This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kuznetsov’s Fano threefold conjecture via Hochschild-Serre algebra

Xun Lin and Shizhuo Zhang Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany [email protected], [email protected] Simons Laufer Mathematical Sciences Institute, 17 Gauss Way, Berkeley, CA 94720, USA Institut de Mathématiqes de Toulouse, UMR 5219, Université de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France MCM, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190 [email protected],[email protected]
Abstract.

Let YY be a smooth quartic double solid regarded as a degree 4 hypersurface of the weighted projective space (1,1,1,1,2)\mathbb{P}(1,1,1,1,2). We study the multiplication of the Hochschild-Serre algebra of its Kuznetsov component 𝒦u(Y)\mathcal{K}u(Y) via matrix factorization. As an application, we give a new disproof of Kuznetsov’s Fano threefold conjecture.

Key words and phrases:
Derived categories, Kuznetsov components, Fano threefolds, matrix factorization, Hochschild cohomology, Jacobian ring.
2010 Mathematics Subject Classification:
Primary 14F05; secondary 14J45, 14D20, 14D23

1. Introduction

Let XX be Fano variety whose semi-orthogonal decomposition for bounded derived category is given by

Db(X)=𝒦u(X),E1,,En,D^{b}(X)=\langle\mathcal{K}u(X),E_{1},\ldots,E_{n}\rangle,

where E1,,EnE_{1},\ldots,E_{n} is an exceptional collection of vector bundles over XX and 𝒦u(X)\mathcal{K}u(X) is the right orthogonal complement of the collection, called Kuznetsov component. It has been widely believed that the Kuznetsov component encodes the essential birational geometric information of the Fano varieties. Thus extracting geometric information from Kuznetsov components is an important step to understand geometry of Fano varieties. There are numerous way to extract information from Kuznetsov components, which we briefly recall as follows.

1.1. Stability conditions in Kuznetsov components and moduli space theoretical approach

One of the most interesting class of Fano varieties are smooth Fano threefolds of Picard rank one of index one and two, whose deformation classes are completely classified in [VI99]. In the paper [BLMS17], the authors construct a stability condition σ\sigma in 𝒦u(X)\mathcal{K}u(X) for any such Fano variety XX. Denote by 𝒩(𝒦u(X))\mathcal{N}(\mathcal{K}u(X)) the numerical Grothendieck group and fix a numerical class 𝐯𝒩(𝒦u(X))\mathbf{v}\in\mathcal{N}(\mathcal{K}u(X)) and consider the Bridgeland moduli space σ(𝒦u(X),𝐯)\mathcal{M}_{\sigma}(\mathcal{K}u(X),\mathbf{v}) of (semi)stable object with respect to σ\sigma in 𝒦u(X)\mathcal{K}u(X) of numerical class 𝐯\mathbf{v}. The numerical character 𝐯\mathbf{v} is appropriately chosen such that the corresponding moduli space reconstructs Fano variety of rational curves on XX, which is used to reconstruct (birational) isomorphism class of Fano varieties(cf. [BMMS12],[PY22], [GLZ22]).

1.2. Topological K-theory of admissible subcategory and Hodge theoretical approach

Let 𝒜Db(X)\mathcal{A}\subset D^{b}(X) be an admissible subcategory of bounded derived category of a smooth projective variety XX. The topological K-theory [Bla16] of dg categories over \mathbb{C} is an additive invariant

K1top:dgcatmod.\mathrm{K}^{top}_{1}:\mathrm{dg}-cat\rightarrow\mathbb{Z}-mod.

with Chern character map

chtop:K1top(𝒜dg)HP1(𝒜dg).\mathrm{ch}^{top}:\mathrm{K}^{top}_{1}(\mathcal{A}_{dg})\rightarrow\mathrm{HP}_{1}(\mathcal{A}_{dg}).

Furthermore K1top(Ddgperf(X))Hodd(X,)\mathrm{K}^{top}_{1}(D^{perf}_{dg}(X))\otimes\mathbb{C}\cong\mathrm{H}^{\text{odd}}(X,\mathbb{C}), and chtop\mathrm{ch}^{top} is the usual Chern character. In particular, the natural splitting from that of XX gives a weight one Hodge structure for topological KK-group K1top(𝒜)tf\mathrm{K}^{top}_{1}(\mathcal{A})_{tf}. Namely, the topological Chern character induces,

K1top(𝒜)tfchtopHP1(𝒜)HN1(𝒜)HN1(𝒜)¯.\mathrm{K}^{top}_{1}(\mathcal{A})_{tf}\otimes\mathbb{C}\cong^{\mathrm{ch}^{top}}\mathrm{HP}_{1}(\mathcal{A})\cong\mathrm{HN}_{-1}(\mathcal{A})\oplus\overline{\mathrm{HN}_{-1}(\mathcal{A})}.

Thus, we have a complex torus associated to this weight one Hodge structure. More explicitly,

J(𝒜)=HP1(𝒜)HN1(𝒜)+chtop(K1top(𝒜)).\mathrm{J}(\mathcal{A})=\frac{\mathrm{HP}_{1}(\mathcal{A})}{\mathrm{HN}_{-1}(\mathcal{A})+\operatorname{ch^{top}}(\mathrm{K}^{top}_{1}(\mathcal{A}))}.

In the case of XX is a smooth Fano threefold with 𝒜\mathcal{A} being the Kuznetsov component 𝒦u(X)\mathcal{K}u(X) as the orthogonal complement of an exceptional collection of vector bundles, by [JLLZ21, Lemma 3.9] J(𝒦u(X))J(X)\mathrm{J}(\mathcal{K}u(X))\cong J(X) as polarised abelian varieties(which was sketched in [Per22, Section 5]). Similar construction is generalized for any smooth and proper dg category and even to arbitrary dg category in [CMHL+23] and [LXZ24]. On the other hand, in the similar spirit, topological K-theory and noncommutative Hodge theory(cf. [Bla16] and [Per22]) is applied to admissible subcategory of Fano fourfolds in [BP23] and surfaces in [DJR23] to recover Mukai lattice for K3 category and primitive cohomology for surfaces respectively. As application, (birational) categorical Torelli theorem are proved for many varieties.

1.3. Hochschild-Serre algebra and algebraic approach

The Hochschild cohomology is an algebra, and Hochschild homology is a graded module over this algebra. We now define a bi-graded algebra that contains Hochschild cohomology and Hochschild homology and encodes the algebra structure of Hochschild cohomology and the module structure of Hochschild homology over Hochschild cohomology. Let 𝒜\mathcal{A} be a smooth and proper dg category and SS be the Serre functor of 𝒜\mathcal{A}. One can naturally attach a bi-graded algebra

𝒜S=m,nHom(Id,Sm[n])\mathcal{A}_{S}=\bigoplus_{m,n\in\mathbb{Z}}\mathrm{Hom}(\mathrm{Id},S^{m}[n])

with multiplication map

Hom(Id,Sm1[n1])×Hom(Id,Sm2[n2])\textstyle{\mathrm{Hom}(\mathrm{Id},S^{m_{1}}[n_{1}])\times\mathrm{Hom}(\mathrm{Id},S^{m_{2}}[n_{2}])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}×\scriptstyle{\times}Hom(Id,Sm1+m2[n1+n2])\textstyle{\mathrm{Hom}(\mathrm{Id},S^{m_{1}+m_{2}}[n_{1}+n_{2}])}

given by the composition

IdbIdSm2[n2]aIdSm1[n1]Sm2[n2]=Sm1+m2[n1+n2],\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 7.58334pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-7.58334pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Id}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 61.5749pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{b}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 107.16798pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 107.16798pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Id}\circ S^{m_{2}}[n_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 219.9313pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{a\circ\mathrm{Id}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 256.72461pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 256.72461pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{S^{m_{1}}[n_{1}]\circ S^{m_{2}}[n_{2}]=S^{m_{1}+m_{2}}[n_{1}+n_{2}]}$}}}}}}}\ignorespaces}}}}\ignorespaces,

for (a,b)Hom(Id,Sm1[n1])×Hom(Id,Sm2[n2])(a,b)\in\mathrm{Hom}(\mathrm{Id},S^{m_{1}}[n_{1}])\times\mathrm{Hom}(\mathrm{Id},S^{m_{2}}[n_{2}]). It was studied in [Orl03] and [Căl05], [Cal03] independently when 𝒜\mathcal{A} is bounded derived category Db(X)D^{b}(X) of coherent sheaves on a smooth projective variety XX, where they prove basic property of this algebra. Moreover, in [BO01], the author uses a sub-algebra of Db(X)SD^{b}(X)_{S}, which is isomorphic to anti-canonical ring of a smooth Fano variety XX to reconstruct the variety itself. Recently this algebra is revisited in [BFK23] and [LZ23] under the name Hochschild-Serre algebra for admissible subcategory of Db(X)D^{b}(X). In particular, the authors of [LZ23] establish a sub-algebra of 𝒦u(X)S\mathcal{K}u(X)_{S} in the case of smooth hypersurface of degree dd in n\mathbb{P}^{n}, which recovers the Jacobian ring of XX if gcd(d,n+1)=1\mathrm{gcd}(d,n+1)=1. Thus a categorical Torelli theorem is proved for those hypersurfaces.

1.4. Kuznetsov’s Fano threefold conjecture

Denote by di\mathcal{MF}^{i}_{d} the moduli space of smooth Fano threefold of index ii and degree dd. In [Kuz09, Conjecture 3.7], the author proposed a surprising conjecture relating the non-trivial admissible subcategories of two families of smooth Fano threefolds.

Conjecture 1.1.

There is a correspondence 𝒵dd2×4d+21\mathcal{Z}_{d}\subset\mathcal{MF}^{2}_{d}\times\mathcal{MF}^{1}_{4d+2}, such that for any pair (Yd,X4d+2)𝒵d(Y_{d},X_{4d+2})\in\mathcal{Z}_{d}, there is an equivalence of categories

𝒦u(Yd)𝒦u(X4d+2).\mathcal{K}u(Y_{d})\simeq\mathcal{K}u(X_{4d+2}).

The conjecture is proved for d=3,4d=3,4 and 55 in [Kuz09]. For the remaining cases, there was a lot of evidence suggesting that the conjecture might be false. Thus instead of proving this conjecture, people disproved it. To do this, the natural idea would be looking at the information(moduli spaces, Hodge theory, algebra etc.)extracting from 𝒦u(Yd)\mathcal{K}u(Y_{d}) and 𝒦u(X4d+2)\mathcal{K}u(X_{4d+2}) respectively and then show that they are different. Indeed, in [Zha20], the author adopts the moduli theoretical approach described in Section 1.1 to study particular Bridgeland moduli spaces canonically constructed from 𝒦u(Y2)\mathcal{K}u(Y_{2}) and 𝒦u(X10)\mathcal{K}u(X_{10}) respectively and shows that they are not isomorphic to each other. Independently, in [BP23], the authors apply the Hodge theoretical approach in Section 1.2. They look at the Mukai-Hodge lattice of two K3 categories constructed from equivariant categories of 𝒦u(Y2)\mathcal{K}u(Y_{2}) and 𝒦u(X10)\mathcal{K}u(X_{10}) respectively and show that the Hodge isometry does not exist. In the current paper, we adopt another perspective described in 1.3. Namely, we look at Hochschild-Serre algebra of dg-enhancement of Kuznetsov component of quartic double solid and Gushel-Mukai threefold, which are the Fano threefolds appearing in the d=2d=2 case of Conjecture 1.1. It turns out that they are not isomorphic to each other and the proof is very simple.

1.5. Main Results

Let YY be a smooth quartic double solid with the geometric involution ι\iota and XX be a smooth Gushel-Mukai threefold. Denote by 𝒦u(Y)S,𝒦u(X)S\mathcal{K}u(Y)_{S},\mathcal{K}u(X)_{S} the Hochschild-Serre algebra of dg-enhancement of 𝒦u(Y)\mathcal{K}u(Y) and 𝒦u(X)\mathcal{K}u(X) respectively. Note that S𝒦u(Y)=ι[2]S_{\mathcal{K}u(Y)}=\iota\circ[2] by [APR22, Section 3]. Then, consider the multiplication

(1) Hom(Id,S𝒦u(Y)2[2])×Hom(Id,S𝒦u(Y)[1])Hom(Id,S𝒦u(Y)3[3])HH1(𝒦u(Y)),\displaystyle\mathrm{Hom}(\mathrm{Id},S_{\mathcal{K}u(Y)}^{2}[-2])\times\mathrm{Hom}(\mathrm{Id},S_{\mathcal{K}u(Y)}[-1])\rightarrow\mathrm{Hom}(\mathrm{Id},S_{\mathcal{K}u(Y)}^{3}[-3])\cong\mathrm{HH}_{1}(\mathcal{K}u(Y)),

and associated map

γY:HH2(𝒦u(Y))Hom(HH1(𝒦u(Y)),HH1(𝒦u(Y))).\gamma_{Y}:\mathrm{HH}^{2}(\mathcal{K}u(Y))\rightarrow\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(Y)),\mathrm{HH}_{1}(\mathcal{K}u(Y))).

Then we show

Theorem 1.2.

The kernel of the map γY\gamma_{Y} is one dimensional.

On the other hand, from [JLLZ22, Theorem 4.6], we know the map

γX:HH2(𝒦u(X))Hom(HH1(𝒦u(X)),HH1(𝒦u(X)))\gamma_{X}:\mathrm{HH}^{2}(\mathcal{K}u(X))\rightarrow\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(X)),\mathrm{HH}_{1}(\mathcal{K}u(X)))

is injective for all ordinary Gushel-Mukai threefold XX. In fact, the injectivity holds for special Gushel–Mukai threefolds as well, as we will show in Lemma 3.3. Then by [JLLZ22, Theorem 4.8], Ker(γY)Ker(γX)=0\mathrm{Ker}(\gamma_{Y})\cong\mathrm{Ker}(\gamma_{X})=0, which is a contradiction. Thus we have

Corollary 1.3.

For any Gushel Mukai threefold XX and quartic double solid YY, the categories 𝒦u(X)\mathcal{K}u(X) and 𝒦u(Y)\mathcal{K}u(Y) are never equivalent. In particular, the Conjecture 1.1 for d=2d=2 fails.

1.6. Organization of the paper

In Section 2, we recall the terminology of category of graded matrix factorization Injcoh(𝔸n+1,,𝒪(d),ω)\mathrm{Inj}_{\mathrm{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\operatorname{\mathcal{O}}(d),\omega) with \mathbb{C}^{\ast}-action on 𝔸n+1\mathbb{A}^{n+1} of weight (a0,,an)(a_{0},\ldots,a_{n}). Then we describe the multiplications of Hochschild-Serre algebra for the matrix factorization. In Section 3, we describe the multiplication of Hochschild-Serre algebra for Kuznetsov component of a smooth quartic double solid and prove Theorem 1.2, as a corollary, we disproof Kuznetsov’s Fano threefold conjecture.

1.7. Acknowledgement

We would like to thank Marcello Bernardara, Pieter Belmans, Will Donovan, Junwu Tu for useful conversation on related topics. We also would like to thank the referee for the careful reading and for providing detailed comments. SZ is supported by ANR project FanoHK, grant ANR-20-CE40-0023, Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy-EXC-2047//1-390685813. Part of the work was finished when XL and SZ visited the Max-Planck Institute for Mathematics, Hausdorff Institute for Mathematics and Morningside Center of Mathematics, Chinese Academy of Sciences. They are grateful for excellent working conditions and hospitality.

2. dg category of graded matrix factorizations

In this section, we recall the terminology of dgdg-category of matrix factorization. We follow the context in [BFK14]. We refer the reader to [Kel06] for the basic of dgdg categories. Denote by Hqe(dgcat)\operatorname{Hqe(dg-cat)} the localized dgcat\operatorname{dg-cat} with respect to the quasi-equivalences of dgdg categories. Let (X,G,L,ω)(X,G,L,\omega) be a quadruple where XX is a quasi-projective variety with GG action, where GG is a reductive algebraic group, LL is a GG-equivariant line bundle and ω\omega is a GG-invariant section of LL. Our main example is (𝔸n+1,,𝒪(d),ω)(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega). The \mathbb{C}^{\ast} action on 𝔸n+1\mathbb{A}^{n+1} is given by λ(x0,x1,,xn)=(λa0x0,λa1x1,,λanxn)\lambda\cdot(x_{0},x_{1},\cdots,x_{n})=(\lambda^{a_{0}}\cdot x_{0},\lambda^{a_{1}}\cdot x_{1},\cdots,\lambda^{a_{n}}\cdot x_{n}), a0,a1,,ana_{0},a_{1},\cdots,a_{n} are integers such that gcd(a0,a1,,an)=1\operatorname{gcd}(a_{0},a_{1},\cdots,a_{n})=1. 𝒪(d)\mathcal{O}(d) is the trivial line bundle twisted with the character 𝕏d:,λλd\mathbb{X}_{d}:\mathbb{C}^{\ast}\rightarrow\mathbb{C}^{\ast},\quad\lambda\mapsto\lambda^{d}. ω\omega is a \mathbb{C}^{\ast}-invariant section of 𝒪(d)\mathcal{O}(d). Namely ω\omega is a degree dd polynomial, the weight of variable xix_{i} is aia_{i}.

We have dgdg category Fact(X,G,L,ω)\operatorname{Fact}(X,G,L,\omega), whose objects are a quadruple (1,0,Φ1,Φ0)(\mathcal{E}_{-1},\mathcal{E}_{0},\Phi_{-1},\Phi_{0}), where 1\mathcal{E}_{-1} and 0\mathcal{E}_{0} are GG-equivariant quasi-coherent sheaves, Φ1:01L\Phi_{-1}:\mathcal{E}_{0}\rightarrow\mathcal{E}_{-1}\otimes L and Φ0:10\Phi_{0}:\mathcal{E}_{-1}\rightarrow\mathcal{E}_{0} are morphism of GG-equivariant sheaves such that

Φ1Φ0=ω.\displaystyle\Phi_{-1}\circ\Phi_{0}=\omega.
(Φ0L)Φ1=ω.\displaystyle(\Phi_{0}\otimes L)\circ\Phi_{-1}=\omega.

The space of morphisms in Fact(X,G,L,ω)\operatorname{Fact}(X,G,L,\omega) are the internal Hom of GG-equivariant sheaves while extending the pairs of morphisms to certain \mathbb{Z}-graded complexes. We point out the reference [BFK14] for interested readers. There is a category Acyclic(Fact(X,G,L,ω))\operatorname{Acyclic}(\operatorname{Fact}(X,G,L,\omega)) which imitates acyclic complexes in the category of complexes of sheaves. The absolute derived category Dabs[Fact(X,G,L,ω)]D^{abs}[\operatorname{Fact}(X,G,L,\omega)] is the homotopy category of dgdg quotient Fact(X,G,L,ω)Acyclic(Fact(X,G,L,ω))Hqe(dgcat)\frac{\operatorname{Fact}(X,G,L,\omega)}{\operatorname{Acyclic}(\operatorname{Fact}(X,G,L,\omega))}\in\operatorname{Hqe(dg-cat)}. Let Inj(X,G,L,ω)Fact(X,G,L,ω)\operatorname{Inj}(X,G,L,\omega)\subset\operatorname{Fact}(X,G,L,\omega) be the dg sub-category whose components are GG-equivariant injective quasi-coherent sheaves. We write [𝒜\mathcal{A}] as the homotopic category of any dg category 𝒜\mathcal{A}.

Lemma 2.1.

The composition Inj(X,G,L,ω)Fact(X,G,L,ω)Fact(X,G,L,ω)Acyclic(Fact(X,G,L,ω))\operatorname{Inj}(X,G,L,\omega)\rightarrow\operatorname{Fact}(X,G,L,\omega)\rightarrow\frac{\operatorname{Fact}(X,G,L,\omega)}{\operatorname{Acyclic}(\operatorname{Fact}(X,G,L,\omega))} induces an equivalence of homotopic categories

[Inj(X,G,L,ω)][Fact(X,G,L,ω)Acyclic(Fact(X,G,L,ω))]:=Dabs[Fact(X,G,L,ω)][\operatorname{Inj}(X,G,L,\omega)]\cong[\frac{\operatorname{Fact}(X,G,L,\omega)}{\operatorname{Acyclic}(\operatorname{Fact}(X,G,L,\omega))}]:=D^{abs}[\operatorname{Fact}(X,G,L,\omega)]

Let Injcoh(X,G,L,ω)Inj(X,G,L,ω)\operatorname{Inj_{coh}}(X,G,L,\omega)\subset\operatorname{Inj}(X,G,L,\omega) be a dgdg sub-category whose objects are quasi-isomorphic to objects with coherent components in category Fact(X,G,L,ω)\operatorname{Fact}(X,G,L,\omega).

Define shifting functor

[1]:(1,0,Φ1,Φ0)(0,1L,Φ0,Φ1L).[1]:(\mathcal{E}_{-1},\mathcal{E}_{0},\Phi_{-1},\Phi_{0})\mapsto(\mathcal{E}_{0},\mathcal{E}_{-1}\otimes L,-\Phi_{0},-\Phi_{-1}\otimes L).

With cone construction, the homotopic category [Injcoh(X,G,L,ω)][\operatorname{Inj_{coh}}(X,G,L,\omega)] is a triangulated category which is equivalent to the category of graded matrix factorization in [Orl09] for (𝔸n+1,,𝒪(d),ω)(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega).

Denote by

{1}=𝒪𝔸n+1(1):Injcoh(𝔸n+1,,𝒪(d),ω)Injcoh(𝔸n+1,,𝒪(d),ω)\{1\}=-\otimes\mathcal{O}_{\mathbb{A}^{n+1}}(1):\operatorname{Inj_{coh}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega)}\rightarrow\operatorname{Inj_{coh}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega)}

the twisting functor that maps

1\textstyle{\mathcal{E}_{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ0\scriptstyle{\Phi_{0}}0\textstyle{\mathcal{E}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ1\scriptstyle{\Phi_{-1}}1(d)\textstyle{\mathcal{E}_{-1}(d)}

to

1(1)\textstyle{\mathcal{E}_{-1}(1)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ0(1)\scriptstyle{\Phi_{0}(1)}0(1)\textstyle{\mathcal{E}_{0}(1)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ1(1)\scriptstyle{\Phi_{-1}(1)}1(d+1)\textstyle{\mathcal{E}_{-1}(d+1)}

Clearly, we have equality of functors {d}:={1}d=[2]\{d\}:=\{1\}^{d}=[2].

Let X(a1,a2,,an)X\subset\mathbb{P}(a_{1},a_{2},\cdots,a_{n}) be a smooth hypersurface of degree dnd\leq n defined by ω\omega. Let

𝒦u(X):=𝒪X,𝒪X(1),,𝒪X(j=0naj1d).\mathcal{K}u(X):=\Big{\langle}\mathcal{O}_{X},\mathcal{O}_{X}(1),\cdots,\mathcal{O}_{X}(\sum^{n}_{j=0}a_{j}-1-d)\Big{\rangle}^{\perp}.

Roughly, 𝒦u(X)\mathcal{K}u(X) is identified with the essential subcategory of BB-branes of XX in Physics. If XX a is Calabi-Yau variety, Ku(X)=Db(X)Ku(X)=D^{b}(X). On LG\mathrm{LG} side, the category [Injcoh(𝔸n+1,,𝒪(d),ω)][\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega)] is identified with the category of BB-branes of Landau-Ginzburg model. Physically, B-branes of XX and LGLG model are naturally equivalent, which was proved by Orlov [Orl09] mathematically. Namely, we have equivalence

𝒦u(X)[Injcoh(X,G,L,ω)].\mathcal{K}u(X)\cong[\operatorname{Inj_{coh}}(X,G,L,\omega)].

Consider the natural enhancement Injcoh(X)\operatorname{Inj_{coh}}(X), and let 𝒦udg(X)\mathcal{K}u_{dg}(X) be a dgdg subcategory that enhance 𝒦u(X)\mathcal{K}u(X). Orlov’s σ\sigma /LG correspondence can be lifted to be the equivalence of dg categories.

Theorem 2.2.

[BFK14, Theorem 6.13] There is an equivalence in Hqe(dgcat)\operatorname{Hqe(dg-cat)},

Φ:Injcoh(𝔸n+1,,ω)𝒦udg(X).\Phi:\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\omega)\cong\mathcal{K}u_{dg}(X).

According to [BFK14], the natural functors can be reinterpreted as kernels of Fourier-Mukai transforms, and the natural transformations between these functors are morphism of kernels. We write Δ(m)\Delta(m) as the kernel of functor 𝒪𝔸n+1(m)-\otimes\mathcal{O}_{\mathbb{A}^{n+1}}(m).

Lemma 2.3.

[FK18, Theorem 1.2] The Serre functor of [Injcoh(𝔸n+1,,ω)][\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\omega)] is 𝒪𝔸n+1(j=0naj)[n+1]-\otimes\mathcal{O}_{\mathbb{A}^{n+1}}(\sum^{n}_{j=0}-a_{j})[n+1].

Proof.

Since Injcoh(𝔸n+1,,𝒪(d),ω)𝒦udg(X)\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega)\cong\mathcal{K}u_{dg}(X), the category Injcoh(𝔸n+1,,𝒪(d),ω)\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega) is smooth and proper, or by [FK18, lemma 2.11, 2.14]. Then there is a smooth proper dg algebra AA such that [Injcoh(𝔸n+1,,𝒪(d),ω)]Dperf(A)\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},\mathcal{O}(d),\omega)]\cong D^{perf}(A), the arguments in [FK18, Theorem 2.18] show the Serre functor is

ω𝔸n+1[n+1dim+1]=𝒪𝔸n+1(j=0naj)[n+1].-\otimes\omega_{\mathbb{A}^{n+1}}[n+1-\operatorname{dim}\mathbb{C}^{\ast}+1]=-\otimes\mathcal{O}_{\mathbb{A}^{n+1}}(\sum^{n}_{j=0}-a_{j})[n+1].

Next we recall a key theorem in [BFK14, Theorem 1.2]. For gg\in\mathbb{C}^{\ast}, we write WgW_{g} as the conormal sheaf of fixed locus (𝔸n+1)g(\mathbb{A}^{n+1})^{g} and kgk_{g} the character of det(Wg)\operatorname{det}(W_{g}). We write H(dωg)H^{\bullet}(d\omega_{g}) as the Koszul cohomology of the Jacobian ideal of ωg:=ω|(𝔸n+1)g\omega_{g}:=\omega|_{(\mathbb{A}^{n+1})^{g}}. Let γ=e2πid\gamma=e^{\frac{2\pi i}{d}}, and μd=1,γ,γ2,,γd1\mu_{d}=\langle 1,\gamma,\gamma^{2},\cdots,\gamma^{d-1}\rangle.

Proposition 2.4.

[BFK14, Theorem 5.39] Assume ω\omega has only isolated singularty at 0, then

Hom(Δ,Δ(m)[t])\displaystyle\mathrm{Hom}(\Delta,\Delta(m)[t])\cong (gμd,trkWgis evenJac(ωg)(mkg+d(trkWg2)))\displaystyle(\bigoplus_{g\in\mu_{d},\ t-\operatorname{rk}W_{g}\ \textbf{is even}}\mathrm{Jac}(\omega_{g})(m-k_{g}+d(\frac{t-\operatorname{rk}W_{g}}{2})))^{\mathbb{C}^{\ast}}

We refer the reader to [BFK14] for details of computation. We describe the multiplication under the isomorphism of Theorem 2.4. To make this self contain, we introduce some notions used in the proof.

Let ZZ be a quasi-projective variety with GG action, GG is an algebraic group. Let HH be a closed subgroup of GG. We have an action of HH on G×ZG\times Z defined by

τ:H×G×ZG×Z,(h,g,z)(gh1,hz).\tau:H\times G\times Z\rightarrow G\times Z,\quad(h,g,z)\mapsto(g\cdot h^{-1},h\cdot z).

The fppf quotient of G×ZG\times Z of HH is a scheme , which is denoted as G×HZG\times^{H}Z, see [BFK14, Lemma 2.16]. Consider morphisms

l:ZG×HZ,x(e,x).l:Z\rightarrow G\times^{H}Z,\quad x\mapsto(e,x).
α:G×HZZ,(g,x)gx.\alpha:G\times^{H}Z\rightarrow Z,\quad(g,x)\mapsto gx.

First, the pull back functor ll^{\ast} define an equivalence of equivariant quasi-coherent sheaves. Namely

l:QcohGG×HZQcohHZ.l^{\ast}:\operatorname{Qcoh}_{G}G\times^{H}Z\rightarrow\operatorname{Qcoh}_{H}Z.

is an equivalence [Tho87, Lemma 1.3]. We write α:QcohGG×HZQcohGZ\alpha_{\ast}:\operatorname{Qcoh}_{G}G\times^{H}Z\rightarrow\operatorname{Qcoh}_{G}Z as the push forward functor of α\alpha, and α:QcohGZQcohGG×HZ\alpha^{\ast}:\operatorname{Qcoh}_{G}Z\rightarrow\operatorname{Qcoh}_{G}G\times^{H}Z as the pull back functor of α\alpha.

Definition 2.5.
IndHG:=α(l)1:QcohHZQcohGZ.\operatorname{Ind^{G}_{H}}:=\alpha_{\ast}\circ(l^{\ast})^{-1}:\operatorname{Qcoh}_{H}Z\rightarrow\operatorname{Qcoh}_{G}Z.
ResHG:=lα:QcohGZQcohHZ.\operatorname{Res}^{G}_{H}:=l^{\ast}\circ\alpha^{\ast}:\operatorname{Qcoh}_{G}Z\rightarrow\operatorname{Qcoh}_{H}Z.

We still write IndHG\operatorname{Ind}^{G}_{H} and ResHG\operatorname{Res}^{G}_{H} as derived functors of derived categories of equivariant sheaves. IndHG\operatorname{Ind}^{G}_{H} is right adjoint functor of ResHG\operatorname{Res}^{G}_{H}. In our case, Z=𝔸n+1×𝔸n+1Z=\mathbb{A}^{n+1}\times\mathbb{A}^{n+1}, G=×={(g1,g2)×|g1d=g2d}G=\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}=\{(g_{1},g_{2})\in\mathbb{C}^{\ast}\times\mathbb{C}^{\ast}|g^{d}_{1}=g^{d}_{2}\}, and H=GH=\mathbb{C}^{\ast}\subset G via diagonal embedding. The GG action on ZZ is given by

(g1,g2)(x1,,xn+1,y1,,yn+1)=(g1a1x1,,g1an+1xn+1,g2a1y1,,g2an+1yn+1)(g_{1},g_{2})\cdot(x_{1},\cdots,x_{n+1},y_{1},\cdots,y_{n+1})=(g^{a_{1}}_{1}x_{1},\cdots,g^{a_{n+1}}_{1}x_{n+1},g^{a_{1}}_{2}y_{1},\cdots,g^{a_{n+1}}_{2}y_{n+1})

By definition,

Hom(Δ,Δ(m)[t])Hom[Injcoh(𝔸n+1×𝔸n+1,×,ωω)](Ind×Δ𝒪𝔸n+1,Ind×Δ𝒪𝔸n+1(m)[t]).\mathrm{Hom}(\Delta,\Delta(m)[t])\cong\mathrm{Hom}_{[\operatorname{Inj_{coh}}(\mathbb{A}^{n+1}\times\mathbb{A}^{n+1},\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast},-\omega\boxtimes\omega)]}(\operatorname{Ind}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}},\operatorname{Ind}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}(m)[t]).

The multiplication

Φ:Hom(Δ,Δ(m1)[t1])×Hom(Δ,Δ(m2)[t2])Hom(Δ,Δ(m1+m2)[t1+t2])\Phi:\mathrm{Hom}(\Delta,\Delta(m_{1})[t_{1}])\times\mathrm{Hom}(\Delta,\Delta(m_{2})[t_{2}])\rightarrow\mathrm{Hom}(\Delta,\Delta(m_{1}+m_{2})[t_{1}+t_{2}])

maps (a,b)(a,b) to abab is the composition

(2) Ind×Δ𝒪𝔸n+1bInd×Δ𝒪𝔸n+1(m2)[t2]aInd×Δ𝒪𝔸n+1(m1+m2)[t1+t2].\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 27.74374pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-27.74374pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 43.07283pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{b}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.74374pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.74374pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}(m_{2})[t_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 155.20361pt\raise 4.50694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{a}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 162.55588pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 162.55588pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}(m_{1}+m_{2})[t_{1}+t_{2}]}$}}}}}}}\ignorespaces}}}}\ignorespaces.

To avoid cluttering the notation, we temporarily assume m1=m2=t1=t2=0m_{1}=m_{2}=t_{1}=t_{2}=0. The sequence (2) is equivalent to

𝕃ΔRes×Ind×Δ𝒪𝔸n+1\textstyle{\mathbb{L}\Delta^{\ast}\operatorname{Res}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}b\scriptstyle{b}𝕃ΔRes×Ind×Δ𝒪𝔸n+1\textstyle{\mathbb{L}\Delta^{\ast}\operatorname{Res}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}a\scriptstyle{a}𝒪𝔸n+1\textstyle{\mathcal{O}_{\mathbb{A}^{n+1}}}

Here a,ba,b are regarded as \mathbb{C}^{\ast} equivariant morphisms in [Injcoh(𝔸n+1,,0)][\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},0)] via diagonal embedding ×\mathbb{C}^{\ast}\hookrightarrow\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}. The morphism bb here is 𝕃ΔRes×Δ(b):𝕃ΔRes×Ind×𝒪𝔸n+1𝕃ΔRes×Ind×Δ𝒪𝔸n+1\mathbb{L}\Delta^{\ast}\operatorname{Res}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\Delta^{\ast}(b):\mathbb{L}\Delta^{\ast}\operatorname{Res}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\mathcal{O}_{\mathbb{A}^{n+1}}\rightarrow\mathbb{L}\Delta^{\ast}\operatorname{Res}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}.

Next, let Γg\Gamma_{g} be the graph x(gx,x)x\mapsto(g\cdot x,x). The ×\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast} action on gμd𝒪Γg\bigoplus_{g\in\mu_{d}}\mathcal{O}_{\Gamma_{g}} is defined by (g1,g2)(gx,x1)=(g1gx,g2x)(g_{1},g_{2})\cdot(gx,\cdot x_{1})=(g_{1}g\cdot x,g_{2}\cdot x). By [BFK14, Lemma 5.31], Ind×Δ𝒪𝔸n+1gμd𝒪Γg\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}}\cong\bigoplus_{g\in\mu_{d}}\mathcal{O}_{\Gamma_{g}} as ×\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast} sheaves. Note that the decomposition of the object Ind×Δ𝒪𝔸n+1\operatorname{Ind}_{\mathbb{C}^{\ast}}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}} into a direct sum corresponds exactly to the decomposition in Proposition 2.4, which identifies different Hom-spaces with the pieces of Jacobian rings.

Let a=(f1,fγ,,fγj,fγd1)Hom(Δ,Δ(m1)[t1])j=0d1Jac(ωγj)m1kγj+dt1rkWγj2a=(f_{1},f_{\gamma},\cdots,f_{\gamma^{j}},\cdots f_{\gamma^{d-1}})\in\mathrm{Hom}(\Delta,\Delta(m_{1})[t_{1}])\cong\bigoplus^{d-1}_{j=0}\mathrm{Jac}(\omega_{\gamma^{j}})_{m_{1}-k_{\gamma^{j}}+d\frac{t_{1}-rkW_{\gamma^{j}}}{2}}, and b=(g1,gγ,,gγj,,gγd1)Hom(Δ,Δ(m2)[t2])j=0d1Jac(ωγj)m2kγj+dt2rkWγj2b=~{}(g_{1},g_{\gamma},\cdots,g_{\gamma^{j}},\cdots,g_{\gamma^{d-1}})\in\mathrm{Hom}(\Delta,\Delta(m_{2})[t_{2}])\cong\bigoplus^{d-1}_{j=0}\mathrm{Jac}(\omega_{\gamma^{j}})_{m_{2}-k_{\gamma^{j}}+d\frac{t_{2}-rkW_{\gamma^{j}}}{2}}.

Theorem 2.6.

The multiplication map

Φ:Hom(Δ,Δ(m1)[t1])×Hom(Δ,Δ(m2)[t2])Hom(Δ,Δ(m1+m2)[t1+t2]),(a,b)ab.\Phi:\mathrm{Hom}(\Delta,\Delta(m_{1})[t_{1}])\times\mathrm{Hom}(\Delta,\Delta(m_{2})[t_{2}])\rightarrow\mathrm{Hom}(\Delta,\Delta(m_{1}+m_{2})[t_{1}+t_{2}]),(a,b)\mapsto ab.

is given by the composition of the following diagram

(3) 𝕃Δ𝒪Γ1\textstyle{\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g1\scriptstyle{g_{1}}𝕃Δ𝒪Γ1(m2)[t2]\textstyle{\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{1}}(m_{2})[t_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f1\scriptstyle{f_{1}}𝒪Γ1(m1+m2)[t1+t2]\textstyle{\mathcal{O}_{\Gamma_{1}}(m_{1}+m_{2})[t_{1}+t_{2}]}𝕃Δ𝒪Γγ1\textstyle{\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{\gamma^{1}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gγ1\scriptstyle{g_{\gamma^{1}}}𝕃Δ𝒪Γγ1(m2)[t2]\textstyle{\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{\gamma^{1}}}(m_{2})[t_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fγ1\scriptstyle{f_{\gamma^{1}}}\textstyle{\cdots}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝕃Δ𝒪Γγd1\textstyle{\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{\gamma^{d-1}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gγd1\scriptstyle{g_{\gamma^{d-1}}}𝕃Δ𝒪Γγd1(m2)[t2]\textstyle{\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{\gamma^{d-1}}}(m_{2})[t_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fγd1\scriptstyle{f_{\gamma^{d-1}}}

Here in the left box the component morphism 𝕃Δ𝒪Γγi𝕃Δ𝒪Γγj\mathbb{L}\Delta_{\ast}\mathcal{O}_{\Gamma_{\gamma_{i}}}\rightarrow\mathbb{L}\Delta_{\ast}\mathcal{O}_{\Gamma_{\gamma_{j}}} in [Injcoh(𝔸n+1,,0)][\operatorname{Inj_{coh}}(\mathbb{A}^{n+1},\mathbb{C}^{\ast},0)] is the result of the action of the group element (γj,1)(\gamma^{j},1) on the morphism gγijg_{\gamma^{i-j}}. In particular g1f1Jac(ω)g_{1}\circ f_{1}\in\mathrm{Jac}(\omega) is multiplication of functions.

Proof.

This is essentially the duality of functors Res×\operatorname{Res}^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}} and Ind×\operatorname{Ind^{\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast}}_{\mathbb{C}^{\ast}}}. The element (γk,1)×(\gamma^{k},1)\in\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast} defines an isomorphism

Hom(𝒪Γγi,𝒪Γγj)Hom(𝒪Γγi+k,𝒪Γγj+k).\mathrm{Hom}(\mathcal{O}_{\Gamma_{\gamma^{i}}},\mathcal{O}_{\Gamma_{\gamma^{j}}})\cong\mathrm{Hom}(\mathcal{O}_{\Gamma_{\gamma^{i+k}}},\mathcal{O}_{\Gamma_{\gamma^{j+k}}}).

Since bb is a ×\mathbb{C}^{\ast}\times_{\mathbb{C}^{\ast}}\mathbb{C}^{\ast} invariant morphism, other morphisms except (g1,gγ,,gγd1)(g_{1},g_{\gamma},\cdots,g_{\gamma^{d-1}}) in the left box are uniquely determined by the \mathbb{C}^{\ast} invariant morphisms gγg_{\gamma^{\bullet}} via diagonal embedding. After identifying Hom(𝕃ΔΔ𝒪𝔸n+1,𝒪𝔸n+1)\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\Delta_{\ast}\mathcal{O}_{\mathbb{A}^{n+1}},\mathcal{O}_{\mathbb{A}^{n+1}}) with certain homogeneous degree of Jac(ω)\mathrm{Jac}(\omega), g1f1g_{1}\circ f_{1} is the composition of functions, hence multiplication of polynomials. ∎

Remark 2.7.

It is easy to observe that the Hochschild-Serre algebra of the graded matrix factorization is not commutative in general.

3. Kuznetsov’s Fano threefold conjecture for quartic double solids and Gushel-Mukai threefolds

Theorem 3.1.

Let YY be a smooth quartic double solid, whose semi-orthogonal decomposition is given by

Db(Y)=𝒦u(Y),𝒪Y,𝒪Y(1),D^{b}(Y)=\langle\mathcal{K}u(Y),\operatorname{\mathcal{O}}_{Y},\operatorname{\mathcal{O}}_{Y}(1)\rangle,

where 𝒦u(Y)\mathcal{K}u(Y) is the Kuznetsov component of the quartic double solid YY. The canonical map γY\gamma_{Y} induced by multiplication map (1) of Hochschild-Serre algebra

γY:HH2(𝒦u(Y))Hom(HH1(𝒦u(Y)),HH1(𝒦u(Y))).\gamma_{Y}:\mathrm{HH}^{2}(\mathcal{K}u(Y))\longrightarrow\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(Y)),\mathrm{HH}_{1}(\mathcal{K}u(Y))).

has one dimensional kernel.

Proof.

We regard YY as a degree 44 smooth hypersurface in weighted projective space (1,1,1,1,2)\mathbb{P}(1,1,1,1,2). According to Theorem 2.2, 𝒦udg(Y)Injcoh(𝔸5,,𝒪(d),ω)\mathcal{K}u_{dg}(Y)\cong\operatorname{Inj_{coh}}(\mathbb{A}^{5},\mathbb{C}^{\ast},\mathcal{O}(d),\omega), where ω\omega is the polynomial defining YY, and the \mathbb{C}^{\ast}-action on (x0,x1,x2,x3,x4)(x_{0},x_{1},x_{2},x_{3},x_{4}) is of weight (1,1,1,1,2)(1,1,1,1,2). Then by Proposition 2.4, we have

(4) Hom(Δ,Δ(m)[t])(gμ4,trkWgis evenJac(ωg)(mkg+d(trkWg2))),\mathrm{Hom}(\Delta,\Delta(m)[t])\cong(\bigoplus_{g\in\mu_{4},\ t-\operatorname{rk}W_{g}\ \textbf{is even}}\mathrm{Jac}(\omega_{g})(m-k_{g}+d(\frac{t-\operatorname{rk}W_{g}}{2})))^{\mathbb{C}^{\ast}},

where μ4={1,i,1,i}\mu_{4}=\{1,i,-1,-i\}.

  • If g=1g=1, then (𝔸5)g=𝔸5(\mathbb{A}^{5})^{g}=\mathbb{A}^{5}, rkWg=0,kg=0\operatorname{rk}W_{g}=0,k_{g}=0.

  • If g=ig=i, then (𝔸5)g=(0,0,0,0,0)(\mathbb{A}^{5})^{g}=(0,0,0,0,0), rkWg=5,kg=6\operatorname{rk}W_{g}=5,k_{g}=-6.

  • If g=1g=-1, then (𝔸5)g=(0,0,0,0,x5)(\mathbb{A}^{5})^{g}=(0,0,0,0,x_{5}), rkWg=4,kg=4\operatorname{rk}W_{g}=4,k_{g}=-4.

  • If g=ig=-i, then (𝔸5)g=(0.0,0,0,0)(\mathbb{A}^{5})^{g}=(0.0,0,0,0), rkWg=5,kg=6\operatorname{rk}W_{g}=5,k_{g}=-6.

Note that the Serre functor of the matrix factorization category is 𝒪𝔸5(6)[5]-\otimes\mathcal{O}_{\mathbb{A}^{5}}(-6)[5] by Lemma 2.3, We write ω=x52+f(x1,x2,x3,x4)\omega=x^{2}_{5}+f(x_{1},x_{2},x_{3},x_{4}), then

(5) HH1(𝒦u(Y))\displaystyle\mathrm{HH}_{-1}(\mathcal{K}u(Y))\cong Hom(Δ,Δ(6)[4])Jac(ω)20Jac(ω1)20=Jac(ω)2\displaystyle\mathrm{Hom}(\Delta,\Delta(-6)[4])\cong\mathrm{Jac}(\omega)_{2}\oplus 0\oplus\mathrm{Jac}(\omega_{-1})_{-2}\oplus 0=\mathrm{Jac}(\omega)_{2}
(6) HH1(𝒦u(Y))\displaystyle\mathrm{HH}_{1}(\mathcal{K}u(Y))\cong Hom(Δ,Δ(6)[6])Jac(ω)60Jac(ω1)20=Jac(ω)6\displaystyle\mathrm{Hom}(\Delta,\Delta(-6)[6])\cong\mathrm{Jac}(\omega)_{6}\oplus 0\oplus\mathrm{Jac}(\omega_{-1})_{2}\oplus 0=\mathrm{Jac}(\omega)_{6}
(7) HH2(𝒦u(Y))\displaystyle\mathrm{HH}^{2}(\mathcal{K}u(Y))\cong Hom(Δ,Δ[2])Jac(ω)40Jac(ω1)00=Jac(ω)4k.\displaystyle\mathrm{Hom}(\Delta,\Delta[2])\cong\mathrm{Jac}(\omega)_{4}\oplus 0\oplus\mathrm{Jac}(\omega_{-1})_{0}\oplus 0=\mathrm{Jac}(\omega)_{4}\oplus k.

Let (g1,gi,g1,gi)HH1(𝒦u(Y))(g_{1},g_{i},g_{-1},g_{-i})\in\mathrm{HH}_{-1}(\mathcal{K}u(Y)) and (f1,fi,f1,fi)HH2(𝒦u(Y))(f_{1},f_{i},f_{-1},f_{-i})\in\mathrm{HH}^{2}(\mathcal{K}u(Y)), corresponding to (5) and (7) respectively. As explain in Theorem 2.6 and see also the diagram (3), we have morphisms (i,1)giHom(𝕃Δ𝒪Γ1,𝕃Δ𝒪Γi)(i,1)\cdot g_{-i}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{1}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}}), (1,1)g1Hom(𝕃Δ𝒪Γ1,𝕃Δ𝒪Γ1)(-1,1)\cdot g_{-1}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{1}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}}), (i,1)giHom(𝕃Δ𝒪Γ1,𝕃Δ𝒪Γi)(-i,1)\cdot g_{i}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{1}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}}); (i,1)g1Hom(𝕃Δ𝒪Γi,𝕃Δ𝒪Γi)(i,1)\cdot g_{1}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}}), (1,1)giHom(𝕃Δ𝒪Γi,𝕃Δ𝒪Γ1)(-1,1)\cdot g_{-i}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}}), (i,1)g1Hom(𝕃Δ𝒪Γi,𝕃Δ𝒪Γi)(-i,1)\cdot g_{-1}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}}); (i,1)giHom(𝕃Δ𝒪Γ1,𝕃Δ𝒪Γi)(i,1)\cdot g_{i}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}}), (1,1)g1Hom(𝕃Δ𝒪Γ1,𝕃Δ𝒪Γ1)(-1,1)\cdot g_{1}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}}), (i,1)giHom(𝕃Δ𝒪Γ1,𝕃Δ𝒪Γi)(-i,1)\cdot g_{-i}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}}); (i,1)g1Hom(𝕃Δ𝒪Γi,𝕃Δ𝒪Γi)(i,1)\cdot g_{-1}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{i}}), (1,1)giHom(𝕃Δ𝒪Γi,𝕃Δ𝒪Γ1)(-1,1)\cdot g_{i}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-1}}), (i,1)g1Hom(𝕃Δ𝒪Γi,𝕃Δ𝒪Γi)(-i,1)\cdot g_{1}\in\mathrm{Hom}(\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}},\mathbb{L}\Delta^{\ast}\mathcal{O}_{\Gamma_{-i}}). According to Theorem 2.6, the composition

HH2(𝒦u(Y))×HH1(𝒦u(Y))HH1(𝒦u(Y)).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 63.8191pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\crcr}}}\ignorespaces{\hbox{\kern-63.8191pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{HH}^{2}(\mathcal{K}u(Y))\times\mathrm{HH}_{-1}(\mathcal{K}u(Y))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 87.8191pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 87.8191pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{HH}_{1}(\mathcal{K}u(Y))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

is represented by

1g1f1igifi1g1f1igifi.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 8.27776pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\\&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1}$}}}}}}}{\hbox{\kern 122.08878pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 184.19933pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 246.8998pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-34.91388pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-69.82776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-104.73627pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 246.8998pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 308.71501pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 371.71082pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 371.71082pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet}$}}}}}}}{\hbox{\kern-4.72256pt\raise-36.51984pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{i}$}}}}}}}{\hbox{\kern 122.08878pt\raise-36.51984pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 246.8998pt\raise-36.51984pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-71.43372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-106.3476pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 182.90366pt\raise-13.07242pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g_{i}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 246.8998pt\raise-1.61133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 246.8998pt\raise-36.51984pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 307.33284pt\raise-12.14882pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{i}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 371.71082pt\raise-1.61133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 374.21082pt\raise-36.51984pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-8.27776pt\raise-73.03967pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{-1}$}}}}}}}{\hbox{\kern 122.08878pt\raise-73.03967pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 246.8998pt\raise-73.03967pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-107.95355pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-38.13116pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 179.74655pt\raise-31.33234pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g_{-1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 247.27284pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 246.8998pt\raise-73.03967pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 304.0892pt\raise-30.40874pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{-1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 372.08386pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 374.21082pt\raise-73.03967pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-7.5003pt\raise-109.55951pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{-i}$}}}}}}}{\hbox{\kern 122.08878pt\raise-109.55951pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 246.8998pt\raise-109.55951pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 246.8998pt\raise-74.651pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 247.27284pt\raise-39.51984pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 189.23747pt\raise-59.96724pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g_{-i}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 248.98085pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 246.8998pt\raise-109.55951pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bullet\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 314.01215pt\raise-60.89085pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{-i}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 373.79187pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 374.21082pt\raise-109.55951pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Namely, the composition (f1,fi,f1,fi)(g1,gi,g1,gi)(f_{1},f_{i},f_{-1},f_{-i})\circ(g_{1},g_{i},g_{-1},g_{-i}) is

(f1g1+fi((i,1)gi)+f1((1,1)g1)+fi((i,1)gi),\displaystyle(f_{1}\circ g_{1}+f_{i}\circ((i,1)\cdot g_{-i})+f_{-1}\circ((-1,1)\cdot g_{-1})+f_{-i}\circ((-i,1)\cdot g_{i}),
f1gi+fi((i,1)g1)+f1((1,1)gi)+fi((i,1)g1),\displaystyle f_{1}\circ g_{i}+f_{i}\circ((i,1)\cdot g_{1})+f_{-1}\circ((-1,1)\cdot g_{-i})+f_{-i}\circ((-i,1)\cdot g_{-1}),
f1g1+fi((i,1)gi)+f1((1,1)g1)+fi((i,1)gi),\displaystyle f_{1}\circ g_{-1}+f_{i}\circ((i,1)\cdot g_{i})+f_{-1}\circ((-1,1)\cdot g_{1})+f_{-i}\circ((-i,1)\cdot g_{-i}),
f1gi+fi((i,1)g1)+f1((1,1)gi)+fi((i,1)g1))\displaystyle f_{1}\circ g_{-i}+f_{i}\circ((i,1)\cdot g_{-1})+f_{-1}\circ((-1,1)\cdot g_{i})+f_{-i}\circ((-i,1)\cdot g_{1}))

Consider element a=(0,0,f1,0)HH2(𝒦u(Y))Jac(ω)40Jac(ω1)00=Jac(ω)4ka=(0,0,f_{-1},0)\in\mathrm{HH}^{2}(\mathcal{K}u(Y))\cong\mathrm{Jac}(\omega)_{4}\oplus 0\oplus\mathrm{Jac}(\omega_{-1})_{0}\oplus 0=\mathrm{Jac}(\omega)_{4}\oplus k and b=(g1,0,0,0)HH1(𝒦u(Y))Jac(ω)2000b=(g_{1},0,0,0)\in\mathrm{HH}_{-1}(\mathcal{K}u(Y))\cong\mathrm{Jac}(\omega)_{2}\oplus 0\oplus 0\oplus 0. Then,

(0,0,f1,0)(g1,0,0,0)=(0g1+f10,0,f1((1,1)g1),0)=0HH1(𝒦u(Y))Jac(ω)6,(0,0,f_{-1},0)\circ(g_{1},0,0,0)=(0\circ g_{1}+f_{-1}\circ 0,0,f_{-1}\circ((-1,1)\cdot g_{1}),0)=0\in\mathrm{HH}_{1}(\mathcal{K}u(Y))\cong\mathrm{Jac}(\omega)_{6},

where the composition f1((1,1)g1)f_{-1}\circ((-1,1)\cdot g_{1}) lies in Jac(ω1)2=0\mathrm{Jac}(\omega_{-1})_{2}=0 by (6)(6), thus f1((1,1)g1)=0f_{-1}\circ((-1,1)\cdot g_{1})=0.

By [Don83, Theorem 2.6] the map

Jac(f)4×Jac(f)2Jac(f)6.\mathrm{Jac}(f)_{4}\times\mathrm{Jac}(f)_{2}\rightarrow\mathrm{Jac}(f)_{6}.

is a non-degeneration multiplication. Thus the map

Jac(f)4Hom(Jac(f)2,Jac(f6)).\mathrm{Jac}(f)_{4}\rightarrow\mathrm{Hom}(\mathrm{Jac}(f)_{2},\mathrm{Jac}(f_{6})).

is injective. On the other hand, simple computation shows Jac(ω)4=Jac(f)4\mathrm{Jac}(\omega)_{4}=\mathrm{Jac}(f)_{4}, Jac(ω)2=Jac(f)2\mathrm{Jac}(\omega)_{2}=\mathrm{Jac}(f)_{2}, and Jac(ω)6=Jac(f)6\mathrm{Jac}(\omega)_{6}=\mathrm{Jac}(f)_{6}. Then the map

Jac(ω)4Hom(Jac(ω)2,Jac(ω)6)\mathrm{Jac}(\omega)_{4}\rightarrow\mathrm{Hom}(\mathrm{Jac}(\omega)_{2},\mathrm{Jac}(\omega)_{6})

is also injective.

Hence the canonical map

γY:HH2(𝒦u(Y))Hom(HH1(𝒦u(Y)),HH1(𝒦u(Y))).\gamma_{Y}:\mathrm{HH}^{2}(\mathcal{K}u(Y))\rightarrow\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(Y)),\mathrm{HH}_{1}(\mathcal{K}u(Y))).

has one dimensional kernel. ∎

Lemma 3.2.

[JLLZ22, Theorem 4.6] Let X be an ordinary GM threefold. Then the natural map

γX:HH2(𝒦u(X))Hom(HH1(𝒦u(X)),HH1(𝒦u(X))).\gamma_{X}:\mathrm{HH}^{2}(\mathcal{K}u(X))\rightarrow\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(X)),\mathrm{HH}_{1}(\mathcal{K}u(X))).

is injective.

Proof.

The map γ\gamma in [JLLZ22, Theorem 4.6] is related to γX\gamma_{X} as

HH2(𝒦u(X))γXγHom(HH1(𝒦u(X)),HH1(𝒦u(X))Hom(H2,1(X),H1,2(X)).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 30.96371pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-30.96371pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{HH}^{2}(\mathcal{K}u(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 88.34044pt\raise 5.19028pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.82361pt\hbox{$\scriptstyle{\gamma_{X}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 116.32198pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 91.19757pt\raise-15.38138pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\gamma}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 137.27724pt\raise-29.77362pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 116.32198pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(X)),\mathrm{HH}_{1}(\mathcal{K}u(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 189.93279pt\raise-20.56888pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 189.93279pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 137.27724pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}(H^{2,1}(X),H^{1,2}(X))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Since γ\gamma is injective, γX\gamma_{X} is injective. ∎

Lemma 3.3.

Let XX be a special Gushel-Mukai threefold, then the morphism

γX:HH2(𝒦u(X))Hom(HH1(𝒦u(X)),HH1(𝒦u(X)))\gamma_{X}:\mathrm{HH}^{2}(\mathcal{K}u(X))\rightarrow\mathrm{Hom}(\mathrm{HH}_{-1}(\mathcal{K}u(X)),\mathrm{HH}_{1}(\mathcal{K}u(X)))

is injective.

Proof.

By [KP18, Lemma 3.8] and [KP19, Theorem 1.6], for any special Gushel-Mukai threefold XX, there is an ordinary Gushel-Mukai threefold XX^{\prime} such that Φ:𝒦u(X)𝒦u(X)\Phi\colon\mathcal{K}u(X^{\prime})\simeq\mathcal{K}u(X) is a Fourier-Mukai type equivalence. Then by [JLLZ22, Theorem 4.8], injectivity of γX\gamma_{X} is equivalent to injectivity of γX\gamma_{X^{\prime}}. By Lemma 3.2, γX\gamma_{X^{\prime}} is injective. Thus γX\gamma_{X} is injective. ∎

Corollary 3.4.

For any Gushel-Mukai threefold XX and quartic double solid YY, there is no Fourier-Mukai type equivalence between the category 𝒦u(X)\mathcal{K}u(X) and 𝒦u(Y)\mathcal{K}u(Y).

Proof.

Assume there is a Fourier-Mukai type equivalence Φ:𝒦u(Y)𝒦u(X)\Phi:\mathcal{K}u(Y)\simeq\mathcal{K}u(X) for any quartic double solid YY and ordinary Gushel-Mukai threefold XX. Then [JLLZ22, Theorem 4.8] tells us the morphism γX\gamma_{X} is injective if and only if γY\gamma_{Y} is injective. Then by Lemma 3.2 and Lemma 3.3, the map γX\gamma_{X} is injective for all smooth Gushel-Mukai threefolds. Thus γY\gamma_{Y} is also injective, which contradicts Theorem 3.1. ∎

Remark 3.5.

In this paper, we work with dg-enhanced Kuznetsov categories, so any equivalence between them amounts to a Fourier-Mukai type equivalence. But in the cases of interest in this paper, all the equivalences between triangulated categories 𝒦u(X)\mathcal{K}u(X) and 𝒦u(Y)\mathcal{K}u(Y) are proved to be of Fourier-Mukai type in [LPZ22], so there is no harm to work with enhanced Kuznetsov components.

References

  • [APR22] Matteo Altavilla, Marin Petkovic, and Franco Rota. Moduli spaces on the kuznetsov component of fano threefolds of index 2. Épijournal de Géométrie Algébrique, 6, 2022.
  • [BFK14] Matthew Ballard, David Favero, and Ludmil Katzarkov. A category of kernels for equivariant factorizations and its implications for hodge theory. Publ.math.IHES, 120(1-111), 2014.
  • [BFK23] Pieter Belmans, Lie Fu, and Andreas Krug. Hochschild cohomology of hilbert schemes of points on surfaces. arXiv preprint arXiv:2309.06244, 2023.
  • [Bla16] Anthony Blanc. Topological k-theory of complex noncommutative spaces. Compositio Mathematica, 152(3):489–555, 2016.
  • [BLMS17] Arend Bayer, Martí Lahoz, Emanuele Macrì, and Paolo Stellari. Stability conditions on Kuznetsov components. (Appendix joint with Xiaolei Zhao) To appear in Ann. Sci. Éc. Norm. Supér., arXiv:1703.10839, 2017.
  • [BMMS12] Marcello Bernardara, Emanuele Macrì, Sukhendu Mehrotra, and Paolo Stellari. A categorical invariant for cubic threefolds. Advances in Mathematics, 229(2):770–803, 2012.
  • [BO01] Alexei Bondal and Dmitri Orlov. Reconstruction of a variety from the derived category and groups of autoequivalences. Compositio Mathematica, 125(3):327–344, 2001.
  • [BP23] A. Bayer and A. Perry. Kuznetsov’s Fano threefold conjecture via K3 categories and enhanced group actions. J. Reine Angew. Math., 800:107–153, 2023.
  • [Cal03] Andrei Caldararu. The mukai pairing, i: the hochschild structure. arXiv preprint math/0308079, 2003.
  • [Căl05] Andrei Căldăraru. Derived categories of sheaves: a skimming. Snowbird lectures in algebraic geometry, 388:43–75, 2005.
  • [CMHL+23] Sebastian Casalaina-Martin, Xianyu Hu, Lin.Xun, Shizhuo Zhang, and Zheng Zhang. Categorical torelli theorem via equivariant kuznetsov component of cubic threefolds. preprint, 2023.
  • [DJR23] Hannah Dell, Augustinas Jacovskis, and Franco Rota. Cyclic covers: Hodge theory and categorical torelli theorems. arXiv preprint arXiv:2310.13651, 2023.
  • [Don83] Ron. Donagi. Generic torelli for projective hypersurfaces. Compositio Mathematica, 50(2-3):323–353, 1983.
  • [FK18] David Favero and Tyler Kelly. Fractional calabi–yau categories from landau–ginzburg models. Algebraic Geometry, 5(5):596–649, 2018.
  • [GLZ22] Hanfei Guo, Zhiyu Liu, and Shizhuo Zhang. Conics on gushel-mukai fourfolds, epw sextics and bridgeland moduli spaces. arXiv preprint arXiv:2203.05442, 2022.
  • [JLLZ21] A. Jacovskis, X. Lin, Z. Liu, and S. Zhang. Categorical Torelli theorems for Gushel-Mukai threefolds. arXiv preprint arXiv:2108.02946, 2021.
  • [JLLZ22] Augustinas Jacovskis, Xun Lin, Zhiyu Liu, and Shizhuo Zhang. Infinitesimal categorical torelli theorems for fano threefolds. arXiv preprint arXiv:2203.08187, 2022.
  • [Kel06] Bernhard Keller. On differential graded categories. arXiv preprint math/0601185, 2006.
  • [KP18] Alexander Kuznetsov and Alexander Perry. Derived categories of gushel–mukai varieties. Compositio Mathematica, 154(7):1362–1406, 2018.
  • [KP19] Alexander Kuznetsov and Alexander Perry. Categorical cones and quadratic homological projective duality. arXiv preprint arXiv:1902.09824, 2019.
  • [Kuz09] Alexander Gennad’evich Kuznetsov. Derived categories of fano threefolds. Proceedings of the Steklov Institute of Mathematics, 264:110–122, 2009.
  • [LPZ22] Chunyi Li, Laura Pertusi, and Xiaolei Zhao. Derived categories of hearts on kuznetsov components. arXiv preprint arXiv:2203.13864, 2022.
  • [LXZ24] Xun Lin, Fei Xie, and Shizhuo Zhang. Singular category: Hodge theory and (birational) categorical torelli theorem for nodal fano threefolds. preprint, 2024.
  • [LZ23] Xun Lin and Shizhuo Zhang. Serre algebra, matrix factorization and categorical torelli theorem for hypersurfaces. arXiv preprint arXiv:2310.09927, 2023.
  • [Orl03] Dmitri Olegovich Orlov. Derived categories of coherent sheaves and equivalences between them. Russian Mathematical Surveys, 58(3):511, 2003.
  • [Orl09] Dmitri Orlov. Derived categories of coherent sheaves and triangulated categories of singularities. Algebra, Arithmetic, and Geometry: Volume II: In Honor of Yu. I. Manin, pages 503–531, 2009.
  • [Per22] Alexander Perry. The integral Hodge conjecture for two-dimensional Calabi–Yau categories. Compositio Mathematica, 158(2):287–333, 2022.
  • [PY22] L. Pertusi and S. Yang. Some remarks on Fano three-folds of index two and stability conditions. Int. Math. Res. Not. IMRN, (17):12940–12983, 2022.
  • [Tho87] R.W Thomason. Equivariant resolution, linearization, and hilbert’s fourteenth problem over arbitrary base schemes. Advances in Mathematics, Volume 65, Issue 1, 1987.
  • [VI99] Yuri Vasilevich Prokhorov V.A. Iskovskikh. Algebraic Geometry V: Fano Varieties. Algebraic geometry. Springer, 1999.
  • [Zha20] Shizhuo Zhang. Bridgeland moduli spaces and Kuznetsov’s Fano threefold conjecture. arXiv preprint 2012.12193, 2020.