i<j\leq p_{(n+1)^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}>\sqrt{\left(4+\varepsilon\right)n^{m}\log{p_{n^{m}}}}\right)<\infty

as nn\to\infty since m>mεm>m_{\varepsilon}. By the Borel–Cantelli lemma, we arrive at

lim supnmax1i<jp(n+1)mk=1nmη^ijknmlogpnm4+εa.s.\limsup_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{(n+1)^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}}{\sqrt{n^{m}\log{p_{n^{m}}}}}\leq\sqrt{4+\varepsilon}\quad\text{a.s.} (15)

Trivially, ε2nmlogpnm>(4+ε)((n+1)mnm)logpnm\frac{\varepsilon}{2}\sqrt{n^{m}\log{p_{n^{m}}}}>\sqrt{\left(4+\varepsilon\right)((n+1)^{m}-n^{m})\log{p_{n^{m}}}} due to 0<c1p/nτc2<0<c_{1}\leq p/n^{\tau}\leq c_{2}<\infty for any τ>0\tau>0 as nn is sufficiently large. By Markov inequality, we have

min1h<(n+1)mnmP(|k=1(n+1)mnmη^12kk=1hη^12k|ε2nmlogpnm)\displaystyle\min_{1\leq h<(n+1)^{m}-n^{m}}P\left(\left|\sum_{k=1}^{(n+1)^{m}-n^{m}}\hat{\eta}_{12k}-\sum_{k=1}^{h}\hat{\eta}_{12k}\right|\leq\frac{\varepsilon}{2}\sqrt{n^{m}\log{p_{n^{m}}}}\right)
=\displaystyle= 1max1h<(n+1)mnmP(|k=1(n+1)mnmη^12kk=1hη^12k|>ε2nmlogpnm)\displaystyle 1-\max_{1\leq h<(n+1)^{m}-n^{m}}P\left(\left|\sum_{k=1}^{(n+1)^{m}-n^{m}}\hat{\eta}_{12k}-\sum_{k=1}^{h}\hat{\eta}_{12k}\right|>\frac{\varepsilon}{2}\sqrt{n^{m}\log{p_{n^{m}}}}\right)
\displaystyle\geq 1max1h<(n+1)mnmC((n+1)mnmh)ε2nmlogpnm\displaystyle 1-\max_{1\leq h<(n+1)^{m}-n^{m}}\frac{C\left((n+1)^{m}-n^{m}-h\right)}{\varepsilon^{2}n^{m}\log{p_{n^{m}}}}
\displaystyle\geq 1C((n+1)mnm)ε2nmlogpnm1/2\displaystyle 1-\frac{C\left((n+1)^{m}-n^{m}\right)}{\varepsilon^{2}n^{m}\log{p_{n^{m}}}}\geq 1/2

as nn\to\infty. Then, by (10), Ottaviani’s inequality and the same argument as in (11)–(14), we obtain

P(Ψnm>εnmlogpnm)\displaystyle~{}P\left(\Psi_{n^{m}}>\varepsilon\sqrt{n^{m}\log{p_{n^{m}}}}\right)
\displaystyle\leq p(n+1)m2P(max1h<(n+1)mnm|k=1hη^12k|>εnmlogpnm)\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot P\left(\max_{1\leq h<(n+1)^{m}-n^{m}}\left|\sum_{k=1}^{h}\hat{\eta}_{12k}\right|>\varepsilon\sqrt{n^{m}\log{p_{n^{m}}}}\right)
\displaystyle\leq p(n+1)m2P(|k=1(n+1)mnmη^12k|>ε2nmlogpnm)\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot P\left(\left|\sum_{k=1}^{(n+1)^{m}-n^{m}}\hat{\eta}_{12k}\right|>\frac{\varepsilon}{2}\sqrt{n^{m}\log{p_{n^{m}}}}\right)
\displaystyle\leq p(n+1)m2P(|k=1(n+1)mnmη^12k|>(4+ε)((n+1)mnm)logpnm)\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot P\left(\left|\sum_{k=1}^{(n+1)^{m}-n^{m}}\hat{\eta}_{12k}\right|>\sqrt{\left(4+\varepsilon\right)((n+1)^{m}-n^{m})\log{p_{n^{m}}}}\right)
=\displaystyle= p(n+1)m2P(|k=1(n+1)mnmη^12k(n+1)mnm|>(4+ε)logpnm)\displaystyle~{}p_{(n+1)^{m}}^{2}\cdot P\left(\left|\sum_{k=1}^{(n+1)^{m}-n^{m}}\frac{\hat{\eta}_{12k}}{\sqrt{(n+1)^{m}-n^{m}}}\right|>\sqrt{\left(4+\varepsilon\right)\log{p_{n^{m}}}}\right)
\displaystyle\lesssim Cp(n+1)m2[1Φ((4+ε)logpnm)]\displaystyle~{}C\cdot p_{(n+1)^{m}}^{2}\cdot\left[1-\Phi\left(\sqrt{\left(4+\varepsilon\right)\log{p_{n^{m}}}}\right)\right]
\displaystyle\sim Cp(n+1)m22π(4+ε)logpnme(4+ε)logpnm2\displaystyle~{}\frac{C\cdot p_{(n+1)^{m}}^{2}}{\sqrt{2\pi\left(4+\varepsilon\right)\log{p_{n^{m}}}}}e^{-\frac{\left(4+\varepsilon\right)\log{p_{n^{m}}}}{2}}
=\displaystyle= o(1nmτε/2)\displaystyle~{}o\left(\frac{1}{n^{m\tau\varepsilon/2}}\right)

for sufficient large nn. Since m>mεm>m_{\varepsilon}, we see

n=1P(Ψnm>εnmlogpnm)<\sum_{n=1}^{\infty}P\left(\Psi_{n^{m}}>\varepsilon\sqrt{n^{m}\log{p_{n^{m}}}}\right)<\infty

as nn\rightarrow\infty. Therefore, by the Borel–Cantelli lemma again,

lim supnΨnmnmlogpnmεa.s.\limsup_{n\to\infty}\frac{\Psi_{n^{m}}}{\sqrt{n^{m}\log{p_{n^{m}}}}}\leq\varepsilon\quad\text{a.s.} (16)

Review (9)–(10) and (15)–(16). We obtain that

lim supnmax1i<jpnk=1nη^ijknlogpn\displaystyle\limsup_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\hat{\eta}_{ijk}}{\sqrt{n\log{p_{n}}}} lim supnmaxnm<l(n+1)mmax1i<jplk=1lη^ijknmlogpnm\displaystyle\leq\limsup_{n\to\infty}\frac{\max_{n^{m}<l\leq(n+1)^{m}}\max_{1\leq i<j\leq p_{l}}\sum_{k=1}^{l}\hat{\eta}_{ijk}}{\sqrt{n^{m}\log{p_{n^{m}}}}}
4+ε+εa.s.\displaystyle\leq\sqrt{4+\varepsilon}+\varepsilon\quad\text{a.s.}

Choosing ε>0\varepsilon>0 small enough, we then get (6).

Step 2: proof of (7). Given ε(0,1)\varepsilon\in(0,1), set cn2=(4ε)logpnc_{n2}=\sqrt{\left(4-\varepsilon\right)\log{p_{n}}}. Set

I={(i,j);1i<jpn}.I=\left\{(i,j);1\leq i<j\leq p_{n}\right\}.

For α=(i,j)I\alpha=(i,j)\in I, define

Xα=1nk=1nη^ijkX_{\alpha}=\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{ijk}

and

Bα={(k,l)I;{k,l}{i,j},but(k,l)α}.B_{\alpha}=\left\{\left(k,l\right)\in I;\ \left\{k,l\right\}\cap\left\{i,j\right\}\neq\emptyset,\text{but}\left(k,l\right)\neq\alpha\right\}.

Note that XαX_{\alpha} is independent of {Xβ;βBα}\left\{X_{\beta};\beta\notin B_{\alpha}\right\}. By Lemma 3.1, we have

P(maxαIXαcn2)eλ1+b1+b2,P\left(\max_{\alpha\in I}X_{\alpha}\leq c_{n2}\right)\leq e^{-\lambda_{1}}+b_{1}+b_{2}, (17)

where

λ1=αIP(Xα>cn2)=pn(pn1)2P(1nk=1nη^12k>cn2),\displaystyle\lambda_{1}=\sum_{\alpha\in I}P\left(X_{\alpha}>c_{n2}\right)=\frac{p_{n}\left(p_{n}-1\right)}{2}P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{12k}>c_{n2}\right),
b1=αIβBαP(Xα>cn2)P(Xβ>cn2)pn(pn1)2(2pn)P(1nk=1nη^12k>cn2)2\displaystyle b_{1}=\sum_{\alpha\in I}\sum_{\beta\in B_{\alpha}}P\left(X_{\alpha}>c_{n2}\right)P\left(X_{\beta}>c_{n2}\right)\leq\frac{p_{n}\left(p_{n}-1\right)}{2}\cdot\left(2p_{n}\right)\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{12k}>c_{n2}\right)^{2}

and

b2\displaystyle b_{2} =αIβBαP(Xα>cn2,Xβ>cn2)\displaystyle=\sum_{\alpha\in I}\sum_{\beta\in B_{\alpha}}P\left(X_{\alpha}>c_{n2},X_{\beta}>c_{n2}\right)
pn(pn1)2(2pn)P(1nk=1nη^12k>cn2,1nk=1nη^13k>cn2).\displaystyle\leq\frac{p_{n}\left(p_{n}-1\right)}{2}\cdot\left(2p_{n}\right)\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{12k}>c_{n2},\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{13k}>c_{n2}\right).

We first calculate λ1\lambda_{1}. By the same argument as in (11)–(14), we have

λ1=\displaystyle\lambda_{1}= pn(pn1)2P(1nk=1nη^12k>cn2)\displaystyle~{}\frac{p_{n}\left(p_{n}-1\right)}{2}P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{12k}>c_{n2}\right) (18)
\displaystyle\sim pn(pn1)22πcn2ecn222\displaystyle~{}\frac{p_{n}\left(p_{n}-1\right)}{2\sqrt{2\pi}c_{n2}}e^{-\frac{c_{n2}^{2}}{2}}
=\displaystyle= o(nτε/2)\displaystyle~{}o\left(n^{\tau\varepsilon/2}\right)

as nn\to\infty. Then, it follows from (18) that

b1\displaystyle b_{1}\leq pn3P(1nk=1nη^12k>cn2)2\displaystyle~{}p_{n}^{3}\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{12k}>c_{n2}\right)^{2} (19)
\displaystyle\sim pn32πcn22ecn22\displaystyle~{}\frac{p_{n}^{3}}{2\pi c_{n2}^{2}}e^{-c_{n2}^{2}}
=\displaystyle= o(1nτ(1ε))\displaystyle~{}o\left(\frac{1}{n^{\tau(1-\varepsilon)}}\right)

as nn\to\infty.

Finally, we estimate b2b_{2}. Set δn2=1/logpn\delta_{n2}=1/\sqrt{\log{p_{n}}}. By Theorem 1.1 from Zaĭtsev [23], there exist two normal random variables ξ1\xi_{1} and ξ2\xi_{2} such that

b2\displaystyle b_{2}\leq pn3P(min{1nk=1nη^12k,1nk=1nη^13k}>cn2)\displaystyle~{}p_{n}^{3}\cdot P\left(\min\left\{\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{12k},\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{13k}\right\}>c_{n2}\right) (20)
\displaystyle\leq pn3[P(min{ξ1,ξ2}>cn2δn2)+Cexp(Cnδn2ns)],\displaystyle~{}p_{n}^{3}\cdot\left[P\left(\min\left\{\xi_{1},\xi_{2}\right\}>c_{n2}-\delta_{n2}\right)+C\text{exp}\left(-C\frac{\sqrt{n}\delta_{n2}}{n^{s}}\right)\right],

where {ξ1,ξ2}N(0,Var(η^12k))\{\xi_{1},\xi_{2}\}\sim N(0,\text{Var}(\hat{\eta}_{12k})) and Cov(ξ1,ξ2)=Cov(η^12k,η^13k):=ρn\text{Cov}(\xi_{1},\xi_{2})=\text{Cov}(\hat{\eta}_{12k},\hat{\eta}_{13k}):=\rho_{n}. For the exponential term,

pn3exp(Cnδn2ns)exp(3τClognCn12s(logpn)12)p_{n}^{3}\cdot\text{exp}\left(-C\frac{\sqrt{n}\delta_{n2}}{n^{s}}\right)\leq\text{exp}\left(3\tau C\log{n}-Cn^{\frac{1}{2}-s}(\log{p_{n}})^{-\frac{1}{2}}\right) (21)

as nn is sufficiently large. Since Var(ξ1)=Var(ξ2)=Var(η^12k)Var(η12k)=1\text{Var}(\xi_{1})=\text{Var}(\xi_{2})=\text{Var}(\hat{\eta}_{12k})\leq\text{Var}(\eta_{12k})=1, we have

pn3P(min{ξ1,ξ2}>cn2δn2)\displaystyle~{}p_{n}^{3}\cdot P\left(\min\left\{\xi_{1},\xi_{2}\right\}>c_{n2}-\delta_{n2}\right) (22)
\displaystyle\leq pn3P(ξ1+ξ2>2(cn2δn2))\displaystyle~{}p_{n}^{3}\cdot P\left(\xi_{1}+\xi_{2}>2(c_{n2}-\delta_{n2})\right)
\displaystyle\leq pn3P(ξ1+ξ22Var(η^12k)+2ρn>2(cn2δn2)2+2ρn)\displaystyle~{}p_{n}^{3}\cdot P\left(\frac{\xi_{1}+\xi_{2}}{\sqrt{2\text{Var}(\hat{\eta}_{12k})+2\rho_{n}}}>\frac{2(c_{n2}-\delta_{n2})}{\sqrt{2+2\rho_{n}}}\right)
\displaystyle\sim 2+2ρnpn322πcn2ecn221+ρn\displaystyle~{}\frac{\sqrt{2+2\rho_{n}}\cdot p_{n}^{3}}{2\sqrt{2\pi}c_{n2}}e^{-\frac{c_{n2}^{2}}{1+\rho_{n}}}
=\displaystyle= o(n(34ε1+ρn)τ)\displaystyle~{}o\left(n^{\left(3-\frac{4-\varepsilon}{1+\rho_{n}}\right)\tau}\right)

as nn\to\infty. By some calculations, we have

ρn\displaystyle\rho_{n} =Cov(η^12k,η^13k)\displaystyle=\text{Cov}\left(\hat{\eta}_{12k},\hat{\eta}_{13k}\right)
=Cov(η12k,η13k)E(η12kη13kI{max{|η12k|,|η13k|}>ns})[E(η12kI{|η12k|>ns})]2\displaystyle=\text{Cov}\left(\eta_{12k},\eta_{13k}\right)-E\left(\eta_{12k}\eta_{13k}I_{\{\max\{|\eta_{12k}|,|\eta_{13k}|\}>n^{s}\}}\right)-\left[E\left(\eta_{12k}I_{\{|\eta_{12k}|>n^{s}\}}\right)\right]^{2}
Cov(η12k,η13k)=Corr(|X1,1X2,1|2,|X1,1X3,1|2)\displaystyle\to\text{Cov}\left(\eta_{12k},\eta_{13k}\right)=\text{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})

as nn\to\infty. Therefore, if Corr(|X1,1X2,1|2,|X1,1X3,1|2)<1/3\text{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})<1/3, then 34ε1+ρn<03-\frac{4-\varepsilon}{1+\rho_{n}}<0 as nn\to\infty. Next, from (17)–(22), we obtain that

P(max1i<jpn1nk=1nη^ijkcn2)=P(maxαIXαcn2)o(nε)P\left(\max_{1\leq i<j\leq p_{n}}\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\hat{\eta}_{ijk}\leq c_{n2}\right)=P\left(\max_{\alpha\in I}X_{\alpha}\leq c_{n2}\right)\leq o\left(n^{-\varepsilon^{\prime}}\right)

as nn is sufficiently large, where ε>0\varepsilon^{\prime}>0 depends on ε\varepsilon and Corr(|X1,1X2,1|2,|X1,1X3,1|2)\text{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2}). Take an integer m>1/εm>1/\varepsilon^{\prime} such that

n=1P(max1i<jpnm1nmk=1nmη^ijk(4ε)logpnm)n=1o(nmε)<\sum_{n=1}^{\infty}P\left(\max_{1\leq i<j\leq p_{n^{m}}}\frac{1}{\sqrt{n^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}\leq\sqrt{\left(4-\varepsilon\right)\log{p_{n^{m}}}}\right)\leq\sum_{n=1}^{\infty}o\left(n^{-m\varepsilon^{\prime}}\right)<\infty

as nn\to\infty. Then, by the Borel–Cantelli lemma,

lim infnmax1i<jpnmk=1nmηijknmlogpnm>4εa.s.\liminf_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n^{m}}}\sum_{k=1}^{n^{m}}\eta_{ijk}}{\sqrt{n^{m}\log{p_{n^{m}}}}}>\sqrt{4-\varepsilon}\quad\text{a.s.} (23)

Recalling (10), we find

infnm<l(n+1)mmax1i<jplk=1lη^ijkmax1i<jpnmk=1nmη^ijkΨnm.\inf_{n^{m}<l\leq(n+1)^{m}}\max_{1\leq i<j\leq p_{l}}\sum_{k=1}^{l}\hat{\eta}_{ijk}\geq\max_{1\leq i<j\leq p_{n^{m}}}\sum_{k=1}^{n^{m}}\hat{\eta}_{ijk}-\Psi_{n^{m}}.

Combining the above inequality, (16) and (23), we obtain that

lim infnmax1i<jpnk=1nηijknlogpn\displaystyle\liminf_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\eta_{ijk}}{\sqrt{n\log{p_{n}}}}
\displaystyle\geq lim infninfnm<l(n+1)mmax1i<jplk=1lηijknmlogpnm\displaystyle\liminf_{n\to\infty}\frac{\inf_{n^{m}<l\leq(n+1)^{m}}\max_{1\leq i<j\leq p_{l}}\sum_{k=1}^{l}\eta_{ijk}}{\sqrt{n^{m}\log{p_{n^{m}}}}}
\displaystyle\geq 4εεa.s.\displaystyle\sqrt{4-\varepsilon}-\varepsilon\quad\text{a.s.}

Then, (7) follows from the arbitrariness of ε\varepsilon.

Step 3: proof of (8). Reviewing (5), we have

E|η12kη^12k|4τ+4+ϵE[|η12k|4τ+4+ϵI{|η12k|ns}]<E\left|\eta_{12k}-\hat{\eta}_{12k}\right|^{4\tau+4+\epsilon}\lesssim E\left[|\eta_{12k}|^{4\tau+4+\epsilon}I_{\{|\eta_{12k}|\leq n^{s}\}}\right]<\infty

and

Var(η12kη^12k)\displaystyle\text{Var}\left(\eta_{12k}-\hat{\eta}_{12k}\right) =Var(η12kI{|η12k|>ns})\displaystyle=\text{Var}\left(\eta_{12k}I_{\{|\eta_{12k}|>n^{s}\}}\right)
E(η12k2I{|η12k|>ns})\displaystyle\leq E\left(\eta_{12k}^{2}I_{\{|\eta_{12k}|>n^{s}\}}\right)
E(|η12k|4τ+4+ϵI{|η12k|>ns})ns(4τ+2+ϵ)\displaystyle\leq\frac{E\left(|\eta_{12k}|^{4\tau+4+\epsilon}I_{\{|\eta_{12k}|>n^{s}\}}\right)}{n^{s(4\tau+2+\epsilon)}}
Cns(4τ+2+ϵ)\displaystyle\leq Cn^{-s(4\tau+2+\epsilon)}

as nn\to\infty due to E|X1,1|8τ+8+ϵ<E|X_{1,1}|^{8\tau+8+\epsilon}<\infty for some ϵ>0\epsilon>0. Then, we see from Fuk–Nagaev inequality that, for ε>0\varepsilon>0,

n=1P(max1i<jpn|k=1n(ηijkη^ijk)|>εnlogpn)\displaystyle\sum_{n=1}^{\infty}P\left(\max_{1\leq i<j\leq p_{n}}\left|\sum_{k=1}^{n}\left(\eta_{ijk}-\hat{\eta}_{ijk}\right)\right|>\varepsilon\sqrt{n\log p_{n}}\right)
\displaystyle\leq n=1pn2P(|k=1n(η12kη^12k)|>εnlogpn)\displaystyle\sum_{n=1}^{\infty}p_{n}^{2}\cdot P\left(\left|\sum_{k=1}^{n}\left(\eta_{12k}-\hat{\eta}_{12k}\right)\right|>\varepsilon\sqrt{n\log p_{n}}\right)
\displaystyle\lesssim n=1npn2E|η12kη^12k|4τ+4+ϵ(εnlogpn)4τ+4+ϵ+n=1pn2exp(Cε2logpnVar(η12kη^12k))\displaystyle\sum_{n=1}^{\infty}\frac{np_{n}^{2}\cdot E\left|\eta_{12k}-\hat{\eta}_{12k}\right|^{4\tau+4+\epsilon}}{\left(\varepsilon\sqrt{n\log p_{n}}\right)^{4\tau+4+\epsilon}}+\sum_{n=1}^{\infty}p_{n}^{2}\cdot\text{exp}\left(-C\frac{\varepsilon^{2}\log p_{n}}{\text{Var}\left(\eta_{12k}-\hat{\eta}_{12k}\right)}\right)
\displaystyle\lesssim n=11n1+ϵ/2+n=1exp(2τClognCns(4τ+2+ϵ)logpn)<\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^{1+\epsilon/2}}+\sum_{n=1}^{\infty}\text{exp}\left(2\tau C\log n-Cn^{s(4\tau+2+\epsilon)}\log p_{n}\right)<\infty

as nn\to\infty under the assumption that 0<c1p/nτc2<0<c_{1}\leq p/n^{\tau}\leq c_{2}<\infty for any τ>0\tau>0. By the Borel–Cantelli lemma, we get

limnmax1i<jpn|k=1n(ηijkη^ijk)|nlogpnεa.s.\lim_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\left|\sum_{k=1}^{n}\left(\eta_{ijk}-\hat{\eta}_{ijk}\right)\right|}{\sqrt{n\log{p_{n}}}}\leq\varepsilon\quad\text{a.s.}

By choosing ε>0\varepsilon>0 small enough, the proof of (8) is completed. ∎

3.3 Proof of Theorem 2.2

Proof.

We continue to use the notations in the proof of Theorem 2.1. Note that

Eet0|ηijk|α\displaystyle Ee^{t_{0}|\eta_{ijk}|^{\alpha}}\leq Eexp(Ct0|Xi,k2+Xj,k2+σ2|α)\displaystyle~{}E~{}\text{exp}\left(Ct_{0}\left|X_{i,k}^{2}+X_{j,k}^{2}+\sigma^{2}\right|^{\alpha}\right)
\displaystyle\leq Eexp(Ct0|Xi,k|2α+Ct0|Xj,k|2α+Ct0σ2α)\displaystyle~{}E~{}\text{exp}\left(Ct_{0}|X_{i,k}|^{2\alpha}+Ct_{0}|X_{j,k}|^{2\alpha}+Ct_{0}\sigma^{2\alpha}\right)
=\displaystyle= CEexp(2Ct0|Xi,k|2α)<\displaystyle~{}C\cdot E~{}\text{exp}\left(2Ct_{0}|X_{i,k}|^{2\alpha}\right)<\infty

due to Eet0|X1,1|2α<Ee^{t_{0}|X_{1,1}|^{2\alpha}}<\infty for some 0<α1/20<\alpha\leq 1/2 and t0>0t_{0}>0. Then, by Lemma 3.2, we have

n=1P(max1i<jpnk=1nηijk>(4+ε)nlogpn)\displaystyle\sum_{n=1}^{\infty}P\left(\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\eta_{ijk}>\sqrt{(4+\varepsilon)n\log{p_{n}}}\right) (24)
\displaystyle\leq n=1pn2P(1nk=1nη12k>(4+ε)logpn)\displaystyle\sum_{n=1}^{\infty}p_{n}^{2}\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\eta_{12k}>\sqrt{(4+\varepsilon)\log{p_{n}}}\right)
\displaystyle\sim n=1pn2(4+ε)logpne(4+ε)logpn2\displaystyle\sum_{n=1}^{\infty}\frac{p_{n}^{2}}{\sqrt{(4+\varepsilon)\log{p_{n}}}}e^{-\frac{(4+\varepsilon)\log{p_{n}}}{2}}
\displaystyle\leq n=11pnε/2=n=1o(1eε2nα2α)<\displaystyle\sum_{n=1}^{\infty}\frac{1}{p_{n}^{\varepsilon/2}}=\sum_{n=1}^{\infty}o\left(\frac{1}{e^{\frac{\varepsilon}{2}n^{\frac{\alpha}{2-\alpha}}}}\right)<\infty

as nn\to\infty since logp=o(nα2α)\log{p}=o(n^{\frac{\alpha}{2-\alpha}}). Next, by the Borel–Cantelli lemma, one has

lim supnmax1i<jpnk=1nηijknlogpn4+εa.s.\limsup_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\eta_{ijk}}{\sqrt{n\log{p_{n}}}}\leq\sqrt{4+\varepsilon}\quad\text{a.s.} (25)

Review the proof of (7), the definitions of cn2c_{n2}, II and BαB_{\alpha}. For each α=(i,j)I\alpha=(i,j)\in I, set Zα=1nk=1nηijkZ_{\alpha}=\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\eta_{ijk}. By Lemma 3.1, we have

P(maxαIZαcn2)eλ2+u1+u2,P\left(\max_{\alpha\in I}Z_{\alpha}\leq c_{n2}\right)\leq e^{-\lambda_{2}}+u_{1}+u_{2},

where

λ2\displaystyle\lambda_{2} =pn(pn1)2P(1nk=1nη12k>cn2),\displaystyle=\frac{p_{n}\left(p_{n}-1\right)}{2}P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\eta_{12k}>c_{n2}\right),
u1\displaystyle u_{1} pn3P(1nk=1nη12k>cn2)2,\displaystyle\leq p_{n}^{3}\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\eta_{12k}>c_{n2}\right)^{2},
u2\displaystyle u_{2} pn3P(1nk=1nη12k>cn2,1nk=1nη13k>cn2).\displaystyle\leq p_{n}^{3}\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\eta_{12k}>c_{n2},\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\eta_{13k}>c_{n2}\right).

By Lemma 3.2 and the same argument as in (24), we have

λ2pn(pn1)22πcn2ecn222=o(pnε2)=o(eε2nα2α)\lambda_{2}\sim\frac{p_{n}\left(p_{n}-1\right)}{2\sqrt{2\pi}c_{n2}}e^{-\frac{c_{n2}^{2}}{2}}=o\left(p_{n}^{\frac{\varepsilon}{2}}\right)=o\left(e^{\frac{\varepsilon}{2}n^{\frac{\alpha}{2-\alpha}}}\right)

as nn\to\infty. Furthermore, one can get that

u1pn32πcn22ecn221pn1ε=o(1e(1ε)nα2α)u_{1}\leq\frac{p_{n}^{3}}{2\pi c_{n2}^{2}}e^{-c_{n2}^{2}}\leq\frac{1}{p_{n}^{1-\varepsilon}}=o\left(\frac{1}{e^{(1-\varepsilon)n^{\frac{\alpha}{2-\alpha}}}}\right)

for sufficiently large nn. Write

η12k+η13k=|X1,1X2,1|2+|X1,1X3,1|24E|X1,1|22(E|X1,1|4+(E|X1,1|2)2).\eta_{12k}+\eta_{13k}=\frac{|X_{1,1}-X_{2,1}|^{2}+|X_{1,1}-X_{3,1}|^{2}-4E|X_{1,1}|^{2}}{\sqrt{2(E|X_{1,1}|^{4}+(E|X_{1,1}|^{2})^{2})}}.

By some calculations, we see

E(η12k+η13k)\displaystyle E\left(\eta_{12k}+\eta_{13k}\right) =0,\displaystyle=0,
Var(η12k+η13k)\displaystyle\text{Var}\left(\eta_{12k}+\eta_{13k}\right) =2+2Corr(|X1,1X2,1|2,|X1,1X3,1|2):=σ~2\displaystyle=2+2\text{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2}):=\tilde{\sigma}^{2}

for each kk. Moreover, we know Eet0|η12k+η13k|α<Ee^{t_{0}|\eta_{12k}+\eta_{13k}|^{\alpha}}<\infty for some 0<α1/20<\alpha\leq 1/2 and t0>0t_{0}>0. By Lemma 3.2, we then have that

u2\displaystyle u_{2}\leq pn3P(1nk=1nη12k+η13kσ~>2cn2σ~)\displaystyle~{}p_{n}^{3}\cdot P\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\frac{\eta_{12k}+\eta_{13k}}{\tilde{\sigma}}>\frac{2c_{n2}}{\tilde{\sigma}}\right)
\displaystyle\sim σ~pn322πcn2e2(4ε)logpnσ~2\displaystyle~{}\frac{\tilde{\sigma}\cdot p_{n}^{3}}{2\sqrt{2\pi}c_{n2}}e^{-\frac{2(4-\varepsilon)\log{p_{n}}}{\tilde{\sigma}^{2}}}
\displaystyle\leq pn32(4ε)σ~2\displaystyle~{}p_{n}^{3-\frac{2(4-\varepsilon)}{\tilde{\sigma}^{2}}}

as nn\to\infty. If Corr(|X1,1X2,1|2,|X1,1X3,1|2)<1/3\text{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})<1/3, then 32(4ε)σ~2<03-\frac{2(4-\varepsilon)}{\tilde{\sigma}^{2}}<0 and

n=1P(maxαIZαcn2)n=11pnε′′=n=1o(1eε′′nα2α)<\sum_{n=1}^{\infty}P\left(\max_{\alpha\in I}Z_{\alpha}\leq c_{n2}\right)\leq\sum_{n=1}^{\infty}\frac{1}{p_{n}^{\varepsilon^{\prime\prime}}}=\sum_{n=1}^{\infty}o\left(\frac{1}{e^{\varepsilon^{\prime\prime}n^{\frac{\alpha}{2-\alpha}}}}\right)<\infty

as nn\to\infty for some constant ε′′>0\varepsilon^{\prime\prime}>0 depending on ε\varepsilon and Corr(|X1,1X2,1|2,|X1,1X3,1|2)\text{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2}). Therefore, we see from the Borel–Cantelli lemma that

lim infnmax1i<jpnk=1nηijknlogpn>4εa.s.\liminf_{n\to\infty}\frac{\max_{1\leq i<j\leq p_{n}}\sum_{k=1}^{n}\eta_{ijk}}{\sqrt{n\log{p_{n}}}}>\sqrt{4-\varepsilon}\quad\text{a.s.}

Combining the above inequality, (4) and (25), the desired conclusion follows from the arbitrariness of ε\varepsilon. ∎

4 Applications

4.1 lql^{q}-norm

Instead of studying the Euclidean norm distance, we will consider a more general distance, that is, lql^{q}-norm distance in n\mathbb{R}^{n}. For a nn-dimensional random vector 𝑿\boldsymbol{X}, define the lql^{q}-norm of 𝑿\boldsymbol{X} by

𝑿q=(k=1n|Xk|q)1/q,\left\|\boldsymbol{X}\right\|_{q}=\left(\sum_{k=1}^{n}|X_{k}|^{q}\right)^{1/q},

where q1q\geq 1. And the maximum interpoint lql^{q}-norm distance is denoted by

Mn,q=max1i<jp𝑿i𝑿jq=max1i<jp(k=1n|Xi,kXj,k|q)1/q.M_{n,q}=\max_{1\leq i<j\leq p}\left\|\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right\|_{q}=\max_{1\leq i<j\leq p}\left(\sum_{k=1}^{n}|X_{i,k}-X_{j,k}|^{q}\right)^{1/q}.

Similarly to Theorem 2.1, one can deduce the law of the logarithm for Mn,qM_{n,q} as follows.

Theorem 4.1.

Assume

(i) 0<c1p/nτc2<for anyτ>0;\displaystyle(i)\ 0<c_{1}\leq p/n^{\tau}\leq c_{2}<\infty\ \text{for}\text{ any}\ \tau>0;
(ii)E|X1,1|q(4τ+4+ϵ)<forsomeϵ>0;\displaystyle(ii)\ E|X_{1,1}|^{q(4\tau+4+\epsilon)}<\infty\ \text{for}\ \text{some}\ \epsilon>0;
(iii)Corr(|X1,1X2,1|q,|X1,1X3,1|q)<1/3;\displaystyle(iii)\ \mathrm{Corr}(|X_{1,1}-X_{2,1}|^{q},|X_{1,1}-X_{3,1}|^{q})<1/3;

where c1c_{1} and c2c_{2} are constants not depending on nn. Then, the following holds as nn\to\infty:

Mn,qqnE(|X1,1X2,1|q)Var(|X1,1X2,1|q)nlogp2a.s.\frac{M_{n,q}^{q}-nE\left(|X_{1,1}-X_{2,1}|^{q}\right)}{\sqrt{\mathrm{Var}(|X_{1,1}-X_{2,1}|^{q})n\log{p}}}\to 2\quad\text{a.s.} (26)
Proof.

Reviewing the proof of Theorem 2.1, Theorem 4.1 follows from changing ηijk\eta_{ijk} to

ηijk=|Xi,kXj,k|qE(|X1,1X2,1|q)Var(|X1,1X2,1|q).\eta_{ijk}=\frac{|X_{i,k}-X_{j,k}|^{q}-E\left(|X_{1,1}-X_{2,1}|^{q}\right)}{\sqrt{\mathrm{Var}(|X_{1,1}-X_{2,1}|^{q})}}.

It is obvious that

max1i<jpk=1nηijk=Mn,qqnE(|X1,1X2,1|q)Var(|X1,1X2,1|q).\max_{1\leq i<j\leq p}\sum_{k=1}^{n}\eta_{ijk}=\frac{M_{n,q}^{q}-nE\left(|X_{1,1}-X_{2,1}|^{q}\right)}{\sqrt{\mathrm{Var}(|X_{1,1}-X_{2,1}|^{q})}}.

Then, the proof of Theorem 4.1 is completed. ∎

By Theorem 2.2 and the same method as above, we obtain the following result.

Theorem 4.2.

Assume

(i)Eet0|X1,1|qα<for some 0<α1/2,t0>0;\displaystyle(i)\ Ee^{t_{0}|X_{1,1}|^{q\alpha}}<\infty\ \text{for some}\ 0<\alpha\leq 1/2,\ t_{0}>0;
(ii)logp=o(nα2α);\displaystyle(ii)\ \log{p}=o\left(n^{\frac{\alpha}{2-\alpha}}\right);
(iii)Corr(|X1,1X2,1|2,|X1,1X3,1|2)<1/3.\displaystyle(iii)\ \mathrm{Corr}(|X_{1,1}-X_{2,1}|^{2},|X_{1,1}-X_{3,1}|^{2})<1/3.

Then, (26) holds as \to\infty.

4.2 Simulation resluts

In this section, we carry out a Monte Carlo simulation on the law of logarithm for the maximum interpoint distance MnM_{n} discussed in the previous section, to illustrate the validity of our results. We assume that {Xi,k;1ip,1kn}\{X_{i,k};1\leq i\leq p,1\leq k\leq n\} are i.i.d. N(0,1)N(0,1)-distributed random variables. For each Monte Carlo iteration, we calculate the value of

z=Mn22n22nlogp.z=\frac{M_{n}^{2}-2n}{2\sqrt{2n\log{p}}}.

In our simulation, we perform K=300K=300 Monte Carlo iterations and work on four different combinations of (p,n)(p,n) with (p,n)(p,n)=(150, 100), (p,n)(p,n)=(200, 200), (p,n)(p,n)=(500, 250), and (p,n)(p,n)=(600, 400). Figures 1 and 2 present scatter diagrams that compare the values of zz and 2. The observed results indicate that the value of zz are uniformly distributed around 2, with no discernible bias between the scatter plots and 2, a trend accentuated by the substantial values of both pp and nn. This outcome serves as a compelling illustration of the validity of the results derived from the law of logarithm for the maximum interpoint distance MnM_{n}. The systematic exploration of various (p,n)(p,n) combinations enriches the understanding of the behavior of zz in the context of this simulation, adding depth and credibility to the findings.

Refer to caption
Refer to caption
Figure 1: Scatter diagrams corresponding to (n,p)=(150,100)(n,p)=(150,100) for the left picture and (n,p)=(200,200)(n,p)=(200,200) for the right. The straight line is z=2z=2.
Refer to caption
Refer to caption
Figure 2: Scatter diagrams corresponding to (n,p)=(500,250)(n,p)=(500,250) for the left picture and (n,p)=(600,400)(n,p)=(600,400) for the right. The straight line is z=2z=2.

Acknowledgements

The authors thank anonymous reviewers for giving valuable comments and suggestions in improving the manuscript. This paper was supported by National Natural Science Foundation of China (Grant No. 11771178, 12171198); the Science and Technology Development Program of Jilin Province (Grant No. 20210101467JC); Technology Program of Jilin Educational Department during the ”14th Five-Year” Plan Period (Grant No. JJKH20241239KJ) and Fundamental Research Funds for the Central Universities.

References

  • [1] Appel, M. J., Russo, R. P.: Limiting distributions for the maximum of a symmetric function on a random point set. J. Theor. Probab., 19(2), 365–375 (2006)
  • [2] Appel, M. J. B., Najim, C. A., Russo, R. P.: Limit laws for the diameter of a random point set. Adv. Appl. Probab., 34(1), 1–10 (2002)
  • [3] Arratia, R., Goldstein, L., Gordon, L.: Two moments suffice for Poisson approximations: the Chen-Stein method. Ann. Probab., 17, 9–25 (1989)
  • [4] Demichel, Y., Fermin, A. K., Soulier, P.: The diameter of an elliptical cloud. Electron. J. Probab., 20(27), 1–32 (2015)
  • [5] Ding, X.: Strong limit theorem for largest entry of large-dimensional random tensor. Random Matrices Theory Appl., doi: 10.1142 (2023)
  • [6] Heiny, J., Kleemann, C.: Maximum interpoint distance of high-dimensional random vectors. arXiv: 2302.06965 (2023)
  • [7] Henze, N., Klein, T.: The limit distribution of the largest interpoint distance from a symmetric kotz sample. J. Multivariate Anal., 57(2), 228–239 (1996)
  • [8] Henze, N., Lao, W.: The limit distribution of the largest interpoint distance for power-tailed spherically decomposable distributions and their affine images. Preprint, Karlsruhe Institute of Technology, (2010)
  • [9] Jammalamadaka, S. R., Janson, S.: Asymptotic distribution of the maximum interpoint distance in a sample of random vectors with a spherically symmetric distribution. Ann. Appl. Probab., 25(6), 3571–3591 (2015)
  • [10] Jiang, T.: The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab., 14(2), 865–880 (2004)
  • [11] Lao, W.: Some weak limit laws for the diameter of random point sets in bounded regions, KIT Scientific Publishing, Karlsruhe, 2010
  • [12] Li, D., Rosalsky A.: Some strong limit theorems for the largest entries of sample correlation matrices. Ann. Appl. Probab., 16, 423–447 (2006)
  • [13] Li, J.: Asymptotic distribution-free change-point detection based on interpoint distances for high-dimensional data. J. Nonparametr. Stat., 32(1), 157–184 (2020)
  • [14] Linnik, J. V.: On the probability of large deviations for sums of independent variables. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., pp. 289–306 (1961)
  • [15] Matthews, P. C., Rukhin A. L.: Asymptotic distribution of the normal sample range. Ann. Appl. Probab., 3, 454–466 (1993)
  • [16] Mayer, M., Molchanov, I.: Limit theorems for the diameter of a random sample in the unit ball. Extremes, 10(3), 129–150 (2007)
  • [17] Modarres, R.: Multinomial interpoint distances. Statist. Papers, 59(1), 341–360 (2018)
  • [18] Modarres, R., Song, Y.: Interpoint distances: applications, properties, and visualization. Appl. Stoch. Models Bus. Ind., 36(6), 1147–1168 (2020)
  • [19] Schrempp, M.: The limit distribution of the largest interpoint distance for distributions supported by a dd-dimensional ellipsoid and generalizations. Adv. Appl. Probab., 48(4), 1256–1270 (2015)
  • [20] Schrempp, M.: Limit laws for the diameter of a set of random points from a distribution supported by a smoothly bounded set. Extremes, 22(1), 167–191 (2019)
  • [21] Song, Y., Modarres, R.: Interpoint distance test of homogeneity for multivariate mixture models. Int. Stat. Rev., 87(3), 613–638 (2019)
  • [22] Tang, P., Lu, R., Xie, J.: Asymptotic distribution of the maximum interpoint distance for high-dimensional data. Statist. Probab. Lett., 190, 109567 (2022)
  • [23] Zaĭtsev, A. Y.: On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein’s inequality conditions. Probab. Theory Related Fields, 74(4), 535–566 (1987)