This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Large deviations for backward stochastic differential equations driven by GG-Brownian motion

Ibrahim DAKAOUaaaEmail: [email protected]  and Abdoulaye SOUMANA HIMAbbbEmail: [email protected]
Département de Mathématiques, Université Dan Dicko Dankoulodo de Maradi,
BP 465, Maradi, Niger
Abstract

In this paper, we consider forward-backward stochastic differential equation driven by GG-Brownian motion (GG-FBSDEs in short) with small parameter ε>0\varepsilon>0. We study the asymptotic behavior of the solution of the backward equation and establish a large deviation principle for the corresponding process.

2010 Mathematics Subject Classification. 60F10; 60H10; 60H30.

Key words and phrases. Large deviations; GG-stochastic differential equation; Backward SDEs; Contraction principle.

1 Introduction

The large deviation principle (LDP in short) characterizes the limiting behavior, as ε0\varepsilon\rightarrow 0, of family of probability measures {με}ε>0\{\mu_{\varepsilon}\}_{\varepsilon>0} in terms of a rate function. Several authors have considered large deviations and obtained different types of applications mainly to mathematical physics. General references on large deviations are: Varadhan [1984], Deuschel and Stroock [1989], Dembo and Zeitouni [1998].

Let Xs,x,εX^{s,x,\varepsilon} be the diffusion process that is the unique solution of the following stochastic differential equation (SDE in short)

Xts,x,ε=x+stβ(Xrs,x,ε)𝑑r+εstσ(Xrs,x,ε)𝑑Wr, 0stTX_{t}^{s,x,\varepsilon}=x+\int_{s}^{t}\beta(X_{r}^{s,x,\varepsilon})dr+\sqrt{\varepsilon}\int_{s}^{t}\sigma(X_{r}^{s,x,\varepsilon})dW_{r},\;0\leq s\leq t\leq T (1.1)

where β\beta is a Lipschitz function defined on d\mathbb{R}^{d} with values in d\mathbb{R}^{d}, σ\sigma is a Lipschitz function defined on d\mathbb{R}^{d} with values in d×k\mathbb{R}^{d\times k}, and WW is a standard Brownian motion in k\mathbb{R}^{k} defined on a complete probability space (Ω,,)(\Omega,\mathcal{F},\mathbb{P}). The existence and uniqueness of the strong solution Xs,x,εX^{s,x,\varepsilon} of (1.1) is standard. Thanks to the work of Freidlin and Wentzell [1984], the sequence (Xs,x,ε)ε>0(X^{s,x,\varepsilon})_{\varepsilon>0} converges in probability, as ε\varepsilon goes to 0, to (φts,x)stT(\varphi_{t}^{s,x})_{s\leq t\leq T} solution of the following deterministic equation

φts,x=x+stβ(φrs,x)𝑑r, 0stT\varphi_{t}^{s,x}=x+\int_{s}^{t}\beta(\varphi_{r}^{s,x})dr,\;0\leq s\leq t\leq T

and satisfies a large deviation principle (LDP in short).

Rainero [2006] extended this result to the case of backward stochastic differential equations (BSDEs in short) and Essaky [2008] and N’zi and Dakaou [2014] to reflected BSDEs.

Gao and Jiang [2010] extended the work of Freidlin and Wentzell [1984] to stochastic differential equations driven by GG-Brownian motion (GG-SDEs in short). The authors considered the following GG-SDE: for every 0tT0\leq t\leq T,

Xtx,ε=x+0tbε(Xrx,ε)𝑑r+ε0thε(Xrx,ε)dB,Br/ε+ε0tσε(Xrx,ε)𝑑Br/εX_{t}^{x,\varepsilon}=x+\int_{0}^{t}b^{\varepsilon}(X_{r}^{x,\varepsilon})dr+\varepsilon\int_{0}^{t}h^{\varepsilon}(X_{r}^{x,\varepsilon})d\langle B,B\rangle_{r/\varepsilon}+\varepsilon\int_{0}^{t}\sigma^{\varepsilon}(X_{r}^{x,\varepsilon})dB_{r/\varepsilon}

and use discrete time approximation to establish LDP for GG-SDEs.

The aim of this paper is to establish LDP for GG-BSDEs. More precisely, we consider the following forward-backward stochastic differential equation driven by GG-Brownian motion: for every stTs\leq t\leq T,

{Xts,x,ε=x+stb(Xrs,x,ε)𝑑r+εsth(Xrs,x,ε)dB,Br+εstσ(Xrs,x,ε)𝑑BrYts,x,ε=Φ(XTs,x,ε)+tTf(r,Xrs,x,ε,Yrs,x,ε,Zrs,x,ε)𝑑rtTZrs,x,ε𝑑Br+tTg(r,Xrs,x,ε,Yrs,x,ε,Zrs,x,ε)dB,Br(KTs,x,εKts,x,ε)\begin{cases}&X_{t}^{s,x,\varepsilon}=x+\int_{s}^{t}b(X_{r}^{s,x,\varepsilon})dr+\varepsilon\int_{s}^{t}h(X_{r}^{s,x,\varepsilon})d\langle B,B\rangle_{r}+\varepsilon\int_{s}^{t}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}\\ &Y_{t}^{s,x,\varepsilon}=\Phi(X_{T}^{s,x,\varepsilon})+\int_{t}^{T}f(r,X_{r}^{s,x,\varepsilon},Y_{r}^{s,x,\varepsilon},Z_{r}^{s,x,\varepsilon})dr-\int_{t}^{T}Z_{r}^{s,x,\varepsilon}dB_{r}\\ &\qquad\qquad+\int_{t}^{T}g(r,X_{r}^{s,x,\varepsilon},Y_{r}^{s,x,\varepsilon},Z_{r}^{s,x,\varepsilon})d\langle B,B\rangle_{r}-(K_{T}^{s,x,\varepsilon}-K_{t}^{s,x,\varepsilon})\end{cases}

We study the asymptotic behavior of the solution of the backward equation and establish a LDP for the corresponding process.

The remaining part of the paper is organized as follows. In Section 2, we present some preliminaries that are useful in this paper. Section 3 is devoted to the large deviations for stochastic differential equations driven by GG-Brownian motion obtained by Gao and Jiang [2010]. The large deviations for backward stochastic differential equations driven by GG-Brownian motion are given in Section 4.

2 Preliminaries

We review some basic notions and results about GG-expectation, GG-Brownian motion and GG-stochastic integrals [see Peng, 2010, Hu et al., 2014a; for more details].

Let Ω\Omega be a complete separable metric space, and let \mathcal{H} be a linear space of real-valued functions defined on Ω\Omega satisfying: if XiX_{i}\in\mathcal{H}, i=1,,ni=1,\ldots,n, then

φ(X1,,Xn),φ𝒞l,Lip(n),\varphi(X_{1},\ldots,X_{n})\in\mathcal{H},\quad\forall\varphi\in\mathcal{C}_{l,Lip}(\mathbb{R}^{n}),

where 𝒞l,Lip(n)\mathcal{C}_{l,Lip}(\mathbb{R}^{n}) is the space of real continuous functions defined on n\mathbb{R}^{n} such that for some C>0C>0 and kk\in\mathbb{N} depending on φ\varphi,

|φ(x)φ(y)|C(1+|x|k+|y|k)|xy|,x,yn.|\varphi(x)-\varphi(y)|\leq C(1+|x|^{k}+|y|^{k})|x-y|,\quad\forall x,y\in\mathbb{R}^{n}.
Definition 2.1.

(Sublinear expectation space). A sublinear expectation 𝔼^\widehat{\mathbb{E}} on \mathcal{H} is a functional 𝔼^:\widehat{\mathbb{E}}:\mathcal{H}\longrightarrow\mathbb{R} satisfying the following properties: for all X,YX,Y\in\mathcal{H}, we have

  1. 1.

    Monotonicity: if XYX\geq Y, then 𝔼^[X]𝔼^[Y]\widehat{\mathbb{E}}[X]\geq\widehat{\mathbb{E}}[Y];

  2. 2.

    Constant preservation: 𝔼^[c]=c\widehat{\mathbb{E}}[c]=c;

  3. 3.

    Sub-additivity: 𝔼^[X+Y]𝔼^[X]+𝔼^[Y]\widehat{\mathbb{E}}[X+Y]\leq\widehat{\mathbb{E}}[X]+\widehat{\mathbb{E}}[Y];

  4. 4.

    Positive homogeneity: 𝔼^[λX]=λ𝔼^[X]\widehat{\mathbb{E}}[\lambda X]=\lambda\widehat{\mathbb{E}}[X], for all λ0\lambda\geq 0.

(Ω,,𝔼^)(\Omega,\mathcal{H},\widehat{\mathbb{E}}) is called a sublinear expectation space.

Definition 2.2.

(Independence). Fix the sublinear expectation space (Ω,,𝔼^)(\Omega,\mathcal{H},\widehat{\mathbb{E}}). A random variable YY\in\mathcal{H} is said to be independent of (X1,X2,,Xn)(X_{1},X_{2},\ldots,X_{n}), XiX_{i}\in\mathcal{H}, if for all φ𝒞l,Lip(n+1)\varphi\in\mathcal{C}_{l,Lip}(\mathbb{R}^{n+1}),

𝔼^[φ(X1,X2,,Xn,Y)]=𝔼^[𝔼^[φ(x1,x2,,xn,Y)]|(x1,x2,,xn)=(X1,X2,,Xn)].\widehat{\mathbb{E}}\left[\varphi(X_{1},X_{2},\ldots,X_{n},Y)\right]=\widehat{\mathbb{E}}\left[\widehat{\mathbb{E}}\left[\varphi(x_{1},x_{2},\ldots,x_{n},Y)\right]\big{|}_{(x_{1},x_{2},\ldots,x_{n})=(X_{1},X_{2},\ldots,X_{n})}\right].

Now we introduce the definition of GG-normal distribution.

Definition 2.3.

(GG-normal distribution). A random variable XX\in\mathcal{H} is called GG-normally distributed, noted by X𝒩(0,[σ¯2,σ¯2])X\sim\mathcal{N}(0,[\underline{\sigma}^{2},\overline{\sigma}^{2}]), 0σ¯2σ¯20\leq\underline{\sigma}^{2}\leq\overline{\sigma}^{2}, if for any function φ𝒞l,Lip()\varphi\in\mathcal{C}_{l,Lip}(\mathbb{R}), the fonction uu defined by u(t,x):=𝔼^[φ(x+tX)],(t,x)[0,)×u(t,x):=\widehat{\mathbb{E}}[\varphi(x+\sqrt{t}X)],\;\left(t,x\right)\in\left[0,\infty\right)\times\mathbb{R}, is a viscosity solution of the following GG-heat equation:

tuG(Dx2u)=0,u(0,x)=φ(x),\partial_{t}u-G\left(D_{x}^{2}u\right)=0,\;u(0,x)=\varphi(x),

where

G(a):=12(σ¯2a+σ¯2a).G(a):=\frac{1}{2}(\overline{\sigma}^{2}a^{+}-\underline{\sigma}^{2}a^{-}).

In multi-dimensional case, the function G()G(\cdot): 𝕊d\mathbb{S}_{d}\longrightarrow\mathbb{R} is defined by

G(A)=12supγΓtr(γγτA),G(A)=\frac{1}{2}\sup_{\gamma\in\Gamma}\,\textrm{tr}(\gamma\gamma^{\tau}A),

where 𝕊d\mathbb{S}_{d} denotes the space of d×dd\times d symmetric matrices and Γ\Gamma is a given nonempty, bounded and closed subset of d×d\mathbb{R}^{d\times d} which is the space of all d×dd\times d matrices.

Throughout this paper, we consider only the non-degenerate case, i.e., σ¯2>0\underline{\sigma}^{2}>0.

Let Ω:=𝒞([0,))\Omega:=\mathcal{C}\left([0,\infty)\right), which equipped with the raw filtration \mathcal{F} generated by the canonical process (Bt)t0(B_{t})_{t\geq 0}, i.e., Bt(ω)=ωtB_{t}(\omega)=\omega_{t}, for (t,ω)[0,)×Ω(t,\omega)\in[0,\infty)\times\Omega. Let us consider the function spaces defined by

Lip(ΩT)\displaystyle Lip(\Omega_{T}) :={φ(Bt1,Bt2Bt1,,BtnBtn1):n1,\displaystyle:=\Big{\{}\varphi(B_{t_{1}},B_{t_{2}}-B_{t_{1}},\ldots,B_{t_{n}}-B_{t_{n-1}}):n\geq 1,
0t1t2tnT,φ𝒞l,Lip(n)},forT>0,\displaystyle\quad\quad\quad\quad 0\leq t_{1}\leq t_{2}\leq\ldots\leq t_{n}\leq T,\varphi\in\mathcal{C}_{l,Lip}(\mathbb{R}^{n})\Big{\}},\quad\text{for}\quad T>0,
Lip(Ω)\displaystyle Lip(\Omega) :=n=1Lip(Ωn).\displaystyle:=\bigcup_{n=1}^{\infty}Lip(\Omega_{n}).
Definition 2.4.

(GG-Brownian motion and GG-expectation). On the sublinear expectation space (Ω,Lip(Ω),𝔼^)\left(\Omega,Lip(\Omega),\widehat{\mathbb{E}}\right), the canonical process (Bt)t0(B_{t})_{t\geq 0} is called a GG-Brownian motion if the following properties are verified:

  1. 1.

    B0=0B_{0}=0

  2. 2.

    For each t,s0t,s\geq 0, the increment Bt+sBt𝒩(0,[sσ¯2,sσ¯2])B_{t+s}-B_{t}\sim\mathcal{N}(0,[s\underline{\sigma}^{2},s\overline{\sigma}^{2}]) and is independent from (Bt1,,Btn)(B_{t_{1}},\ldots,B_{t_{n}}), for 0t1tnt0\leq t_{1}\leq\ldots\leq t_{n}\leq t.

Moreover, the sublinear expectation 𝔼^\widehat{\mathbb{E}} is called GG-expectation.

Remark 2.1.

For each λ>0\lambda>0, (λBt/λ)t0\left(\sqrt{\lambda}B_{t/\lambda}\right)_{t\geq 0} is also a GG-Brownian motion. This is the scaling property of GG-Brownian motion, which is the same as that of the classical Brownian motion.

Definition 2.5.

(Conditional GG-expectation). For the random variable ξLip(ΩT)\xi\in Lip(\Omega_{T}) of the following form:

φ(Bt1,Bt2Bt1,,BtnBtn1),φ𝒞l,Lip(n),\varphi(B_{t_{1}},B_{t_{2}}-B_{t_{1}},\ldots,B_{t_{n}}-B_{t_{n-1}}),\quad\varphi\in\mathcal{C}_{l,Lip}(\mathbb{R}^{n}),

the conditional GG-expectation 𝔼^ti[]\widehat{\mathbb{E}}_{t_{i}}[\cdot], i=1,,ni=1,\ldots,n, is defined as follows

𝔼^ti[φ(Bt1,Bt2Bt1,,BtnBtn1)]=φ~(Bt1,Bt2Bt1,,BtiBti1),\widehat{\mathbb{E}}_{t_{i}}[\varphi(B_{t_{1}},B_{t_{2}}-B_{t_{1}},\ldots,B_{t_{n}}-B_{t_{n-1}})]=\widetilde{\varphi}(B_{t_{1}},B_{t_{2}}-B_{t_{1}},\ldots,B_{t_{i}}-B_{t_{i-1}}),

where

φ~(x1,,xi)=𝔼^[φ(x1,,xi,Bti+1Bti,,BtnBtn1)].\widetilde{\varphi}\left(x_{1},\ldots,x_{i}\right)=\widehat{\mathbb{E}}\left[\varphi\left(x_{1},\ldots,x_{i},B_{t_{i+1}}-B_{t_{i}},\ldots,B_{t_{n}}-B_{t_{n-1}}\right)\right].

If t(ti,ti+1)t\in(t_{i},t_{i+1}), then the conditional GG-expectation 𝔼^t[ξ]\widehat{\mathbb{E}}_{t}[\xi] could be defined by reformulating ξ\xi as

ξ=φ^(Bt1,Bt2Bt1,,BtBti,Bti+1Bt,,BtnBtn1),φ^𝒞l,Lip(n+1).\xi=\widehat{\varphi}(B_{t_{1}},B_{t_{2}}-B_{t_{1}},\ldots,B_{t}-B_{t_{i}},B_{t_{i+1}}-B_{t},\ldots,B_{t_{n}}-B_{t_{n-1}}),\quad\widehat{\varphi}\in\mathcal{C}_{l,Lip}(\mathbb{R}^{n+1}).

For ξLip(ΩT)\xi\in Lip(\Omega_{T}) and p1p\geq 1, we consider the norm ξLGp:=(𝔼^[|ξ|p])1/p\|\xi\|_{L^{p}_{G}}:=\left(\widehat{\mathbb{E}}\Big{[}|\xi|^{p}\Big{]}\right)^{1/p}. Denote by LGp(ΩT)L^{p}_{G}(\Omega_{T}) the Banach completion of Lip(ΩT)Lip(\Omega_{T}) under LGp\|\cdot\|_{L^{p}_{G}}. It is easy to check that the conditional GG-expectation 𝔼^t[]:Lip(ΩT)Lip(Ωt)\widehat{\mathbb{E}}_{t}[\cdot]:Lip(\Omega_{T})\longrightarrow Lip(\Omega_{t}) is a continuous mapping and thus can be extended to 𝔼^t[]:LGp(ΩT)LGp(Ωt)\widehat{\mathbb{E}}_{t}[\cdot]:L^{p}_{G}(\Omega_{T})\longrightarrow L^{p}_{G}(\Omega_{t}).

Definition 2.6.

(GG-martingale). A process M=(Mt)t[0,T]M=\left(M_{t}\right)_{t\in\left[0,T\right]} with MtLG1(Ωt)M_{t}\in L_{G}^{1}(\Omega_{t}), 0tT0\leq t\leq T, is called a GG-martingale if for all 0stT0\leq s\leq t\leq T, we have

𝔼^s[Mt]=Ms.\widehat{\mathbb{E}}_{s}[M_{t}]=M_{s}.

The process M=(Mt)t[0,T]M=\left(M_{t}\right)_{t\in\left[0,T\right]} is called symmetric GG-martingale if M-M is also a GG-martingale.

Theorem 2.1.

[Representation theorem of GG-expectation, see Hu and Peng, 2009, Denis et al., 2011]. There exists a weakly compact set 𝒫1(ΩT)\mathcal{P}\subset\mathcal{M}_{1}(\Omega_{T}), the set of probability measures on (ΩT,(ΩT))(\Omega_{T},\mathcal{B}(\Omega_{T})), such that

𝔼^[ξ]:=supP𝒫EP[ξ]for allξLG1(ΩT).\widehat{\mathbb{E}}[\xi]:=\sup_{P\in\mathcal{P}}E_{P}[\xi]\quad\text{for all}\quad\xi\in L^{1}_{G}(\Omega_{T}).

𝒫\mathcal{P} is called a set that represents 𝔼^\widehat{\mathbb{E}}.

Let 𝒫\mathcal{P} be a weakly compact set that represents 𝔼^\widehat{\mathbb{E}}. For this 𝒫\mathcal{P}, we define the capacity of a measurable set AA by

C^(A):=supP𝒫P(A),A(ΩT).\widehat{C}(A):=\sup_{P\in\mathcal{P}}P(A),\quad A\in\mathcal{B}(\Omega_{T}).

A set A(ΩT)A\in\mathcal{B}(\Omega_{T}) is a polar if C^(A)=0\widehat{C}(A)=0. A property holds quasi-surely (q.s.) if it is true outside a polar set.

An important feature of the GG-expectation framework is that the quadratic variation B\left\langle B\right\rangle of the GG-Brownian motion is no longer a deterministic process, which is given by

Bt:=limδ(πtN)0j=0N1(Btj+1NBtjN)2,\left\langle B\right\rangle_{t}:=\lim_{\delta\left(\pi_{t}^{N}\right)\rightarrow 0}\sum_{j=0}^{N-1}(B_{t_{j+1}^{N}}-B_{t_{j}^{N}})^{2},

where πtN={t0,t1,,tN}\pi_{t}^{N}=\{t_{0},t_{1},\ldots,t_{N}\}, N=1,2,N=1,2,\ldots, are refining partitions of [0,t][0,t]. By Peng [2010], for all s,t0s,t\geq 0, Bt+sBt[sσ¯2,sσ¯2]\langle B\rangle_{t+s}-\langle B\rangle_{t}\in[s\underline{\sigma}^{2},s\overline{\sigma}^{2}], q.s.q.s.

Let MG0(0,T)M_{G}^{0}\left(0,T\right) be the collection of processes in the following form: for a given partition πTN:={t0,t1,,tN}\pi_{T}^{N}:=\{t_{0},t_{1},\ldots,t_{N}\} of [0,T][0,T],

ηt(ω)=j=0N1ξj(ω)𝟏[tj,tj+1)(t),\eta_{t}\left(\omega\right)=\sum_{j=0}^{N-1}\xi_{j}\left(\omega\right)\mathbf{1}_{\left[t_{j},t_{j+1}\right)}(t), (2.1)

where ξiLip(Ωti)\xi_{i}\in Lip(\Omega_{t_{i}}), for all i=0,1,,N1i=0,1,\ldots,N-1. For p1p\geq 1 and ηMG0(0,T)\eta\in M_{G}^{0}\left(0,T\right), let ηHGp:=(𝔼^[(0T|ηs|2𝑑s)p/2])1/p\left\|\eta\right\|_{H_{G}^{p}}:=\left(\widehat{\mathbb{E}}\left[\left(\int_{0}^{T}|\eta_{s}|^{2}ds\right)^{p/2}\right]\right)^{1/p}, ηMGp:=(𝔼^[0T|ηs|p𝑑s])1/p\|\eta\|_{M_{G}^{p}}:=\left(\widehat{\mathbb{E}}\left[\int_{0}^{T}|\eta_{s}|^{p}ds\right]\right)^{1/p} and denote by HGp(0,T)H_{G}^{p}\left(0,T\right), MGp(0,T)M_{G}^{p}(0,T) the completions of MG0(0,T)M_{G}^{0}\left(0,T\right) under the norms HGp\|\cdot\|_{H_{G}^{p}}, MGp\|\cdot\|_{M_{G}^{p}} respectively.

Let 𝒮G0(0,T):={h(t,Bt1t,Bt2tBt1t,,BtntBtn1t):0t1t2tnT,h𝒞b,Lip(n+1)}\mathcal{S}_{G}^{0}\left(0,T\right):=\{h(t,B_{t_{1}\wedge t},B_{t_{2}\wedge t}-B_{t_{1}\wedge t},\ldots,B_{t_{n}\wedge t}-B_{t_{n-1}\wedge t}):0\leq t_{1}\leq t_{2}\leq\ldots\leq t_{n}\leq T,\leavevmode\nobreak\ h\in\mathcal{C}_{b,Lip}(\mathbb{R}^{n+1})\}, where 𝒞b,Lip(n+1)\mathcal{C}_{b,Lip}(\mathbb{R}^{n+1}) is the collection of all bounded and Lipschitz functions on n+1\mathbb{R}^{n+1}. For p1p\geq 1 and η𝒮G0(0,T)\eta\in\mathcal{S}_{G}^{0}\left(0,T\right), we set η𝒮Gp:=(𝔼^[supt[0,T]|ηt|p])1/p\left\|\eta\right\|_{\mathcal{S}_{G}^{p}}:=\left(\widehat{\mathbb{E}}\Big{[}\sup_{t\in[0,T]}|\eta_{t}|^{p}\Big{]}\right)^{1/p}. We denote by 𝒮Gp(0,T)\mathcal{S}_{G}^{p}\left(0,T\right) the completion of 𝒮G0(0,T)\mathcal{S}_{G}^{0}\left(0,T\right) under the norm 𝒮Gp\left\|\cdot\right\|_{\mathcal{S}_{G}^{p}}.

Definition 2.7.

For ηMG0(0,T)\eta\in M_{G}^{0}\left(0,T\right) of the form (2.1), the Itô integral with respect to GG-Brownian motion is defined by the linear mapping :MG0(0,T)LG2(ΩT)\mathcal{I}:M_{G}^{0}(0,T)\longrightarrow L_{G}^{2}(\Omega_{T}),

(η):=0Tηt𝑑Bt=k=0N1ξk(Btk+1Btk),\mathcal{I}(\eta):=\int_{0}^{T}\eta_{t}dB_{t}=\sum_{k=0}^{N-1}\xi_{k}(B_{t_{k+1}}-B_{t_{k}}),

which can be continuously extended to :HG1(0,T)LG2(ΩT)\mathcal{I}:H_{G}^{1}(0,T)\longrightarrow L_{G}^{2}(\Omega_{T}). On the other hand, the stochastic integral with respect to (Bt)t0(\langle B\rangle_{t})_{t\geq 0} is defined by the linear mapping 𝒬:MG0(0,T)LG1(ΩT)\mathcal{Q}:M_{G}^{0}(0,T)\longrightarrow L_{G}^{1}(\Omega_{T}),

𝒬(η):=0TηtdBt=k=0N1ξk(Btk+1Btk),\mathcal{Q}(\eta):=\int_{0}^{T}\eta_{t}d\langle B\rangle_{t}=\sum_{k=0}^{N-1}\xi_{k}(\langle B\rangle_{t_{k+1}}-\langle B\rangle_{t_{k}}),

which can be continuously extended to 𝒬:HG1(0,T)LG1(ΩT)\mathcal{Q}:H_{G}^{1}(0,T)\longrightarrow L_{G}^{1}(\Omega_{T}).

Lemma 2.2.

[BDG type inequality, see Gao, 2009; Theorem 2.1]. Let p2p\geq 2, ηHGp(0,T)\eta\in H_{G}^{p}(0,T) and 0stT0\leq s\leq t\leq T. Then,

cpσ¯p𝔼^[(0T|ηs|2𝑑s)p/2]\displaystyle c_{p}\underline{\sigma}^{p}\widehat{\mathbb{E}}\left[\left(\int_{0}^{T}|\eta_{s}|^{2}ds\right)^{p/2}\right]
𝔼^[sup0tT|0tηr𝑑Br|p]Cpσ¯p𝔼^[(0T|ηs|2𝑑s)p/2],\displaystyle\leq\widehat{\mathbb{E}}\left[\sup_{0\leq t\leq T}\left|\int_{0}^{t}\eta_{r}dB_{r}\right|^{p}\right]\leq C_{p}\overline{\sigma}^{p}\widehat{\mathbb{E}}\left[\left(\int_{0}^{T}|\eta_{s}|^{2}ds\right)^{p/2}\right],

where 0<cp<Cp<0<c_{p}<C_{p}<\infty are constants independent of η\eta, σ¯\underline{\sigma} and σ¯\overline{\sigma}.

For ξLip(ΩT)\xi\in Lip(\Omega_{T}), let

(ξ):=𝔼^(supt[0,T]𝔼^t[ξ]).\mathcal{E}(\xi):=\widehat{\mathbb{E}}\left(\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}[\xi]\right).

\mathcal{E} is called the GG-evaluation.

For p1p\geq 1 and ξLip(ΩT)\xi\in Lip(\Omega_{T}), define

ξp,:=([|ξ|p])1/p\|\xi\|_{p,\mathcal{E}}:=\left(\mathcal{E}[|\xi|^{p}]\right)^{1/p}

and denote by Lp(ΩT)L_{\mathcal{E}}^{p}(\Omega_{T}) the completion of Lip(ΩT)Lip(\Omega_{T}) under the norm p,\|\cdot\|_{p,\mathcal{E}}.

The following estimate will be used in this paper.

Theorem 2.3.

[See Song, 2011]. For any α1\alpha\geq 1 and δ>0\delta>0, we have LGα+δ(ΩT)Lα(ΩT)L_{G}^{\alpha+\delta}(\Omega_{T})\subset L_{\mathcal{E}}^{\alpha}(\Omega_{T}). More precisely, for any 1<γ<β:=(α+δ)/α1<\gamma<\beta:=(\alpha+\delta)/\alpha, γ2\gamma\leq 2 and for all ξLip(ΩT)\xi\in Lip(\Omega_{T}), we have

𝔼^[supt[0,T]𝔼^t[|ξ|α]]C{(𝔼^[|ξ|α+δ])α/(α+δ)+(𝔼^[|ξ|α+δ])1/γ},\widehat{\mathbb{E}}\Big{[}\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}[|\xi|^{\alpha}]\Big{]}\leq C\Big{\{}(\widehat{\mathbb{E}}[|\xi|^{\alpha+\delta}])^{\alpha/(\alpha+\delta)}+(\widehat{\mathbb{E}}[|\xi|^{\alpha+\delta}])^{1/\gamma}\Big{\}},

where

C=γγ1(1+14i=1iβ/γ).C=\frac{\gamma}{\gamma-1}(1+14\sum_{i=1}^{\infty}i^{-\beta/\gamma}).
Remark 2.2.

By αα+δ<1γ<1\frac{\alpha}{\alpha+\delta}<\frac{1}{\gamma}<1, we have

𝔼^[supt[0,T]𝔼^t[|ξ|α]]2C{(𝔼^[|ξ|α+δ])α/(α+δ)+𝔼^[|ξ|α+δ]}.\widehat{\mathbb{E}}\Big{[}\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}[|\xi|^{\alpha}]\Big{]}\leq 2C\Big{\{}(\widehat{\mathbb{E}}[|\xi|^{\alpha+\delta}])^{\alpha/(\alpha+\delta)}+\widehat{\mathbb{E}}[|\xi|^{\alpha+\delta}]\Big{\}}.

Set

C1=2inf{γγ1(1+14i=1iβ/γ):1<γ<β,γ2},C_{1}=2\inf\Big{\{}\frac{\gamma}{\gamma-1}(1+14\sum_{i=1}^{\infty}i^{-\beta/\gamma}):1<\gamma<\beta,\gamma\leq 2\Big{\}},

then

𝔼^[supt[0,T]𝔼^t[|ξ|α]]C1{(𝔼^[|ξ|α+δ])α/(α+δ)+𝔼^[|ξ|α+δ]},\widehat{\mathbb{E}}\Big{[}\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}[|\xi|^{\alpha}]\Big{]}\leq C_{1}\Big{\{}(\widehat{\mathbb{E}}[|\xi|^{\alpha+\delta}])^{\alpha/(\alpha+\delta)}+\widehat{\mathbb{E}}[|\xi|^{\alpha+\delta}]\Big{\}}, (2.2)

where C1C_{1} is a constant only depending on α\alpha and δ\delta.

3 Large deviations for GG-SDEs

In this section, we present the large deviations for GG-SDEs obtained by Gao and Jiang [2010]. The authors use discrete time approximation to obtain their results.

First, we recall the following notations on large deviations under a sublinear expectation.

Let (χ,d)(\chi,d) be a Polish space. Let (Uε,ε>0)\left(U^{\varepsilon},\;\varepsilon>0\right) be a family of measurable maps from Ω\Omega into (χ,d)(\chi,d) and let δ(ε)\delta(\varepsilon), ε>0\varepsilon>0 be a positive function satisfying δ(ε)0\delta(\varepsilon)\rightarrow 0 as ε0\varepsilon\rightarrow 0.

A nonnegative function \mathcal{I} on χ\chi is called to be (good) rate function if {x:(x)α}\{x:\;\mathcal{I}(x)\leq\alpha\} (its level set) is (compact) closed for all 0α<0\leq\alpha<\infty.

{C^(Uε)}ε>0\left\{\widehat{C}(U^{\varepsilon}\in\cdot)\right\}_{\varepsilon>0} is said to satisfy large deviation principle with speed δ(ε)\delta(\varepsilon) and with rate function \mathcal{I} if for any measurable closed subset χ\mathcal{F}\subset\chi,

lim supε0δ(ε)logC^(Uε)infx(x),\limsup_{\varepsilon\rightarrow 0}\delta(\varepsilon)\log\widehat{C}\left(U^{\varepsilon}\in\mathcal{F}\right)\leq-\inf_{x\in\mathcal{F}}\mathcal{I}(x),

and for any measurable open subset 𝒪χ\mathcal{O}\subset\chi,

lim infε0δ(ε)logC^(Uε𝒪)infx𝒪(x).\liminf_{\varepsilon\rightarrow 0}\delta(\varepsilon)\log\widehat{C}\left(U^{\varepsilon}\in\mathcal{O}\right)\geq-\inf_{x\in\mathcal{O}}\mathcal{I}(x).

In Gao and Jiang [2010], for any ε>0\varepsilon>0, the authors considered the following random perturbation SDEs driven by dd-dimensional GG-Brownian motion BB

Xtx,ε=x+0tbε(Xrx,ε)𝑑r+ε0thε(Xrx,ε)dB,Br/ε+ε0tσε(Xrx,ε)𝑑Br/εX_{t}^{x,\varepsilon}=x+\int_{0}^{t}b^{\varepsilon}(X_{r}^{x,\varepsilon})dr+\varepsilon\int_{0}^{t}h^{\varepsilon}(X_{r}^{x,\varepsilon})d\langle B,B\rangle_{r/\varepsilon}+\varepsilon\int_{0}^{t}\sigma^{\varepsilon}(X_{r}^{x,\varepsilon})dB_{r/\varepsilon}

where B,B\langle B,B\rangle is treated as a d×dd\times d-dimensional vector,

bε=(b1ε,,bnε)τ:nn,σε=(σi,jε):nn×db^{\varepsilon}=(b_{1}^{\varepsilon},\ldots,b_{n}^{\varepsilon})^{\tau}:\;\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n},\;\sigma^{\varepsilon}=(\sigma_{i,j}^{\varepsilon}):\;\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n\times d}

and hε:nn×d2h^{\varepsilon}:\;\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n\times d^{2}}.

Consider the following conditions:

(H1)

bεb^{\varepsilon}, σε\sigma^{\varepsilon} and hεh^{\varepsilon} are uniformly bounded;

(H2)

bεb^{\varepsilon}, σε\sigma^{\varepsilon} and hεh^{\varepsilon} are uniformly Lipschitz continuous;

(H3)

bεb^{\varepsilon}, σε\sigma^{\varepsilon} and hεh^{\varepsilon} converge uniformly to b:=b0b:=b^{0}, σ:=σ0\sigma:=\sigma^{0} and h:=h0h:=h^{0} respectively.

Let 𝒞([0,T],n)\mathcal{C}([0,T],\mathbb{R}^{n}) be the space of n\mathbb{R}^{n}-valued continuous functions φ\varphi on [0,T][0,T] and 𝒞0([0,T],n)\mathcal{C}_{0}([0,T],\mathbb{R}^{n}) the space of n\mathbb{R}^{n}-valued continuous functions φ~\widetilde{\varphi} on [0,T][0,T] with φ~0=0\widetilde{\varphi}_{0}=0.

Define

d:=\displaystyle\mathbb{H}^{d}:= {ϕ𝒞0([0,T],d):ϕis absolutely continuous and\displaystyle\Big{\{}\phi\in\mathcal{C}_{0}([0,T],\mathbb{R}^{d}):\phi\;\text{is absolutely continuous and}
ϕ2:=0T|ϕ(r)|2dr<+},\displaystyle\quad\quad\quad\quad\|\phi\|_{\mathbb{H}}^{2}:=\int_{0}^{T}|\phi^{\prime}(r)|^{2}dr<+\infty\Big{\}},
𝔸:=\displaystyle\mathbb{A}:= {η=0tη(r)dr;η:[0,T]d×dBorel measurable and\displaystyle\Big{\{}\eta=\int_{0}^{t}\eta^{\prime}(r)dr;\;\eta^{\prime}:[0,T]\longrightarrow\mathbb{R}^{d\times d}\;\text{Borel measurable and}
η(t)Σ for all t[0,T]}.\displaystyle\quad\quad\quad\quad\eta^{\prime}(t)\in\Sigma\;\textrm{ for all }t\in[0,T]\Big{\}}.

We recall the following result of a joint large deviation principle for GG-Brownian motion and its quadratic variation process.

Theorem 3.1.

[See Gao and Jiang, 2010; p. 2225]. {C^((εBt/ε,εBt/ε)t[0,T])}ε>0\left\{\widehat{C}\left((\varepsilon B_{t/\varepsilon},\varepsilon\langle B\rangle_{t/\varepsilon})\mid_{t\in[0,T]}\;\in\cdot\right)\right\}_{\varepsilon>0} satisfies large deviation principle with speed ε\varepsilon and with rate function

J(ϕ,η)={120Tϕ(r),(η(r))1ϕ(r)𝑑r,if (ϕ,η)d×𝔸,+,otherwise.J(\phi,\eta)=\begin{cases}\frac{1}{2}\int_{0}^{T}\langle\phi^{\prime}(r),(\eta^{\prime}(r))^{-1}\phi^{\prime}(r)\rangle dr,&\text{if }(\phi,\eta)\in\mathbb{H}^{d}\times\mathbb{A},\\ +\infty,&\text{otherwise}.\end{cases}

For any (ϕ,η)d×𝔸(\phi,\eta)\in\mathbb{H}^{d}\times\mathbb{A}, let Ψ(ϕ,η)𝒞([0,T],n)\Psi(\phi,\eta)\in\mathcal{C}([0,T],\mathbb{R}^{n}) be the unique solution of the following ordinary differential equation (ODE in short)

Ψ(ϕ,η)(t)\displaystyle\Psi(\phi,\eta)(t) =\displaystyle= x+0tb(Ψ(ϕ,η)(r))𝑑r+0tσ(Ψ(ϕ,η)(r))ϕ(r)𝑑r\displaystyle x+\int_{0}^{t}b(\Psi(\phi,\eta)(r))dr+\int_{0}^{t}\sigma(\Psi(\phi,\eta)(r))\phi^{\prime}(r)dr
+0th(Ψ(ϕ,η)(r))η(r)𝑑r.\displaystyle+\int_{0}^{t}h(\Psi(\phi,\eta)(r))\eta^{\prime}(r)dr.
Theorem 3.2.

[See Gao and Jiang, 2010; p. 2233]. Let (H1)(H1), (H2)(H2) and (H3)(H3) hold. Then for any closed subset \mathcal{F} and any open subset 𝒪\mathcal{O} in (𝒞0([0,T],d),)×(𝒞0([0,T],d×d),)×(𝒞0([0,T],n),)\left(\mathcal{C}_{0}([0,T],\mathbb{R}^{d}),\|\cdot\|\right)\times\left(\mathcal{C}_{0}([0,T],\mathbb{R}^{d\times d}),\|\cdot\|\right)\times\left(\mathcal{C}_{0}([0,T],\mathbb{R}^{n}),\|\cdot\|\right),

lim supε0εlogC^((εBt/ε,εBt/ε,Xtx,εx)t[0,T])inf(ϕ,η,ψ)I^(ϕ,η,ψ),\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left((\varepsilon B_{t/\varepsilon},\varepsilon\langle B\rangle_{t/\varepsilon},X_{t}^{x,\varepsilon}-x)\mid_{t\in[0,T]}\;\in\mathcal{F}\right)\leq-\inf_{(\phi,\eta,\psi)\in\mathcal{F}}\widehat{I}(\phi,\eta,\psi),

and

lim infε0εlogC^((εBt/ε,εBt/ε,Xtx,εx)t[0,T]𝒪)inf(ϕ,η,ψ)𝒪I^(ϕ,η,ψ),\liminf_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left((\varepsilon B_{t/\varepsilon},\varepsilon\langle B\rangle_{t/\varepsilon},X_{t}^{x,\varepsilon}-x)\mid_{t\in[0,T]}\;\in\mathcal{O}\right)\geq-\inf_{(\phi,\eta,\psi)\in\mathcal{O}}\widehat{I}(\phi,\eta,\psi),

where

I^(ϕ,η,ψ)={J(ϕ,η),if (ϕ,η)d×𝔸,x+ψ=Ψ(ϕ,η)+,otherwise.\widehat{I}(\phi,\eta,\psi)=\begin{cases}J(\phi,\eta),&\text{if }(\phi,\eta)\in\mathbb{H}^{d}\times\mathbb{A},\,x+\psi=\Psi(\phi,\eta)\\ +\infty,&\text{otherwise}.\end{cases}

For 0α<10\leq\alpha<1 given and n1n\geq 1, for each ψ𝒞0([0,T],n)\psi\in\mathcal{C}_{0}([0,T],\mathbb{R}^{n}), set

ψα:=sups,t[0,T]|ψ(s)ψ(t)||st|α\|\psi\|_{\alpha}:=\sup_{s,t\in[0,T]}\frac{|\psi(s)-\psi(t)|}{|s-t|^{\alpha}}

and

𝒞0α([0,T],n):={ψ𝒞0([0,T],n):limδ0sup|st|<δ|ψ(s)ψ(t)||st|α=0,ψα<}.\mathcal{C}^{\alpha}_{0}([0,T],\mathbb{R}^{n}):=\Big{\{}\psi\in\mathcal{C}_{0}([0,T],\mathbb{R}^{n}):\lim_{\delta\rightarrow 0}\sup_{|s-t|<\delta}\frac{|\psi(s)-\psi(t)|}{|s-t|^{\alpha}}=0,\|\psi\|_{\alpha}<\infty\Big{\}}.
Theorem 3.3.

[See Gao and Jiang, 2010; p. 2227]. Let 0α<1/20\leq\alpha<1/2 and let (H1)(H1), (H2)(H2) and (H3)(H3) hold. Then for any closed subset \mathcal{F} and any open subset 𝒪\mathcal{O} in (𝒞0α([0,T],n),α)\left(\mathcal{C}^{\alpha}_{0}([0,T],\mathbb{R}^{n}),\|\cdot\|_{\alpha}\right),

lim supε0εlogC^((Xtx,εx)t[0,T])infψI(ψ),\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left((X_{t}^{x,\varepsilon}-x)\mid_{t\in[0,T]}\;\in\mathcal{F}\right)\leq-\inf_{\psi\in\mathcal{F}}I(\psi),

and

lim infε0εlogC^((Xtx,εx)t[0,T]𝒪)infψ𝒪I(ψ),\liminf_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left((X_{t}^{x,\varepsilon}-x)\mid_{t\in[0,T]}\;\in\mathcal{O}\right)\geq-\inf_{\psi\in\mathcal{O}}I(\psi),

where

I(ψ)=inf{J(ϕ,η):ψ=Ψ(ϕ,η)x}.I(\psi)=\inf\Big{\{}J(\phi,\eta):\psi=\Psi(\phi,\eta)-x\Big{\}}.

We immediately have the following result which will be used in the following section.

Corollary 3.4.

Let (H1)(H1), (H2)(H2) and (H3)(H3) hold. Then for any closed subset \mathcal{F} and any open subset 𝒪\mathcal{O} in 𝒞0([0,T],n)\mathcal{C}_{0}([0,T],\mathbb{R}^{n}),

lim supε0εlogC^((Xtx,εx)t[0,T])infφ~Λ(φ~),\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left((X_{t}^{x,\varepsilon}-x)\mid_{t\in[0,T]}\;\in\mathcal{F}\right)\leq-\inf_{\widetilde{\varphi}\in\mathcal{F}}\Lambda(\widetilde{\varphi}),

and

lim infε0εlogC^((Xtx,εx)t[0,T]𝒪)infφ~𝒪Λ(φ~),\liminf_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left((X_{t}^{x,\varepsilon}-x)\mid_{t\in[0,T]}\;\in\mathcal{O}\right)\geq-\inf_{\widetilde{\varphi}\in\mathcal{O}}\Lambda(\widetilde{\varphi}),

where

Λ(φ~)=inf{J(ϕ,η):x+φ~=Ψ(ϕ,η)}.\Lambda(\widetilde{\varphi})=\inf\Big{\{}J(\phi,\eta):x+\widetilde{\varphi}=\Psi(\phi,\eta)\Big{\}}.

In the following section, we consider the following GG-SDE: for every stTs\leq t\leq T, xnx\in\mathbb{R}^{n},

Xts,x,ε=x+stb(Xrs,x,ε)𝑑r+εsth(Xrs,x,ε)dB,Br+εstσ(Xrs,x,ε)𝑑Br,X_{t}^{s,x,\varepsilon}=x+\int_{s}^{t}b(X_{r}^{s,x,\varepsilon})dr+\varepsilon\int_{s}^{t}h(X_{r}^{s,x,\varepsilon})d\langle B,B\rangle_{r}+\varepsilon\int_{s}^{t}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}, (3.1)

where bb, σ\sigma and hh are bounded. In order to use the large deviation principle obtained by Gao and Jiang [2010], we will transform the G-SDE (3.1) in the following form:

X~ts,x,ε=x+stbε(X~rs,x,ε)𝑑r+εsthε(X~rs,x,ε)dB~,B~r/ε+εstσε(X~rs,x,ε)𝑑B~r/ε,\widetilde{X}_{t}^{s,x,\varepsilon}=x+\int_{s}^{t}b^{\varepsilon}(\widetilde{X}_{r}^{s,x,\varepsilon})dr+\varepsilon\int_{s}^{t}h^{\varepsilon}(\widetilde{X}_{r}^{s,x,\varepsilon})d\langle\widetilde{B},\widetilde{B}\rangle_{r/\varepsilon}+\varepsilon\int_{s}^{t}\sigma^{\varepsilon}(\widetilde{X}_{r}^{s,x,\varepsilon})d\widetilde{B}_{r/\varepsilon},

where B~t:=1εBtε\widetilde{B}_{t}:=\frac{1}{\sqrt{\varepsilon}}B_{t\varepsilon}, bε:=bb^{\varepsilon}:=b, hε:=εhh^{\varepsilon}:=\varepsilon h and σε:=εσ\sigma^{\varepsilon}:=\sqrt{\varepsilon}\sigma.

4 Large deviations for GG-BSDEs

Hu et al. [2014a] obtained the existence, uniqueness and a priori estimates of the following backward stochastic differential equation driven by GG-Brownian motion

Yt=ξ+tTf(r,Yr,Zr)𝑑r+tTg(r,Yr,Zr)dBrtTZr𝑑Br(KTKt),Y_{t}=\xi+\int_{t}^{T}f(r,Y_{r},Z_{r})dr+\int_{t}^{T}g(r,Y_{r},Z_{r})d\langle B\rangle_{r}-\int_{t}^{T}Z_{r}dB_{r}-(K_{T}-K_{t}), (4.1)

where KK is a decreasing GG-martingale, under standard Lispchitz conditions on f(r,y,z)f(r,y,z), g(r,y,z)g(r,y,z) in (y,z)(y,z) and the integrability condition on ξ\xi. The unique solution of the BSDE (4.1) is the triple (Y,Z,K)(Y,Z,K). The solution of an SDE is one process, say XX. The solution of a "traditional" BSDE is a pair (Y,Z)(Y,Z), the solution of a BSDE driven by a GG-Brownian motion is a triplet.

To establish large deviation principle for GG-BSDEs, we consider the following forward-backward stochastic differential equation driven by GG-Brownian motion (we use Einstein convention): for every stTs\leq t\leq T, xnx\in\mathbb{R}^{n},

dXts,x,ε\displaystyle dX_{t}^{s,x,\varepsilon} =\displaystyle= b(Xts,x,ε)dt+εhij(Xts,x,ε)dBi,Bjt+εσj(Xts,x,ε)dBtj,Xss,x,ε=x,\displaystyle b(X_{t}^{s,x,\varepsilon})dt+\varepsilon h_{ij}(X_{t}^{s,x,\varepsilon})d\langle B^{i},B^{j}\rangle_{t}+\varepsilon\sigma_{j}(X_{t}^{s,x,\varepsilon})dB^{j}_{t},X_{s}^{s,x,\varepsilon}=x,
Yts,x,ε\displaystyle Y_{t}^{s,x,\varepsilon} =\displaystyle= Φ(XTs,x,ε)+tTf(r,Xrs,x,ε,Yrs,x,ε,Zrs,x,ε)𝑑r\displaystyle\Phi(X_{T}^{s,x,\varepsilon})+\int_{t}^{T}f(r,X_{r}^{s,x,\varepsilon},Y_{r}^{s,x,\varepsilon},Z_{r}^{s,x,\varepsilon})dr (4.2)
+tTgij(r,Xrs,x,ε,Yrs,x,ε,Zrs,x,ε)dBi,BjrtTZrs,x,ε𝑑Br\displaystyle+\int_{t}^{T}g_{ij}(r,X_{r}^{s,x,\varepsilon},Y_{r}^{s,x,\varepsilon},Z_{r}^{s,x,\varepsilon})d\langle B^{i},B^{j}\rangle_{r}-\int_{t}^{T}Z_{r}^{s,x,\varepsilon}dB_{r}
(KTs,x,εKts,x,ε),\displaystyle\quad\quad-(K_{T}^{s,x,\varepsilon}-K_{t}^{s,x,\varepsilon}),

where

b,hij,σj:nn;Φ:n;f,gij:[0,T]×n××db,h_{ij},\sigma_{j}:\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n};\;\Phi:\mathbb{R}^{n}\longrightarrow\mathbb{R};\;f,g_{ij}:[0,T]\times\mathbb{R}^{n}\times\mathbb{R}\times\mathbb{R}^{d}\longrightarrow\mathbb{R}

are deterministic functions and satisfy the following assumptions:

(A0)

bb, σ\sigma and hh are bounded, i.e., there exists a constant L>0L>0 such that

supxnmax{|b(x)|,σ(x)HS,h(x)HS}L,\sup_{x\in\mathbb{R}^{n}}\max\Big{\{}|b(x)|,\|\sigma(x)\|_{HS},\|h(x)\|_{HS}\Big{\}}\leq L,

where AHS:=ijaij2\|A\|_{HS}:=\sqrt{\sum_{ij}a_{ij}^{2}} is the Hilbert-Schmidt norm of a matrix A=(aij)A=(a_{ij}).

(A1)

hij=hjih_{ij}=h_{ji} and gij=gjig_{ij}=g_{ji} for 1i,jd1\leq i,j\leq d;

(A2)

ff and gijg_{ij} are continuous in tt;

(A3)

There exist a positive integer mm and a constant L>0L>0 such that

|b(x)b(x)|+i,j=1d|hij(x)hij(x)|\displaystyle|b(x)-b(x^{\prime})|+\sum_{i,j=1}^{d}|h_{ij}(x)-h_{ij}(x^{\prime})|
+j=1d|σj(x)σj(x)|L|xx|,\displaystyle\qquad\qquad+\sum_{j=1}^{d}|\sigma_{j}(x)-\sigma_{j}(x^{\prime})|\leq L|x-x^{\prime}|,
|Φ(x)Φ(x)|L(1+|x|m+|x|m)|xx|,\displaystyle|\Phi(x)-\Phi(x^{\prime})|\leq L(1+|x|^{m}+|x^{\prime}|^{m})|x-x^{\prime}|,
|f(t,x,y,z)f(t,x,y,z)|+i,j=1d|gij(t,x,y,z)gij(t,x,y,z)|\displaystyle|f(t,x,y,z)-f(t,x^{\prime},y^{\prime},z^{\prime})|+\sum_{i,j=1}^{d}|g_{ij}(t,x,y,z)-g_{ij}(t,x^{\prime},y^{\prime},z^{\prime})|
L[(1+|x|m+|x|m)|xx|+|yy|+|zz|].\displaystyle\qquad\qquad\leq L\Big{[}(1+|x|^{m}+|x^{\prime}|^{m})|x-x^{\prime}|+|y-y^{\prime}|+|z-z^{\prime}|\Big{]}.

It follows from Peng [2010], Hu et al. [2014a] that, under the assumptions (𝐀𝟎)(𝐀𝟑)\bf{(A0)-(A3)}, the GG-BSDE (4.2) has a unique solution {(Yts,x,ε,Zts,x,ε,Kts,x,ε):stT}\{(Y_{t}^{s,x,\varepsilon},Z_{t}^{s,x,\varepsilon},K_{t}^{s,x,\varepsilon}):s\leq t\leq T\}. Moreover, for any α>1\alpha>1, we have Ys,x,ε𝒮Gα(0,T)Y^{s,x,\varepsilon}\in\mathcal{S}^{\alpha}_{G}(0,T), Zs,x,εHGα(0,T)Z^{s,x,\varepsilon}\in H^{\alpha}_{G}(0,T) and Ks,x,εK^{s,x,\varepsilon} is a decreasing GG-martingale with Kss,x,ε=0K_{s}^{s,x,\varepsilon}=0 and KTs,x,εLGα(ΩT)K_{T}^{s,x,\varepsilon}\in L^{\alpha}_{G}(\Omega_{T}).

We consider the following deterministic system: for every stTs\leq t\leq T, xnx\in\mathbb{R}^{n},

dφts,x\displaystyle d\varphi_{t}^{s,x} =\displaystyle= b(φts,x)dt,φss,x=x,\displaystyle b(\varphi_{t}^{s,x})dt,\;\varphi_{s}^{s,x}=x,
ψts,x\displaystyle\psi_{t}^{s,x} =\displaystyle= Φ(φTs,x)+tTf(r,φrs,x,ψrs,x,0)𝑑r\displaystyle\Phi(\varphi_{T}^{s,x})+\int_{t}^{T}f(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)dr (4.3)
+2tTG(g(r,φrs,x,ψrs,x,0))𝑑r.\displaystyle\quad+2\int_{t}^{T}G(g(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0))dr.
Lemma 4.1.

Let (A0), (A1) and (A3) hold. Then

  1. 1.

    Let p2p\geq 2. For any ε(0,1]\varepsilon\in(0,1], there exists a constant Cp>0C_{p}>0, independent of ε\varepsilon, such that

    𝔼^(supstT|Xts,x,εφts,x|p)Cpεp.\widehat{\mathbb{E}}\Big{(}\sup_{s\leq t\leq T}|X_{t}^{s,x,\varepsilon}-\varphi_{t}^{s,x}|^{p}\Big{)}\leq C_{p}\varepsilon^{p}. (4.4)
  2. 2.

    Moreover, {C^((Xts,x,εx)t[s,T])}ε>0\left\{\widehat{C}\left((X_{t}^{s,x,\varepsilon}-x)\mid_{t\in[s,T]}\;\in\cdot\right)\right\}_{\varepsilon>0} satisfies a large deviation principle with speed ε\varepsilon and with rate function

    Λ(φ~)=inf{J(ϕ,η):x+φ~=Ψ^(ϕ,η)},\Lambda(\widetilde{\varphi})=\inf\Big{\{}J(\phi,\eta):x+\widetilde{\varphi}=\widehat{\Psi}(\phi,\eta)\Big{\}},

    where Ψ^(ϕ,η)𝒞([s,T],n)\widehat{\Psi}(\phi,\eta)\in\mathcal{C}([s,T],\mathbb{R}^{n}) be the unique solution of the following ODE

    Ψ^(ϕ,η)(t)=x+stb(Ψ^(ϕ,η)(r))𝑑r.\widehat{\Psi}(\phi,\eta)(t)=x+\int_{s}^{t}b(\widehat{\Psi}(\phi,\eta)(r))dr.
Proof.

1.1. Let u[s,T]u\in[s,T], we have

Xus,x,εφus,x\displaystyle X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x} =\displaystyle= su(b(Xrs,x,ε)b(φrs,x))𝑑r+εsuh(Xrs,x,ε)dB,Br\displaystyle\int_{s}^{u}\left(b(X_{r}^{s,x,\varepsilon})-b(\varphi_{r}^{s,x})\right)dr+\varepsilon\int_{s}^{u}h(X_{r}^{s,x,\varepsilon})d\langle B,B\rangle_{r}
+εsuσ(Xrs,x,ε)𝑑Br.\displaystyle+\varepsilon\int_{s}^{u}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}.

Then, there exists a constant Cp>0C_{p}>0,

|Xus,x,εφus,x|p\displaystyle|X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x}|^{p} \displaystyle\leq Cp{su|b(Xrs,x,ε)b(φrs,x)|pdr\displaystyle C_{p}\Big{\{}\int_{s}^{u}|b(X_{r}^{s,x,\varepsilon})-b(\varphi_{r}^{s,x})|^{p}dr
+εpσ¯psuh(Xrs,x,ε)p𝑑r\displaystyle+\varepsilon^{p}\overline{\sigma}^{p}\int_{s}^{u}\|h(X_{r}^{s,x,\varepsilon})\|^{p}dr
+εp|suσ(Xrs,x,ε)dBr|p}\displaystyle+\varepsilon^{p}\Big{|}\int_{s}^{u}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}\Big{|}^{p}\Big{\}}
\displaystyle\leq Cp{su|Xrs,x,εφrs,x|pdr+εp\displaystyle C_{p}\Big{\{}\int_{s}^{u}|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|^{p}dr+\varepsilon^{p}
+εp|suσ(Xrs,x,ε)dBr|p}.\displaystyle+\varepsilon^{p}\Big{|}\int_{s}^{u}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}\Big{|}^{p}\Big{\}}.

For t[s,T]t\in[s,T],

supsut|Xus,x,εφus,x|p\displaystyle\sup_{s\leq u\leq t}|X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x}|^{p} \displaystyle\leq Cp{supsutsu|Xrs,x,εφrs,x|pdr+εp\displaystyle C_{p}\Big{\{}\sup_{s\leq u\leq t}\int_{s}^{u}|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|^{p}dr+\varepsilon^{p}
+εpsupsut|suσ(Xrs,x,ε)dBr|p}\displaystyle+\varepsilon^{p}\sup_{s\leq u\leq t}\Big{|}\int_{s}^{u}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}\Big{|}^{p}\Big{\}}
\displaystyle\leq Cp{stsupsur|Xus,x,εφus,x|pdr+εp\displaystyle C_{p}\Big{\{}\int_{s}^{t}\sup_{s\leq u\leq r}|X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x}|^{p}dr+\varepsilon^{p}
+εpsupsut|suσ(Xrs,x,ε)dBr|p}.\displaystyle+\varepsilon^{p}\sup_{s\leq u\leq t}\Big{|}\int_{s}^{u}\sigma(X_{r}^{s,x,\varepsilon})dB_{r}\Big{|}^{p}\Big{\}}.

So taking the GG-expectation, it follows from the BDG inequality that

𝔼^[supsut|Xus,x,εφus,x|p]Cpεp+Cpst𝔼^[supsur|Xus,x,εφus,x|p]𝑑r.\widehat{\mathbb{E}}[\sup_{s\leq u\leq t}|X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x}|^{p}]\leq C_{p}\varepsilon^{p}+C_{p}\int_{s}^{t}\widehat{\mathbb{E}}[\sup_{s\leq u\leq r}|X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x}|^{p}]dr.

Therefore, by Gronwall’s inequality,

𝔼^(supsuT|Xus,x,εφus,x|p)Cpεp.\widehat{\mathbb{E}}\Big{(}\sup_{s\leq u\leq T}|X_{u}^{s,x,\varepsilon}-\varphi_{u}^{s,x}|^{p}\Big{)}\leq C_{p}\varepsilon^{p}.

2.2. Set B~t=1εBtε\widetilde{B}_{t}=\frac{1}{\sqrt{\varepsilon}}B_{t\varepsilon}. Thanks to Remark 2.1, B~\widetilde{B} is a GG-Brownian motion. Then, we have Bt=εB~t/ε,B,Bt=εB~,B~t/εB_{t}=\sqrt{\varepsilon}\widetilde{B}_{t/\varepsilon},\langle B,B\rangle_{t}=\varepsilon\langle\widetilde{B},\widetilde{B}\rangle_{t/\varepsilon}. Therefore, by the uniqueness of the solution of the GG-SDEs, it is easy to check that {Xts,x,ε:stT}\{X_{t}^{s,x,\varepsilon}:s\leq t\leq T\} is the solution of the following GG-SDE:

X~ts,x,ε=x+stbε(X~rs,x,ε)𝑑r+εsthε(X~rs,x,ε)dB~,B~r/ε+εstσε(X~rs,x,ε)𝑑B~r/ε,\widetilde{X}_{t}^{s,x,\varepsilon}=x+\int_{s}^{t}b^{\varepsilon}(\widetilde{X}_{r}^{s,x,\varepsilon})dr+\varepsilon\int_{s}^{t}h^{\varepsilon}(\widetilde{X}_{r}^{s,x,\varepsilon})d\langle\widetilde{B},\widetilde{B}\rangle_{r/\varepsilon}+\varepsilon\int_{s}^{t}\sigma^{\varepsilon}(\widetilde{X}_{r}^{s,x,\varepsilon})d\widetilde{B}_{r/\varepsilon},

where bεb^{\varepsilon}, hεh^{\varepsilon} and σε\sigma^{\varepsilon} have already been defined at the end of Section 3. Therefore, in view of assumption (A0), the proof follows by virtue of Corollary 3.4. \hfill\square

Proposition 4.2.

Let p2p\geq 2. For any ε(0,1]\varepsilon\in(0,1], we have

𝔼^[supstT|Xts,x,ε|p]C(1+|x|p),\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|X_{t}^{s,x,\varepsilon}|^{p}\Big{]}\leq C(1+|x|^{p}), (4.5)

where the constant CC depends on LL, GG, pp, nn and TT.

Proof.

By Proposition 4.1 in Hu et al. [2014b], there exists a constant C>0C>0 such that

𝔼^s[supstT|Xts,x,εx|p]C(1+|x|p).\widehat{\mathbb{E}}_{s}\Big{[}\sup_{s\leq t\leq T}|X_{t}^{s,x,\varepsilon}-x|^{p}\Big{]}\leq C\Big{(}1+|x|^{p}\Big{)}.

Then

𝔼^[supstT|Xts,x,εx|p]C(1+|x|p),\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|X_{t}^{s,x,\varepsilon}-x|^{p}\Big{]}\leq C\Big{(}1+|x|^{p}\Big{)},

which implies the desired result. \hfill\square

Theorem 4.3.

Let (𝐀𝟎)(𝐀𝟑)\bf{(A0)-(A3)} hold. For any ε(0,1]\varepsilon\in(0,1], there exists a constant C>0C>0, independent of ε\varepsilon, such that

𝔼^(supstT|Yts,x,εψts,x|2)Cε2.\widehat{\mathbb{E}}\Big{(}\sup_{s\leq t\leq T}|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}\Big{)}\leq C\varepsilon^{2}.
Proof.

We consider the following GG-BSDE: for every stTs\leq t\leq T, xnx\in\mathbb{R}^{n},

Yts,x\displaystyle Y_{t}^{s,x} =\displaystyle= Φ(φTs,x)+tTf(r,φrs,x,Yrs,x,Zrs,x)𝑑r\displaystyle\Phi(\varphi_{T}^{s,x})+\int_{t}^{T}f(r,\varphi_{r}^{s,x},Y_{r}^{s,x},Z_{r}^{s,x})dr (4.6)
+tTgij(r,φrs,x,Yrs,x,Zrs,x)dBi,BjrtTZrs,x𝑑Br\displaystyle+\int_{t}^{T}g_{ij}(r,\varphi_{r}^{s,x},Y_{r}^{s,x},Z_{r}^{s,x})d\langle B^{i},B^{j}\rangle_{r}-\int_{t}^{T}Z_{r}^{s,x}dB_{r}
(KTs,xKts,x).\displaystyle\quad\quad-(K_{T}^{s,x}-K_{t}^{s,x}).

Let Ms,xM^{s,x} be the following decreasing GG-martingale:

Mts,x:=stgij(r,φrs,x,ψrs,x,0)dBi,Bjr2stG(g(r,φrs,x,ψrs,x,0))𝑑r.M_{t}^{s,x}:=\int_{s}^{t}g_{ij}(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)d\langle B^{i},B^{j}\rangle_{r}-2\int_{s}^{t}G\left(g(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)\right)dr.

Thanks to equation (4.3) and the uniqueness of the solution of the GG-BSDEs, it is easy to check that {(ψts,x,0,Mts,x):stT}\{(\psi_{t}^{s,x},0,M_{t}^{s,x}):s\leq t\leq T\} is the solution of the GG-BSDE (4.6).

So, by Proposition 2.16 in Hu et al. [2014b], there exists a constant C>0C>0 such that

𝔼^[supstT|Yts,x,εψts,x|2]\displaystyle\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}\Big{]} \displaystyle\leq C{𝔼^[supt[s,T]𝔼^t[|Φ(XTs,x,ε)Φ(φTs,x)|2]]\displaystyle C\Big{\{}\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}[|\Phi(X_{T}^{s,x,\varepsilon})-\Phi(\varphi_{T}^{s,x})|^{2}]\Big{]}
+(𝔼^[supt[s,T]𝔼^t[(sTh^r𝑑r)4]])1/2\displaystyle+\Big{(}\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}\Big{[}\Big{(}\int_{s}^{T}\widehat{h}_{r}dr\Big{)}^{4}\Big{]}\Big{]}\Big{)}^{1/2}
+𝔼^[supt[s,T]𝔼^t[(sTh^rdr)4]]},\displaystyle+\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}\Big{[}\Big{(}\int_{s}^{T}\widehat{h}_{r}dr\Big{)}^{4}\Big{]}\Big{]}\Big{\}},

where

h^r\displaystyle\widehat{h}_{r} =\displaystyle= |f(r,Xrs,x,ε,ψrs,x,0)f(r,φrs,x,ψrs,x,0)|\displaystyle|f(r,X_{r}^{s,x,\varepsilon},\psi_{r}^{s,x},0)-f(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)|
+i,j=1d|gij(r,Xrs,x,ε,ψrs,x,0)gij(r,φrs,x,ψrs,x,0)|.\displaystyle\quad+\sum_{i,j=1}^{d}|g_{ij}(r,X_{r}^{s,x,\varepsilon},\psi_{r}^{s,x},0)-g_{ij}(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)|.

Therefore, in view of assumption (A3), we have

𝔼^[supstT|Yts,x,εψts,x|2]\displaystyle\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}\Big{]} (4.7)
\displaystyle\leq C{𝔼^[supt[s,T]𝔼^t[(1+|XTs,x,ε|m+|φTs,x|m)2|XTs,x,εφTs,x|2]]\displaystyle C\Big{\{}\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}[(1+|X_{T}^{s,x,\varepsilon}|^{m}+|\varphi_{T}^{s,x}|^{m})^{2}|X_{T}^{s,x,\varepsilon}-\varphi_{T}^{s,x}|^{2}]\Big{]}
+(𝔼^[supt[s,T]𝔼^t[(sT(1+|Xrs,x,ε|m+|φrs,x|m)|Xrs,x,εφrs,x|𝑑r)4]])1/2\displaystyle+\Big{(}\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}\Big{[}\Big{(}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr\Big{)}^{4}\Big{]}\Big{]}\Big{)}^{1/2}
+𝔼^[supt[s,T]𝔼^t[(sT(1+|Xrs,x,ε|m+|φrs,x|m)|Xrs,x,εφrs,x|dr)4]]},\displaystyle+\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}\Big{[}\Big{(}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr\Big{)}^{4}\Big{]}\Big{]}\Big{\}},
\displaystyle\leq C{D1+D212+D2},\displaystyle C\Big{\{}D_{1}+D_{2}^{\frac{1}{2}}+D_{2}\Big{\}},

where

D1\displaystyle D_{1} =\displaystyle= 𝔼^[supt[s,T]𝔼^t[(1+|XTs,x,ε|m+|φTs,x|m)2|XTs,x,εφTs,x|2]],\displaystyle\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}[(1+|X_{T}^{s,x,\varepsilon}|^{m}+|\varphi_{T}^{s,x}|^{m})^{2}|X_{T}^{s,x,\varepsilon}-\varphi_{T}^{s,x}|^{2}]\Big{]},
D2\displaystyle D_{2} =\displaystyle= 𝔼^[supt[s,T]𝔼^t[(sT(1+|Xrs,x,ε|m+|φrs,x|m)|Xrs,x,εφrs,x|𝑑r)4]].\displaystyle\widehat{\mathbb{E}}\Big{[}\sup_{t\in[s,T]}\widehat{\mathbb{E}}_{t}\Big{[}\Big{(}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr\Big{)}^{4}\Big{]}\Big{]}.

By Theorem 2.3 and (2.2) in Remark 2.2, for any δ1>0\delta_{1}>0, we get

D1\displaystyle D_{1} \displaystyle\leq C1{(𝔼^[(1+|XTs,x,ε|m+|φTs,x|m)2+δ1|XTs,x,εφTs,x|2+δ1])22+δ1\displaystyle C_{1}\Big{\{}\Big{(}\widehat{\mathbb{E}}\Big{[}(1+|X_{T}^{s,x,\varepsilon}|^{m}+|\varphi_{T}^{s,x}|^{m})^{2+\delta_{1}}|X_{T}^{s,x,\varepsilon}-\varphi_{T}^{s,x}|^{2+\delta_{1}}\Big{]}\Big{)}^{\frac{2}{2+\delta_{1}}}
+𝔼^[(1+|XTs,x,ε|m+|φTs,x|m)2+δ1|XTs,x,εφTs,x|2+δ1]}\displaystyle+\widehat{\mathbb{E}}\Big{[}(1+|X_{T}^{s,x,\varepsilon}|^{m}+|\varphi_{T}^{s,x}|^{m})^{2+\delta_{1}}|X_{T}^{s,x,\varepsilon}-\varphi_{T}^{s,x}|^{2+\delta_{1}}\Big{]}\Big{\}}
=\displaystyle= C1{D1,1+D1,2}.\displaystyle C_{1}\Big{\{}D_{1,1}+D_{1,2}\Big{\}}.

Similarly, for any δ2>0\delta_{2}>0, we get

D2\displaystyle D_{2} \displaystyle\leq C2{(𝔼^[(sT(1+|Xrs,x,ε|m+|φrs,x|m)|Xrs,x,εφrs,x|dr)4+δ2])44+δ2\displaystyle C_{2}\Big{\{}\Big{(}\widehat{\mathbb{E}}\Big{[}\Big{(}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr\Big{)}^{4+\delta_{2}}\Big{]}\Big{)}^{\frac{4}{4+\delta_{2}}}
+𝔼^[(sT(1+|Xrs,x,ε|m+|φrs,x|m)|Xrs,x,εφrs,x|dr)4+δ2]}\displaystyle+\widehat{\mathbb{E}}\Big{[}\Big{(}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr\Big{)}^{4+\delta_{2}}\Big{]}\Big{\}}
=\displaystyle= C2{D2,1+D2,2}.\displaystyle C_{2}\Big{\{}D_{2,1}+D_{2,2}\Big{\}}.

Then, by Hölder’s inequality, (4.4) in Lemma 4.1 and (4.5) in Proposition 4.2, we can get

D1,2\displaystyle D_{1,2} \displaystyle\leq C(𝔼^[(1+|XTs,x,ε|m+|φTs,x|m)4+2δ1])1/2\displaystyle C\Big{(}\widehat{\mathbb{E}}\Big{[}(1+|X_{T}^{s,x,\varepsilon}|^{m}+|\varphi_{T}^{s,x}|^{m})^{4+2\delta_{1}}\Big{]}\Big{)}^{1/2}
×(𝔼^[|XTs,x,εφTs,x|4+2δ1])1/2\displaystyle\quad\times\Big{(}\widehat{\mathbb{E}}\Big{[}|X_{T}^{s,x,\varepsilon}-\varphi_{T}^{s,x}|^{4+2\delta_{1}}\Big{]}\Big{)}^{1/2}
\displaystyle\leq Cε2+δ1.\displaystyle C\varepsilon^{2+\delta_{1}}.

Thus

D1C1(ε2+ε2+δ1).D_{1}\leq C^{1}(\varepsilon^{2}+\varepsilon^{2+\delta_{1}}). (4.8)

Furthermore

𝔼^[(sT(1+|Xrs,x,ε|m+|φrs,x|m)|Xrs,x,εφrs,x|𝑑r)4+δ2]\displaystyle\widehat{\mathbb{E}}\Big{[}\Big{(}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr\Big{)}^{4+\delta_{2}}\Big{]}
\displaystyle\leq C𝔼^[(1+supr[s,T]|Xrs,x,ε|m+supr[s,T]|φrs,x|m)4+δ2(supr[s,T]|Xrs,x,εφrs,x|)4+δ2]\displaystyle C\widehat{\mathbb{E}}\Big{[}\Big{(}1+\sup_{r\in[s,T]}|X_{r}^{s,x,\varepsilon}|^{m}+\sup_{r\in[s,T]}|\varphi_{r}^{s,x}|^{m}\Big{)}^{4+\delta_{2}}\Big{(}\sup_{r\in[s,T]}|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|\Big{)}^{4+\delta_{2}}\Big{]}
\displaystyle\leq C{(𝔼^[(1+supr[s,T]|Xrs,x,ε|m+supr[s,T]|φrs,x|m)8+2δ2])1/2\displaystyle C\Big{\{}\Big{(}\widehat{\mathbb{E}}\Big{[}\Big{(}1+\sup_{r\in[s,T]}|X_{r}^{s,x,\varepsilon}|^{m}+\sup_{r\in[s,T]}|\varphi_{r}^{s,x}|^{m}\Big{)}^{8+2\delta_{2}}\Big{]}\Big{)}^{1/2}
×(𝔼^[supr[s,T]|Xrs,x,εφrs,x|8+2δ2])1/2}\displaystyle\times\Big{(}\widehat{\mathbb{E}}\Big{[}\sup_{r\in[s,T]}|X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|^{8+2\delta_{2}}\Big{]}\Big{)}^{1/2}\Big{\}}

Therefore

D2C2(ε4+ε4+δ2).D_{2}\leq C^{2}(\varepsilon^{4}+\varepsilon^{4+\delta_{2}}). (4.9)

So, by virtue of (4.7), (4.8) and (4.9), we have

𝔼^[supstT|Yts,x,εψts,x|2]Cε2(1+εδ1/2+1+εδ2/2+ε2+ε2+δ2),\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}\Big{]}\leq C\varepsilon^{2}\Big{(}1+\varepsilon^{\delta_{1}/2}+1+\varepsilon^{\delta_{2}/2}+\varepsilon^{2}+\varepsilon^{2+\delta_{2}}\Big{)},

which leads to the end of the proof. \hfill\square

We have an immediate consequence of Theorem 4.3.

Corollary 4.4.

For any ε(0,1]\varepsilon\in(0,1] and all xx in a compact subset of n\mathbb{R}^{n}, there exists a constant C>0C>0, independent of ss, xx and ε\varepsilon, such that

𝔼^(supstT|Yts,x,εψts,x|2)Cε2.\widehat{\mathbb{E}}\Big{(}\sup_{s\leq t\leq T}|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}\Big{)}\leq C\varepsilon^{2}.
Theorem 4.5.

Let (𝐀𝟎)(𝐀𝟑)\bf{(A0)-(A3)} hold. For any ε(0,1]\varepsilon\in(0,1], there exists a constant C>0C>0, independent of ε\varepsilon, such that

𝔼^[sT|Zrs,x,ε|2𝑑r]+𝔼^(supstT|Kts,x,εMts,x|2)Cε2,\widehat{\mathbb{E}}\Big{[}\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}dr\Big{]}+\widehat{\mathbb{E}}\Big{(}\sup_{s\leq t\leq T}|K_{t}^{s,x,\varepsilon}-M_{t}^{s,x}|^{2}\Big{)}\leq C\varepsilon^{2},

where Ms,xM^{s,x} is the following decreasing GG-martingale:

Mts,x=stgij(r,φrs,x,ψrs,x,0)dBi,Bjr2stG(g(r,φrs,x,ψrs,x,0))𝑑r.M_{t}^{s,x}=\int_{s}^{t}g_{ij}(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)d\langle B^{i},B^{j}\rangle_{r}-2\int_{s}^{t}G\left(g(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)\right)dr.
Proof.

Applying Itô’s formula to |Yts,x,εψts,x|2|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}, we have

|Yss,x,εψss,x|2+sT|Zrs,x,ε|2dBr\displaystyle|Y_{s}^{s,x,\varepsilon}-\psi_{s}^{s,x}|^{2}+\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}d\langle B\rangle_{r}
=|Φ(XTs,x,ε)Φ(ψTs,x)|2\displaystyle=|\Phi(X_{T}^{s,x,\varepsilon})-\Phi(\psi_{T}^{s,x})|^{2}
+2sT(Yrs,x,εψrs,x)(f(r,Xrs,x,ε,Yrs,x,ε,Zrs,x,ε)f(r,φrs,x,ψrs,x,0))𝑑r\displaystyle+2\int_{s}^{T}(Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x})\Big{(}f(r,X_{r}^{s,x,\varepsilon},Y_{r}^{s,x,\varepsilon},Z_{r}^{s,x,\varepsilon})-f(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)\Big{)}dr
+2sT(Yrs,x,εψrs,x)(g(r,Xrs,x,ε,Yrs,x,ε,Zrs,x,ε)g(r,φrs,x,ψrs,x,0))dBr\displaystyle+2\int_{s}^{T}(Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x})\Big{(}g(r,X_{r}^{s,x,\varepsilon},Y_{r}^{s,x,\varepsilon},Z_{r}^{s,x,\varepsilon})-g(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)\Big{)}d\langle B\rangle_{r}
2sT(Yrs,x,εψrs,x)Zrs,x,ε𝑑Br\displaystyle-2\int_{s}^{T}(Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x})Z_{r}^{s,x,\varepsilon}dB_{r}
2sT(Yrs,x,εψrs,x)d(Krs,x,εMrs,x).\displaystyle-2\int_{s}^{T}(Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x})d(K_{r}^{s,x,\varepsilon}-M_{r}^{s,x}).

Therefore, in view of assumption (A3), we have

sT|Zrs,x,ε|2dBr\displaystyle\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}d\langle B\rangle_{r}
|Φ(XTs,x,ε)Φ(ψTs,x)|2\displaystyle\leq|\Phi(X_{T}^{s,x,\varepsilon})-\Phi(\psi_{T}^{s,x})|^{2}
+2L(1+d2σ¯2)sT(1+|Xrs,x,ε|m+|φrs,x|m)|Yrs,x,εψrs,x||Xrs,x,εφrs,x|𝑑r\displaystyle+2L(1+d^{2}\overline{\sigma}^{2})\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}||X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr
+2L(1+d2σ¯2)sT|Yrs,x,εψrs,x|2𝑑r\displaystyle+2L(1+d^{2}\overline{\sigma}^{2})\int_{s}^{T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|^{2}dr
+2L(1+d2σ¯2)sT|Yrs,x,εψrs,x||Zrs,x,ε|𝑑r\displaystyle+2L(1+d^{2}\overline{\sigma}^{2})\int_{s}^{T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}||Z_{r}^{s,x,\varepsilon}|dr
+2|sT(Yrs,x,εψrs,x)Zrs,x,ε𝑑Br|\displaystyle+2\Big{|}\int_{s}^{T}(Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x})Z_{r}^{s,x,\varepsilon}dB_{r}\Big{|}
+2CsupsrT|Yrs,x,εψrs,x|supsrT|Krs,x,εMrs,x|.\displaystyle+2C\sup_{s\leq r\leq T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|\sup_{s\leq r\leq T}|K_{r}^{s,x,\varepsilon}-M_{r}^{s,x}|.

On the other hand,

(Kts,x,εMts,x)\displaystyle(K_{t}^{s,x,\varepsilon}-M_{t}^{s,x}) =\displaystyle= (Yts,x,εψts,x)(Yss,x,εψss,x)\displaystyle(Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x})-(Y_{s}^{s,x,\varepsilon}-\psi_{s}^{s,x})
+stf^r𝑑r+stg^rdBrstZrs,x,ε𝑑Br.\displaystyle+\int_{s}^{t}\widehat{f}_{r}dr+\int_{s}^{t}\widehat{g}_{r}d\langle B\rangle_{r}-\int_{s}^{t}Z_{r}^{s,x,\varepsilon}dB_{r}.

where

f^r\displaystyle\widehat{f}_{r} =\displaystyle= |f(r,Xrs,x,ε,ψrs,x,0)f(r,φrs,x,ψrs,x,0)|\displaystyle|f(r,X_{r}^{s,x,\varepsilon},\psi_{r}^{s,x},0)-f(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)|
g^r\displaystyle\widehat{g}_{r} =\displaystyle= i,j=1d|gij(r,Xrs,x,ε,ψrs,x,0)gij(r,φrs,x,ψrs,x,0)|.\displaystyle\sum_{i,j=1}^{d}|g_{ij}(r,X_{r}^{s,x,\varepsilon},\psi_{r}^{s,x},0)-g_{ij}(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)|.

Thus

|Kts,x,εMts,x|\displaystyle|K_{t}^{s,x,\varepsilon}-M_{t}^{s,x}| \displaystyle\leq {2supsrT|Yrs,x,εψrs,x|+stf^rdr\displaystyle\Big{\{}2\sup_{s\leq r\leq T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|+\int_{s}^{t}\widehat{f}_{r}dr (4.10)
+stg^rdBr+|stZrs,x,εdBr|}.\displaystyle+\int_{s}^{t}\widehat{g}_{r}d\langle B\rangle_{r}+\Big{|}\int_{s}^{t}Z_{r}^{s,x,\varepsilon}dB_{r}\Big{|}\Big{\}}.

Then

sT|Zrs,x,ε|2dBr\displaystyle\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}d\langle B\rangle_{r}
C1supsrT|Yrs,x,εψrs,x|2\displaystyle\leq\quad C_{1}\sup_{s\leq r\leq T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|^{2}
+C2sT(1+|Xrs,x,ε|m+|φrs,x|m)|Yrs,x,εψrs,x||Xrs,x,εφrs,x|𝑑r\displaystyle+\quad C_{2}\int_{s}^{T}(1+|X_{r}^{s,x,\varepsilon}|^{m}+|\varphi_{r}^{s,x}|^{m})|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}||X_{r}^{s,x,\varepsilon}-\varphi_{r}^{s,x}|dr
+C3sT|Yrs,x,εψrs,x||Zrs,x,ε|𝑑r\displaystyle+\quad C_{3}\int_{s}^{T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}||Z_{r}^{s,x,\varepsilon}|dr
+2|sT(Yrs,x,εψrs,x)Zrs,x,ε𝑑Br|\displaystyle+\quad 2\Big{|}\int_{s}^{T}(Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x})Z_{r}^{s,x,\varepsilon}dB_{r}\Big{|}
+2TC4supsrT|Yrs,x,εψrs,x|[sT|Zrs,x,ε|𝑑r]\displaystyle+\quad 2TC_{4}\sup_{s\leq r\leq T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|\Big{[}\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|dr\Big{]}
+2CsupsrT|Yrs,x,εψrs,x|[supstT|stZrs,x,ε𝑑Br|].\displaystyle+\quad 2C\sup_{s\leq r\leq T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|\Big{[}\sup_{s\leq t\leq T}\Big{|}\int_{s}^{t}Z_{r}^{s,x,\varepsilon}dB_{r}\Big{|}\Big{]}.

Now, by Theorem 4.3, the BDG inequality and Young’s inequality, 2uvλu2+v2λ2uv\leq\lambda u^{2}+\frac{v^{2}}{\lambda} for λ>0\lambda>0, we obtain that

𝔼^[sT|Zrs,x,ε|2𝑑r]Cε2+4C~λ𝔼^[sT|Zrs,x,ε|2𝑑r].\widehat{\mathbb{E}}\Big{[}\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}dr\Big{]}\leq C\varepsilon^{2}+\frac{4\widetilde{C}}{\lambda}\widehat{\mathbb{E}}\Big{[}\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}dr\Big{]}.

Then, taking λ\lambda such that λ>4C~\lambda>4\widetilde{C}, we deduce that

𝔼^[sT|Zrs,x,ε|2𝑑r]Cε2.\widehat{\mathbb{E}}\Big{[}\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}dr\Big{]}\leq C\varepsilon^{2}.

From (4.10), we have

supstT|Kts,x,εMts,x|2\displaystyle\sup_{s\leq t\leq T}|K_{t}^{s,x,\varepsilon}-M_{t}^{s,x}|^{2} \displaystyle\leq C{supsrT|Yrs,x,εψrs,x|2+sTf^r2dr\displaystyle C\Big{\{}\sup_{s\leq r\leq T}|Y_{r}^{s,x,\varepsilon}-\psi_{r}^{s,x}|^{2}+\int_{s}^{T}\widehat{f}_{r}^{2}dr
+sTg^r2dr+supstT|stZrs,x,εdBr|2}.\displaystyle+\int_{s}^{T}\widehat{g}_{r}^{2}dr+\sup_{s\leq t\leq T}\Big{|}\int_{s}^{t}Z_{r}^{s,x,\varepsilon}dB_{r}\Big{|}^{2}\Big{\}}.

Therefore, by the same arguments as above, we get

𝔼^[supstT|Kts,x,εMts,x|2]Cε2.\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|K_{t}^{s,x,\varepsilon}-M_{t}^{s,x}|^{2}\Big{]}\leq C\varepsilon^{2}.

The proof is complete. \hfill\square

Remark 4.1.

As a consequence of Theorems 4.3 and 4.5, we get

𝔼^[supstT|Yts,x,εψts,x|2+sT|Zrs,x,ε|2𝑑r+supstT|Kts,x,εMts,x|2]Cε2,\widehat{\mathbb{E}}\Big{[}\sup_{s\leq t\leq T}|Y_{t}^{s,x,\varepsilon}-\psi_{t}^{s,x}|^{2}+\int_{s}^{T}|Z_{r}^{s,x,\varepsilon}|^{2}dr+\sup_{s\leq t\leq T}|K_{t}^{s,x,\varepsilon}-M_{t}^{s,x}|^{2}\Big{]}\leq C\varepsilon^{2},

where CC is a positive constant and then the solution {(Yts,x,ε,Zts,x,ε,Kts,x,ε):stT}\{(Y_{t}^{s,x,\varepsilon},Z_{t}^{s,x,\varepsilon},K_{t}^{s,x,\varepsilon}):s\leq t\leq T\} of the GG-BSDE (4.2) converges to {(ψts,x,0,Mts,x):stT}\{(\psi_{t}^{s,x},0,M_{t}^{s,x}):s\leq t\leq T\} where ψs,x\psi^{s,x} is the solution of the following backward ODE:

ψts,x=Φ(φTs,x)+tTf(r,φrs,x,ψrs,x,0)𝑑r+2tTG(g(r,φrs,x,ψrs,x,0))𝑑r,\psi_{t}^{s,x}=\Phi(\varphi_{T}^{s,x})+\int_{t}^{T}f(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)dr+2\int_{t}^{T}G(g(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0))dr,

and Ms,xM^{s,x} is the following decreasing GG-martingale:

Mts,x=stgij(r,φrs,x,ψrs,x,0)dBi,Bjr2stG(g(r,φrs,x,ψrs,x,0))𝑑r.M_{t}^{s,x}=\int_{s}^{t}g_{ij}(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)d\langle B^{i},B^{j}\rangle_{r}-2\int_{s}^{t}G\left(g(r,\varphi_{r}^{s,x},\psi_{r}^{s,x},0)\right)dr.

We recall a very important result in large deviation theory, used to transfer a LDP from one space to another.

Lemma 4.6.

(Contraction principle). Let {με}ε>0\{\mu_{\varepsilon}\}_{\varepsilon>0} be a family of probability measures that satisfies the large deviation principle with a good rate function Λ\Lambda on a Hausdorff topological space χ\chi, and for ε(0,1]\varepsilon\in(0,1], let fε:χΥf_{\varepsilon}:\;\chi\longrightarrow\Upsilon be continuous functions, with (Υ,d)(\Upsilon,d) a metric space. Assume that there exists a measurable map f:χΥf:\;\chi\longrightarrow\Upsilon such that for any compact set 𝒦χ\mathcal{K}\subset\chi,

lim supε0supx𝒦d(fε(x),f(x))=0.\limsup_{\varepsilon\rightarrow 0}\sup_{x\in\mathcal{K}}d\left(f_{\varepsilon}(x),\;f(x)\right)=0. (4.11)

Suppose further that {με}ε>0\{\mu_{\varepsilon}\}_{\varepsilon>0} is exponentially tight. Then the family of probability measures {μεfε1}ε>0\{\mu_{\varepsilon}\circ f_{\varepsilon}^{-1}\}_{\varepsilon>0} satisfies the LDP in Υ\Upsilon with the good rate function

Π(y)=inf{Λ(x):xχ,y=f(x)}.\Pi(y)=\inf\Big{\{}\Lambda(x):x\in\chi,y=f(x)\Big{\}}.
Proof.

First, observe that the condition (4.11) implies that for any compact set 𝒦χ\mathcal{K}\subset\chi, the function ff is continuous on 𝒦χ\mathcal{K}\subset\chi (consequently that ff is continuous everywhere).

Since {με}ε>0\{\mu_{\varepsilon}\}_{\varepsilon>0} is exponentially tight, for every α<\alpha<\infty, there exists a compact set 𝒦αχ\mathcal{K}_{\alpha}\subset\chi such that

lim supε0εlogμε(𝒦αc)<α.\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\mu_{\varepsilon}(\mathcal{K}_{\alpha}^{c})<-\alpha.

For every δ>0\delta>0, set

Γε,δ={xχ:d(fε(x),f(x))>δ}.\Gamma_{\varepsilon,\delta}=\{x\in\chi:d(f_{\varepsilon}(x),f(x))>\delta\}.

We have

με(Γε,δ)με(Γε,δ𝒦α)+με(𝒦αc).\mu_{\varepsilon}(\Gamma_{\varepsilon,\delta})\leq\mu_{\varepsilon}(\Gamma_{\varepsilon,\delta}\cap\mathcal{K}_{\alpha})+\mu_{\varepsilon}(\mathcal{K}_{\alpha}^{c}).

Given δ>0\delta>0, the first term on the right is zero for ε\varepsilon small enough, so that

lim supε0εlogμε(Γε,δ)lim supε0εlogμε(𝒦αc)<α\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\mu_{\varepsilon}(\Gamma_{\varepsilon,\delta})\leq\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\mu_{\varepsilon}(\mathcal{K}_{\alpha}^{c})<-\alpha

and letting α\alpha\rightarrow\infty, we obtain

lim supε0εlogμε(Γε,δ)=.\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\mu_{\varepsilon}(\Gamma_{\varepsilon,\delta})=-\infty.

Therefore, the lemma follows from Corollary 4.2.21 p. 133 in Dembo and Zeitouni [1998]. \hfill\square

Now consider

uε(t,x)=Ytt,x,ε,(t,x)[0,T]×n.u^{\varepsilon}(t,x)=Y_{t}^{t,x,\varepsilon},\;(t,x)\in[0,T]\times\mathbb{R}^{n}. (4.12)

In Hu et al. [2014b] it is shown that uεu^{\varepsilon} is a viscosity solution of the following nonlinear partial differential equation (PDE in short):

{tuε+ε(Dx2uε,Dxuε,uε,x,t)=0,uε(T,x)=Φ(x),\begin{cases}&\partial_{t}u^{\varepsilon}+\mathcal{L}^{\varepsilon}\left(D^{2}_{x}u^{\varepsilon},D_{x}u^{\varepsilon},u^{\varepsilon},x,t\right)=0,\\ &u^{\varepsilon}(T,x)=\Phi(x),\end{cases}

where

ε(Dx2uε,Dxuε,uε,x,t)\displaystyle\mathcal{L}^{\varepsilon}\left(D^{2}_{x}u^{\varepsilon},D_{x}u^{\varepsilon},u^{\varepsilon},x,t\right) =\displaystyle= G(H(Dx2uε,Dxuε,uε,x,t))+b(x),Dxuε\displaystyle G\left(H\left(D^{2}_{x}u^{\varepsilon},D_{x}u^{\varepsilon},u^{\varepsilon},x,t\right)\right)+\langle b(x),D_{x}u^{\varepsilon}\rangle
+f(t,x,uε,εσ1(x),Dxuε,,εσd(x),Dxuε),\displaystyle+f\left(t,x,u^{\varepsilon},\langle\varepsilon\sigma_{1}(x),D_{x}u^{\varepsilon}\rangle,\ldots,\langle\varepsilon\sigma_{d}(x),D_{x}u^{\varepsilon}\rangle\right),

and

Hij(Dx2uε,Dxuε,uε,x,t)\displaystyle H_{ij}\left(D^{2}_{x}u^{\varepsilon},D_{x}u^{\varepsilon},u^{\varepsilon},x,t\right) =\displaystyle= Dx2uεεσi(x),εσj(x)+2Dxuε,εhij(x)\displaystyle\langle D^{2}_{x}u^{\varepsilon}\varepsilon\sigma_{i}(x),\varepsilon\sigma_{j}(x)\rangle+2\langle D_{x}u^{\varepsilon},\varepsilon h_{ij}(x)\rangle
+2gij(t,x,uε,εσ1(x),Dxuε,,εσd(x),Dxuε)\displaystyle+2g_{ij}\left(t,x,u^{\varepsilon},\langle\varepsilon\sigma_{1}(x),D_{x}u^{\varepsilon}\rangle,\ldots,\langle\varepsilon\sigma_{d}(x),D_{x}u^{\varepsilon}\rangle\right)

We define the following

u0(t,x)=ψtt,x,(t,x)[0,T]×n.u^{0}(t,x)=\psi_{t}^{t,x},\;(t,x)\in[0,T]\times\mathbb{R}^{n}. (4.13)
Proposition 4.7.

For any ε>0\varepsilon>0 and all xnx\in\mathbb{R}^{n},

Yts,x,ε=uε(t,Xts,x,ε),t[s,T].Y_{t}^{s,x,\varepsilon}=u^{\varepsilon}(t,X_{t}^{s,x,\varepsilon}),\;\forall t\in[s,T].
Proof.

Using the Markov property of the GG-SDE and the uniqueness of the solution Ys,x,εY^{s,x,\varepsilon} of the GG-BSDE (4.2) to show that

Yrs,x,ε=Yrt,Xts,x,ε,ε,strT.Y_{r}^{s,x,\varepsilon}=Y_{r}^{t,X_{t}^{s,x,\varepsilon},\varepsilon},\;s\leq t\leq r\leq T.

Taking r=tr=t, we deduce that Yts,x,ε=uε(t,Xts,x,ε)Y_{t}^{s,x,\varepsilon}=u^{\varepsilon}(t,X_{t}^{s,x,\varepsilon}), which leads to the end of the proof. \hfill\square

Let 𝒞0,s([s,T],n)\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n}) be the space of n\mathbb{R}^{n}-valued continuous functions φ~\widetilde{\varphi} on [s,T][s,T] with φ~s=0\widetilde{\varphi}_{s}=0.

Let s[0,T]s\in[0,T] and ε0\varepsilon\geq 0. We define the mapping Fε:𝒞0,s([s,T],n)𝒞([s,T],n)F^{\varepsilon}:\;\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n})\longrightarrow\mathcal{C}([s,T],\mathbb{R}^{n}) by

Fε(φ~)=[tuε(t,x+φ~t)],stT,φ~𝒞0,s([s,T],n),F^{\varepsilon}(\widetilde{\varphi})=[t\longmapsto u^{\varepsilon}(t,x+\widetilde{\varphi}_{t})],\;s\leq t\leq T,\;\widetilde{\varphi}\in\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n}), (4.14)

where uεu^{\varepsilon} is given by (4.12) and u0u^{0} by (4.13).

By virtue of (4.14) and Proposition 4.7, for any ε>0\varepsilon>0 and all xnx\in\mathbb{R}^{n}, we have Ys,x,ε=Fε(Xs,x,εx)Y^{s,x,\varepsilon}=F^{\varepsilon}\left(X^{s,x,\varepsilon}-x\right).

We have the following result of large deviations

Theorem 4.8.

Let (𝐀𝟎)(𝐀𝟑)\bf{(A0)-(A3)} hold. Then for any closed subset \mathcal{F} and any open subset 𝒪\mathcal{O} in 𝒞([s,T],n)\mathcal{C}([s,T],\mathbb{R}^{n}),

lim supε0εlogC^(Ys,x,ε)infψΠ(ψ),\limsup_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left(Y^{s,x,\varepsilon}\in\mathcal{F}\right)\leq-\inf_{\psi\in\mathcal{F}}\Pi(\psi),

and

lim infε0εlogC^(Ys,x,ε𝒪)infψ𝒪Π(ψ),\liminf_{\varepsilon\rightarrow 0}\varepsilon\log\widehat{C}\left(Y^{s,x,\varepsilon}\in\mathcal{O}\right)\geq-\inf_{\psi\in\mathcal{O}}\Pi(\psi),

where

Π(ψ)=inf{Λ(φ~):ψt=F0(φ~)(t)=u0(t,x+φ~t),t[s,T],φ~𝒞0,s([s,T],n)}.\Pi(\psi)=\inf\Big{\{}\Lambda(\widetilde{\varphi}):\psi_{t}=F^{0}(\widetilde{\varphi})(t)=u^{0}(t,x+\widetilde{\varphi}_{t}),t\in[s,T],\widetilde{\varphi}\in\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n})\Big{\}}.
Proof.

Since the family {C^((Xts,x,εx)t[s,T])}ε>0\left\{\widehat{C}\left((X_{t}^{s,x,\varepsilon}-x)\mid_{t\in[s,T]}\;\in\cdot\right)\right\}_{\varepsilon>0} is exponentially tight (see Lemma 3.4 p. 2235 in Gao and Jiang [2010]), by virtue of Lemma 4.6 (contraction principle) and Lemma 4.1, we just need to prove that FεF^{\varepsilon}, ε>0\varepsilon>0 are continuous and {Fε}ε>0\{F^{\varepsilon}\}_{\varepsilon>0} converges uniformly to F0F^{0} on every compact subset of 𝒞0,s([s,T],n)\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n}), as ε0\varepsilon\rightarrow 0.

Continuity of FεF^{\varepsilon}:

Let ε>0\varepsilon>0 and φ~𝒞0,s([s,T],n)\widetilde{\varphi}\in\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n}). Let (φ~m)m(\widetilde{\varphi}^{m})_{m} be a sequence in 𝒞0,s([s,T],n)\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n}) which converges to φ~\widetilde{\varphi} under the uniform norm.

We set φm=x+φ~m,φ=x+φ~\varphi^{m}=x+\widetilde{\varphi}^{m},\;\varphi=x+\widetilde{\varphi}. So, (φm)m(\varphi^{m})_{m} is a sequence in 𝒞([s,T],n)\mathcal{C}([s,T],\mathbb{R}^{n}) which converges to φ\varphi under the uniform norm. Fix ζ>0\zeta>0. Since φmφ0\|\varphi^{m}-\varphi\|_{\infty}\rightarrow 0, there exists M>0M>0 such that,

φmM,φM.\|\varphi^{m}\|_{\infty}\leq M,\;\|\varphi\|_{\infty}\leq M. (4.15)

Since uεu^{\varepsilon} is a continuous function in [0,T]×n[0,T]\times\mathbb{R}^{n}, it follows that uεu^{\varepsilon} is uniformly continuous in [s,T]×B(0,M)[s,T]\times B(0,M) where B(0,M)B(0,M) is the closed ball centered at the origin with radius MM in n\mathbb{R}^{n}. Therefore, there exists η>0\eta>0 such that for r1,r2[s,T]r_{1},r_{2}\in[s,T] and z1,z2B(0,M)z_{1},z_{2}\in B(0,M), |r1r2|<η|r_{1}-r_{2}|<\eta and |z1z2|<η|z_{1}-z_{2}|<\eta, we have

|uε(r1,z1)uε(r2,z2)|ζ.|u^{\varepsilon}(r_{1},z_{1})-u^{\varepsilon}(r_{2},z_{2})|\leq\zeta.

Since there exists m0m_{0} such that \forall mm0m\geq m_{0}, φmφη\|\varphi^{m}-\varphi\|_{\infty}\leq\eta, in view of (4.15), for any r[s,T]r\in[s,T] and for all mm0m\geq m_{0}, we have

φrm,φrB(0,M)and|uε(r,φrm)uε(r,φr)|ζ.\varphi^{m}_{r},\varphi_{r}\in B(0,M)\quad\text{and}\quad|u^{\varepsilon}(r,\varphi^{m}_{r})-u^{\varepsilon}(r,\varphi_{r})|\leq\zeta.

Thus

|uε(r,x+φ~rm)uε(r,x+φ~r)|ζ.|u^{\varepsilon}(r,x+\widetilde{\varphi}^{m}_{r})-u^{\varepsilon}(r,x+\widetilde{\varphi}_{r})|\leq\zeta.

So we conclude that Fε(φ~m)Fε(φ~)F^{\varepsilon}(\widetilde{\varphi}^{m})\rightarrow F^{\varepsilon}(\widetilde{\varphi}), which proves the continuity of FεF^{\varepsilon} at φ~\widetilde{\varphi}.

Uniform convergence of FεF^{\varepsilon}:

Let 𝒦\mathcal{K} be a compact subset of 𝒞0,s([s,T],n)\mathcal{C}_{0,s}([s,T],\mathbb{R}^{n}) and let

𝔏={φr:φ~𝒦,φ=x+φ~,r[s,T]}.\mathfrak{L}=\{\varphi_{r}:\widetilde{\varphi}\in\mathcal{K},\varphi=x+\widetilde{\varphi},r\in[s,T]\}.

Obviously, 𝔏\mathfrak{L} is a compact subset of n\mathbb{R}^{n}. Thanks to Corollary 4.4, there exists a positive constant CC such that

supφ~𝒦Fε(φ~)F0(φ~)2\displaystyle\sup_{\widetilde{\varphi}\in\mathcal{K}}\|F^{\varepsilon}(\widetilde{\varphi})-F^{0}(\widetilde{\varphi})\|_{\infty}^{2} =\displaystyle= supφ~𝒦supr[s,T]|uε(r,x+φ~r)u0(r,x+φ~r)|2\displaystyle\sup_{\widetilde{\varphi}\in\mathcal{K}}\sup_{r\in[s,T]}|u^{\varepsilon}(r,x+\widetilde{\varphi}_{r})-u^{0}(r,x+\widetilde{\varphi}_{r})|^{2}
=\displaystyle= supφ~𝒦supr[s,T]|uε(r,φr)u0(r,φr)|2\displaystyle\sup_{\widetilde{\varphi}\in\mathcal{K}}\sup_{r\in[s,T]}|u^{\varepsilon}(r,\varphi_{r})-u^{0}(r,\varphi_{r})|^{2}
=\displaystyle= supφ~𝒦supr[s,T]|Yrr,φr,εψrr,φr|2\displaystyle\sup_{\widetilde{\varphi}\in\mathcal{K}}\sup_{r\in[s,T]}|Y_{r}^{r,\varphi_{r},\varepsilon}-\psi_{r}^{r,\varphi_{r}}|^{2}
\displaystyle\leq supx𝔏supr[s,T]|Yrr,x,εψrr,x|2\displaystyle\sup_{x\in\mathfrak{L}}\sup_{r\in[s,T]}|Y_{r}^{r,x,\varepsilon}-\psi_{r}^{r,x}|^{2}
\displaystyle\leq Cε2.\displaystyle C\varepsilon^{2}.

Therefore the uniform convergence of the mapping FεF^{\varepsilon} towards F0F^{0} follows. \hfill\square

References

  • Dembo and Zeitouni [1998] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, Berlin, 2nd edition, 1998.
  • Denis et al. [2011] L. Denis, M. Hu, and S. Peng. Function spaces and capacity related to a sublinear expectation: application to GG-brownian motion paths. Potential Anal., 34:139–161, 2011.
  • Deuschel and Stroock [1989] J.-D. Deuschel and D. W. Stroock. Large Deviations. Academic Press Inc., Boston, 1989.
  • Essaky [2008] E. H. Essaky. Large deviation principle for a backward stochastic differential equation with subdifferential operator. C. R. Acad. Sci. Paris, 346:75–78, 2008.
  • Freidlin and Wentzell [1984] M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems. Springer, Berlin, 1984.
  • Gao [2009] F. Gao. Pathwise properties and homeomorphic flows for stochastic differential equations driven by GG-brownian motion. Stochastic Processes and their Applications, 119:3356–3382, 2009.
  • Gao and Jiang [2010] F. Gao and H. Jiang. Large deviations for stochastic differential equations driven by GG-brownian motion. Stochastic Processes and their Applications, 120:2212–2240, 2010.
  • Hu and Peng [2009] M. Hu and S. Peng. On representation theorem of GG-expectations and paths of GG-Brownian motion. Acta Mathematicae Applicatae Sinica, English Series, 25:539–546, 2009.
  • Hu et al. [2014a] M. Hu, S. Ji, S. Peng, and Y. Song. Backward stochastic differential equations driven by GG-brownian motion. Stochastic Processes and their Applications, 124:759–784, 2014a.
  • Hu et al. [2014b] M. Hu, S. Ji, S. Peng, and Y. Song. Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by GG-brownian motion. Stochastic Processes and their Applications, 124:1170–1195, 2014b.
  • N’zi and Dakaou [2014] M. N’zi and I. Dakaou. Large deviation for multivalued backward stochastic differential equations. Random Operators and Stochastic Equations, 22 No. 2:119–127, 2014.
  • Peng [2010] S. Peng. Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1 [math.PR], 2010.
  • Rainero [2006] S. Rainero. Un principe de grandes déviations pour une équation différentielle stochastique progressive rétrograde. C. R. Acad. Sci. Paris, 343:141–144, 2006.
  • Song [2011] Y. Song. Some properties on GG-evaluation and its applications to GG-martingale decomposition. SCIENCE CHINA Mathematics, 54 No. 2:287–300, 2011.
  • Varadhan [1984] S. R. S. Varadhan. Large Deviations and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1984.