This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lattice dynamics with molecular Berry curvature: chiral optical phonons

Daniyar Saparov Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA    Bangguo Xiong Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA    Yafei Ren [email protected] Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA    Qian Niu Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA ICQD/HFNL and School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
Abstract

Under the Born-Oppenheimer approximation, the electronic ground state evolves adiabatically and can accumulate geometrical phases characterized by the molecular Berry curvature. In this work, we study the effect of the molecular Berry curvature on the lattice dynamics in a system with broken time-reversal symmetry. The molecular Berry curvature is formulated based on the single-particle electronic Bloch states. It manifests as a non-local effective magnetic field in the equations of motion of the ions that are beyond the widely adopted Raman spin-lattice coupling model. We employ the Bogoliubov transformation to solve the quantized equations of motion and to obtain phonon polarization vectors. We apply our formula to the Haldane model on a honeycomb lattice and find a large molecular Berry curvature around the Brillouin zone center. As a result, the degeneracy of the optical branches at this point is lifted intrinsically. The lifted optical phonons show circular polarizations, possess large phonon Berry curvature, and have a nearly quantized angular momentum that modifies the Einstein-de Haas effect.

I Introduction

The Born-Oppenheimer approximation assumes an adiabatic evolution of electronic states following motion of the ions HuangBook . During the evolution, the electronic ground state can accumulate nontrivial geometrical phase in the absence of time-reversal symmetryMeadTruhlar ; MeadTruhlarRMP . The influence of this phase on the ion’s dynamics was discussed first by Mead and Truhlar in moleculesMeadTruhlar , which was later identified as an electronic Berry phase with respect to the ion’s displacement MeadTruhlarRMP and dubbed as a molecular Berry phaseNameMBC . In magnetic molecules, the molecular Berry phase can induce vibration modes with nonzero angular momentum ChiralMolecule .

In a periodic lattice, the molecular Berry curvature associated with this phase can influence directly the lattice dynamics and therefore the properties of the phonons TQin2012 ; Qin2011 ; Qi11 ; PhononVisco_16 ; PhononHallVisco_Optical_19 ; PhononMagnetoChiral_20 ; PhononChiralAnomaly_17 ; PhononHelicity_Electronic_21 . In the long-wavelength limit, this Berry curvature manifests as a Hall viscosity Qi11 ; PhononVisco_16 ; PhononHallVisco_Optical_19 that can modify the dispersion, polarization, and transport properties of the long-wavelength phonons TQin2012 ; Qin2011 ; PhononMagnetoChiral_20 ; PhononChiralAnomaly_17 . By considering a finite overlap between electronic wavefunctions on neighboring sites, a recent work studied the molecular Berry curvature induced by a magnetic field BB in a nonmagnetic insulator in the linear order of BB Saito2019 . However, the molecular Berry curvature in a Bloch system without a uniform magnetic field has not been explicitly studied Price2014 . A Bloch-wavefunction-based formula of the molecular Berry curvature is highly desired DFTthermalHall .

In this work, we explore the effect of molecular Berry curvature on the lattice dynamics in the absence of a uniform magnetic field. In an electronic system that breaks the time-reversal symmetry and respects the translational symmetry we formulate the molecular Berry curvature by using single-particle Bloch wavefunctions and assuming the many-body electronic ground state as a Slater determinant. The molecular Berry curvature influences the lattice dynamics as an effective magnetic field, which however is nonlocal. We then employ the Bogoliubov transformation to solve the quantized equation of motions and to obtain the spectrum and polarization vector of the phonons.

We apply the formula to the Haldane model of a honeycomb lattice. The molecular Berry curvature exhibits a peak value at the Brillouin zone center. The peak value depends strongly on the electronic band gap and the electronic band topology. The narrow distribution of the molecular Berry curvature in momentum space indicates that, in real space, one atom can be influenced by the velocity of another atom far away. With the molecular Berry curvature, the double degeneracy of the optical phonons at the Brillouin zone center is lifted intrinsically, in contrast to the splitting induced extrinsically by the magnetic field PhononMagnetization_20 ; PhononMagPbTe ; Phonon_Spin_20 ; Phonon_OrbitMoment_19 ; Cong_20 ; Dong_Niu_18 ; OrbMag_Adiabatic_19 ; PhononMag . The polarization vectors become left and right-handed, separately, which carry nonzero angular momenta contributing to a nonzero zero-point angular momentum of the lattice vibration LZhang2014 . The phonon modes also carry nonzero phonon Berry curvature and contribute to the phonon thermal Hall effect, which attracts much attention in experiments recently Strohm2005 ; Inyushkin2007 ; PHE_SpinLiquid_Exp_17 ; ChiralPhononCuprate_NP_20 .

II MOLECULAR BERRY CURVATURE AND PHONON POLARIZATION

II.1 Molecular Berry curvature

Under the Born-Oppenheimer approximation, electrons stay at their instantaneous ground state |Φ0({𝑹})|\Phi_{0}(\{\bm{R}\})\rangle at a given time with lattice configuration {𝑹}\{\bm{R}\}. When the lattice configuration evolves, the electronic ground state evolves adiabatically and accumulates a geometrical phase, which in turn can modify the lattice dynamics. The geometrical phase manifests itself as a gauge field 𝑨l,κ\bm{A}_{l,\kappa} in the lattice Hamiltonian (it was originally reported by Mead and Truhlar MeadTruhlar and an alternative derivation is shown in Appendix A)

HL=l,κ12Mκ(𝒑l,κ𝑨l,κ({𝑹}))2+Veff({𝑹})\displaystyle H_{L}=\sum_{l,\kappa}\frac{1}{2M_{\kappa}}\left(\bm{p}_{l,\kappa}-\hbar\bm{A}_{l,\kappa}(\{\bm{R}\})\right)^{2}+V_{\text{eff}}(\{\bm{R}\}) (1)

where 𝒑l,κ=il,κ\bm{p}_{l,\kappa}=-i\hbar\bm{\nabla}_{l,\kappa} with l,κ=/𝑹l,κ\bm{\nabla}_{l,\kappa}=\partial/\partial\bm{R}_{l,\kappa} is the canonical momentum of the κ\kappa-th atom at the ll-th unit cell with a coordinate 𝑹l,κ\bm{R}_{l,\kappa} and a mass MκM_{\kappa}. The scalar potential Veff({𝑹})V_{\rm eff}(\{\bm{R}\}) is contributed from the Coulomb interaction of the ions and the electrons whereas the vector potential 𝑨l,κ({𝑹})=iΦ0({𝑹})|l,κΦ0({𝑹})\bm{A}_{l,\kappa}(\{\bm{R}\})=i\langle\Phi_{0}(\{\bm{R}\})|\bm{\nabla}_{l,\kappa}\Phi_{0}(\{\bm{R}\})\rangle is the molecular Berry connection that describes the geometrical phase of the electronic ground state. Although the molecular Berry connection is gauge dependent, it can give rise to a gauge invariant molecular Berry curvature TQin2012 ; DXiao2010

Gκβκα(𝑹l,𝑹l)=2ImΦ0Rl,κβ|Φ0Rl,κα\displaystyle G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}_{l},\bm{R}_{l^{\prime}})=2\text{Im}\Big{\langle}\frac{\partial\Phi_{0}}{\partial R_{l^{\prime},\kappa^{\prime}\beta}}\Big{|}\frac{\partial\Phi_{0}}{\partial R_{l,\kappa\alpha}}\Big{\rangle} (2)

where the indices α,β\alpha,\beta represent the Cartesian components of the coordinates. One can proceed further under the assumption that every lattice point vibrates around its equilibrium position with {𝑹}={𝑹l,κ0+𝒖l,κ,l=1,,N;κ=1,,r}\{\bm{R}\}=\{\bm{R}^{0}_{l,\kappa}+\bm{u}_{l,\kappa},l=1,\dots,N;\kappa=1,\dots,r\} where the equilibrium position 𝑹l,κ0𝑹l0+𝒅κ\bm{R}^{0}_{l,\kappa}\equiv\bm{R}^{0}_{l}+\bm{d}_{\kappa} with 𝑹l0\bm{R}^{0}_{l} being the equilibrium position of the ll-th unit cell, 𝒅κ\bm{d}_{\kappa} being the relative position of the κ\kappa-th ion, and 𝒖l,κ\bm{u}_{l,\kappa} being its displacement. At the equilibrium configuration, the Berry curvature Gκβκα(𝑹l,𝑹l)G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}_{l},\bm{R}_{l^{\prime}}) exhibits translational symmetry that depends on 𝑹l0𝑹l0\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}} only.

In the following, we consider a symmetric gauge Holz1972 , which exists near the equilibrium position as shown in Appendix B, such that

Al,κα=12κ,β,lGκβκα(𝑹l0𝑹l0)ul,κβ.\displaystyle A_{l,\kappa\alpha}=-\frac{1}{2}\sum_{\kappa^{\prime},\beta,l^{\prime}}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})u_{l^{\prime},\kappa^{\prime}\beta}. (3)

By taking the advantage of the translational invariance, we express the lattice Hamiltonian in momentum space

HL=\displaystyle H_{L}= 𝒌,κ12Mκ[𝒑κ(𝒌)𝑨κ(𝒌)][𝒑κ(𝒌)𝑨κ(𝒌)]\displaystyle\sum_{\bm{k},\kappa}\frac{1}{2M_{\kappa}}\left[\bm{p}_{\kappa}(-\bm{k})-\hbar\bm{A}_{\kappa}(-\bm{k})\right]\left[\bm{p}_{\kappa}(\bm{k})-\hbar\bm{A}_{\kappa}(\bm{k})\right]
+Veff({𝒖(𝒌)})\displaystyle+V_{\text{eff}}\left(\{\bm{u}(\bm{k})\}\right) (4)

where the momentum-space Berry connection

Aκα(𝒌)1NlAl,καei𝒌𝑹l0=12κ,βGκβκα(𝒌)uκβ(𝒌)\displaystyle{A}_{\kappa\alpha}(\bm{k})\doteq\frac{1}{\sqrt{N}}\sum_{l}{A}_{l,\kappa\alpha}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}=-\frac{1}{2}\sum_{\kappa^{\prime},\beta}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k})u_{\kappa^{\prime}\beta}(\bm{k})

with

𝒖κ(𝒌)\displaystyle\bm{u}_{\kappa}({\bm{k}}) =1Nl𝒖l,κei𝒌𝑹l0\displaystyle=\frac{1}{\sqrt{N}}\sum_{l}\bm{u}_{l,\kappa}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}} (5)
𝒑κ(𝒌)\displaystyle\bm{p}_{\kappa}({\bm{k}}) =1Nl𝒑l,κei𝒌𝑹l0\displaystyle=\frac{1}{\sqrt{N}}\sum_{l}\bm{p}_{l,\kappa}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}
Gκβκα(𝒌)\displaystyle G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k}) =1NllGκβκα(𝑹l0𝑹l0)ei𝒌(𝑹l0𝑹l0).\displaystyle=\frac{1}{N}\sum_{l}\sum_{l^{\prime}}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})e^{-i\bm{k}\cdot(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})}.

We further express the momentum-space molecular Berry curvature in a gauge invariant form by employing a set of many-body wavefunction {|Φn}\{|\Phi_{n}\rangle\} with the completeness relation n|ΦnΦn|=1\sum_{n}|\Phi_{n}\rangle\langle\Phi_{n}|=1 and associated eigenenergy EnE_{n}. By using the identity Φn|𝒌,κα|Φn=Φnu𝒌,κα|Φn(EnEn)\langle\Phi_{n}|\mathcal{M}_{\bm{k},\kappa\alpha}|\Phi_{n^{\prime}}\rangle=\langle\frac{\partial\Phi_{n}}{\partial u_{-\bm{k},\kappa\alpha}}|\Phi_{n^{\prime}}\rangle(E_{n}-E_{n^{\prime}}) for nnn^{\prime}\neq n, the molecular Berry curvature reads

Gκβκα(𝒌)\displaystyle G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k}) =in0[Φ0|𝒌,κα|ΦnΦn|𝒌,κβ|Φ0(EnE0)2]\displaystyle=i\sum_{n\neq 0}\left[\frac{\langle\Phi_{0}|\mathcal{M}_{\bm{k},\kappa\alpha}|\Phi_{n}\rangle\langle\Phi_{n}|\mathcal{M}_{-\bm{k},\kappa^{\prime}\beta}|\Phi_{0}\rangle}{(E_{n}-E_{0})^{2}}\right]
{𝒌,κα𝒌,κβ}\displaystyle-\{\mathcal{M}_{\bm{k},\kappa\alpha}\leftrightarrow\mathcal{M}_{-\bm{k},\kappa^{\prime}\beta}\} (6)

where E0E_{0} is the energy of the electronic ground state, EnE_{n} is for the excited states, 𝒌,κα=Heu𝒌,κα|u𝒌,κα0\mathcal{M}_{\bm{k},\kappa\alpha}=\frac{\partial H_{e}}{\partial u_{-\bm{k},\kappa\alpha}}|_{u_{-\bm{k},\kappa\alpha}\rightarrow 0} represents the electron-phonon coupling with HeH_{e} being the electronic Hamiltonian that depends on the atomic coordinates. By further taking {|Φn}\{|\Phi_{n}\rangle\} as Slater determinant, the above formula can be expressed in terms of single-particle Bloch wavefunctions as detailed in Appendix D. This expression can readily be applied to a specific model using the first-principles approach.

II.2 Phonon Polarization Vectors

We further simplify the notation by normalizing the coordinates and expressing the Hamiltonian in terms of matrices. We first define column vectors p𝒌=(pκα(𝒌)/Mκ)Tp_{\bm{k}}=\left(\dots p_{\kappa\alpha}(\bm{k})/\sqrt{M_{\kappa}}\dots\right)^{T} and u𝒌=(Mκuκα(𝒌))Tu_{\bm{k}}=\left(\dots\sqrt{M_{\kappa}}u_{\kappa\alpha}(\bm{k})\dots\right)^{T}. For the two dimensional system studied in this work, there are 2r2r elements. We also define the matrix G~𝒌\tilde{G}_{\bm{k}} with elements G~𝒌(κα,κβ)=2MκMκGκβκα(𝒌)\tilde{G}_{\bm{k}}(\kappa\alpha,\kappa^{\prime}\beta)=\frac{\hbar}{2\sqrt{M_{\kappa}M_{\kappa^{\prime}}}}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k}) (see Appendix E). By expressing the potential energy in a quadratic form Callaway1991 Veff({𝒖(𝒌)})=12u𝒌K𝒌u𝒌V_{\text{eff}}\left(\{\bm{u}(\bm{k})\}\right)=\frac{1}{2}u_{\bm{k}}^{\dagger}K_{\bm{k}}u_{\bm{k}}, the lattice Hamiltonian reads

HL\displaystyle H_{L} =𝒌12(u𝒌p𝒌)(D𝒌G~𝒌G~𝒌𝟙)(u𝒌p𝒌)\displaystyle=\sum_{\bm{k}}\frac{1}{2}\left(\begin{matrix}u_{\bm{k}}\\ p_{\bm{k}}\end{matrix}\right)^{\dagger}\left(\begin{matrix}D_{\bm{k}}&\tilde{G}^{\dagger}_{\bm{k}}\\ \tilde{G}_{\bm{k}}&\mathbb{1}\end{matrix}\right)\left(\begin{matrix}u_{\bm{k}}\\ p_{\bm{k}}\end{matrix}\right) (7)

where D𝒌=K𝒌+G~𝒌G~𝒌D_{\bm{k}}=K_{\bm{k}}+\tilde{G}^{\dagger}_{\bm{k}}\tilde{G}_{\bm{k}}. It is noted that D𝒌D_{\bm{k}} here is different from that in Ref. TQin2012, . The corresponding canonical equations of motion are Kittel1987 :

(u˙𝒌p˙𝒌)=(HLp𝒌HLu𝒌)=(G~𝒌𝟙D𝒌G~𝒌)(u𝒌p𝒌).\displaystyle\left(\begin{matrix}\dot{u}_{\bm{k}}\\ \dot{p}_{\bm{k}}\end{matrix}\right)=\left(\begin{matrix}\frac{\partial H_{L}}{\partial{p}_{-\bm{k}}}\\ -\frac{\partial H_{L}}{\partial u_{-\bm{k}}}\end{matrix}\right)=\left(\begin{matrix}\tilde{G}_{\bm{k}}&\mathbb{1}\\ -D_{\bm{k}}&\tilde{G}_{\bm{k}}\end{matrix}\right)\left(\begin{matrix}u_{\bm{k}}\\ p_{\bm{k}}\end{matrix}\right). (8)

We then introduce the canonical transformation

u𝒌\displaystyle u_{\bm{k}} =νω0(γνb𝒌,ν+γνb𝒌,ν)\displaystyle=\sum_{\nu}\sqrt{\frac{\hbar}{\omega_{0}}}\left(\gamma^{*}_{\nu}b^{\dagger}_{-\bm{k},\nu}+\gamma_{\nu}b_{\bm{k},\nu}\right) (9)
p𝒌\displaystyle p_{\bm{k}} =νiω0(γ¯νb𝒌,νγ¯νb𝒌,ν)\displaystyle=\sum_{\nu}i\sqrt{\hbar\omega_{0}}\left(\bar{\gamma}^{*}_{\nu}b^{\dagger}_{-\bm{k},\nu}-\bar{\gamma}_{\nu}b_{\bm{k},\nu}\right) (10)

to diagonalize the Hamiltonian as

HL=𝒌,νω𝒌,ν(b𝒌,νb𝒌,ν+12)\displaystyle H_{L}=\sum_{\bm{k},\nu}\hbar\omega_{\bm{k},\nu}\left(b^{\dagger}_{\bm{k},\nu}b_{\bm{k},\nu}+\frac{1}{2}\right) (11)

where b𝒌,νb^{\dagger}_{-\bm{k},\nu} and b𝒌,νb_{\bm{k},\nu} are the creation and annihilation operators of the phonon modes. These operators are constrained by the commutation relation [b𝒌,ν,b𝒌,ν]=δ𝒌,𝒌δν,ν[b_{\bm{k},\nu},b^{\dagger}_{\bm{k}^{\prime},\nu^{\prime}}]=\delta_{\bm{k},\bm{k}^{\prime}}\delta_{\nu,\nu^{\prime}} and the Heisenberg equations of motion

b˙𝒌,ν\displaystyle\dot{b}_{\bm{k},\nu} =iω𝒌,νb𝒌,ν\displaystyle=-i\omega_{\bm{k},\nu}b_{\bm{k},\nu} (12)
b˙𝒌,ν\displaystyle\dot{b}^{\dagger}_{-\bm{k},\nu} =iω𝒌,νb𝒌,ν.\displaystyle=i\omega_{-\bm{k},\nu}b^{\dagger}_{-\bm{k},\nu}.

Assisted by these identities, the phonon energy ω𝒌,ν\omega_{\bm{k},\nu} and the polarization vector ψν=(γν,γ¯ν)T\psi_{\nu}=\left(\begin{matrix}\gamma_{\nu},\bar{\gamma}_{\nu}\end{matrix}\right)^{T} need to satisfy the eigenvalue equation

ω𝒌,νψν=(iG~𝒌ω0D𝒌ω0iG~𝒌)ψν\displaystyle\omega_{\bm{k},\nu}\psi_{\nu}=\left(\begin{matrix}i\tilde{G}_{\bm{k}}&\omega_{0}\\ \frac{D_{\bm{k}}}{\omega_{0}}&i\tilde{G}_{\bm{k}}\end{matrix}\right)\psi_{\nu} (13)

which can be obtained by substituting Eqs. (9) and (10) into Eq. (8). The eigenvalues show particle-hole symmetry like property Qin2011 , i.e., ων,𝒌=ων,𝒌\omega_{\nu,\bm{k}}=-\omega_{-\nu,-\bm{k}}. Only the positive branches are physically allowed since only the wavefunctions for those branches can make the commutation relation [b𝒌,ν,b𝒌,ν]=δ𝒌,𝒌δν,ν[b_{\bm{k},\nu},b^{\dagger}_{\bm{k}^{\prime},\nu^{\prime}}]=\delta_{\bm{k},\bm{k}^{\prime}}\delta_{\nu,\nu^{\prime}} valid with the normalization condition ψνσxψν=1\psi_{\nu}^{\dagger}\sigma_{x}\psi_{\nu}=1.

One can transform the non-Hermitian problem to a Hermitian one. By multiplying Eq. (13) with σx\sigma_{x} from left, one can find that

ω𝒌,νσxψν=Ω𝒌ψν\displaystyle\omega_{\bm{k},\nu}\sigma_{x}\psi_{\nu}=\Omega_{\bm{k}}\psi_{\nu} (14)

with the Hermitian matrix

Ω𝒌=(D𝒌ω0iG~𝒌iG~𝒌ω0).\displaystyle\Omega_{\bm{k}}=\left(\begin{matrix}\frac{D_{\bm{k}}}{\omega_{0}}&-i\tilde{G}_{\bm{k}}^{\dagger}\\ i\tilde{G}_{\bm{k}}&\omega_{0}\end{matrix}\right).

Multiplying Eq. (14) with Ω𝒌12σx\Omega_{\bm{k}}^{\frac{1}{2}}\sigma_{x} from left side and introducing a new set of eigenstates ψ~ν=Ω𝒌12ψν\tilde{\psi}_{\nu}=\Omega_{\bm{k}}^{\frac{1}{2}}\psi_{\nu}, where Ω𝒌12\Omega_{\bm{k}}^{\frac{1}{2}} is also Hermitian, we come to a Hermitian eigenvalue problem as

ω𝒌,νψ~ν=Ω𝒌1/2σxΩ𝒌1/2ψ~ν=Heffψ~ν\displaystyle\omega_{\bm{k},\nu}\tilde{\psi}_{\nu}=\Omega_{\bm{k}}^{1/2}\sigma_{x}\Omega_{\bm{k}}^{1/2}\tilde{\psi}_{\nu}=H_{\text{eff}}\tilde{\psi}_{\nu} (15)

where the effective Hamiltonian Heff{H}_{\text{eff}} is Hermitian.

III Lattice dynamics in HALDANE MODEL

III.1 Electronic Model and Molecular Berry curvature

In this section, we present a case study on the dynamics of the honeycomb lattice. In the harmonic approximation, the atoms are considered connected by springs with longitudinal and transverse spring constants KLK_{L} and KTK_{T}, respectively. Details of this model can be found in Appendix E.

Refer to caption
Figure 1: (a) Electronic band structure represented in the Brillouin zone. Gap openings at the KK and KK^{\prime} points are due to broken time-reversal symmetry. (b) Real part of the electronic contribution to the molecular Berry curvature GAyAxG^{Ax}_{Ay} at the k=0k=0 limit (Γ\Gamma point). (c) Real part of the molecular Berry curvature GAyAxG^{Ax}_{Ay} in the phonon Brillouin zone. Largest electronic contributions come from the KK and KK^{\prime} points (see FIG. 1b). (d) Dependence of the peak of the Berry curvature GAyAx(𝒌=0)G^{Ax}_{Ay}(\bm{k}=0) on the lattice parameters dt,t\partial_{d}t,t, and tt^{\prime}.

The time-reversal symmetry is broken by the electronic property described by the Haldane model Haldane1988 with a tight-binding Hamiltonian

He=\displaystyle H_{e}= i,jtaibj+h.c.\displaystyle-\sum_{\langle i,j\rangle}ta_{i}^{\dagger}b_{j}+\text{h.c.} (16)
i,jteiϕijaiaji,jteiϕijbibj\displaystyle-\sum_{\langle\langle i,j\rangle\rangle}t^{\prime}e^{i\phi_{ij}}a_{i}^{\dagger}a_{j}-\sum_{\langle\langle i,j\rangle\rangle}t^{\prime}e^{-i\phi_{ij}}b_{i}^{\dagger}b_{j}
=\displaystyle= 𝒒(a𝒒b𝒒)(𝒒)(a𝒒b𝒒)\displaystyle\sum_{\bm{q}}\left(\begin{matrix}a^{\dagger}_{\bm{q}}&b^{\dagger}_{\bm{q}}\end{matrix}\right)\mathcal{H}(\bm{q})\left(\begin{matrix}a_{\bm{q}}\\ b_{\bm{q}}\end{matrix}\right)

where aia_{i} (aia_{i}^{\dagger}) and bib_{i} (bib_{i}^{\dagger}) are electron creation (annihilation) operators of AA and BB sublattices respectively in the ii-th unit cell. The first line represents the nearest neighbor hopping with the hopping energy tt while the second line represents the next-nearest neighbor hopping with a flux ϕij\phi_{ij} attached to it. We set ϕij=±π/2\phi_{ij}=\pm\pi/2 for clockwise/anti-clockwise hoppings. The lattice Hamiltonian can also be expressed in momentum space with kernel (𝒒)\mathcal{H}(\bm{q}) and 𝒒\bm{q} running over the first Brillouin zone. The single-particle Bloch eigenstates for the conduction and valence bands are denoted as ϕ𝒒c,v\phi^{c,v}_{\bm{q}} with corresponding eigen-energies ε𝒒c,v\varepsilon^{c,v}_{\bm{q}}. The Bloch bands are plotted in Fig. 1(a).

The phonons couple to the electronic system through the dependence of the hopping energies tt and tt^{\prime} on the lattice displacement {𝒖}\{\bm{u}\}. The nearest-neighbor hopping energy tt depends on the relative distance dd between the two atoms. When the inter-atomic distance changes by δd\delta d due to atomic displacement, tt changes by dtδd\partial_{d}t\delta d. Here we set tt^{\prime} as a constant for simplicity.

In this work, we consider the electronic insulating system with the lower Bloch band being completely filled. In the non-interacting case, the many-body ground state |Φ0|\Phi_{0}\rangle and the excited one |Φn|\Phi_{n}\rangle can be expressed as the Slater determinant of single-particle states. One thus can calculate the Berry curvature shown in Eq. 6 by using the single-particle states. We can take the Berry curvature induced by the motion of A sublattices along xx and yy directions as an example, which can be expressed as

GAyAx(𝒌)=iN𝒒[ϕ𝒒v𝒌,Axϕ𝒒+𝒌c][ϕ𝒒+𝒌c𝒌,Ayϕ𝒒v](ε𝒒+𝒌cε𝒒v)2\displaystyle G^{Ax}_{Ay}(\bm{k})=\frac{i}{N}\sum_{\bm{q}}\frac{\left[{\phi}^{v\dagger}_{\bm{q}}\mathcal{M}_{\bm{k},Ax}\phi^{c}_{\bm{q}+\bm{k}}\right]\left[{\phi}^{c\dagger}_{\bm{q}+\bm{k}}\mathcal{M}_{\bm{-k},Ay}\phi^{v}_{\bm{q}}\right]}{(\varepsilon^{c}_{\bm{q}+\bm{k}}-\varepsilon^{v}_{\bm{q}})^{2}}
iN𝒒[ϕ𝒒+𝒌v𝒌,Ayϕ𝒒c][ϕ𝒒c𝒌,Axϕ𝒒+𝒌v](ε𝒒cε𝒒+𝒌v)2\displaystyle~{}~{}~{}-\frac{i}{N}\sum_{\bm{q}}\frac{\left[{\phi}^{v\dagger}_{\bm{q}+\bm{k}}\mathcal{M}_{\bm{-k},Ay}\phi^{c}_{\bm{q}}\right]\left[{\phi}^{c\dagger}_{\bm{q}}\mathcal{M}_{\bm{k},Ax}\phi^{v}_{\bm{q}+\bm{k}}\right]}{(\varepsilon^{c}_{\bm{q}}-\varepsilon^{v}_{\bm{q}+\bm{k}})^{2}} (17)

where ±𝒌,Ax/Ay\mathcal{M}_{\bm{\pm k},Ax/Ay} represent the electron-phonon couplings as detailed in Appendix D that couple the electronic states with a momentum difference of 𝒌\bm{k}. In Fig. 1(b), we plot the contribution from each electronic momentum 𝒒\bm{q} to the molecular Berry curvature GAyAx(𝒌)G^{Ax}_{Ay}(\bm{k}) at 𝒌=0\bm{k}=0. This corresponds to the phonon induced virtual direct inter-band transition process with the peak contribution concentrating at KK and KK^{\prime} valley. The dependence of GAyAx(𝒌)G^{Ax}_{Ay}(\bm{k}) on 𝒌\bm{k} is plotted in Fig. 1(c) where one can find that the Berry curvature shows a peak at the phonon Brillouin zone center. By using reasonably realistic parameters, e.g., t=3t=3~{}eV, t=0.02t^{\prime}=0.02~{}eV, dt=1\partial_{d}t=1~{}eV/Å, we find that the peak of molecular Berry curvature corresponds to an effective magnetic field of 103\sim 10^{3}~{}Tesla. Thus, the effect of molecular Berry curvature can be large in materials with narrow electronic band gap, e.g., topological materials. In the small gap limit, we find an analytical formula for the peak value GAyAx(𝒌=0)=32πa2C(dt/t)2G^{Ax}_{Ay}(\bm{k}=0)=\frac{3}{2\pi a^{2}}C(\partial_{d}t/t)^{2} where CC is the Chern number of the system as plotted in the Fig. 1(d). It is noted that the molecular Berry curvature vanishes at KK and KK^{\prime} points due to the vanishing of the matrix elements in x,y\partial_{x,y}\mathcal{H} between conduction and valence bands at different valleys in this model.

The formula above can be adopted by the first principle calculation directly, which is thus essential for exploring the phonon Hall effect in magnetic materials. The GAyAxG^{Ax}_{Ay} is an analogy of the effective magnetic field in the Raman spin-lattice coupling model RamanSpinLattice ; Sheng2006 ; Kagan2008 ; LZhang ; PHE_Heff_Huber_16 ; PhononModelDiode . In the Raman spin-lattice coupling model, the motion of ul,Axu_{l,Ax} can only be influenced by u˙l,Ay\dot{u}_{l,Ay} on the same site. In contrast, the molecular Berry curvature distributes sharply around the Brillouin zone center. This distribution indicates that, by Fourier transforming back to the real space, the displacement ul,Axu_{l,Ax} can be influenced by the velocity u˙l,Ay\dot{u}_{l^{\prime},Ay} that is far away.

Moreover, the GG matrix also has off-diagonal blocks with nonzero matrix element GByAxG^{Ax}_{By}, which reflects the correlation between the motions of the A and the B atoms. The amplitude of this term is comparable with GAyAxG^{Ax}_{Ay} such that GAyAx=GByAxG^{Ax}_{Ay}=-G^{Ax}_{By} at 𝒌=0\bm{k}=0. The off-diagonal block is thus important, which was completely neglected in the traditional Raman spin-lattice coupling, and can lead to a gap opening of the degenerate acoustic bandsTQin2012 ; Qin2011 . Therefore, the molecular Berry curvature is a better choice to explore the influence of electronic states on phonons in a unified way.

Refer to caption
Figure 2: (a) Phonon spectrum in the presence of molecular Berry curvature. Gap opening of the optical bands (upper two bands) around the Γ\Gamma point is due to the effect of molecular Berry curvature, where δω=ΔKLM\delta\omega=\Delta\sqrt{\frac{K_{L}}{M}}. Here KL=103eV/Å2K_{L}=10^{-3}eV/{\textup{\AA}}^{2} is an in-plane longitudinal and KT=KL/4K_{T}=K_{L}/4 is an in-plane transfers effective spring constants. Inset: Two separate phonon modes corresponding to the frequency at the Γ\Gamma point. The upper phonon band (red color) corresponds to the circular vibrations of atoms in the clockwise direction, and the lower band (blue color) corresponds to the circular vibration in the counter-clockwise direction. The difference of energies of these two modes is δE=δω\delta E=\hbar\delta\omega. (b) Phonon Berry curvature of the upper optical band with the corresponding color plot. The upper and lower optical bands have corresponding Chern numbers of +1+1 and 1-1, respectively. Acoustic bands have zero Chern numbers.

III.2 Phonon spectrum and chiral optical phonons

Once the Berry curvature is calculated for our model we can find the phonon spectrum using Eq. (15). The result of the numerical calculation of this equation is presented in FIG. 2. In this figure, we can see a gap opening between the optical branches at the Γ\Gamma point. This band gap is proportional to the molecular Berry curvature. To show this relation, we employ the perturbation method since G~𝒌G~𝒌K𝒌\tilde{G}^{\dagger}_{\bm{k}}\tilde{G}_{\bm{k}}\ll K_{\bm{k}}. From Eq. (14), one can find that

ω𝒌,ν2γν=K𝒌γν+2iω𝒌,νG~𝒌γν.\displaystyle\omega^{2}_{\bm{k},\nu}\gamma_{\nu}=K_{\bm{k}}\gamma_{\nu}+2i\omega_{\bm{k},\nu}\tilde{G}_{\bm{k}}\gamma_{\nu}. (18)

The second term on the right hand side is treated as a perturbation. The unperturbed eigenvalues ω1,2\omega_{1,2} and eigenstates γ1,20\gamma^{0}_{1,2} for the optical branches at the Γ\Gamma point can be obtained from ω𝒌2γν0=K𝒌γν0\omega_{\bm{k}}^{2}\gamma^{0}_{\nu}=K_{\bm{k}}\gamma^{0}_{\nu}. The solutions are ω1,2=ωΓ\omega_{1,2}=\omega_{\Gamma} and γ10=ω04ωΓ(1010)T\gamma^{0}_{1}=\sqrt{\frac{\omega_{0}}{4\omega_{\Gamma}}}\left(\begin{matrix}1&0&-1&0\end{matrix}\right)^{T} and γ20=ω04ωΓ(0101)T\gamma^{0}_{2}=\sqrt{\frac{\omega_{0}}{4\omega_{\Gamma}}}\left(\begin{matrix}0&1&0&-1\end{matrix}\right)^{T}. In the presence of the perturbation, the general eigenstate can be expressed as a linear combination γ~=c1γ10+c2γ20\tilde{\gamma}=c_{1}\gamma^{0}_{1}+c_{2}\gamma^{0}_{2} with c1c_{1} and c2c_{2} being some constants to be determined. By expanding the phonon eigenvalue at the Γ\Gamma point to the first order as ω=ωΓ+δω\omega=\omega_{\Gamma}+\delta\omega, one can find that

δω(c1c2)=2iωΓω0(γ10G~𝒌γ10γ10G~𝒌γ20γ20G~𝒌γ10γ20G~𝒌γ20)(c1c2)\displaystyle\delta\omega\left(\begin{matrix}c_{1}\\ c_{2}\end{matrix}\right)=\frac{2i\omega_{\Gamma}}{\omega_{0}}\left(\begin{matrix}{\gamma^{0}_{1}}^{\dagger}\tilde{G}_{\bm{k}}\gamma^{0}_{1}&{\gamma^{0}_{1}}^{\dagger}\tilde{G}_{\bm{k}}\gamma^{0}_{2}\\ {\gamma^{0}_{2}}^{\dagger}\tilde{G}_{\bm{k}}\gamma^{0}_{1}&{\gamma^{0}_{2}}^{\dagger}\tilde{G}_{\bm{k}}\gamma^{0}_{2}\end{matrix}\right)\left(\begin{matrix}c_{1}\\ c_{2}\end{matrix}\right) (19)

where γi0γj0=ω02ωΓδij{\gamma^{0}_{i}}^{\dagger}\gamma^{0}_{j}=\frac{\omega_{0}}{2\omega_{\Gamma}}\delta_{ij} is employed. Since G~𝒌=G~𝒌\tilde{G}_{\bm{k}}^{\dagger}=-\tilde{G}_{\bm{k}}, the matrix on the right hand side is Hermitian. Thus the diagonal terms are zero. We find that, by setting c1=1/2c_{1}=1/\sqrt{2} and c2=±i/2c_{2}=\pm i/\sqrt{2}, the above matrix can be diagonalized with the phonon energy shifts δω=±MRe[G(𝒌=0)]\delta\omega=\pm\frac{\hbar}{M}\text{Re}\left[G(\bm{k}=0)\right]. Therefore, the optical phonons are split and the phonon polarizations become right- and left-handed polarized. The splitting of the phonon branches at the Brillouin zone center is expected to be observable in optical spectral experiments.

We would like to point out that, in the absence of the molecular Berry curvature, the dynamical matrix can be written as a real matrix at the Brillouin zone center. As a result, the phonons are always linearly polarized. In the presence of the molecular Berry curvature, however, phonons at the Γ\Gamma point become circularly polarized. This is different from the chiral phonon at the Brillouin zone corner, which has a degenerate state at the opposite momentum. Phonon_Chiral_AngularMom_Lifa_15

By using the phonon wavefunction, one can also define a phonon Berry connection and phonon Berry curvature LZhang . In Fig. 2(b), we plot the phonon Berry curvature along the high-symmetric line for the higher optical branch. Peaks appear at the points where the phonon polarization changes from circular around the Γ\Gamma point to linear away from that point. The phonon Berry curvature contributes to a nonzero Chern number 11. The Chern number for the lower optical branch is 1-1 whereas the acoustic branches have zero Chern numbers. Associated with the spectrum splitting, the Berry curvature of optical branches can also contribute to the thermal Hall effect Strohm2005 ; Inyushkin2007 ; PHE_SpinLiquid_Exp_17 ; ChiralPhononCuprate_NP_20 .

III.3 Phonon angular momentum

The circular polarization of phonons also give rise to non nonzero phonon angular momentum LZhang2014 that can be expressed as

𝑱ph=lα𝒖lα×𝒖˙lα.\displaystyle\bm{J}_{\text{ph}}=\sum_{l\alpha}\bm{u}_{l\alpha}\times\bm{\dot{u}}_{l\alpha}. (20)

For a 2-dimensional system, the vertical component of the angular momentum becomes Jzph=l,κ(ulκxu˙lκyulκyu˙lκx)J_{z}^{\text{ph}}=\sum_{l,\kappa}(u^{x}_{l\kappa}\dot{u}^{y}_{l\kappa}-u^{y}_{l\kappa}\dot{u}^{x}_{l\kappa}). It can also be written in a matrix product form

Jzph=𝒌u𝒌Lu˙𝒌=𝒌u𝒌L(p𝒌+G~𝒌u𝒌)\displaystyle J_{z}^{\text{ph}}=\sum_{\bm{k}}u^{\dagger}_{\bm{k}}L\dot{u}_{\bm{k}}=\sum_{\bm{k}}u^{\dagger}_{\bm{k}}L\left(p_{\bm{k}}+\tilde{G}_{\bm{k}}u_{\bm{k}}\right) (21)

where LL is a real 2r×2r2r\times 2r antisymmetric matrix for a system with rr atoms per unit cell. By using the second quantized expression for the canonical variables of atoms (Eqs. (9)-(10)), we calculate the angular momentum for each phonon branch (Fig. 3(a)). We find that the phonon angular momentum of both acoustic branches vanish whereas the circularly polarized optical branches are nearly quantized. This is in contrast with the phonon angular momentum obtained by using the Raman spin-lattice model which neglects the nonlocal effective magnetic field LZhang2014 ; RamanSpinLatticePhononL . In those calculations, the acoustic phonons at the Brillouin zone center split and can carry nonzero energy and nonzero angular momentum. The splitting of the acoustics bands is induced by breaking the Galilean translational symmetry due the Raman spin-lattice coupling term that meant to serve as an analogy to a uniformly charged lattice under a real magnetic field. This symmetry is respected by the molecular Berry curvature.

Refer to caption
Figure 3: (a) Contribution of each phonon band to the total phonon angular momentum, where l𝒌,νzl^{z}_{\bm{k},\nu} represents the angular momentum of each branch without the distribution, such that Jzph=𝒌Jz(𝒌)=𝒌,νl𝒌,νz(12+f(ω𝒌,ν))\langle J_{z}^{\text{ph}}\rangle=\sum_{\bm{k}}J^{z}(\bm{k})=\sum_{\bm{k},\nu}l^{z}_{\bm{k},\nu}\Big{(}\frac{1}{2}+f(\omega_{\bm{k},\nu})\Big{)} (b) Spectrum of total phonon angular momentum Jz(𝒌)J^{z}(\bm{k}) from all four branches in the limit T0KT\rightarrow 0K. (c) Phonon angular momentum of each unit cell in real space. The angular momentum vanishes in a classical limit TT\rightarrow\infty.

By summing over the angular momentum of all the phonon branches, we find a nonzero value as illustrated in Fig. 3(b). This indicates a finite zero-point lattice angular momentum in the zero temperature limit. At finite temperature, the thermal averaged phonon angular momentum is

Jzph=𝒌,νγνLγν(i2ω𝒌,νω0)(12+f(ω𝒌,ν)).\displaystyle\langle J_{z}^{\text{ph}}\rangle=-\sum_{\bm{k},\nu}\gamma^{\dagger}_{\nu}L\gamma_{\nu}\left(\frac{i2\hbar\omega_{\bm{k},\nu}}{\omega_{0}}\right)\Big{(}\frac{1}{2}+f(\omega_{\bm{k},\nu})\Big{)}. (22)

Here we used b𝒌,νb𝒌,μ=δμ,ν+b𝒌,μb𝒌,νb_{\bm{k},\nu}b^{\dagger}_{\bm{k},\mu}=\delta_{\mu,\nu}+b^{\dagger}_{\bm{k},\mu}b_{\bm{k},\nu}, b𝒌,μb𝒌,ν=b𝒌,μb𝒌,ν=0\langle b^{\dagger}_{\bm{k},\mu}b^{\dagger}_{\bm{k^{\prime}},\nu}\rangle=\langle b_{\bm{k},\mu}b_{\bm{k^{\prime}},\nu}\rangle=0 and b𝒌,μb𝒌,ν=f(ω𝒌,ν)δμ,ν\langle b^{\dagger}_{\bm{k},\mu}b_{\bm{k},\nu}\rangle=f(\omega_{\bm{k},\nu})\delta_{\mu,\nu}, where f(ω𝒌,ν)=1eβω𝒌,ν1f(\omega_{\bm{k},\nu})=\frac{1}{e^{\beta\hbar\omega_{\bm{k},\nu}}-1} is the Bose-Einstein distribution. In low temperature regime, the phonon angular momentum has a finite value as shown in Fig. 3(c). In this limit, an analytic expression for the phonon angular momentum at the Γ\Gamma point can be found by using the perturbative approximation as:

JzphΓ=2MωΓRe(G(𝒌=0))\displaystyle\langle J_{z}^{\text{ph}}\rangle_{\Gamma}=\frac{\hbar^{2}}{M\omega_{\Gamma}}\text{Re}\left(G(\bm{k}=0)\right) (23)

which is consistent with the numerical calculations of Eq. (22). As the temperature increases, the thermal averaged phonon angular momentum tends to go to zero. As TT\rightarrow\infty, Eq. (22) approximates to

Jzph=𝒌,νγνLγν(2ikBTω0+i2ωk,ν26ω0kBT)\displaystyle\langle J_{z}^{\text{ph}}\rangle=-\sum_{\bm{k},\nu}\gamma^{\dagger}_{\nu}L\gamma_{\nu}\left(\frac{2ik_{B}T}{\omega_{0}}+\frac{i\hbar^{2}\omega^{2}_{k,\nu}}{6\omega_{0}k_{B}T}\right) (24)

where the first term vanishes because νγνLγν=0\sum_{\nu}\gamma^{\dagger}_{\nu}L\gamma_{\nu}=0 (see Appendix G) and the second term decreases as 1/T1/T.

IV SUMMARY

We formulated the molecular Berry curvature by using the single-particle Bloch wavefunctions in the absence of a uniform magnetic field. We studied its effect on the lattice dynamics and thus phonons. The quantized equations of motion of the lattice are solved by using the Bogoliubov transformation. We applied our theory to the Haldane model of a honeycomb lattice. For this model, the molecular Berry curvature is narrowly distributed around the Brillouin zone center, which indicates that, in real space, the motion of an ion can be influenced by the velocity of another atom that is far away. This is different from the Lorentz force on the nuclei induced by a magnetic field as well as the widely adopted Raman spin-lattice coupling model. The molecular Berry curvature lifts the degeneracy of optical phonons at the Γ\Gamma point forming chiral phonons with left- and right-handed polarizations. These modes carry nonzero angular momentum and contribute to a nonzero total angular momentum in the low temperature limit and thus modify the Einstein-de Haas effect. These optical branches also carry nonzero phonon Berry curvature that can contribute to the thermal Hall effect.

ACKNOWLEDGEMENTS

This work was supported by NSF (EFMA-1641101). We would like thank Junren Shi, Di Xiao and Qiang Gao for helpful discussions.

APPENDIX

IV.1 Effective lattice Hamiltonian from the time-dependent variational principle

The state of electrons is governed by the time-dependent Schrödinger equation. By assuming a normalized condition, it can be derived from the time-dependent variational principle with Lagrangian e=Φ0|idtHe|Φ0\mathcal{L}_{\rm{e}}=\langle\Phi_{0}|i\hbar d_{t}-H_{\rm{e}}|\Phi_{0}\rangle by minimizing the action with respect to any variation of Φ0|\langle\Phi_{0}| in the bra space. Under the Born-Oppenheimer approximation, the electronic state lies at the instantaneous ground state of the Hamiltonian HeH_{e} that depends on the lattice configuration {𝑹}\{\bm{R}\}. With known instantaneous ground state, one can integrate out the electronic degree of freedom to get the effective Lagrangian of lattice that reads

\displaystyle\mathcal{L} =l,κMκ2𝑹˙l,κ2+Φ0|idtHe|Φ0\displaystyle=\sum_{l,\kappa}\frac{M_{\kappa}}{2}\dot{\bm{R}}_{l,\kappa}^{2}+\langle\Phi_{0}|i\hbar d_{t}-H_{e}|\Phi_{0}\rangle (25)
=l,κMκ2𝑹˙l,κ2+Φ0|idt|Φ0Veff({𝑹})\displaystyle=\sum_{l,\kappa}\frac{M_{\kappa}}{2}\dot{\bm{R}}_{l,\kappa}^{2}+\langle\Phi_{0}|i\hbar d_{t}|\Phi_{0}\rangle-V_{\rm eff}(\{\bm{R}\})
=l,κMκ2𝑹˙l,κ2+𝑨l,κ𝑹˙l,κVeff({𝑹})\displaystyle=\sum_{l,\kappa}\frac{M_{\kappa}}{2}\dot{\bm{R}}_{l,\kappa}^{2}+\hbar\bm{A}_{l,\kappa}\cdot\dot{\bm{R}}_{l,\kappa}-V_{\rm eff}(\{\bm{R}\})

where 𝑹l,κ\bm{R}_{l,\kappa} labels the position of the κ\kappa-th atom in the ll-th unit cell with mass MκM_{\kappa}. 𝑨l,κ=Φ0|i𝑹l,κ|Φ0\bm{A}_{l,\kappa}=\langle\Phi_{0}|i\nabla_{\bm{R}_{l,\kappa}}|\Phi_{0}\rangle is the the Berry connection. Veff({𝑹})V_{\rm eff}(\{\bm{R}\}) is the total energy of the electrons and ions at the configuration {𝑹}\{\bm{R}\} that forms the potential landscape of the ion. In the equilibrium configuration {𝑹0}\{\bm{R}^{0}\}, VeffV_{\rm eff} takes its minimum. From the Lagrangian, one can reveal the Hamiltonian Eq. 1 by Legendre transformation, which agrees with that derived by Mead and Truhlar MeadTruhlar .

IV.2 The existence of a symmetric gauge near the equilibrium configuration

We consider a lattice where each atom vibrates around its equilibrium position with a displacement ulu_{l} where, in this paragraph, we use shorthand notation for these indices as {l,κα}l\{l,\kappa\alpha\}\rightarrow l and {l,κβ}l\{l^{\prime},\kappa^{\prime}\beta\}\rightarrow l^{\prime}. In the small {ul}\{u_{l}\} limit, we can expand the Berry connection Al=Φ0|il|Φ0A_{l}=\langle\Phi_{0}|i\partial_{l}|\Phi_{0}\rangle to the linear order of {ul}\{u_{l}\} as Al=Al0+lAlulA_{l}=A_{l}^{0}+\partial_{l^{\prime}}A_{l}u_{l^{\prime}} where the coefficients lAl\partial_{l^{\prime}}A_{l} are taken in the limit of {ul}0{\{u_{l}\}\rightarrow 0} and thus are independent of {ul}\{u_{l}\}. It is noted that the Berry connection AlA_{l} is expressed in a parameter space of high dimension. It is questionable whether there exists a gauge transform such that A~l=Allχ=1/2lGl,lul\tilde{A}_{l}=A_{l}-\partial_{l}\chi=-1/2\sum_{l^{\prime}}G_{l,l^{\prime}}u_{l^{\prime}} with gauge invariant Gll=lAllAl=lA~llA~lG_{ll^{\prime}}=\partial_{l}A_{l^{\prime}}-\partial_{l^{\prime}}A_{l}=\partial_{l}\tilde{A}_{l^{\prime}}-\partial_{l^{\prime}}\tilde{A}_{l}. The answer is yes. One can first define δAl=AlA~l\delta A_{l}=A_{l}-\tilde{A}_{l}. By definition, δAl=Al0+ilul(12lΦ0|lΦ0+12lΦ0|lΦ0+Φ0|llΦ0)\delta A_{l}=A_{l}^{0}+i\sum_{l^{\prime}}u_{l^{\prime}}(\frac{1}{2}\langle\partial_{l^{\prime}}\Phi_{0}|\partial_{l}\Phi_{0}\rangle+\frac{1}{2}\langle\partial_{l}\Phi_{0}|\partial_{l^{\prime}}\Phi_{0}\rangle+\langle\Phi_{0}|\partial_{l^{\prime}}\partial_{l}\Phi_{0}\rangle). It can be verified that lδAllδAl=0\partial_{l}\delta A_{l^{\prime}}-\partial_{l^{\prime}}\delta A_{l}=0. According to Poincaré’s Lemma, there always exists locally a scalar function χ\chi such that δAl=lχ\delta A_{l}=\partial_{l}\chi. One can thus perform such a gauge transformation eiχ|Φ0e^{i\chi}|\Phi_{0}\rangle to obtain the Berry connection in the symmetric form.

We can now express the Berry connection (gauge field) in a symmetric gauge. The gauge invariant Berry curvature can be written as

Gκβκα(𝑹l0𝑹l0)=[Al,κβul,καAl,καul,κβ]\displaystyle G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})=\left[\frac{\partial A_{l^{\prime},\kappa^{\prime}\beta}}{\partial u_{l,\kappa\alpha}}-\frac{\partial A_{l,\kappa\alpha}}{\partial u_{l^{\prime},\kappa^{\prime}\beta}}\right]
=i[Φ0ul,κα|Φ0ul,κβΦ0ul,κβ|Φ0ul,κα]\displaystyle~{}~{}~{}~{}=i\left[\Big{\langle}\frac{\partial\Phi_{0}}{\partial u_{l,\kappa\alpha}}\Big{|}\frac{\partial\Phi_{0}}{\partial u_{l^{\prime},\kappa^{\prime}\beta}}\Big{\rangle}-\Big{\langle}\frac{\partial\Phi_{0}}{\partial u_{l^{\prime},\kappa^{\prime}\beta}}\Big{|}\frac{\partial\Phi_{0}}{\partial u_{l,\kappa\alpha}}\Big{\rangle}\right] (26)

Near the equilibrium position, the Berry connection in the symmetric gauge is

Aκα(𝑹l0)=12l,κβGκβκα(𝑹l0𝑹l0)uκβ(𝑹l0)\displaystyle A_{\kappa\alpha}(\bm{R}^{0}_{l})=-\frac{1}{2}\sum_{l^{\prime},\kappa^{\prime}\beta}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})u_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l^{\prime}}) (27)

and in momentum space:

Aκα(𝒌)=κ,β12Gκβκα(𝒌)uκβ(𝒌)\displaystyle A_{\kappa\alpha}(\bm{k})=-\sum_{\kappa^{\prime},\beta}\frac{1}{2}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k})u_{\kappa^{\prime}\beta}(\bm{k}) (28)

IV.3 Symmetry constraints on the molecular Berry curvature

In the presence of time reversal symmetry, the Berry curvature Gκβκα(𝑹l0𝑹l0)=0G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})=0 as shown below. We consider the electronic ground state that preserves time reversal invariance and is nondegenerate. Therefore, under time reversal operation Θ\Theta, the ground state |Φ0|\Phi_{0}\rangle becomes |Φ~e=|ΘΦ0=eiϕ|Φ0|\tilde{\Phi}_{e}\rangle=|\Theta\Phi_{0}\rangle=e^{i\phi}|\Phi_{0}\rangle with a possible phase difference. Therefore, the Berry connection obtained from |Φ~e|\tilde{\Phi}_{e}\rangle is A~l,κα=Al,κα+l,καϕ\tilde{A}_{l,\kappa\alpha}=A_{l,\kappa\alpha}+\partial_{l,\kappa\alpha}\phi. Alternatively, A~l,κα=iΘΦe|l,κα|ΘΦe=i(Φe|l,κα|Φe)\tilde{A}_{l,\kappa\alpha}=i\langle\Theta{\Phi}_{e}|\partial_{l,\kappa\alpha}|\Theta{\Phi}_{e}\rangle=i(\langle{\Phi}_{e}|\partial_{l,\kappa\alpha}|{\Phi}_{e}\rangle)^{*} by the definition of the time reversal operator Θ\Theta with being the complex conjugate. Thus, A~l,κα=Al,κα\tilde{A}_{l,\kappa\alpha}=-A_{l,\kappa\alpha}. As a result, Al,κα=l,καϕ/2A_{l,\kappa\alpha}=\partial_{l,\kappa\alpha}\phi/2. The corresponding Berry curvature Gκβκα(𝑹l0𝑹l0)=l,καAl,κβl,κβAl,κα=0G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})=\partial_{l,\kappa\alpha}A_{l^{\prime},\kappa^{\prime}\beta}-\partial_{l^{\prime},\kappa^{\prime}\beta}A_{l,\kappa\alpha}=0.

Since the Berry curvature in real space is real number and Gκβκα(𝑹l0𝑹l0)=Gκακβ(𝑹l0𝑹l0)G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})=-G^{\kappa^{\prime}\beta}_{\kappa\alpha}(\bm{R}^{0}_{l^{\prime}}-\bm{R}^{0}_{l}), it can be shown by definition that Gκβκα(𝒌)=Gκακβ(𝒌)=Gκακβ(𝒌)G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k})=-G^{\kappa^{\prime}\beta}_{\kappa\alpha}(-\bm{k})=-G^{\kappa^{\prime}\beta}_{\kappa\alpha}(\bm{k})^{*}. Thus, G(𝒌)=G(𝒌)G(\bm{k})=-G(\bm{k})^{\dagger}.

Considering the translational symmetry, one can find that when all the displacement vectors 𝒖l,κ\bm{u}_{l,\kappa} change by the same small amount δ𝒖\delta\bm{u}, the Berry connections do not change, i.e., Al,κα({𝒖}+δ𝒖)=Al,κα({𝒖})A_{l,\kappa\alpha}(\{\bm{u}\}+\delta\bm{u})=A_{l,\kappa\alpha}(\{\bm{u}\}). Thus, δ𝒖l,κβl,κβAl,κα=0\delta\bm{u}\sum_{l^{\prime},\kappa^{\prime}\beta}\partial_{l^{\prime},\kappa^{\prime}\beta}A_{l,\kappa\alpha}=0. Therefore, l,κβGκβκα(𝑹l0𝑹l0)=2Iml,κβl,κβAl,κα=0\sum_{l^{\prime},\kappa^{\prime}\beta}G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})=2{\rm{Im}}\sum_{l^{\prime},\kappa^{\prime}\beta}\partial_{l^{\prime},\kappa^{\prime}\beta}A_{l,\kappa\alpha}=0.

IV.4 Molecular Berry curvature in non-interacting electronic system

The molecular Berry curvature can be expressed in general by the many-body wavefunction {Φn}\{\Phi_{n}\} where n=0n=0 stands for the ground state and the n>0n>0 are excited states

Gκβκα(𝒌)\displaystyle G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k}) =1NllGαβκκ(𝑹l0𝑹l0)ei𝒌(𝑹l0𝑹l0)\displaystyle=\frac{1}{N}\sum_{l}\sum_{l^{\prime}}G^{\kappa\kappa^{\prime}}_{\alpha\beta}(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})e^{-i\bm{k}\cdot(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})} (29)
=1Nl,l,n0i[Φ0ul,κα|ΦnΦn|Φ0ul,κβ(ul,καul,κβ)]u0ei𝒌(𝑹l0𝑹l0)\displaystyle=\frac{1}{N}\sum_{l,l^{\prime},n\neq 0}i\left[\Big{\langle}\frac{\partial\Phi_{0}}{\partial u_{l,\kappa\alpha}}\Big{|}\Phi_{n}\Big{\rangle}\Big{\langle}\Phi_{n}\Big{|}\frac{\partial\Phi_{0}}{\partial u_{l^{\prime},\kappa^{\prime}\beta}}\Big{\rangle}-(u_{l,\kappa\alpha}\leftrightarrow u_{l^{\prime},\kappa^{\prime}\beta})\right]_{u\rightarrow 0}e^{-i\bm{k}\cdot(\bm{R}^{0}_{l}-\bm{R}^{0}_{l^{\prime}})}
=iNn0[Φ0|lHeul,καei𝒌𝑹l0|ΦnΦn|lHeul,κβei𝒌𝑹l0|Φ0(EnE0)2]\displaystyle=\frac{i}{N}\sum_{n\neq 0}\left[\frac{\langle\Phi_{0}|\sum_{l}\frac{\partial H_{e}}{\partial u_{l,\kappa\alpha}}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}|\Phi_{n}\rangle\langle\Phi_{n}|\sum_{l^{\prime}}\frac{\partial H_{e}}{\partial u_{l^{\prime},\kappa^{\prime}\beta}}e^{i\bm{k}\cdot\bm{R}^{0}_{l^{\prime}}}|\Phi_{0}\rangle}{(E_{n}-E_{0})^{2}}\right]
[Φ0|lHeul,κβei𝒌𝑹l0|ΦnΦn|lHeul,καei𝒌𝑹l0|Φ0(EnE0)2]\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-~{}\left[\frac{\langle\Phi_{0}|\sum_{l^{\prime}}\frac{\partial H_{e}}{\partial u_{l^{\prime},\kappa^{\prime}\beta}}e^{i\bm{k}\cdot\bm{R}^{0}_{l^{\prime}}}|\Phi_{n}\rangle\langle\Phi_{n}|\sum_{l}\frac{\partial H_{e}}{\partial u_{l,\kappa\alpha}}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}|\Phi_{0}\rangle}{(E_{n}-E_{0})^{2}}\right]
=iNn0Φ0|𝒌,κα|ΦnΦn|𝒌,κβ|Φ0Φ0|𝒌,κβ|ΦnΦn|𝒌,κα|Φ0(EnE0)2\displaystyle=\frac{i}{N}\sum_{n\neq 0}\frac{\langle\Phi_{0}|\mathcal{M}_{\bm{k},\kappa\alpha}|\Phi_{n}\rangle\langle\Phi_{n}|\mathcal{M}_{-\bm{k},\kappa^{\prime}\beta}|\Phi_{0}\rangle-\langle\Phi_{0}|\mathcal{M}_{-\bm{k},\kappa^{\prime}\beta}|\Phi_{n}\rangle\langle\Phi_{n}|\mathcal{M}_{\bm{k},\kappa\alpha}|\Phi_{0}\rangle}{(E_{n}-E_{0})^{2}}

where 𝒌,κα=lHeul,καei𝒌𝑹l0=NHeu𝒌,κα\mathcal{M}_{\bm{k},\kappa\alpha}=\sum_{l}\frac{\partial H_{e}}{\partial u_{l,\kappa\alpha}}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}=\sqrt{N}\frac{\partial H_{e}}{\partial u_{-\bm{k},\kappa\alpha}} in the ul0u_{l}\rightarrow 0 limit. In this limit, the 𝒌,κα\mathcal{M}_{\bm{k},\kappa\alpha} involves only single electron scattering process.

In the non-interacting system, the ground state is a product state composed of single-particle states below the chemical potential μ\mu with |Φ0=Πεm,𝒒<μcm,𝒒|0|\Phi_{0}\rangle=\Pi_{\varepsilon_{m,\bm{q}}<\mu}c^{\dagger}_{m,\bm{q}}|0\rangle and cm,𝒒c^{\dagger}_{m,\bm{q}} being the creation operator of the state at the momentum 𝒒\bm{q} of the mm-th band. The excited states can be expressed |Φn|\Phi_{n^{\prime}}\rangle is the many body states with one occupied excited state and a hole. One can then express the Berry curvature in single particle wavefunction as

Gκβκα(𝒌)=iN𝒒εm<μεm>μϕm,𝒒𝒌,καϕm,𝒒+𝒌ϕm,𝒒+𝒌𝒌,κβϕm,𝒒(εm,𝒒εm,𝒒+𝒌)2ϕm,𝒒+𝒌𝒌,κβϕm,𝒒ϕm,𝒒𝒌,καϕm,𝒒+𝒌(εm,𝒒+𝒌εm,𝒒)2\displaystyle G^{\kappa\alpha}_{\kappa^{\prime}\beta}(\bm{k})=\frac{i}{N}\sum_{\bm{q}}\sum_{\begin{subarray}{c}\varepsilon_{m}<\mu\\ \varepsilon_{m^{\prime}}>\mu\end{subarray}}\frac{\phi^{\dagger}_{m,\bm{q}}\mathcal{M}_{\bm{k},\kappa\alpha}\phi_{m^{\prime},\bm{q+k}}\phi_{m^{\prime},\bm{q+k}}^{\dagger}\mathcal{M}_{-\bm{k},\kappa^{\prime}\beta}\phi_{m,\bm{q}}}{(\varepsilon_{m,\bm{q}}-\varepsilon_{m^{\prime},\bm{q+k}})^{2}}-\frac{\phi^{\dagger}_{m,\bm{q+k}}\mathcal{M}_{-\bm{k},\kappa^{\prime}\beta}\phi_{m^{\prime},\bm{q}}\phi_{m^{\prime},\bm{q}}^{\dagger}\mathcal{M}_{\bm{k},\kappa\alpha}\phi_{m,\bm{q+k}}}{(\varepsilon_{m,\bm{q+k}}-\varepsilon_{m^{\prime},\bm{q}})^{2}} (30)

In the following, we focus on the Haldane model to calculate the molecular Berry curvature explicitly. We take GAyAx(𝒌)G_{Ay}^{Ax}(\bm{k}) as an example by setting ul,κα=ul,Axu_{l,\kappa\alpha}=u_{l,Ax} and ul,κβ=ul,Ayu_{l^{\prime},\kappa^{\prime}\beta}=u_{l^{\prime},Ay}. For this particular case, we have:

𝒌,Ax\displaystyle\mathcal{M}_{\bm{k},Ax} =lHeul,Axei𝒌𝑹l0\displaystyle=\sum_{l}\frac{\partial H_{e}}{\partial u_{l,Ax}}e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}
=l,i(tiul,Axbl,Rial+h.c.)ei𝒌𝑹l0\displaystyle=\sum_{l,i}-(\frac{\partial t_{i}}{\partial u_{l,Ax}}b_{l,-R_{i}}^{\dagger}a_{l}+\mathrm{h.c.})e^{-i\bm{k}\cdot\bm{R}^{0}_{l}}

where tit_{i} with i=1i=1-33 represents the hopping from site A in the unit cell 𝑹l0\bm{R}_{l}^{0} to the site B in the unit cell of 𝑹l0𝑹i\bm{R}_{l}^{0}-\bm{R}_{i} with 𝑹1=(a/2,a3/2),𝑹2=(a,0),𝑹3=(0,0)\bm{R}_{1}=(a/2,a\sqrt{3}/2),\bm{R}_{2}=(a,0),\bm{R}_{3}=(0,0) as shown in Fig. 4. Here, we have t1ul,Ax=0\frac{\partial t_{1}}{\partial u_{l,Ax}}=0, t2ul,Ax=32dt\frac{\partial t_{2}}{\partial u_{l,Ax}}=\frac{\sqrt{3}}{2}\partial_{d}t, t3ul,Ax=32dt\frac{\partial t_{3}}{\partial u_{l,Ax}}=-\frac{\sqrt{3}}{2}\partial_{d}t which are independent of ll and dt\partial_{d}t represents the gradient of the hopping energy between two adjacent sites along the bond between them, which we take to be dt=1\partial_{d}t=1~{}eV/Å.

By using the Fourier transformation al=1N𝒒a𝒒ei𝒒𝑹l0a_{l}=\frac{1}{\sqrt{N}}\sum_{\bm{q}}a_{\bm{q}}e^{i\bm{q}\cdot\bm{R}^{0}_{l}}, we find that

𝒌,Ax\displaystyle\mathcal{M}_{\bm{k},Ax} =3dt2𝒒b𝒒a𝒒+𝒌(ei𝒒𝑹2ei𝒒𝑹3)\displaystyle=\frac{\sqrt{3}\partial_{d}t}{2}\sum_{\bm{q}}b_{{\bm{q}}}^{\dagger}a_{\bm{q+k}}\left(e^{i\bm{q}\cdot\bm{R}_{2}}-e^{-i\bm{q}\cdot\bm{R}_{3}}\right)
+3dt2𝒒a𝒒b𝒒+𝒌(ei(𝒒+𝒌)𝑹2ei(𝒒+𝒌)𝑹3)\displaystyle+\frac{\sqrt{3}\partial_{d}t}{2}\sum_{\bm{q}}a_{\bm{q}}^{\dagger}b_{\bm{q+k}}\left(e^{-i\bm{(q+k)}\cdot\bm{R}_{2}}-e^{i\bm{(q+k)}\cdot\bm{R}_{3}}\right)
=𝒒(a𝒒b𝒒)x(a𝒒+𝒌b𝒒+𝒌)\displaystyle=\sum_{\bm{q}}\left(\begin{matrix}a^{\dagger}_{\bm{q}}&b^{\dagger}_{\bm{q}}\end{matrix}\right)\partial_{x}\mathcal{H}\left(\begin{matrix}a_{\bm{q+k}}\\ b_{\bm{q+k}}\end{matrix}\right) (31)

where x\partial_{x}\mathcal{H} is a 2×22\times 2 matrix with only off diagonal elements:

(x)12=32dt(ei(𝒒+𝒌)𝑹2ei(𝒒+𝒌)𝑹3)\displaystyle(\partial_{x}\mathcal{H})_{12}=\frac{\sqrt{3}}{2}\partial_{d}t\left(e^{-i\bm{(q+k)}\cdot\bm{R}_{2}}-e^{i\bm{(q+k)}\cdot\bm{R}_{3}}\right)
(x)21=32dt(ei𝒒𝑹2ei𝒒𝑹3).\displaystyle(\partial_{x}\mathcal{H})_{21}=\frac{\sqrt{3}}{2}\partial_{d}t\left(e^{i\bm{q}\cdot\bm{R}_{2}}-e^{-i\bm{q}\cdot\bm{R}_{3}}\right).

Similarly, we have t1ul,Ay=dt\frac{\partial t_{1}}{\partial u_{l,Ay}}=-\partial_{d}t, t2ul,Ay=dt2\frac{\partial t_{2}}{\partial u_{l,Ay}}=\frac{\partial_{d}t}{2}, t3ul,Ay=dt2\frac{\partial t_{3}}{\partial u_{l,Ay}}=\frac{\partial_{d}t}{2}. We thus can obtain that

𝒌,Ay=lHeul,Ayei𝒌𝑹l0=\displaystyle\mathcal{M}_{-\bm{k},Ay}=\sum_{l}\frac{\partial H_{e}}{\partial u_{l,Ay}}e^{i\bm{k}\cdot\bm{R}^{0}_{l}}=
=l,i[tiul,Ayalbl+δiei𝒌𝑹l0tiul,Aybl+δialei𝒌𝑹l0]\displaystyle=\sum_{l,i}\left[-\frac{\partial t_{i}}{\partial u_{l,Ay}}a_{l}^{\dagger}b_{l+\delta_{i}}e^{i\bm{k}\cdot\bm{R}^{0}_{l}}-\frac{\partial t_{i}}{\partial u_{l,Ay}}b^{\dagger}_{l+\delta_{i}}a_{l}e^{i\bm{k}\cdot\bm{R}^{0}_{l}}\right]
=dt2𝒒a𝒌+𝒒b𝒒(2ei𝒒𝑹1ei𝒒𝑹2ei𝒒𝑹3)+\displaystyle=\frac{\partial_{d}t}{2}\sum_{\bm{q}}a^{\dagger}_{\bm{k+q}}b_{\bm{q}}\left(2e^{-i\bm{q}\cdot\bm{R}_{1}}-e^{-i\bm{q}\cdot\bm{R}_{2}}-e^{i\bm{q}\cdot\bm{R}_{3}}\right)+
+dt2𝒒b𝒌+𝒒a𝒒(2ei(𝒌+𝒒)𝑹1ei(𝒌+𝒒)𝑹2ei(𝒌+𝒒)𝑹3)\displaystyle+\frac{\partial_{d}t}{2}\sum_{\bm{q}}b_{\bm{k+q}}^{\dagger}a_{\bm{q}}\left(2e^{i\bm{(k+q)}\cdot\bm{R}_{1}}-e^{i\bm{(k+q)}\cdot\bm{R}_{2}}-e^{-i\bm{(k+q)}\cdot\bm{R}_{3}}\right)
=𝒒(a𝒒+𝒌b𝒒+𝒌)y(a𝒒b𝒒)\displaystyle=\sum_{\bm{q}}\left(\begin{matrix}a^{\dagger}_{\bm{q+k}}&b^{\dagger}_{\bm{q+k}}\end{matrix}\right)\partial_{y}\mathcal{H}\left(\begin{matrix}a_{\bm{q}}\\ b_{\bm{q}}\end{matrix}\right) (32)

with:

(y)12=dt2(2ei𝒒𝑹1ei𝒒𝑹2ei𝒒𝑹3)\displaystyle(\partial_{y}\mathcal{H})_{12}=\frac{\partial_{d}t}{2}\left(2e^{-i\bm{q}\cdot\bm{R}_{1}}-e^{-i\bm{q}\cdot\bm{R}_{2}}-e^{i\bm{q}\cdot\bm{R}_{3}}\right)
(y)21=dt2(2ei(𝒌+𝒒)𝑹1ei(𝒌+𝒒)𝑹2ei(𝒌+𝒒)𝑹3).\displaystyle(\partial_{y}\mathcal{H})_{21}=\frac{\partial_{d}t}{2}\left(2e^{i\bm{(k+q)}\cdot\bm{R}_{1}}-e^{i\bm{(k+q)}\cdot\bm{R}_{2}}-e^{-i\bm{(k+q)}\cdot\bm{R}_{3}}\right).

This is an expression in terms of a single particle wavefunctions and eigenstates. Since only the relative motion of atoms generate the Berry curvature 𝒖rel=𝒖1𝒖2d𝒖1=d𝒖2\bm{u}_{\text{rel}}=\bm{u}_{1}-\bm{u}_{2}\hskip 8.53581pt\Rightarrow\hskip 8.53581ptd\bm{u}_{1}=-d\bm{u}_{2}, where 𝒖1\bm{u}_{1} and 𝒖2\bm{u}_{2} are displacements of two different atoms, all 16 different combinations of atoms will generate only 4 independent values of Berry curvature:

GAxAx(𝒌)\displaystyle G^{Ax}_{Ax}(\bm{k}) =GAyAy(𝒌)=GBxBx(𝒌)=GByBy(𝒌)G1(𝒌)\displaystyle=-G^{Ay}_{Ay}(\bm{k})={G^{Bx}_{Bx}}^{*}(\bm{k})=-{G^{By}_{By}}^{*}(\bm{k})\equiv G_{1}(\bm{k})
GAyAx(𝒌)\displaystyle{G^{Ax}_{Ay}}(\bm{k}) =GAxAy(𝒌)=GByBx(𝒌)=GBxBy(𝒌)G2(𝒌)\displaystyle=-{G^{Ay}_{Ax}}^{*}(\bm{k})={G^{Bx}_{By}}^{*}(\bm{k})=-{G^{By}_{Bx}}(\bm{k})\equiv G_{2}(\bm{k})
GByAx(𝒌)\displaystyle{G^{Ax}_{By}}(\bm{k}) =GBxAy(𝒌)=GAyBx(𝒌)=GAxBy(𝒌)G3(𝒌)\displaystyle=-{G^{Ay}_{Bx}}(\bm{k})={G^{Bx}_{Ay}}^{*}(\bm{k})=-{G^{By}_{Ax}}^{*}(\bm{k})\equiv G_{3}(\bm{k})
GBxAx(𝒌)\displaystyle G^{Ax}_{Bx}(\bm{k}) =GByAy(𝒌)=GAxBx(𝒌)=GAyBy(𝒌)0\displaystyle=G^{Ay}_{By}(\bm{k})=G^{Bx}_{Ax}(\bm{k})=G^{By}_{Ay}(\bm{k})\equiv 0

IV.5 Phonon modes of a honeycomb lattice

Refer to caption
Figure 4: Honeycomb model to describe the effective spring constant of a unit cell. In plane longitudinal and transverse spring constants are KLK_{L} and KTK_{T} respectively

IV.5.1 Hamiltonian for the lattice dynamics

A semi-classical Hamiltonian of the lattice in the adiabatic approximation can be written in a matrix form as (Eq. 1):

HL\displaystyle H_{L} =l12(plA~l)T(plA~l)+V({𝒖l})\displaystyle=\sum_{l}\frac{1}{2}(p_{l}-\hbar\tilde{A}_{l})^{T}(p_{l}-\hbar\tilde{A}_{l})+V(\{\bm{u}_{l}\}) (33)
=𝒌12(p𝒌A~𝒌)(p𝒌A~𝒌)+V({𝒖𝒌})\displaystyle=\sum_{\bm{k}}\frac{1}{2}(p_{\bm{k}}-\hbar\tilde{A}_{\bm{k}})^{\dagger}(p_{\bm{k}}-\hbar\tilde{A}_{\bm{k}})+V(\{\bm{u}_{\bm{k}}\})
=𝒌12(p𝒌+G~𝒌u𝒌)(p𝒌+G~𝒌u𝒌)+𝒌12u𝒌K𝒌u𝒌\displaystyle=\sum_{\bm{k}}\frac{1}{2}(p_{\bm{k}}+\tilde{G}_{\bm{k}}u_{\bm{k}})^{\dagger}(p_{\bm{k}}+\tilde{G}_{\bm{k}}u_{\bm{k}})+\sum_{\bm{k}}\frac{1}{2}u_{\bm{k}}^{\dagger}K_{\bm{k}}u_{\bm{k}}

where the first term is a kinetic energy of atomic vibrations and the latter is the effective interaction of the atoms mediated by the dynamics of electrons. Here the masses have been absorbed into the definition of momentum and displacement vectors. For a lattice with 2 atoms per unit cell, such as a honeycomb lattice, the momentum and displacement vectors can be expressed as:

p𝒌=(p𝒌,AxMAp𝒌,AyMAp𝒌,BxMBp𝒌,ByMB);u𝒌=(MAu𝒌,AxMAu𝒌,AyMBu𝒌,BxMBu𝒌,By);\displaystyle p_{\bm{k}}=\left(\begin{matrix}\frac{p_{\bm{k},{Ax}}}{\sqrt{M_{A}}}\\ \frac{p_{\bm{k},{Ay}}}{\sqrt{M_{A}}}\\ \frac{p_{\bm{k},{Bx}}}{\sqrt{M_{B}}}\\ \frac{p_{\bm{k},{By}}}{\sqrt{M_{B}}}\end{matrix}\right);\hskip 14.22636ptu_{\bm{k}}=\left(\begin{matrix}\sqrt{M_{A}}u_{\bm{k},{Ax}}\\ \sqrt{M_{A}}u_{\bm{k},{Ay}}\\ \sqrt{M_{B}}u_{\bm{k},{Bx}}\\ \sqrt{M_{B}}u_{\bm{k},{By}}\end{matrix}\right);

and a gauge field matrix as:

G~𝒌=2(G1(𝒌)MAG2(𝒌)MA0G3(𝒌)MAMBG2(𝒌)MAG1(𝒌)MAG3(𝒌)MAMB00G3(𝒌)MAMBG1(𝒌)MBG2(𝒌)MBG3(𝒌)MAMB0G2(𝒌)MBG1(𝒌)MB)\displaystyle\tilde{G}_{\bm{k}}=\frac{\hbar}{2}\left(\begin{matrix}\frac{G_{1}(\bm{k})}{M_{A}}&\frac{G_{2}(\bm{k})}{M_{A}}&0&\frac{G_{3}(\bm{k})}{\sqrt{M_{A}M_{B}}}\\ \frac{-G_{2}(\bm{k})^{*}}{M_{A}}&\frac{-G_{1}(\bm{k})}{M_{A}}&\frac{-G_{3}(\bm{k})}{\sqrt{M_{A}M_{B}}}&0\\ 0&\frac{G_{3}(\bm{k})^{*}}{\sqrt{M_{A}M_{B}}}&\frac{G_{1}(\bm{k})^{*}}{M_{B}}&\frac{G_{2}(\bm{k})^{*}}{M_{B}}\\ \frac{-G_{3}(\bm{k})^{*}}{\sqrt{M_{A}M_{B}}}&0&\frac{-G_{2}(\bm{k})}{M_{B}}&\frac{-G_{1}(\bm{k})^{*}}{M_{B}}\end{matrix}\right)

which is a skew-Hermitian matrix by definition. Here K𝒌K_{\bm{k}} is a force constant matrix (in units of eV/(uÅ2),ueV/({u\textup{\AA}}^{2}),u-atomic mass unit) defined as LZhang2014 :

K𝒌=(K01+K02+K03MAK02+K01ei𝒌𝑹𝟏+K03ei𝒌𝑹𝟐MAMBK02+K01ei𝒌𝑹𝟏+K03ei𝒌𝑹𝟐MAMBK01+K02+K03MB)\displaystyle K_{\bm{k}}=\left(\begin{matrix}\frac{K_{01}+K_{02}+K_{03}}{M_{A}}&-\frac{K_{02}+K_{01}e^{-i\bm{k\cdot R_{1}}}+K_{03}e^{-i\bm{k\cdot R_{2}}}}{\sqrt{M_{A}M_{B}}}\\ -\frac{K_{02}+K_{01}e^{i\bm{k\cdot R_{1}}}+K_{03}e^{i\bm{k\cdot R_{2}}}}{\sqrt{M_{A}M_{B}}}&\frac{K_{01}+K_{02}+K_{03}}{M_{B}}\end{matrix}\right)

where 𝒌𝑹𝟏=kxa/2+3kya/2\bm{k\cdot R_{1}}=k_{x}a/2+\sqrt{3}k_{y}a/2 and 𝒌𝑹𝟐=kxa\bm{k\cdot R_{2}}=k_{x}a, with aa being a distance between two neighboring unit cells with unit vectors (a,0)(a,0) and (a/2,a3/2)(a/2,a\sqrt{3}/2). Here K01=U(π/2)KxU(π/2)K_{01}=U(\pi/2)K_{x}U(-\pi/2), K02=U(π/6)KxU(π/6)K_{02}=U(\pi/6)K_{x}U(-\pi/6) and K03=U(π/6)KxU(π/6)K_{03}=U(-\pi/6)K_{x}U(\pi/6) where Kx=(KL00KT)K_{x}=\left(\begin{matrix}K_{L}&0\\ 0&K_{T}\end{matrix}\right) is a spring constant matrix constructed from longitudinal and transverse spring constants KLK_{L} and KTK_{T}, and U(θ)=(cosθsinθsinθcosθ)U(\theta)=\left(\begin{matrix}\cos{\theta}&-\sin{\theta}\\ \sin{\theta}&\cos{\theta}\end{matrix}\right) is a 2-dimensional rotation operator in xyx-y plane. Combining all these we obtain the lattice Hamiltonian as in Eq. (33).

Considering all these the lattice Hamiltonian can be written as:

HL=𝒌12[p𝒌p𝒌+u𝒌D𝒌u𝒌+(p𝒌G~𝒌u𝒌+h.c.)]\displaystyle H_{L}=\sum_{\bm{k}}\frac{1}{2}\left[p_{\bm{k}}^{\dagger}p_{\bm{k}}+u^{\dagger}_{\bm{k}}D_{\bm{k}}u_{\bm{k}}+(p_{\bm{k}}^{\dagger}\tilde{G}_{\bm{k}}u_{\bm{k}}+h.c.)\right] (34)

where D𝒌=K𝒌+G~𝒌G~𝒌D_{\bm{k}}=K_{\bm{k}}+\tilde{G}^{\dagger}_{\bm{k}}\tilde{G}_{\bm{k}}. We then can get a pair of canonical equations of motion

p˙𝒌=Hu𝒌=G~𝒌p𝒌D𝒌u𝒌\displaystyle\dot{p}_{\bm{k}}=-\frac{\partial H}{\partial u_{-\bm{k}}}=\tilde{G}_{\bm{k}}p_{\bm{k}}-D_{\bm{k}}u_{\bm{k}} (35)
u˙𝒌=Hp𝒌=p𝒌+G~𝒌u𝒌.\displaystyle\dot{u}_{\bm{k}}=~{}~{}\frac{\partial H}{\partial{p}_{-\bm{k}}}=p_{\bm{k}}+\tilde{G}_{\bm{k}}u_{\bm{k}}. (36)

IV.5.2 Second quantization with Bogoliubov transformation

After introducing the second quantization of displacement and momentum as Kittel1987 u𝒌=2ω0(a𝒌+a𝒌)=2ω0u¯𝒌u_{\bm{k}}=\sqrt{\frac{\hbar}{2\omega_{0}}}\left(a^{\dagger}_{-\bm{k}}+a_{\bm{k}}\right)=\sqrt{\frac{\hbar}{2\omega_{0}}}\bar{u}_{\bm{k}} and p𝒌=iω02(a𝒌a𝒌)=ω02p¯𝒌p_{\bm{k}}=i\sqrt{\frac{\hbar\omega_{0}}{2}}\left(a^{\dagger}_{-\bm{k}}-a_{\bm{k}}\right)=\sqrt{\frac{\hbar\omega_{0}}{2}}\bar{p}_{\bm{k}}, where a𝒌a^{\dagger}_{-\bm{k}} and a𝒌a_{\bm{k}} represent column vectors of creation and annihilation operators, the canonical equations of motion can be combined into a matrix form:

(u¯˙𝒌p¯˙𝒌)=(G~𝒌𝟙ω0D𝒌ω0G~𝒌)(u¯𝒌p¯𝒌)\displaystyle\left(\begin{matrix}\dot{\bar{u}}_{\bm{k}}\\ \dot{\bar{p}}_{\bm{k}}\end{matrix}\right)=\left(\begin{matrix}\tilde{G}_{\bm{k}}&\mathbb{1}\omega_{0}\\ -\frac{D_{\bm{k}}}{\omega_{0}}&\tilde{G}_{\bm{k}}\end{matrix}\right)\left(\begin{matrix}\bar{u}_{\bm{k}}\\ \bar{p}_{\bm{k}}\end{matrix}\right) (37)

Now replacing (u¯𝒌p¯𝒌)=(𝟙𝟙𝟙i𝟙i)(a𝒌a𝒌)\left(\begin{matrix}\bar{u}_{\bm{k}}\\ \bar{p}_{\bm{k}}\end{matrix}\right)=\left(\begin{matrix}\mathbb{1}&\mathbb{1}\\ \mathbb{1}i&-\mathbb{1}i\end{matrix}\right)\left(\begin{matrix}a^{\dagger}_{-\bm{k}}\\ a_{\bm{k}}\end{matrix}\right) we can obtain:

(𝟙i00𝟙i)(a~˙𝒌a˙𝒌)=12(D𝒌ω0+𝟙ω02iG~𝒌D𝒌ω0𝟙ω0D𝒌ω0𝟙ω0D𝒌ω0+𝟙ω0+2iG~𝒌)(a~𝒌a𝒌)=Ω~𝒌(a~𝒌a𝒌)\displaystyle\left(\begin{matrix}-\mathbb{1}i&0\\ 0&\mathbb{1}i\end{matrix}\right)\left(\begin{matrix}\dot{\tilde{a}}^{\dagger}_{-\bm{k}}\\ \dot{a}_{\bm{k}}\end{matrix}\right)=\frac{1}{2}\left(\begin{matrix}\frac{D_{\bm{k}}}{\omega_{0}}+\mathbb{1}\omega_{0}-2i\tilde{G}_{\bm{k}}&\frac{D_{\bm{k}}}{\omega_{0}}-\mathbb{1}\omega_{0}\\ \frac{D_{\bm{k}}}{\omega_{0}}-\mathbb{1}\omega_{0}&\frac{D_{\bm{k}}}{\omega_{0}}+\mathbb{1}\omega_{0}+2i\tilde{G}_{\bm{k}}\end{matrix}\right)\left(\begin{matrix}\tilde{a}^{\dagger}_{-\bm{k}}\\ a_{\bm{k}}\end{matrix}\right)=\tilde{\Omega}^{*}_{\bm{k}}\left(\begin{matrix}\tilde{a}^{\dagger}_{-\bm{k}}\\ a_{\bm{k}}\end{matrix}\right) (38)

where Ω~𝒌\tilde{\Omega}^{*}_{\bm{k}} is an 8×88\times 8 positive semi-definite Hermitian matrix. The notations Ω~𝒌\tilde{\Omega}^{*}_{\bm{k}} was chosen for the convenience that will be clear shortly. Now we introduce the Bogoliubov transformation as FetterWalecka1971 :

a𝒌=ν(ανb𝒌,ν+βνb𝒌,ν)\displaystyle a_{\bm{k}}=\sum_{\nu}\left(\alpha_{\nu}b_{\bm{k},\nu}+\beta^{*}_{\nu}b^{\dagger}_{-\bm{k},\nu}\right) (39)
a~𝒌=ν(ανb𝒌,ν+βνb𝒌,ν)\displaystyle\tilde{a}^{\dagger}_{-\bm{k}}=\sum_{\nu}\left(\alpha^{*}_{\nu}b^{\dagger}_{-\bm{k},\nu}+\beta_{\nu}b_{\bm{k},\nu}\right) (40)

where the tilde represents the transpose of the vector and the summation is over all the branches. Here b𝒌,νb_{\bm{k},\nu} (b𝒌,ν)(b^{\dagger}_{-\bm{k},\nu}) are single valued Bogoliubov operators corresponding to each branch and αν\alpha_{\nu} and βν\beta_{\nu} are column vectors of 4 elements corresponding to each degree of freedom. We require that each Bogoliubov operators represent the eigenstates with a specific frequency ω𝒌,ν\omega_{\bm{k},\nu}, such that b˙𝒌,ν=iω𝒌,νb𝒌,ν\dot{b}_{\bm{k},\nu}=-i\omega_{\bm{k},\nu}b_{\bm{k},\nu} and b˙𝒌,ν=iω𝒌,νb𝒌,ν\dot{b}^{\dagger}_{-\bm{k},\nu}=i\omega_{-\bm{k},\nu}b^{\dagger}_{-\bm{k},\nu}. Using this transformation we can obtain the following equations:

ω𝒌,νσzχ=Ω~𝒌χ\displaystyle\omega_{\bm{k},\nu}\sigma_{z}\chi=\tilde{\Omega}_{\bm{k}}\chi (41)
ω𝒌,νσzχ=Ω~𝒌χ\displaystyle\omega_{-\bm{k},\nu}\sigma_{z}\chi^{*}=\tilde{\Omega}^{*}_{-\bm{k}}\chi^{*} (42)

where χ=(ανβν)\chi=\left(\begin{matrix}\alpha_{\nu}\\ \beta_{\nu}\end{matrix}\right) and Ω~𝒌\tilde{\Omega}_{\bm{k}} is same as was defined in Eq. (41). Now, if we introduce a new eigenstate as χ~=Ω~𝒌1/2χ\tilde{\chi}=\tilde{\Omega}_{\bm{k}}^{1/2}\chi, we can obtain a new eigenvalue equation as

ω𝒌,𝝂χ~=Ω~𝒌1/2σzΩ~𝒌1/2χ~=H~effχ~\displaystyle\omega_{\bm{k,\nu}}\tilde{\chi}=\tilde{\Omega}^{1/2}_{\bm{k}}\sigma_{z}\tilde{\Omega}^{1/2}_{\bm{k}}\tilde{\chi}=\tilde{H}_{\text{eff}}\tilde{\chi} (43)

where H~eff\tilde{H}_{\text{eff}} is an effective Hamiltonian which is an 8×88\times 8 Hermitian matrix and can be solved to find the ω𝒌,ν\omega_{\bm{k},\nu}.

As Eq. (43) suggests, we will obtain 8 different phonon branches but only 4 of them should have physical meaning as we have only 4 physical degrees of freedom. In the following discussion we will show how to pick those 4 physical branches. Using Eq. (41) we can get a relation:

ω𝒌,ν(ανανβνβν)=(ανβν)Ω~𝒌(ανβν)\displaystyle\omega_{\bm{k},\nu}\left(\alpha^{\dagger}_{\nu}\alpha_{\nu}-\beta^{\dagger}_{\nu}\beta_{\nu}\right)=\left(\begin{matrix}\alpha^{\dagger}_{\nu}&\beta^{\dagger}_{\nu}\end{matrix}\right)\tilde{\Omega}_{\bm{k}}\left(\begin{matrix}\alpha_{\nu}\\ \beta_{\nu}\end{matrix}\right) (44)

This expression will help us to identify the 4 branches we are looking for. For that, we first need to put constraints on the Bogoliubov transformation. Initial bosonic operators had the commutation relations as

[a𝒌,d,a𝒌,d]=δ𝒌𝒌δdd\displaystyle\left[a_{\bm{k},d},a^{\dagger}_{\bm{k^{\prime}},d^{\prime}}\right]=\delta_{\bm{kk^{\prime}}}\delta_{dd^{\prime}} (45)
[a𝒌,d,a𝒌,d]=[a𝒌,d,a𝒌,d]=0\displaystyle\left[a_{\bm{k},d},a_{\bm{k^{\prime}},d^{\prime}}\right]=\left[a^{\dagger}_{\bm{k},d},a^{\dagger}_{\bm{k^{\prime}},d^{\prime}}\right]=0 (46)

After the transformation we require that the new operators should obey similar bosonic commutation relations. For that we write

[b𝒌,ν,b𝒌,μ]=δ𝒌𝒌δμν\displaystyle\left[b_{\bm{k},\nu},b^{\dagger}_{\bm{k^{\prime}},\mu}\right]=\delta_{\bm{kk^{\prime}}}\delta_{\mu\nu} (47)
[b𝒌,ν,b𝒌,μ]=[b𝒌,ν,b𝒌,μ]=0\displaystyle\left[b_{\bm{k},\nu},b_{\bm{k^{\prime}},\mu}\right]=\left[b_{\bm{k},\nu}^{\dagger},b_{\bm{k^{\prime}},\mu}^{\dagger}\right]=0 (48)

From these two conditions it is easy to show the following relations:

ν(αdναdνβdνβdν)=δdd\displaystyle\sum_{\nu}\left(\alpha^{\nu}_{d}{\alpha^{\nu}_{d^{\prime}}}^{*}-{\beta^{\nu}_{d}}^{*}\beta^{\nu}_{d^{\prime}}\right)=\delta_{dd^{\prime}} (49)
d(αdμαdνβdνβdμ)=δμν\displaystyle\sum_{d}\left({\alpha^{\mu}_{d}}^{*}\alpha^{\nu}_{d}-{\beta^{\nu}_{d}}^{*}\beta^{\mu}_{d}\right)=\delta_{\mu\nu} (50)

where the first one can be defined as the completeness relation and the second one as orthonormal condition. From this we can see that for the Bogoliubov transformations to preserve the bosonic commutation relations we should have ανανβνβν=+1\alpha^{\dagger}_{\nu}\alpha_{\nu}-\beta^{\dagger}_{\nu}\beta_{\nu}=+1, i.e it should be a positive number, and this appears on the left hand side of Eq (50). It can also be shown that Ω𝒌\Omega_{\bm{k}} is a positive semidefinite matrix and we conclude that only positive solutions of ω𝒌,ν\omega_{\bm{k},\nu} should be considered as physical.

Alternatively, if we switch to a new basis as γν=12(αν+βν)\gamma_{\nu}=\frac{1}{\sqrt{2}}\left(\alpha_{\nu}+\beta_{\nu}\right) and γ¯ν=12(ανβν)\bar{\gamma}_{\nu}=\frac{1}{\sqrt{2}}\left(\alpha_{\nu}-\beta_{\nu}\right) Eq. (44) can be rewritten as

ω𝒌,ν(γνγ¯ν)=(iG~𝒌ω0D𝒌ω0iG~𝒌)(γνγ¯ν)\displaystyle\omega_{\bm{k},\nu}\left(\begin{matrix}\gamma_{\nu}\\ \bar{\gamma}_{\nu}\end{matrix}\right)=\left(\begin{matrix}i\tilde{G}_{\bm{k}}&\omega_{0}\\ \frac{D_{\bm{k}}}{\omega_{0}}&-i\tilde{G}^{\dagger}_{\bm{k}}\end{matrix}\right)\left(\begin{matrix}\gamma_{\nu}\\ \bar{\gamma}_{\nu}\end{matrix}\right) (51)

with the normalization condition resulted from Eq. (44):

γνγ¯ν+γ¯νγν=1\displaystyle\gamma^{\dagger}_{\nu}\bar{\gamma}_{\nu}+\bar{\gamma}^{\dagger}_{\nu}\gamma_{\nu}=1 (52)

From this we can construct a more compact eigenvalue problem: multiplying both sides of Eq. (57) by σx\sigma_{x} we obtain

ω𝒌,νσxψν=(D𝒌ω0iG~𝒌iG~𝒌ω0)ψν=Ω𝒌ψν\displaystyle\omega_{\bm{k},\nu}\sigma_{x}\psi_{\nu}=\left(\begin{matrix}\frac{D_{\bm{k}}}{\omega_{0}}&-i\tilde{G}^{\dagger}_{\bm{k}}\\ i\tilde{G}_{\bm{k}}&\omega_{0}\end{matrix}\right)\psi_{\nu}=\Omega_{\bm{k}}\psi_{\nu} (53)

where ψν=(γνγ¯ν)\psi_{\nu}=\left(\begin{matrix}\gamma_{\nu}\\ \bar{\gamma}_{\nu}\end{matrix}\right). Here Ω𝒌\Omega_{\bm{k}} is again a semi-definite positive matrix and for that we can introduce new eigenstate as ψ~ν=Ω𝒌1/2ψν\tilde{\psi}_{\nu}=\Omega_{\bm{k}}^{1/2}\psi_{\nu} and obtain:

ω𝒌,νψ~ν=Ω𝒌1/2σxΩ𝒌1/2ψ~ν=Heffψ~ν\displaystyle\omega_{\bm{k},\nu}\tilde{\psi}_{\nu}=\Omega_{\bm{k}}^{1/2}\sigma_{x}\Omega_{\bm{k}}^{1/2}\tilde{\psi}_{\nu}=H_{\text{eff}}\tilde{\psi}_{\nu} (54)

where effective Hamiltonian HeffH_{\text{eff}} introduced above is Hermitian and can be solved to find the eigenvalues ω𝒌,ν\omega_{\bm{k},\nu}. The result of numerical calculation of this equation is same as the one obtained from Eq. (46).

IV.6 Determinant of the eigenvalues and related

The effective Hamiltonian can be written as Heff=Ω𝒌1/2(σxId)Ω𝒌1/2H_{\rm eff}=\Omega^{1/2}_{\bm{k}}(\sigma_{x}\otimes I_{d})\Omega^{1/2}_{\bm{k}} where IdI_{d} is the identity matrix with the dimension dd being that of the KK matrix. Thus the determinant detHeff=detΩ(detσx)d\det H_{\rm eff}=\det\Omega\cdot(\det\sigma_{x})^{d}. From the definition of the Ω\Omega, we can find that detΩ=det(ω0Id)det(D/ω0iG(ω0Id)1iG)=det(D+G2)=det(DGG)=detK\det\Omega=\det(\omega_{0}I_{d})\cdot\det(D/\omega_{0}-iG(\omega_{0}I_{d})^{-1}iG)=\det(D+G^{2})=\det(D-GG^{\dagger})=\det K.

By the definition of Ω\Omega, one can find that Ω𝒌=UΩ𝒌U\Omega_{-\bm{k}}=U^{\dagger}\Omega_{\bm{k}}^{*}U with U=σzU=\sigma_{z}. Thus, Heff(𝒌)=(UΩ𝒌U)1/2σx(UΩ𝒌U)1/2H_{\rm eff}(-\bm{k})=(U^{\dagger}\Omega_{\bm{k}}^{*}U)^{1/2}\sigma_{x}(U^{\dagger}\Omega_{\bm{k}}^{*}U)^{1/2}. By noting that (UΩ𝒌U)1/2=UΩ𝒌1/2U(U^{\dagger}\Omega_{\bm{k}}^{*}U)^{1/2}=U^{\dagger}\Omega_{\bm{k}}^{*1/2}U, one can find that Heff(𝒌)=UHeff(𝒌)UH_{\rm eff}(-\bm{k})=-U^{\dagger}H_{\rm eff}(\bm{k})^{*}U.

IV.7 Phonon angular momentum

A classical angular momentum phonons is defined as:

Jzph\displaystyle J_{z}^{\text{ph}} =l,κ(ulκxu˙lκyulκyu˙lκx)\displaystyle=\sum_{l,\kappa}(u^{x}_{l\kappa}\dot{u}^{y}_{l\kappa}-u^{y}_{l\kappa}\dot{u}^{x}_{l\kappa})
=l,κ(ulκxulκy)T(0110)(u˙lκxu˙lκy)\displaystyle=\sum_{l,\kappa}\left(\begin{matrix}u_{l\kappa}^{x}\\ u_{l\kappa}^{y}\end{matrix}\right)^{T}\left(\begin{matrix}0&1\\ -1&0\end{matrix}\right)\left(\begin{matrix}\dot{u}_{l\kappa}^{x}\\ \dot{u}_{l\kappa}^{y}\end{matrix}\right)
=𝒌,κ(u𝒌κ,xu𝒌κ,y)(0110)(u˙𝒌κ,xu˙𝒌κ,y)\displaystyle=\sum_{\bm{k},\kappa}\left(\begin{matrix}u^{\kappa,x}_{\bm{k}}\\ u^{\kappa,y}_{\bm{k}}\end{matrix}\right)^{\dagger}\left(\begin{matrix}0&1\\ -1&0\end{matrix}\right)\left(\begin{matrix}\dot{u}^{\kappa,x}_{\bm{k}}\\ \dot{u}^{\kappa,y}_{\bm{k}}\end{matrix}\right) (55)

For a system with n = 2 atoms per unit cell, such as honeycomb lattice, the total phonon angular momentum can be written as:

Jzph\displaystyle J_{z}^{\text{ph}} =𝒌(u𝒌A,xu𝒌A,yu𝒌B,xu𝒌B,y)(0100100000010010)(u˙𝒌A,xu˙𝒌A,yu˙𝒌B,xu˙𝒌B,y)\displaystyle=\sum_{\bm{k}}\left(\begin{matrix}u^{A,x}_{\bm{k}}\\ u^{A,y}_{\bm{k}}\\ u^{B,x}_{\bm{k}}\\ u^{B,y}_{\bm{k}}\end{matrix}\right)^{\dagger}\left(\begin{matrix}0&1&0&0\\ -1&0&0&0\\ 0&0&0&1\\ 0&0&-1&0\end{matrix}\right)\left(\begin{matrix}\dot{u}^{A,x}_{\bm{k}}\\ \dot{u}^{A,y}_{\bm{k}}\\ \dot{u}^{B,x}_{\bm{k}}\\ \dot{u}^{B,y}_{\bm{k}}\end{matrix}\right)
=𝒌u𝒌Lu˙𝒌=𝒌u𝒌L(p𝒌+G𝒌u𝒌)\displaystyle=\sum_{\bm{k}}u^{\dagger}_{\bm{k}}L\dot{u}_{\bm{k}}=\sum_{\bm{k}}u^{\dagger}_{\bm{k}}L\left(p_{\bm{k}}+G_{\bm{k}}u_{\bm{k}}\right) (56)

We replace the canonical variables with u𝒌=νω0(γνb𝒌,ν+γνb𝒌,ν)u_{\bm{k}}=\sum_{\nu}\sqrt{\frac{\hbar}{\omega_{0}}}\left(\gamma^{*}_{\nu}b^{\dagger}_{-\bm{k},\nu}+\gamma_{\nu}b_{\bm{k},\nu}\right) and p𝒌=νiω0(γ¯νb𝒌,νγ¯νb𝒌,ν)p_{\bm{k}}=\sum_{\nu}i\sqrt{\hbar\omega_{0}}\left(\bar{\gamma}^{*}_{\nu}b^{\dagger}_{-\bm{k},\nu}-\bar{\gamma}_{\nu}b_{\bm{k},\nu}\right) using which we can get the expression for the phonon angular momentum as:

Jzph\displaystyle J_{z}^{\text{ph}} =𝒌,μ,ν(iγμTLγ¯ν+1ω0γμTLG𝒌γν)b𝒌,μb𝒌,ν\displaystyle=\sum_{\bm{k},\mu,\nu}\hbar\left(i\gamma^{T}_{\mu}L\bar{\gamma}^{*}_{\nu}+\frac{1}{\omega_{0}}\gamma^{T}_{\mu}LG_{\bm{k}}\gamma^{*}_{\nu}\right)b_{-\bm{k},\mu}b^{\dagger}_{-\bm{k},\nu}
+𝒌,μ,ν(iγμLγ¯ν+1ω0γμLG𝒌γν)b𝒌,μb𝒌,ν\displaystyle+\sum_{\bm{k},\mu,\nu}\hbar\left(-i\gamma^{\dagger}_{\mu}L\bar{\gamma}_{\nu}+\frac{1}{\omega_{0}}\gamma^{\dagger}_{\mu}LG_{\bm{k}}\gamma_{\nu}\right)b^{\dagger}_{\bm{k},\mu}b_{\bm{k},\nu}
+𝒌,μ,ν(iγμTLγ¯ν+1ω0γμTLG𝒌γν)b𝒌,μb𝒌,ν\displaystyle+\sum_{\bm{k},\mu,\nu}\hbar\left(-i\gamma^{T}_{\mu}L\bar{\gamma}_{\nu}+\frac{1}{\omega_{0}}\gamma^{T}_{\mu}LG_{\bm{k}}\gamma_{\nu}\right)b_{-\bm{k},\mu}b_{\bm{k},\nu}
+𝒌,μ,ν(iγμLγ¯ν+1ω0γμLG𝒌γν)b𝒌,μb𝒌,ν\displaystyle+\sum_{\bm{k},\mu,\nu}\hbar\left(i\gamma^{\dagger}_{\mu}L\bar{\gamma}^{*}_{\nu}+\frac{1}{\omega_{0}}\gamma^{\dagger}_{\mu}LG_{\bm{k}}\gamma^{*}_{\nu}\right)b^{\dagger}_{\bm{k},\mu}b^{\dagger}_{-\bm{k},\nu} (57)

We can calculate the thermal average of this expression. Since b𝒌,νb𝒌,μ=δμ,ν+b𝒌,μb𝒌,νb_{\bm{k},\nu}b^{\dagger}_{\bm{k},\mu}=\delta_{\mu,\nu}+b^{\dagger}_{\bm{k},\mu}b_{\bm{k},\nu} and b𝒌,μb𝒌,ν=f(ω𝒌,ν)δμ,ν\langle b^{\dagger}_{\bm{k},\mu}b_{\bm{k},\nu}\rangle=f(\omega_{\bm{k},\nu})\delta_{\mu,\nu}, b𝒌,μb𝒌,ν=b𝒌,μb𝒌,ν=0\langle b^{\dagger}_{\bm{k},\mu}b^{\dagger}_{\bm{k^{\prime}},\nu}\rangle=\langle b_{\bm{k},\mu}b_{\bm{k^{\prime}},\nu}\rangle=0, where f(ω𝒌,ν)=1eβω𝒌,ν1f(\omega_{\bm{k},\nu})=\frac{1}{e^{\beta\hbar\omega_{\bm{k},\nu}}-1} is the Bose-Einstein distribution, we can write:

Jzph\displaystyle\langle J_{z}^{\text{ph}}\rangle =𝒌,ν(iγνTLγ¯ν+1ω0γνTLG𝒌γν)(1+f(ω𝒌,ν))\displaystyle=\sum_{\bm{k},\nu}\hbar\left(i\gamma^{T}_{\nu}L\bar{\gamma}^{*}_{\nu}+\frac{1}{\omega_{0}}\gamma^{T}_{\nu}LG_{\bm{k}}\gamma^{*}_{\nu}\right)\left(1+f(\omega_{\bm{k},\nu})\right)
+𝒌,ν(iγνLγ¯ν+1ω0γνLG𝒌γν)f(ω𝒌,ν)\displaystyle+\sum_{\bm{k},\nu}\hbar\left(-i\gamma^{\dagger}_{\nu}L\bar{\gamma}_{\nu}+\frac{1}{\omega_{0}}\gamma^{\dagger}_{\nu}LG_{\bm{k}}\gamma_{\nu}\right)f(\omega_{\bm{k},\nu})
=𝒌,ν(1ω0γνLG𝒌γνiγνLγ¯ν)(1+2f(ω𝒌,ν))\displaystyle=\sum_{\bm{k},\nu}\hbar\left(\frac{1}{\omega_{0}}\gamma^{\dagger}_{\nu}LG_{\bm{k}}\gamma_{\nu}-i\gamma^{\dagger}_{\nu}L\bar{\gamma}_{\nu}\right)\left(1+2f(\omega_{\bm{k},\nu})\right)
=𝒌,νγνL(G~𝒌ω0γνiγ¯ν)(1+2f(ω𝒌,ν))\displaystyle=\sum_{\bm{k},\nu}\hbar\gamma^{\dagger}_{\nu}L\left(\frac{\tilde{G}_{\bm{k}}}{\omega_{0}}\gamma_{\nu}-i\bar{\gamma}_{\nu}\right)\left(1+2f(\omega_{\bm{k},\nu})\right)
=𝒌,νγνLγν(iω𝒌,νω0)(1+2f(ω𝒌,ν))\displaystyle=-\sum_{\bm{k},\nu}\gamma^{\dagger}_{\nu}L\gamma_{\nu}\left(\frac{i\hbar\omega_{\bm{k},\nu}}{\omega_{0}}\right)\left(1+2f(\omega_{\bm{k},\nu})\right) (58)

Here we show that νγνLγν=0\sum_{\nu}\gamma^{\dagger}_{\nu}L\gamma_{\nu}=0.

νγνLγν\displaystyle\sum_{\nu}\gamma^{\dagger}_{\nu}L\gamma_{\nu} =TrψL^ψ\displaystyle={\rm Tr}{\psi}^{\dagger}\hat{L}{\psi}
=Trψ~Ω~𝒌1/2L^ω𝒌,νΩ~𝒌1/2ψ~\displaystyle={\rm Tr}\tilde{\psi}^{\dagger}\tilde{\Omega}_{\bm{k}}^{-1/2}\hat{L}\omega_{\bm{k},\nu}\tilde{\Omega}_{\bm{k}}^{-1/2}\tilde{\psi}
=Trψ~Ω𝒌1/2L^σxΩ𝒌1/2ψ~\displaystyle={\rm Tr}\tilde{\psi}^{\dagger}\Omega_{\bm{k}}^{-1/2}\hat{L}\sigma_{x}\Omega_{\bm{k}}^{1/2}\tilde{\psi}
=TrΩ𝒌1/2ψ~ψ~Ω𝒌1/2L^σx\displaystyle={\rm Tr}\Omega_{\bm{k}}^{1/2}\tilde{\psi}\tilde{\psi}^{\dagger}\Omega_{\bm{k}}^{-1/2}\hat{L}\sigma_{x}
=TrL^σx=0\displaystyle={\rm Tr}\hat{L}\sigma_{x}=0 (59)

where ω𝒌,ν\omega_{\bm{k},\nu} is the eigen-energy, which is a diagonal matrix, and L^=(L000)\hat{L}=\left(\begin{matrix}L&0\\ 0&0\end{matrix}\right)

References

  • (1) Max Born and Kun Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Amen House, London,1962).
  • (2) C. A. Mead and D. G. Truhlar, On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys. 70, 2284 (1979).
  • (3) C. A. Mead, The geometric phase in molecular systems, Rev. Mod. Phys. 64, 51 (1992).
  • (4) S. K. Min, A. Abedi, K. S. Kim, and E. K. U. Gross, Is the Molecular Berry Phase an Artifact of the Born-Oppenheimer Approximation?, Phys. Rev. Lett. 113, 263004 (2014).
  • (5) O. Bistoni, F. Mauri, and M. Calandra, Intrinsic Vibrational Angular Momentum from Nonadiabatic Effects in Noncollinear Magnetic Molecules, Phys. Rev. Lett. 126, 225703 (2021).
  • (6) T. Qin, Q. Niu, and J. R. Shi, Energy Magnetization and the Thermal Hall Effect, Phys. Rev. Lett. 107, 236601 (2011).
  • (7) T. Qin, J. Zhou, and J. R. Shi, Berry curvature and the phonon Hall effect, Phys. Rev. B 86, 104305 (2012).
  • (8) M. Barkeshli, S. B. Chung, and X.-L. Qi, Dissipationless phonon Hall viscosity, Phys. Rev. B 85, 245107 (2012).
  • (9) Alberto Cortijo, Yago Ferreirós, Karl Landsteiner, and María A. H. Vozmediano, Visco elasticity in 2D materials, 2D Mater. 3, 011002 (2016).
  • (10) Shiva Heidari, Alberto Cortijo, and Reza Asgari, Hall viscosity for optical phonons, Phys. Rev. B 100, 165427 (2019).
  • (11) P. Rinkel, P. L. S. Lopes, and Ion Garate, Signatures of the Chiral Anomaly in Phonon Dynamics, Phys. Rev. Lett. 119, 107401 (2017).
  • (12) Sanghita Sengupta, M. Nabil Y. Lhachemi, and Ion Garate, Phonon Magnetochiral Effect of Band-Geometric Origin in Weyl Semimetals, Phys. Rev. Lett. 125, 146402 (2020).
  • (13) Lun-Hui Hu, Jiabin Yu, Ion Garate, and Chao-Xing Liu, Phonon Helicity Induced by Electronic Berry Curvature in Dirac Materials, Phys. Rev. Lett. 127, 125901 (2021).
  • (14) T. Saito, K. Misaki, H. Ishizuka, and N. Nagaosa, Berry Phase of Phonons and Thermal Hall Effect in Nonmagnetic Insulators, Phys. Rev. Lett. 123, 255901 (2019)
  • (15) H. M. Price, T. Ozawa, and I. Carusotto, Quantum Mechanics with a Momentum-Space Artificial Magnetic Field, Phys. Rev. Lett. 113, 190403 (2014)
  • (16) K. Sun, Z. Gao, and J.-S. Wang, Phonon Hall effect with first-principles calculations, Phys. Rev. B 103, 214301 (2021).
  • (17) M. Hamada and S. Murakami, Conversion between electron spin and microscopic atomic rotation, Phys. Rev. Research 2, 023275 (2020).
  • (18) D. M. Juraschek and N. A. Spaldin, Orbital magnetic moments of phonons, Phys. Rev. Materials 3, 064405 (2019).
  • (19) C. Xiao, Y. Ren, and B. Xiong, Adiabatically Induced Orbital Magnetization, arXiv:2012.08750.
  • (20) L. Dong and Q. Niu, Geometrodynamics of electrons in a crystal under position and time-dependent deformation, Phys. Rev. B 98, 115162 (2018).
  • (21) L. Trifunovic, S. Ono, and H. Watanabe, Geometric orbital magnetization in adiabatic processes, Phys. Rev. B 100, 054408 (2019).
  • (22) Y. Ren, C. Xiao, D. Saparov, and Q. Niu, Phonon Magnetic Moment from Electronic Topological Magnetization, arXiv:2103.05786.
  • (23) B. Cheng, T. Schumann, Y. Wang, X. Zhang, D. Barbalas, S. Stemmer, and N. P. Armitage, A Large Effective Phonon Magnetic Moment in a Dirac Semimetal, Nano Lett. 20 5991 (2020).
  • (24) A. Baydin, F. G. G. Hernandez, M. Rodriguez-Vega, A. K. Okazaki, F. Tay, G. Timothy Noe II, I. Katayama, J. Takeda, H. Nojiri, P. H. O. Rappl, E. Abramof, G. A. Fiete, and J. Kono, Magnetic Control of Soft Chiral Phonons in PbTe, arXiv:2107.07616.
  • (25) L. Zhang and Q. Niu, Angular Momentum of Phonons and the Einstein–de Haas Effect, Phys. Rev. Lett. 112, 085503 (2014).
  • (26) C. Strohm, G. L. J. A. Rikken, and P. Wyder, Phenomenological Evidence for the Phonon Hall Effect, Phys. Rev. Lett. 95, 155901 (2005).
  • (27) A. V. Inyushkin and A. N. Taldenkov, On the phonon Hall effect in a paramagnetic dielectric, JETP Lett. 86, 379 (2007).
  • (28) K. Sugii, M. Shimozawa, D. Watanabe, Y. Suzuki, M. Halim, M. Kimata, Y. Matsumoto, S. Nakatsuji, and M. Yamashita, Thermal Hall Effect in a Phonon-Glass Ba3CuSb2O9, Phys. Rev. Lett. 118, 145902 (2017).
  • (29) G. Grissonnanche, S. Thériault, A. Gourgout, M.-E. Boulanger, E. Lefrançois, A. Ataei, F. Laliberté, M. Dion, J.-S. Zhou, S. Pyon, T. Takayama, H. Takagi, N. Doiron-Leyraud, and L. Taillefer, Chiral phonons in the pseudogap phase of cuprates, Nature Physics 16, 1108-1111(2020).
  • (30) D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
  • (31) A. Holz, Phonons in a strong static magnetic field, Nuovo Cimento Soc. Ital. Fis. 9B, 83 (1972).
  • (32) J. Callaway, Quantum Theory of the Solid State, 2nd ed. (Academic Press, San Diego, 1991).
  • (33) C. Kittel, Quantum Theory of Solids, 2nd ed. (John Wiley & Sons, Inc., 1987).
  • (34) F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
  • (35) H. Capellmann, S. Lipinski, and K. U. Neumann, A microscopic model for the coupling of spin fluctuations and charge fluctuation in intermediate valency. Z. Phys. B: Cond. Matt., 75, 323 (1989).
  • (36) L. Sheng, D. N. Sheng, and C. S. Ting, Theory of the Phonon Hall Effect in Paramagnetic Dielectrics, Phys. Rev. Lett. 96, 155901 (2006).
  • (37) Y. Kagan and L. A. Maksimov, Anomalous Hall Effect for the Phonon Heat Conductivity in Paramagnetic Dielectrics, Phys. Rev. Lett. 100, 145902 (2008).
  • (38) J.-S. Wang and L. Zhang, Phonon Hall thermal conductivity from the Green-Kubo formula, Phys. Rev. B 80, 012301 (2009); L. Zhang, J. Ren, J.-S. Wang, and B. Li, Topological Nature of the Phonon Hall Effect, Phys. Rev. Lett. 105, 225901 (2010); B. K. Agarwalla, L. Zhang, J.-S. Wang, and B. Li, Phonon Hall effect in ionic crystals in the presence of static magnetic field, Eur. Phys. J. B 81, 197-202 (2011)
  • (39) Roman Süsstrunk and Sebastian D. Huber, Classification of topological phonons in linear mechanical metamaterials, PNAS 113 (33) E4767-E4775 (2016).
  • (40) Y. Liu, Y. Xu, S.-C. Zhang, and W. Duan Model for topological phononics and phonon diode, Phys. Rev. B, 96, 064106 (2017)
  • (41) L. Zhang and Q. Niu, Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal Lattices, Phys. Rev. Lett. 115, 115502 (2015).
  • (42) Hisayoshi Komiyama and Shuichi Murakami, Universal features of canonical phonon angular momentum without time-reversal symmetry, Phys. Rev. B 103, 214302 – Published 3 June 2021
  • (43) A. L. Fetter and J. D Walecka, Quantum Theory of Many-Particle System (McGraw-Hill, New York, 1971).