This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\orcid

0000-0003-2995-5161

Language Modeling with Reduced Densities

Tai-Danae Bradley [email protected] Sandbox@Alphabet, Mountain View, CA 94043, USA    Yiannis Vlassopoulos [email protected] Tunnel, New York, NY 10021, USA
Abstract

This work originates from the observation that today’s state-of-the-art statistical language models are impressive not only for their performance, but also—and quite crucially—because they are built entirely from correlations in unstructured text data. The latter observation prompts a fundamental question that lies at the heart of this paper: What mathematical structure exists in unstructured text data? We put forth enriched category theory as a natural answer. We show that sequences of symbols from a finite alphabet, such as those found in a corpus of text, form a category enriched over probabilities. We then address a second fundamental question: How can this information be stored and modeled in a way that preserves the categorical structure? We answer this by constructing a functor from our enriched category of text to a particular enriched category of reduced density operators. The latter leverages the Loewner order on positive semidefinite operators, which can further be interpreted as a toy example of entailment.

1 Introduction

Statistical language models attempt to learn syntactic and semantic structure in language using the statistics of the language. Great progress has been made recently using neural network architectures RNSS (18); VSP+ (17); GGML (15); DCLT (19), although the problem of modeling the meaning of text—demonstrated, for instance, by a model’s ability to answer questions—is still unsolved. From a mathematical perspective, a number of questions remain unanswered: What mathematical structure captures the meaning of expressions in a natural language? How much of this structure can be sufficiently detected with corpora of text? Is there a way to naturally mine abstract concepts and their interrelations? How do logic and propositional entailment arise? Even so, today’s state of the art statistical language models are quite impressive for being built only from correlations in unstructured text data. This observation prompts a fundamental question that lies at the heart of this paper: What mathematical structure exists in unstructured text data? We propose that enriched category theory provides a natural home for the answer. In particular we show that sequences of symbols from a finite alphabet, such as those found in a corpus of text, form a category enriched over probabilities. Category theory thus gives a principled means of organizing “what goes with what” in a corpus of text along with the statistics of the resulting expressions—precisely the information used as input to today’s statistical language models. Equipped with this understanding, we then turn to another fundamental question: How can this information be stored and modeled in a way that preserves the categorical structure? In other words, what is a representation of this mathematical structure? We propose the answer lies in a functor from our enriched category of text to a particular enriched category of linear operators. Unwinding the details is the primary goal of this paper.

We have been led to these tools from a number of independent, yet complementary, viewpoints on mathematical structure in natural language. On meaning, we take inspiration from the Yoneda lemma in category theory, which informally states that a mathematical object is completely determined by the network of relationships that object has with other objects in its environment. In this way, two objects are isomorphic if and only if they share the same network of relationships. Putting this in the context of language, we view the meaning of a word as captured by the network of ways that word fits into other expressions in the language. In the words of linguist John Firth, “You shall know a word by the company it keeps” Fir (57). Distinguishing the meanings of words thus amounts to distinguishing the environments in which they occur in addition to, as we put forth in this paper, the statistics of these occurrences. Towards marrying these ideas, another viewpoint we take is that language exhibits both algebraic (or compositional) and statistical structure. Intuitively, language can be viewed as an algebra whose elements are expressions in the language and where the product of two expressions is their concatenation if the result is meaningful and is zero otherwise. Computing a representation of this algebra using statistical data in real-world text leads one directly to tensor networks PTV (17), which are factorizations of high-dimensional tensors often used for modeling states of complex quantum many body systems Orú (19); BC (17); Bia (19); Pen (71); Sch (11), a point revisited below.

What’s more, our algebraic viewpoint is not incompatible with our category theoretical one. For instance, the “network of ways a word fits into other expressions” may be identified with the two-sided ideal of that word. If the algebra were commutative, then we could think of language as a coordinate algebra on its spectrum whose points are the (prime) ideals of the algebra, and language would be considered as the coordinate algebra on the space of meanings (and so a translation would be a change of coordinates). A non-commutative version of this leads one to considering a category of modules, though this is a something to be studied in the future. Even so, algebraic structure alone is not sufficient to understand mathematical structure in language. Statistical features also play a vital role. Indeed, language exhibits long-distance correlations decaying with a power-law, and small-scale perturbations can propagate to all scales. For instance, changing a single word in an expression can change the entire meaning of the text: I’m going to the post office and I’m going postal have drastically different meanings. Such features are also characteristic of quantum critical systems LT (17), which are efficiently modeled by certain tensor networks. Inspiration also comes from a linguistic perspective, as Chomsky’s linguistic theory of generative grammars leads to tensor networks as soon as one tries to make them probabilistic GO (19); DeG (19).

The primary contributions of this work are theoretical, but let us emphasize a salient point about practical implementations. As alluded to above, the statistics in language observed in corpora of text resembles the same statistics observed in one-dimensional quantum critical systems, and the ground states of the latter are known to be well approximated by low rank tensor factorizations—see (LT, 17, and references therein) as well as KMH+ (20); GO (19); EV (11); PTV (17); PV (17). With this observation in mind, we therefore work under the premise that the linear operators in our framework can be approximated efficiently by tensor networks. Indeed, the ability of tensor network methods and algorithms to efficiently handle and store data in ultra large-dimensional spaces is well-understood—reviewing it here is beyond the scope of this paper, but see RL (19); Orú (19, 14); Ose (11) and references therein. Further note that such techniques have found a increasing success in machine learning in recent years, including anomaly detection, image classification, audio classification, language modeling, and more WRVL (20); SS (16); ST (19); MRT (21); RS (20); RL (19); MVRL (20); GPC (20); GJLP (18); CSS (16).

With this motivation in hand, the paper is organized as follows. Our model begins by viewing language as sequences from some finite vocabulary and by viewing the statistics of language as modeled by a probability distribution on this set. Section 2 recalls a particular passage from classical to quantum probability by modeling any probability distribution on a finite set of sequences as a particular rank 1 density operator. Section 2.2 focuses on the corresponding reduced density operators, which harness valuable statistical information about the original probability distribution. We review this information in the context of language. Section 3 builds on this framework to give the main construction, namely the assignment to any word or phrase ss a particular reduced density operator ρs\rho_{s}. As seen in Corollary 3.1, this operator has the property that it decomposes as a weighted sum of reduced density operators—one associated to each meaningful expression in the language that contains ss—where the weights are conditional probabilities of containment. As a result, ρs\rho_{s} captures something of the environment, or the “meaning,” of ss in a highly principled way. An immediate consequence is that the passage sρss\mapsto\rho_{s} also preserves a certain hierarchical structure that is exhibited by expressions in language. In particular, Section 4 shows that both expressions in language and their associated operators form preordered sets. The former will be given by subsequence containment of consecutive symbols, for instance: red \leq red rose. The latter will be given by the Loewner order, where we work with reduced densities ρ^s\hat{\rho}_{s} not normalized to unit trace. In addition to being a map of preorders, this assignment sρ^ss\mapsto\hat{\rho}_{s} also preserves statistics in a compatible way. Section 5 makes this statement precise using the language of category theory. We show that both the preorder of expressions ss and the preorder of their associated operators ρ^s\hat{\rho}_{s} can be equipped with the structure of categories enriched over the unit interval. The main result in Theorem 5.1 concludes that the passage sρ^ss\mapsto\hat{\rho}_{s} amounts to an enriched functor between these enriched categories.

1.1 Related Work

Tensor network language models have been explored previously ZSZ+ (18); ZZM+ (19); GO (19), though to our knowledge these efforts do not seek to identify the mathematical structure in unstructured text data, nor do they ask for a faithful representation of such structure or work under the hypothesis that tensor networks are candidate representations of it. This foundational perspective is also absent from quantum language models such as BT (17); SNB (13); LZSH (16); CPD (20); ZNS+ (18); LWM (19). Another line of work is CSC (10), which details a categorical compositional distributional (DisCo) framework for language. The authors of BCLM (19) build upon it to describe a density operator model for entailment using the Loewner order, while PKCS (15) use densities to model homonymy. More recently, density operators and neural methods come together in ML (20), while related works on modeling entailment with densities include BSC (15); SKB (18) and references therein. Notably, DisCo models requires a choice of grammatical structure as input, which is not the case in our framework. Indeed, motivated by the success of today’s statistical language models trained only on unstructured text data, we propose to let statistics as a proxy for grammar. Lastly, the primary role of the Loewner order in our work is that it instantiates the existence of an enriched functor that preserves the mathematical structure present in corpora of text. This perspective is key to the work below and is absent from the approaches listed above.

The recipe in Equation (3) for passing from a probability distribution on a set of sequences to a rank 1 density operator appears in BST (20), where it is key to a certain tensor network generative model. The passage was further elaborated on in the context of algebraic and statistical mathematical structure in Bra (20), where a preliminary discussion of this paper’s framework appears in Section 3.4. We first learned of the idea to consider language as a preorder from Misha Gromov in Gro (15). After finishing this work we noticed the same article also advocates for a “functor” from a “linguistic category” to a “small and simple category” (Gro, 15, p. 59). Lastly, we occasionally use tensor network diagrams to illustrate certain constructions. The diagrams are much like category theorists’ string diagrams, and we assume some familiarity. For an introduction to these visual representations, see Sto (19); BB (17); Orú (14); Eve (19) or (Bra, 20, Section 2.2.2).

1.2 Acknowledgments

The authors thank Maxim Kontsevich, Jacob Miller, and John Terilla for helpful discussions, as well as the anonymous referee for their valuable feedback.

2 Modeling Probability Distributions with Density Operators

Let SS be a finite set, and let V=SV=\mathbb{C}^{S} denote the free complex vector space generated by SS. Concretely, the elements of SS define an orthonormal basis for VV, and we will denote the basis vector associated to sSs\in S using the same letter sVs\in V. If an ordering is chosen so that S={s1,,sd}S=\{s_{1},\ldots,s_{d}\}, then by identifying each sis_{i} with the iith standard basis vector in d\mathbb{C}^{d} we have an isomorphism VdV\cong\mathbb{C}^{d}. This space has the usual inner product si,sj\langle s_{i},s_{j}\rangle, which is equal to 11 if i=ji=j and is 0 otherwise. Each vector vVv\in V defines a linear functional v:Vv^{*}\colon V\to\mathbb{C} defined by vv,vv^{\prime}\mapsto\langle v,v^{\prime}\rangle. We denote the vector space of such linear functionals on VV by V:=hom(V,)V^{*}:=\hom(V,\mathbb{C}). Given a finite-dimensional space WW, we may denote elements in the tensor product VWV\otimes W with vwvw in lieu of vw.v\otimes w. Note that each element wvwv^{*} of the tensor product WVW\otimes V^{*} corresponds to a linear map VWV\to W defined by vwv,vv^{\prime}\mapsto w\langle v,v^{\prime}\rangle. In particular, let End(V)\operatorname{End}(V) denote the space of linear operators on VV. Then for any unit vector ψV\psi\in V, the vector ψψVV\psi\psi^{*}\in V\otimes V^{*} corresponds to an operator in End(V)\operatorname{End}(V) that maps ψ\psi to itself and maps any vector orthogonal to ψ\psi to 0. We will denote this orthogonal projection operator by Prψ\text{Pr}_{\psi}.

A density operator, or simply density, ρ\rho on a Hilbert space is a unit-trace, positive semidefinite operator. We will denote the latter property by ρ0\rho\geq 0. Density operators are also called quantum states and may be thought of as the quantum analogues of classical probability distributions. Indeed, every density ρ\rho on V=SV=\mathbb{C}^{S} defines a probability distribution πρ:S\pi_{\rho}\colon S\to\mathbb{R} on the set SS by the Born rule, where the probability of an element sSs\in S is defined by πρ(s):=ρs,s.\pi_{\rho}(s):=\langle\rho s,s\rangle. These values are the diagonal entries of the matrix for ρ\rho in the basis provided by SS. They are nonnegative since ρ\rho is positive semidefinite, and their sum is 1 since ρ\rho has unit trace. Going in the other direction, any probability distribution π:S\pi\colon S\to\mathbb{R} gives rise to a density on VV with the property that the Born distribution induced by it coincides with π\pi. In fact there are multiple ways to define such a density. One could consider the maximal rank diagonal operator sπ(s)ss\sum_{s}\pi(s)ss^{*}, whose matrix representation contains the probabilities π(s)\pi(s) along its diagonal and zeros elsewhere. In what follows, however, we focus on a rank 1 density operator—namely orthogonal projection onto a particular unit vector. Concretely, consider the following unit vector in VV,

ψ=sSπ(s)s\psi=\sum_{s\in S}\sqrt{\pi(s)}s (1)

and let Prψ:VV\text{Pr}_{\psi}\colon V\to V denote the orthogonal projection operator onto ψ\psi. This unit-trace operator is positive semidefinite and satisfies πPrψ(s)=Prψs,s=π(s)2=π(s)\pi_{\text{Pr}_{\psi}}(s)=\langle\text{Pr}_{\psi}s,s\rangle=\sqrt{\pi(s)}^{2}=\pi(s) as claimed. The assignment πPrψ\pi\mapsto\text{Pr}_{\psi} provides for us a key passage from classical to quantum probability whose significance is seen when the probability distribution being modeled is a joint distribution. We elaborate below.

2.1 Understanding Reduced Densities

Given finite-dimensional vector spaces AA and BB, there is an isomorphism End(AB)End(A)End(B)\operatorname{End}(A\otimes B)\cong\operatorname{End}(A)\otimes\operatorname{End}(B), and the trace defines a pair of natural linear maps trA:=tridB\operatorname{tr}_{A}:=\operatorname{tr}\otimes\operatorname{id}_{B} and trB:=idAtr\operatorname{tr}_{B}:=\operatorname{id}_{A}\otimes\operatorname{tr} called partial traces from the tensor product of the endomorphism spaces to each factor. The partial trace preserves both trace and positive semidefiniteness, and so any density operator ρ:ABAB\rho\colon A\otimes B\to A\otimes B gives rise to reduced density operators ρB:=trAρ:BB\rho_{B}:=\operatorname{tr}_{A}\rho\colon B\to B and ρA:=trBρ:AA\rho_{A}:=\operatorname{tr}_{B}\rho\colon A\to A. These operators may be thought of as the quantum analogues of marginal probability distributions. The analogy is especially clear when the original density ρ\rho is the orthogonal projection onto a unit vector defined by a joint probability distribution. To see this, suppose S=X×YS=X\times Y for finite ordered sets X={x1,,xn}X=\{x_{1},\ldots,x_{n}\} and Y={y1,,ym}Y=\{y_{1},\ldots,y_{m}\}, and let π:S\pi\colon S\to\mathbb{R} be any joint probability distribution. As before, this defines the orthogonal projection operator Prψ:XYXY\text{Pr}_{\psi}\colon\mathbb{C}^{X}\otimes\mathbb{C}^{Y}\to\mathbb{C}^{X}\otimes\mathbb{C}^{Y} onto the unit vector

ψ=i,aψiaxiya\psi=\sum_{i,a}\psi_{ia}x_{i}y_{a} (2)

where ψia=π(xi,ya)\psi_{ia}=\sqrt{\pi(x_{i},y_{a})} as in Equation (1). Explicitly,

Prψ=ψψ=(i,aψiaxiya)(j,bψ¯jbxjyb)=i,aj,bψiaψ¯jbxixjyayb.\text{Pr}_{\psi}=\psi\psi^{*}=\left(\sum_{i,a}\psi_{ia}x_{i}y_{a}\right)\left(\sum_{j,b}\overline{\psi}_{jb}x_{j}^{*}y_{b}^{*}\right)=\sum_{\begin{subarray}{c}i,a\\ j,b\end{subarray}}\psi_{ia}\overline{\psi}_{jb}x_{i}x_{j}^{*}y_{a}y_{b}^{*}. (3)

An application of the partial trace yields the reduced density operator ρY:YY\rho_{Y}\colon\mathbb{C}^{Y}\to\mathbb{C}^{Y}, which has the following expression,

ρY=trXPrψ=i,aj,bψiaψ¯jbtrX(xixjyayb)=i,aj,bψiaψ¯jbtr(xixj)yayb=a,biψiaψ¯ibyayb\displaystyle\rho_{Y}=\operatorname{tr}_{X}\text{Pr}_{\psi}=\sum_{\begin{subarray}{c}i,a\\ j,b\end{subarray}}\psi_{ia}\overline{\psi}_{jb}\operatorname{tr}_{X}(x_{i}x_{j}^{*}y_{a}y_{b}^{*})=\sum_{\begin{subarray}{c}i,a\\ j,b\end{subarray}}\psi_{ia}\overline{\psi}_{jb}\operatorname{tr}(x_{i}x_{j}^{*})\cdot y_{a}y_{b}^{*}=\sum_{\begin{subarray}{c}a,b\\ i\end{subarray}}\psi_{ia}\overline{\psi}_{ib}y_{a}y_{b}^{*} (4)

where the last equality follows from tr(xixj)=xj,xi\operatorname{tr}(x_{i}x_{j}^{*})=\langle x_{j},x_{i}\rangle, which is 1 if i=ji=j and is 0 otherwise. Notice that the aath diagonal entry of ρY\rho_{Y} is marginal probability πY(ya):=iψiaψia¯=iπ(xi,ya)\pi_{Y}(y_{a}):=\sum_{i}\psi_{ia}\overline{\psi_{ia}}=\sum_{i}\pi(x_{i},y_{a}), and so the diagonal of ρY\rho_{Y} recovers the marginal probability distribution πY:Y\pi_{Y}\colon Y\to\mathbb{R} obtained from the joint distribution π\pi.

ρY=[πY(y1)πY(y2)πY(ym)]\rho_{Y}=\begin{bmatrix}\pi_{Y}(y_{1})&&&&*\\ &\pi_{Y}(y_{2})&&&\\ &&\ddots&&\\ *&&&&\pi_{Y}(y_{m})\end{bmatrix}

The ababth off-diagonal entry of this matrix is (ρY)ab=iπ(xi,ya)π(xi,yb)(\rho_{Y})_{ab}=\sum_{i}\sqrt{\pi(x_{i},y_{a})\pi(x_{i},y_{b})} which is generally nonzero and measures the extent to which yay_{a} and yby_{b} have common interactions with elements in XX. This can been expressed in terms of Bhattacharyya coefficients, which measure the proximity of two probability distributions. Unwinding this, the Bhattacharyya coefficient for two probability distributions p,q:Sp,q\colon S\to\mathbb{R} on a finite set SS is defined by B(p,q):=sp(s)q(s)B(p,q):=\sum_{s}\sqrt{p(s)q(s)}. Putting this in the context of reduced densities, each suffix yaYy_{a}\in Y defines a conditional probability distribution πa:X\pi_{a}\colon X\to\mathbb{R} by xiπ(xi|ya)x_{i}\mapsto\pi(x_{i}|y_{a}), and so the Bhattacharyya coefficient of two conditional distributions πa\pi_{a} and πb\pi_{b} is equal to

iπ(xi|ya)π(xi|yb)=1πY(ya)πY(yb)iπ(xi,ya)π(xi,yb)=(ρY)abπY(ya)πY(yb)\sum_{i}\sqrt{\pi(x_{i}|y_{a})\pi(x_{i}|y_{b})}=\frac{1}{\sqrt{\pi_{Y}(y_{a})\pi_{Y}(y_{b})}}\sum_{i}\sqrt{\pi(x_{i},y_{a})\pi(x_{i},y_{b})}=\frac{(\rho_{Y})_{ab}}{\sqrt{\pi_{Y}(y_{a})\pi_{Y}(y_{b})}}

and the off-diagonals of the reduced density are therefore (ρY)ab=πY(ya)πY(yb)B(πa,πb).(\rho_{Y})_{ab}=\sqrt{\pi_{Y}(y_{a})\pi_{Y}(y_{b})}B(\pi_{a},\pi_{b}). This may also be written using the Hellinger distance, H(p,q):=1B(p,q)H(p,q):=\sqrt{1-B(p,q)}. In much the same way, the reduced density ρX=trYPrψ\rho_{X}=\operatorname{tr}_{Y}\text{Pr}_{\psi} contains the marginal probability distribution πX:X\pi_{X}\colon X\to\mathbb{R} on XX along its diagonal and has additional nonzero off-diagonal entries. In both cases, the off-diagonals encode statistical information about subsystem interactions, and the spectral information of these reduced densities is akin to conditional probability, as it carries sufficient information to reconstruct the original state Prψ\text{Pr}_{\psi}. This idea is described in detail in (Bra, 20, chapter 3) and in BST (20), where understanding and harnessing this information is key to producing a tensor network generative model. In this paper, we explore the extent to which reduced densities obtained from classical probability distributions are useful in representing words and expressions in language.

2.2 Why Densities for Language?

To motivate the connection between reduced densities and language, this section gives a few elementary, yet illuminating, observations about these operators. We begin with some terminology. Given a pair (x,y)X×Y(x,y)\in X\times Y, refer to xx as the prefix of the pair and to yy as the suffix. The first observation is that two suffixes have the same image under ρY\rho_{Y} if and only if they share the same set of prefixes with the same probabilities (and similarly for prefixes and ρX\rho_{X}).

Proposition 2.1.

Let π:X×Y\pi\colon X\times Y\to\mathbb{R} be a probability distribution and let ψ\psi be the vector given in Equation (2). Suffixes ycy_{c} and ydy_{d} satisfy π(xi,yc)=π(xi,yd)\pi(x_{i},y_{c})=\pi(x_{i},y_{d}) for all ii if and only if they have the same image under ρY=trXPrψ\rho_{Y}=\operatorname{tr}_{X}\text{Pr}_{\psi}.

Proof.

If π(xi,yc)=π(xi,yd)\pi(x_{i},y_{c})=\pi(x_{i},y_{d}) for all ii, then

ρY(yc)=i,aπ(xi,ya)π(xi,yc)ya=i,aπ(xi,ya)π(xi,yd)ya=ρY(yd).\rho_{Y}(y_{c})=\sum_{i,a}\sqrt{\pi(x_{i},y_{a})\pi(x_{i},y_{c})}y_{a}=\sum_{i,a}\sqrt{\pi(x_{i},y_{a})\pi(x_{i},y_{d})}y_{a}=\rho_{Y}(y_{d}).

Conversely, if π(xi,yc)π(xi,yd)\pi(x_{i},y_{c})\neq\pi(x_{i},y_{d}) for some ii, then ρY(yc)ρY(yd)\rho_{Y}(y_{c})\neq\rho_{Y}(y_{d}). ∎

Reduced densities therefore classify suffixes (or prefixes in the case of ρX\rho_{X}) that have the same environments and statistics within a language. For this reason, we refer to ρY(ya)\rho_{Y}(y_{a}) as the ambiance vector for the suffix yay_{a}, as suffixes with the same ambient environment have the same image under ρY.\rho_{Y}.

Example 1.

Consider the ordered sets X={big, tall, cold, chilly}X=\{\text{big, tall, cold, chilly}\} and Y={mountain, winter}Y=\{\text{mountain, winter}\} and suppose TX×YT\subseteq X\times Y is the four-element subset

T={(big, mountain),(tall, mountain),(cold, winter),(chilly, winter)}.T=\{(\text{big, mountain}),(\text{tall, mountain}),(\text{cold, winter}),(\text{chilly, winter})\}.

Let π:X×Y\pi\colon X\times Y\to\mathbb{R} be the probability distribution uniformly concentrated on TT so that π(x,y)\pi(x,y) is 1/41/4 if (x,y)T(x,y)\in T and is 0 otherwise. The vector in Equation (2) is a sum of all phrases in TT, each weighted by the square root of its probability.

ψ=12(bigmountain+tallmountain+coldwinter+chillywinter)\psi=\tfrac{1}{2}(\text{big}\otimes\text{mountain}+\text{tall}\otimes\text{mountain}+\text{cold}\otimes\text{winter}+\text{chilly}\otimes\text{winter})

Following Equation (4), the matrix representations of the reduced density operators obtained from orthogonal projection onto ψ\psi are given below.

ρX=14[1100110000110011]ρY=14[2002]\rho_{X}=\frac{1}{4}\begin{bmatrix}1&1&0&0\\ 1&1&0&0\\ 0&0&1&1\\ 0&0&1&1\\ \end{bmatrix}\qquad\rho_{Y}=\frac{1}{4}\begin{bmatrix}2&0\\ 0&2\end{bmatrix}

Observe that111Recall that elements of YY are identified with standard basis vectors in Y2\mathbb{C}^{Y}\cong\mathbb{C}^{2}, so mountain=[10]\text{mountain}=\left[\begin{smallmatrix}1&0\end{smallmatrix}\right]^{\top} while winter=[01]\text{winter}=\left[\begin{smallmatrix}0&1\end{smallmatrix}\right]^{\top}. Similarly, big=[1000]\text{big}=\left[\begin{smallmatrix}1&0&0&0\end{smallmatrix}\right]^{\top}, and so on. the words mountain and winter share no common prefixes in TT, and correspondingly ρY(mountain)ρY(winter)\rho_{Y}(\text{mountain})\neq\rho_{Y}(\text{winter}). Intuitively, these words appear in different contexts and have different meanings, and ρY\rho_{Y} distinguishes them as such. On the other hand, the words big and tall have the same set of suffixes with identical probabilities, and ρX(big)=ρX(tall)\rho_{X}(\text{big})=\rho_{X}(\text{tall}). Intuitively, these words have similar meanings because they appear in similar contexts, and ρX\rho_{X} identifies them as such.

This example highlights yet another connection between reduced densities and language—namely that the entries of their matrix representations have simple, combinatorial interpretations when π\pi is an empirical distribution. The diagonal entries of the matrix for ρY\rho_{Y} in Example 1 are both 2 (momentarily ignoring the factor of 1/41/4) because both mountain and winter appear twice in the subset TT. Importantly, the off-diagonal entries of ρY\rho_{Y} are zero, as mountain and winter have no common prefix in TT. Similarly, the diagonals of ρX\rho_{X} count the number of prefixes in TT, and the off-diagonals count the number of shared suffixes that any pair of prefixes have in common. More generally, any subset TX×YT\subseteq X\times Y can be thought of as a sampling from a corpus of text and defines an empirical probability distribution π:X×Y\pi\colon X\times Y\to\mathbb{R} by π(x,y)=1|T|\pi(x,y)=\frac{1}{|T|} if (x,y)T(x,y)\in T and π(x,y)=0\pi(x,y)=0. The unit vector in Equation (2) is then ψ=1|T|(x,y)Txy\psi=\frac{1}{\sqrt{|T|}}\sum_{(x,y)\in T}xy, and the ababth off-diagonal entry of ρY=trXPrψ\rho_{Y}=\operatorname{tr}_{X}\text{Pr}_{\psi} is given by iψiaψ¯ib=d/|T|\sum_{i}\psi_{ia}\overline{\psi}_{ib}=d/|T| where dd is the number of prefixes xiXx_{i}\in X such that (xi,ya)T(x_{i},y_{a})\in T and (xi,yb)T(x_{i},y_{b})\in T. A similar result holds for the reduced density ρX\rho_{X} on prefixes. This combinatorial observation was used in BST (20) and later elaborated on in (Bra, 20, chapter 3), though the application to language was not emphasized there. Let us emphasize it now. In the context of language, reduced densities neatly package the statistical information contained in their off-diagonal entries in terms of prefix-suffix interactions. As Proposition 2.1 has shown, this contributes to an understanding of how words fit into a language.

We take these simple observations as motivation to further explore the extent to which reduced densities arising from classical distributions can model language. In Section 3 we assign to any word (or longer expression) ss in language a reduced density operator ρ^s\hat{\rho}_{s} obtained from Prψ\text{Pr}_{\psi}, which will have the property that it contains algebraic and statistical information about the word’s environment. This property, together with the Loewner order, is used in Section 4 to show that a simple concept hierarchy in language and the accompanying statistics are preserved under the passage sρ^ss\mapsto\hat{\rho}_{s}. Section 5 describes how the preservation of this structure can be stated precisely in the language of category theory.

3 Assigning Reduced Densities to Words

To assign reduced density operators to words and expressions from a language, we start with a joint probability distribution as in Section 2. There, we considered a product of two sets, thought of as prefixes and suffixes. In this discussion, we’ll consider a joint distribution on an NN-fold product for N2N\geq 2. To this end, let XX be a finite ordered set consisting of the basic building blocks of a language. We’ll refer to elements of XX as words, though they may be characters, symbols, words, etc. Let S=XN1×XS=X^{N-1}\times X denote the set of all sequences of length N2N\geq 2. We write SS as a Cartesian product to obtain prefixes (xiN1,,xi2,xi1)(x_{i_{N-1}},\ldots,x_{i_{2}},x_{i_{1}}) and suffixes xax_{a} so that each sequence sSs\in S is a prefix-suffix pair s=(xiN1xi2xi1,xa)s=(x_{i_{N-1}}\cdots x_{i_{2}}x_{i_{1}},x_{a}). As shown here, the concatenation xiN1xi2xi1x_{i_{N-1}}\cdots x_{i_{2}}x_{i_{1}} will often be used in lieu of the tuple (xiN1,,xi2,xi1)(x_{i_{N-1}},\ldots,x_{i_{2}},x_{i_{1}}). Further, the indices of a prefix are labeled starting from right to left: the right-most index is i1i_{1} and the left-most index is iN1i_{N-1}. Consistent with Section 2, words comprising prefixes are labeled with i,j,i,j,\ldots while suffixes are labeled with a,b,a,b,\ldots. The set of suffixes XX may be replaced by XkX^{k} for any k1k\geq 1, though we work with k=1k=1 for simplicity. Any subsequence of consecutive words in a prefix is called a phrase, and a word is a phrase of length one. With this setup in mind, suppose π:S\pi\colon S\to\mathbb{R} is any probability distribution and consider the unit vector ψ=sSψss\psi=\sum_{s\in S}\psi_{s}s with ψs=π(s)\psi_{s}=\sqrt{\pi(s)} for each s.s. Note that ψ\psi lies in the tensor product SVN1V\mathbb{C}^{S}\cong V^{\otimes N-1}\otimes V where V=XV=\mathbb{C}^{X}, and so since each basis vector ss corresponds to a tensor product s=xiN1xi1xas=x_{i_{N-1}}\cdots x_{i_{1}}x_{a} we may write

ψ=iN1,,i1,aψiN1i1axiN1xi1xa\psi=\sum_{{i_{N-1}},\cdots,i_{1},{a}}\psi_{i_{N-1}\cdots i_{1}a}x_{i_{N-1}}\cdots x_{i_{1}}x_{a} (5)

where the coefficients are the square root of probabilities ψiN1i1a=π(xiN1,,xi1,xa)\psi_{i_{N-1}\cdots i_{1}a}=\sqrt{\pi(x_{i_{N-1}},\ldots,x_{i_{1}},x_{a})}. Now consider the rank 1 density operator on VN1VV^{\otimes N-1}\otimes V given by the orthogonal projection onto ψ,\psi,

Prψ=ψψ=iN1,,i1,ajN1,,j1,bψiN1i1aψ¯jN1j1bxiN1xi1xaxjN1xj1xb.\text{Pr}_{\psi}=\psi\psi^{*}=\sum_{\begin{subarray}{c}i_{N-1},\ldots,i_{1},a\\ j_{N-1},\ldots,j_{1},b\end{subarray}}\psi_{i_{N-1}\cdots i_{1}a}\overline{\psi}_{j_{N-1}\cdots j_{1}b}x_{i_{N-1}}\cdots x_{i_{1}}x_{a}x^{*}_{j_{N-1}}\cdots x^{*}_{j_{1}}x^{*}_{b}.

Similarly as done in Equation (4), tracing out the prefix subsystem gives the reduced density ρV=trVN1Prψ:VV{\rho_{V}=\operatorname{tr}_{V^{\otimes N-1}}\text{Pr}_{\psi}\colon V\to\leavevmode\nobreak\ V}, which has the following explicit description.

ρV=iN1,,i1a,bψiN1i1aψ¯iN1i1bxaxb\rho_{V}=\sum_{\begin{subarray}{c}i_{N-1},\ldots,i_{1}\end{subarray}\\ a,b}\psi_{i_{N-1}\cdots i_{1}a}\overline{\psi}_{i_{N-1}\cdots i_{1}b}x_{a}x^{*}_{b} (6)

A slight modification of this expression gives rise to (unnormalized) reduced densities associated to phrases in XN1X^{N-1}. Indeed, Equation (6) involves a sum over all prefixes, but suppose instead the sum is over all indices except those associated to a given phrase. For example, if N=5N=5 and xi2xi1x_{i_{2}}x_{i_{1}} is a fixed phrase of length 2, consider the following operator where the indices i1i_{1} and i2i_{2} are fixed.

ρ^xi2xi1:=i4,i3,a,bψi4i3i2i1aψ¯i4i3i2i1bxaxb\hat{\rho}_{x_{i_{2}}x_{i_{1}}}:=\sum_{{i_{4},i_{3}},a,b}\psi_{i_{4}{i_{3}}{i_{2}}{i_{1}}{a}}\overline{\psi}_{i_{4}{i_{3}}{i_{2}}{i_{1}}{b}}x^{*}_{a}x_{b}

This new operator may not have unit trace, though it is still positive semidefinite. We therefore view it as the unnormalized reduced density associated to the phrase xi2xi1x_{i_{2}}x_{i_{1}}. Informally, it is obtained by first composing the vector xi2xi1x_{i_{2}}x_{i_{1}} with ψ\psi at the two sites directly adjacent to the suffix site, then forming the orthogonal projection onto this modified vector, and then tracing out the remaining prefix indices i3i_{3} and i4i_{4}. The tensor network diagrams in Figure 1 illustrate this relationship between ψ\psi and ρV\rho_{V} and ρ^xi2xi1\hat{\rho}_{x_{i_{2}}x_{i_{1}}}. This construction is summarized in Definition 3.1 below and an example is given in Example 2. Afterwards, we will show that renormalizing ρ^xi2xi1\hat{\rho}_{x_{i_{2}}x_{i_{1}}} to a unit-trace operator ρxi2xi1\rho_{x_{i_{2}}x_{i_{1}}} will capture the conditional probability distribution on the set of suffixes of xi2xi1x_{i_{2}}x_{i_{1}} in a principled way.

ψ=i4i3i2i1aρV=ρ^xi2xi1=\psi=\leavevmode\hbox to80.4pt{\vbox to41.11pt{\pgfpicture\makeatletter\hbox{\hskip 40.1997pt\lower 20.9199pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{61.17343pt}\pgfsys@lineto{35.07822pt}{61.17343pt}\pgfsys@curveto{37.43535pt}{61.17343pt}{39.34613pt}{59.26265pt}{39.34613pt}{56.90552pt}\pgfsys@curveto{39.34613pt}{54.54839pt}{37.43535pt}{52.6376pt}{35.07822pt}{52.6376pt}\pgfsys@lineto{-35.07822pt}{52.6376pt}\pgfsys@curveto{-37.43535pt}{52.6376pt}{-39.34613pt}{54.54839pt}{-39.34613pt}{56.90552pt}\pgfsys@curveto{-39.34613pt}{59.26265pt}{-37.43535pt}{61.17343pt}{-35.07822pt}{61.17343pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.57532pt}{26.05736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@color@gray@fill{.5}$i_{4}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.34894pt}{26.05736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@color@gray@fill{.5}$i_{3}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.12256pt}{26.05736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@color@gray@fill{.5}$i_{2}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.10382pt}{26.05736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@color@gray@fill{.5}$i_{1}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.80981pt}{26.29999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@color@gray@fill{.5}$a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{53.37251pt}\pgfsys@lineto{-28.45276pt}{36.18561pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{53.37251pt}\pgfsys@lineto{-14.22638pt}{36.18561pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{53.37251pt}\pgfsys@lineto{0.0pt}{36.18561pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{53.37251pt}\pgfsys@lineto{14.22638pt}{36.18561pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{53.37251pt}\pgfsys@lineto{28.45276pt}{34.13853pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\rightsquigarrow\quad\rho_{V}=\leavevmode\hbox to80.4pt{\vbox to38.7pt{\pgfpicture\makeatletter\hbox{\hskip 40.1997pt\lower 23.33127pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{61.17343pt}\pgfsys@lineto{35.07822pt}{61.17343pt}\pgfsys@curveto{37.43535pt}{61.17343pt}{39.34613pt}{59.26265pt}{39.34613pt}{56.90552pt}\pgfsys@curveto{39.34613pt}{54.54839pt}{37.43535pt}{52.6376pt}{35.07822pt}{52.6376pt}\pgfsys@lineto{-35.07822pt}{52.6376pt}\pgfsys@curveto{-37.43535pt}{52.6376pt}{-39.34613pt}{54.54839pt}{-39.34613pt}{56.90552pt}\pgfsys@curveto{-39.34613pt}{59.26265pt}{-37.43535pt}{61.17343pt}{-35.07822pt}{61.17343pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{42.67914pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{42.67914pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{53.37251pt}\pgfsys@lineto{-28.45276pt}{31.98576pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{53.37251pt}\pgfsys@lineto{-14.22638pt}{31.98576pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{53.37251pt}\pgfsys@lineto{0.0pt}{31.98576pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{53.37251pt}\pgfsys@lineto{14.22638pt}{31.98576pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{53.37251pt}\pgfsys@lineto{28.45276pt}{46.21214pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{31.98576pt}\pgfsys@lineto{28.45276pt}{39.14613pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{32.72067pt}\pgfsys@lineto{35.07822pt}{32.72067pt}\pgfsys@curveto{37.43535pt}{32.72067pt}{39.34613pt}{30.80989pt}{39.34613pt}{28.45276pt}\pgfsys@curveto{39.34613pt}{26.09563pt}{37.43535pt}{24.18484pt}{35.07822pt}{24.18484pt}\pgfsys@lineto{-35.07822pt}{24.18484pt}\pgfsys@curveto{-37.43535pt}{24.18484pt}{-39.34613pt}{26.09563pt}{-39.34613pt}{28.45276pt}\pgfsys@curveto{-39.34613pt}{30.80989pt}{-37.43535pt}{32.72067pt}{-35.07822pt}{32.72067pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\rightsquigarrow\quad\hat{\rho}_{x_{i_{2}}x_{i_{1}}}=\leavevmode\hbox to80.4pt{\vbox to45.81pt{\pgfpicture\makeatletter\hbox{\hskip 40.1997pt\lower 30.44444pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{75.39978pt}\pgfsys@lineto{35.07822pt}{75.39978pt}\pgfsys@curveto{37.43535pt}{75.39978pt}{39.34613pt}{73.489pt}{39.34613pt}{71.13187pt}\pgfsys@curveto{39.34613pt}{68.77473pt}{37.43535pt}{66.86395pt}{35.07822pt}{66.86395pt}\pgfsys@lineto{-35.07822pt}{66.86395pt}\pgfsys@curveto{-37.43535pt}{66.86395pt}{-39.34613pt}{68.77473pt}{-39.34613pt}{71.13187pt}\pgfsys@curveto{-39.34613pt}{73.489pt}{-37.43535pt}{75.39978pt}{-35.07822pt}{75.39978pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{67.59886pt}\pgfsys@lineto{-28.45276pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{67.59886pt}\pgfsys@lineto{-14.22638pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{67.59886pt}\pgfsys@lineto{0.0pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{67.59886pt}\pgfsys@lineto{14.22638pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{67.59886pt}\pgfsys@lineto{28.45276pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.09894pt}\pgfsys@lineto{0.0pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{39.09894pt}\pgfsys@lineto{14.22638pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{39.09894pt}\pgfsys@lineto{28.45276pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{ {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{48.34889pt}\pgfsys@curveto{3.0pt}{50.00577pt}{1.65688pt}{51.34889pt}{0.0pt}{51.34889pt}\pgfsys@curveto{-1.65688pt}{51.34889pt}{-3.0pt}{50.00577pt}{-3.0pt}{48.34889pt}\pgfsys@curveto{-3.0pt}{46.69202pt}{-1.65688pt}{45.34889pt}{0.0pt}{45.34889pt}\pgfsys@curveto{1.65688pt}{45.34889pt}{3.0pt}{46.69202pt}{3.0pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{58.34889pt}\pgfsys@curveto{3.0pt}{60.00577pt}{1.65688pt}{61.34889pt}{0.0pt}{61.34889pt}\pgfsys@curveto{-1.65688pt}{61.34889pt}{-3.0pt}{60.00577pt}{-3.0pt}{58.34889pt}\pgfsys@curveto{-3.0pt}{56.69202pt}{-1.65688pt}{55.34889pt}{0.0pt}{55.34889pt}\pgfsys@curveto{1.65688pt}{55.34889pt}{3.0pt}{56.69202pt}{3.0pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{17.22638pt}{48.34889pt}\pgfsys@curveto{17.22638pt}{50.00577pt}{15.88326pt}{51.34889pt}{14.22638pt}{51.34889pt}\pgfsys@curveto{12.5695pt}{51.34889pt}{11.22638pt}{50.00577pt}{11.22638pt}{48.34889pt}\pgfsys@curveto{11.22638pt}{46.69202pt}{12.5695pt}{45.34889pt}{14.22638pt}{45.34889pt}\pgfsys@curveto{15.88326pt}{45.34889pt}{17.22638pt}{46.69202pt}{17.22638pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{17.22638pt}{58.34889pt}\pgfsys@curveto{17.22638pt}{60.00577pt}{15.88326pt}{61.34889pt}{14.22638pt}{61.34889pt}\pgfsys@curveto{12.5695pt}{61.34889pt}{11.22638pt}{60.00577pt}{11.22638pt}{58.34889pt}\pgfsys@curveto{11.22638pt}{56.69202pt}{12.5695pt}{55.34889pt}{14.22638pt}{55.34889pt}\pgfsys@curveto{15.88326pt}{55.34889pt}{17.22638pt}{56.69202pt}{17.22638pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.83385pt}\pgfsys@lineto{35.07822pt}{39.83385pt}\pgfsys@curveto{37.43535pt}{39.83385pt}{39.34613pt}{37.92307pt}{39.34613pt}{35.56593pt}\pgfsys@curveto{39.34613pt}{33.2088pt}{37.43535pt}{31.29802pt}{35.07822pt}{31.29802pt}\pgfsys@lineto{-35.07822pt}{31.29802pt}\pgfsys@curveto{-37.43535pt}{31.29802pt}{-39.34613pt}{33.2088pt}{-39.34613pt}{35.56593pt}\pgfsys@curveto{-39.34613pt}{37.92307pt}{-37.43535pt}{39.83385pt}{-35.07822pt}{39.83385pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Figure 1: A tensor network diagram illustrating the construction of the reduced densities ρV\rho_{V} and ρ^xi2xi1\hat{\rho}_{x_{i_{2}}x_{i_{1}}} from the unit vector ψ.\psi.
Definition 3.1.

The unnormalized reduced density ρ^xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}} associated to a phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} of length k1k\geq 1 is the following positive semidefinite operator on V=XV=\mathbb{C}^{X},

ρ^xikxi1:=iN1,,ik+1a,bψiN1i1aψ¯iN1i1bxaxb.\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}}:=\sum_{\begin{subarray}{c}i_{N-1},\ldots,i_{k+1}\\ a,b\end{subarray}}\psi_{i_{N-1}\cdots{i_{1}}a}\overline{\psi}_{i_{N-1}\cdots{i_{1}}b}x_{a}x^{*}_{b}.

This operator may simply be referred to as the reduced density for xikxi1x_{i_{k}}\cdots x_{i_{1}}, keeping in mind that it may not have unit trace.

As an immediate consequence, two words xi1x_{i_{1}} and xi1x_{i^{\prime}_{1}} map to the same operator ρ^xi1=ρ^xi1\hat{\rho}_{x_{i_{1}}}=\hat{\rho}_{x^{\prime}_{i_{1}}} if they share the same statistics in the language, that is if ψiN1i1a=ψiN1i1a\psi_{i_{N-1}\cdots{i_{1}}a}=\psi_{i_{N-1}\cdots{i^{\prime}_{1}}a} for all aa and for all iN1,,i2i_{N-1},\ldots,i_{2}. The same is true for more general phrases of length k1k\geq 1. Another consequence is that the reduced density for a given phrase decomposes as a sum of other reduced densities, one associated to each expression containing that phrase. Though simple, this will result reappear a number of times.

Lemma 3.1.

For any 1kN11\leq k\leq N-1 and any phrase xikxi1x_{i_{k}}\cdots x_{i_{1}},

ρ^xikxi1=ik+1ρ^xik+1xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}}=\sum_{i_{k+1}}\hat{\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}
Proof.

This follows directly from the definition:

ρ^xikxi1\displaystyle\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}} =iN1,,ik+1a,bψiN1i1aψ¯iN1i1bxaxb\displaystyle=\sum_{\begin{subarray}{c}i_{N-1},\ldots,i_{k+1}\\ a,b\end{subarray}}\psi_{i_{N-1}\cdots{i_{1}}a}\overline{\psi}_{i_{N-1}\cdots{i_{1}}b}x_{a}x^{*}_{b}
=ik+1(iN1,,ik+2a,bψiN1i1aψ¯iN1i1bxaxb)\displaystyle=\sum_{i_{k+1}}\left(\sum_{\begin{subarray}{c}i_{N-1},\ldots,i_{k+2}\\ a,b\end{subarray}}\psi_{i_{N-1}\cdots{i_{1}}a}\overline{\psi}_{i_{N-1}\cdots{i_{1}}b}x_{a}x^{*}_{b}\right)
=ik+1ρ^xik+1xikxi1.\displaystyle=\sum_{i_{k+1}}\hat{\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}.

As a result, the ambiance vector associated to a word (defined below Proposition 2.1) such as xi1=dogx_{i_{1}}=\textit{dog} decomposes as a sum of ambiance vectors, one for each expression ending with dog. The lemma also implies222In (Bra, 20, Section 3.4), an operator-sum decomposition of ρV\rho_{V} is used to write ρ^xi1\hat{\rho}_{x_{i_{1}}} in terms of the linear map VN1VV^{\otimes N-1}\to V associated to ψVN1V\psi\in V^{\otimes N-1}\otimes V. It is equivalent to the explicit expression given in Definition 3.1 above. that the reduced density for any word xi1x_{i_{1}} decomposes as a sum of rank 1 operators—one associated to each phrase xiN1xi1x_{i_{N-1}}\cdots x_{i_{1}} that ends with xi1x_{i_{1}}.

ρ^xi1=i2ρ^xi2xi1=i3,i2ρ^xi3xi2xi1==iN1,,i3,i2ρ^xiN1xi3xi2xi1\hat{\rho}_{x_{i_{1}}}=\sum_{i_{2}}\hat{\rho}_{x_{i_{2}}x_{i_{1}}}=\sum_{i_{3},i_{2}}\hat{\rho}_{x_{i_{3}}x_{i_{2}}x_{i_{1}}}=\cdots=\sum_{i_{N-1},\ldots,i_{3},i_{2}}\hat{\rho}_{x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}x_{i_{1}}} (7)

To see that each operator ρ^xiN1xi3xi2xi1\hat{\rho}_{x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}x_{i_{1}}} has rank 1, notice that its expression in Definition 3.1 does not involve a sum over prefixes. Equivalently, no edges are contracted in its tensor diagram representation, as illustrated in Figure 2.

ρ^xiN1xi2xi1=\hat{\rho}_{x_{i_{N-1}}\cdots x_{i_{2}}x_{i_{1}}}=\leavevmode\hbox to80.4pt{\vbox to45.81pt{\pgfpicture\makeatletter\hbox{\hskip 40.1997pt\lower 30.44444pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{75.39978pt}\pgfsys@lineto{35.07822pt}{75.39978pt}\pgfsys@curveto{37.43535pt}{75.39978pt}{39.34613pt}{73.489pt}{39.34613pt}{71.13187pt}\pgfsys@curveto{39.34613pt}{68.77473pt}{37.43535pt}{66.86395pt}{35.07822pt}{66.86395pt}\pgfsys@lineto{-35.07822pt}{66.86395pt}\pgfsys@curveto{-37.43535pt}{66.86395pt}{-39.34613pt}{68.77473pt}{-39.34613pt}{71.13187pt}\pgfsys@curveto{-39.34613pt}{73.489pt}{-37.43535pt}{75.39978pt}{-35.07822pt}{75.39978pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.97638pt}{50.84889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{67.59886pt}\pgfsys@lineto{-28.45276pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{67.59886pt}\pgfsys@lineto{0.0pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{67.59886pt}\pgfsys@lineto{14.22638pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{67.59886pt}\pgfsys@lineto{28.45276pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{39.09894pt}\pgfsys@lineto{-28.45276pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.09894pt}\pgfsys@lineto{0.0pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{39.09894pt}\pgfsys@lineto{14.22638pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{39.09894pt}\pgfsys@lineto{28.45276pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{ {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.45276pt}{48.34889pt}\pgfsys@curveto{-25.45276pt}{50.00577pt}{-26.79588pt}{51.34889pt}{-28.45276pt}{51.34889pt}\pgfsys@curveto{-30.10963pt}{51.34889pt}{-31.45276pt}{50.00577pt}{-31.45276pt}{48.34889pt}\pgfsys@curveto{-31.45276pt}{46.69202pt}{-30.10963pt}{45.34889pt}{-28.45276pt}{45.34889pt}\pgfsys@curveto{-26.79588pt}{45.34889pt}{-25.45276pt}{46.69202pt}{-25.45276pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.45276pt}{58.34889pt}\pgfsys@curveto{-25.45276pt}{60.00577pt}{-26.79588pt}{61.34889pt}{-28.45276pt}{61.34889pt}\pgfsys@curveto{-30.10963pt}{61.34889pt}{-31.45276pt}{60.00577pt}{-31.45276pt}{58.34889pt}\pgfsys@curveto{-31.45276pt}{56.69202pt}{-30.10963pt}{55.34889pt}{-28.45276pt}{55.34889pt}\pgfsys@curveto{-26.79588pt}{55.34889pt}{-25.45276pt}{56.69202pt}{-25.45276pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{48.34889pt}\pgfsys@curveto{3.0pt}{50.00577pt}{1.65688pt}{51.34889pt}{0.0pt}{51.34889pt}\pgfsys@curveto{-1.65688pt}{51.34889pt}{-3.0pt}{50.00577pt}{-3.0pt}{48.34889pt}\pgfsys@curveto{-3.0pt}{46.69202pt}{-1.65688pt}{45.34889pt}{0.0pt}{45.34889pt}\pgfsys@curveto{1.65688pt}{45.34889pt}{3.0pt}{46.69202pt}{3.0pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{58.34889pt}\pgfsys@curveto{3.0pt}{60.00577pt}{1.65688pt}{61.34889pt}{0.0pt}{61.34889pt}\pgfsys@curveto{-1.65688pt}{61.34889pt}{-3.0pt}{60.00577pt}{-3.0pt}{58.34889pt}\pgfsys@curveto{-3.0pt}{56.69202pt}{-1.65688pt}{55.34889pt}{0.0pt}{55.34889pt}\pgfsys@curveto{1.65688pt}{55.34889pt}{3.0pt}{56.69202pt}{3.0pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{17.22638pt}{48.34889pt}\pgfsys@curveto{17.22638pt}{50.00577pt}{15.88326pt}{51.34889pt}{14.22638pt}{51.34889pt}\pgfsys@curveto{12.5695pt}{51.34889pt}{11.22638pt}{50.00577pt}{11.22638pt}{48.34889pt}\pgfsys@curveto{11.22638pt}{46.69202pt}{12.5695pt}{45.34889pt}{14.22638pt}{45.34889pt}\pgfsys@curveto{15.88326pt}{45.34889pt}{17.22638pt}{46.69202pt}{17.22638pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{17.22638pt}{58.34889pt}\pgfsys@curveto{17.22638pt}{60.00577pt}{15.88326pt}{61.34889pt}{14.22638pt}{61.34889pt}\pgfsys@curveto{12.5695pt}{61.34889pt}{11.22638pt}{60.00577pt}{11.22638pt}{58.34889pt}\pgfsys@curveto{11.22638pt}{56.69202pt}{12.5695pt}{55.34889pt}{14.22638pt}{55.34889pt}\pgfsys@curveto{15.88326pt}{55.34889pt}{17.22638pt}{56.69202pt}{17.22638pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.83385pt}\pgfsys@lineto{35.07822pt}{39.83385pt}\pgfsys@curveto{37.43535pt}{39.83385pt}{39.34613pt}{37.92307pt}{39.34613pt}{35.56593pt}\pgfsys@curveto{39.34613pt}{33.2088pt}{37.43535pt}{31.29802pt}{35.07822pt}{31.29802pt}\pgfsys@lineto{-35.07822pt}{31.29802pt}\pgfsys@curveto{-37.43535pt}{31.29802pt}{-39.34613pt}{33.2088pt}{-39.34613pt}{35.56593pt}\pgfsys@curveto{-39.34613pt}{37.92307pt}{-37.43535pt}{39.83385pt}{-35.07822pt}{39.83385pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Figure 2: A rank 1 operator illustrated as a tensor network diagram with no contracted edges.

Further observe that Definition 3.1 and Lemma 3.1 only regard those phrases that occur adjacent to a suffix. One can also associate reduced densities to phrases that occur in any position in a sequence (for instance, see the discussion surrounding Figure 3) and find an analogous decomposition. We omit this more general discussion to streamline the presentation.

In the example below, we consider a toy corpus containing five phrases of length four. Each phrase will correspond to a sequence in a four-fold Cartesian product of different sets A×B×C×DA\times B\times C\times D rather than the same set X×X×X×XX\times X\times X\times X, as one might use in practice. This minor adjustment will simply keep the example tidy (for instance, it allows us to consider a 2×22\times 2 matrix rather than a sparse 8×88\times 8 matrix) while still illustrating the theory.

Example 2.

Begin with the following ordered sets, A={small, big}A=\{\text{small, big}\} and B={black, white}B=\{\text{black, white}\} and C={dog, cat}C=\{\text{dog, cat}\} and D={barks, runs}D=\{\text{barks, runs}\}, and consider the five phrases of length N=4N=4 shown below on the left. Define the vector ψ\psi to be the normalized sum of these five phrases, as shown on the right.

small black dog barks

small white dog barks

big black dog runs

big white cat runs

small black cat runs

ψ=15(smallblackdogbarks+smallwhitedogbarks+bigblackdogruns+bigwhitecatruns+smallblackcatruns)\psi=\frac{1}{\sqrt{5}}\left(\begin{array}[]{llllllll}\text{small}&\otimes&\text{black}&\otimes&\text{dog}&\otimes&\text{barks}&+\\ \text{small}&\otimes&\text{white}&\otimes&\text{dog}&\otimes&\text{barks}&+\\ \text{big}&\otimes&\text{black}&\otimes&\text{dog}&\otimes&\text{runs}&+\\ \text{big}&\otimes&\text{white}&\otimes&\text{cat}&\otimes&\text{runs}&+\\ \text{small}&\otimes&\text{black}&\otimes&\text{cat}&\otimes&\text{runs}&\end{array}\right)

In fact, ψ\psi is obtained from a probability distribution π:A×B×C×D\pi\colon A\times B\times C\times D\to\mathbb{R} as in Equation (5), where π\pi is uniformly concentrated on the subset TA×B×C×DT\subseteq A\times B\times C\times D consisting of the five phrases above. Further note that ψ\psi lies in the tensor product ABCD\mathbb{C}^{A}\otimes\mathbb{C}^{B}\otimes\mathbb{C}^{C}\otimes\mathbb{C}^{D}, where each factor is isomorphic to 2\mathbb{C}^{2}. As before, elements in A×B×CA\times B\times C are prefixes and elements in DD are suffixes. Following Equation (6), the reduced density operator ρD=trA×B×CPrψ\rho_{D}=\operatorname{tr}_{A\times B\times C}\text{Pr}_{\psi} on the suffix subsystem is given by

ρD\displaystyle\rho_{D} =(a,b,c)A×B×Cπ(a,b,c,barks)barksbarks\displaystyle=\sum_{(a,b,c)\in A\times B\times C}\pi(a,b,c,\text{barks})\;\text{barks}\otimes\text{barks}^{*}
+(a,b,c)A×B×Cπ(a,b,c,barks)π(a,b,c,runs)barksruns\displaystyle+\sum_{(a,b,c)\in A\times B\times C}\sqrt{\pi(a,b,c,\text{barks})\pi(a,b,c,\text{runs})}\;\text{barks}\otimes\text{runs}^{*}
+(a,b,c)A×B×Cπ(a,b,c,runs)π(a,b,c,barks)runsbarks\displaystyle+\sum_{(a,b,c)\in A\times B\times C}\sqrt{\pi(a,b,c,\text{runs})\pi(a,b,c,\text{barks})}\;\text{runs}\otimes\text{barks}^{*}
+(a,b,c)A×B×Cπ(a,b,c,runs)runsruns\displaystyle+\sum_{(a,b,c)\in A\times B\times C}\pi(a,b,c,\text{runs})\;\text{runs}\otimes\text{runs}^{*}
=15[2003]\displaystyle=\frac{1}{5}\begin{bmatrix}2&0\\ 0&3\end{bmatrix}

where barks is identified with [10]\left[\begin{smallmatrix}1\\ 0\end{smallmatrix}\right] while runs is identified with [01]\left[\begin{smallmatrix}0\\ 1\end{smallmatrix}\right]. Up to the normalizing factor 1/51/5, the entries of this matrix have a simple combinatorial interpretation: barks appears twice in TT and runs appears three times, and these integers are seen along the diagonal of ρD\rho_{D}. The off-diagonals are both zero, which is the number of prefixes (a,b,c)T(a,b,c)\in T that barks and runs have in common. To compute the reduced density ρ^dog\hat{\rho}_{\text{dog}} associated to the word dog as in Definition 3.1, we fix c=dogc=\textit{dog} and sum over pairs (a,b)A×B.(a,b)\in A\times B. Writing this out explicitly,

ρ^dog\displaystyle\hat{\rho}_{\text{dog}} =(a,b)A×Bπ(a,b,dog,barks)barksbarks\displaystyle=\sum_{(a,b)\in A\times B}\pi(a,b,\text{dog},\text{barks})\;\text{barks}\otimes\text{barks}^{*}
+(a,b)A×Bπ(a,b,dog,barks)π(a,b,dog,runs)barksruns+\displaystyle+\sum_{(a,b)\in A\times B}\sqrt{\pi(a,b,\text{dog},\text{barks})\pi(a,b,\text{dog},\text{runs})}\;\text{barks}\otimes\text{runs}^{*}+
+(a,b)A×Bπ(a,b,dog,runs)π(a,b,dog,barks)runsbarks+\displaystyle+\sum_{(a,b)\in A\times B}\sqrt{\pi(a,b,\text{dog},\text{runs})\pi(a,b,\text{dog},\text{barks})}\;\text{runs}\otimes\text{barks}^{*}+
+(a,b)A×Bπ(a,b,dog,runs)runsruns\displaystyle+\sum_{(a,b)\in A\times B}\pi(a,b,\text{dog},\text{runs})\;\text{runs}\otimes\text{runs}^{*}
=15[2001].\displaystyle=\frac{1}{5}\begin{bmatrix}2&0\\ 0&1\end{bmatrix}.

Again, the entries of this matrix can be understood combinatorially. The word dog appears three times in TT. Of those three occurrences, it is followed by barks twice and by runs once, as seen along the diagonal of ρ^dog.\hat{\rho}_{\text{dog}}. The off-diagonals are both zero, which is the number of phrases (a,b)(a,b) that precede both dog barks and dog runs. Now suppose we fix b=blackb=\textit{black} and sum over aAa\in A alone in the calculation above. The resulting operator is the reduced density associated to the phrase black dog. Further fixing a=smalla=\textit{small} gives the reduced density for small black dog.

ρ^black dog=15[1001]ρ^small black dog=15[1000]\hat{\rho}_{\text{black dog}}=\frac{1}{5}\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\qquad\hat{\rho}_{\text{small black dog}}=\frac{1}{5}\begin{bmatrix}1&0\\ 0&0\end{bmatrix}

Notably, operators associated to phrases containing the word dog are related. By Lemma 3.1 we have that ρ^dog=ρ^black dog+ρ^white dog\hat{\rho}_{\text{dog}}=\hat{\rho}_{\text{black dog}}+\hat{\rho}_{\text{white dog}}, where each summand further decomposes as ρ^black dog=ρ^small black dog+ρ^big black dog\hat{\rho}_{\text{black dog}}=\hat{\rho}_{\text{small black dog}}+\hat{\rho}_{\text{big black dog}} and ρ^white dog=ρ^small white dog\hat{\rho}_{\text{white dog}}=\hat{\rho}_{\text{small white dog}}. As a result, the reduced density for dog can be written as a sum of reduced densities, one for every expression containing the word dog. This pairs well with the intuition that the meaning of a word consists in all ways that word fits into expressions in the language.

The previous example illustrates how reduced densities obtained from a carefully chosen ψ\psi contain relevant combinatorial and statistical information about phrases in language. Additional features of these operators are given below.

Proposition 3.1.

The trace of ρ^xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}} for any phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} of length k1k\geq 1 is the marginal probability of that phrase.

Proof.

The trace of ρ^xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}} is the sum

iN1,,ik+1,a|ψ,xiN1xi3xi2xi1xa|2=iN1,,ik+1,aπ(xiN1,,xi3,xi2,xi1,xa)\sum_{{i_{N-1}},\ldots,{i_{k+1}},{a}}{|\langle\psi,x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}x_{i_{1}}x_{a}\rangle|}^{2}=\sum_{{i_{N-1}},\ldots,{i_{k+1}},{a}}\pi(x_{i_{N-1}},\ldots,x_{i_{3}},x_{i_{2}},x_{i_{1}},x_{a})

which is the marginal probability π(xik,,xi1)\pi(x_{i_{k}},\cdots,x_{i_{1}}). ∎

As illustrated in Example 2, if π\pi is uniformly concentrated on some subset TXN1×XT\subseteq X^{N-1}\times X, then the marginal probability π(xik,,xi1)\pi(x_{i_{k}},\cdots,x_{i_{1}}) is precisely the number of times the phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} appears within prefixes in TT, divided by the total number of sequences |T|.|T|. Here we omit subscripts on marginal probabilities to keep the notation clean. In any case, marginal probabilities provide a way to associate properly normalized density operators to phrases. Define the unit-trace reduced density for a phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} to be the associated reduced density divided by its trace.

ρxikxi1:=ρ^xikxi1/π(xikxi1).\rho_{x_{i_{k}}\cdots x_{i_{1}}}:=\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}}/\pi(x_{i_{k}}\cdots x_{i_{1}}).

This trace 1 operator has the property that the diagonal entries of its matrix representation in the basis given by XX are the conditional probabilities π(xikxi1xa|xikxi1)\pi(x_{i_{k}}\cdots x_{i_{1}}x_{a}|x_{i_{k}}\cdots x_{i_{1}}) for each suffix xaX.x_{a}\in X. Indeed, the aath diagonal entry of ρxikxi1\rho_{x_{i_{k}}\cdots x_{i_{1}}} is ρxikxi1xa,xa\langle\rho_{x_{i_{k}}\cdots x_{i_{1}}}x_{a},x_{a}\rangle which is equal to

1π(xikxi1)iN1,,ik+1|ψ,xiN1xi1xa|2=π(xikxi1,xa)π(xikxi1)=π(xa|xikxi1).\frac{1}{\pi(x_{i_{k}}\cdots x_{i_{1}})}\sum_{i_{N-1},\ldots,i_{k+1}}|\langle\psi,x_{i_{N-1}}\cdots x_{i_{1}}x_{a}\rangle|^{2}=\frac{\pi(x_{i_{k}}\cdots x_{i_{1}},x_{a})}{\pi(x_{i_{k}}\cdots x_{i_{1}})}=\pi(x_{a}|x_{i_{k}}\cdots x_{i_{1}}).

In this way, the operator ρxikxi1\rho_{x_{i_{k}}\cdots x_{i_{1}}} contains the probabilities that the phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} will be continued by a given expression.

Example 3.

We resume Example 2, where the reduced density ρ^dog\hat{\rho}_{\text{dog}} is shown below, left. The trace of this operator is trρ^dog=3/5=π(dog)=a,b,dπ(a,b,dog,d)\operatorname{tr}\hat{\rho}_{\text{dog}}=3/5=\pi(\text{dog})=\sum_{a,b,d}\pi(a,b,\text{dog},d), which is the number of times that dog appears in the toy corpus TT, divided by the size of TT. The unit-trace reduced density operator is below, right.

ρ^dog=15[2001]ρdog=13[2001]\hat{\rho}_{\text{dog}}=\frac{1}{5}\begin{bmatrix}2&0\\ 0&1\end{bmatrix}\qquad\rho_{\text{dog}}=\frac{1}{3}\begin{bmatrix}2&0\\ 0&1\end{bmatrix}

The diagonal of ρdog\rho_{\text{dog}} is the conditional probability distribution on the set of suffixes {barks, runs}\{\text{barks, runs}\} conditioned on the word dog. That is, ρdogbarks,barks=2/3=π(barksdog)\langle\rho_{\text{dog}}\text{barks},\text{barks}\rangle=2/3=\pi(\text{barks}\mid\text{dog}), which is the conditional probability that a sequence (a,b,c,d)T(a,b,c,d)\in T has d=barksd=\textit{barks} given that c=dogc=\textit{dog}. Similarly, we have ρdogruns,runs=1/3=π(runsdog)\langle\rho_{\text{dog}}\text{runs},\text{runs}\rangle=1/3=\pi(\text{runs}\mid\text{dog}).

To motivate the next result, recall that the toy corpus in Example 2 contained two colors of dogs: black dog and white dog. As previously remarked, the meaning of the word dog receives a contribution from the context in which it appears—including the words black and white—together with the statistics of those appearances. The next proposition anchors this intuition on firmer ground and can be seen as an enrichment of Lemma 3.1. It states that ρdog\rho_{\text{dog}} decomposes as a weighted sum of ρblack dog\rho_{\text{black dog}} and ρwhite dog\rho_{\text{white dog}}, where the weights are conditional probabilities.

Proposition 3.2.

Let 1kN11\leq k\leq N-1. The unit-trace reduced density for any phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} can be written as a weighted sum of unit-trace reduced densities—one for each phrase of length k+1k+1 ending in xikxi1x_{i_{k}}\cdots x_{i_{1}}—where the weights are conditional probabilities,

ρxikxi1=ik+1π(xik+1|xikxi1)ρxik+1xikxi1.\rho_{x_{i_{k}}\cdots x_{i_{1}}}=\sum_{i_{k+1}}\pi(x_{i_{k+1}}|x_{i_{k}}\cdots x_{i_{1}}){\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}.
Proof.

By Lemma 3.1 we have ρ^xikxi1=ik+1ρ^xik+1xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}}=\sum_{i_{k+1}}\hat{\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}} and so

ρxikxi1\displaystyle\rho_{x_{i_{k}}\cdots x_{i_{1}}} =ρ^xikxi1π(xikxi1)=ik+1π(xik+1xikxi1)π(xikxi1)ρ^xik+1xikxi1π(xik+1xikxi1)\displaystyle=\frac{\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}}}{\pi(x_{i_{k}}\cdots x_{i_{1}})}=\sum_{i_{k+1}}\frac{\pi(x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}})}{\pi(x_{i_{k}}\cdots x_{i_{1}})}\frac{\hat{\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}}{\pi({x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}})}
=ik+1π(xik+1|xikxi1)ρxik+1xikxi1.\displaystyle=\sum_{i_{k+1}}\pi(x_{i_{k+1}}|x_{i_{k}}\cdots x_{i_{1}})\rho_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}.

So Proposition 3.2 relates the unit-trace reduced density ρxikxi1\rho_{x_{i_{k}}\cdots x_{i_{1}}} to all phrases of length k+1k+1 that end with the given phrase xikxi1x_{i_{k}}\cdots x_{i_{1}}. The proof of the following corollary gives the analogous statement for phrases of length N1N-1.

Corollary 3.1.

The unit-trace reduced density for a word xi1x_{i_{1}} decomposes as a weighted sum of rank 1 unit-trace reduced densities—one for each phrase of length N1N-1 that ends in xi1x_{i_{1}}—where the weights are conditional probabilities,

ρxi1=iN1,,i2π(xiN1xi2|xi1)ρxiN1xi2xi1.\rho_{x_{i_{1}}}=\sum_{{i_{N-1}},\ldots,{i_{2}}}\pi(x_{i_{N-1}}\cdots x_{i_{2}}|x_{i_{1}})\rho_{x_{i_{N}-1}\cdots x_{i_{2}}x_{i_{1}}}. (8)
Proof.

For any phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} of any length k1k\geq 1, a repeated application of Proposition 3.2 shows that the unit-trace reduced density of the phrase has the following decomposition.

ρxikxi1\displaystyle\rho_{x_{i_{k}}\cdots x_{i_{1}}} =ik+1π(xik+1|xikxi1)ρxik+1xikxi1\displaystyle=\sum_{i_{k+1}}\pi(x_{i_{k+1}}|x_{i_{k}}\cdots x_{i_{1}}){\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}
=ik+2,ik+2π(xik+2xik+1xikxi1)ρxik+2xik+1xikxi1\displaystyle=\sum_{i_{k+2},i_{k+2}}\pi(x_{i_{k+2}}x_{i_{k+1}}\mid x_{i_{k}}\cdots x_{i_{1}})\rho_{x_{i_{k+2}}x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}
=\displaystyle=\quad\vdots
=iN1,,ik+1π(xiN1xik+1xikxi1)ρxiN1xikxi1\displaystyle=\sum_{i_{N-1},\ldots,i_{k+1}}\pi(x_{i_{N-1}}\cdots x_{i_{k+1}}\mid x_{i_{k}}\cdots x_{i_{1}})\rho_{x_{i_{N-1}}\cdots x_{i_{k}}\cdots x_{i_{1}}}

In particular, the unit-trace reduced density associated to a given word xi1x_{i_{1}} can be written as the following sum, which can be seen as an enrichment of Equation (7).

ρxi1=iN1,,i2π(xiN1xi2|xi1)ρxiN1xi2xi1\rho_{x_{i_{1}}}=\sum_{{i_{N-1}},\ldots,{i_{2}}}\pi(x_{i_{N-1}}\cdots x_{i_{2}}|x_{i_{1}})\rho_{x_{i_{N}-1}\cdots x_{i_{2}}x_{i_{1}}}

Recall that each ρxiN1xi3xi2xi1\rho_{x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}x_{i_{1}}} is a scalar multiple of ρ^xiN1xi3xi2xi1\hat{\rho}_{x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}x_{i_{1}}}, and the latter has rank 1 as its explicit expression in terms of Definition 3.1 does not involve a sum over prefixes. ∎

Proposition 3.2 and Corollary 3.1 model the idea that the meaning of a phrase is contained in the totality of expressions that contain it, together with the statistics of those occurrences. Notably, the decomposition in Corollary 3.1 is not unlike a “probabilistic spectral decomposition.” Indeed every self-adjoint operator, including ρxi1\rho_{x_{i_{1}}}, can be written as a weighted sum of projection operators corresponding to eigenvectors. The previous corollary gives an analogous decomposition where the projections correspond not to eigenvectors but rather to vectors associated to phrases that end with the word xi1x_{i_{1}}. Likewise, the weights are not eigenvalues, but are rather conditional probabilities of phrases given that their last word is xi1x_{i_{1}}. Alternatively, the decomposition in Equation (8) is reminiscent of a generalized measurement in quantum mechanics—a collection of positive semidefinite operators whose sum is the identity operator. Though rather than a partition of unity, we have a partition of the observable ρxi1\rho_{x_{i_{1}}}.

Example 4.

Let us again resume the discussion from Example 2, where the unit-trace reduced densities associated to black dog and white dog are found to be

ρblack dog=12[1001]ρwhite dog=[1000].\rho_{\text{black dog}}=\frac{1}{2}\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\qquad\rho_{\text{white dog}}=\begin{bmatrix}1&0\\ 0&0\end{bmatrix}.

Recalling the toy corpus of that example, the word dog appears three times. Of those three occurrences, it is preceded by white once and by black twice. Conditional probabilities are therefore π(whitedog)=1/3\pi(\text{white}\mid\text{dog})=1/3 and π(blackdog)=2/3\pi(\text{black}\mid\text{dog})=2/3, and indeed ρdog\rho_{\text{dog}} has the following decomposition,

13[2001]=ρdog=π(blackdog)ρblack dog+π(whitedog)ρwhite dog\frac{1}{3}\begin{bmatrix}2&0\\ 0&1\end{bmatrix}=\rho_{\text{dog}}=\pi(\text{black}\mid\text{dog})\rho_{\text{black dog}}+\pi(\text{white}\mid\text{dog})\rho_{\text{white dog}}

where the first equality was verified in Example 3. Compare this decomposition for ρdog\rho_{\text{dog}} with the unnormalized analogue ρ^dog=ρ^white dog+ρ^black dog\hat{\rho}_{\text{dog}}=\hat{\rho}_{\text{white dog}}+\hat{\rho}_{\text{black dog}} derived in Example 2. A computation similar to that in Example 4 shows that ρdog\rho_{\text{dog}} further decomposes into a sum of rank 1 operators,

ρdog\displaystyle\rho_{\text{dog}} =π(small black|dog)ρsmall black dog\displaystyle=\pi(\text{small black}|\text{dog})\rho_{\text{small black dog}}
+π(small white|dog)ρsmall white dog\displaystyle+\pi(\text{small white}|\text{dog})\rho_{\text{small white dog}}
+π(big black|dog)ρbig black dog\displaystyle+\pi(\text{big black}|\text{dog})\rho_{\text{big black dog}}
=13[1000]+13[1000]+13[0010].\displaystyle=\frac{1}{3}\begin{bmatrix}1&0\\ 0&0\end{bmatrix}+\frac{1}{3}\begin{bmatrix}1&0\\ 0&0\end{bmatrix}+\frac{1}{3}\begin{bmatrix}0&0\\ 1&0\end{bmatrix}.

Compare this with the unnormalized analogue ρ^dog=ρ^small black dog+ρ^big black dog+ρ^small white dog\hat{\rho}_{\text{dog}}=\hat{\rho}_{\text{small black dog}}+\hat{\rho}_{\text{big black dog}}+\hat{\rho}_{\text{small white dog}} derived in Example 2.

As we’ll see in Section 4, the passage from xikxi1x_{i_{k}}\cdots x_{i_{1}} to ρ^xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}} together with the decompositions in Lemma 3.1 and Proposition 3.2 pave the way for modeling a simple concept hierarchy in language. But first, we close this discussion with the observation that our reduced densities have an obvious left-right bias, which may be undesirable. One way to avoid this bias is simply to leave the iN1i_{N-1} and aath indices open, which gives an operator on VVV\otimes V rather than on VV alone. Figure 3 illustrates such an operator corresponding to a given phase xi3xi2xi1x_{i_{3}}x_{i_{2}}x_{i_{1}} of length three. But whether or not the N1N-1st sites are kept open, let us make a final remark. Suppose for the moment that xj2xj1x_{j_{2}}x_{j_{1}} is a phrase of length two, and suppose a corpus of text is given where both xi3xi2xi1x_{i_{3}}x_{i_{2}}x_{i_{1}} and xj2xj1x_{j_{2}}x_{j_{1}} appear simultaneously in a longer expression. Then the decompositions of the densities ρ^xi3xi2xi1\hat{\rho}_{x_{i_{3}}x_{i_{2}}x_{i_{1}}} and ρ^xj2xj1\hat{\rho}_{x_{j_{2}}x_{j_{1}}} in the sense of Equation (7) will contain a common summand. For example, if a corpus of text contains the expression I walked my tiny toy poodle at the new park, then one will find that both ρ^tiny toy poodle\hat{\rho}_{\text{tiny toy poodle}} and ρ^new park\hat{\rho}_{\text{new park}} can be written as a sum of operators, both of which will include ρ^I walked my tiny toy poodle at the new park\hat{\rho}_{\text{I walked my tiny toy poodle at the new park}} as a summand. This realizes the intuition that if two different phrases are both included in a larger expression, then there is a relationship between their meanings.

ρ^xi3xi2xi1=ρ^xj2xj1=\hat{\rho}_{x_{i_{3}}x_{i_{2}}x_{i_{1}}}=\leavevmode\hbox to137.3pt{\vbox to45.81pt{\pgfpicture\makeatletter\hbox{\hskip 68.65245pt\lower 30.44444pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{75.39978pt}\pgfsys@lineto{63.53096pt}{75.39978pt}\pgfsys@curveto{65.88809pt}{75.39978pt}{67.79887pt}{73.489pt}{67.79887pt}{71.13187pt}\pgfsys@curveto{67.79887pt}{68.77473pt}{65.88809pt}{66.86395pt}{63.53096pt}{66.86395pt}\pgfsys@lineto{-63.53096pt}{66.86395pt}\pgfsys@curveto{-65.88809pt}{66.86395pt}{-67.79887pt}{68.77473pt}{-67.79887pt}{71.13187pt}\pgfsys@curveto{-67.79887pt}{73.489pt}{-65.88809pt}{75.39978pt}{-63.53096pt}{75.39978pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.67914pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.67914pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-56.90552pt}{67.59886pt}\pgfsys@lineto{-56.90552pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{67.59886pt}\pgfsys@lineto{-42.67914pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{67.59886pt}\pgfsys@lineto{-28.45276pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{67.59886pt}\pgfsys@lineto{-14.22638pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{67.59886pt}\pgfsys@lineto{0.0pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{67.59886pt}\pgfsys@lineto{14.22638pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{67.59886pt}\pgfsys@lineto{28.45276pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{67.59886pt}\pgfsys@lineto{42.67914pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{67.59886pt}\pgfsys@lineto{56.90552pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-56.90552pt}{39.09894pt}\pgfsys@lineto{-56.90552pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{39.09894pt}\pgfsys@lineto{-14.22638pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.09894pt}\pgfsys@lineto{0.0pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{39.09894pt}\pgfsys@lineto{14.22638pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{39.09894pt}\pgfsys@lineto{56.90552pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par\par{ {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{48.34889pt}\pgfsys@curveto{3.0pt}{50.00577pt}{1.65688pt}{51.34889pt}{0.0pt}{51.34889pt}\pgfsys@curveto{-1.65688pt}{51.34889pt}{-3.0pt}{50.00577pt}{-3.0pt}{48.34889pt}\pgfsys@curveto{-3.0pt}{46.69202pt}{-1.65688pt}{45.34889pt}{0.0pt}{45.34889pt}\pgfsys@curveto{1.65688pt}{45.34889pt}{3.0pt}{46.69202pt}{3.0pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,1,0.8}\pgfsys@color@rgb@fill{0.8}{1}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{58.34889pt}\pgfsys@curveto{3.0pt}{60.00577pt}{1.65688pt}{61.34889pt}{0.0pt}{61.34889pt}\pgfsys@curveto{-1.65688pt}{61.34889pt}{-3.0pt}{60.00577pt}{-3.0pt}{58.34889pt}\pgfsys@curveto{-3.0pt}{56.69202pt}{-1.65688pt}{55.34889pt}{0.0pt}{55.34889pt}\pgfsys@curveto{1.65688pt}{55.34889pt}{3.0pt}{56.69202pt}{3.0pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{17.22638pt}{48.34889pt}\pgfsys@curveto{17.22638pt}{50.00577pt}{15.88326pt}{51.34889pt}{14.22638pt}{51.34889pt}\pgfsys@curveto{12.5695pt}{51.34889pt}{11.22638pt}{50.00577pt}{11.22638pt}{48.34889pt}\pgfsys@curveto{11.22638pt}{46.69202pt}{12.5695pt}{45.34889pt}{14.22638pt}{45.34889pt}\pgfsys@curveto{15.88326pt}{45.34889pt}{17.22638pt}{46.69202pt}{17.22638pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.8,0.8}\pgfsys@color@rgb@fill{1}{0.8}{0.8}\pgfsys@invoke{ }{}\pgfsys@moveto{17.22638pt}{58.34889pt}\pgfsys@curveto{17.22638pt}{60.00577pt}{15.88326pt}{61.34889pt}{14.22638pt}{61.34889pt}\pgfsys@curveto{12.5695pt}{61.34889pt}{11.22638pt}{60.00577pt}{11.22638pt}{58.34889pt}\pgfsys@curveto{11.22638pt}{56.69202pt}{12.5695pt}{55.34889pt}{14.22638pt}{55.34889pt}\pgfsys@curveto{15.88326pt}{55.34889pt}{17.22638pt}{56.69202pt}{17.22638pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-11.22638pt}{48.34889pt}\pgfsys@curveto{-11.22638pt}{50.00577pt}{-12.5695pt}{51.34889pt}{-14.22638pt}{51.34889pt}\pgfsys@curveto{-15.88326pt}{51.34889pt}{-17.22638pt}{50.00577pt}{-17.22638pt}{48.34889pt}\pgfsys@curveto{-17.22638pt}{46.69202pt}{-15.88326pt}{45.34889pt}{-14.22638pt}{45.34889pt}\pgfsys@curveto{-12.5695pt}{45.34889pt}{-11.22638pt}{46.69202pt}{-11.22638pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.8,0.8,1}\pgfsys@color@rgb@fill{0.8}{0.8}{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-11.22638pt}{58.34889pt}\pgfsys@curveto{-11.22638pt}{60.00577pt}{-12.5695pt}{61.34889pt}{-14.22638pt}{61.34889pt}\pgfsys@curveto{-15.88326pt}{61.34889pt}{-17.22638pt}{60.00577pt}{-17.22638pt}{58.34889pt}\pgfsys@curveto{-17.22638pt}{56.69202pt}{-15.88326pt}{55.34889pt}{-14.22638pt}{55.34889pt}\pgfsys@curveto{-12.5695pt}{55.34889pt}{-11.22638pt}{56.69202pt}{-11.22638pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.83385pt}\pgfsys@lineto{63.53096pt}{39.83385pt}\pgfsys@curveto{65.88809pt}{39.83385pt}{67.79887pt}{37.92307pt}{67.79887pt}{35.56593pt}\pgfsys@curveto{67.79887pt}{33.2088pt}{65.88809pt}{31.29802pt}{63.53096pt}{31.29802pt}\pgfsys@lineto{-63.53096pt}{31.29802pt}\pgfsys@curveto{-65.88809pt}{31.29802pt}{-67.79887pt}{33.2088pt}{-67.79887pt}{35.56593pt}\pgfsys@curveto{-67.79887pt}{37.92307pt}{-65.88809pt}{39.83385pt}{-63.53096pt}{39.83385pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\qquad\qquad\hat{\rho}_{x_{j_{2}}x_{j_{1}}}=\leavevmode\hbox to137.3pt{\vbox to45.81pt{\pgfpicture\makeatletter\hbox{\hskip 68.65245pt\lower 30.44444pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{75.39978pt}\pgfsys@lineto{63.53096pt}{75.39978pt}\pgfsys@curveto{65.88809pt}{75.39978pt}{67.79887pt}{73.489pt}{67.79887pt}{71.13187pt}\pgfsys@curveto{67.79887pt}{68.77473pt}{65.88809pt}{66.86395pt}{63.53096pt}{66.86395pt}\pgfsys@lineto{-63.53096pt}{66.86395pt}\pgfsys@curveto{-65.88809pt}{66.86395pt}{-67.79887pt}{68.77473pt}{-67.79887pt}{71.13187pt}\pgfsys@curveto{-67.79887pt}{73.489pt}{-65.88809pt}{75.39978pt}{-63.53096pt}{75.39978pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.67914pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{71.13187pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.67914pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.45276pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.22638pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{53.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-56.90552pt}{67.59886pt}\pgfsys@lineto{-56.90552pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{67.59886pt}\pgfsys@lineto{-42.67914pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{67.59886pt}\pgfsys@lineto{-28.45276pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{67.59886pt}\pgfsys@lineto{-14.22638pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{67.59886pt}\pgfsys@lineto{0.0pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{67.59886pt}\pgfsys@lineto{14.22638pt}{39.09894pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{67.59886pt}\pgfsys@lineto{28.45276pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{67.59886pt}\pgfsys@lineto{42.67914pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{67.59886pt}\pgfsys@lineto{56.90552pt}{56.8819pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-56.90552pt}{39.09894pt}\pgfsys@lineto{-56.90552pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{39.09894pt}\pgfsys@lineto{28.45276pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{39.09894pt}\pgfsys@lineto{42.67914pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{39.09894pt}\pgfsys@lineto{56.90552pt}{49.81589pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{ {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,1,0.8}\pgfsys@color@cmyk@fill{0}{0}{0.2}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,1,0.8}\pgfsys@color@cmyk@fill{0}{0}{0.2}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{31.45276pt}{48.34889pt}\pgfsys@curveto{31.45276pt}{50.00577pt}{30.10963pt}{51.34889pt}{28.45276pt}{51.34889pt}\pgfsys@curveto{26.79588pt}{51.34889pt}{25.45276pt}{50.00577pt}{25.45276pt}{48.34889pt}\pgfsys@curveto{25.45276pt}{46.69202pt}{26.79588pt}{45.34889pt}{28.45276pt}{45.34889pt}\pgfsys@curveto{30.10963pt}{45.34889pt}{31.45276pt}{46.69202pt}{31.45276pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,1,0.8}\pgfsys@color@cmyk@fill{0}{0}{0.2}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,1,0.8}\pgfsys@color@cmyk@fill{0}{0}{0.2}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{31.45276pt}{58.34889pt}\pgfsys@curveto{31.45276pt}{60.00577pt}{30.10963pt}{61.34889pt}{28.45276pt}{61.34889pt}\pgfsys@curveto{26.79588pt}{61.34889pt}{25.45276pt}{60.00577pt}{25.45276pt}{58.34889pt}\pgfsys@curveto{25.45276pt}{56.69202pt}{26.79588pt}{55.34889pt}{28.45276pt}{55.34889pt}\pgfsys@curveto{30.10963pt}{55.34889pt}{31.45276pt}{56.69202pt}{31.45276pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.7,0.7,0.7}\pgfsys@color@gray@fill{0.7}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.7,0.7,0.7}\pgfsys@color@gray@fill{0.7}\pgfsys@invoke{ }{}\pgfsys@moveto{45.67914pt}{48.34889pt}\pgfsys@curveto{45.67914pt}{50.00577pt}{44.33601pt}{51.34889pt}{42.67914pt}{51.34889pt}\pgfsys@curveto{41.02226pt}{51.34889pt}{39.67914pt}{50.00577pt}{39.67914pt}{48.34889pt}\pgfsys@curveto{39.67914pt}{46.69202pt}{41.02226pt}{45.34889pt}{42.67914pt}{45.34889pt}\pgfsys@curveto{44.33601pt}{45.34889pt}{45.67914pt}{46.69202pt}{45.67914pt}{48.34889pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{48.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{48.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.7,0.7,0.7}\pgfsys@color@gray@fill{0.7}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{1,0.7,0.7}\pgfsys@color@rgb@fill{1}{0.7}{0.7}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.7,0.7,0.7}\pgfsys@color@gray@fill{0.7}\pgfsys@invoke{ }{}\pgfsys@moveto{45.67914pt}{58.34889pt}\pgfsys@curveto{45.67914pt}{60.00577pt}{44.33601pt}{61.34889pt}{42.67914pt}{61.34889pt}\pgfsys@curveto{41.02226pt}{61.34889pt}{39.67914pt}{60.00577pt}{39.67914pt}{58.34889pt}\pgfsys@curveto{39.67914pt}{56.69202pt}{41.02226pt}{55.34889pt}{42.67914pt}{55.34889pt}\pgfsys@curveto{44.33601pt}{55.34889pt}{45.67914pt}{56.69202pt}{45.67914pt}{58.34889pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{58.34889pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{58.34889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}}{}{{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{}{{{{}{}{}{}}}{{}{}{}{}}}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.70717pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.9,0.9,0.9}\pgfsys@color@gray@fill{0.9}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{39.83385pt}\pgfsys@lineto{63.53096pt}{39.83385pt}\pgfsys@curveto{65.88809pt}{39.83385pt}{67.79887pt}{37.92307pt}{67.79887pt}{35.56593pt}\pgfsys@curveto{67.79887pt}{33.2088pt}{65.88809pt}{31.29802pt}{63.53096pt}{31.29802pt}\pgfsys@lineto{-63.53096pt}{31.29802pt}\pgfsys@curveto{-65.88809pt}{31.29802pt}{-67.79887pt}{33.2088pt}{-67.79887pt}{35.56593pt}\pgfsys@curveto{-67.79887pt}{37.92307pt}{-65.88809pt}{39.83385pt}{-63.53096pt}{39.83385pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56593pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Figure 3: Associating reduced densities to phrases while leaving the first and last indices open.

4 Preserving a Preorder Structure

In this section we define a preorder on sequences and show that it is preserved under the assignment of densities to words described in the previous section. We also show it may be interpreted as a toy example of entailment. Let us begin with a definition. Given positive semidefinite operators ρ\rho and ρ\rho^{\prime} on a fixed Hilbert space, write ρρ\rho\geq\rho^{\prime} if ρρ\rho-\rho^{\prime} is positive semidefinite. This defines a partial order on the set of such operators called the Loewner order. In the context of language, observe that for any phrase xikxi1x_{i_{k}}\cdots x_{i_{1}} and for any word xik+1x_{i_{k+1}}, Lemma 3.1 implies

ρ^xikxi1ρ^xik+1xikxi1\hat{\rho}_{x_{i_{k}}\cdots x_{i_{1}}}\geq\hat{\rho}_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}} (9)

since the difference of these operators is a sum of positive semidefinite operators. For instance, in Example 2 it was shown that ρ^dog=ρ^black dog+ρ^white dog\hat{\rho}_{\text{dog}}=\hat{\rho}_{\text{black dog}}+\hat{\rho}_{\text{white dog}} from which it follows that ρ^dogρ^black dog\hat{\rho}_{\text{dog}}\geq\hat{\rho}_{\text{black dog}} and ρ^dogρ^white dog.\hat{\rho}_{\text{dog}}\geq\hat{\rho}_{\text{white dog}}. Taking this a step further, we have

ρ^dogρ^black dogρ^small black dog.\hat{\rho}_{\text{dog}}\geq\hat{\rho}_{\text{black dog}}\geq\hat{\rho}_{\text{small black dog}}. (10)

The Loewner order thus models the notion that dog is a more general concept than black dog, which is more general than small black dog. Just as essential, though, are the likelihood or entailment strengths of these implications. Proposition 3.2 naturally suggests conditional probabilities as a candidate for such a measurement. Indeed, the proposition promotes Inequality (9) to the following “enriched” version,

ρxikxi1π(xik+1xikxi1)ρxik+1xikxi1.\rho_{x_{i_{k}}\cdots x_{i_{1}}}\geq\pi(x_{i_{k+1}}\mid x_{i_{k}}\cdots x_{i_{1}})\rho_{x_{i_{k+1}}x_{i_{k}}\cdots x_{i_{1}}}. (11)

From Example 4, for instance, we find that

ρdogπ(blackdog)ρblack dogπ(small blackdog)ρsmall black dog.\rho_{\text{dog}}\geq\pi(\text{black}\mid\text{dog})\rho_{\text{black dog}}\geq\pi(\text{small black}\mid\text{dog})\rho_{\text{small black dog}}.

We have therefore defined a mapping from phrases to reduced densities with the property that if a phrase ss^{\prime} contains a phrase ss of smaller length, then the corresponding operators satisfy ρsπ(s|s)ρs\rho_{s}\geq\pi(s^{\prime}\leavevmode\nobreak\ |\leavevmode\nobreak\ s)\rho_{s^{\prime}}, or in the unnormalized case, ρ^sρ^s\hat{\rho}_{s}\geq\hat{\rho}_{s^{\prime}}. In short, the assignment sρ^ss\mapsto\hat{\rho}_{s} preserves a certain hierarchy that exists in the domain, namely subsequence containment. Said differently, expressions in a language form a preordered set (that is, a set equipped with a relation \leq that is reflexive and transitive), and the assignment sρ^ss\mapsto\hat{\rho}_{s} respects the preorder.

4.1 Language as a Preordered Set

The opening remarks of Section 1 shared the perspective that the meaning of a word or phrase is determined by its environment—namely, the network of ways it is contained within expressions in a language together with the statistics of those occurrences. Putting this Yoneda-lemma-like approach together with the sequential nature of language, we model the inclusion of phrases by subsequence containment. Explicitly, let XX be a finite set of words, thought of as the atomic vocabulary of a language. For N1N\geq 1, let LL denote the subset of k=1N1Xk×X\sqcup_{k=1}^{N-1}X^{k}\times X consisting of sequences s=(xik,,xi1,xa)s=(x_{i_{k}},\ldots,x_{i_{1}},x_{a}) of all lengths kN1k\leq N-1 such that the concatenation xikxi1xax_{i_{k}}\cdots x_{i_{1}}x_{a} is a meaningful expression in the language. We will refer to elements of LL as phrases, as usual writing xikxi1xax_{i_{k}}\cdots x_{i_{1}}x_{a} in lieu of (xik,,xi1,xa)(x_{i_{k}},\ldots,x_{i_{1}},x_{a}). If XX is the set of English words, for example, then some phrases in LL include dog, black dog, tall mountain, and iced tea on a hot summer day. To compare phrases s,sLs,s^{\prime}\in L, write sss\leq s^{\prime} if ss^{\prime} contains ss as a subsequence. As a simple example, we write dogsmall black dog.\textit{dog}\leq\textit{small black dog}. Next, observe that for any sLs\in L one has sss\leq s. Moreover, for any s,s,s′′Ls,s^{\prime},s^{\prime\prime}\in L if sss\leq s^{\prime} and ss′′s^{\prime}\leq s^{\prime\prime}, then s′′s^{\prime\prime} contains ss^{\prime}—and hence ss—as a subsequence, and so ss′′.s\leq s^{\prime\prime}. This proves the following proposition.

Proposition 4.1.

The set LL equipped with the relation \leq is a preordered set.

Some examples of comparable phrases in English include the following.

I climbed I climbed the tall mountain\displaystyle\leq\text{I climbed the tall mountain}
a hot summer iced tea on a hot summer day\displaystyle\leq\text{iced tea on a hot summer day}
dog black dogsmall black dog\displaystyle\leq\text{black dog}\leq\text{small black dog}

The similarity between dogblack dogsmall black dog\textit{dog}\leq\textit{black dog}\leq\textit{small black dog} and the nearly identical string of inequalities in (10) reveals an unmistakable correspondence between our preorder on language LL and the Loewner order, which is a preorder on positive semidefinite operators. This correspondence is stated precisely in Proposition 4.2 below. Let us recall the setup first. Sequences in XNXN1×XX^{N}\cong X^{N-1}\times X are considered as prefix-suffix pairs; the initial ingredient is a probability distribution π:XN1×X\pi\colon X^{N-1}\times X\to\mathbb{R}, which defines the unit vector ψVN1V\psi\in V^{\otimes N-1}\otimes V in Equation (5) where V=XV=\mathbb{C}^{X}; the vector gives rise to reduced densities of the form ρ^s\hat{\rho}_{s} or ρs\rho_{s}, which correspond to (sub)sequences sXN1s\in X^{N-1}; and these reduced densities operate on the Hilbert space VV generated by suffixes. Importantly, the assignment sρ^ss\mapsto\hat{\rho}_{s} concerns only those phrases in LL of the form s=xikxi1s=x_{i_{k}}\cdots x_{i_{1}} for some 1kN11\leq k\leq N-1 that appear adjacent to a suffix, as indicated below:

(xiN1,,xik,,xi1s,xa).(x_{i_{N-1}},\ldots,\overbrace{x_{i_{k}},\ldots,x_{i_{1}}}^{s},x_{a}).

In what follows, we use the calligraphic font L\mathcal{L}\subseteq L to denote the subset of all such s.s.

Proposition 4.2.

Let (Pos(V),)(\text{Pos}(V),\leq) denote the set of positive semidefinite operators on V=XV=\mathbb{C}^{X} equipped with the Loewner order, and let ψVN1V\psi\in V^{\otimes N-1}\otimes V be the unit vector in Equation (5). The function (,)(Pos(V),)(\mathcal{L},\leq)\to(\text{Pos}(V),\leq) defined by sρ^ss\mapsto\hat{\rho}_{s} described in Definition 3.1 is order-reversing. That is, ρ^sρ^s\hat{\rho}_{s}\geq\hat{\rho}_{s^{\prime}} whenever sss\leq s^{\prime}.

Proof.

Suppose sss\leq s^{\prime} so that s=xikxi1s=x_{i_{k}}\cdots x_{i_{1}} and s=ximxik+1ss^{\prime}=x_{i_{m}}\cdots x_{i_{k+1}}s for some 1kmN11\leq k\leq m\leq N-1. Lemma 3.1 implies that ρ^sρ^s\hat{\rho}_{s}\geq\hat{\rho}_{s^{\prime}}. ∎

Observe that properties of the mapping sρ^ss\mapsto\hat{\rho}_{s} depend on the probability distribution π\pi used to define the vector ψ\psi. In the toy scenario of Example 2, for instance, the mapping is not “full” in the category theoretical sense since one finds that ρ^black catρ^dog\hat{\rho}_{\text{black cat}}\leq\hat{\rho}_{\text{dog}} under the Loewner order, as ρ^black cat=15[0001]\hat{\rho}_{\text{black cat}}=\tfrac{1}{5}\left[\begin{smallmatrix}0&0\\ 0&1\end{smallmatrix}\right], and yet dogblack cat\textit{dog}\not\leq\textit{black cat} in \mathcal{L}. This may not be the case, however, for different choices of π.\pi. On the other hand, ρ^black catρ^dog\hat{\rho}_{\text{black cat}}\leq\hat{\rho}_{\text{dog}} does imply a relationship between the sets of possible suffixes for these two phrases—see the discussion in Section 5.1. Either way, Proposition 4.2 shows that our preorder on language models a simple form of hierarchy which is preserved under the passage to linear algebra described in Section 3. Thinking back to the discussion of meaning, it is now simple to identify the context, or environment, of a word. It is simply upper closure. For instance, the set of all expressions that contain dog is given by333In the language of category theory, the upper closure of dog is the image of dog under the Yoneda embedding LopULL^{\text{op}}\leavevmode\nobreak\ \to\leavevmode\nobreak\ UL, where ULUL denotes all upward closed subsets of LL ordered by inclusion, and where the preorders LL and ULUL are viewed as categories enriched over truth values. {dog}:={sLdogs}\uparrow\{\text{dog}\}:=\{s\in L\mid\text{dog}\leavevmode\nobreak\ \leq\leavevmode\nobreak\ s\leavevmode\nobreak\ \}. But for simplicity, let us restrict attention to only those expressions xikxi2xi1Lx_{i_{k}}\cdots x_{i_{2}}x_{i_{1}}\in\mathcal{L}\subseteq L where the last word is fixed at xi1=dogx_{i_{1}}=\text{dog}. In this case, the upper closure of dog consists of all phrases in \mathcal{L} of length at most N1N-1 that contain dog as the last word. In other words, {dog}\uparrow\{\text{dog}\} is equal to

{xi2dogxi2X}{xi3xi2dogxi3,xi2X}{xiN1xi3xi2dogxiN1,,xi3,xi2X}.\{x_{i_{2}}\text{dog}\mid x_{i_{2}}\in X\}\sqcup\{x_{i_{3}}x_{i_{2}}\text{dog}\mid x_{i_{3}},x_{i_{2}}\in X\}\sqcup\cdots\sqcup\{x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}\text{dog}\mid x_{i_{N-1}},\ldots,x_{i_{3}},x_{i_{2}}\in X\}.

As implied early on by Equation (7), the passage Pos(V)\mathcal{L}\to\text{Pos}(V) gives rise to an analogous decomposition of words associated to these expressions:

ρ^dog=i2ρ^xi2dog=i3,i2ρ^xi3xi2dog==iN1,,i3,i2ρ^xiN1xi3xi2dog.\hat{\rho}_{\text{dog}}=\sum_{i_{2}}\hat{\rho}_{x_{i_{2}}\text{dog}}=\sum_{i_{3},i_{2}}\hat{\rho}_{x_{i_{3}}x_{i_{2}}\text{dog}}=\cdots=\sum_{i_{N-1},\ldots,i_{3},i_{2}}\hat{\rho}_{x_{i_{N-1}}\cdots x_{i_{3}}x_{i_{2}}\text{dog}}.

In this way, something of the “meaning” of dog—that is, the environment in which the word appears—is neatly packed into the single operator ρ^dog\hat{\rho}_{\text{dog}}. But as previously noted, the statistics accompanying these appearances are also essential for capturing meaning. For instance, the conditional probability of black given that the next word is dog contributes to the latter’s meaning. We therefore wish to “decorate” the preorder structure \leq with probabilities in such a way that the order-preserving map Pos(V)\mathcal{L}\to\text{Pos}(V) retains knowledge of these conditional probabilities.

dogblack dogdogπ(black|dog)black dog\text{dog}\leq\text{black dog}\quad\rightsquigarrow\quad\text{dog}\overset{\pi(\text{black}|\text{dog})}{\leq}\text{black dog}

These conditional probabilities arise naturally in the discussion on unit-trace reduced densities as in Inequality (10). For any ss and ss^{\prime} in \mathcal{L}, the containment sss\leq s^{\prime} implies ρsπ(ss)ρs\rho_{s}\geq\pi(s^{\prime}\mid s)\rho_{s^{\prime}}. But unit trace operators are not comparable under the Loewner order, and so we look for another way to incorporate probabilities with the preorder structure. We needn’t look far, however. Category theory provides a natural setting for these ideas Rie (17); Lei (14); Awo (10). Indeed, every preordered set is an example of a category, and the function in Proposition 4.2 is a contravariant functor. The ability to “decorate” \leq with probabilities is the notion behind enriched category theory Kel (82), (Ell, 17, Appendix A). This is made precise in Theorem 5.1 below, which generalizes Proposition 4.2 by incorporating probabilities in the desired way. We unwind this in the next section.

5 Language as a Category Enriched Over Probabilities

The full machinery of enriched category theory is not needed for our framework, and so the discussion will be kept simple. Indeed, the only categories being considered are preordered sets, and the only category we wish to enrich over is a particular symmetric monoidal preorder.

Definition 5.1.

A symmetric monoidal preorder (P,,,1)(P,\leq,\cdot,1) is a preorder (P,)(P,\leq) together with

  • an element 1P1\in P called the monoidal unit

  • a function :P×PP\cdot\colon P\times P\to P called the monoidal product.

Moreover these data must satisfy the following properties (where we write pqpq for pq)p\cdot q):

  • for all p,p,q,qPp,p^{\prime},q,q^{\prime}\in P, if ppp\leq p^{\prime} and qqq\leq q^{\prime} then pqpqpq\leq p^{\prime}q^{\prime},

  • 1p=p1=p1p=p1=p for all pP,p\in P,

  • (pq)r=p(qr)(pq)r=p(qr) for all p,q,rPp,q,r\in P

  • pq=qppq=qp for all p,qPp,q\in P

The main example to have in mind is the unit interval [0,1][0,1]\subseteq\mathbb{R} equipped with the usual ordering \leq, where the monoidal product is multiplication of real numbers, and the monoidal unit is 1. In fact, [0,1][0,1] can be given the structure of a closed symmetric monoidal preorder (Ell, 17, Proposition 2.1.12), although we won’t need closure here.

Definition 5.2.

Let (𝒱,,,1)(\mathcal{V},\leq,\cdot,1) be a symmetric monoidal preorder. A 𝒱\mathcal{V}-enriched category 𝒞\mathcal{C}, or simply 𝒱\mathcal{V}-category, consists of the following data,

  • a set ob(𝒞)\text{ob}(\mathcal{C}) of objects c,d,c,d,\ldots

  • an element 𝒞(c,d)𝒱\mathcal{C}(c,d)\in\mathcal{V} for every pair of objects cc and dd.

Moreover, these data must satisfy the following requirements:

  • 1𝒞(c,c)1\leq\mathcal{C}(c,c) for each object cc

  • 𝒞(c,d)𝒞(d,e)𝒞(c,e)\mathcal{C}(c,d)\cdot\mathcal{C}(d,e)\leq\mathcal{C}(c,e) for every triple of objects c,d,ec,d,e.

There is also a notion of maps between 𝒱\mathcal{V}-categories.

Definition 5.3.

Let 𝒞\mathcal{C} and 𝒟\mathcal{D} be 𝒱\mathcal{V}-categories. A 𝒱\mathcal{V}-functor is a function f:ob(𝒞)ob(𝒟)f\colon\text{ob}(\mathcal{C})\to\text{ob}(\mathcal{D}) satisfying

𝒞(c,c)𝒟(fc,fc)\mathcal{C}(c,c^{\prime})\leq\mathcal{D}(fc,fc^{\prime})

for all objects c,cc,c^{\prime} in 𝒞\mathcal{C}.

The main result below is that both language and positive semidefinite operators form [0,1][0,1]-categories in the desired way, and moreover there is a [0,1][0,1]-functor between them. The setup is the same as before. Let XX be a finite set, let π:XN1×X\pi\colon X^{N-1}\times X\to\mathbb{R} be any probability distribution, and let Lk=1N1Xk×X\mathcal{L}\subseteq L\subseteq\sqcup_{k=1}^{N-1}X^{k}\times X be the subset of phrases defined in Section 4.

Proposition 5.1.

The set \mathcal{L} together with the following assignment for each s,ss,s^{\prime}\in\mathcal{L} is a [0,1][0,1]-category:

(s,s)={π(s|s)if ss0otherwise.\mathcal{L}(s,s^{\prime})=\begin{cases}\pi(s^{\prime}|s)&\text{if $s\leq s^{\prime}$}\\ 0&\text{otherwise}.\end{cases}
Proof.

Observe that 1(s,s)1\leq\mathcal{L}(s,s) for each ss, and it is simple to check that (s,s)(s,s′′)(s,s′′)\mathcal{L}(s,s^{\prime})\mathcal{L}(s^{\prime},s^{\prime\prime})\leq\mathcal{L}(s,s^{\prime\prime}) for all s,ss,s^{\prime} and s′′s^{\prime\prime}. ∎

With this choice of enrichment,444The notation π(ss)\pi(s^{\prime}\mid s) is used as shorthand for the conditional probability π(ts|s)\pi(ts|s) whenever s=tss^{\prime}=ts for some phrase tt. For example, in this section we use π(black dogdog)\pi(\text{black dog}\mid\text{dog}) to denote the conditional probability π(blackdog)=π(black dog)/π(dog).\pi(\text{black}\mid\text{dog})=\pi(\text{black dog})/\pi(\text{dog}). there is a “morphism” between two expressions only if one is contained in the other, and moreover that morphism is labeled with the conditional probability of containment. By a similar argument, the trace on positive semidefinite operators gives rise to a [0,1][0,1]-category structure on operators assigned to phrases ss\in\mathcal{L}. In what follows, let 𝒟Pos(V)\mathcal{D}\subseteq\text{Pos}(V) denote the image of the function Pos(V)\mathcal{L}\to\text{Pos}(V) defined by sρ^ss\mapsto\hat{\rho}_{s}.

Proposition 5.2.

The set 𝒟\mathcal{D} together with the following assignment for each ρ^s,ρ^s𝒟\hat{\rho}_{s},\hat{\rho}_{s^{\prime}}\in\mathcal{D} is a [0,1][0,1]-category:

𝒟(ρ^s,ρ^s)={trρ^s/trρ^sif ss0otherwise.\mathcal{D}(\hat{\rho}_{s},\hat{\rho}_{s^{\prime}})=\begin{cases}\operatorname{tr}\hat{\rho}_{s^{\prime}}/\operatorname{tr}\hat{\rho}_{s}&\text{if $s\leq s^{\prime}$}\\ 0&\text{otherwise}.\end{cases}
Proof.

Observe that 1𝒟(ρ^s,ρ^s)1\leq\mathcal{D}(\hat{\rho}_{s},\hat{\rho}_{s}) for each ss, and it is simple to check that 𝒟(ρ^s,ρ^s)𝒟(ρ^s,ρ^s′′)𝒟(ρ^s,ρ^s′′)\mathcal{D}(\hat{\rho}_{s},\hat{\rho}_{s^{\prime}})\mathcal{D}(\hat{\rho}_{s^{\prime}},\hat{\rho}_{s^{\prime\prime}})\leq\mathcal{D}(\hat{\rho}_{s},\hat{\rho}_{s^{\prime\prime}}) for all s,ss,s^{\prime} and s′′s^{\prime\prime} in \mathcal{L}. ∎

Recall from Proposition 3.1 that for each ss\in\mathcal{L} the trace of the reduced density ρ^s\hat{\rho}_{s} is marginal probability, trρ^s=π(s)\operatorname{tr}\hat{\rho}_{s}=\pi(s). As a result, trρ^s/trρ^s=π(s)/π(s)=π(s|s)\operatorname{tr}\hat{\rho}_{s^{\prime}}/\operatorname{tr}\hat{\rho}_{s}=\pi(s^{\prime})/\pi(s)=\pi(s^{\prime}|s) whenever sss\leq s^{\prime} and so (s,s)𝒟(ρ^s,ρ^s)\mathcal{L}(s,s^{\prime})\leq\mathcal{D}(\hat{\rho}_{s},\hat{\rho}_{s^{\prime}}) for all s,ss,s^{\prime}\in\mathcal{L}. This proves the following theorem, which can be seen as an enrichment of Proposition 4.2.

Theorem 5.1.

The function 𝒟\mathcal{L}\to\mathcal{D} defined by sρ^ss\mapsto\hat{\rho}_{s} is a [0,1][0,1]-functor.

We have therefore found a suitable home for modeling the passage from statistics in language to linear operators. To make this conclusion explicit, we quickly revisit the remarks given towards the end of Section 4. If ss and ss^{\prime} are phrases in language satisfying sss\leq s^{\prime}, then the enriched categorical structure is given by conditional probability, (s,s)=π(s|s)\mathcal{L}(s,s^{\prime})=\pi(s^{\prime}|s). Recall from Inequality (11) that this same probability arises in the relationship between the unit-trace reduced density operators associated to each phrase, ρsπ(s|s)ρs\rho_{s}\geq\pi(s^{\prime}|s)\rho_{s^{\prime}}. Theorem 5.1 crystallizes the precise way in which these ideas connect. Indeed, if sss\leq s^{\prime} then ρ^sρ^s\hat{\rho}_{s^{\prime}}\leq\hat{\rho}_{s} which implies that 𝒟op(ρ^s,ρ^s):=𝒟(ρ^s,ρ^s)=trρ^s/trρ^s=π(s|s)\mathcal{D}^{\text{op}}(\hat{\rho}_{s^{\prime}},\hat{\rho}_{s}):=\mathcal{D}(\hat{\rho}_{s},\hat{\rho}_{s^{\prime}})=\operatorname{tr}\hat{\rho}_{s^{\prime}}/\operatorname{tr}\hat{\rho}_{s}=\pi(s^{\prime}|s), where the “op” denotes the opposite [0,1][0,1]-category of 𝒟.\mathcal{D}. This recovers the intuitive idea of decorating the network of relationships between phrases in language with the appropriate conditional probabilities. The linear algebra in Section 3 thus prescribes a principled method of assigning text to (unnormalized) reduced density operators that preserves a simple hierarchical structure in language as well as the statistics therein.

s{s}ρ^s{\hat{\rho}_{s}}    s{s^{\prime}}ρ^s{\hat{\rho}_{s^{\prime}}}π(ss)\scriptstyle{\pi(s^{\prime}\mid s)}π(ss)\scriptstyle{\pi(s^{\prime}\mid s)}

Since the image of the functor 𝒟\mathcal{L}\to\mathcal{D} has more structure than its domain, we expect that operators ρs\rho_{s} associated to phrases ss carry additional information about the language, in addition to the simple form of entailment modeled here. The spectral information of ρs\rho_{s}, for instance, may be one such source.

5.1 Conclusion

The hierarchy modeled in this work comes directly from the sequential structure of language. So while we can model the notion that dog is a more general concept than small black dog, the theory does not yet provide a way to compare phrases that aren’t comparable under the preorder in \mathcal{L}. For example, one may not conclude that mammal abstracts the notion of dog since mammal does not contain dog as a subsequence. But considering all expressions that contain both mammal and dog, as in the discussion surrounding Figure 3, suggests a relationship between them. Exploring more complex hierarchies of this type is left for future work. In this direction, we make the observation that if ρ^sρ^s\hat{\rho}_{s^{\prime}}\leq\hat{\rho}_{s} then for any suffix x,x, we have that ρ^sx,x=π(sx)π(sx)=ρ^sx,x\langle\hat{\rho}_{s^{\prime}}x,x\rangle=\pi(s^{\prime}x)\leq\pi(sx)=\langle\hat{\rho}_{s}x,x\rangle. In particular, if π(sx)>0\pi(s^{\prime}x)>0 for some suffix x,x, then π(sx)>0\pi(sx)>0 as well, which is to say that any valid continuation on the right of ss^{\prime} is also a valid continuation of ss. (In Example 2, for instance, one sees that ρ^black catρ^dog\hat{\rho}_{\text{black cat}}\leq\hat{\rho}_{\text{dog}}, and that the set of suffixes of black cat, namely {runs}\{\textit{runs}\}, is a subset of the set of suffixes of dog.) So while ss and ss^{\prime} may not be comparable under subsequence containment, there is a clear relationship between their “right ideals,” to borrow from the algebraic perspective. Understanding this algebraic connection is left for future work. There are also additional opportunities to expand the framework using ideas from category theory. For instance, the function xlog(x)x\mapsto-\log(x) provides a mapping [0,1][0,][0,1]\to[0,\infty], suggesting that our framework may be reinterpreted in the theory of generalized metric spaces Law (73, 86); Wil (13). Finally, the theory proposed in this paper fits into a larger investigation of language modeling with tensor networks. One quickly notices that the dimension of the vector spaces involved grow exponentially with the size of the vocabulary XX. Realizing and manipulating ψ\psi on a computer thus quickly becomes infeasible for real-world datasets. A similar sentiment holds for our reduced densities such as ρ^xi1\hat{\rho}_{x_{i_{1}}}, which may operate on an ultra large-dimensional space. As discussed in Section 1, we propose these issues may be addressed by approximating ψ\psi by a tensor network factorization ψnet\psi_{\text{net}}, which should be chosen such that it can be computed efficiently, can faithfully model the statistics of language, and can easily generalize from a training corpus to unseen samples. We view the tensor network language models of PTV (17); PV (17) as source of inspiration in this direction.

References

  • Awo [10] Steve Awodey. Category Theory. Oxford University Press, 2010. http://doi.org/10.1093/acprof:oso/9780198568612.001.0001.
  • BB [17] Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell. arXiv preprint arXiv:1708.00006, 2017.
  • BC [17] Jacob C. Bridgeman and Christopher T. Chubb. Hand-waving and interpretive dance: an introductory course on tensor networks. Journal of Physics A: Mathematical and Theoretical, 50(22):223001, 05 2017. http://doi.org/10.1088/1751-8121/aa6dc3.
  • BCLM [19] Dea Bankova, Bob Coecke, Martha Lewis, and Dan Marsden. Graded hyponymy for compositional distributional semantics. Journal of Language Modelling, 6(2):225–260, Mar. 2019. https://doi.org/10.15398/jlm.v6i2.230.
  • Bia [19] Jacob Biamonte. Lectures on quantum tensor networks. arXiv preprint arXiv:1912.10049, 2019.
  • Bra [20] Tai-Danae Bradley. At the interface of algebra and statistics. arXiv preprint arXiv:2004.05631, 2020. PhD thesis, CUNY Graduate Center.
  • BSC [15] Esma Balkir, Mehrnoosh Sadrzadeh, and Bob Coecke. Distributional sentence entailment using density matrices. In Proceedings of the First International Conference on Theoretical Topics in Computer Science, volume 9541, pages 1–22, 2015. http://doi.org/10.1007/978-3-319-28678-5_1.
  • BST [20] Tai-Danae Bradley, E. Miles Stoudenmire, and John Terilla. Modeling sequences with quantum states: A look under the hood. Machine Learning: Science and Technology, 1(3), 2020. https://doi.org/10.1088/2632-2153/ab8731.
  • BT [17] Ivano Basile and Fabio Tamburini. Towards quantum language models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1840–1849, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. https://doi.org/10.18653/v1/D17-1196.
  • CPD [20] Yiwei Chen, Yu Pan, and Daoyi Dong. Quantum language model with entanglement embedding for question answering. arXiv preprint arXiv:2008.09943, 2020.
  • CSC [10] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations for a compositional distributional model of meaning. Linguistic Analysis, 36, 2010. Available at https://arxiv.org/abs/1003.4394.
  • CSS [16] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor analysis. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages 698–728, Columbia University, New York, New York, USA, 2016. PMLR.
  • DCLT [19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. http://doi.org/10.18653/v1/N19-1423.
  • DeG [19] E. DeGiuli. Random language model. Physical Review Letters, 122(12), Mar 2019. https://doi.org/10.1103/PhysRevLett.122.128301.
  • Ell [17] Jonathan Elliott. On the fuzzy concept complex. 2017. PhD thesis, University of Sheffield.
  • EV [11] Glen Evenbly and Guifre Vidal. Tensor network states and geometry. Journal of Statistical Physics, 145(4):891–918, 2011. https://doi.org/10.1007/s10955-011-0237-4.
  • Eve [19] Glen Evenbly. Tensors.net, 2019. Available online: http://www.tensors.net.
  • Fir [57] John R. Firth. A synopsis of linguistic theory 1930–55, volume 1952–59. The Philological Society, Oxford, 1957. Reprinted in: Palmer, F. R. (ed.) (1968). Selected Papers of J. R. Firth 1952-59, pages 168-205. Longmans, London.
  • GGML [15] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoencoder for distribution estimation. In Proceedings of the 32nd International Conference on Machine Learning, pages 881–889, 2015.
  • GJLP [18] Chu Guo, Zhanming Jie, Wei Lu, and Dario Poletti. Matrix product operators for sequence-to-sequence learning. Physical Review E, 98:042114, Oct 2018. https://link.aps.org/doi/10.1103/PhysRevE.98.042114.
  • GO [19] Angel J. Gallego and Roman Orus. Language design as information renormalization. arXiv preprint arXiv:1708.01525, 2019.
  • GPC [20] Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac. From probabilistic graphical models to generalized tensor networks for supervised learning. IEEE Access, 8:68169–68182, 2020. https://doi.org/10.1109/ACCESS.2020.2986279.
  • Gro [15] Misha Gromov. Memorandum Ergo, 2015. Available online: https://www.ihes.fr/~gromov/wp-content/uploads/2018/08/ergo-cut-copyOct29.pdf. Accessed on June 1, 2021.
  • Kel [82] G.M. Kelly. Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series 64. Cambridge University Press, 1982.
  • KMH+ [20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
  • Law [73] F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano, 43(1):135–166, 1973. Reprinted in Reprints in Theory and Applications of Categories (2002), 1–37. https://doi.org/10.1007/BF02924844.
  • Law [86] F. William Lawvere. Taking categories seriously. Revista Colombiana de Matematicas, XX:147–178, 1986. reprinted as Reprints in theory and applications of categories, No. 8 (2005), 1–24.
  • Lei [14] Tom Leinster. Basic Category Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107360068.
  • LT [17] Henry Lin and Max Tegmark. Critical behavior in physics and probabilistic formal languages. Entropy, 19(7):299, 2017. https://doi.org/10.3390/e19070299.
  • LWM [19] Qiuchi Li, Benyou Wang, and Massimo Melucci. CNM: An interpretable complex-valued network for matching. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4139–4148, Minneapolis, Minnesota, jun 2019. Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1420.
  • LZSH [16] Jingfei Li, Peng Zhang, Dawei Song, and Yuexian Hou. An adaptive contextual quantum language model. Physica A: Statistical Mechanics and its Applications, 456:51–67, 2016. https://doi.org/10.1016/j.physa.2016.03.003.
  • ML [20] Francois Meyer and Martha Lewis. Modelling lexical ambiguity with density matrices. In Proceedings of the 24th Conference on Computational Natural Language Learning, pages 276–290, Online, 2020. Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.conll-1.21.
  • MRT [21] Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor networks for probabilistic sequence modeling. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 3079–3087. PMLR, 13–15 Apr 2021.
  • MVRL [20] John Martyn, Guifre Vidal, Chase Roberts, and Stefan Leichenauer. Entanglement and tensor networks for supervised image classification. arXiv preprint arXiv:2007.06082, 2020.
  • Orú [14] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, 2014. https://doi.org/10.1016/j.aop.2014.06.013.
  • Orú [19] Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 1, 08 2019. https://doi.org/10.1038/s42254-019-0086-7.
  • Ose [11] Ivan Oseledets. Tensor-train decomposition. SIAM Journal of Scientific Computing, 33(5):2295–2317, 2011. https://doi.org/10.1137/090752286.
  • Pen [71] Roger Penrose. Applications of negative dimensional tensors. Combinatorial mathematics and its applications, 1:221–244, 1971.
  • PKCS [15] Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh Sadrzadeh. Open system categorical quantum semantics in natural language processing. In Lawrence S. Moss and Pawel Sobocinski, editors, CALCO, volume 35 of LIPIcs, pages 270–289. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. https://doi.org/10.4230/LIPIcs.CALCO.2015.270.
  • PTV [17] Vasily Pestun, John Terilla, and Yiannis Vlassopoulos. Language as a matrix product state. arXiv e-print arXiv:1711.01416, 2017.
  • PV [17] Vasily Pestun and Yiannis Vlassopoulos. Tensor network language model. arXiv e-print arXiv:1710.10248, 2017.
  • Rie [17] Emily Riehl. Category Theory in Context. Dover Publications, 2017.
  • RL [19] Chase Roberts and Stefan Leichenauer. Introducing TensorNetwork, an open source library for efficient tensor calculations. Google AI Blog, 2019. https://ai.googleblog.com/2019/06/introducing-tensornetwork-open-source.html. Accessed on March 1, 2020.
  • RNSS [18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. 2018. Technical report, OpenAI.
  • RS [20] Justin Reyes and E. Miles Stoudenmire. A multi-scale tensor network architecture for classification and regression. Mach. Learn.: Sci. Technol., 2:035036, 2020. https://doi.org/10.1088/2632-2153/abffe8.
  • Sch [11] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326(1):96–192, 2011. https://doi.org/10.1016/j.aop.2010.09.012.
  • SKB [18] Mehrnoosh Sadrzadeh, Dimitri Kartsaklis, and Esma Balkir. Sentence entailment in compositional distributional semantics. Annals of Mathematics and Artificial Intelligence, 82(4):189–218, 2018. https://doi.org/10.1007/s10472-017-9570-x.
  • SNB [13] Alessandro Sordoni, Jian-Yun Nie, and Yoshua Bengio. Modeling term dependencies with quantum language models for IR. SIGIR ’13, pages 653–662, New York, NY, USA, 2013. Association for Computing Machinery. https://doi.org/10.1145/2484028.2484098.
  • SS [16] E. Miles Stoudenmire and David J. Schwab. Supervised learning with quantum-inspired tensor networks. Advances in Neural Information Processing Systems (NIPS), 29:4799–4807, 2016.
  • ST [19] James Stokes and John Terilla. Probabilistic modeling with matrix product states. Entropy, 21(12), 2019. https://doi.org/10.3390/e21121236.
  • Sto [19] E. Miles Stoudenmire. The tensor network, 2019. Available online: http://tensornetwork.org.
  • VSP+ [17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, pages 6000–6010, 2017.
  • Wil [13] Simon Willerton. Tight spans, Isbell completions and semi-tropical modules. Theory and Applications of Categories, 28(22):696–732, 2013.
  • WRVL [20] Jinhui Wang, Chase Roberts, Guifre Vidal, and Stefan Leichenauer. Anomaly detection with tensor networks. arXiv preprint arXiv:2006.02516, 2020.
  • ZNS+ [18] Peng Zhang, Jiabin Niu, Zhan Su, Benyou Wang, Liqun Ma, and Dawei Song. End-to-end quantum-like language models with application to question answering. In Proc. 32nd AAAI Conf. Artif. Intell., pages 5666–5673, Feb. 2018. AAAI Conference on Artificial Intelligence.
  • ZSZ+ [18] Peng Zhang, Zhan Su, Lipeng Zhang, Benyou Wang, and Dawei Song. A quantum many-body wave function inspired language modeling approach. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, pages 1303–1312. Association for Computing Machinery, 2018. https://doi.org/10.1145/3269206.3271723.
  • ZZM+ [19] Lipeng Zhang, Peng Zhang, Xindian Ma, Shuqin Gu, Zhan Su, and Dawei Song. A generalized language model in tensor space. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7450–7458, Jul. 2019. https://doi.org/10.1609/aaai.v33i01.33017450.