This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics

P. J. Morrison\aff1 \corresp [email protected]    T. Andreussi    \aff2    F. Pegoraro\aff3 \aff1Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712-1060, USA \aff2SITAEL S.p.A., Pisa, 56121, Italy \aff3Dipartimento di Fisica E. Fermi, Pisa, 56127, Italy
Abstract

The incompressibility constraint for fluid flow was imposed by Lagrange in the so-called Lagrangian variable description using his method of multipliers in the Lagrangian (variational) formulation. An alternative is the imposition of incompressibility in the Eulerian variable description by a generalization of Dirac’s constraint method using noncanonical Poisson brackets. Here it is shown how to impose the incompressibility constraint using Dirac’s method in terms of both the canonical Poisson brackets in the Lagrangian variable description and the noncanonical Poisson brackets in the Eulerian description, allowing for the advection of density. Both cases give dynamics of infinite-dimensional geodesic flow on the group of volume preserving diffeomorphisms and explicit expressions for this dynamics in terms of the constraints and original variables is given. Because Lagrangian and Eulerian conservation laws are not identical, comparison of the various methods is made.

1 Introduction

1.1 Background

Sometimes constraints are maintained effortlessly, an example being 𝐁=0\nabla\cdot\mathbf{B}=0 in electrodynamics which if initially true remains true, while alternatively in most cases dynamical equations must be modified to maintain constraints, an example being 𝐯=0\nabla\cdot\mathbf{v}=0 in fluid mechanics. The need to apply constraints arises in a variety of contexts, ranging from gauge field theories (e.g. Sundermeyer, 1982) to optimization and control (e.g. Bloch, 2002). A very common approach is to use the method of Lagrange multipliers, which is taught in standard physics curricula for imposing holonomic constraints in mechanical systems. Alternatively, Dirac (1950), in pursuit of his goal of quantizing gauge field theories, introduced a method that uses the Poisson bracket.

The purpose of the present article is to explore different methods for imposing the compressibility constraint in ideal (dissipation-free) fluid mechanics and its extension to magnetohydrodynamics (MHD), classical field theories intended for classical purposes. This endeavor is richer than might be expected because the different methods of constraint can be applied to the fluid in either the Lagrangian (material) description or the Eulerian (spatial) description, and the constraint methods have different manifestations in the Lagrangian (action principle) and Hamiltonian formulations. Although Lagrange’s multiplier is widely appreciated, it is not so well known that he used it long ago for imposing the incompressibility constraint for a fluid in the Lagrangian variable description (Lagrange, 1788). More recently, Dirac’s method was applied for imposing incompressibility within the Eulerian variable description, first in Nguyen & Turski (1999, 2001) and followed up in several works (Morrison et al., 2009; Tassi et al., 2009; Chandre et al., 2012, 2014, 2013). Given that a Lagrangian conservation law is not equivalent to an Eulerian conservation law, it remains to elucidate the interplay between the methods of constraint and the variables used for the description of the fluid. Thus we have three dichotomies: the Lagrangian vs. Eulerian fluid descriptions, Lagrange multiplier vs. Dirac constraint methods, and Lagrangian vs. Hamiltonian formalisms. It is the elucidation of the interplay between these, along with generalizing previous results, that is the present goal.

It is well known that a free particle with holonomic constraints, imposed by the method of Lagrange multipliers, is a geodesic flow. Indeed, Lagrange essentially observed this in Lagrange (1788) for the ideal fluid when he imposed the incompressibility constraint by his method. Lagrange did this in the Lagrangian description by imposing the constraint that the map from initial positions of fluid elements to their positions at time tt preserves volume, and he did this by the method of Lagrange multipliers. It is worth noting that Lagrange knew the Lagrange multiplier turns out to be the pressure, but he had trouble solving for it. Lagrange’s calculation was placed in a geometrical setting by Arnold (1966) (see also Appendix 2 of Arnold (1978)), where the constrained maps from the initial conditions were first referred to as volume preserving diffeomorphisms in this context. Given this background, in our investigation of the three dichotomies described above we emphasize geodesic flow.

For later use we record here the incompressible Euler equations for the case with constant density and the case where density is advected. The equations of motion, allowing for density advection, are given by

𝐯t\displaystyle\frac{\partial\mathbf{v}}{\partial t} =𝐯𝐯1ρp,\displaystyle=-\mathbf{v}\cdot\nabla\mathbf{v}-\frac{1}{\rho}\nabla p\,, (1)
𝐯=0,\displaystyle\nabla\cdot\mathbf{v}=0\,, (2)
ρt\displaystyle\frac{\partial\rho}{\partial t} =𝐯ρ,\displaystyle=-\mathbf{v}\cdot\nabla\rho\,, (3)

where 𝐯(𝐱,t)\mathbf{v}(\mathbf{x},t) is the velocity field, ρ(𝐱,t)\rho(\mathbf{x},t) is the mass density, p(𝐱,t)p(\mathbf{x},t) is the pressure, and 𝐱D\mathbf{x}\in D, the region occupied by the fluid. These equations are generally subject to the free-slip boundary condition 𝐧𝐯|D=0\mathbf{n}\cdot\mathbf{v}|_{\partial D}=0, where 𝐧\mathbf{n} is normal to the boundary of DD. The pressure field that enforces the constraint (2) is obtained by setting (𝐯)t=0\partial(\nabla\cdot\mathbf{v})\partial t=0, which implies

Δρp:=(1ρp)=(𝐯𝐯).\Delta_{\rho}p:=\nabla\cdot\left(\frac{1}{\rho}\nabla p\right)=-\nabla\cdot(\mathbf{v}\cdot\nabla\bf v)\,. (4)

For reasonable assumptions on ρ\rho and boundary conditions, (4) is a well-posed elliptic equation (see e.g. Evans, 2010), so we can write

p=Δρ1(𝐯𝐯).p=-\Delta_{\rho}^{-1}\nabla\cdot(\mathbf{v}\cdot\nabla\bf v)\,. (5)

For the case where ρ\rho is constant we have the usual Green’s function expression

p(𝐱,t)=ρd3xG(𝐱,𝐱)(𝐯𝐯),p(\mathbf{x},t)=-\,\rho\int\!d^{3}x^{\prime}\,G(\mathbf{x},\mathbf{x}^{\prime})\,\nabla^{\prime}\!\cdot(\mathbf{v}^{\prime}\cdot\nabla^{\prime}\bf v^{\prime})\,, (6)

where GG is consistent with Neumann boundary conditions (Orszag et al., 1986) and 𝐯=𝐯(𝐱,t)\mathbf{v}^{\prime}=\mathbf{v}(\mathbf{x}^{\prime},t). Insertion of (6) into (1) gives

𝐯t=𝐯𝐯+d3xG(𝐱,𝐱)(𝐯𝐯),\frac{\partial\mathbf{v}}{\partial t}=-\mathbf{v}\cdot\nabla\mathbf{v}+\nabla\int\!d^{3}x^{\prime}\,G(\mathbf{x},\mathbf{x}^{\prime})\,\nabla^{\prime}\!\cdot(\mathbf{v}^{\prime}\cdot\nabla^{\prime}\bf v^{\prime})\,, (7)

which is a closed system for 𝐯(𝐱,t)\mathbf{v}(\mathbf{x},t).

For MHD, equation (1) has the additional term (×𝐁)×𝐁/ρ(\nabla\times\mathbf{B})\times\mathbf{B}/\rho added to the righthand side. Consequently for this model, the source of (5) is modified by the addition of this term to 𝐯𝐯-\mathbf{v}\cdot\nabla\bf v.

1.2 Overview

Section 2 contains material that serves as a guide for navigating the more complicated calculations to follow. We first consider the various approaches to constraints in the finite-dimensional context in Sections 2.12.3. Section 2.1 briefly covers conventional material about holonomic constraints by Lagrange multipliers – here the reader is reminded how the free particle with holonomic constraints amounts to geodesic flow. Section 2.2 begins with the phase space action principle, whence the Dirac bracket for constraints is obtained by Lagrange’s multiplier method, but with phase space constraints as opposed to the usual holonomic configuration space constraints used in conjunction with Hamilton’s principle of mechanics, as described in Section 2.1. Next, in Section 2.3, we compare the results of Sections 2.1 and 2.3 and show how conventional holonomic constraints can be enforced by Dirac’s method. Contrary to Lagrange’s method, here we obtain explicit expressions, ones that do not appear in conventional treatments, for the Christoffel symbol and the normal force entirely in terms of the original Euclidean coordinates and constraints. Section 2 is completed with Section 2.4, where the previous ideas are revisited in the d+1d+1 field theory context in preparation for the fluid and MHD calculations. Holonomic constraints, Dirac brackets, with local or nonlocal constraints, and geodesic flow are treated.

In Section 3 we first consider the compressible (unconstrained) fluid and MHD versions of Hamilton’s variational principle, the principle of least action, with Lagrange’s Lagrangian in the Lagrangian description. From this we obtain in Section 3.2 the canonical Hamiltonian field theoretic form in the Lagrangian variable description, which is transformed in Section 3.3, via the mapping from Lagrangian to Eulerian variables, to the noncanonical Eulerian form. Section 3 is completed by an in depth comparison of constants of motion in the Eulerian and Lagrangian descriptions, which surprisingly does not seem to appear in fluid mechanics or plasma physics textbooks. The material of this section is necessary for understanding the different manifestations of constraints in our dichotomies.

Section 4 begins with Section 4.1 that reviews Lagrange’s original calculations. Because the incompressibility constraint he imposes is holonomic and there are no additional forces, his equations describe infinite-dimensional geodesics flow on volume preserving maps. The remaining portion of this section contains the most substantial calculations of the paper. In Section 4.2 for the first time Dirac’s theory is applied to enforce incompressibility in the Lagrangian variable description. This results in a new Dirac bracket that generates volume preserving flows. As in Section 2.3.1, which serves as a guide, the equations of motion generated by the bracket are explicit and contain only the constraints and original variables. Next, in Section 4.3, a reduction from Lagrangian to Eulerian variables is made, resulting in a new Eulerian variable Poisson bracket that allows for density advection while preserving incompressibility. This was an heretofore unsolved problem. Section 4.4 ties together the results of Sections 4.2, 4.3, and 3.4. Here both the Eulerian and Lagrangian Dirac constraint theories are compared after they are evaluated on their respective constraints, simplifying their equations of motion. Because Lagrangian and Eulerian conservation laws are not identical, we see that there are differences. Section 4 concludes in Section 4.5 with a discussion of the full algebra of invariants, that of the ten parameter Galilean group, for both the Lagrangian and Eulerian descriptions. In addition the Casimir invariants of the theories are discussed.

The paper concludes with Section 5, where we briefly summarize our results and speculate about future possibilities.

2 Constraint methods

2.1 Holonomic constraints by Lagrange’s multiplier method

Of interest are systems with Lagrangians of the form L(q˙,q)L(\dot{q},q) where the overdot denotes time differentiation and q=(q1,q2,,qN)q=(q^{1},q^{2},\dots,q^{N}). Because nonautonomous systems could be included by appending an additional degree of freedom, explicit time dependence is not included in LL.

Given the Lagrangian, the equations of motion are obtained according to Hamilton’s principle by variation of the action

S[q]=t0t1𝑑tL(q˙,q);S[q]=\int_{t_{0}}^{t_{1}}\!\!dt\,L(\dot{q},q)\,; (8)

i.e.

δS[q;δq]:=ddϵS[q+ϵδq]|ϵ=0=t0t1𝑑t(ddtLq˙iLqi)δqi=t0t1𝑑tδS[q]δqi(t)δqi=0,\delta S[q;\delta q]:=\frac{d}{d\epsilon}S[q+\epsilon\delta q]\Big{|}_{\epsilon=0}=\int_{t_{0}}^{t_{1}}\!\!dt\left(\frac{d}{dt}\frac{\partial L}{\partial\dot{q}^{i}}-\frac{\partial L}{\partial{q}^{i}}\right)\delta q^{i}=\int_{t_{0}}^{t_{1}}\!\!dt\,\frac{\delta S[q]}{\delta q^{i}(t)}\,\delta q^{i}=0\,, (9)

for all variations δq(t)\delta q(t) satisfying δq(t0)=δq(t1)=0\delta q(t_{0})=\delta q(t_{1})=0, implies Lagrange’s equations of motion, i.e.

δS[q]δqi(t)=0ddtLq˙iLqi=0,i=1,2,,N.\frac{\delta S[q]}{\delta q^{i}(t)}=0\quad\Rightarrow\quad\frac{d}{dt}\frac{\partial L}{\partial\dot{q}^{i}}-\frac{\partial L}{\partial{q}^{i}}=0\,,\qquad i=1,2,\dots,N\,. (10)

Holonomic constraints are real-valued functions of the form CA(q)C^{A}(q), A=1,2,,MA=1,2,\dots,M, which are desired to be constant on trajectories. Lagrange’s method for implementing such constraints is to add them to the action and vary as follows:

δSλ:=δ(S+λACA)=0,\delta S_{\lambda}:=\delta(S+\lambda_{A}C^{A})=0\,, (11)

yielding the equations of motion

δSλ[q]δqi(t)=0ddtLq˙iLqi=λACAqi,i=1,2,,N,\frac{\delta S_{\lambda}[q]}{\delta q^{i}(t)}=0\quad\Rightarrow\quad\frac{d}{dt}\frac{\partial L}{\partial\dot{q}^{i}}-\frac{\partial L}{\partial{q}^{i}}=\lambda_{A}\frac{\partial C^{A}}{\partial q^{i}}\,,\qquad i=1,2,\dots,N\,, (12)

with the forces of constraint residing on the right-hand side of (12). Observe in (11) and (12) repeated sum notation is implied for the index AA. The NN equations of (12) with the MM numerical values of the constraints CA(q)=C0AC^{A}(q)=C_{0}^{A}, determine the N+MN+M unknowns {qi}\{q^{i}\} and {λA}\{\lambda_{A}\}. In practice, because solving for the Lagrange multipliers can be difficult an alternative procedure, a example of which we describe in Section 2.1.1, is used.

We will see in Section 4.1 that the field theoretic version of this method is how Lagrange implemented the incompressiblity constraint for fluid flow. For the purpose of illustration and in preparation for later development, we consider a finite-dimensional analog of Lagrange’s treatment.

2.1.1 Holonomic constraints and geodesic flow via Lagrange

Consider NN noninteracting bodies each of mass mim_{i} in the Eucledian configuration space 𝔼3N\mathbb{E}^{3N} with cartesian coordinates 𝐪i=(qxi,qyi,qzi)\mathbf{q}_{i}=(q_{xi},q_{yi},q_{zi}), where as in Section 2.1 i=1,2,,Ni=1,2,\dots,N, but our configuration space has dimension 3N3N. The Lagrangian for this system is given by the usual kinetic energy,

L=i=1Nmi2𝐪˙i𝐪˙i,L=\sum_{i=1}^{N}\frac{m_{i}}{2}\,\dot{\mathbf{q}}_{i}\cdot\dot{\mathbf{q}}_{i}\,, (13)

with the usual “dot” product. The Euler-Lagrange equations for this system, equations (10), are the uninteresting system of NN free particles. As in Section 2.1 we constrain this system by adding constraints CA(𝐪1,𝐪2,,𝐪N)C^{A}(\mathbf{q}_{1},\mathbf{q}_{2},\dots,\mathbf{q}_{N}), where again A=1,2,,MA=1,2,\dots,M, leading to the equations

mi𝐪¨i=λACA𝐪i.m_{i}\ddot{\mathbf{q}}_{i}=\lambda_{A}\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\,. (14)

Instead of solving the 3N3N equations of (14) together with the MM numerical values of the constraints, in order to determine the unknowns 𝐪i\mathbf{q}_{i} and λA\lambda_{A}, we recall the alternative procedure, which dates back to Lagrange (see e.g. Sec. IV of Lagrange (1788)) and has been taught to physics students for generations (see e.g. Whittaker, 1917; Corben & Stehle, 1960). With the alternative procedure one introduces generalized coordinates that account for the constraints, yielding a smaller system on the constraint manifold, one with the Lagrangian

L=12gμν(q)q˙μq˙ν,μ,ν=1,2,3NM,L=\frac{1}{2}g_{\mu\nu}(q)\,\dot{q}^{\mu}\dot{q}^{\nu}\,,\hskip 28.45274pt\mu,\nu=1,2\dots,3N-M\,, (15)

where

gμν=i=1Nmi𝐪iqμ𝐪iqν.g_{\mu\nu}=\sum_{i=1}^{N}m_{i}\frac{\partial\mathbf{q}_{i}}{\partial q^{\mu}}\cdot\frac{\partial\mathbf{q}_{i}}{\partial q^{\nu}}\,. (16)

Then Lagrange’s equations (10) for the Lagrangian (15) are the usual equations for geodesic flow

q¨μ+Γαβμq˙αq˙β=0,\ddot{q}^{\mu}+\Gamma^{\mu}_{\alpha\beta}\,\dot{q}^{\alpha}\dot{q}^{\beta}=0\,, (17)

where the Christoffel symbol is as usual

Γαβμ=12gμν(gναqβ+gνβqαgαβqν).\Gamma^{\mu}_{\alpha\beta}=\frac{1}{2}g^{\mu\nu}\left(\frac{g_{\nu\alpha}}{\partial q^{\beta}}+\frac{g_{\nu\beta}}{\partial q^{\alpha}}-\frac{g_{\alpha\beta}}{\partial q^{\nu}}\right)\,. (18)

If the constraints had time dependence, then the procedure would have produced the Coriolis and centripetal forces, as is usually done in textbooks.

Thus, we arrive at the conclusion that free particle dynamics with time-independent holonomic constraints is geodesic flow.

2.2 Dirac’s bracket method

So, a natural question to ask is “How does one implement constraints in the Hamiltonian setting, where phase space constraints depend on both the configuration space coordinate qq and the canonical momentum pp”? (See e.g. Sundermeyer (1982); Arnold et al. (1980) for a general treatment and Dermaret & Moncrief (1980) for a treatment in the context of the ideal fluid and relativity and a selection of earlier references.) To this end we begin with the phase space action principle

S[q,p]=t0t1𝑑t[piq˙iH(q,p)],S[q,p]=\int_{t_{0}}^{t_{1}}\!\!dt\,\left[p_{i}\dot{q}^{i}-H(q,p)\right]\,, (19)

where again repeated sum notation is used for i=1,2,,Ni=1,2,\dots,N. Independent variation of S[q,p]S[q,p] with respect to qq and pp, with δq(t0)=δq(t1)=0\delta q(t_{0})=\delta q(t_{1})=0 and no conditions on δp\delta p, yields Hamilton’s equations,

p˙i=Hqiandq˙i=Hpi,\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}\qquad\mathrm{and}\qquad\dot{q}^{i}=\frac{\partial H}{\partial p_{i}}\,, (20)

or equivalently

z˙α={zα,H},\dot{z}^{\alpha}=\{z^{\alpha},H\}\,, (21)

which is a rewrite of (20) in terms of the Poisson bracket on phase space functions ff and gg,

{f,g}=fqigpigqifpi=fzα𝕁cαβgzβ,\{f,g\}=\frac{\partial f}{\partial q^{i}}\frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial q^{i}}\frac{\partial f}{\partial p_{i}}=\frac{\partial f}{\partial z^{\alpha}}\mathbb{J}_{c}^{\alpha\beta}\frac{\partial g}{\partial z^{\beta}}\,, (22)

where in the second equality we have used z=(q,p)z=(q,p), so α,β=1,2,,2N\alpha,\beta=1,2,\dots,2N and the cosymplectic form (Poisson matrix) is

𝕁c=(𝕆N𝕀N𝕀N𝕆N),\mathbb{J}_{c}=\left(\begin{array}[]{cc}\mathbb{O}_{N}&\mathbb{I}_{N}\\ -\mathbb{I}_{N}&\mathbb{O}_{N}\end{array}\right)\,, (23)

with 𝕆N\mathbb{O}_{N} being an N×NN\times N block of zeros and 𝕀N\mathbb{I}_{N} being the N×NN\times N identity.

Proceeding as in Section 2.1, albeit with phase space constraints Da(q,p)D^{a}(q,p), a=1,2,,2M<2Na=1,2,\dots,2M<2N, we vary

Sλ[q,p]=t0t1𝑑t[piq˙iH(q,p)+λaDa],S_{\lambda}[q,p]=\int_{t_{0}}^{t_{1}}\!\!dt\,\left[p_{i}\dot{q}^{i}-H(q,p)+\lambda_{a}D^{a}\right]\,, (24)

and obtain

p˙i=Hqi+λaDaqiandq˙i=HpiλaDapi.\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}+\lambda_{a}\frac{\partial D^{a}}{\partial q^{i}}\qquad\mathrm{and}\qquad\dot{q}^{i}=\frac{\partial H}{\partial p_{i}}-\lambda_{a}\frac{\partial D^{a}}{\partial p_{i}}\,. (25)

Next, enforcing D˙a=0\dot{D}^{a}=0 for all aa, will ensure that the constraints stay put. Whence, differentiating the DaD^{a} and using (25) yields

D˙a\displaystyle\dot{D}^{a} =\displaystyle= Daqiq˙i+Dapip˙i\displaystyle\frac{\partial D^{a}}{\partial q^{i}}{\dot{q}}^{i}+\frac{\partial D^{a}}{\partial p_{i}}{\dot{p}}_{i} (26)
=\displaystyle= {Da,H}λb{Da,Db}0.\displaystyle\{D^{a},H\}-\lambda_{b}\{D^{a},D^{b}\}\equiv 0\,.

We assume 𝔻ab:={Da,Db}\mathbb{D}^{ab}:=\{D^{a},D^{b}\} has an inverse, 𝔻ab1\mathbb{D}^{-1}_{ab}, which requires there be an even number of constraints, a,b=1,2,,2Ma,b=1,2,\dots,2M, because odd antisymmetric matrices have zero determinant. Then upon solving (26) for λb\lambda_{b} and inserting the result into (25) gives

z˙α={zα,H}𝔻ab1{zα,Da}{Db,H}.\dot{z}^{\alpha}=\{z^{\alpha},H\}-\mathbb{D}^{-1}_{ab}\{z^{\alpha},D^{a}\}\{D^{b},H\}\,. (27)

From (27), we obtain a generalization of the Poisson bracket, the Dirac bracket,

{f,g}={f,g}𝔻ab1{f,Da}{Db,g}.\{f,g\}_{*}=\{f,g\}-\mathbb{D}^{-1}_{ab}\{f,D^{a}\}\{D^{b},g\}\,. (28)

which has the degeneracy property

{f,Da}0.\{f,D^{a}\}_{*}\equiv 0\ \,. (29)

for all functions ff and indices a=1,2,,2Ma=1,2,\dots,2M.

The generation of the equations of motion via a Dirac bracket, i.e.

z˙α={zα,H},\dot{z}^{\alpha}=\{z^{\alpha},H\}_{*}\,, (30)

which is equivalent to (27), has the advantage that the Lagrange multipliers λA\lambda_{A} have been eliminated from the theory.

Note, although the above construction of the Dirac bracket is based on the canonical bracket of (22), his construction results in a valid Poisson bracket if one starts from any valid Poisson bracket (cf.  (83) of Section 2.4 and Section 3.3), which need not have a Poisson matrix of the form of (23) (see e.g. Morrison et al., 2009). We will use such a bracket in Section 4.3 when we apply constraints by Dirac’s method in the Eulerian variable picture. Also note, for our purposes it is not necessary to describe primary vs.  secondary constraints (although we use the latter), and the notions of weak vs.  strong equality. We refer the reader to Dirac (1950); Sudarshan & Makunda (1974); Hanson et al. (1976); Sundermeyer (1982) for treatment of these concepts.

2.3 Holonomic constraints by Dirac’s bracket method

A connection between the approaches of Lagrange and Dirac can be made. From a set of Lagrangian constraints CA(q)C^{A}(q), where A=1,2,,MA=1,2,\dots,M, one can construct an additional MM constraints by differentiation,

C˙A=CAqiq˙i=CAqiHpi,\dot{C}^{A}=\frac{\partial C^{A}}{\partial q^{i}}\dot{q}^{i}=\frac{\partial C^{A}}{\partial q^{i}}\frac{\partial H}{\partial p_{i}}\,, (31)

where the second equality is possible if (10) possesses the Legendre transformation to the Hamiltonian form. In this way we obtain an even number of constraints

Da(q,p)=(CA(q),C˙A(q,p)),D^{a}(q,p)=\left(C^{A}(q)\,,\dot{C}^{A^{\prime}}(q,p)\right)\,, (32)

where A=1,2,,MA=1,2,\dots,M, A=M+1,M+2,,2MA^{\prime}=M+1,M+2,\dots,2M, and a=1,2,,2M.a=1,2,\dots,2M.

With the constraints of (32) the bracket 𝔻ab={Da,Db}\mathbb{D}^{ab}=\{D^{a},D^{b}\} needed to construct (28) is easily obtained,

𝔻=(𝕆M{CA,C˙B}{C˙A,CB}{C˙A,C˙B})=:(𝕆M𝕊𝕊𝔸),\mathbb{D}=\left(\begin{array}[]{cc}\mathbb{O}_{M}&\{C^{A},\dot{C}^{B^{\prime}}\}\\ \{\dot{C}^{A^{\prime}},C^{B}\}&\{\dot{C}^{A^{\prime}},\dot{C}^{B^{\prime}}\}\end{array}\right)=:\left(\begin{array}[]{cc}\,\mathbb{O}_{M}&\mathbb{S}\\ \!-\mathbb{S}&\mathbb{A}\end{array}\right)\,, (33)

where 𝕆M\mathbb{O}_{M} is an M×MM\times M block of zeros and 𝕊\mathbb{S} is the following M×MM\times M symmetric matrix with elements

𝕊AB:={CA,C˙B}=2HpipjCAqiCBqj,\mathbb{S}^{AB}:=\{C^{A},\dot{C}^{B}\}=\frac{\partial^{2}H}{\partial p_{i}\partial p_{j}}\,\frac{\partial C^{A}}{\partial q^{i}}\frac{\partial C^{B}}{\partial q^{j}}\,, (34)

and 𝔸\mathbb{A} is the following M×MM\times M antisymmetric matrix with elements

𝔸AB\displaystyle\mathbb{A}^{AB} :={C˙A,C˙B}\displaystyle:=\{\dot{C}^{A^{\prime}},\dot{C}^{B^{\prime}}\} (35)
=2Hpipk[2Hqipj(CAqjCBqkCBqjCAqk)+Hpj(2CAqiqjCBqk2CBqiqjCAqk)].\displaystyle=\frac{\partial^{2}H}{\partial p_{i}\partial p_{k}}\left[\frac{\partial^{2}H}{\partial q^{i}\partial p_{j}}\left(\frac{\partial C^{A}}{\partial q^{j}}\frac{\partial C^{B}}{\partial q^{k}}-\frac{\partial C^{B}}{\partial q^{j}}\frac{\partial C^{A}}{\partial q^{k}}\right)+\frac{\partial H}{\partial p_{j}}\left(\frac{\partial^{2}C^{A}}{\partial q^{i}\partial q^{j}}\frac{\partial C^{B}}{\partial q^{k}}-\frac{\partial^{2}C^{B}}{\partial q^{i}\partial q^{j}}\frac{\partial C^{A}}{\partial q^{k}}\right)\right]\,.

Assuming the existence of 𝔻1\mathbb{D}^{-1}, the 2M×2M2M\times 2M inverse of (33), the Dirac bracket of (28) can be constructed. A necessary and sufficient condition for the existence of this inverse is that det 𝕊0\mathbb{S}\neq 0, and when this is the case the inverse is given by

𝔻1=(𝕊1𝔸𝕊1𝕊1𝕊1𝕆M).\mathbb{D}^{-1}=\left(\begin{array}[]{cc}\mathbb{S}^{-1}\!\mathbb{A}\mathbb{S}^{-1}&-\,\mathbb{S}^{-1}\\ \\ \,\mathbb{S}^{-1}&\mathbb{O}_{M}\end{array}\right)\,. (36)

Because of the block diagonal structure of (36), the Dirac bracket (28) becomes

{f,g}={f,g}+𝕊AB1({f,CA}{C˙B,g}{g,CA}{C˙B,f})+𝕊AC1𝔸CD𝕊DB1{f,CA}{CB,g},\{f,g\}_{*}=\{f,g\}+\mathbb{S}^{-1}_{AB}\left(\{f,C^{A}\}\{\dot{C}^{B},g\}-\{g,C^{A}\}\{\dot{C}^{B},f\}\right)+\mathbb{S}^{-1}_{AC}\,\mathbb{A}^{CD}\,\mathbb{S}^{-1}_{DB}\,\{f,{C}^{A}\}\{{C}^{B},g\}\,, (37)

which has the form

{f,g}\displaystyle\{f,g\}_{*} ={f,g}()ji(fqigpjgqifpj)+ijfpigpj\displaystyle=\{f,g\}-(\mathbb{P}_{\perp})^{i}_{j}\left(\frac{\partial f}{\partial q^{i}}\frac{\partial g}{\partial p_{j}}-\frac{\partial g}{\partial q^{i}}\frac{\partial f}{\partial p_{j}}\right)+\mathbb{Q}^{ij}\,\frac{\partial f}{\partial p_{i}}\frac{\partial g}{\partial p_{j}}
=fqijigpjgqijifpj+ijfpigpj,\displaystyle=\frac{\partial f}{\partial q^{i}}\,\mathbb{P}^{i}_{j}\frac{\partial g}{\partial p_{j}}-\frac{\partial g}{\partial q^{i}}\,\mathbb{P}^{i}_{j}\frac{\partial f}{\partial p_{j}}+\mathbb{Q}^{ij}\,\frac{\partial f}{\partial p_{i}}\frac{\partial g}{\partial p_{j}}\,, (38)

where the matrices =I\mathbb{P}=I-\mathbb{P}_{\perp}, with

()ji=𝕊AB12HpipkCAqjCBqk,(\mathbb{P}_{\perp})_{j}^{i}=\mathbb{S}^{-1}_{AB}\,\frac{\partial^{2}H}{\partial p_{i}\partial p_{k}}\frac{\partial C^{A}}{\partial q^{j}}\frac{\partial C^{B}}{\partial q^{k}}\,, (39)

and \mathbb{Q}, a complicated expression that we will not record, are crafted using the constraints and Hamiltonian so as to make {f,g}\{f,g\}_{*} preserve the constraints.

The equations of motion that follow from (37) are

q˙\displaystyle\dot{q}^{\ell} ={q,H}=Hp+𝕊AB1({q,CA}{C˙B,H}{H,CA}{C˙B,q})\displaystyle=\{q^{\ell},H\}_{*}=\frac{\partial H}{\partial p_{\ell}}+\mathbb{S}^{-1}_{AB}\left(\{q^{\ell},C^{A}\}\{\dot{C}^{B},H\}-\{H,C^{A}\}\{\dot{C}^{B},q^{\ell}\}\right)
+𝕊AC1𝔸CD𝕊DB1{q,CA}{CB,H},\displaystyle\hskip 85.35826pt+\mathbb{S}^{-1}_{AC}\,\mathbb{A}^{CD}\,\mathbb{S}^{-1}_{DB}\,\{q^{\ell},{C}^{A}\}\{{C}^{B},H\}\,, (40)
p˙\displaystyle\dot{p}_{\ell} ={p,H}=Hq+𝕊AB1({p,CA}{C˙B,H}{H,CA}{C˙B,p})\displaystyle=\{p_{\ell},H\}_{*}=-\frac{\partial H}{\partial q^{\ell}}+\mathbb{S}^{-1}_{AB}\left(\{p_{\ell},C^{A}\}\{\dot{C}^{B},H\}-\{H,C^{A}\}\{\dot{C}^{B},p_{\ell}\}\right)
+𝕊AC1𝔸CD𝕊DB1{p,CA}{CB,H}.\displaystyle\hskip 85.35826pt+\mathbb{S}^{-1}_{AC}\,\mathbb{A}^{CD}\,\mathbb{S}^{-1}_{DB}\,\{p_{\ell},{C}^{A}\}\{{C}^{B},H\}\,. (41)

Given the Dirac bracket associated with the 𝔻\mathbb{D} of (34), dynamics that enforces the constraints takes the form of (30). Any system generated by this bracket will enforce Lagrange’s holonomic constraints; however, only initial conditions compatible with

Da0,a=M+1,M+2,,2M,D^{a}\equiv 0\,,\qquad\forall\qquad a=M+1,M+2,\dots,2M\,, (42)

or equivalently

C˙A=CAqiHpi={CA,H}0,A=1,2,,M,\dot{C}^{A}=\frac{\partial C^{A}}{\partial q^{i}}\frac{\partial H}{\partial p_{i}}=\{C^{A},H\}\equiv 0\,,\qquad\forall\qquad A=1,2,\dots,M\,, (43)

will correspond to the system with holonomic constraints. Using (43) and {q,CA}0\{q^{\ell},C^{A}\}\equiv 0, (40) and (41) reduce to

q˙\displaystyle\dot{q}^{\ell} ={q,H}=Hp,\displaystyle=\{q^{\ell},H\}_{*}=\frac{\partial H}{\partial p_{\ell}}\,, (44)
p˙\displaystyle\dot{p}_{\ell} ={p,H}=Hq+𝕊AB1{p,CA}{C˙B,H},\displaystyle=\{p_{\ell},H\}_{*}=-\frac{\partial H}{\partial q^{\ell}}+\mathbb{S}^{-1}_{AB}\{p_{\ell},C^{A}\}\{\dot{C}^{B},H\}\,, (45)

where

{C˙B,H}=(2HqipjCBqj+Hpj2CBqiqj)HpiCBqi2HpipjHqj.\{\dot{C}^{B},H\}=\left(\frac{\partial^{2}H}{\partial q^{i}\partial p_{j}}\frac{\partial C^{B}}{\partial q^{j}}+\frac{\partial H}{\partial p_{j}}\frac{\partial^{2}C^{B}}{\partial q^{i}q^{j}}\right)\frac{\partial H}{\partial p_{i}}-\frac{\partial C^{B}}{\partial q^{i}}\frac{\partial^{2}H}{\partial p_{i}\partial p_{j}}\frac{\partial H}{\partial q^{j}}\,. (46)

Thus the Dirac bracket approach gives a relatively simple system for enforcing holonomic constraints. It can be shown directly that if initially C˙A\dot{C}^{A} vanishes, then the system of (44) and (45) will keep it so for all time.

2.3.1 Holonomic constraints and geodesic flow via Dirac

Let us now consider again the geodesic flow problem of Section 2.1.1: the NN degree-of-freedom free particle system with holonomic constraints, but this time within the framework of Dirac bracket theory. For this problem the unconstrained configuration space is the Euclidean space 𝔼3N\mathbb{E}^{3N} and we will denote by 𝒬\mathcal{Q} the constraint manifold within 𝔼3N\mathbb{E}^{3N} defined by the constancy of the constraints CAC^{A}.

The Lagrangian of (13) is easily Legendre transformed to the free particle Hamiltonian

H=i=1N12mi𝐩i𝐩i,H=\sum_{i=1}^{N}\frac{1}{2m_{i}}\,{\mathbf{p}}_{i}\cdot{\mathbf{p}}_{i}\,, (47)

where 𝐩i=mi𝐪˙i\mathbf{p}_{i}=m_{i}\dot{\mathbf{q}}_{i}. For this example the constraints of (32) take the form

Da=(CA(𝐪1,𝐪2,,𝐪N),CA(𝐪1,𝐪2,,𝐪N)𝐪i𝐩imi),D^{a}=\left(C^{A}(\mathbf{q}_{1},\mathbf{q}_{2},\dots,\mathbf{q}_{N}),\frac{\partial C^{A^{\prime}}(\mathbf{q}_{1},\mathbf{q}_{2},\dots,\mathbf{q}_{N})}{\partial\mathbf{q}_{i}}\cdot\frac{\mathbf{p}_{i}}{m_{i}}\right)\,, (48)

the M×MM\times M matrix 𝕊\mathbb{S} has elements

𝕊AB=i=1N1miCA𝐪iCB𝐪i,\mathbb{S}^{AB}=\sum_{i=1}^{N}\,\frac{1}{m_{i}}\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial C^{B}}{\partial\mathbf{q}_{i}}\,, (49)

and the M×MM\times M matrix 𝔸\mathbb{A} is

𝔸AB=i,j=1N1mimj𝐩i[2CA𝐪i𝐪jCB𝐪j2CB𝐪i𝐪jCA𝐪j].\mathbb{A}^{AB}=\sum_{i,j=1}^{N}\,\frac{1}{m_{i}m_{j}}\,\mathbf{p}_{i}\cdot\left[\frac{\partial^{2}C^{A}}{\partial\mathbf{q}_{i}\partial\mathbf{q}_{j}}\cdot\frac{\partial C^{B}}{\partial\mathbf{q}_{j}}-\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{i}\partial\mathbf{q}_{j}}\cdot\frac{\partial C^{A}}{\partial\mathbf{q}_{j}}\right]\,. (50)

The Dirac bracket analogous to (38) is

{f,g}=ij=1N[f𝐪iijg𝐩jg𝐪iijf𝐩j+f𝐩iijg𝐩j],\{f,g\}_{*}=\sum^{N}_{ij=1}\,\left[\frac{\partial f}{\partial\mathbf{q}_{i}}\cdot\overset{\leftrightarrow}{\mathbb{P}}_{ij}\cdot\frac{\partial g}{\partial\mathbf{p}_{j}}-\frac{\partial g}{\partial\mathbf{q}_{i}}\cdot\overset{\leftrightarrow}{\mathbb{P}}_{ij}\cdot\frac{\partial f}{\partial\mathbf{p}_{j}}+\frac{\partial f}{\partial\mathbf{p}_{i}}\cdot\overset{\leftrightarrow}{\mathbb{Q}}_{ij}\cdot\frac{\partial g}{\partial\mathbf{p}_{j}}\right]\,, (51)

where ij=𝕀ijij\overset{\leftrightarrow}{\mathbb{P}}_{ij}=\overset{\leftrightarrow}{\mathbb{I}}_{ij}-\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ij} with the tensors

ij\displaystyle\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ij} :=k=1N𝕊AB12H𝐩i𝐩kCB𝐪kCA𝐪j=𝕊AB11miCB𝐪iCA𝐪j,\displaystyle:=\sum^{N}_{k=1}\,\mathbb{S}^{-1}_{AB}\,\frac{\partial^{2}H}{\partial\mathbf{p}_{i}\partial\mathbf{p}_{k}}\cdot\frac{\partial C^{B}}{\partial\mathbf{q}_{k}}\frac{\partial C^{A}}{\partial\mathbf{q}_{j}}=\mathbb{S}^{-1}_{AB}\,\frac{1}{m_{i}}\frac{\partial C^{B}}{\partial\mathbf{q}_{i}}\frac{\partial C^{A}}{\partial\mathbf{q}_{j}}\,, (52)
ij\displaystyle\overset{\leftrightarrow}{\mathbb{Q}}_{\,ij} :=k=1N𝕊AB1[CA𝐪j𝐩kmk2CB𝐪k𝐪iCA𝐪i𝐩kmk2CB𝐪k𝐪j]+𝕊AC1𝔸CD𝕊DB1CA𝐪iCB𝐪j\displaystyle:=\sum^{N}_{k=1}\,\mathbb{S}^{-1}_{AB}\,\left[\frac{\partial C^{A}}{\partial\mathbf{q}_{j}}\,\frac{\mathbf{p}_{k}}{m_{k}}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{k}\partial\mathbf{q}_{i}}-\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\,\frac{\mathbf{p}_{k}}{m_{k}}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{k}\partial\mathbf{q}_{j}}\right]+\mathbb{S}^{-1}_{AC}\,\mathbb{A}^{CD}\,\mathbb{S}^{-1}_{DB}\,\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\frac{\partial C^{B}}{\partial\mathbf{q}_{j}} (53)
=:𝕋ij𝕋ji+𝔸ij,\displaystyle=:\overset{\leftrightarrow}{\mathbb{T}}_{ij}-\overset{\leftrightarrow}{\mathbb{T}}_{ji}+\overset{\leftrightarrow}{\mathbb{A}}_{ij}\,, (54)

where 𝔸ij\overset{\leftrightarrow}{\mathbb{A}}_{ij} is the term with 𝕊AC1𝔸CD𝕊DB1\mathbb{S}^{-1}_{AC}\mathbb{A}^{CD}\mathbb{S}^{-1}_{DB}. Observe 𝔸ij=𝔸ji\overset{\leftrightarrow}{\mathbb{A}}_{ij}=-\overset{\leftrightarrow}{\mathbb{A}}_{ji} because 𝔸CD=𝔸DC\mathbb{A}^{CD}=-\mathbb{A}^{DC} and

k=1Nikkj\displaystyle\sum_{k=1}^{N}\,\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ik}\cdot\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,kj} =k=1N(𝕊AB11miCB𝐪iCA𝐪k)(𝕊AB11mkCB𝐪kCA𝐪j)\displaystyle=\sum_{k=1}^{N}\,\left(\mathbb{S}^{-1}_{AB}\,\frac{1}{m_{i}}\frac{\partial C^{B}}{\partial\mathbf{q}_{i}}\frac{\partial C^{A}}{\partial\mathbf{q}_{k}}\right)\cdot\left(\mathbb{S}^{-1}_{A^{\prime}B^{\prime}}\,\frac{1}{m_{k}}\frac{\partial C^{B^{\prime}}}{\partial\mathbf{q}_{k}}\frac{\partial C^{A^{\prime}}}{\partial\mathbf{q}_{j}}\right)
=(𝕊AB11miCB𝐪i)𝕊AB1(k=1NCA𝐪k1mkCB𝐪k)CA𝐪j\displaystyle=\left(\mathbb{S}^{-1}_{AB}\,\frac{1}{m_{i}}\frac{\partial C^{B}}{\partial\mathbf{q}_{i}}\right)\mathbb{S}^{-1}_{A^{\prime}B^{\prime}}\,\left(\sum_{k=1}^{N}\,\frac{\partial C^{A}}{\partial\mathbf{q}_{k}}\cdot\frac{1}{m_{k}}\frac{\partial C^{B^{\prime}}}{\partial\mathbf{q}_{k}}\right)\frac{\partial C^{A^{\prime}}}{\partial\mathbf{q}_{j}}
=(𝕊AB11miCB𝐪i)𝕊AB1𝕊ABCA𝐪j=ij.\displaystyle=\left(\mathbb{S}^{-1}_{AB}\,\frac{1}{m_{i}}\frac{\partial C^{B}}{\partial\mathbf{q}_{i}}\right)\mathbb{S}^{-1}_{A^{\prime}B^{\prime}}\,\mathbb{S}^{AB^{\prime}}\frac{\partial C^{A^{\prime}}}{\partial\mathbf{q}_{j}}=\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ij}\,. (55)

Also observe for the Hamiltonian of (47)

j=1NijH𝐩j\displaystyle\sum^{N}_{j=1}\,\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ij}\cdot\frac{\partial H}{\partial\mathbf{p}_{j}} =j=1Nij𝐩jmj0,\displaystyle=\sum^{N}_{j=1}\,\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ij}\cdot\frac{\mathbf{p}_{j}}{m_{j}}\equiv 0\,, (56)
j=1NH𝐩j𝕋ij\displaystyle\sum^{N}_{j=1}\,\frac{\partial H}{\partial\mathbf{p}_{j}}\cdot\overset{\leftrightarrow}{\mathbb{T}}_{ij} =j=1N𝐩jmj𝕋ij0,\displaystyle=\sum^{N}_{j=1}\,\frac{\mathbf{p}_{j}}{m_{j}}\cdot\overset{\leftrightarrow}{\mathbb{T}}_{ij}\equiv 0\,, (57)
j=1N𝔸ijH𝐩j\displaystyle\sum^{N}_{j=1}\,\overset{\leftrightarrow}{\mathbb{A}}_{ij}\cdot\frac{\partial H}{\partial\mathbf{p}_{j}} =j=1N𝔸jiH𝐩j0,\displaystyle=-\sum^{N}_{j=1}\,\overset{\leftrightarrow}{\mathbb{A}}_{ji}\cdot\frac{\partial H}{\partial\mathbf{p}_{j}}\equiv 0\,, (58)

when evaluated on the constraint C˙A,B=0\dot{C}^{A,B}=0, while

j=1NH𝐩jji0andi=1NH𝐩i𝕋ij0,\sum^{N}_{j=1}\,\frac{\partial H}{\partial\mathbf{p}_{j}}\cdot\overset{\leftrightarrow}{\mathbb{P}}_{\perp\,ji}\neq 0\quad\mathrm{and}\quad\sum^{N}_{i=1}\,\frac{\partial H}{\partial\mathbf{p}_{i}}\cdot\overset{\leftrightarrow}{\mathbb{T}}_{ij}\neq 0\,, (59)

when evaluated on the constraint C˙A,B=0\dot{C}^{A,B}=0. Thus, the bracket of (51) yields the equations of motion

𝐪˙i\displaystyle\dot{\mathbf{q}}_{i} ={𝐪i,H}=H𝐩i=𝐩imi,\displaystyle=\{\mathbf{q}_{i},H\}_{*}=\frac{\partial H}{\partial\mathbf{p}_{i}}=\frac{\mathbf{p}_{i}}{m_{i}}\,, (60)
𝐩˙i\displaystyle\dot{\mathbf{p}}_{i} =CA𝐪i𝕊AB1j,k=1N𝐩jmj2CB𝐪j𝐪k𝐩kmk,\displaystyle=-\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\mathbb{S}^{-1}_{AB}\sum_{j,k=1}^{N}\frac{\mathbf{p}_{j}}{m_{j}}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\frac{\mathbf{p}_{k}}{m_{k}}\,, (61)

or

𝐪¨i=1miCA𝐪i𝕊AB1j,k=1N𝐪˙j2CB𝐪j𝐪k𝐪˙k=j,k=1N𝐪˙j𝚪^i,jk𝐪˙k,\ddot{\mathbf{q}}_{i}=-\frac{1}{m_{i}}\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\mathbb{S}^{-1}_{AB}\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}\,=-\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\widehat{\bm{\Gamma}}_{i,jk}\cdot\dot{\mathbf{q}}_{k}\,, (62)

where

𝚪^i,jk:=1miCA𝐪i𝕊AB12CB𝐪j𝐪k,\widehat{\bm{\Gamma}}_{i,jk}:=\frac{1}{m_{i}}\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\otimes\mathbb{S}^{-1}_{AB}\,\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\,, (63)

is used to represent the normal force.

Observe, (62) has two essential features: as noted, its righthand side is a normal force that projects to the constraint manifold defined by the constraints CAC^{A} and within the constraint manifold it describes a geodesic flow, all done in terms of the original Euclidean space coordinates where the initial conditions place the flow on 𝒬\mathcal{Q} by setting the values CAC^{A} for all A=1,2,,MA=1,2,\dots,M. We will show this explicitly.

First, because the components of vectors normal to 𝒬\mathcal{Q} are given by CA/𝐪i\partial C^{A}/\partial\mathbf{q}_{i} for A=1,2,,MA=1,2,\dots,M, this prefactor on the righthand side of (62) projects as expected. Upon comparing (62) with (14) we conclude that the coefficient of this prefactor must be the Lagrange multipliers, i.e.,

λA=𝕊AB1k,j=1N𝐪˙j2CB𝐪j𝐪k𝐪˙k.\lambda_{A}=-\mathbb{S}^{-1}_{AB}\sum_{k,j=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}\,. (64)

Thus, we see that Dirac’s procedure explicitly solves for the Lagrange multiplier.

Second, to uncover the geodesic flow we can proceed as usual by projecting explicitly onto 𝒬\mathcal{Q}. To this end we consider the transformation between the Euclidean configuration space 𝔼3N\mathbb{E}^{3N} coordinates

(𝐪1,𝐪2,,𝐪i,,𝐪N),wherei=1,2,,N(\mathbf{q}_{1},\mathbf{q}_{2},\dots,\mathbf{q}_{i},\dots,\mathbf{q}_{N})\,,\qquad\mathrm{where}\qquad i=1,2,\dots,N (65)

and another set of coordinates

(q1,q2,,qa,,q3N),wherea=1,2,,3N,(q^{1},q^{2},\dots,q^{a},\dots,q^{3N})\,,\qquad\mathrm{where}\qquad a=1,2,\dots,3N\,, (66)

which we tailor as follows:

(q1,q2,,qα,qn,C1,C2,,CA,,CM),(q^{1},q^{2},\dots,q^{\alpha}\dots,q^{n},C^{1},C^{2},\dots,C^{A},\dots,C^{M})\,, (67)

where α=1,2,,n\alpha=1,2,\dots,n, A=1,2,,MA=1,2,\dots,M, and n=3NMn=3N-M. Here we have chosen qn+A=CAq^{n+A}=C^{A} and nn is the actual number of degrees of freedom on the constraint surface 𝒬\mathcal{Q}. We can freely transform back and forth between the two coordinates, i.e.

(𝐪1,𝐪2,,𝐪i,,𝐪N)(q1,q2,,qa,,q3N).(\mathbf{q}_{1},\mathbf{q}_{2},\dots,\mathbf{q}_{i},\dots,\mathbf{q}_{N})\longleftrightarrow(q^{1},q^{2},\dots,q^{a},\dots,q^{3N})\,. (68)

Note, the choice qn+A=CAq^{n+A}=C^{A} could be replaced by qn+A=fA(C1,C2,,CM)q^{n+A}=f^{A}(C^{1},C^{2},\dots,C^{M}) for arbitrary independent fAf^{A}, but we assume the original CAC^{A} are optimal. Because qαq^{\alpha} are coordinates within 𝒬\mathcal{Q}, tangent vectors to 𝒬\mathcal{Q} have the components 𝐪i/qα\partial\mathbf{q}_{i}/\partial q^{\alpha}, and there is one for each α=1,2,,n\alpha=1,2,\dots,n. The pairing of the normals with tangents is expressed by

i=1N𝐪iqαCA𝐪i=0,α=1,2,,n;A=1,2,,M.\sum_{i=1}^{N}\frac{\partial\mathbf{q}_{i}}{\partial q^{\alpha}}\cdot\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}=0\,,\qquad\alpha=1,2,\dots,n;\ A=1,2,\dots,M\,. (69)

Let us now consider an alternative procedure that the Dirac constraint method provides. Proceeding directly we calculate

q˙a=i=1Nqa𝐪i𝐪˙i.\dot{q}^{a}=\sum_{i=1}^{N}\frac{\partial q^{a}}{\partial\mathbf{q}_{i}}\cdot\dot{\mathbf{q}}_{i}\,. (70)

Observe that on 𝔼3N\mathbb{E}^{3N} the matrix qa/𝐪i{\partial q^{a}}/{\partial\mathbf{q}_{i}} is invertible and the full metric tensor and its inverse in the new coordinates are given as follows:

gab=i=1N1miqa𝐪iqb𝐪iandgab=i=1Nmi𝐪iqa𝐪iqb.g^{ab}=\sum_{i=1}^{N}\frac{1}{m_{i}}\frac{\partial q^{a}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial q^{b}}{\partial\mathbf{q}_{i}}\qquad\mathrm{and}\qquad g_{ab}=\sum_{i=1}^{N}{m_{i}}\frac{\partial\mathbf{q}_{i}}{\partial q^{a}}\cdot\frac{\partial\mathbf{q}_{i}}{\partial q^{b}}\,. (71)

The metric tensor on 𝒬\mathcal{Q} of (16) is obtained by restricting gabg_{ab} to a,bna,b\leq n and gαβg^{\alpha\beta} is obtained by inverting gαβg_{\alpha\beta} and not by restricting gabg_{ab}. Proceeding by differentiating again we obtain

q¨a=i=1Nqa𝐪i𝐪¨i+i,j=1N𝐪˙i2qa𝐪i𝐪j𝐪˙j,a=1,2,,3N.\ddot{q}^{a}=\sum_{i=1}^{N}\frac{\partial q^{a}}{\partial\mathbf{q}_{i}}\cdot\ddot{\mathbf{q}}_{i}+\sum_{i,j=1}^{N}\dot{\mathbf{q}}_{i}\cdot\frac{\partial^{2}q^{a}}{\partial\mathbf{q}_{i}\partial\mathbf{q}_{j}}\cdot\dot{\mathbf{q}}_{j}\,,\qquad a=1,2,\dots,3N. (72)

Now inserting (62) into (72) gives

q¨a=i=1N1miqa𝐪iCA𝐪igABj,k=1N𝐪˙j2CB𝐪j𝐪k𝐪˙k+i,j=1N𝐪˙j2qa𝐪i𝐪j𝐪˙i,\ddot{q}^{a}=-\sum_{i=1}^{N}\frac{1}{m_{i}}\frac{\partial q^{a}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\,g_{AB}\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}+\sum_{i,j=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}q^{a}}{\partial\mathbf{q}_{i}\partial\mathbf{q}_{j}}\cdot\dot{\mathbf{q}}_{i}\,, (73)

where we have recognized that

gAB=𝕊AB=i=1N1miCA𝐪iCB𝐪ig^{AB}=\mathbb{S}^{AB}=\sum_{i=1}^{N}\,\frac{1}{m_{i}}\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial C^{B}}{\partial\mathbf{q}_{i}} (74)

and, as was necessary for the workability of the Dirac bracket constraint theory, gAB=𝕊AB1g_{AB}=\mathbb{S}^{-1}_{AB} must exist. This quantity is obtained by inverting 𝕊AB\mathbb{S}^{AB} and not by restricting gabg^{ab}.

Equation (73) is an expression for the full system on 𝔼3N\mathbb{E}^{3N}. However, for a>na>n, we know q¨a=C¨A=0\ddot{q}^{a}=\ddot{C}^{A}=0, so the two terms of (73) should cancel. To see this, in the first term of (73) we set qa=CCq^{a}=C^{C} and observe that this first term becomes

i=1N1miCC𝐪iCA𝐪igABj,k=1N𝐪˙j2CB𝐪j𝐪k𝐪˙k\displaystyle-\sum_{i=1}^{N}\frac{1}{m_{i}}\frac{\partial C^{C}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\,g_{AB}\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k} =gCAgABj,k=1N𝐪˙j2CB𝐪j𝐪k𝐪˙k\displaystyle=-g^{CA}\,g_{AB}\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}
=j,k=1N𝐪˙j2CC𝐪j𝐪k𝐪˙k.\displaystyle=-\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{C}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}\,. (75)

Now, for ana\leq n, say α\alpha, the righthand side gives a Christoffel symbol expression for the geodesic flow; viz.

q¨α\displaystyle\ddot{q}^{\alpha} =i=1N1miqα𝐪iCA𝐪igABj,k=1N𝐪˙j2CB𝐪j𝐪k𝐪˙k+j,k=1N𝐪˙j2qα𝐪j𝐪k𝐪˙k\displaystyle=-\sum_{i=1}^{N}\frac{1}{m_{i}}\frac{\partial q^{\alpha}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\,g_{AB}\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}+\sum_{j,k=1}^{N}\dot{\mathbf{q}}_{j}\cdot\frac{\partial^{2}q^{\alpha}}{\partial\mathbf{q}_{j}\partial\mathbf{q}_{k}}\cdot\dot{\mathbf{q}}_{k}
=Γμναq˙μq˙ν,\displaystyle=-\Gamma^{\alpha}_{\mu\nu}\,\dot{q}^{\mu}\dot{q}^{\nu}\,, (76)

where

Γμνα=i=1N1miqα𝐪iCA𝐪i𝕊AB1j,k=1N𝐪jqμ2CB𝐪j𝐪k𝐪kqν+j,k=1N𝐪jqμ2qα𝐪j𝐪k𝐪kqν\Gamma^{\alpha}_{\mu\nu}=\sum_{i=1}^{N}\frac{1}{m_{i}}\frac{\partial q^{\alpha}}{\partial\mathbf{q}_{i}}\cdot\frac{\partial C^{A}}{\partial\mathbf{q}_{i}}\,\mathbb{S}^{-1}_{AB}\sum_{j,k=1}^{N}\frac{\partial{\mathbf{q}}_{j}}{\partial q^{\mu}}\cdot\frac{\partial^{2}C^{B}}{\partial\mathbf{q}_{j}\mathbf{q}_{k}}\cdot\frac{\partial{\mathbf{q}}_{k}}{\partial q^{\nu}}+\sum_{j,k=1}^{N}\frac{\partial{\mathbf{q}}_{j}}{\partial q^{\mu}}\cdot\frac{\partial^{2}q^{\alpha}}{\partial\mathbf{q}_{j}\partial\mathbf{q}_{k}}\cdot\frac{\partial{\mathbf{q}}_{k}}{\partial q^{\nu}} (77)

is an expression for the Christoffel symbol in terms of the original Euclidean coordinates, the constraints, and the choice of coordinates on 𝒬\mathcal{Q}.

Using (77) one can calculate an analogous expression for the Riemann curvature tensor on 𝒬\mathcal{Q} from the usual expression

Rβγδα=ΓδβαqγΓγβαqδ+ΓγλαΓδβλΓδλαΓγβλ,R^{\alpha}_{\beta\gamma\delta}=\frac{\partial\Gamma^{\alpha}_{\delta\beta}}{\partial q^{\gamma}}-\frac{\partial\Gamma^{\alpha}_{\gamma\beta}}{\partial q^{\delta}}+\Gamma^{\alpha}_{\gamma\lambda}\Gamma^{\lambda}_{\delta\beta}-\Gamma^{\alpha}_{\delta\lambda}\Gamma^{\lambda}_{\gamma\beta}\,, (78)

using /qγ=i(𝐪i/qγ)/𝐪i\partial/\partial q^{\gamma}=\sum_{i}(\partial\mathbf{q}_{i}/\partial q^{\gamma})\cdot\partial/\partial\mathbf{q}_{i}. This gives the curvature written in terms of the original Euclidean coordinates, the constraints, and the chosen coordinates on 𝒬\mathcal{Q}.

2.4 d+1d+1 field theory

The techniques of Sections 2.1, 2.2, and 2.3 have natural extensions to field theory.

Given independent field variables Ψ𝒜(μ,t)\Psi^{\mathcal{A}}(\mu,t), indexed by 𝒜=1,2,,\mathcal{A}=1,2,\dots,\ell, where the independent variable μ=(μ1,μ2,,μd)\mu=(\mu^{1},\mu^{2},\dots,\mu^{d}). The field theoretic version of Hamilton’s principle of (8) is embodied in the action

S[Ψ]=t0t1𝑑tL[Ψ,Ψ˙],withL[Ψ,Ψ˙]=ddμ(Ψ,Ψ˙,Ψ),S[\Psi]=\int_{t_{0}}^{t_{1}}\!\!dt\,L[\Psi,\dot{\Psi}]\,,\qquad\mathrm{with}\qquad L[\Psi,\dot{\Psi}]=\int\!d^{d}\!\mu\,\mathcal{L}(\Psi,\dot{\Psi},\partial\Psi)\,, (79)

where we leave the domain of μ\mu and the boundary conditions unspecified, but freely drop surface terms obtained upon integration by parts. The Lagrangian density \mathcal{L} is assumed to depend on the field components Ψ\Psi and Ψ\partial\Psi, which is used to indicate all possible partial derivatives with respect of the components of μ\mu. Hamilton’s principle with (79) gives the Euler-Lagrange equations,

δS[Ψ]δΨ𝒜(μ,t)=0ddtLΨ˙𝒜+μLΨ𝒜LΨ𝒜=0,\frac{\delta S[\Psi]}{\delta\Psi^{\mathcal{A}}(\mu,t)}=0\quad\Rightarrow\quad\frac{d}{dt}\frac{\partial L}{\partial\dot{\Psi}^{\mathcal{A}}}+\frac{\partial}{\partial\mu}\frac{\partial L}{\partial\partial{\Psi}^{\mathcal{A}}}-\frac{\partial L}{\partial\Psi^{\mathcal{A}}}=0\,, (80)

where the overdot implies differentiation at constant μ\mu. Local holonomic constraints CA(Ψ,Ψ)C^{A}(\Psi,\partial\Psi) are enforced by Lagrange’s method by amending the Lagrangian

Lλ[Ψ,Ψ˙]=ddμ((Ψ,Ψ˙,Ψ)+λACA(Ψ,Ψ)),L_{\lambda}[\Psi,\dot{\Psi}]=\int\!d^{d}\!\mu\,\big{(}\mathcal{L}(\Psi,\dot{\Psi},\partial\Psi)+\lambda_{A}C^{A}(\Psi,\partial\Psi)\big{)}\,, (81)

with again A=1,2,,MA=1,2,\dots,M and proceeding as in the finite-dimensional case.

In the Hamiltonian field theoretic setting, we could introduce the conjugate momentum densities π𝒜\pi_{\mathcal{A}}, 𝒜=1,2,,\mathcal{A}=1,2,\dots,\ell, with the phase space action

Sλ[Ψ,π]=t0t1𝑑tddμ[π𝒜Ψ˙𝒜+λADA],S_{\!\lambda}[\Psi,\pi]=\int_{t_{0}}^{t_{1}}\!\!dt\!\!\int\!\!d^{d}\!\mu\,\left[\pi_{\mathcal{A}}\dot{\Psi}^{\mathcal{A}}-\mathcal{H}+\lambda_{A}D^{A}\right]\,, (82)

with Hamiltonian density \mathcal{H} and local constraints DaD^{a} depending on the values of the fields and their conjugates. Instead of following this route we will jump directly to a generalization of the field theoretic Dirac bracket formalism that would result.

Consider a Poisson algebra composed of functionals of field variables χ𝒜(μ,t){\chi}^{\mathcal{A}}({\mu},t) with a Poisson bracket of the form

{F,G}=ddμFχ𝕁(χ)Gχ,\{F,G\}=\int\!\!d^{d}\mu\,F_{\chi}\cdot\mathbb{J}({\chi})\cdot G_{\chi}\,, (83)

where FχF_{\chi} is a shorthand for the functional derivative of a functional FF with respect to the field χ\chi (see e.g. Morrison, 1998) and Fχ𝕁Gχ=Fχ𝒜𝕁𝒜GχF_{\chi}\cdot{\mathbb{J}}\cdot G_{\chi}=F_{\chi^{\mathcal{A}}}\,{\mathbb{J}}^{\mathcal{A}\mathcal{B}}\,G_{\chi^{\mathcal{B}}}, again with repeated indices summed. Observe the fields χ𝒜(μ,t){\chi}^{\mathcal{A}}({\mu},t) need not separate into coordinates and momenta, but if they do the Poisson operator 𝕁\mathbb{J} has a form akin to that of (23). By a Poisson algebra we mean a Lie algebra realization on functionals, meaning the Poisson bracket is bilinear, antisymmetric, and satisfies the Jacobi identity and that there is an associative product of functionals that satisfies the Leibniz law. From the Poisson bracket the equations of motion are given by χ˙={χ,H}\dot{\chi}=\{{\chi},H\}, for some Hamiltonian functional H[χ]H[{\chi}].

Dirac’s constraint theory is generally implemented in terms of canonical Poisson brackets (see e.g. Dirac, 1950; Sudarshan & Makunda, 1974; Sundermeyer, 1982), but it is not difficult to show that his procedure also works for noncanonical Poisson brackets (see e.g.  an Appendix of Morrison et al., 2009).

We impose an even number of local constraints which we write as Da(μ)=D^{a}(\mu)= constant, a shorthand for Da[χ(μ)]D^{a}[\chi(\mu)], with the index a=1,2,,2Ma=1,2,\dots,2M, bearing in mind that they depend on the fields χ\chi and their derivatives. As in the finite-dimensional case, the Dirac bracket is obtained from the matrix 𝔻\mathbb{D} obtained from the bracket of the constraints,

𝔻ab(μ,μ)={Da(μ),Db(μ)},\mathbb{D}^{ab}(\mu,\mu^{\prime})=\{D^{a}(\mu),D^{b}(\mu^{\prime})\}\,,

where we note that 𝔻ab(μ,μ)=𝔻ba(μ,μ)\mathbb{D}^{ab}(\mu,\mu^{\prime})=-\mathbb{D}^{ba}(\mu^{\prime},\mu). If 𝔻\mathbb{D} has an inverse, then the Dirac bracket is defined as follows:

{F,G}={F,G}ddμddμ{F,Da(μ)}𝔻ab1(μ,μ){Db(μ),G},\{F,G\}_{*}=\{F,G\}-\int\!\!d^{d}\mu\!\!\int\!\!d^{d}\mu^{\prime}\,\{F,D^{a}(\mu)\}\mathbb{D}^{-1}_{ab}(\mu,\mu^{\prime})\{D^{b}(\mu^{\prime}),G\}\,, (84)

where the coefficients 𝔻ab1(μ,μ)\mathbb{D}^{-1}_{ab}(\mu,\mu^{\prime}) satisfy

ddμ𝔻ab1(μ,μ)𝔻bc(μ,μ′′)=d3μ𝔻cb(μ,μ)𝔻ba1(μ,μ′′)=δacδ(μμ′′),\int\!\!d^{d}\mu^{\prime}\,\mathbb{D}^{-1}_{ab}(\mu,\mu^{\prime})\mathbb{D}^{bc}(\mu^{\prime},\mu^{\prime\prime})=\int\!\!d^{3}\mu^{\prime}\,\mathbb{D}^{cb}(\mu,\mu^{\prime})\mathbb{D}^{-1}_{ba}(\mu^{\prime},\mu^{\prime\prime})=\delta_{a}^{c}\delta(\mu-\mu^{\prime\prime})\,,

consistent with 𝔻ab1(μ,μ)=𝔻ba1(μ,μ)\mathbb{D}^{-1}_{ab}(\mu,\mu^{\prime})=-\mathbb{D}^{-1}_{ba}(\mu^{\prime},\mu).

We note, the procedure is effective only when the coefficients 𝔻ab1(μ,μ)\mathbb{D}^{-1}_{ab}(\mu,\mu^{\prime}) can be found. If 𝔻\mathbb{D} is not invertible, then one needs, in general, secondary constraints to determine the Dirac bracket.

2.4.1 Field theoretic geodesic flow

In light of Section 2.1.1, any field theory with a Lagrangian density of the form

=12Ψ˙𝒜(μ,t)η𝒜Ψ˙(μ,t),\mathcal{L}=\frac{1}{2}\dot{\Psi}^{\mathcal{A}}(\mu,t)\,\eta_{\mathcal{A}\mathcal{B}}\,\dot{\Psi}^{\mathcal{B}}(\mu,t)\,, (85)

with the metric η𝒜=δ𝒜\eta_{\mathcal{A}\mathcal{B}}=\delta_{\mathcal{A}\mathcal{B}} being the Kronecker delta, subject to time-independent holonomic constraints can be viewed as geodesic flow on the constraint surface. This is a natural infinite-dimensional generalization of the idea of Section 2.1.1.

3 Unconstrained Hamiltonian and action for fluid

3.1 Fluid action in Lagrangian variable description

The Lagrangian variable description of a fluid is described in Lagrange’s famous work (Lagrange, 1788), while historic and additional material can be found in Serrin (1959); Newcomb (1962); Van Kampen & Felderhof (1967); Morrison (1998). Because the Lagrangian description treats a fluid as a continuum of particles, it naturally is amenable to the Hamiltonian form. The Lagrangian variable is a coordinate that gives the position of a fluid element or parcel, as it is sometimes called, at time tt. We denote this variable by 𝐪=𝐪(𝐚,t)=(q1,q2,q3)\mathbf{q}=\mathbf{q}(\mathbf{a},t)=(q^{1},q^{2},q^{3}), which is measured relative to some cartesian coordinate system. Here 𝐚=(a1,a2,a3)\mathbf{a}=(a^{1},a^{2},a^{3}) denotes the fluid element label, which is often defined to be the position of the fluid element at the initial time, 𝐚=𝐪(𝐚,0)\mathbf{a}=\mathbf{q}(\mathbf{a},0), but this need not always be the case. The label 𝐚\mathbf{a} is a continuum analog of the discrete index that labels a generalized coordinate in a finite degree-of-freedom system. If DD is a domain that is fully occupied by the fluid, then at each fixed time tt, 𝐪:DD\mathbf{q}\colon D\rightarrow D is assumed to be 1-1 and onto. Not much is really known about the mathematical properties of this function, but we will assume that it is as smooth as it needs to be for the operations performed. Also, we will assume we can freely integrate by parts dropping surface terms and drop reference to D in our integrals.

When discussing the ideal fluid and MHD we will use repeated sum notation with upper and lower indices even though we are working in cartesian coordinates. And, unlike in Section 2, latin indices, i,j,k,i,j,k,\ell etc. will be summed over 1,2, and 3, the cartesian components, rather than to NN. This is done to avoid further proliferation of indices and we trust confusion will not arise because of context.

Important quantities are the deformation matrix, qi/aj\partial q^{i}/\partial a^{j} and its Jacobian determinant 𝒥:=det(qi/aj)\mathcal{J}:=\det(\partial q^{i}/\partial a^{j}), which is given by

𝒥=16ϵkjϵimnqkaiqjamqan,\mathcal{J}=\frac{1}{6}\epsilon_{kj\ell}\epsilon^{imn}\frac{\partial q^{k}}{\partial a^{i}}\frac{\partial q^{j}}{\partial a^{m}}\frac{\partial q^{\ell}}{\partial a^{n}}\,, (86)

where ϵijk=ϵijk\epsilon_{ijk}=\epsilon^{ijk} is the purely antisymmetric (Levi-Civita) tensor density. We assume a fluid element is uniquely determined by its label for all time. Thus, 𝒥0\mathcal{J}\neq 0 and we can invert 𝐪=𝐪(𝐚,t)\mathbf{q}=\mathbf{q}(\mathbf{a},t) to obtain the label associated with the fluid element at position 𝐱\mathbf{x} at time tt, 𝐚=𝐪1(𝐱,t)\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t). For coordinate transformations 𝐪=𝐪(𝐚,t)\mathbf{q}=\mathbf{q}(\mathbf{a},t) we have

qkajAki𝒥=δji,\frac{\partial q^{k}}{\partial a^{j}}\,\frac{A^{i}_{k}}{\mathcal{J}}=\delta^{i}_{j}\,, (87)

where AkiA^{i}_{k} is the cofactor of qk/ai\partial q^{k}/\partial a^{i} , which can be written as follows:

Aki=12ϵkjϵimnqjamqan.A^{i}_{k}=\frac{1}{2}\epsilon_{kj\ell}\epsilon^{imn}\frac{\partial q^{j}}{\partial a^{m}}\frac{\partial q^{\ell}}{\partial a^{n}}\,. (88)

Using 𝐪(𝐚,t)\mathbf{q}(\mathbf{a},t) or its inverse 𝐪1(𝐱,t)\mathbf{q}^{-1}(\mathbf{x},t), various quantities can be written either as a function of 𝐱\mathbf{x} or 𝐚\mathbf{a}. For convenience we list additional formulas below for latter use:

𝒥\displaystyle\mathcal{J} =13Akqak,\displaystyle=\frac{1}{3}A_{\ell}^{k}\frac{\partial q^{\ell}}{\partial a^{k}}\,, (89)
Aij\displaystyle A^{j}_{i} =𝒥(qi/aj),\displaystyle=\frac{\partial\mathcal{J}}{\partial(\partial q^{i}/\partial a^{j})}\,, (90)
(Aikf)ak\displaystyle\frac{\partial(A_{i}^{k}f)}{\partial a^{k}} =Aikfak,\displaystyle=A_{i}^{k}\,\frac{\partial f}{\partial a^{k}}\,, (91)
δ𝒥\displaystyle\delta\mathcal{J} =Aikδqiakor𝒥˙=Aikq˙iak,\displaystyle=A_{i}^{k}\frac{\partial\delta{q}^{i}}{\partial a^{k}}\hskip 37.84221pt\mathrm{or}\qquad\dot{\mathcal{J}}=A_{i}^{k}\frac{\partial\dot{q}^{i}}{\partial a^{k}}\,, (92)
δ(Ak𝒥)qau\displaystyle\delta\left(\frac{A_{\ell}^{k}}{\mathcal{J}}\right)\frac{\partial q^{\ell}}{\partial a^{u}} =Aik𝒥auδqiorδ(Ak𝒥)=AikAu𝒥2auδqi,\displaystyle=-\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{u}}\delta q^{i}\qquad\mathrm{or}\qquad\delta\left(\frac{A_{\ell}^{k}}{\mathcal{J}}\right)=-\frac{A_{i}^{k}A_{\ell}^{u}}{\mathcal{J}^{2}}\frac{\partial}{\partial a^{u}}\delta q^{i}\,, (93)
Auau[Aik𝒥fak]\displaystyle{{A}_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial f}{\partial a^{k}}\right]} =Aikak[Au𝒥fau],f,\displaystyle{=A_{i}^{k}\frac{\partial}{\partial a^{k}}\left[\frac{A_{\ell}^{u}}{\mathcal{J}}\frac{\partial f}{\partial a^{u}}\right]\,,\forall\,f}\,, (94)

which follow from the standard rule for differentiation of determinants and the expression for the cofactor matrix. For example, the commutator expression of (94) follows easily from (93), which in turn follows upon differentiating (87). These formulas are all of classical origin, e.g., the second equation of (92) is the Lagrangian variable version of a formula due to Euler (see e.g. Serrin, 1959).

Now we are in a position to recreate and generalize Lagrange’s Lagrangian for the ideal fluid action principle. On physical grounds we expect our fluid to possess kinetic and internal energies, and if magnetized, a magnetic energy. The total kinetic energy functional of the fluid is naturally given by

T[𝐪˙]:=12d3aρ0(𝐚)|𝐪˙|2,T[\dot{\mathbf{q}}]:=\frac{1}{2}\int\!d^{3}a\,\rho_{0}(\mathbf{a})\,|\dot{\mathbf{q}}|^{2}\,, (95)

where ρ0\rho_{0} is the mass density attached to the fluid element labeled by 𝐚\mathbf{a} and 𝐪˙\dot{\mathbf{q}} denotes time differentiation of 𝐪\mathbf{q} at fixed label 𝐚\mathbf{a}. Note, in (95) |𝐪˙|2=q˙iq˙i|\dot{\mathbf{q}}|^{2}=\dot{q}_{i}\dot{q}^{i}, where in general q˙i=gijq˙i\dot{q}_{i}=g_{ij}\,\dot{q}^{i}, but we will only consider the cartesian metric where gij=δij=ηijg_{ij}=\delta_{ij}=\eta_{ij}.

Fluids are assumed to be in local thermodynamic equilibrium and thus can be described by a function U(ρ,s)U(\rho,s), an internal energy per unit mass that depends on the specific volume ρ1\rho^{-1} and specific entropy ss. If a magnetic field 𝐁(𝐱,t)\mathbf{B}(\mathbf{x},t) were present, then we could add dependence on |𝐁||\mathbf{B}| as in Morrison (1982) to account for pressure anisotropy. (See also Morrison et al., 2014; Lingam et al., 2020, where this appears in the context of gyroviscosity.) The internal energy is written in terms of the Eulerian density and entropy (see Section 3.3) since we expect the fluid at each Eulerian observation point to be in thermal equilibrium. From UU we compute the temperature and pressure according to the usual differentiations, T=U/sT=\partial U/\partial s and p=ρ2U/ρp=\rho^{2}\partial U/\partial{\rho}. For MHD, the magnetic energy HB=d3x|𝐁|2/2H_{B}=\int\!d^{3}x\,|\mathbf{B}|^{2}/2 in Lagrangian variables would be added. For the ideal fluid, the total internal energy functional is

V[𝐪]:=d3aρ0U(ρ0/𝒥,s0).V[\mathbf{q}]:=\int\!d^{3}a\,\rho_{0}\,U\left({\rho_{0}}/{\mathcal{J}},s_{0}\right)\,. (96)

Here we have used the fact that a fluid element carries a specfic entropy s=s0(𝐚)s=s_{0}(\mathbf{a}) and a mass determined by ρ=ρ0(𝐚)/𝒥\rho=\rho_{0}(\mathbf{a})/\mathcal{J}. In Section 3.3 we will describe in detail the map from Lagrangian to Eulerian variables.

Thus, the special case of the action principle of (79) for the ideal fluid has Lagrange’s Lagrangian L[𝐪,𝐪˙]=TVL[\mathbf{q},\dot{\mathbf{q}}]=T-V. Variation of this action gives the Lagrangian equation of motion for the fluid

ρ0q¨i=Aijaj(ρ02𝒥2Uρ),\rho_{0}\ddot{q}_{i}=-A^{j}_{i}\,\frac{\partial}{\partial a^{j}}\left(\frac{\rho_{0}^{2}}{\mathcal{J}^{2}}\frac{\partial U}{\partial\rho}\right)\,, (97)

with an additional term that describes the 𝐉×𝐁\mathbf{J}\times\mathbf{B} force in Lagrangian variables for MHD. See, e.g., Newcomb (1962); Morrison (1998, 2009) for details of this calculation and the MHD extension.

3.2 Hamiltonian formalism in Lagrangian description

Upon defining the momentum density as usual by

πi=δLδq˙i=ρ0q˙i,\pi_{i}=\frac{\delta L}{\delta\dot{q}^{i}}=\rho_{0}\,\dot{q}_{i}\,, (98)

we can obtain the Hamiltonian by Legendre transformation, yielding

H[𝝅,𝐪]=T+V=d3a(|𝝅|22ρ0+ρ0U(ρ0/𝒥,s0)),H[{\bm{\pi}},\mathbf{q}]=T+V=\int\!d^{3}a\,\left(\frac{|{\bm{\pi}}|^{2}}{2\rho_{0}}\,+\rho_{0}U\left({\rho_{0}}/{\mathcal{J}},s_{0}\right)\right)\,, (99)

where |𝝅|2=πiπi=πiηijπj|\bm{\pi}|^{2}=\pi^{i}\pi_{i}=\pi_{i}\eta^{ij}\pi_{j}. This Hamiltonian with the canonical Poisson bracket,

{F,G}=d3a(δFδqiδGδπiδGδqiδFδπi),\left\{F,G\right\}=\int\!d^{3}a\,\left(\frac{\delta F}{\delta q^{i}}\frac{\delta G}{\delta\pi_{i}}-\frac{\delta G}{\delta q^{i}}\frac{\delta F}{\delta\pi_{i}}\right)\,, (100)

yields

q˙i\displaystyle\dot{q}^{i} ={qi,H}=πi/ρ0,\displaystyle=\{q^{i},H\}=\pi^{i}\!/\rho_{0}\,, (101)
π˙i\displaystyle\dot{\pi}_{i} ={πi,H}=Aijaj(ρ02𝒥2Uρ).\displaystyle=\{\pi_{i},H\}=-A^{j}_{i}\,\frac{\partial}{\partial a^{j}}\left(\frac{\rho_{0}^{2}}{\mathcal{J}^{2}}\frac{\partial U}{\partial\rho}\right)\,. (102)

Equations (101) and (102) are equivalent to (97). For MHD a term HBH_{B} is added to (99) (see Newcomb, 1962; Morrison, 2009). We will give this explicitly in the constraint context in Section 4.2.1 after discussing the Lagrange to Euler map.

3.3 Hamiltonian formalism in Eulerian description via the Lagrange to Euler map

In order to understand how constraints in terms of the Lagrangian variable description relate to those in terms of the Eulerian description, in particular 𝐯=0\nabla\cdot\mathbf{v}=0, it is necessary to understand the mapping from Lagrangian to Eulerian variables. Thus, we record here the relationship between the two unconstrained descriptions, i.e., how the noncanonical Hamiltonian structure of the compressible Euler’s equations relates to the Hamiltonian structure described in Section 3.2.

For the ideal fluid, the set of Eulerian variables can be taken to be {𝐯,ρ,s}\{\mathbf{v},\rho,s\}, where 𝐯(𝐱,t)\mathbf{v}(\mathbf{x},t) is the velocity field at the Eulerian observation point, 𝐱=(x,y,z)=(x1,x2,x3)\mathbf{x}=(x,y,z)=(x^{1},x^{2},x^{3}) at time tt and, as as noted in Section 3.1, ρ(𝐱,t)\rho(\mathbf{x},t) is the mass density and s(𝐱,t)s(\mathbf{x},t) is the specific entropy. In order to describe magnetofluids the magnetic field 𝐁(𝐱,t)\mathbf{B}(\mathbf{x},t) would be appended to this set. It is most important to distinguish between the Lagrangian fluid element position and label variables, 𝐪\mathbf{q} and 𝐚\mathbf{a}, and the Eulerian observation point 𝐱\mathbf{x}, the latter two being independent variables. Confusion exists in the literature because some authors use the same symbol for the Lagrangian coordinate 𝐪\mathbf{q} and the Eulerian observation point 𝐱\mathbf{x}.

The Lagrangian and Eulerian descriptions must clearly be related and, indeed, knowing 𝐪(𝐚,t)\mathbf{q}(\mathbf{a},t) we can obtain 𝐯(𝐱,t)\mathbf{v}(\mathbf{x},t). If one were to insert a velocity probe into a fluid at (𝐱,t)(\mathbf{x},t) then one would measure the velocity of the fluid element that happened to be at that position at that time. Thus it is clear that 𝐪˙(𝐚,t)=𝐯(𝐱,t)\dot{\mathbf{q}}(\mathbf{a},t)=\mathbf{v}(\mathbf{x},t), where recall the overdot means the time derivative at constant 𝐚\mathbf{a}. But, which fluid element will be at 𝐱\mathbf{x} at time tt? Evidently 𝐱=𝐪(𝐚,t)\mathbf{x}=\mathbf{q}(\mathbf{a},t), which upon inversion yields the label of that element that will be measured, 𝐚=𝐪1(𝐱,t)\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t). Thus, the Eulerian velocity field is given by

𝐯(𝐱,t)=𝐪˙(𝐚,t)|𝐚=𝐪1(𝐱,t)=𝐪˙𝐪1(𝐱,t).\mathbf{v}(\mathbf{x},t)=\left.\dot{\mathbf{q}}(\mathbf{a},t)\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\dot{\mathbf{q}}\circ\mathbf{q}^{-1}(\mathbf{x},t)\,. (103)

Properties can be attached to fluid elements, just as a given mass is identified with a given particle in mechanics. For a continuum system it is natural to attach a mass density, ρ0(𝐚)\rho_{0}(\mathbf{a}), to the element labeled by 𝐚\mathbf{a}. Whence the element of mass in a given volume is given by ρ0d3a\rho_{0}d^{3}a and this amount of mass is preserved by the flow, i.e. ρ(𝐱,t)d3x=ρ0(𝐚)d3a\rho(\mathbf{x},t)d^{3}x=\rho_{0}(\mathbf{a})d^{3}a. Because the locus of points of material surfaces move with the fluid are determined by 𝐪\mathbf{q}, an initial volume element d3ad^{3}a maps into a volume element d3xd^{3}x at time tt according to

d3x=𝒥d3a,d^{3}x=\mathcal{J}d^{3}a\,, (104)

Thus, using (104) we obtain ρ0=ρ𝒥\rho_{0}=\rho\mathcal{J} as used in Section 3.1.

Other quantities could be attached to a fluid element; for the ideal fluid, entropy per unit mass, s(𝐱,t)s(\mathbf{x},t), is such a quantity. The assumption that each fluid element is isentropic then amounts to s=s0s=s_{0}. Similarly, for MHD a magentic field, B0(𝐚)B_{0}(\mathbf{a}), can be attached, and then the frozen flux assumption yields Bd2x=B0d2aB\cdot d^{2}x=B_{0}\cdot d^{2}a. An initial area element d2ad^{2}a maps into an area element d2xd^{2}x at time tt according to

(d2x)i=Aij(d2a)j.(d^{2}x)_{i}=A^{j}_{i}\,(d^{2}a)_{j}\,. (105)

Using (105) we obtain 𝒥Bi=B0jqi/aj\mathcal{J}B^{i}=B_{0}^{j}\,\partial q^{i}/\partial a^{j}.

Sometimes it is convenient to use another set of Eulerian density variables: {𝐌,ρ,σ,𝐁}\{\mathbf{M},\rho,\sigma,\mathbf{B}\}, where σ=ρs\sigma=\rho s is the entropy per unit volume, and 𝐌=ρ𝐯\mathbf{M}=\rho\mathbf{v} is the momentum density. These Eulerian variables can be represented by using the Dirac delta function to ‘pluck out’ the fluid element that happens to be at the Eulerian observation point 𝐱\mathbf{x} at time tt. For example, the mass density ρ(𝐱,t)\rho(\mathbf{x},t) is obtained by

ρ(𝐱,t)=d3aρ0(𝐚)δ(𝐱𝐪(𝐚,t))=ρ0𝒥|𝐚=𝐪1(𝐱,t).\rho({\mathbf{x}},t)=\int\!d^{3}a\,\rho_{0}(\mathbf{a})\,\delta\left({\mathbf{x}}-{\mathbf{q}}\left(\mathbf{a},t\right)\right)=\left.\frac{\rho_{0}}{\mathcal{J}}\right|_{\mathbf{a}=\mathbf{q}^{-1}({\mathbf{x}},t)}\,. (106)

The density one observes at 𝐱\mathbf{x} at time tt will be the one attached to the fluid element that happens to be there then, and this fluid element has a label given by solving 𝐱=𝐪(𝐚,t)\mathbf{x}=\mathbf{q}(\mathbf{a},t). The second equality of (106) is obtained by using the three-dimensional version of the delta function identity δ(f(x))=iδ(xxi)/|f(xi)|\delta(f(x))=\sum_{i}\delta(x-x_{i})/|f^{\prime}(x_{i})|, where f(xi)=0f(x_{i})=0. Similarly, the entropy per unit volume is given by

σ(𝐱,t)=d3aσ0(𝐚)δ(𝐱𝐪(𝐚,t))=σ0𝒥|𝐚=𝐪1(𝐱,t),\sigma({\mathbf{x}},t)=\int\!d^{3}a\,\sigma_{0}(\mathbf{a})\,\delta\left({\mathbf{x}}-{\mathbf{q}}\left(\mathbf{a},t\right)\right)=\left.\frac{\sigma_{0}}{\mathcal{J}}\right|_{\mathbf{a}=\mathbf{q}^{-1}({\mathbf{x}},t)}\,, (107)

which is consistent with σ0(𝐚)=ρ0(𝐚)s0(𝐚)\sigma_{0}(\mathbf{a})=\rho_{0}(\mathbf{a})s_{0}(\mathbf{a}) and s(𝐱,t)=s0(𝐚)|𝐚=𝐪1(𝐱,t)s(\mathbf{x},t)=\left.s_{0}(\mathbf{a})\right|_{\mathbf{a}=\mathbf{q}^{-1}({\mathbf{x}},t)}, where the latter means ss is constant along a Lagrangian orbit. Proceeding, the momentum density, 𝐌=(M1,M2,M3)\mathbf{M}=(M_{1},M_{2},M_{3}), is related to the Lagrangian canonical momentum (defined in Section 3.2) by

𝐌(𝐱,t)=d3a𝝅(𝐚,t)δ(𝐱𝐪(𝐚,t))=𝝅(𝐚,t)𝒥|𝐚=𝐪1(𝐱,t),\mathbf{M}(\mathbf{x},t)=\int\!d^{3}a\,\bm{\pi}(\mathbf{a},t)\,\delta\left({\mathbf{x}}-{\mathbf{q}}(\mathbf{a},t)\right)=\left.\frac{{\bm{\pi}}(\mathbf{a},t)}{\mathcal{J}}\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}\,, (108)

where for the ideal fluid and MHD,   𝝅(𝐚,t)=(π1,π2,π3)=ρ0𝐪˙{\bm{\pi}}(\mathbf{a},t)=(\pi_{1},\pi_{2},\pi_{3})=\rho_{0}\dot{\mathbf{q}}. Lastly,

Bi(𝐱,t)=d3aqi(𝐚,t)ajB0j(𝐚)δ(𝐱𝐪(𝐚,t))=qi(𝐚,t)ajB0j(𝐚)𝒥|𝐚=𝐪1(𝐱,t),B^{i}(\mathbf{x},t)=\int\!d^{3}a\,\frac{\partial q^{i}(\mathbf{a},t)}{\partial a^{j}}B_{0}^{j}(\mathbf{a})\,\delta\left({\mathbf{x}}-{\mathbf{q}}(\mathbf{a},t)\right)=\left.\frac{\partial q^{i}(\mathbf{a},t)}{\partial a^{j}}\frac{B_{0}^{j}(\mathbf{a})}{\mathcal{J}}\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}\,, (109)

for the components of the magnetic field. It may be unfamiliar to view the magnetic field as density, but in MHD it obeys a conservation law. Geometrically, however, it naturally satisfies the equations of a vector density associated with a differential 2-form as was observed in Morrison (1982) and Tur & Yanovsky (1993).

To obtain the noncanonical Eulerian Poisson bracket we consider functionals F[𝐪,π]F[\mathbf{q},\mathbf{\pi}] that are restricted so as to obtain their dependence on 𝐪\mathbf{q} and π\mathbf{\pi} only through the Eulerian variables. Upon setting F[𝐪,𝝅]=F¯[𝐯,ρ,σ]F[\mathbf{q},\bm{\pi}]=\bar{F}[\mathbf{v},\rho,\sigma], equating variations of both sides,

δF=d3a[δFδ𝐪δ𝐪+δFδπδπ]=d3x[δF¯δρδρ+δF¯δσδσ+δF¯δ𝐌δ𝐌]=δF¯,\delta F=\int d^{3}a\left[\frac{\delta F}{\delta\mathbf{q}}\cdot\delta\mathbf{q}+\frac{\delta F}{\delta\mathbf{\pi}}\cdot\delta\mathbf{\pi}\right]=\int d^{3}x\,\left[\frac{\delta\bar{F}}{\delta\rho}\delta\rho+\frac{\delta\bar{F}}{\delta\sigma}\delta\sigma+\frac{\delta\bar{F}}{\delta\mathbf{M}}\cdot\delta\mathbf{M}\right]=\delta\bar{F}\,, (110)

varying the expressions (106), (107), and (108), substituting the result into (110), and equating the independent coefficients of δ𝐪\delta\mathbf{q} and δ𝝅\delta{\bm{\pi}}, we obtain

δFδ𝐪\displaystyle\frac{\delta F}{\delta\mathbf{q}} =d3x[ρ0δF¯δρ+σ0δF¯δσ+πiδF¯δMi]δ(𝐱𝐪),\displaystyle=\int d^{3}x\,\left[\rho_{0}\,\nabla\frac{\delta\bar{F}}{\delta\rho}+\sigma_{0}\,\nabla\frac{\delta\bar{F}}{\delta\sigma}+\pi_{i}\nabla\frac{\delta\bar{F}}{\delta M_{i}}\right]\,\delta(\mathbf{x}-\mathbf{q})\,, (111)
δFδ𝝅\displaystyle\frac{\delta F}{\delta{\bm{\pi}}} =d3xδF¯δ𝐌δ(𝐱𝐪).\displaystyle=\int d^{3}x\,\frac{\delta\bar{F}}{\delta\mathbf{M}}\,\delta(\mathbf{x}-\mathbf{q})\,. (112)

(See Morrison (1998) and Morrison & Greene (1980) for details.) Upon substitution of (111) and (112), expressions of the functional chain rule that relate Lagrangian functional derivatives to the Eulerian functional derivates, into (100) yields the following bracket expressed entirely in terms of the Eulerian fields {𝐌,ρ,σ}\{\mathbf{M},\rho,\sigma\}:

{F,G}\displaystyle\{F,G\} =\displaystyle= d3x[Mi(δFδMjxjδGδMiδGδMjxjδFδMi)\displaystyle-\int\!d^{3}x\,\Bigg{[}M_{i}\Bigg{(}\frac{\delta F}{\delta M_{j}}\frac{\partial}{\partial x^{j}}\frac{\delta G}{\delta M_{i}}-\frac{\delta G}{\delta M_{j}}\frac{\partial}{\partial x^{j}}\frac{\delta F}{\delta M_{i}}\Bigg{)} (113)
+\displaystyle+ ρ(δFδ𝐌δGδρδGδ𝐌δFδρ)+σ(δFδ𝐌δGδσδGδ𝐌δFδσ)].\displaystyle\rho\,\Bigg{(}\frac{\delta F}{\delta\mathbf{M}}\cdot\nabla\frac{\delta G}{\delta\rho}-\frac{\delta G}{\delta\mathbf{M}}\cdot\nabla\frac{\delta F}{\delta\rho}\Bigg{)}+\sigma\,\Bigg{(}\frac{\delta F}{\delta\mathbf{M}}\cdot\nabla\frac{\delta G}{\delta\sigma}-\frac{\delta G}{\delta\mathbf{M}}\cdot\nabla\frac{\delta F}{\delta\sigma}\Bigg{)}\Bigg{]}\,.

In (113) we have dropped the overbars on the Eulerian functional derivatives. The bracket for MHD is the above with the addition of the following term, which is obtained by adding a 𝐁\mathbf{B} contribution to (110):

{F,G}B\displaystyle\{F,G\}_{B} =d3x[𝐁(δFδ𝐌δGδ𝐁δGδ𝐌δFδ𝐁)\displaystyle=-\int\!d^{3}x\,\Bigg{[}\mathbf{B}\cdot\left(\frac{\delta F}{\delta\mathbf{M}}\cdot\nabla\frac{\delta G}{\delta\mathbf{B}}-\frac{\delta G}{\delta\mathbf{M}}\cdot\nabla\frac{\delta F}{\delta\mathbf{B}}\right)
+𝐁((δFδ𝐌)δGδ𝐁(δGδ𝐌)δFδ𝐁)],\displaystyle\hskip 28.45274pt+\mathbf{B}\cdot\left(\nabla\left(\frac{\delta F}{\delta\mathbf{M}}\right)\cdot\frac{\delta G}{\delta\mathbf{B}}-\nabla\left(\frac{\delta G}{\delta\mathbf{M}}\right)\cdot\frac{\delta F}{\delta\mathbf{B}}\right)\Bigg{]}\,, (114)

where dyadic notation is used; for example, 𝐁[(𝐃)𝐂]=i,jBiCjDj/xi\mathbf{B}\cdot[\nabla(\mathbf{D})\cdot\mathbf{C}]=\sum_{i,j}B_{i}C_{j}\partial D_{j}/\partial x_{i}, for vectors 𝐁,𝐃\mathbf{B},\mathbf{D}, and 𝐂\mathbf{C}. Alternatively, the bracket in terms of {𝐯,ρ,s,𝐁}\{\mathbf{v},\rho,s,\mathbf{B}\} is obtained using chain rule expressions, e.g.,

δFδρ|𝐯,s=δFδρ|𝐌,s+𝐌ρδFδ𝐌+σρδFδσ,\frac{\delta F}{\delta\rho}\Bigg{|}_{\mathbf{v},s}=\frac{\delta F}{\delta\rho}\Bigg{|}_{\mathbf{M},s}+\frac{\mathbf{M}}{\rho}\cdot\frac{\delta F}{\delta\mathbf{M}}+\frac{\sigma}{\rho}\frac{\delta F}{\delta\sigma}\,, (115)

yielding

{F,G}\displaystyle\{F,G\} =d3x[(δFδρδGδ𝐯δGδρδFδ𝐯)+(×𝐯ρδGδ𝐯×δFδ𝐯)\displaystyle=-\int\!d^{3}x\,\Bigg{[}\Bigg{(}\frac{\delta F}{\delta\rho}\nabla\cdot\frac{\delta G}{\delta\mathbf{v}}-\frac{\delta G}{\delta\rho}\nabla\cdot\frac{\delta F}{\delta\mathbf{v}}\Bigg{)}+\Bigg{(}\frac{\nabla\times\mathbf{v}}{\rho}\cdot\frac{\delta G}{\delta\mathbf{v}}\times\frac{\delta F}{\delta\mathbf{v}}\Bigg{)}
+sρ(δFδsδGδ𝐯δGδsδFδ𝐯)],\displaystyle\hskip 56.9055pt+\frac{\nabla s}{\rho}\cdot\Bigg{(}\frac{\delta F}{\delta s}\frac{\delta G}{\delta\mathbf{v}}-\frac{\delta G}{\delta s}\frac{\delta F}{\delta\mathbf{v}}\Bigg{)}\Bigg{]}\,, (116)

and

{F,G}B\displaystyle\{F,G\}_{B} =d3x[𝐁(1ρδFδ𝐯δGδ𝐁1ρδGδ𝐯δFδ𝐁)\displaystyle=-\int\!d^{3}x\,\Bigg{[}\mathbf{B}\cdot\left(\frac{1}{\rho}\frac{\delta F}{\delta\mathbf{v}}\cdot\nabla\frac{\delta G}{\delta\mathbf{B}}-\frac{1}{\rho}\frac{\delta G}{\delta\mathbf{v}}\cdot\nabla\frac{\delta F}{\delta\mathbf{B}}\right)
+𝐁((1ρδFδ𝐯)δGδ𝐁(1ρδGδ𝐯)δFδ𝐁)].\displaystyle\hskip 28.45274pt+\mathbf{B}\cdot\left(\nabla\left(\frac{1}{\rho}\frac{\delta F}{\delta\mathbf{v}}\right)\cdot\frac{\delta G}{\delta\mathbf{B}}-\nabla\left(\frac{1}{\rho}\frac{\delta G}{\delta\mathbf{v}}\right)\cdot\frac{\delta F}{\delta\mathbf{B}}\right)\Bigg{]}\,. (117)

The bracket of (116) plus that of (117) with the Hamiltonian

H[ρ,s,𝐯,𝐁]=d3x(12ρ|𝐯|2+ρU(ρ,s)+12|𝐁|2)H[\rho,s,\mathbf{v},\mathbf{B}]=\int\!d^{3}x\left(\frac{1}{2}\rho|\mathbf{v}|^{2}+\rho U(\rho,s)+\frac{1}{2}|\mathbf{B}|^{2}\right) (118)

gives the Eulerian version of MHD in Hamiltonian form, 𝐯/t={𝐯,H}\partial\mathbf{v}/\partial t=\{\mathbf{v},H\}, etc., and similarly using (113) plus (114) with the Hamiltonian expressed in terms of (𝐌,ρ,σ,𝐁)(\mathbf{M},\rho,\sigma,\mathbf{B}). Ideal fluid follows upon neglecting the 𝐁\mathbf{B} terms.

3.4 Constants of motion: Eulerian vs. Lagrangian

In oder to compare the imposition of constraints in the Lagrangian and Eulerian descriptions, it is necessary to compare Lagrangian and Eulerian conservations laws. This is because constraints, when enforced, are conserved quantities. The comparison is not trivial because time independent quantities in the Eulerian description can be time dependent in the Lagrangian description.

Consider a Lagrangian function f(𝐚,t)f(\mathbf{a},t), typical of the Lagrangian variable description, and the relation 𝐱=𝐪(𝐚,t)\mathbf{x}=\mathbf{q}(\mathbf{a},t), which relates an Eulerian observation point 𝐱\mathbf{x} to a corresponding fluid element trajectory value. The function ff can be written in either picture by composition, as follows:

f(𝐚,t)=f~(𝐱,t)=f~(𝐪(𝐚,t),t),f(\mathbf{a},t)=\tilde{f}(\mathbf{x},t)=\tilde{f}(\mathbf{q}(\mathbf{a},t),t)\,, (119)

where we will use a tilde to indicated the Eulerian form of a Lagrangian function. Application of the chain rule gives

Aki𝒥fai|𝐚=𝐪1(𝐱,t)=f~xkandAk𝒥ak(π𝒥)|𝐚=𝐪1(𝐱,t)=𝐯,\left.\frac{A^{i}_{k}}{\mathcal{J}}\,\frac{\partial f}{\partial a^{i}}\,\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\frac{\partial\tilde{f}}{\partial x^{k}}\qquad\mathrm{and}\qquad\left.\frac{A_{\ell}^{k}}{\mathcal{J}}\,\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\mathcal{J}}\right)\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\nabla\cdot\mathbf{v}\,, (120)

with the second equality of (120) being a special case of the first. Similarly,

f˙|𝐚=𝐪1(𝐱,t)=f~t+q˙i(𝐚,t)f~xi|𝐚=𝐪1(𝐱,t)=f~t+𝐯f~(𝐱,t),\left.\dot{f}\,\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\frac{\partial\tilde{f}}{\partial t}+\left.\dot{q}^{i}(\mathbf{a},t)\,\frac{\partial\tilde{f}}{\partial x^{i}}\,\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\frac{\partial\tilde{f}}{\partial t}+\mathbf{v}\cdot\nabla\tilde{f}(\mathbf{x},t)\,, (121)

where recall an overdot denotes the time derivative at constant 𝐚\mathbf{a}, /t\partial/\partial t denotes the time derivative at constant 𝐱\mathbf{x}, and \nabla is the Eulerian gradient with components /xi\partial/\partial x^{i} as used in (120). Because the Jacobian determinant 𝒥\mathcal{J} is composed of derivatives of 𝐪\mathbf{q}, we have 𝒥(𝐚,t)|𝐚=𝐪1(𝐱,t)=𝒥~(𝐱,t)\mathcal{J}(\mathbf{a},t)|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\tilde{\mathcal{J}}(\mathbf{x},t), whence one obtains a formula due to Euler (see e.g. Serrin, 1959),

𝒥~t+𝐯𝒥~=𝒥~𝐯,\frac{\partial\tilde{\mathcal{J}}}{\partial t}+\mathbf{v}\cdot\nabla\tilde{\mathcal{J}}=\tilde{\mathcal{J}}\,\nabla\cdot\mathbf{v}\,, (122)

which can be compared to its Lagrangian version of (92).

Now, consider a conservation law in the Lagrangian variable description,

𝒟˙L+Γ𝒟Liai=0,\dot{\mathcal{D}}_{L}+\frac{\partial\Gamma_{\mathcal{D}_{L}}^{i}}{\partial a^{i}}=0\,, (123)

where the density 𝒟L(𝐚,t)\mathcal{D}_{L}(\mathbf{a},t) has the associated flux 𝚪𝒟L\bm{\Gamma}_{\mathcal{D}_{L}}. Then, the associated conserved quantity is

𝒟L=d3a𝒟L,\mathcal{I}_{\mathcal{D}_{L}}=\int\!d^{3}a\,\mathcal{D}_{L}\,, (124)

which satisfies d𝒟L/dt=0d\mathcal{I}_{\mathcal{D}_{L}}/dt=0 provided surface terms vanish. Similarly, an Eulerian conservation law with density 𝒟E\mathcal{D}_{E} and flux 𝚪𝒟E{\bm{\Gamma}}_{\mathcal{D}_{E}} is

𝒟Et+Γ𝒟Eixi=0\frac{\partial\mathcal{D}_{E}}{\partial t}+\frac{\partial\Gamma_{\mathcal{D}_{E}}^{i}}{\partial x^{i}}=0 (125)

and the following is similarly constant in time:

𝒟E=d3x𝒟E.\mathcal{I}_{\mathcal{D}_{E}}=\int\!d^{3}x\,\mathcal{D}_{E}\,. (126)

The relationship between the two conservation laws (123) and (125) can be obtained by defining

𝒟~L=𝒥𝒟E,Γ~𝒟Li=AkiΓ¯𝒟Ek,and𝚪𝒟E=𝚪¯𝒟E+𝐯𝒟E,\tilde{\mathcal{D}}_{L}={\mathcal{J}}\mathcal{D}_{E}\,,\qquad\tilde{\Gamma}^{i}_{\mathcal{D}_{L}}=A^{i}_{k}\,\bar{\Gamma}_{\mathcal{D}_{E}}^{k}\,,\qquad{\rm and}\qquad\mathbf{\Gamma}_{\mathcal{D}_{E}}=\mathbf{\bar{\Gamma}}_{\mathcal{D}_{E}}+\mathbf{v}\,\mathcal{D}_{E}\,, (127)

and their equivalence follows from (92), (121), and (122). Given a Lagrangian conservation law, one can use (127) to obtain a corresponding Eulerian conservation law. The density 𝒟E\mathcal{D}_{E} is obtained from the first equation of (127), a piece of the Eulerian flux 𝚪¯𝒟E\bar{\bm{\Gamma}}_{\mathcal{D}_{E}} from the second, which then can be substitued into the third equation of (127) to obtain the complete Eulerian flux 𝚪𝒟E\bm{\Gamma}_{\mathcal{D}_{E}}. An Eulerian conservation law is most useful when one can write 𝒟E\mathcal{D}_{E} and 𝚪𝒟E\bm{\Gamma}_{\mathcal{D}_{E}} entirely in terms of the Eulerian variables of the fluid.

The simplest case occurs when 𝒟L\mathcal{D}_{L} only depends on 𝐚\mathbf{a}, in which case the corresponding flux is zero and 𝒟L/t=0\partial\mathcal{D}_{L}/\partial t=0 and d𝒟L/dt=0d\mathcal{I}_{\mathcal{D}_{L}}/dt=0 follow directly because (124) has no time dependence whatsoever. Any attribute attached to a fluid element only depends on the label 𝐚\mathbf{a} and this has a trivial conservation law of this form. However, such trivial Lagrangian conservation laws yield nontrivial Eulerian conservation laws. Observe, even thought 𝚪¯𝒟E0\mathbf{\bar{\Gamma}}_{\mathcal{D}_{E}}\equiv 0 by (127), 𝚪𝒟E=𝐯𝒟E0\bm{\Gamma}_{\mathcal{D}_{E}}=\mathbf{v}\mathcal{D}_{E}\neq 0. Consider the case of the entropy where 𝒟L=s0(𝐚)\mathcal{D}_{L}=s_{0}(\mathbf{a}), whence s(𝐱,t)=s0(𝐚(𝐱,t))s(\mathbf{x},t)=s_{0}(\mathbf{a}(\mathbf{x},t)) and by (121),

st+𝐯s=0,\frac{\partial s}{\partial t}+\mathbf{v}\cdot\nabla s=0\,, (128)

with the quantity s=s0/𝒥s=s_{0}/\mathcal{J} being according to (127) the Eulerian conserved density, as can be verified using (122). But, as it stands, this density cannot be written in terms of Eulerian fluid variables. However, σ0=ρ0s0\sigma_{0}=\rho_{0}s_{0} is also a trivial Lagrangian conserved density and according to (127) we have the Eulerian density ρ0s0/𝒥=ρs=σ\rho_{0}s_{0}/\mathcal{J}=\rho s=\sigma that satisfies

σt+(𝐯σ)=0.\frac{\partial\sigma}{\partial t}+\nabla\cdot(\mathbf{v}\sigma)=0\,. (129)

Thus, it follows that any advected scalar has an associated conserved quantity obtained by multiplication by ρ\rho.

As another example, consider the quantity B0iqj/aiB_{0}^{i}\partial q^{j}/\partial a^{i}. This quantity is the limit displacement between two nearby fluid elements, i.e., 𝐪(𝐚,t)𝐪(𝐚+δ𝐚,t)\mathbf{q}(\mathbf{a},t)-\mathbf{q}(\mathbf{a}+\delta\mathbf{a},t) along the initial magnetic field as δ𝐚0\delta\mathbf{a}\rightarrow 0. Evidently,

(B0iqjai)˙=B0iq˙jai=ai(B0iq˙j),\dot{\left(B_{0}^{i}\frac{\partial q^{j}}{\partial a^{i}}\right)}=B_{0}^{i}\frac{\partial\dot{q}^{j}}{\partial a^{i}}=\frac{\partial}{\partial a^{i}}\left(B_{0}^{i}\dot{q}^{j}\right)\,, (130)

where the second equality follows if the initial magnetic field is divergence free. This is of course another trivial conservation law, for the time derivative of a density that is a divergence will always be a divergence. However, let us see what this becomes in the Eulerian description. According to (127) the corresponding Eulerian density is 𝒟E=𝒟L/𝒥\mathcal{D}_{E}=\mathcal{D}_{L}/\mathcal{J}; so, the density associated with this trivial conservation law (130) is

Bj(𝐱,t)=B0i𝒥qjai|𝐚=𝐪1(𝐱,t).B^{j}(\mathbf{x},t)=\left.\frac{B_{0}^{i}}{\mathcal{J}}\frac{\partial q^{j}}{\partial a^{i}}\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}\,. (131)

which as we saw in Section 3.3 is the expression one gets for the MHD magnetic field because of flux conservation. That the divergence-free magnetic field satisfies a conservation law is clear from

𝐁t=𝐯𝐁+𝐁𝐯𝐁𝐯=T,\frac{\partial\mathbf{B}}{\partial t}=-\mathbf{v}\cdot\nabla\mathbf{B}+\mathbf{B}\cdot\nabla\mathbf{v}-\mathbf{B}\,\nabla\cdot\mathbf{v}=\nabla\cdot\overset{\leftrightarrow}{{T}}\,, (132)

where the tensor T\overset{\leftrightarrow}{{T}} of the last equality is

T=𝐁𝐯𝐯𝐁.\overset{\leftrightarrow}{{T}}=\mathbf{B}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{B}\,. (133)

Thus we have another instance where a trivial Lagrangian conservation law leads to a nontrivial Eulerian one.

Although B0iqj/aiB_{0}^{i}{\partial q^{j}}/{\partial a^{i}} does not map into an expression entirely in terms of our set of Eulerian variables, we can divide it by ρ0\rho_{0}, a quantity that only depends on the label 𝐚\mathbf{a}, and obtain

B0iρ0qjai|𝐚=𝐪1(𝐱,t)=Bjρ.\left.\frac{B_{0}^{i}}{\rho_{0}}\frac{\partial q^{j}}{\partial a^{i}}\right|_{\mathbf{a}=\mathbf{q}^{-1}(\mathbf{x},t)}=\frac{B^{j}}{\rho}\,. (134)

Eulerianizing the counterpart of (130) for this expression gives

t(𝐁ρ)+𝐯(𝐁ρ)=𝐁ρ𝐯,\frac{\partial}{\partial t}\left(\frac{\mathbf{B}}{\rho}\right)+\mathbf{v}\cdot\nabla\left(\frac{\mathbf{B}}{\rho}\right)=\frac{\mathbf{B}}{\rho}\cdot\nabla\mathbf{v}\,, (135)

which is not an Eulerian conservation law. This is to be expected because, unlike what we did to get (132), we have Eulerianized without using (127). In light of its relationship to 𝐪(𝐚,t)𝐪(𝐚+δ𝐚,t)\mathbf{q}(\mathbf{a},t)-\mathbf{q}(\mathbf{a}+\delta\mathbf{a},t), the quantity 𝐁/ρ\mathbf{B}/\rho has been described as a measure of the distance of points on a magnetic field line (see e.g. Kampen & Felderhoff, 1967). This was predated by analogous arguments for vorticity (see e.g. Serrin, 1959).

4 Constraint theories for the incompressible ideal fluid

4.1 The incompressible fluid in Lagrangian variables

In order to enforce incompressibility, Lagrange added to his Lagrangian the constraint 𝒥=1\mathcal{J}=1 with the Lagrange multiplier λ(𝐚,t)\lambda(\mathbf{a},t),

Lλ[𝐪,𝐪˙]=T[𝐪˙]+λ𝒥,L_{\lambda}[\mathbf{q},\dot{\mathbf{q}}]=T[\dot{\mathbf{q}}]+\lambda\,\mathcal{J}\,, (136)

with TT given (95). Here we have dropped VV because incompressible fluids contain no internal energy. Upon insertion of (136) into the action of Hamilton’s principle it is discovered that λ\lambda corresponds to the pressure. The essence of this procedure was known to Lagrange. (See Serrin (1959) for historical details and Sommerfeld (1964) for an elementary exposition.) This procedure yields

ρ0q¨i=Ajiλaj,\rho_{0}\ddot{q}^{i}=-A^{i}_{j}\,\frac{\partial\lambda}{\partial a^{j}}\,, (137)

where use has been made of (92). The Eulerian form of (137) is clearly ρ(𝐯/t+𝐯𝐯)=λ\rho(\partial\mathbf{v}/\partial t+\mathbf{v}\cdot\nabla\mathbf{v})=-\nabla\lambda, whence it is clear that λ\lambda is the pressure. Although Lagrange knew the Lagrange multiplier was the pressure, he could only solve for it in special cases. The general procedure of Section 1.1 was not available because Green’s function techniques and the theory of elliptic equations were not at his disposal.

4.1.1 Lagrangian volume preserving geodesic flow

If the constraint is dropped from (136), we obtain free particle motion for an infinite-dimensional system, the ideal fluid case of (85) of Section 2.4, which is analogous to the finite-dimensional case of Section 2.1.1. Because the constraint 𝒥=1\mathcal{J}=1 only depends on the derivatives of 𝐪\mathbf{q}, it is a configuration space constraint; thus, it is an holonomic constraint. As is well-known and reviewed in Section 2.1.1, free particle motion with holonomic constaints is geodesic flow. Thus, following Lagrange, it is immediate that the ideal incompressible fluid is an infinite-dimensional version of geodesic flow.

Lagrange’s calculation was placed in a geometric/group theoretic setting in Arnold (1966) (see also Appendix 2 of Arnold (1978) and Arnold & Khesin (1998)). Given that the transformation 𝐚𝐪\mathbf{a}\leftrightarrow\mathbf{q}, at any time, is assumed to be a smooth invertible coordinate change, it is a Lie group, one referred to as the diffeomorphism group. With the additional assumption that these transformations are volume preserving, Lagrange’s constraint 𝒥=1\mathcal{J}=1, the transformations form a subgroup, the group of volume preserving diffeomorphisms. Thus, Lagrange’s work can be viewed as geodesic flow on the group of volume preserving diffeomorphisms.

Although Arnold’s assumptions of smoothness etc. are mathematically dramatic, his description of Lagrange’s calculations in these terms has spawned a considerable body of research. Associated with a geodesic flow is a metric, and whence one can calculate a curvature. In his original work, Arnold added the novel calculation of the curvature in the mathematically more forgiving case of two-dimensional flow with periodic boundary conditions.

4.2 Lagrangian-Dirac constraint theory

More recently there have been several works (Tassi et al., 2009; Chandre et al., 2013; Morrison et al., 2009), following Nguyen & Turski (1999, 2001), that treat the enforcement of the incompressibility constraint of hydrodynamics by Dirac’s method of constraints (Dirac, 1950). In these works the compressibility constraint was enforced in the Eulerian variable description of the fluid using the noncanonical Poisson bracket of Section 3.3 as the base bracket of a generalization of Dirac’s constraint theory. We will return to this approach in Section 3.3 where we revisit and extend Dirac’s constraint results for the fluid in the Eulerian variable description. Here, apparently for the first time, we consider the incompressibility constraint in the Lagrangian variable description, where the canonical Poisson bracket of (100) is the base for the construction of a Dirac bracket.

We adapt (84) for the fluid case at hand with the supposition of only two local constraints, which we write as

Da(𝐚)=d3aDa(𝐚)δ(𝐚𝐚),D^{a}(\mathbf{a}^{\prime})=\int d^{3}a\,D^{a}(\mathbf{a})\,\delta(\mathbf{a}-\mathbf{a}^{\prime})\,, (138)

where a=1,2a=1,2 and Da(𝐚)D^{a}(\mathbf{a}) is a shorthand for a function of 𝐪(𝐚,t)\mathbf{q}(\mathbf{a},t) and 𝝅(𝐚,t)\bm{\pi}(\mathbf{a},t) and their derivatives with respect to 𝐚\mathbf{a}. Then the matrix 𝔻\mathbb{D} is a 2×22\times 2 matrix with the components

𝔻ab(𝐚,𝐚)={Da(𝐚),Db(𝐚)},\mathbb{D}^{ab}(\mathbf{a},\mathbf{a}^{\prime})=\{D^{a}(\mathbf{a}),D^{b}(\mathbf{a}^{\prime})\}\,,

using the canonical bracket of (100). To construct the Dirac bracket

{F,G}={F,G}d3ad3a{F,Da(𝐚)}𝔻ab1(𝐚,𝐚){Db(𝐚),G},\{F,G\}_{*}=\{F,G\}-\int\!\!d^{3}a\!\!\int\!\!d^{3}a^{\prime}\,\{F,D^{a}(\mathbf{a})\}\mathbb{D}^{-1}_{ab}(\mathbf{a},\mathbf{a}^{\prime})\{D^{b}(\mathbf{a}^{\prime}),G\}, (139)

we require the inverse, which satisfies

d3a𝔻ac(𝐚,𝐚)𝔻cb1(𝐚,𝐚′′)=δbaδ(𝐚𝐚′′).\int\!d^{3}a\,\,\mathbb{D}^{ac}(\mathbf{a}^{\prime},\mathbf{a})\,\mathbb{D}^{-1}_{cb}(\mathbf{a},\mathbf{a}^{\prime\prime})=\delta^{a}_{b}\,\delta(\mathbf{a}^{\prime}-\mathbf{a}^{\prime\prime})\,. (140)

Rather than continuing with the general case, which is unwieldy, we proceed to the special case for the incompressible fluid, an infinite-dimensional version of the holonomic constraints discussed in Section 2.3.1.

4.2.1 Lagrangian-Dirac incompressibility holonomic constraint

Evidently we will want our holonomic incompressibility constraint to be 𝒥\mathcal{J}. However, it is convenient to express this by choosing

D1=ln(𝒥ρ0).D^{1}=\ln\left(\frac{\mathcal{J}}{\rho_{0}}\right)\,. (141)

This amounts to the same constraint as 𝒥=1\mathcal{J}=1 with the value D1=ln(ρ0)D^{1}=-\ln(\rho_{0}). The scaling of 𝒥\mathcal{J} in (141) by ρ0(𝐚)\rho_{0}(\mathbf{a}) is immaterial because it is a time-independent quantity. To obtain the second constraint we follow suit and set

D2=D˙1=Ak𝒥ak(πρ0)=ηjAk𝒥ak(πjρ0),D^{2}=\dot{D}^{1}=\frac{A_{\ell}^{k}}{\mathcal{J}}\,\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)=\eta^{\ell j}\,\frac{A_{\ell}^{k}}{\mathcal{J}}\,\frac{\partial}{\partial a^{k}}\left(\frac{\pi_{j}}{\rho_{0}}\right)\,, (142)

where recall we assume ηj=δj\eta^{\ell j}=\delta^{\ell j} and πj\pi_{j} is given by (98). That the constraint D2D^{2} is the time derivative of D1D^{1} requires the definition of πj\pi_{j} of (98) that uses the Hamiltonian d3a|𝝅|2/(2ρ0)\int\!d^{3}a\ {|{\bm{\pi}}|^{2}}/{(2\rho_{0})}.

Observe, that constraints D1D^{1} and D2D^{2} are local constraints in that they are enforced pointwise (see e.g. Flierl & Morrison, 2011), i.e., they are enforced on each fluid element labeled by 𝐚\mathbf{a}. Equation (141) corresponds in the Eulerian picture to ln(ρ)-\ln(\rho), while the second constraint of (142), the Lagrangian time derivative of the first constraint, corresponds in the Eulerian picture to 𝐯\nabla\cdot\mathbf{v}, which can be easily verified using the second equation of (120). Note, the particular values of these constraints of interest are, of course, 𝒥=1\mathcal{J}=1 and 𝐯=0\nabla\cdot\mathbf{v}=0, but the dynamics the Dirac bracket generates will preserve any values of these constraints. For example, we could set 𝒥=f(𝐚)\mathcal{J}=f\left(\mathbf{a}\right) where the arbitrary function ff is less than unity for some 𝐚\mathbf{a} and greater for others, corresponding to regions of fluid elements that experience contraction and expansion. Also note, because we have used 𝝅\bm{\pi} with the up index in (142); thus as seen in the second equality it depends on the metric. This was done to make it have the Eulerian form 𝐯\nabla\cdot\mathbf{v}.

For the constraints (141) and (142), 𝔻\mathbb{D} only depends on two quantities because D1D^{1} does not depend on 𝝅\bm{\pi}, i.e.  {D1,D1}=0\{D^{1},D^{1}\}=0 and {D1,D2}={D2,D1}\{D^{1},D^{2}\}=-\{D^{2},D^{1}\}. Thus the inverse has the form

𝔻1=(𝔻111𝔻121𝔻2110),\mathbb{D}^{-1}=\left(\begin{matrix}\mathbb{D}^{-1}_{11}&\mathbb{D}^{-1}_{12}\\ \mathbb{D}^{-1}_{21}&0\end{matrix}\right)\,, (143)

giving rise to the conditions

𝔻121𝔻21==𝔻211𝔻12and𝔻111𝔻12+𝔻121𝔻22=0,\mathbb{D}^{-1}_{12}\cdot\mathbb{D}^{21}=\mathcal{I}=\mathbb{D}^{-1}_{21}\cdot\mathbb{D}^{12}\,\qquad\mathrm{and}\qquad\mathbb{D}^{-1}_{11}\cdot\mathbb{D}^{12}+\mathbb{D}^{-1}_{12}\cdot\mathbb{D}^{22}=0\,, (144)

where \mathcal{I} is the identity. Thus, the inverse is easily tractable if the inverse of 𝔻12\mathbb{D}^{12} exists; whence,

𝔻111=𝔻121𝔻22𝔻211.\mathbb{D}^{-1}_{11}=-\mathbb{D}^{-1}_{12}\cdot\mathbb{D}^{22}\cdot\mathbb{D}^{-1}_{21}\,. (145)

In the above the symbol ‘\,\cdot\,’ is used to denote the product with the sum in infinite dimensions, i.e., integration over d3ad^{3}a as in (140). Equation (145) can be rewritten in an abbreviated form with implied integrals on repeated arguments as

𝔻111(𝐚,𝐚′′)=𝔻211(𝐚,𝐚^)𝔻22(𝐚^,𝐚ˇ)𝔻211(𝐚ˇ,𝐚′′).\mathbb{D}^{-1}_{11}(\mathbf{a}^{\prime},\mathbf{a}^{\prime\prime})=\mathbb{D}^{-1}_{21}(\mathbf{a}^{\prime},\hat{\mathbf{a}})\cdot\mathbb{D}^{22}(\hat{\mathbf{a}},\check{\mathbf{a}})\cdot\mathbb{D}^{-1}_{21}(\check{\mathbf{a}},\mathbf{a}^{\prime\prime})\,. (146)

In order to obtain 𝔻\mathbb{D} and its inverse, we need the functional derivatives of D1D^{1} and D2D^{2}. These are obtained directly by writing these local constraints as in (140), yielding

δD1(𝐚)δqi(𝐚)\displaystyle\frac{\delta D^{1}(\mathbf{a}^{\prime})}{\delta q^{i}(\mathbf{a})} =Aikakδ(𝐚𝐚)𝒥,\displaystyle=-A_{i}^{k}\frac{\partial}{\partial a^{k}}\frac{\delta(\mathbf{a}-\mathbf{a}^{\prime})}{\mathcal{J}}\,, (147)
δD1(𝐚)δπi(𝐚)\displaystyle\frac{\delta D^{1}(\mathbf{a}^{\prime})}{\delta\pi_{i}(\mathbf{a})} =0,\displaystyle=0\,, (148)

where use has been made of (92), and

δD2(𝐚)δqi(𝐚)\displaystyle\frac{\delta D^{2}(\mathbf{a}^{\prime})}{\delta q^{i}(\mathbf{a})} =au(AikAu𝒥2ak(πρ0)δ(𝐚𝐚)),\displaystyle=\frac{\partial}{\partial a^{u}}\left(\frac{A_{i}^{k}A_{\ell}^{u}}{\mathcal{J}^{2}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\delta(\mathbf{a}-\mathbf{a}^{\prime})\right)\,, (149)
δD2(𝐚)δπi(𝐚)\displaystyle\frac{\delta D^{2}\left(\mathbf{a}^{\prime}\right)}{\delta\pi_{i}(\mathbf{a})} =ηijρ0am(Ajm𝒥δ(𝐚𝐚)),\displaystyle=-\frac{\,\eta^{ij}}{\rho_{0}}\frac{\partial}{\partial a^{m}}\left(\frac{A_{j}^{m}}{\mathcal{J}}\delta\left(\mathbf{a}-\mathbf{a}^{\prime}\right)\right)\,, (150)

where use has been made of (93) and recalling we have (91) at our disposal.

Let us now insert (147), (148), (149), and (150) into the canonical Poisson bracket (100), to obtain

𝔻12(𝐚,𝐚)\displaystyle\mathbb{D}^{12}(\mathbf{a},\mathbf{a}^{\prime}) ={D1(𝐚),D2(𝐚)}\displaystyle=\{D^{1}(\mathbf{a}),D^{2}(\mathbf{a}^{\prime})\}
=Ai𝒥a(ηijρ0Ajkak(δ(𝐚𝐚)𝒥)),\displaystyle=-\frac{A_{i}^{\ell}}{\mathcal{J}}\frac{\partial}{\partial a^{\ell}}\left(\frac{\eta^{ij}}{\rho_{0}}{A_{j}^{k}}\frac{\partial}{\partial a^{k}}\left(\frac{\delta(\mathbf{a}-\mathbf{a}^{\prime})}{\mathcal{J}}\right)\right)\,, (151)

which corresponds to the symmetric matrix 𝕊\mathbb{S} of (34) and (49) and

𝔻22(𝐚,𝐚)\displaystyle\mathbb{D}^{22}({\mathbf{a}},\mathbf{a}^{\prime}) ={D2(𝐚),D2(𝐚)}\displaystyle=\{D^{2}({\mathbf{a}}),D^{2}(\mathbf{a}^{\prime})\}
=AikAu𝒥2ak(πρ0)au[ηijρ0am(Ajm𝒥δ(𝐚𝐚))]\displaystyle=\frac{A_{i}^{k}A_{\ell}^{u}}{\mathcal{J}^{2}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\frac{\partial}{\partial a^{u}}\left[\frac{\eta^{ij}}{\rho_{0}}\frac{\partial}{\partial a^{m}}\left(\frac{A_{j}^{m}}{\mathcal{J}}\delta\left(\mathbf{a}-\mathbf{a}^{\prime}\right)\right)\right]
Aim𝒥am[ηijρ0au(AjkAu𝒥2ak(πρ0)δ(𝐚𝐚))],\displaystyle\hskip 42.67912pt-\frac{A_{i}^{m}}{\mathcal{J}}\frac{\partial}{\partial a^{m}}\left[\frac{\eta^{ij}}{\rho_{0}}\frac{\partial}{\partial a^{u}}\left(\frac{A_{j}^{k}A_{\ell}^{u}}{\mathcal{J}^{2}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\delta(\mathbf{a}-\mathbf{a}^{\prime})\right)\right]\,, (152)

which corresponds to the antisymmetric matrix 𝔸\mathbb{A} of (35). Observe the symmetries corresponding to the matrices 𝕊\mathbb{S} and 𝔸\mathbb{A}, respectively, are here

d3a𝔻12(𝐚,𝐚)ϕ(𝐚)\displaystyle\int\!d^{3}a^{\prime}\,\mathbb{D}^{12}(\mathbf{a},\mathbf{a}^{\prime})\,\phi(\mathbf{a}^{\prime}) =d3a𝔻12(𝐚,𝐚)ϕ(𝐚),\displaystyle=\int d^{3}a^{\prime}\mathbb{D}^{12}(\mathbf{a}^{\prime},\mathbf{a})\,\phi(\mathbf{a}^{\prime})\,,
d3a𝔻22(𝐚,𝐚)ϕ(𝐚)\displaystyle\int\!d^{3}a^{\prime}\,\mathbb{D}^{22}(\mathbf{a},\mathbf{a}^{\prime})\,\phi(\mathbf{a}^{\prime}) =d3a𝔻22(𝐚,𝐚)ϕ(𝐚),\displaystyle=-\int d^{3}a^{\prime}\mathbb{D}^{22}(\mathbf{a}^{\prime},\mathbf{a})\,\phi(\mathbf{a}^{\prime})\,,

for all functions ϕ\phi. The first follows from integration by parts, while the second is obvious from its definition.

Using (140), the first condition of (144) is

d3a′′𝔻12(𝐚,𝐚′′)𝔻211(𝐚′′,𝐚^)=δ(𝐚𝐚^),\int\!d^{3}a^{\prime\prime}\,\,\mathbb{D}^{12}(\mathbf{a}^{\prime},\mathbf{a^{\prime\prime}})\,\mathbb{D}^{-1}_{21}(\mathbf{a^{\prime\prime}},\hat{\mathbf{a}})=\delta(\mathbf{a}^{\prime}-\hat{\mathbf{a}})\,, (153)

which upon substitution of (151) and integration gives

Ai𝒥a[ηijρ0Ajkak(𝔻211(𝐚,𝐚′′)𝒥)]=δ(𝐚𝐚′′).-\frac{A_{i}^{\ell}}{\mathcal{J}}\frac{\partial}{\partial a^{\ell}}\left[\frac{\eta^{ij}}{\rho_{0}}A_{j}^{k}\,\frac{\partial}{\partial a^{k}}\left(\frac{\mathbb{D}_{21}^{-1}(\mathbf{a},\mathbf{a}^{\prime\prime})}{\mathcal{J}}\right)\right]=\delta(\mathbf{a}-\mathbf{a}^{\prime\prime})\,. (154)

We introduce the formally self-adjoint operator (cf.  (91))

Δρ0f:=Ai𝒥a[ηijρ0Ajkak(f𝒥)],\Delta_{\rho_{0}}f:=\frac{A_{i}^{\ell}}{\mathcal{J}}\frac{\partial}{\partial a^{\ell}}\left[\frac{\eta^{ij}}{\rho_{0}}A_{j}^{k}\frac{\partial}{\partial a^{k}}\left(\frac{f}{\mathcal{J}}\right)\right]\,, (155)

i.e., an operator that satisfies

d3af(𝐚)Δρ0g(𝐚)=d3ag(𝐚)Δρ0f(𝐚),\int\!d^{3}a\,f(\mathbf{a})\,\Delta_{\rho_{0}}g(\mathbf{a})=\int\!d^{3}a\,g(\mathbf{a})\,\Delta_{\rho_{0}}f(\mathbf{a})\,, (156)

a property inherited by its inverse Δρ01\Delta_{\rho_{0}}^{-1}. Thus we can rewrite equation (154) as

𝔻211(𝐚,𝐚′′)=G0(𝐚,𝐚′′)=Δρ01δ(𝐚𝐚′′),\mathbb{D}_{21}^{-1}(\mathbf{a},\mathbf{a}^{\prime\prime})=-G_{0}\left(\mathbf{a},\mathbf{a}^{\prime\prime}\right)=-\Delta_{\rho_{0}}^{-1}\delta(\mathbf{a}-\mathbf{a}^{\prime\prime})\,, (157)

where G0G_{0} represents the Green function associated with (154).

In order to obtain 𝔻211\mathbb{D}^{-1}_{21}, we find it convenient to transform (157) to Eulerian variables. Using 𝐱=𝐪(𝐚,t)\mathbf{x}=\mathbf{q}(\mathbf{a},t) we find

𝔻211(𝐚,𝐚)𝒥=G(𝐱,𝐱)=G(𝐪(𝐚),𝐪(𝐚)),\frac{\mathbb{D}^{-1}_{21}(\mathbf{a},\mathbf{a}^{\prime})}{\mathcal{J}}=-G(\mathbf{x},\mathbf{x}^{\prime})=-G(\mathbf{q}(\mathbf{a}),\mathbf{q}(\mathbf{a}^{\prime}))\,, (158)

where GG satisfies

(1ρG)=Δρ𝔻211(𝐚,𝐚)𝒥=𝒥δ(𝐱𝐱).\nabla\cdot\left(\frac{1}{\rho}\nabla G\right)=-\Delta_{\rho}\frac{\mathbb{D}^{-1}_{21}(\mathbf{a},\mathbf{a}^{\prime})}{\mathcal{J}}=\mathcal{J}\delta(\mathbf{x}-\mathbf{x}^{\prime}). (159)

Here use has been made of identities (91) and (120). As noted in Section 1.1, under physically reasonable conditions, the operator

Δρf=Δρ0(𝒥f)=(1ρf)\Delta_{\rho}f=\Delta_{\rho_{0}}\left(\mathcal{J}f\right)=\nabla\cdot\left(\frac{1}{\rho}\nabla f\right) (160)

has an inverse. Thus we write

𝔻211(𝐚,𝐚)=𝒥Δρ1(𝒥δ(𝐪(𝐚,t)𝐪(𝐚,t))).\mathbb{D}^{-1}_{21}(\mathbf{a},\mathbf{a}^{\prime})=-\mathcal{J}\Delta_{\rho}^{-1}\Big{(}\mathcal{J}\,\delta\big{(}\mathbf{q}(\mathbf{a},t)-\mathbf{q}(\mathbf{a}^{\prime},t)\big{)}\Big{)}\,. (161)

Now, using 𝔻211=𝔻121\mathbb{D}^{-1}_{21}=-\mathbb{D}^{-1}_{12}, the element 𝔻111\mathbb{D}^{-1}_{11} follows directly from (145).

For convenience we write the Dirac bracket of (139) as follows:

{F,G}={F,G}[F,G]D,\left\{F,G\right\}_{*}=\left\{F,G\right\}-\left[F,G\right]^{D}\,, (162)

where

[F,G]D\displaystyle\left[F,G\right]^{D} :=a,b=12[F,G]abD=d3ad3a{F,Da(𝐚)}𝔻ab1(𝐚,𝐚){Db(𝐚),G}.\displaystyle:=\sum_{a,b=1}^{2}\left[F,G\right]^{D}_{ab}=\int\!d^{3}a\,\int\!d^{3}a^{\prime}\,\,\left\{F,D^{a}\left(\mathbf{a}\right)\right\}\mathbb{D}_{ab}^{-1}(\mathbf{a},\mathbf{a}^{\prime})\left\{D^{b}\left(\mathbf{a}^{\prime}\right),G\right\}\,. (163)

Because 𝔻221=0\mathbb{D}_{22}^{-1}=0 and [F,G]12D=[G,F]21D\left[F,G\right]^{D}_{12}=-[G,F]^{D}_{21}, we only need to calculate [F,G]11D[F,G]^{D}_{11} and [F,G]21D[F,G]^{D}_{21}.

As above, we substitute (147), (148), (149), and (150) into the bracket (100) and obtain

{F,D1(𝐚)}\displaystyle\left\{F,D^{1}\left(\mathbf{a}\right)\right\} =Aik𝒥ak(δFδπi),\displaystyle=-\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\delta F}{\delta\pi_{i}}\right), (164)
{F,D2(𝐚)}\displaystyle\left\{F,D^{2}\left(\mathbf{a}\right)\right\} =Ak𝒥ak(ηiρ0δFδqi)+Aik𝒥Au𝒥ak(πρ0)au(δFδπi).\displaystyle=\frac{A_{\ell}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\eta^{i\ell}}{\rho_{0}}\frac{\delta F}{\delta q^{i}}\right)+\frac{A_{i}^{k}}{\mathcal{J}}\frac{A_{\ell}^{u}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\frac{\partial}{\partial a^{u}}\left(\frac{\delta F}{\delta\pi_{i}}\right)\,. (165)

Then, exploiting the antisymmetry of the Poisson bracket, it is straightforward to calculate analogous expressions for the terms {D1,2,G}\left\{D^{1,2},G\right\}.

We first analyze the operator

[F,G]11D\displaystyle[F,G]^{D}_{11} =d3ad3ad3a^d3aˇ{F,D1(𝐚)}𝔻211(𝐚,𝐚^)𝔻22(𝐚^,𝐚ˇ)𝔻211(𝐚ˇ,𝐚){D1(𝐚),G},\displaystyle=\!\int\!d^{3}a\!\!\int\!\!d^{3}a^{\prime}\!\!\int\!d^{3}\hat{a}\!\!\int\!d^{3}\check{a}\left\{F,D^{1}\!\left(\mathbf{a}\right)\right\}\mathbb{D}_{21}^{-1}(\mathbf{a},\hat{\mathbf{a}})\,\mathbb{D}^{22}(\hat{\mathbf{a}},\check{\mathbf{a}})\,\mathbb{D}_{21}^{-1}(\check{\mathbf{a}},\mathbf{a}^{\prime})\left\{D^{1}\!\left(\mathbf{a}^{\prime}\right),G\right\}, (166)

where we used the second condition of (144) to replace 𝔻111\mathbb{D}_{11}^{-1}. Upon inserting (157) and (164), this equation can be rewritten as

[F,G]11D\displaystyle[F,G]^{D}_{11} =d3ad3ad3a^d3aˇ\displaystyle=-\int\!d^{3}a\,\int\!d^{3}a^{\prime}\,\int\!d^{3}\hat{a}\,\,\int\!d^{3}\check{a}
[Ajh𝒥ah(δFδπj)Δρ01δ(𝐚𝐚^)]𝐚=𝐚𝔻22(𝐚^,𝐚ˇ)[Ars𝒥as(δGδπr)Δρ01δ(𝐚ˇ𝐚)]𝐚=𝐚,\displaystyle\hskip 28.45274pt\left[\frac{A^{h}_{j}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta F}{\delta\pi_{j}}\right)\Delta_{\rho_{0}}^{-1}\delta(\mathbf{a}-\hat{\mathbf{a}})\right]_{\mathbf{a}=\mathbf{a}}\!\!\!\mathbb{D}^{22}(\hat{\mathbf{a}},\check{\mathbf{a}})\,\left[\frac{A_{r}^{s}}{\mathcal{J}}\frac{\partial}{\partial a^{s}}\left(\frac{\delta G}{\delta\pi_{r}}\right)\Delta_{\rho_{0}}^{-1}\delta(\check{\mathbf{a}}-\mathbf{a})\right]_{\mathbf{a}=\mathbf{a}^{\prime}}, (167)

where the subscripts on the right delimiters indicate that 𝐚\mathbf{a} is to be replaced after the derivative operations, including those that occur in 𝒥\mathcal{J} and AijA_{i}^{j}.

Integrating this expression by parts with respect to 𝐚\mathbf{a} and 𝐚\mathbf{a}^{\prime} yields

[F,G]11D\displaystyle[F,G]^{D}_{11} =d3a^d3aˇ[Δρ01(Ajh𝒥ah(δFδπj))]𝐚=𝐚^𝔻22(𝐚^,𝐚ˇ)[Δρ01(Ars𝒥as(δGδπr))]𝐚=𝐚ˇ,\displaystyle=-\int\!d^{3}\hat{a}\,\,\int\!d^{3}\check{a}\,\,\left[\Delta_{\rho_{0}}^{-1}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta F}{\delta\pi_{j}}\right)\right)\right]_{\mathbf{a}=\hat{\mathbf{a}}}\!\!\!\mathbb{D}^{22}(\hat{\mathbf{a}},\check{\mathbf{a}})\,\left[\Delta_{\rho_{0}}^{-1}\left(\frac{A_{r}^{s}}{\mathcal{J}}\frac{\partial}{\partial a^{s}}\left(\frac{\delta G}{\delta\pi_{r}}\right)\right)\right]_{\mathbf{a}=\check{\mathbf{a}}}, (168)

and then substituting (152) gives

[F,G]11D\displaystyle[F,G]^{D}_{11} =d3a^d3aˇ[Δρ01(Ajh𝒥ah(δFδπj))]𝐚=𝐚^{AikAu𝒥2ak(πρ0)au[ηinρ0am(Anm𝒥δ(𝐚𝐚ˇ))]\displaystyle=-\!\int\!d^{3}\hat{a}\!\!\int\!d^{3}\check{a}\left[\Delta_{\rho_{0}}^{-1}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta F}{\delta\pi_{j}}\right)\right)\right]_{\mathbf{a}=\hat{\mathbf{a}}}\!\left\{\frac{A_{i}^{k}A_{\ell}^{u}}{\mathcal{J}^{2}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\frac{\partial}{\partial a^{u}}\left[\frac{\eta^{in}}{\rho_{0}}\frac{\partial}{\partial a^{m}}\left(\frac{A_{n}^{m}}{\mathcal{J}}\delta\left(\mathbf{a}-\check{\mathbf{a}}\right)\right)\right]\right.
Aim𝒥am[ηinρ0au(Ank𝒥Au𝒥ak(πρ0)δ(𝐚𝐚ˇ))]}𝐚=𝐚^[Δρ01(Ars𝒥as(δGδπr))]𝐚=𝐚ˇ.\displaystyle\hskip 7.11317pt\left.-\frac{A_{i}^{m}}{\mathcal{J}}\frac{\partial}{\partial a^{m}}\left[\frac{\eta^{in}}{\rho_{0}}\frac{\partial}{\partial a^{u}}\left(\frac{A_{n}^{k}}{\mathcal{J}}\frac{A_{\ell}^{u}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\delta(\mathbf{a}-\check{\mathbf{a}})\right)\right]\right\}_{\mathbf{a}=\hat{\mathbf{a}}}\,\left[\Delta_{\rho_{0}}^{-1}\left(\frac{A_{r}^{s}}{\mathcal{J}}\frac{\partial}{\partial a^{s}}\left(\frac{\delta G}{\delta\pi_{r}}\right)\right)\right]_{\mathbf{a}=\check{\mathbf{a}}}. (169)

Then, by means of integrations by parts we can remove the derivatives from the term δ(𝐚𝐚ˇ)\delta(\mathbf{a}-\check{\mathbf{a}}) and perform the integral. After relabeling the integration variable as 𝐚\mathbf{a} to simplify the notation, (169) becomes

[F,G]11D\displaystyle[F,G]^{D}_{11} =d3a{ρ0ηuiAuk𝒥ak(πρ0)(ρ0δFδ𝝅|ρ0δGδ𝝅|iρ0δFδ𝝅|iρ0δGδ𝝅|)\displaystyle=\int\!d^{3}a\,\,{\Bigg{\{}}\rho_{0}\,\eta^{ui}\frac{A_{u}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\left(\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{\ell}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{i}-\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{\ell}\right)
+ηniAuau[Ank𝒥ak(πρ0)][ρ0δGδ𝝅|iΔρ01𝒥(Ajh𝒥ah(δFδπj))\displaystyle\hskip 28.45274pt+\,\eta^{ni}{A_{\ell}^{u}}\frac{\partial}{\partial a^{u}}\left[\frac{A_{n}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\right]\left[\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{i}\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta F}{\delta\pi_{j}}\right)\right)\right.
ρ0δFδ𝝅|iΔρ01𝒥(Ajh𝒥ah(δGδπj))]},\displaystyle\hskip 142.26378pt\left.-\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{i}\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta G}{\delta\pi_{j}}\right)\right)\right]{\Bigg{\}}}\,, (170)

where we introduced the projection operator

(ρ0)jizj=ηiρ0Auau[Δρ01𝒥(Ajh𝒥ahzj)]=:ρ0𝐳|i,\left(\mathbb{P}_{\rho_{0}\perp}\right)^{i}_{j}\,{z}^{j}=\frac{\eta^{i\ell}}{\rho_{0}}A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\,z^{j}\right)\right]=:\mathbb{P}_{\rho_{0}\perp}\mathbf{z}\,\big{|}^{i}\,, (171)

where in the last equality we defined a shorthand for convenience; thus,

ρ0δFδ𝝅|:=1ρ0Auau[Δρ01𝒥(Ajh𝒥ahδFδπj)].\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\,\right|_{\ell}:=\frac{1}{\rho_{0}}A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\,\frac{\delta F}{\delta\pi_{j}}\right)\right]\,. (172)

It is straightforward to prove that ρ0\mathbb{P}_{\rho_{0}\perp} represents a projection, i.e.  ρ0(ρ0𝐳)=ρ0𝐳\mathbb{P}_{\rho_{0}\perp}\left(\mathbb{P}_{\rho_{0}\perp}\mathbf{z}\right)=\mathbb{P}_{\rho_{0}\perp}\mathbf{z} for each 𝐳\mathbf{z}, which in terms of indices would have an iith component given by (ρ0)ji(ρ0)kjzk=(ρ0)kizk(\mathbb{P}_{\rho_{0}\perp})^{i}_{j}(\mathbb{P}_{\rho_{0}\perp})^{j}_{k}\,z^{k}=(\mathbb{P}_{\rho_{0}\perp})^{i}_{k}\,z^{k}. Also, ρ0\mathbb{P}_{\rho_{0}\perp} is formally self-adjoint with respect to the following weighted inner product:

d3aρ0wi(ρ0)jizj=d3aρ0zi(ρ0)jiwj.\int d^{3}a\,\rho_{0}\,w_{i}\,(\mathbb{P}_{\rho_{0}\perp})^{i}_{j}\,z^{j}=\int d^{3}a\,\rho_{0}\,z_{i}\,(\mathbb{P}_{\rho_{0}\perp})^{i}_{j}\,w^{j}\,. (173)

The projection operator complementary to ρ0\mathbb{P}_{\rho_{0}\perp} is given by

ρ0=Iρ0,\mathbb{P}_{\rho_{0}}=I-\mathbb{P}_{\rho_{0}\perp}\,, (174)

where II is the identity.

Now let us return to our evaluation of [F,G]D[F,G]_{D} and analyze the contribution

[F,G]21D\displaystyle[F,G]^{D}_{21} =d3ad3a{F,D2(𝐚)}𝔻211(𝐚,𝐚){D1(𝐚),G}.\displaystyle=\int\!d^{3}a\,\int\!d^{3}a^{\prime}\,\,\left\{F,D^{2}\left(\mathbf{a}\right)\right\}\mathbb{D}_{21}^{-1}(\mathbf{a},\mathbf{a}^{\prime})\left\{D^{1}\left(\mathbf{a}^{\prime}\right),G\right\}. (175)

Using (161), (164), and (165), this equation can be rewritten as

[F,G]21D\displaystyle[F,G]^{D}_{21} =d3ad3a[Aik𝒥ak(ηinρ0δFδqn)+Aik𝒥Au𝒥ak(πρ0)au(δFδπi)]\displaystyle=-\int\!d^{3}a\,\int\!d^{3}a^{\prime}\,\,\left[\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\eta^{in}}{\rho_{0}}\frac{\delta F}{\delta q^{n}}\right)+\frac{A_{i}^{k}}{\mathcal{J}}\frac{A_{\ell}^{u}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\frac{\partial}{\partial a^{u}}\left(\frac{\delta F}{\delta\pi_{i}}\right)\right]
×Δρ01δ(𝐚𝐚)[Ajh𝒥ah(δGδπj)]𝐚=𝐚\displaystyle\hskip 99.58464pt\times\Delta_{\rho_{0}}^{-1}\delta(\mathbf{a}-\mathbf{a}^{\prime})\left[\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta G}{\delta\pi_{j}}\right)\right]_{\mathbf{a}=\mathbf{a}^{\prime}} (176)

and, integrating by parts to simplify the δ(𝐚𝐚)\delta(\mathbf{a}-\mathbf{a}^{\prime}) term, results in

[F,G]21D\displaystyle[F,G]^{D}_{21} =d3a{δFδqiρ0δGδ𝝅|i+ρ0Aik𝒥ak(πρ0)δFδπiρ0δGδ𝝅|\displaystyle=\int\!d^{3}a\,\,{\Bigg{\{}}\frac{\delta F}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}+\rho_{0}\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\frac{\delta F}{\delta\pi_{i}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{\ell}
+Auau[Aik𝒥ak(πρ0)]δFδπiΔρ01𝒥(Ajh𝒥ah(δGδπj))}.\displaystyle\hskip 28.45274pt+A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\right]\,\frac{\delta F}{\delta\pi_{i}}\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta G}{\delta\pi_{j}}\right)\right){\Bigg{\}}}\,. (177)

We can now combine the operators [F,G]11D[F,G]^{D}_{11}, [F,G]21D[F,G]^{D}_{21}, and [F,G]12D=[G,F]21D[F,G]^{D}_{12}=-[G,F]^{D}_{21}, given by (170) and (177), to calculate the Dirac bracket (162). First, we rewrite (163) as

[F,G]D\displaystyle[F,G]^{D} =d3a{δFδqiρ0δGδ𝝅|iδGδqiρ0δFδ𝝅|i\displaystyle=\int\!d^{3}a\,\,{\Bigg{\{}}\frac{\delta F}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}-\frac{\delta G}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}
+ρ0Aik𝒥ak(πρ0)(ρ0δFδ𝝅|iρ0δGδ𝝅|ρ0δGδ𝝅|iρ0δFδ𝝅|)\displaystyle+\rho_{0}\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\left(\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{\ell}-\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{\ell}\right)
+Auau[Aik𝒥ak(πρ0)][ρ0δFδ𝝅|iΔρ01𝒥(Ajh𝒥ah(δGδπj))\displaystyle+A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\right]\,\left[\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta G}{\delta\pi_{j}}\right)\right)\right.
ρ0δGδ𝝅|iΔρ01𝒥(Ajh𝒥ah(δFδπj))]}.\displaystyle\hskip 113.81102pt\left.-\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{\delta F}{\delta\pi_{j}}\right)\right)\right]{\Bigg{\}}}\,. (178)

Using the identity of (94) with zz^{\ell} set to π/ρ0\pi^{\ell}/\rho_{0},

Auau[Aik𝒥ak(πρ0)]=Aikak[Au𝒥au(πρ0)],A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\right]=A_{i}^{k}\frac{\partial}{\partial a^{k}}\left[\frac{A_{\ell}^{u}}{\mathcal{J}}\frac{\partial}{\partial a^{u}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\right]\,, (179)

and integrating by parts, (178) becomes

[F,G]D\displaystyle[F,G]^{D} =d3a{δFδqiρ0δGδ𝝅|iδGδqiρ0δFδ𝝅|i\displaystyle=\int\!d^{3}a\,\,{\Bigg{\{}}\frac{\delta F}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}-\frac{\delta G}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}
+ρ0Aik𝒥ak(πρ0)(ρ0δFδ𝝅|iρ0δGδ𝝅|ρ0δGδ𝝅|iρ0δFδ𝝅|)\displaystyle+\rho_{0}\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\left(\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{\ell}-\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{\ell}\right)
ρ0Au𝒥au(πρ0)(ρ0δFδ𝝅|iρ0δGδ𝝅|iρ0δGδ𝝅|iρ0δFδ𝝅|i)},\displaystyle-\rho_{0}\frac{A_{\ell}^{u}}{\mathcal{J}}\frac{\partial}{\partial a^{u}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\left(\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{i}-\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{i}\right){\Bigg{\}}}\,, (180)

where we used

Aikakρ0𝐳|i=Aikak(ρ0)jizj=0,forall𝐳,A_{i}^{k}\frac{\partial}{\partial a^{k}}\mathbb{P}_{\rho_{0}}\mathbf{z}\,\big{|}^{i}=A_{i}^{k}\frac{\partial}{\partial a^{k}}\left(\mathbb{P}_{\rho_{0}}\right)^{i}_{j}z^{j}=0\,,\qquad\mathrm{for\ all}\ \ \mathbf{z}\,, (181)

which follows from the definitions (171), viz.

Aik𝒥ak(ρ0)jizj=Aik𝒥ziak,\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{i}_{j}z^{j}=\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial z^{i}}{\partial a^{k}}\,, (182)

and (174). Also, upon inserting ρ0=Iρ0\mathbb{P}_{\rho_{0}\perp}=I-\mathbb{P}_{\rho_{0}} in the last line of (180), symmetry implies we can drop the ρ0\mathbb{P}_{\rho_{0}\perp}. Finally, upon substituting (180) into (162), we obtain

{F,G}\displaystyle\left\{F,G\right\}_{*} =d3a{δFδqiρ0δGδ𝝅|iδGδqiρ0δFδ𝝅|i\displaystyle=\int\!d^{3}a\,\,{\Bigg{\{}}\frac{\delta F}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}-\frac{\delta G}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}
ρ0Aik𝒥ak(πρ0)(ρ0δFδ𝝅|iρ0δGδ𝝅|ρ0δGδ𝝅|iρ0δFδ𝝅|)\displaystyle-\rho_{0}\frac{A_{i}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\left(\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|_{\ell}-\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|_{\ell}\right)
+ρ0Ak𝒥ak(πρ0)(ρ0δFδ𝝅|iδGδπiρ0δGδ𝝅|iδFδπi)}.\displaystyle+\rho_{0}\frac{A_{\ell}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,\left(\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\frac{\delta G}{\delta{\pi^{i}}}-\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}\frac{\delta F}{\delta\pi^{i}}\right){\Bigg{\}}}\,. (183)

Once more inserting ρ0=Iρ0\mathbb{P}_{\rho_{0}\perp}=I-\mathbb{P}_{\rho_{0}}, rearranging, and reindexing gives

{F,G}\displaystyle\left\{F,G\right\}_{*} =d3aρ0{1ρ0δGδqiρ0δFδ𝝅|i1ρ0δFδqiρ0δGδ𝝅|i+𝒜mnρ0δFδ𝝅|mρ0δGδ𝝅|n\displaystyle=-\int\!d^{3}a\,\rho_{0}\,{\Bigg{\{}}\frac{1}{\rho_{0}}\frac{\delta G}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}-\frac{1}{\rho_{0}}\frac{\delta F}{\delta q^{i}}\left.\mathbb{P}_{\rho_{0}}\frac{\delta G}{\delta\bm{\pi}}\right|^{i}+\mathcal{A}_{mn}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|^{m}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|^{n}
+𝒯mn(δFδπmρ0δGδ𝝅|nδGδπmρ0δFδ𝝅|n)},\displaystyle\hskip 85.35826pt+\mathcal{T}_{mn}\,\left(\frac{\delta F}{\delta{\pi_{m}}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta G}{\delta\bm{\pi}}\right|^{n}-\frac{\delta G}{\delta\pi_{m}}\left.\mathbb{P}_{\rho_{0}\perp}\frac{\delta F}{\delta\bm{\pi}}\right|^{n}\right){\Bigg{\}}}\,, (184)

where

𝒜nm:=ηmDnηnDmand𝒯mn:=ηnDm+ηmnD2,\mathcal{A}_{nm}:=\eta_{\ell m}D^{\ell}_{n}-\eta_{\ell n}D^{\ell}_{m}\qquad\mathrm{and}\qquad\mathcal{T}_{mn}:=\eta_{\ell n}D^{\ell}_{m}+\eta_{mn}D^{2}\,, (185)

with

Dm=Amk𝒥ak(πρ0).D_{m}^{\ell}=\frac{A_{m}^{k}}{\mathcal{J}}\frac{\partial}{\partial a^{k}}\left(\frac{\pi^{\ell}}{\rho_{0}}\right)\,. (186)

Note the trace D=D2D^{\ell}_{\ell}=D^{2}, which we will eventually set to zero. Equation (184) gives the Dirac bracket for the incompressibility holonomic constraint. This bracket with the Hamiltonian

H=d3a|𝝅|22ρ0=d3aηmnπmπn2ρ0,H=\int\!d^{3}a\,\frac{|\bm{\pi}|^{2}}{2\rho_{0}}=\int\!d^{3}a\,\eta^{mn}\frac{\pi_{m}\pi_{n}}{2\rho_{0}}\,, (187)

produces dynamics that fixes 𝒥\mathcal{J} and thus enforces incompressibility provided the constraint D2=0D^{2}=0 is used as an initial condition. For MHD we add to HH the following:

HB=d3aηmnB0jB0k2𝒥qmajqnak.H_{B}=\int\!d^{3}a\,\eta_{mn}\frac{B_{0}^{j}B_{0}^{k}}{2\mathcal{J}}\,\frac{\partial q^{m}}{\partial a^{j}}\frac{\partial q^{n}}{\partial a^{k}}\,. (188)

We note, any Hamiltonian that is consistent with (142) can be used to define a constrained flow.

Proceeding to the equations of motion, we first calculate q˙i\dot{q}^{i},

q˙i\displaystyle\dot{q}^{i} ={qi,H}=(ρ0)jiδHδπj=δHδπiηiρ0Auau[Δρ01𝒥(Ajh𝒥ahδHδπj)]\displaystyle=\{q^{i},H\}_{*}=\left(\mathbb{P}_{\rho_{0}}\right)^{i}_{j}\frac{\delta H}{\delta\pi_{j}}=\frac{\delta H}{\delta\pi_{i}}-\frac{\eta^{i\ell}}{\rho_{0}}A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\frac{\delta H}{\delta\pi_{j}}\right)\right]
=πiρ0ηiρ0Auau[Δρ01𝒥(Ajh𝒥ahπjρ0)].\displaystyle=\frac{\pi^{i}}{\rho_{0}}-\frac{\eta^{i\ell}}{\rho_{0}}A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\frac{\pi^{j}}{\rho_{0}}\right)\right]\,. (189)

The equation for π˙i\dot{\pi}_{i} is more involved. Using the adjoint property of (173), which is valid for both ρ0\mathbb{P}_{\rho_{0}\perp} and ρ0\mathbb{P}_{\rho_{0}}, we obtain

πi˙\displaystyle\dot{\pi_{i}} ={πi,H}=ρ0(ρ0)ij1ρ0δHδqjρ0(ρ0)im(𝒜mn(ρ0)knδHδπk)\displaystyle=\{\pi_{i},H\}_{*}=-\rho_{0}\left(\mathbb{P}_{\rho_{0}}\right)^{j}_{i}\frac{1}{\rho_{0}}\frac{\delta H}{\delta q^{j}}-\rho_{0}\,\left(\mathbb{P}_{\rho_{0}\perp}\right)^{m}_{i}\left(\mathcal{A}_{mn}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{k}\frac{\delta H}{\delta\pi_{k}}\right)
+ρ0(ρ0)in(𝒯mnδHδπm)ρ0𝒯in(ρ0)knδHδπk\displaystyle\hskip 56.9055pt+\rho_{0}\,\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{i}\left(\mathcal{T}_{mn}\frac{\delta H}{\delta\pi_{m}}\right)-\rho_{0}\,\mathcal{T}_{in}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{k}\frac{\delta H}{\delta\pi_{k}}
=ρ0(ρ0)im(𝒜mn(ρ0)knπkρ0)+ρ0(ρ0)in(𝒯mnπmρ0)ρ0𝒯in(ρ0)knπkρ0,\displaystyle=-\rho_{0}\,\left(\mathbb{P}_{\rho_{0}\perp}\right)^{m}_{i}\left(\mathcal{A}_{mn}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{k}\frac{\pi^{k}}{\rho_{0}}\right)+\rho_{0}\,\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{i}\left(\mathcal{T}_{mn}\frac{\pi^{m}}{\rho_{0}}\right)-\rho_{0}\,\mathcal{T}_{in}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{k}\frac{\pi^{k}}{\rho_{0}}\,, (190)

which upon substitution of the definitions of ρ0\mathbb{P}_{\rho_{0}}, 𝒜mn\mathcal{A}_{mn}, and 𝒯mn\mathcal{T}_{mn} of (171) and (185) yields a complicated nonlinear equation.

Equations (189) and (190) are infinite-dimensional versions of the finite-dimensional systems of (40) and (41) considered in Section 2.3.1. There, equations (40) and (41) were reduced to (44) and (45) upon enforcing the holomomic constraint by requiring that initially D2=0D^{2}=0. Similarly we can enforce the vanishing of D2D^{2} of (142), which is compatible with the Hamiltonian (187). Instead of addressing this evaluation now, we find the meaning of various terms is much more transparent when written in terms of Eulerian variables, which we do in Section 4.3. We then return to these Lagrangian equations in Section 4.4 and make comparisons. Nevertheless, the solution of equations (189) and (190), 𝐪(𝐚,t)\mathbf{q}(\mathbf{a},t), with the initial conditions D1=lnρ0D^{1}=-\ln\rho_{0} and D2=0D^{2}=0, is a volume preserving transformation at any time tt.

4.3 Eulerian-Dirac constraint theory

Because we chose the form of constraints D1,2D^{1,2} of (141) and (142) to be Eulerianizable, it follows that we can transform easily the results of Section 4.2.1 into Eulerian form. This we do in Section 4.3.1. Alternatively, we can proceed as in Nguyen & Turski (1999, 2001); Tassi et al. (2009); Chandre et al. (2013); Morrison et al. (2009), starting from the Eulerian noncanonical theory of Section 3.3 and directly construct a Dirac bracket with Eulerian constraints. This is a valid procedure because Dirac’s construction works for noncanonical Poisson brackets, as shown, e.g., in Morrison et al. (2009), but it does not readily allow for advected density. This direct method with uniform density is reviewed in Section 4.3.2, where it is contrasted with the results of Section 4.3.1.

4.3.1 Lagrangian-Dirac constraint theory in the Eulerian picture

In a manner similar to that used to obtain (111) and (112), we find the functional derivatives transform as

δFδπi=1ρδF¯δ\varvi,1ρ0δFδqi=xiδF¯δρ1ρδF¯δssxi1ρδF¯δ\varv\varvxi,\frac{\delta F}{\delta\pi_{i}}=\frac{1}{\rho}\frac{\delta\bar{F}}{\delta\varv_{i}},\quad\frac{1}{\rho_{0}}\frac{\delta F}{\delta q^{i}}=\frac{\partial}{\partial x^{i}}\frac{\delta\bar{F}}{\delta\rho}-\frac{1}{\rho}\frac{\delta\bar{F}}{\delta s}\frac{\partial s}{\partial x^{i}}-\frac{1}{\rho}\frac{\delta\bar{F}}{\delta\varv_{\ell}}\frac{\partial\varv_{\ell}}{\partial x^{i}}\,, (191)

where the expressions on the left of each equality are clearly Lagrangian variable quantities, while on the right they are Eulerian quantities represented in terms of Lagrangian variables. Substituting these expressions into (84) and dropping the bar on FF and GG gives the following bracket in terms of the Eulerian variables:

{F,G}\displaystyle\left\{F,G\right\}_{*} =d3x{(𝒫ρδFδ𝐯|ixiδGδρ𝒫ρδGδ𝐯|ixiδFδρ)\displaystyle=-\int\!d^{3}x\,\,{\Bigg{\{}}\left(\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|^{i}\frac{\partial}{\partial x^{i}}\frac{\delta G}{\delta\rho}-\left.\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right|^{i}\frac{\partial}{\partial x^{i}}\frac{\delta F}{\delta\rho}\right)
+1ρsxi(δFδs𝒫ρδGδ𝐯|iδGδs𝒫ρδFδ𝐯|i)\displaystyle+\frac{1}{\rho}\frac{\partial s}{\partial x^{i}}\left(\frac{\delta F}{\delta s}\left.\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right|^{i}-\frac{\delta G}{\delta s}\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|^{i}\right)
+1ρ\varvxi(𝒫ρδFδ𝐯|𝒫ρδGδ𝐯|i𝒫ρδGδ𝐯|𝒫ρδFδ𝐯|i)\displaystyle+\frac{1}{\rho}\frac{\partial\varv^{\ell}}{\partial x^{i}}\left(\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|_{\ell}\left.\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right|^{i}-\left.\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right|_{\ell}\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|^{i}\right)
+1ρ\varvx(𝒫ρδFδ𝐯|iδGδ\varvi𝒫ρδGδ𝐯|iδFδ\varvi)},\displaystyle+\frac{1}{\rho}\frac{\partial\varv^{\ell}}{\partial x^{\ell}}\,\left(\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|^{i}\frac{\delta G}{\delta\varv_{i}}-\left.\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right|^{i}\frac{\delta F}{\delta\varv_{i}}\right){\Bigg{\}}}\,, (192)

where we used the relations (104) and (120) and we introduced the Eulerian projection operator

𝒫ρδFδ𝐯|i=(𝒫ρ)jiδFδ\varvj=ρρ0δFδ𝝅|iand𝒫ρδFδ𝐯|i=ηij𝒫ρδFδ𝐯|j,\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|^{i}=(\mathcal{P}_{\rho})^{i}_{j}\frac{\delta F}{\delta\varv_{j}}=\left.\rho\mathbb{P}_{\rho_{0}}\frac{\delta F}{\delta\bm{\pi}}\right|^{i}\qquad\mathrm{and}\qquad\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|_{i}=\eta_{ij}\left.\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right|^{j}\,, (193)

with

(𝒫ρ)jizj=δjiηikxk[Δρ1xj(zjρ)],\left(\mathcal{P}_{\rho}\right)^{i}_{j}z^{j}=\delta^{i}_{j}-\eta^{ik}\frac{\partial}{\partial x^{k}}\left[\Delta_{\rho}^{-1}\frac{\partial}{\partial x^{j}}\left(\frac{z^{j}}{\rho}\right)\right]\,, (194)

which is easily seen to satisfy (𝒫ρ)ji(𝒫ρ)kj=(𝒫ρ)ki(\mathcal{P}_{\rho})^{i}_{j}(\mathcal{P}_{\rho})^{j}_{k}=(\mathcal{P}_{\rho})^{i}_{k}. Observe, like its Lagrangian counterpart, 𝒫ρ\mathcal{P}_{\rho} is formally self-adjoint; however, this time we found it convenient to define the projection in such a way that the self-adjointness is with respect to a different weighted inner product, viz.

d3xρwi(𝒫ρ)jizj=d3xρzi(𝒫ρ)jiwj.\int\frac{d^{3}x}{\rho}\,w_{i}\,(\mathcal{P}_{\rho})^{i}_{j}\,z^{j}=\int\frac{d^{3}x}{\rho}\,z_{i}\,(\mathcal{P}_{\rho})^{i}_{j}\,w^{j}\,. (195)

In terms of usual cartesian vector notation

𝒫ρδGδ𝐯=δGδ𝐯Δρ1(1ρδGδ𝐯).\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}=\frac{\delta G}{\delta\mathbf{v}}-\nabla\Delta_{\rho}^{-1}\nabla\cdot\left(\frac{1}{\rho}\frac{\delta G}{\delta\mathbf{v}}\right)\,. (196)

Upon writing 𝒫ρ=I𝒫ρ\mathcal{P}_{\rho}=I-\mathcal{P}_{\rho\perp} and decomposing an arbitrary vector field as

𝐳=Φ+ρ×𝐀,\mathbf{z}=-\nabla\Phi+\rho\nabla\times\mathbf{A},

this projection operator yields the component 𝒫ρ𝐳=ρ×𝐀\mathcal{P}_{\rho}\mathbf{z}=\rho\nabla\times\mathbf{A}. Therefore, if ρ×𝐀=0\nabla\rho\times\mathbf{A}=0, then this operator projects into the space of incompressible vector fields. For convenience we introduce the associated projector

ρ𝐯:=𝐯1ρΔρ1𝐯=1ρ𝒫ρ(ρ𝐯),\mathbb{P}_{\rho}\mathbf{v}:=\mathbf{v}-\frac{1}{\rho}\nabla\Delta_{\rho}^{-1}\nabla\cdot\mathbf{v}=\frac{1}{\rho}{\mathcal{P}_{\rho}}(\rho\mathbf{v})\,, (197)

which has the desirable property

(ρ𝐯)=0𝐯comparedto(1ρ𝒫ρ𝐰)=0𝐰.\nabla\cdot(\mathbb{P}_{\rho}\mathbf{v})=0\quad\forall\ \mathbf{v}\qquad\mathrm{compared\ \ to}\qquad\nabla\cdot\left(\frac{1}{\rho}{\mathcal{P}_{\rho}}\mathbf{w}\right)=0\quad\forall\ \mathbf{w}\,. (198)

Upon writing ρ=Iρ\mathbb{P}_{\rho}=I-\mathbb{P}_{\rho\perp} and decomposing an arbitrary vector field 𝐯\mathbf{v} as

𝐯=1ρΦ+×𝐀,\mathbf{v}=-\frac{1}{\rho}\,\nabla\Phi+\nabla\times\mathbf{A},

this projection operator yields the component ρ𝐯=×𝐀\mathbb{P}_{\rho}\mathbf{v}=\nabla\times\mathbf{A}, while ρ𝐯=Φ/ρ\mathbb{P}_{\rho\perp}\mathbf{v}=\nabla\Phi/\rho. Note, ρ\mathbb{P}_{\rho} is the Eulerianization of ρ0\mathbb{P}_{\rho_{0}} and it is not difficult to write (199) in terms of this quantity.

Upon adopting this usual vector notation, the bracket (192) can also be written as

{F,G}\displaystyle\left\{F,G\right\}_{*} =\displaystyle= d3x[δGδρ𝒫ρδFδ𝐯δFδρ𝒫ρδGδ𝐯\displaystyle-\int\,d^{3}x\,\left[\nabla\frac{\delta G}{\delta\rho}\cdot\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}-\nabla\frac{\delta F}{\delta\rho}\cdot\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right. (199)
+sρ(δFδs𝒫ρδGδ𝐯δGδs𝒫ρδFδ𝐯)\displaystyle+\frac{\nabla s}{\rho}\cdot\left(\frac{\delta F}{\delta s}\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}-\frac{\delta G}{\delta s}\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right)
+×𝐯ρ(𝒫ρδGδ𝐯×𝒫ρδFδ𝐯)\displaystyle+\frac{\nabla\times\mathbf{v}}{\rho}\cdot\left(\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\times\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right)
+𝐯ρ(δFδ𝐯𝒫ρδGδ𝐯δGδ𝐯𝒫ρδFδ𝐯)].\displaystyle+\left.\frac{\nabla\cdot\mathbf{v}}{\rho}\left(\frac{\delta F}{\delta\mathbf{v}}\cdot\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}-\frac{\delta G}{\delta\mathbf{v}}\cdot\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right)\right]\,.

For MHD there is a magnetic field contribution to (191) and following the steps that lead to (199) we obtain

{F,G}B\displaystyle\{F,G\}_{*B} =d3x[𝐁(1ρ𝒫ρδFδ𝐯δGδ𝐁1ρ𝒫ρδGδ𝐯δFδ𝐁)\displaystyle=-\int\!d^{3}x\,\Bigg{[}\mathbf{B}\cdot\left(\frac{1}{\rho}\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\cdot\nabla\frac{\delta G}{\delta\mathbf{B}}-\frac{1}{\rho}\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\cdot\nabla\frac{\delta F}{\delta\mathbf{B}}\right)
+𝐁((1ρ𝒫ρδFδ𝐯)δGδ𝐁(1ρ𝒫ρδGδ𝐯)δFδ𝐁)].\displaystyle\hskip 28.45274pt+\mathbf{B}\cdot\left(\nabla\left(\frac{1}{\rho}\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\right)\cdot\frac{\delta G}{\delta\mathbf{B}}-\nabla\left(\frac{1}{\rho}\mathcal{P}_{\rho}\frac{\delta G}{\delta\mathbf{v}}\right)\cdot\frac{\delta F}{\delta\mathbf{B}}\right)\Bigg{]}\,. (200)

With the exception of the last term of (199) proportional to 𝐯\nabla\cdot\mathbf{v} and the presence of the Eulerian projection operator 𝒫ρ\mathcal{P}_{\rho}, (199) added to (200) is identical to the noncanonical Poisson bracket for the ideal fluid and MHD as given in Morrison & Greene (1980). By construction, we know that (199) satisfies the Jacobi identity – this follows because it was obtained by Eulerianizing the canonical Dirac bracket in terms of Lagrangian variables. Guessing the bracket and proving Jacobi for (199) directly would be a difficult chore, giving credence to the path we have followed in obtaining it.

To summarize, the bracket of (199) together with the Hamiltonian

H=12d3xρ|𝐯|2,H=\frac{1}{2}\int d^{3}x\,\rho\,|\mathbf{v}|^{2}\,, (201)

the Eulerian counterpart of (187), generates dynamics that can preserve the constraint 𝐯=0\nabla\cdot\mathbf{v}=0. If we add HB=d3x|𝐁|2/2H_{B}=\int d^{3}x\,|\mathbf{B}|^{2}/2 to (201) and add (200) to (199), then we obtain incompressible MHD. The fluid case is the Eulerian counterpart of the volume preserving geodesic flow, described originally by Lagrange in Lagrange variables. Upon performing a series of straightforward manipulations, we obtain the following equations of motion for the flow:

ρt\displaystyle\frac{\partial\rho}{\partial t} ={ρ,H}=𝒫ρδHδ𝐯=ρρ𝐯,\displaystyle=\left\{\rho,H\right\}_{*}=-\nabla\cdot\mathcal{P}_{\rho}\frac{\delta H}{\delta\mathbf{v}}=-\nabla\rho\cdot\mathbb{P}_{\rho}\mathbf{v}\,, (202)
st\displaystyle\frac{\partial s}{\partial t} ={s,H}=sρ𝒫ρδHδ𝐯=sρ𝐯,\displaystyle=\left\{s,H\right\}_{*}=-\frac{\nabla s}{\rho}\cdot\mathcal{P}_{\rho}\frac{\delta H}{\delta\mathbf{v}}=-\nabla s\cdot\mathbb{P}_{\rho}\mathbf{v}\,, (203)
𝐯t\displaystyle\frac{\partial\mathbf{v}}{\partial t} ={𝐯,H}=1ρ𝒫ρ(ρδHδρ)+1ρ𝒫ρ(sδHδs)1ρ𝒫ρ((×𝐯)×𝒫ρδHδ𝐯)\displaystyle=\left\{\mathbf{v},H\right\}_{*}=-\frac{1}{\rho}\mathcal{P}_{\rho}\left(\rho\nabla\frac{\delta H}{\delta\rho}\right)+\frac{1}{\rho}\mathcal{P}_{\rho}\left({\nabla s}\frac{\delta H}{\delta s}\right)-\frac{1}{\rho}\mathcal{P}_{\rho}\left((\nabla\times\mathbf{v})\times\mathcal{P}_{\rho}\frac{\delta H}{\delta\mathbf{v}}\right)
𝐯ρ𝒫ρδHδ𝐯+1ρ𝒫ρ(𝐯δHδ𝐯)\displaystyle-\frac{\nabla\cdot\mathbf{v}}{\rho}\mathcal{P}_{\rho}\frac{\delta H}{\delta\mathbf{v}}+\frac{1}{\rho}\mathcal{P}_{\rho}\left({\nabla\cdot\mathbf{v}}\,\frac{\delta H}{\delta\mathbf{v}}\right)
=ρ|𝐯|22ρ((×𝐯)×ρ𝐯)(𝐯)ρ𝐯+ρ(𝐯𝐯).\displaystyle=-\mathbb{P}_{\rho}\nabla\frac{|\mathbf{v}|^{2}}{2}-\mathbb{P}_{\rho}\left((\nabla\times\mathbf{v})\times\mathbb{P}_{\rho}\mathbf{v}\right)-(\nabla\cdot\mathbf{v})\,\mathbb{P}_{\rho}\mathbf{v}+\,\mathbb{P}_{\rho}\left(\mathbf{v}\,\nabla\cdot\mathbf{v}\right)\,. (204)

If we include HBH_{B} we obtain additional terms to (204) generated by (200) for the projected 𝐉×𝐁\mathbf{J}\times\mathbf{B} force. Observe, equation (204) is not yet evaluated on the constraint D2=0D^{2}=0, which in Eulerian variables is 𝐯=0\nabla\cdot\mathbf{v}=0. As noted at the end of Section 4.2, we turn to this task in Section 4.4.

4.3.2 Eulerian-Dirac constraint theory direct with uniform density

For completness we recall the simpler case where the Eulerian density ρ\rho is uniformly constant, which without loss of generality can be scaled to unity. This case was considered in Nguyen & Turski (1999, 2001); Chandre et al. (2012, 2013) (although a trick of using entropy as density was employed in Chandre et al. (2013) to treat density advection). In these works the Dirac constraints were chosen to be the pointwise Eulerian quantities

𝒟1=ρand𝒟2=𝐯,\mathcal{D}^{1}=\rho\qquad\mathrm{and}\qquad\mathcal{D}^{2}=\nabla\cdot\mathbf{v}\,, (205)

and the Dirac procedure was effected on the purely Eulerian level. This led to the projector

:=ρ=1=1Δ1,\mathbb{P}:=\mathbb{P}_{\rho=1}=1-\nabla\Delta^{-1}\nabla\,\cdot\ \,, (206)

where Δ=Δρ=1\Delta=\Delta_{\rho=1}, and the following Dirac bracket:

{F,G}\displaystyle\{F,G\}_{*} =\displaystyle= d3x[sρ(δFδsδGδ𝐯δGδsδFδ𝐯)\displaystyle-\int d^{3}x\,\Bigg{[}\frac{\nabla s}{\rho}\cdot\left(\frac{\delta F}{\delta s}\mathbb{P}\frac{\delta G}{\delta\bf v}-\frac{\delta G}{\delta s}\mathbb{P}\frac{\delta F}{\delta\bf v}\right) (207)
×𝐯ρ(δFδ𝐯×δGδ𝐯)].\displaystyle\hskip 28.45274pt-\frac{\nabla\times{\bf v}}{\rho}\cdot\left(\mathbb{P}\frac{\delta F}{\delta\bf v}\times\mathbb{P}\frac{\delta G}{\delta\bf v}\right)\Bigg{]}\,.

Incompressible MHD with constant density is generated by adding the following to (207)

{F,G}B\displaystyle\{F,G\}_{*B} =\displaystyle= d3x[𝐁ρ(δFδ𝐯δGδ𝐁δGδ𝐯δFδ𝐁)\displaystyle-\int d^{3}x\,\Bigg{[}\frac{\bf B}{\rho}\cdot\left(\mathbb{P}\frac{\delta F}{\delta\bf v}\cdot\nabla\frac{\delta G}{\delta\bf B}-\mathbb{P}\frac{\delta G}{\delta\bf v}\cdot\nabla\frac{\delta F}{\delta\bf B}\right) (208)
+𝐁((1ρδFδ𝐯)δGδ𝐁(1ρδGδ𝐯)δFδ𝐁)],\displaystyle\hskip 28.45274pt+{\bf B}\cdot\left(\nabla\left(\frac{1}{\rho}\mathbb{P}\frac{\delta F}{\delta\bf v}\right)\cdot\frac{\delta G}{\delta\bf B}-\nabla\left(\frac{1}{\rho}\mathbb{P}\frac{\delta G}{\delta\bf v}\right)\cdot\frac{\delta F}{\delta\bf B}\right)\Bigg{]}\,,

and adding |𝐁|2/2|\mathbf{B}|^{2}/2 to the integrand of (201).

The bracket of (207) differs from that of (199) in two ways: the projector 𝒫ρ\mathcal{P}_{\rho} is replaced by the simpler projector \mathbb{P} and it is missing the term proportional to 𝐯\nabla\cdot\mathbf{v}. Given that 𝐯\nabla\cdot\mathbf{v} cannot be set to zero until after the equations of motion are obtained, this term gives rise to a significant differences between the constant and nonconstant density Poisson brackets and incompressible dynamics.

4.4 Comparison of the Eulerian-Dirac and Lagrangian-Dirac constrained theories

Let us now discuss equations (202), (203) and (204). Given that ρ𝐯=0\nabla\cdot\mathbb{P}_{\rho}\mathbf{v}=0 (cf. (198)) it is clear that the density and entropy are advected by the incompressible velocity field ρ𝐯\mathbb{P}_{\rho}\mathbf{v}, as expected. However, the meaning of (204) remains to be clarified. To this end we take the divergence of (204) and again use (198) to obtain

(𝐯)t=(𝐯ρ𝐯)=(ρ𝐯)(𝐯).\frac{\partial(\nabla\cdot\mathbf{v})}{\partial t}=-\nabla\cdot\left(\nabla\cdot\mathbf{v}\,\mathbb{P}_{\rho}\mathbf{v}\right)=-\left(\mathbb{P}_{\rho}\mathbf{v}\right)\cdot\!\nabla\,(\nabla\cdot\mathbf{v})\,. (209)

Thus 𝐯\nabla\cdot\mathbf{v} itself is advected by an incompressible velocity field. As with any advection equation, if initially 𝐯=0\nabla\cdot\mathbf{v}=0 , it will remain uniformly zero. After setting 𝐯=0\nabla\cdot\mathbf{v}=0 in equation (204) it collapses down to

𝐯t=ρ(𝐯𝐯);\frac{\partial\mathbf{v}}{\partial t}=-\mathbb{P}_{\rho}\left(\mathbf{v}\cdot\nabla\mathbf{v}\right)\,; (210)

this is the anticipated equation of motion, the momentum equation of (1) with the insertion of the pressure given by (5).

Given the discussion of Lagrangian vs. Eulerian constants of motion of Section (3.4), that 𝐯\nabla\cdot\mathbf{v} is advected rather than pointwise conserved is to be expected. Our development began with the constraints D1,2D^{1,2} of (141) and (142) both of which are pointwise conserved by the Dirac procedure, i.e. 𝒟˙L0\dot{\mathcal{D}}_{L}\equiv 0. This means their corresponding fluxes are identically zero, i.e., in (123) we have 𝚪𝒟L0\mathbf{\Gamma}_{\mathcal{D}_{L}}\equiv 0 for each. Thus the flux component 𝚪¯𝒟E\mathbf{\bar{\Gamma}}_{\mathcal{D}_{E}} of (127) vanishes and the Eulerian flux for both D1D^{1} and D2D^{2} have the form 𝐯𝒟E\mathbf{v}{\mathcal{D}_{E}}. Because D1D^{1} and D2D^{2} Eulerianize to ln(ρ)-\ln(\rho) and 𝐯\nabla\cdot\mathbf{v}, respectively, we expected equations of the from of (209) for both. We will see in Section 4.5 that the equation for D1D^{1} in fact follows also because the constraints are Casimir invariants.

Let us return to (190) and compare with the results of Section 2.3.1. Because the incompressibility condition is an holonomic constraint and Section 2.3.1 concerns holonomic constraints for the uncoupled NN-body problem, both results are geodesic flows. In fact, one can think of the fluid case as a continuum version of that of Section 2.3.1 with an infinity of holonomic constraints– thus we expect similarities between these results. However, because the incompressibility constraints are pointwise constraints, the comparison is not as straightforward as it would be for global constraints of the fluid.

To make the comparison we first observe that the term 𝒜mn\mathcal{A}_{mn} of (184) must correspond to the term 𝔸ij\overset{\leftrightarrow}{\mathbb{A}}_{ij} of (54), since their origin follows an analogous path in the derivation, both are antisymmetric, and both project from both the left and the right. The analog of (56) according to (171) is

(ρ0)jiπjρ0=ηiρ0Auau[Δρ01𝒥(Ajh𝒥ahπjρ0)]=ηiρ0Auau[Δρ01𝒥(D2)]0,\left(\mathbb{P}_{\rho_{0}\perp}\right)^{i}_{j}\,\frac{\pi^{j}}{\rho_{0}}=\frac{\eta^{i\ell}}{\rho_{0}}A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\,\frac{\pi^{j}}{\rho_{0}}\right)\right]=\frac{\eta^{i\ell}}{\rho_{0}}A_{\ell}^{u}\frac{\partial}{\partial a^{u}}\left[\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left(D^{2}\right)\right]\equiv 0\,, (211)

when evaluated on D2=0D^{2}=0. Unlike (56) a sum, which would here be an integral over d3ad^{3}a, does not occur because the constraint D2D^{2} is a pointwise constraint as opposed to a global constraint. Also, because the constraints are pointwise, the 𝕋ij\overset{\leftrightarrow}{\mathbb{T}}_{ij} is analogous to the terms with 𝒯mn\mathcal{T}_{mn} that also have a factor of the projector ρ0\mathbb{P}_{\rho_{0}\perp}, giving the results analogous to (57). Just as in Section 2.3.1, we obtain πi=ρ0q˙i\pi^{i}=\rho_{0}\dot{q}^{i} from (189) when evaluated on the constraint D2=0D^{2}=0 and only a single term involving the 𝒯mn\mathcal{T}_{mn} contributes to the momentum equation of motion (190). We obtain

π˙i\displaystyle\dot{\pi}_{i} =ρ0ηin(ρ0)rn(q˙mηrs𝒯ms)\displaystyle=\rho_{0}\eta_{in}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{r}\,\Big{(}\dot{q}^{m}\,\eta^{rs}\mathcal{T}_{ms}\Big{)}
=Aiuau{Δρ01𝒥[Ah𝒥ah(q˙mAmk𝒥q˙ak)]}\displaystyle=A^{u}_{i}\frac{\partial}{\partial a^{u}}\left\{\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left[\frac{A_{\ell}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\dot{q}^{m}\,\frac{A^{k}_{m}}{\mathcal{J}}\frac{\partial\dot{q}^{\ell}}{\partial a^{k}}\right)\right]\right\}
=Aiuau{Δρ01𝒥[Ah𝒥ah(Amk𝒥(q˙mq˙)ak)]},\displaystyle=A^{u}_{i}\frac{\partial}{\partial a^{u}}\left\{\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left[\frac{A_{\ell}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{A^{k}_{m}}{\mathcal{J}}\frac{\partial(\dot{q}^{m}\dot{q}^{\ell})}{\partial a^{k}}\right)\right]\right\}\,, (212)

where the second equality follows upon substitution of

𝒯msηsAmk𝒥q˙ak,forD2=0,\mathcal{T}_{ms}\rightarrow\eta_{\ell s}\frac{A^{k}_{m}}{\mathcal{J}}\frac{\partial\dot{q}^{\ell}}{\partial a^{k}}\,,\quad\mathrm{for}\quad D^{2}=0\,,

which follows from (185), while the third follows again from D2=0D^{2}=0 according to (142). Thus,

q¨i\displaystyle\ddot{q}^{i} =ηiAuρ0au{Δρ01𝒥[Ajh𝒥ah(Akf𝒥(q˙jq˙k)af)]}\displaystyle=\eta^{i\ell}\frac{A^{u}_{\ell}}{\rho_{0}}\frac{\partial}{\partial a^{u}}\left\{\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left[\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{A^{f}_{k}}{\mathcal{J}}\frac{\partial(\dot{q}^{j}\,\dot{q}^{k})}{\partial a^{f}}\right)\right]\right\}
=(ρ0)ji(Akf𝒥(q˙jq˙k)af)=:Γ^jki(q˙j,q˙k),\displaystyle=\left(\mathbb{P}_{\rho_{0}\perp}\right)^{i}_{j}\,\left(\frac{A^{f}_{k}}{\mathcal{J}}\frac{\partial(\dot{q}^{j}\,\dot{q}^{k})}{\partial a^{f}}\right)=:-\,\widehat{\Gamma}^{\,i}_{jk}(\dot{q}^{j},\dot{q}^{k})\,, (213)

where in (213) we have defined Γ^jki(q˙j,q˙k)\widehat{\Gamma}^{\,i}_{jk}(\dot{q}^{j},\dot{q}^{k}), the normal force operator for geodesic flow, analogous to that of (62).

As was the case for the 𝚪^i,jk\widehat{\bm{\Gamma}}_{i,jk} of (63), Γ^jki\widehat{\Gamma}^{\,i}_{jk} possesses symmetry: given arbitrary vector fields 𝐕\mathbf{V} and 𝐖\mathbf{W}

Γ^jki(Vj,Wk):=ηiAuρ0au{Δρ01𝒥[Ajh𝒥ah(Akf𝒥(VjWk)af)]}=Γ^jki(Vk,Wj).\widehat{\Gamma}^{\,i}_{jk}(V^{j},W^{k}):=-\eta^{i\ell}\frac{A^{u}_{\ell}}{\rho_{0}}\frac{\partial}{\partial a^{u}}\left\{\frac{\Delta_{\rho_{0}}^{-1}}{\mathcal{J}}\left[\frac{A_{j}^{h}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\frac{A^{f}_{k}}{\mathcal{J}}\frac{\partial(V^{j}\,W^{k})}{\partial a^{f}}\right)\right]\right\}=\widehat{\Gamma}^{\,i}_{jk}(V^{k},W^{j})\,. (214)

where the second equality follows from the commutation relation of (94).

Equation (213) defines geodesic flow on the group of volume preserving diffeomorphisms, as was the case in Section 2.3.1, it does so in terms of the original coordinates, i.e., without specifically transforming to normal coordinates on the constraint surfaces which here are infinite-dimensional.

Now we are in position to close the circle by writing (213) in Eulerian form. We will do this for the ideal fluid, but MHD follows similarly. As usual the term q¨i\ddot{q}^{i} becomes the advective derivative 𝐯/t+𝐯𝐯\partial\mathbf{v}/\partial t+\mathbf{v}\cdot\nabla\mathbf{v}, the projector ρ0\mathbb{P}_{\rho_{0}\perp} becomes ρ\mathbb{P}_{\rho\perp} (using Δρ01=𝒥Δρ1\Delta_{\rho_{0}}^{-1}=\mathcal{J}\Delta_{\rho}^{-1}) when Eulerianized, and the Γ^jki\widehat{\Gamma}^{i}_{jk} term becomes ρ((𝐯𝐯))\mathbb{P}_{\rho\perp}\left(\nabla\cdot(\mathbf{v}\otimes\mathbf{v})\right). Thus (213) is precisely the Lagrangian form of (210), written as follows:

𝐯t=ρ((𝐯𝐯))=ρ(𝐯𝐯).\frac{\partial\mathbf{v}}{\partial t}=-\mathbb{P}_{\rho}\big{(}\nabla\cdot(\mathbf{v}\otimes\mathbf{v})\big{)}=-\mathbb{P}_{\rho}\left(\mathbf{v}\cdot\nabla\mathbf{v}\right)\,. (215)

Similarly, the Lagrangian version of (209) follows easily from (213). To see this we operate with the counterpart of taking the Eulerian divergence on the first line of (212) and make use of (182),

Anh𝒥ahπ˙nρ0\displaystyle\frac{A^{h}_{n}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\frac{\dot{\pi}^{n}}{\rho_{0}} =Anh𝒥ah(ρ0)rn(q˙mηrs𝒯ms)=Anh𝒥ah(q˙mηns𝒯ms)\displaystyle=\frac{A^{h}_{n}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\mathbb{P}_{\rho_{0}\perp}\right)^{n}_{r}\,\Big{(}\dot{q}^{m}\,\eta^{rs}\mathcal{T}_{ms}\Big{)}=\frac{A^{h}_{n}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\Big{(}\dot{q}^{m}\,\eta^{ns}\mathcal{T}_{ms}\Big{)}
=δnAnh𝒥ah(q˙mAmk𝒥q˙ak),\displaystyle=\delta^{n}_{\ell}\frac{A^{h}_{n}}{\mathcal{J}}\frac{\partial}{\partial a^{h}}\left(\dot{q}^{m}\frac{A^{k}_{m}}{\mathcal{J}}\frac{\partial\dot{q}^{\ell}}{\partial a^{k}}\right)\,, (216)

which in Eulerian variables becomes

(𝐯t+𝐯𝐯)=(𝐯𝐯)or𝐯t=t𝐯=0.\nabla\cdot\left(\frac{\partial\mathbf{v}}{\partial t}+\mathbf{v}\cdot\nabla\mathbf{v}\right)=\nabla\cdot\left(\mathbf{v}\cdot\nabla\mathbf{v}\right)\qquad\mathrm{or}\qquad\nabla\cdot\frac{\partial\mathbf{v}}{\partial t}=\frac{\partial\,}{\partial t}\nabla\cdot\mathbf{v}=0\,. (217)

In Lagrangian variables we have the trivial conservation laws

ρ0˙=0ands0˙=0,\dot{\rho_{0}}=0\qquad\mathrm{and}\qquad\dot{s_{0}}=0\,, (218)

where the corresponding fluxes are identically zero. However, as is evident from (202) and (203) we obtain nontrivial conservation laws for ρ\rho and ss with nonzero fluxes. Thus we see again, consistent with Section 3.4, how Lagrangian and Eulerian conservation laws are not equivalent.

For the special case where ρ0=𝒥=1\rho_{0}=\mathcal{J}=1 one could proceed directly from (7), write it in terms of the Lagrangian variables, and obtain (213). However, without the constraint theory, one would not immediately see it is Hamiltonian and in fact geodesic flow on an infinite-dimensional manifold.

4.5 Incompressible algebra of invariants

In closing this section, we examine the constants of motion for the constrained system. The Poisson bracket together with the set of functionals that commute with the Hamiltonian, i.e., that satisfy {H,Ia}=0\{H,I_{a}\}=0 for a=1,2,,da=1,2,\dots,d, constitute the dd-dimensional algebra of invariants, a subalgebra of the infinite-dimensional Poisson bracket realization on all functionals. This subalgebra is a Lie algebra realization associated with a symmetry group of the dynamical system, and the Poisson bracket with {Ia,}\{I_{a},\cdot\,\} yields the infinitesimal generators of the symmetries, i.e., the differential operator realization of the algebra. This was shown for compressible MHD in Morrison (1982), where the associated Lie algebra realization of the 10 parameter Galilean group on functionals was described. This algebra is homomorphic to usual representations of the Galilean group, with the Casimir invariants being in the center of the algebra composed of elements that have vanishing Poisson bracket with all other elements.

A natural question to ask is what happens to this algebra when incompressibility is enforced by our Dirac constraint procedure. Obviously the Hamiltonian is in the subalgebra and {H,}\{H,\cdot\,\}_{*} clearly generates time translation, and this will be true for any Hamiltonian, but here we use Hamiltonian of (201).

Inserting the momentum

𝐏=d3xρ𝐯\mathbf{P}=\int\!d^{3}x\,\rho\mathbf{v} (219)

into (199) with the Hamiltonian (201) gives

{𝐏,H}=0\{\mathbf{P},H\}_{*}=0 (220)

without assuming 𝐯=0\nabla\cdot\mathbf{v}=0. To see this, we use (196) to obtain

𝒫ρδHδ𝐯=ρ𝐯Δρ1𝐯and𝒫ρδPiδ\varvj=ρδij,\mathcal{P}_{\rho}\frac{\delta H}{\delta\mathbf{v}}=\rho\mathbf{v}-\nabla\Delta_{\rho}^{-1}\nabla\cdot\mathbf{v}\qquad\mathrm{and}\qquad\mathcal{P}_{\rho}\frac{\delta P_{i}}{\delta\varv_{j}}=\rho\,\delta_{ij}\,, (221)

which when inserted into (199) gives

{Pi,H}\displaystyle\left\{P_{i},H\right\}_{*} =\displaystyle= d3x[ρ2|𝐯|2xi+\varvi(ρ𝐯Δρ1𝐯)\displaystyle-\int\!d^{3}x\,\bigg{[}\frac{\rho}{2}\frac{\partial|\mathbf{v}|^{2}}{\partial x_{i}}+\varv_{i}\nabla\cdot\left(\rho\mathbf{v}-\nabla\Delta_{\rho}^{-1}\nabla\cdot\mathbf{v}\right) (222)
+[(×𝐯)×(ρ𝐯Δρ1𝐯)]i\displaystyle+\left[(\nabla\times\mathbf{v})\times\left(\rho\mathbf{v}-\nabla\Delta_{\rho}^{-1}\nabla\cdot\mathbf{v}\right)\right]_{i}
+(𝐯)[(ρ𝐯Δρ1𝐯)iρ\varvi]]=0,\displaystyle+(\nabla\cdot\mathbf{v})\left[\left(\rho\mathbf{v}-\nabla\Delta_{\rho}^{-1}\nabla\cdot\mathbf{v}\right)_{i}-\rho\varv_{i}\right]\bigg{]}=0\,,

as expected. The result of (222) follows upon using standard vector identities, integration by parts, and the self-adjointness of Δρ1\Delta_{\rho}^{-1}.

The associated generator of space translations that satisfies the constraints is given by the operator {𝐏,}\{\mathbf{P},\ \cdot\ \}_{*}, which can be shown directly. And, it follows that

{Pi,Pj}=0,i,j=1,2,3.\{P_{i},P_{j}\}_{*}=0\,,\qquad\ \forall\ i,j=1,2,3\,. (223)

Because the momentum contains no ss dependence the the second line of (199) vanishes and using 𝒫ρδPi/δ\varvj=ρδij\mathcal{P}_{\rho}{\delta P_{i}}/{\delta\varv_{j}}=\rho\,\delta_{ij} of (221) it is clear the last line involving 𝐯\nabla\cdot\mathbf{v} of (199) also vanishes. The result of (223) is obtained because the first and third lines cancel.

Next, consider the angular momentum

𝐋=d3xρ𝐱×𝐯.\mathbf{L}=\int\!d^{3}x\,\rho\,\mathbf{x}\times\mathbf{v}\,. (224)

We will show

{Li,H}=0.\left\{L_{i},H\right\}_{*}=0\,. (225)

Using 𝒫ρδLi/δ𝐯=δLi/δ𝐯\mathcal{P}_{\rho}{\delta L_{i}}/{\delta\mathbf{v}}={\delta L_{i}}/{\delta\mathbf{v}}, which follows from (196) with (ϵikx)/x=0\partial(\epsilon_{ik\ell}x_{\ell})/\partial x^{\ell}=0, the fact that {Li,H}=0\{L_{i},H\}=0 for the compressible fluid, and 𝒫ρ=I𝒫ρ\mathcal{P}_{\rho}=I-\mathcal{P}_{\rho\perp}, we obtain

{Li,H}\displaystyle\left\{L_{i},H\right\}_{*} =\displaystyle= d3x[δLiδρ𝒫ρ(ρ𝐯)\displaystyle\int\!d^{3}x\,\Bigg{[}-\nabla\frac{\delta L_{i}}{\delta\rho}\cdot\mathcal{P}_{\rho\perp}(\rho\mathbf{v}) (226)
+(δLiδ𝐯××𝐯ρ+𝐯ρδLiδ𝐯)𝒫ρ(ρ𝐯)].\displaystyle+\left(\frac{\delta L_{i}}{\delta\mathbf{v}}\times\frac{\nabla\times\mathbf{v}}{\rho}+\frac{\nabla\cdot\mathbf{v}}{\rho}\,\frac{\delta L_{i}}{\delta\mathbf{v}}\right)\cdot\mathcal{P}_{\rho\perp}(\rho\mathbf{v})\Bigg{]}\,.

Next, recognizing that 𝒫ρ(ρ𝐯)=Δρ1𝐯\mathcal{P}_{\rho\perp}(\rho\mathbf{v})=\nabla\Delta_{\rho}^{-1}\nabla\cdot\mathbf{v} and integrating by parts, we obtain

{Li,H}=d3xΔρ1(𝐯)[2δLiδρ(δLiδ𝐯××𝐯ρ+δLiδ𝐯𝐯ρ)].\left\{L_{i},H\right\}_{*}=\int\!d^{3}x\,\Delta_{\rho}^{-1}(\nabla\cdot\mathbf{v})\,\Bigg{[}\nabla^{2}\frac{\delta L_{i}}{\delta\rho}-\nabla\cdot\left(\frac{\delta L_{i}}{\delta\mathbf{v}}\times\frac{\nabla\times\mathbf{v}}{\rho}+\frac{\delta L_{i}}{\delta\mathbf{v}}\,\frac{\nabla\cdot\mathbf{v}}{\rho}\right)\Bigg{]}\,. (227)

Then upon inserting

δLiδρ=ϵijkxj\varvkandδLiδ\varvj=ρxkϵikj,\frac{\delta L_{i}}{\delta\rho}=\epsilon_{ijk}x_{j}\varv_{k}\qquad\mathrm{and}\qquad\frac{\delta L_{i}}{\delta\varv_{j}}=\rho\,x_{k}\epsilon_{ikj}\,, (228)

and using standard vector analysis we obtain (225).

Because 𝒫ρδLi/δ𝐯=δLi/δ𝐯\mathcal{P}_{\rho}{\delta L_{i}}/{\delta\mathbf{v}}={\delta L_{i}}/{\delta\mathbf{v}}, the first and third lines of (199) produce

{Li,Lj}=ϵijkLk,\{L_{i},L_{j}\}_{*}=\epsilon_{ijk}L_{k}\,, (229)

just as they do for the compressible fluid (and MHD), while the fourth line manifestly vanishes. Similarly, it follows that that {𝐋,}\{\mathbf{L},\cdot\,\}_{*} is the generator for rotations.

To obtain the full algebra of invariants we need {Li,Pj}\{L_{i},P_{j}\}_{*}. However because 𝒫ρδPi/δ𝐯=δPi/δ𝐯\mathcal{P}_{\rho}{\delta P_{i}}/{\delta\mathbf{v}}={\delta P_{i}}/{\delta\mathbf{v}} and 𝒫ρδLi/δ𝐯=δLi/δ𝐯\mathcal{P}_{\rho}{\delta L_{i}}/{\delta\mathbf{v}}={\delta L_{i}}/{\delta\mathbf{v}}, it follows as for the compressible fluid that {Li,Pj}=ϵijkPk\{L_{i},P_{j}\}_{*}=\epsilon_{ijk}P_{k}.

Finally, consider the following measure of the position of the center of mass, the generator of Galilean boosts,

𝐆=d3xρ(𝐱𝐯t).\mathbf{G}=\int\!d^{3}x\,\rho\,(\mathbf{x}-\mathbf{v}t)\,. (230)

Calculations akin to those above reveal

{Gi,Gj}=0,{Gi,Pj}=0,{Gi,H}=Pi,{Li,Gj}=ϵijkGk.\{G_{i},G_{j}\}_{*}=0\,,\quad\{G_{i},P_{j}\}_{*}=0\,,\quad\{G_{i},H\}_{*}=P_{i}\,,\quad\{L_{i},G_{j}\}_{*}=\epsilon_{ijk}G_{k}\,. (231)

Thus the bracket (207) with the set of ten invariants {H,𝐏,𝐋,𝐆}\{H,\mathbf{P},\mathbf{L},\mathbf{G}\} is at once a closed subalgebra of Poisson bracket realization on all functionals and produces an operator realization of the Galilean group (see e.g. Sudarshan & Makunda, 1974) that is homomorphic to the operator algebra of {Li,}\{L_{i},\ \cdot\ \}_{*}, {Pi,}\{P_{i},\ \cdot\ \}_{*}, etc. with operator commutation relations. This remains true for MHD with the only change being the addition of HBH_{B} to the Hamiltonian.

Thus, the Galilean symmetry properties of the ideal fluid and MHD are not affected by the compressibility constraint. However, based on past experience with advected quantities, we do expect a new Casimir invariant of the form

C^[ρ,s]=d3x𝒞^(ρ,s).\hat{C}[\rho,s]=\int\!d^{3}x\,\hat{\mathcal{C}}(\rho,s)\,. (232)

To see that {C^,F}=0\{\hat{C},F\}_{*}=0 for any functional FF, where 𝒞^(ρ,s)\hat{\mathcal{C}}(\rho,s) is an arbitrary function of its arguments, we calculate

{F,C^}=d3x1ρ[ρ𝒞^ρ𝒞^ss]𝒫ρδFδ𝐯,\{F,\hat{C}\}_{*}=-\int\!d^{3}x\,\frac{1}{\rho}\left[\rho\,\nabla\frac{\partial\hat{\mathcal{C}}}{\partial\rho}-\frac{\partial\hat{\mathcal{C}}}{\partial s}\,\nabla s\right]\cdot\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\,, (233)

and since ×(ρ𝒞^/ρ𝒞^/ss)=0\nabla\times(\rho\,\nabla{\partial\hat{\mathcal{C}}}/{\partial\rho}-{\partial\hat{\mathcal{C}}}/{\partial s}\,\nabla s)=0 we write it as p\nabla p, giving for (233)

{F,C^}=d3x1ρp𝒫ρδFδ𝐯.\{F,\hat{C}\}_{*}=-\int\!d^{3}x\,\frac{1}{\rho}\nabla p\cdot\mathcal{P}_{\rho}\frac{\delta F}{\delta\mathbf{v}}\,. (234)

Thus, integration by parts and use of (198) imply {F,C^}=0\{F,\hat{C}\}_{*}=0 for all functionals FF. Note, without loss of generality we can write 𝒞^(ρ,s)=ρU(ρ,s)\hat{\mathcal{C}}(\rho,s)=\rho U(\rho,s), in which case p=ρ2U/ρp=\rho^{2}\partial U/\partial\rho. Thus, it is immaterial whether or not one retains the internal energy term d3xρU(ρ,s)\int\!d^{3}x\,\rho U(\rho,s) in the Hamiltonian.

Now, (232) is not the most general Casimir. Because both ρ\rho and 𝐯\nabla\cdot\mathbf{v} are Lagrangian pointwise Dirac constraints, we expect the following to be an Eulerian Casimir

C^[ρ,s,𝐯]=d3x𝒞(ρ,s,𝐯),\hat{C}[\rho,s,\nabla\cdot\mathbf{v}]=\int\!d^{3}x\,\mathcal{C}(\rho,s,\nabla\cdot\mathbf{v})\,, (235)

where 𝒞\mathcal{C} is an arbitrary function of its arguments. To see that {C,F}=0\{C,F\}_{*}=0 for any functional FF, we first observe that

δCδ𝐯=𝒞𝐯\frac{\delta C}{\delta\mathbf{v}}=-\nabla\frac{\partial\mathcal{C}}{\partial\nabla\cdot\mathbf{v}} (236)

and, as is evident from (196), that (𝒫ρΦ)=0\nabla\cdot(\mathcal{P}_{\rho}\nabla\Phi)=0 for all Φ\Phi; hence, all the δC/δ𝐯{\delta C}/{\delta\mathbf{v}} terms vanish except the first term of the last line of (199). This term combines with the others to cancel, just as for the calculation of 𝒞^\hat{\mathcal{C}}.

For constant density, entropy, and magnetic field, the bracket of (207) reduces to

{F,G}=d3x×𝐯ρ(δFδ𝐯×δGδ𝐯),\{F,G\}_{*}=-\int\!d^{3}x\,\frac{\nabla\times{\bf v}}{\rho}\cdot\left(\mathbb{P}\frac{\delta F}{\delta\bf v}\times\mathbb{P}\frac{\delta G}{\delta\bf v}\right)\,, (237)

whence it is easily seen that the helicity

C\varv×\varv=d3x𝐯×𝐯C_{\varv\cdot\nabla\times\varv}=\int\!d^{3}x\,\mathbf{v}\cdot\nabla\times\mathbf{v} (238)

is a Casimir invariant because (×𝐯)=×𝐯\mathbb{P}\,(\nabla\times\mathbf{v})=\nabla\times\mathbf{v}. This Casimir is lost when entropy and density are allowed to be advected, for it is no longer a Casimir invariant of (199).

Now, let us consider invariants in the Lagrangian description. Without the incompressibility constraints, the Hamiltonian has a standard kinetic energy term and the internal energy depends on q/a\partial q/\partial a, an infinitesimal version of the two-body interaction, if follows that just like the NN-body problem the system has Galilean symmetry, and because the Poisson bracket in the Lagrangian description (100) is canonical there are no Casimir invariants. With the incompressibility constraint, the generators of the algebra now respect the constraints, with Dirac constraints being Casimirs and the algebra of constraints now having a nontrivial center. Because the Casimirs are pointwise invariants, we expect the situation to be like that for the Maxwell Vlasov equation Morrison (1982), where the following is a Casimir

CB[𝐁]=d3x𝒞(𝐁,𝐱),C_{\nabla\cdot B}[\mathbf{B}]=\int\!d^{3}x\,\mathcal{C}(\nabla\cdot\mathbf{B},\mathbf{x})\,, (239)

with 𝒞\mathcal{C} being an arbitrary function of its arguments. Because both nabla 𝐁\nabla\cdot\mathbf{B} and 𝒥\mathcal{J} are pointwise constraints, analogous to (239) we expect the following Casimir:

C^[𝒥]=d3a𝒞^(𝒥,𝐚).\hat{C}[\mathcal{J}]=\int\!d^{3}a\,\hat{\mathcal{C}}(\mathcal{J},\mathbf{a})\,. (240)

Indeed, only the first term of  (184) contributes when we calculate {C^,G}\{\hat{C},G\}_{*} and this term vanishes by (181) because

δC^δqi=a(Ai𝒞^𝒥),\frac{\delta\hat{C}}{\delta q^{i}}=-\frac{\partial}{\partial a^{\ell}}\left(A^{\ell}_{i}\frac{\partial\hat{\mathcal{C}}}{\partial\mathcal{J}}\right)\,, (241)

which follows upon making use of (92). Similarly, it can be shown that the full Casimir is

C^[D1,D2]=d3a𝒞^(D1,D2,𝐚),\hat{C}[D^{1},D^{2}]=\int\!d^{3}a\,\hat{\mathcal{C}}(D^{1},D^{2},\mathbf{a})\,, (242)

a Lagrangian Casimir consistent with (235).

For MHD, the magnetic helicity,

CAB=d3x𝐀𝐁,C_{A\cdot B}=\int\!d^{3}x\,\mathbf{A}\cdot\mathbf{B}\,, (243)

where 𝐁=×𝐀\mathbf{B}=\nabla\times\mathbf{A} is easily seen to be preserved and a Casimir up to the usual issues regarding gauge conditions and boundary terms (see Finn & Antonsen, 1985). We know that the cross helicity

C\varvB=d3x𝐯𝐁,C_{\varv\cdot B}=\int\!d^{3}x\,\mathbf{v}\cdot\mathbf{B}\,, (244)

is a Casimir of the compressible barotropic MHD equations, and it is easy to verify that it is also a Casimir of (207) added to (208), that is for uniform density. However, it is not a Casimir for the case with advected density, i.e., for the bracket of (199) added to (200).

5 Conclusions

In this paper we have substantially investigated constraints, particularly incompressibility for the ideal fluid and MHD, for the three dichotomies described in Section 1.1: the Lagrangian vs. Eulerian fluid descriptions, Lagrange multiplier vs. Dirac constraint methods, and Lagrangian vs. Hamiltonian formalisms. An in depth description of the interplay between the various fluid and MHD descriptions was given, with an emphasis on Dirac’s constraint method. Although we mainly considered geodesic flow for simplicity, the Dirac’s Poisson bracket method can be used to find other forces of constraint in a variety of fluid and plasma contexts.

Based on our results, many avenues for future research are presented. We mention a few. Since the Hamiltonian structure of extended and relativistic MHD are now at hand (Charidakos et al., 2014; Abdelhamid et al., 2015; D’Avignon et al., 2015; Lingam et al., 2016; D’Avignon et al., 2016; Kaltsas et al., 2020) calculations analogous to those presented here can be done for a variety of magnetofluid models. Another valuable class of models that could be studied, ones that are known to have Lagrangian and Hamiltonian structure, are those with various finite-Larmor-radius effects (e.g. Tassi et al., 2008; Izacard et al., 2011; Tassi, 2014, 2019)

Another avenue for future research would be to address stability with constraints. In a previous series of papers (Andreussi et al., 2010, 2012, 2013, 2015, 2016) we have investigated Hamiltonian based stability, generalizations of the MHD energy principle or the ideal fluid Rayleigh criterion, within the Lagrangian, energy-Casimir, and dynamically accessible frameworks. Because Dirac’s method adds Casimirs, the Dirac constraints, one gets a richer set of equilibria from the energy-Casimir variational principle and these can be tested for Lyapunov stability. Similarly, the method of dynamical accessibility (see Morrison, 1998) based on constrained variations induced by the Poisson operator will enlarge the set of stable equilibria.

Recently there has been consider research in the development of structure preserving computational algorithms. (See, e.g., Morrison, 2017, for review.) These are algorithms that preserve various geometric, Hamiltonian, variational, and other structure of fluid, kinetic, and other physical models. In the plasma community, in particular, we mention Evstatiev & Shadwick (2013); Qin et al. (2016); Xiao et al. (2016); Kraus et al. (2017), but there is a large body of additional work by these and other authors. Given how the finite-dimensional material of Section 2 so strongly parallels the infinite-dimensional material of Section 4, notably the structure of geodesic flow, a natural avenue for future research would be to develop numerical algorithms that preserve this structure.

Lastly, we mention that there is considerable geometric structure behind our calculations that could be further developed. Our results can be restated in geometric/Lie group language (see e.g. Bloch, 2002). Also, Arnold’s program for obtaining the Riemann curvature for geodesic flow on the group of volume preserving diffeomorphisms can be explored beginning from our results of Section 4. We did not feel this special issue would be the appropriate place to explore these ideas.

Acknowledgment

PJM was supported by U.S. Dept. of Energy under contract #DE-FG02-04ER-54742. He would also like to acknowledge support from the Humboldt Foundation and the hospitality of the Numerical Plasma Physics Division of the IPP, Max Planck, Garching. FP would like to acknowledge the hospitality of the Institute for Fusion Studies of the University of Texas at Austin.

References

  • Abdelhamid et al. (2015) Abdelhamid, H. M., Kawazura, Y. & Yoshida, Z. 2015 Hamiltonian formalism of extended magnetohydrodynamics. J. Phys. A 48 (23), 235502.
  • Andreussi et al. (2010) Andreussi, T., Morrison, P. J. & Pegoraro, F. 2010 MHD equilibrium variational principles with symmetry. Plasma Phys. and Controll. Fusion P52, 055001.
  • Andreussi et al. (2012) Andreussi, T., Morrison, P. J. & Pegoraro, F. 2012 Hamiltonian magnetohydrodynamics: Symmetric formulation, Casimir invariants, and equilibrium variational principles. Phys. Plasmas 19, 052102.
  • Andreussi et al. (2013) Andreussi, T., Morrison, P. J. & Pegoraro, F. 2013 Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability - Theory. Phys. Plasmas 20, 092104.
  • Andreussi et al. (2015) Andreussi, T., Morrison, P. J. & Pegoraro, F. 2015 Erratum: Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability - Theory. Phys. Plasmas 22, 039903.
  • Andreussi et al. (2016) Andreussi, T., Morrison, P. J. & Pegoraro, F. 2016 Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability - examples with translation symmetry. Phys. Plasmas 23, 102112.
  • Arnold (1966) Arnold, V. I. 1966 Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications á l’hydrodynamique des fluides parfaits. Ann. l’Inst. Fourier XVI, 319–361.
  • Arnold (1978) Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer-Verlag.
  • Arnold & Khesin (1998) Arnold, V. I. & Khesin, B. A. 1998 Topological Methods in Hydrodynamics. Springer-Verlag.
  • Arnold et al. (1980) Arnold, V. I., Kozlov, V. V. & Neishtadt, A. I. 1980 Dynamical Systems III. Springer Verlag, New York.
  • Bloch (2002) Bloch, A. M. 2002 Nonholonomic Mechanics and Control. Springer-Verlag.
  • Chandre et al. (2013) Chandre, C., de Guillebon, L., Back, A., Tassi, E. & Morrison, P. J. 2013 On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets. J. Phys. A 46, 125203.
  • Chandre et al. (2012) Chandre, C., Morrison, P. J. & Tassi, E. 2012 On the Hamiltonian formulation of incompressible ideal fluids and magnetohydrodynamics via Dirac’s theory of constraints. Phys. Lett. A 376, 737–743.
  • Chandre et al. (2014) Chandre, C., Morrison, P. J. & Tassi, E. 2014 Hamiltonian formulation of the modified Hasegawa-Mima equation. Phys. Lett A 378, 956–959.
  • Charidakos et al. (2014) Charidakos, I. Keramidas, Lingam, M., Morrison, P. J., White, R. L. & Wurm, A. 2014 Action principles for extended MHD models. Phys. Plasmas 21, 092118.
  • Corben & Stehle (1960) Corben, H. C. & Stehle, P. 1960 Classical Mechanics, 2nd edn. Wiley.
  • D’Avignon et al. (2015) D’Avignon, E., Morrison, P. J. & Pegoraro, F. 2015 Action principle for relativistic magnetohydrodynamics. Phys. Rev. D 91, 084050.
  • D’Avignon et al. (2016) D’Avignon, E. C., Morrison, P. J. & Lingam, M. 2016 Derivation of the Hall and extended magnetohydrodynamics brackets. Phys. Plasmas 23, 062101.
  • Dermaret & Moncrief (1980) Dermaret, Jacques & Moncrief, Vincent 1980 Hamiltonian formalism for perfect fluids in general relativity. Phys. Rev. D 21, 2785–2793.
  • Dirac (1950) Dirac, P. A. M. 1950 Generalized Hamiltonian dynamics. Canadian J. Math. 2, 129–148.
  • Evans (2010) Evans, L. C. 2010 Partial Differential Equations. American Mathematical Society, Providence, RI.
  • Evstatiev & Shadwick (2013) Evstatiev, E. G. & Shadwick, B. A. 2013 Variational formulation of particle algorithms for kinetic plasma simulations. J. Comput. Phys. 245, 376–398.
  • Finn & Antonsen (1985) Finn, J. M. & Antonsen, T. M. 1985 Magnetic helicity: What is it and what is it good for? Comments Plasma Phys. Control. Fusion 9, 111–126.
  • Flierl & Morrison (2011) Flierl, G. R. & Morrison, P. J. 2011 Hamiltonian-Dirac simulated annealing: Application to the calculation of vortex states. Physica D 240, 212–232.
  • Hanson et al. (1976) Hanson, A., Regge, T. & Teitleboim, C. 1976 Constrained Hamiltonian Systems. Accademia Nazionale dei Lincei, Rome.
  • Izacard et al. (2011) Izacard, O., Chandre, C., Tassi, E. & Ciraolo, G. 2011 Gyromap for a two-dimensional Hamiltonian fluid model derived from Braginskii’s closure for magnetized plasmas. Phys. Plasmas 18 (6), 062105.
  • Kaltsas et al. (2020) Kaltsas, D. A., Throumoulopoulos, G. N. & Morrison, P. J. 2020 Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria. Phys. Plasmas 27, 012104.
  • Kampen & Felderhoff (1967) Kampen, N. G. Van & Felderhoff, B. U. 1967 Theoretical Methods in Plasma Physics. North-Holland, Amsterdam.
  • Kraus et al. (2017) Kraus, M., Kormann, K., Morrison, P. J. & Sonnendrücker, E. 2017 GEMPIC: Geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83, 905830401.
  • Lagrange (1788) Lagrange, J. L. 1788 Mécanique Analytique. Ve Courcier, Paris.
  • Lingam et al. (2016) Lingam, M., Miloshevich, G. & Morrison, P. J. 2016 Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics. Phys. Lett. A 380, 2400–2406.
  • Lingam et al. (2020) Lingam, Manasvi, Morrison, Philip J. & Wurm, Alexander 2020 A class of three-dimensional gyroviscous magnetohydrodynamic models. arXiv e-prints p. arXiv:2002.11272.
  • Morrison (1982) Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. AIP Conf. Proc. 88, 13–46.
  • Morrison (1998) Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521.
  • Morrison (2009) Morrison, P. J. 2009 On Hamiltonian and action principle formulations of plasma dynamics. AIP Conf. Proc. 1188, 329–344.
  • Morrison (2017) Morrison, P. J. 2017 Structure and structure-preserving algorithms for plasma physics. Phys. Plasmas 24, 055502.
  • Morrison & Greene (1980) Morrison, P. J. & Greene, J. M. 1980 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790–793.
  • Morrison et al. (2009) Morrison, P. J., Lebovitz, N. R. & Biello, J. 2009 The Hamiltonian description of incompressible fluid ellipsoids. Ann. Phys. 324, 1747–1762.
  • Morrison et al. (2014) Morrison, P. J., Lingam, M. & Acevedo, R. 2014 Hamiltonian and action formalisms for two-dimensional gyroviscous MHD. Phys. Plasmas 21, 082102.
  • Newcomb (1962) Newcomb, WA 1962 Lagrangian and Hamiltonian methods in magnetohydrodynamics. Nuclear Fusion Supp. 2, 451–463.
  • Nguyen & Turski (1999) Nguyen, S. & Turski, L. A. 1999 Canonical description of incompressible fluid: Dirac brackets approach. Physica A 272, 48–55.
  • Nguyen & Turski (2001) Nguyen, S. & Turski, L. A. 2001 Examples of the Dirac approach to dynamics of systems with constraints. Physica A 290, 431–44.
  • Orszag et al. (1986) Orszag, S. A., Israeli, M. & Deville, M. O. 1986 Boundary conditions for incompressible flows. J. Sci. Comp. 1, 75–111.
  • Qin et al. (2016) Qin, H., Liu, J., Xiao, J., Zhang, R., He, Y., Wang, Y., Burby, J. W., Ellison, L. & Zhou, Y. 2016 Variational formulation of particle algorithms for kinetic plasma simulations. Nucl. Fusion 56, 014001.
  • Serrin (1959) Serrin, J. 1959 Mathematical principles of classical fluid mechanics. In Handbuch der Physik VIII pt. 1 (ed. S. Flügge), pp. 125–262. Springer Verlag.
  • Sommerfeld (1964) Sommerfeld, A. 1964 Mechanics of Deformable Bodies. Academic Press.
  • Sudarshan & Makunda (1974) Sudarshan, E. C. G. & Makunda, N. 1974 Classical Dynamics : A Modern Perspective. John Wiley & Sons, New York.
  • Sundermeyer (1982) Sundermeyer, K. 1982 Constrained Dynamics, Lecture Notes in Physics vol. 169. Springer Verlag, New York.
  • Tassi (2014) Tassi, E. 2014 Hamiltonian structure of a drift-kinetic model and hamiltonian closures for its two-moment fluid reductions. European Physical Journal D 68, 196.
  • Tassi (2019) Tassi, E. 2019 Hamiltonian gyrofluid reductions of gyrokinetic equations. Journal of Physics A 52, 465501.
  • Tassi et al. (2009) Tassi, E., Chandre, D. & Morrison, P. J. 2009 Hamiltonian derivation of the Charney-Hasegawa-Mima equation. Phys. Plasmas 16, 082301.
  • Tassi et al. (2008) Tassi, E., Morrison, P. J., Waelbroeck, F. L. & Grasso, D. 2008 Hamiltonian formulation and analysis of a collisioinless fluid reconnection model. Plasma Phys Cont. Fusion 50, 085014.
  • Tur & Yanovsky (1993) Tur, A. V. & Yanovsky, V. V. 1993 Invariants in dissipationless hydrodynamic media. J. Fluid Mech. 248, 67–106.
  • Van Kampen & Felderhof (1967) Van Kampen, N. G. & Felderhof, B. U. 1967 Theoretical Methods in Plasma Physics. North Holland, Amsterdam.
  • Whittaker (1917) Whittaker, E. T. 1917 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd edn. Cambridge University Press.
  • Xiao et al. (2016) Xiao, J., Qin, H., Morrison, P. J., Liu, J., Yu, Z., Zhang, R. & He, Y. 2016 Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems. Phys. Plasmas 23, 112107.