This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kinetic equations for two-photon light in random media

Joseph Kraisler Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 [email protected]  and  John C. Schotland Department of Mathematics and Department of Physics, Yale University, New Haven, CT 06515 [email protected]
Abstract.

We consider the propagation of light in a random medium of two-level atoms. We investigate the dynamics of the field and atomic probability amplitudes for a two-photon state and show that at long times and large distances, the corresponding average probability densities can be determined from the solutions to a system of kinetic equations.

1. Introduction

The propagation of light in random media is usually considered within the setting of classical optics [1]. However, there has been considerable recent interest in phenomena where quantum effects play a key role [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Of particular importance is understanding the impact of multiple scattering on entangled two-photon states, with an eye towards characterizing the transfer of entanglement from the field to matter [13, 16, 5, 17, 18, 19, 20]. Progress in this direction can be expected to lead to advances in spectroscopy [21], imaging [22, 23, 24, 25, 26, 27, 28, 29, 30, 31] and communications [32, 33, 34] .

The propagation of two-photon light is generally investigated either in free space or, in some cases, with account of diffraction [35, 36] or scattering [37]. In this paper, we consider the propagation of two-photon light in a random medium. A step in this direction was taken in [38], where a model in which the field is quantized and the medium is treated classically was investigated. The main drawback of that work is that it is does not allow for the transfer of entanglement between the field and the atoms or between the atoms themselves. Instead, we treat the problem from first principles, employing a model in which the field and the matter are both quantized. We show that for a medium consisting of two-level atoms, the field and atomic probability amplitudes for a two-photon state obey a system of nonlocal partial differential equations with random coefficients. Using this result, we find that at long times and large distances, the corresponding average probability densities in a random medium can be determined from the solutions to a system of kinetic equations. These equations follow from the multiscale asymptotics of the average Wigner transform of the amplitudes in a suitable high-frequency limit [39, 40, 41, 42]. This formulation of the problem builds on earlier research by the authors on collective emission of single photons in a random medium of two-level atoms [43]. In that work, we employed a formulation of quantum electrodynamics in which the field is quantized in real space, thus allowing for the field and atomic degrees of freedom to be treated on the same footing.

This paper is organized as follows. In section 2 we formulate our model for the propagation of two-photon light and derive the equations governing the dynamics of the field and atomic degrees of freedom. Section 3 is concerned with the application of the real-space formalism to the problem of stimulated emission by a single atom. In section 4 we study the dynamics of a two-photon state in a homogeneous medium. In section 5 we discuss the problem of stimulated emission in a random medium and obtain the governing kinetic equations. Section 6 takes up the general problem of two-photon transport in random media and presents the relevant kinetic equations. Our conclusions are formulated in section 7. The appendices contain the details of calculations.

2. Model

We consider the following model for the interaction between a quantized massless scalar field and a system of two-level atoms. The atoms are taken to be identical, stationary and sufficiently well separated that interatomic interactions can be neglected. The overall system is described by the Hamiltonian

H=HF+HA+HI,H=H_{F}+H_{A}+H_{I}\ , (1)

where HFH_{F} is the Hamiltonian of the field, HAH_{A} is the Hamiltonian of the atoms and HIH_{I} is the interaction Hamiltonian. In order to treat the atoms and the field on the same footing, it is useful to introduce a real-space representation of HH [43]. The Hamiltonian of the field is of the form

HF=cd3x(Δ)1/2ϕ(𝐱)ϕ(𝐱),\displaystyle H_{F}=\hbar c\int d^{3}x(-\Delta)^{1/2}\phi^{\dagger}({\bf x})\phi({\bf x})\ , (2)

where ϕ\phi is a Bose scalar field that obeys the commutation relations

[ϕ(𝐱),ϕ(𝐱)]\displaystyle[\phi({\bf x}),\phi^{\dagger}({\bf x}^{\prime})] =δ(𝐱𝐱),\displaystyle=\delta({\bf x}-{\bf x}^{\prime})\ , (3)
[ϕ(𝐱),ϕ(𝐱)]\displaystyle[\phi({\bf x}),\phi({\bf x}^{\prime})] =0.\displaystyle=0\ . (4)

where we have neglected the zero-point energy. The nonlocal operator (Δ)1/2(-\Delta)^{1/2} is defined by the Fourier integral

(Δ)1/2f(𝐱)\displaystyle(-\Delta)^{1/2}f({\bf x}) =d3k(2π)3ei𝐤𝐱|𝐤|f~(𝐤),\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3}}e^{i{\bf k}\cdot{\bf x}}|{\bf k}|\tilde{f}({\bf k})\ , (5)
f~(𝐤)\displaystyle\tilde{f}({\bf k}) =d3xei𝐤𝐱f(𝐱).\displaystyle=\int d^{3}xe^{-i{\bf k}\cdot{\bf x}}f({\bf x})\ . (6)

We note that (2) is equivalent to the usual oscillator representation of HFH_{F}.

To facilitate the treatment of random media, it will prove convenient to introduce a continuum model of the atomic degrees of freedom [43]. The Hamiltonian of the atoms is given by

HA=Ωd3xρ(𝐱)σ(𝐱)σ(𝐱),\displaystyle H_{A}=\hbar\Omega\int d^{3}x\rho({\bf x})\sigma^{\dagger}({\bf x})\sigma({\bf x})\ , (7)

where Ω\Omega is the atomic resonance frequency, ρ(𝐱)\rho({\bf x}) is the number density of the atoms, and σ\sigma is a Fermi field that obeys the anticommutation relations

{σ(𝐱),σ(𝐱)}\displaystyle\{\sigma({\bf x}),\sigma^{\dagger}({\bf x}^{\prime})\} =1ρ(𝐱)δ(𝐱𝐱),\displaystyle=\frac{1}{\rho({\bf x})}\delta({\bf x}-{\bf x}^{\prime})\ , (8)
{σ(𝐱),σ(𝐱)}\displaystyle\{\sigma({\bf x}),\sigma({\bf x}^{\prime})\} =0.\displaystyle=0\ . (9)

The Hamiltonian describing the interaction between the field and the atoms is taken to be

HI=gd3xρ(𝐱)(ϕ(𝐱)σ(𝐱)+σ(𝐱)ϕ(𝐱)),\displaystyle H_{I}=\hbar{g}\int d^{3}x\rho({\bf x})\left(\phi^{\dagger}({\bf x})\sigma({\bf x})+\sigma^{\dagger}({\bf x})\phi({\bf x})\right)\ , (10)

where g{g} is the strength of the atom-field coupling. Here we have made the Markovian approximation, in which the coupling constant is independent of the frequency of the photons or positions of the atoms, and have imposed the rotating wave approximation (RWA).

We suppose that the system is in a two-photon state of the form

|Ψ=d3x1d3x2\displaystyle|\Psi\rangle=\int d^{3}x_{1}d^{3}x_{2} (ψ2(𝐱1,𝐱2,t)ϕ(𝐱1)ϕ(𝐱2)+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)ϕ(𝐱2)\displaystyle\left(\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})\right. (11)
+\displaystyle+ a(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)σ(𝐱1)σ(𝐱2))|0,\displaystyle\left.a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})\right)|0\rangle\ ,

where |0|0\rangle is the combined vacuum state of the field and the ground state of the atoms. Here the atomic amplitude a(𝐱1,𝐱2,t)a({\bf x}_{1},{\bf x}_{2},t) is the probability amplitude for exciting two atoms at the points 𝐱1{\bf x}_{1} and 𝐱2{\bf x}_{2} at time tt, the one-photon amplitude ψ1(𝐱1,𝐱2,t)\psi_{1}({\bf x}_{1},{\bf x}_{2},t) is the probability amplitude for exciting an atom at 𝐱1{\bf x}_{1} and creating a photon at 𝐱2{\bf x}_{2}, and the two-photon amplitude ψ2(𝐱1,𝐱2,t)\psi_{2}({\bf x}_{1},{\bf x}_{2},t) is the probability amplitude for creating photons at 𝐱1{\bf x}_{1} and 𝐱2{\bf x}_{2}. The functions ψ2\psi_{2} and aa are symmetric and antisymmetric, respectively:

ψ2(𝐱2,𝐱1,t)=ψ2(𝐱1,𝐱2,t),a(𝐱2,𝐱1,t)=a(𝐱1,𝐱2,t),\psi_{2}({\bf x}_{2},{\bf x}_{1},t)=\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\ ,\quad a({\bf x}_{2},{\bf x}_{1},t)=-a({\bf x}_{1},{\bf x}_{2},t)\ , (12)

consistent with the bosonic and fermionic character of the corresponding fields.

The state |Ψ|\Psi\rangle is the most general two-photon state within the RWA. In addition, |Ψ|\Psi\rangle is normalized so that Ψ|Ψ=1\langle\Psi|\Psi\rangle=1. It follows from (3) and (8) that the amplitudes obey the normalization condition

d3x1d3x2(2|ψ2(𝐱1,𝐱2,t)|2+ρ(𝐱1)|ψ1(𝐱1,𝐱2,t)|2+2ρ(𝐱1)ρ(𝐱2)|a(𝐱1,𝐱2,t)|2)=1.\displaystyle\int d^{3}x_{1}d^{3}x_{2}\left(2|\psi_{2}({\bf x}_{1},{\bf x}_{2},t)|^{2}+\rho({\bf x}_{1})|\psi_{1}({\bf x}_{1},{\bf x}_{2},t)|^{2}+2\rho({\bf x}_{1})\rho({\bf x}_{2})|a({\bf x}_{1},{\bf x}_{2},t)|^{2}\right)=1\ . (13)

If the amplitudes a(𝐱1,𝐱2,t)a({\bf x}_{1},{\bf x}_{2},t), ψ1(𝐱1,𝐱2,t)\psi_{1}({\bf x}_{1},{\bf x}_{2},t) and ψ2(𝐱1,𝐱2,t)\psi_{2}({\bf x}_{1},{\bf x}_{2},t) are factorizable as functions of 𝐱1{\bf x}_{1} and 𝐱2{\bf x}_{2}, then there are no quantum correlations and the state |Ψ|\Psi\rangle is not entangled. Otherwise |Ψ|\Psi\rangle is entangled. If ψ2\psi_{2} alone is not factorizable, we say that |Ψ|\Psi\rangle is an entangled two-photon state.

The dynamics of |Ψ|\Psi\rangle is governed by the Schrodinger equation

it|Ψ=H|Ψ.\displaystyle i\hbar\partial_{t}|\Psi\rangle=H|\Psi\rangle\ . (14)

Projecting onto the states ϕ(𝐱)|0\phi^{\dagger}({\bf x})|0\rangle and σ(𝐱)|0\sigma^{\dagger}({\bf x})|0\rangle and making use of (3) and (8), we arrive at the following system of equations obeyed by aa, ψ1\psi_{1} and ψ2\psi_{2}:

itψ2(𝐱1,𝐱2,t)=c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)=c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+g2(ρ(𝐱1)ψ1(𝐱1,𝐱2,t)+ρ(𝐱2)ψ1(𝐱2,𝐱1,t)),\displaystyle+\frac{g}{2}(\rho({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)+\rho({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t))\ , (15)
ρ(𝐱1)itψ1(𝐱1,𝐱2,t)=2gρ(𝐱1)ψ2(𝐱1,𝐱2,t)+ρ(𝐱1)[c(Δ𝐱2)1/2+Ω]ψ1(𝐱1,𝐱2,t)\displaystyle\rho({\bf x}_{1})i\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)=2{g}\rho({\bf x}_{1})\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+\rho({\bf x}_{1})\left[c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\right]\psi_{1}({\bf x}_{1},{\bf x}_{2},t)
2gρ(𝐱1)ρ(𝐱2)a(𝐱1,𝐱2,t),\displaystyle-2{g}\rho({\bf x}_{1})\rho({\bf x}_{2})a({\bf x}_{1},{\bf x}_{2},t)\ , (16)
ρ(𝐱1)ρ(𝐱2)ita(𝐱1,𝐱2,t)=g2ρ(𝐱1)ρ(𝐱2)(ψ1(𝐱2,𝐱1,t)ψ1(𝐱1,𝐱2,t))+2Ωρ(𝐱1)ρ(𝐱2)a(𝐱1,𝐱2,t).\displaystyle\rho({\bf x}_{1})\rho({\bf x}_{2})i\partial_{t}a({\bf x}_{1},{\bf x}_{2},t)=\frac{g}{2}\rho({\bf x}_{1})\rho({\bf x}_{2})(\psi_{1}({\bf x}_{2},{\bf x}_{1},t)-\psi_{1}({\bf x}_{1},{\bf x}_{2},t))+2\Omega\rho({\bf x}_{1})\rho({\bf x}_{2})\,a({\bf x}_{1},{\bf x}_{2},t)\ . (17)

The overall factors of ρ(𝐱)\rho({\bf x}) in the above will be cancelled as necessary. The details of the calculation are presented in Appendix A.

The above model views the atomic degrees of freedom as fermionic. In Appendix D we consider the bosonic case.

3. Single-Atom Stimulated Emission

In this section we consider the problem of stimulated emission by a single atom. We assume that the atom is located at the origin and put ρ(𝐱)=δ(𝐱)\rho({\bf x})=\delta({\bf x}). Thus the system (2)–(17) becomes

itψ2(𝐱1,𝐱2,t)=c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)=c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+g2(δ(𝐱1)ψ1(𝐱1,𝐱2,t)+δ(𝐱2)ψ1(𝐱2,𝐱1,t)),\displaystyle+\frac{g}{2}(\delta({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)+\delta({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t))\ , (18)
δ(𝐱1)itψ1(𝐱1,𝐱2,t)=2gδ(𝐱1)ψ2(𝐱1,𝐱2,t)+δ(𝐱1)[c(Δ𝐱2)1/2+Ω]ψ1(𝐱1,𝐱2,t),\displaystyle\delta({\bf x}_{1})i\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)=2{g}\delta({\bf x}_{1})\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+\delta({\bf x}_{1})\left[c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\right]\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\ , (19)

where the term δ(𝐱1)δ(𝐱2)a(𝐱1,𝐱2,t)\delta({\bf x}_{1})\delta({\bf x}_{2})a({\bf x}_{1},{\bf x}_{2},t) does not contribute due to the antisymmetry of aa. We assume that initially there is only one photon present in the system, which means that the initial conditions for the amplitudes ψ1\psi_{1} and ψ2\psi_{2} are given by

ψ1(0,𝐱,0)\displaystyle\psi_{1}(0,{\bf x},0) =ei𝐤0𝐱,\displaystyle=e^{i{\bf k}_{0}\cdot{\bf x}}\ ,
ψ2(𝐱1,𝐱2,0)\displaystyle\psi_{2}({\bf x}_{1},{\bf x}_{2},0) =0,\displaystyle=0\ ,

where 𝐤0{\bf k}_{0} is the wavevector of the photon. Note that the amplitude of ψ1\psi_{1} is set to unity for convenience. To proceed, we take the Laplace transform with respect to tt and the Fourier transforms with respect to 𝐱1{\bf x}_{1} and 𝐱2{\bf x}_{2} of (18) and (19). We thus obtain

izψ2(𝐤1,𝐤2,z)\displaystyle iz\psi_{2}({\bf k}_{1},{\bf k}_{2},z) =[c|𝐤1|+c|𝐤2|]ψ2(𝐤1,𝐤2)+g2[ψ1(𝐤1,z)+ψ1(𝐤2,z)],\displaystyle=\left[c|{\bf k}_{1}|+c|{\bf k}_{2}|\right]\psi_{2}({\bf k}_{1},{\bf k}_{2})+\frac{g}{2}\left[\psi_{1}({\bf k}_{1},z)+\psi_{1}({\bf k}_{2},z)\right]\ , (20)
i[zψ1(𝐤,z)δ(𝐤𝐤0)]\displaystyle i\left[z\psi_{1}({\bf k},z)-\delta({\bf k}-{\bf k}_{0})\right] =2gd3kψ2(𝐤,𝐤,z)+[c|𝐤|+Ω]ψ1(𝐤,z).\displaystyle=2{g}\int d^{3}k^{\prime}\psi_{2}({\bf k}^{\prime},{\bf k},z)+\left[c|{\bf k}|+\Omega\right]\psi_{1}({\bf k},z)\ . (21)

Here we have defined the Laplace transform by

a(z)=0𝑑tezta(t),\displaystyle a(z)=\int_{0}^{\infty}dte^{-zt}a(t)\ , (22)

where we denote a function and its Laplace transform by the same symbol. Solving (20) and (21) leads to an integral equation for ψ1(𝐤,z)\psi_{1}({\bf k},z) of the form

ψ1(𝐤,z)=δ(𝐤𝐤0)z+i(c|𝐤|+Ω)iΣ(𝐤,z)+ig2z+i(c|𝐤|+Ω)iΣ(𝐤,z)d3kψ1(𝐤,z)(c|𝐤|+c|𝐤|)iz,\displaystyle\psi_{1}({\bf k},z)=\frac{\delta({\bf k}-{\bf k}_{0})}{z+i(c|{\bf k}|+\Omega)-i\Sigma({\bf k},z)}+\frac{i{g}^{2}}{z+i(c|{\bf k}|+\Omega)-i\Sigma({\bf k},z)}\int d^{3}k^{\prime}\frac{\psi_{1}({\bf k}^{\prime},z)}{(c|{\bf k}^{\prime}|+c|{\bf k}|)-iz}\ , (23)

where

Σ(𝐤,z)=g2d3k1(c|𝐤|+c|𝐤|)iziϵ,\displaystyle\Sigma({\bf k},z)=g^{2}\int d^{3}k^{\prime}\frac{1}{(c|{\bf k}^{\prime}|+c|{\bf k}|)-iz-i\epsilon}\ , (24)

with ϵ0+\epsilon\to 0^{+}. In order to evaluate the integral in (23), we make the pole approximation where we replace Σ(𝐤,z)\Sigma({\bf k},z) with Σ(𝐤,i(Ω+c|𝐤|))\Sigma({\bf k},-i(\Omega+c|{\bf k}|)). We note that this quantity is independent of 𝐤{\bf k} and zz, and so we will denote it by Σ\Sigma. For consistency, we also replace zz by i(Ω+c|𝐤|)-i(\Omega+c|{\bf k}|) under the integral in (23). Note that this approximation arises in the Wigner-Weisskopf theory of spontaneous emission. In addition, we split Σ\Sigma into its real and imaginary parts:

ReΣ\displaystyle\mathrm{Re}\,\Sigma =δω,\displaystyle=\delta\omega\ , (25)
ImΣ\displaystyle\mathrm{Im}\,\Sigma =Γ/2.\displaystyle=\Gamma/2\ . (26)

We can calculate Γ\Gamma and δω\delta\omega by making use of the identity

1c|𝐤|Ωiϵ=P1c|𝐤|Ω+iπδ(c|𝐤|Ω).\displaystyle\frac{1}{c|{\bf k}|-\Omega-i\epsilon}=P\frac{1}{c|{\bf k}|-\Omega}+i\pi\delta(c|{\bf k}|-\Omega)\ . (27)

We find that

Γ\displaystyle\Gamma =2g2πd3k(2π)3δ(c|𝐤|Ω)\displaystyle=2g^{2}\pi\displaystyle\int\frac{d^{3}k}{(2\pi)^{3}}\,\delta(c|{\bf k}|-\Omega) (28)
=g2Ω2πc3,\displaystyle=\frac{g^{2}\Omega^{2}}{\pi c^{3}}\ , (29)

and

δω=g22π202π/Λk2dkckΩ,\delta\omega=\frac{g^{2}}{2\pi^{2}}\int_{0}^{2\pi/\Lambda}\frac{k^{2}dk}{ck-\Omega}\ , (30)

where we have introduced a high-frequency cutoff to regularize the divergent integral. Using the above results, (23) becomes

ψ1(𝐤,z)=δ(𝐤𝐤0)z+i(c|𝐤|+Ω)iΣ+ig2z+i(c|𝐤|+Ω)iΣd3kψ1(𝐤,z)c|𝐤|Ω.\displaystyle\psi_{1}({\bf k},z)=\frac{\delta({\bf k}-{\bf k}_{0})}{z+i(c|{\bf k}|+\Omega)-i\Sigma}+\frac{ig^{2}}{z+i(c|{\bf k}|+\Omega)-i\Sigma}\int d^{3}k^{\prime}\frac{\psi_{1}({\bf k}^{\prime},z)}{c|{\bf k}^{\prime}|-\Omega}\ . (31)

Since ψ1\psi_{1} appears on both the left- and right-hand sides of (31), upon iteration we obtain an infinite series for ψ1\psi_{1}, which to order O(g2)O(g^{2}) is given by

ψ1(𝐤,z)\displaystyle\psi_{1}({\bf k},z) =δ(𝐤𝐤0)z+i(c|𝐤|+Ω)iΣ+ig2z+i(Ωc|𝐤|)iΣd3kδ(𝐤𝐤0)(Ωc|𝐤|)(z+i(c|𝐤|+Ω)iΣ)\displaystyle=\frac{\delta({\bf k}-{\bf k}_{0})}{z+i(c|{\bf k}|+\Omega)-i\Sigma}+\frac{ig^{2}}{z+i(\Omega-c|{\bf k}^{\prime}|)-i\Sigma}\int d^{3}k^{\prime}\frac{\delta({\bf k}^{\prime}-{\bf k}_{0})}{(\Omega-c|{\bf k}^{\prime}|)(z+i(c|{\bf k}^{\prime}|+\Omega)-i\Sigma)} (32)
=δ(𝐤𝐤0)z+i(c|𝐤|+Ω)iΣ+ig2z+i(c|𝐤|+Ω)iΣ1(c|𝐤0|Ω)(z+i(c|𝐤0|+Ω)iΣ).\displaystyle=\frac{\delta({\bf k}-{\bf k}_{0})}{z+i(c|{\bf k}|+\Omega)-i\Sigma}+\frac{ig^{2}}{z+i(c|{\bf k}|+\Omega)-i\Sigma}\frac{1}{(c|{\bf k}_{0}|-\Omega)(z+i(c|{\bf k}_{0}|+\Omega)-i\Sigma)}\ . (33)

Inverting the Laplace transform, we find that ψ1(𝐤,t)\psi_{1}({\bf k},t) is given by

ψ1(𝐤,t)\displaystyle\psi_{1}({\bf k},t) =ei(Ωδω)tΓt/2[δ(𝐤𝐤0)eic|𝐤|t+ig2((c|𝐤0|Ω)(c|𝐤0|c|𝐤|)(eic|𝐤|teic|𝐤0|t)].\displaystyle=e^{-i(\Omega-\delta\omega)t-\Gamma t/2}\left[\delta({\bf k}-{\bf k}_{0})e^{-ic|{\bf k}|t}+\frac{i{g}^{2}}{((c|{\bf k}_{0}|-\Omega)(c|{\bf k}_{0}|-c|{\bf k}|)}\left(e^{-ic|{\bf k}|t}-e^{-ic|{\bf k}_{0}|t}\right)\right]\ . (34)

Note that ψ1\psi_{1} decays exponentially at long times (Γt1\Gamma t\gg 1) and that ψ2\psi_{2} can be obtained from (20).

4. Constant Density

In this section we consider the case of a homogeneous medium and set ρ(𝐱)=ρ0\rho({\bf x})=\rho_{0}, where ρ0\rho_{0} is constant. It is useful to define the function ψ1~(𝐱1,𝐱2,t)=ψ1(𝐱2,𝐱1,t)\tilde{\psi_{1}}({\bf x}_{1},{\bf x}_{2},t)=\psi_{1}({\bf x}_{2},{\bf x}_{1},t) and write (17) as a 4×44\times 4 symmetric system. If we further define the vector

𝚿(𝐱1,𝐱2,t)=[2ψ2(𝐱1,𝐱2,t)ρ0/2ψ1(𝐱1,𝐱2,t)ρ0/2ψ1~(𝐱1,𝐱2,t)2ρ0a(𝐱1,𝐱2,t)],\displaystyle{\bf\Psi}({\bf x}_{1},{\bf x}_{2},t)=\begin{bmatrix}\sqrt{2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\\ \sqrt{\rho_{0}/2}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\\ \sqrt{\rho_{0}/2}\tilde{\psi_{1}}({\bf x}_{1},{\bf x}_{2},t)\\ \sqrt{2}\rho_{0}a({\bf x}_{1},{\bf x}_{2},t)\end{bmatrix}\ , (35)

then (17) can be written as

it𝚿=A𝚿,\displaystyle i\partial_{t}{\bf\Psi}=A{\bf\Psi}\ , (36)

where

A=[c(Δ𝐱1)1/2+c(Δ𝐱2)1/2gρ0gρ00gρ0c(Δ𝐱2)1/2+Ω0gρ0gρ00c(Δ𝐱1)1/2+Ωgρ00gρ0gρ02Ω].\displaystyle A=\begin{bmatrix}c(-\Delta_{{\bf x}_{1}})^{1/2}+c(-\Delta_{{\bf x}_{2}})^{1/2}&{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&0\\ {g}\sqrt{\rho_{0}}&c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega&0&-{g}\sqrt{\rho_{0}}\\ {g}\sqrt{\rho_{0}}&0&c(-\Delta_{{\bf x}_{1}})^{1/2}+\Omega&{g}\sqrt{\rho_{0}}\\ 0&-{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&2\Omega\end{bmatrix}. (37)

This definition of 𝚿{\bf\Psi} has the advantage that the matrix AA is symmetric. The Fourier transform of (36) with respect to the variables 𝐱1{\bf x}_{1} and 𝐱2{\bf x}_{2} is given by

it𝚿^=A^𝚿^\displaystyle i\partial_{t}\hat{{\bf\Psi}}=\hat{A}\hat{{\bf\Psi}}\, (38)

where

A^(𝐤1,𝐤2)=[c|𝐤1|+c|𝐤2|gρ0gρ00gρ0c|𝐤2|+Ω0gρ0gρ00c|𝐤1|+Ωgρ00gρ0gρ02Ω].\displaystyle\hat{A}({\bf k}_{1},{\bf k}_{2})=\begin{bmatrix}c|{\bf k}_{1}|+c|{\bf k}_{2}|&{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&0\\ {g}\sqrt{\rho_{0}}&c|{\bf k}_{2}|+\Omega&0&-{g}\sqrt{\rho_{0}}\\ {g}\sqrt{\rho_{0}}&0&c|{\bf k}_{1}|+\Omega&{g}\sqrt{\rho_{0}}\\ 0&-{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&2\Omega\end{bmatrix}. (39)

The matrix A^\hat{A} has eigenvalues

λ1\displaystyle\lambda_{1} =b1b22b32,\displaystyle=b_{1}-\frac{\sqrt{b_{2}-2\sqrt{b_{3}}}}{2}\,,
λ2\displaystyle\lambda_{2} =b1+b22b32,\displaystyle=b_{1}+\frac{\sqrt{b_{2}-2\sqrt{b_{3}}}}{2}\,,
λ3\displaystyle\lambda_{3} =b1b2+2b32,\displaystyle=b_{1}-\frac{\sqrt{b_{2}+2\sqrt{b_{3}}}}{2}\,,
λ4\displaystyle\lambda_{4} =b1+b2+2b32,\displaystyle=b_{1}+\frac{\sqrt{b_{2}+2\sqrt{b_{3}}}}{2}\,,

where

b1\displaystyle b_{1} =Ω+c|𝐤1|2+c|𝐤2|2,\displaystyle=\Omega+\frac{c\,|{\bf k}_{1}|}{2}+\frac{c\,|{\bf k}_{2}|}{2}\,, (40)
b2\displaystyle b_{2} =2Ω2+8g2ρ0+c2|𝐤1|2+c2|𝐤2|22Ωc|𝐤1|2Ωc|𝐤2|,\displaystyle=2\,\Omega^{2}+8\,g^{2}\rho_{0}+c^{2}\,{|{\bf k}_{1}|}^{2}+c^{2}\,{|{\bf k}_{2}|}^{2}-2\,\Omega\,c\,|{\bf k}_{1}|-2\,\Omega\,c\,|{\bf k}_{2}|\,, (41)
b3\displaystyle b_{3} =Ω42Ω3c|𝐤1|2Ω3c|𝐤2|+Ω2c2|𝐤1|2+4Ω2c2|𝐤1||𝐤2|+Ω2c2|𝐤2|2\displaystyle=\Omega^{4}-2\,\Omega^{3}\,c\,|{\bf k}_{1}|-2\,\Omega^{3}\,c\,|{\bf k}_{2}|+\Omega^{2}\,c^{2}\,{|{\bf k}_{1}|}^{2}+4\,\Omega^{2}\,c^{2}\,|{\bf k}_{1}|\,|{\bf k}_{2}|+\Omega^{2}\,c^{2}\,{|{\bf k}_{2}|}^{2}
+8Ω2g2ρ02Ωc3|𝐤1|2|𝐤2|2Ωc3|𝐤1||𝐤2|28Ωcg2ρ0|𝐤1|\displaystyle+8\,\Omega^{2}\,g^{2}\rho_{0}-2\,\Omega\,c^{3}\,{|{\bf k}_{1}|}^{2}\,|{\bf k}_{2}|-2\,\Omega\,c^{3}\,|{\bf k}_{1}|\,{|{\bf k}_{2}|}^{2}-8\,\Omega\,c\,g^{2}\rho_{0}\,|{\bf k}_{1}|
8Ωcg2ρ0|𝐤2|+c4|𝐤1|2|𝐤2|2+4c2g2ρ0|𝐤1|2+4c2g2ρ0|𝐤2|2.\displaystyle-8\,\Omega\,c\,g^{2}\rho_{0}\,|{\bf k}_{2}|+c^{4}\,{|{\bf k}_{1}|}^{2}\,{|{\bf k}_{2}|}^{2}+4\,c^{2}\,g^{2}\rho_{0}\,{|{\bf k}_{1}|}^{2}+4\,c^{2}\,g^{2}\rho_{0}\,{|{\bf k}_{2}|}^{2}. (42)

The components of the associated eigenvectors 𝐯i(𝐤1,𝐤2){\bf v}_{i}({\bf k}_{1},{\bf k}_{2}) are given by

vi1\displaystyle v_{i1} =2Ω32Ωg2ρ0+2Ω2c|𝐤1|+2Ω2c|𝐤2|cg2ρ0|𝐤1|cg2ρ0|𝐤2|+2Ωc2|𝐤1||𝐤2|g2ρ0(c|𝐤1|c|𝐤2|)\displaystyle=-\frac{2\,\Omega^{3}-2\,\Omega\,g^{2}\rho_{0}+2\,\Omega^{2}\,c\,|{\bf k}_{1}|+2\,\Omega^{2}\,c\,|{\bf k}_{2}|-c\,g^{2}\rho_{0}\,|{\bf k}_{1}|-c\,g^{2}\rho_{0}\,|{\bf k}_{2}|+2\,\Omega\,c^{2}\,|{\bf k}_{1}|\,|{\bf k}_{2}|}{g^{2}\rho_{0}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}
(4Ω+c|𝐤1|+c|𝐤2|)λi2g2ρ0(c|𝐤1|c|𝐤2|)+λi(5Ω22g2ρ0+3Ωc|𝐤1|+3Ωc|𝐤2|+c2|𝐤1||𝐤2|)g2ρ0(c|𝐤1|c|𝐤2|)\displaystyle-\frac{\left(4\,\Omega+c\,|{\bf k}_{1}|+c\,|{\bf k}_{2}|\right)\lambda_{i}^{2}}{g^{2}\rho_{0}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}+\frac{\lambda_{i}\left(5\,\Omega^{2}-2\,g^{2}\rho_{0}+3\,\Omega\,c\,|{\bf k}_{1}|+3\,\Omega\,c\,|{\bf k}_{2}|+c^{2}\,|{\bf k}_{1}|\,|{\bf k}_{2}|\right)}{g^{2}\rho_{0}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}
+λi3g2ρ0(c|𝐤1|c|𝐤2|),\displaystyle+\frac{\lambda_{i}^{3}}{g^{2}\rho_{0}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}\,, (43)
vi2\displaystyle v_{i2} =λi2gρ0(c|𝐤1|c|𝐤2|)+2(Ω2+c|𝐤1|Ωg2ρ0)gρ0(c|𝐤1|c|𝐤2|)(3Ω+c|𝐤1|)(λi)gρ0(c|𝐤1|c|𝐤2|),\displaystyle=\frac{\lambda_{i}^{2}}{g\sqrt{\rho_{0}}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}+\frac{2\,\left(\Omega^{2}+c\,|{\bf k}_{1}|\,\Omega-g^{2}\rho_{0}\right)}{g\sqrt{\rho_{0}}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}-\frac{\left(3\,\Omega+c\,|{\bf k}_{1}|\right)\,\left(\lambda_{i}\right)}{g\sqrt{\rho_{0}}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}\,, (44)
vi3\displaystyle v_{i3} =λi2gρ0(c|𝐤1|c|𝐤2|)+2(Ω2+c|𝐤2|Ωg2ρ0)gρ0(c|𝐤1|c|𝐤2|)(3Ω+c|𝐤2|)(λi)gρ0(c|𝐤1|c|𝐤2|),\displaystyle=\frac{\lambda_{i}^{2}}{g\sqrt{\rho_{0}}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}+\frac{2\,\left(\Omega^{2}+c\,|{\bf k}_{2}|\,\Omega-g^{2}\rho_{0}\right)}{g\sqrt{\rho_{0}}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}-\frac{\left(3\,\Omega+c\,|{\bf k}_{2}|\right)\,\left(\lambda_{i}\right)}{g\sqrt{\rho_{0}}\,\left(c\,|{\bf k}_{1}|-c\,|{\bf k}_{2}|\right)}\,, (45)
vi4\displaystyle v_{i4} =1.\displaystyle=1. (46)

It follows that the solution to (38) is

𝚿(𝐱1,𝐱2,t)=i=14d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2Ci(𝐤1,𝐤2)eigρ0λi(𝐤1,𝐤2)t𝐯i(𝐤1,𝐤2),\displaystyle{\bf\Psi}({\bf x}_{1},{\bf x}_{2},t)=\sum_{i=1}^{4}\int\frac{d^{3}k_{1}}{(2\pi)^{3}}\frac{d^{3}k_{2}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}+i{\bf x}_{2}\cdot{\bf k}_{2}}C_{i}({\bf k}_{1},{\bf k}_{2})e^{-i{g}\sqrt{\rho_{0}}\lambda_{i}({\bf k}_{1},{\bf k}_{2})t}{\bf v}_{i}({\bf k}_{1},{\bf k}_{2})\,, (47)

where the values CiC_{i} are solutions to the linear system

𝚿^(𝐤1,𝐤2,0)=i=14𝐯i(𝐤1,𝐤2)Ci(𝐤1,𝐤2).\displaystyle\hat{{\bf\Psi}}({\bf k}_{1},{\bf k}_{2},0)=\sum_{i=1}^{4}{\bf v}_{i}({\bf k}_{1},{\bf k}_{2})C_{i}({\bf k}_{1},{\bf k}_{2}). (48)

In order to study the emission of photons, we assume that initially there are two localized volumes of excited atoms of linear size lsl_{s} centered at the points 𝐫1{\bf r}_{1} and 𝐫2{\bf r}_{2}. The initial amplitudes are taken to be

ψ2(𝐱1,𝐱2,0)\displaystyle\psi_{2}({\bf x}_{1},{\bf x}_{2},0) =0,\displaystyle=0\,, (49)
ψ1(𝐱1,𝐱2,0)\displaystyle\psi_{1}({\bf x}_{1},{\bf x}_{2},0) =0,\displaystyle=0\,, (50)
a(𝐱1,𝐱2,0)\displaystyle a({\bf x}_{1},{\bf x}_{2},0) =(1πls2)3/2(e|𝐱1𝐫1|2/2ls2e|𝐱2𝐫2|2/2ls2e|𝐱2𝐫1|2/2ls2e|𝐱1𝐫2|2/2ls2).\displaystyle=\left(\frac{1}{\pi l_{s}^{2}}\right)^{3/2}\left(e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/2l_{s}^{2}}-e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/2l_{s}^{2}}\right). (51)

Figure 1 illustrates the time dependence of ψ1,ψ2\psi_{1},\psi_{2} and aa, where we have set the dimensionless quantities Ω/ρ0g=c/lsρ0g=1{\Omega}/{\sqrt{\rho_{0}}{g}}={c}/{l_{s}\sqrt{\rho_{0}}{g}}=1. Note that the atomic amplitude is antisymmetric, consistent with (8) and that it corresponds to an entangled state. We observe that the amplitudes oscillate and decay in time. Moreover, the atomic and one-photon amplitudes are out of phase with one another, and the two-photon amplitude is an order of magnitude smaller.

Refer to caption
Figure 1. Probability densities with distances |𝐱1𝐫1|=|𝐱2𝐫1|=|𝐱1𝐫2|=|𝐱2𝐫2|=ls|{\bf x}_{1}-{\bf r}_{1}|=|{\bf x}_{2}-{\bf r}_{1}|=|{\bf x}_{1}-{\bf r}_{2}|=|{\bf x}_{2}-{\bf r}_{2}|=l_{s}

5. Stimulated Emission in Random Media

5.1. Kinetic equations

In this section we consider stimulated emission in a random medium. We suppose that there is at most one atomic excitation and that there are at most two photons present in the field. Thus we set the a(𝐱1,𝐱2,t)=0a({\bf x}_{1},{\bf x}_{2},t)=0 and study the dynamics of ψ1\psi_{1} and ψ2\psi_{2}. The system (17) then becomes

itψ2(𝐱1,𝐱2,t)=c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)=c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+g2(ρ(𝐱1)ψ1(𝐱1,𝐱2,t)+ρ(𝐱2)ψ1(𝐱2,𝐱1,t)),\displaystyle+\frac{g}{2}(\rho({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)+\rho({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t))\,,
itψ1(𝐱1,𝐱2,t)=2gψ2(𝐱1,𝐱2,t)+[c(Δ𝐱2)1/2+Ω]ψ1(𝐱1,𝐱2,t),\displaystyle i\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)=2{g}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+\left[c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\right]\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\,,
0=ψ1(𝐱2,𝐱1,t)ψ1(𝐱1,𝐱2,t),\displaystyle 0=\psi_{1}({\bf x}_{2},{\bf x}_{1},t)-\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\ , (52)

which can be rewritten as the pair of equations

itψ2(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t) =c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t)\displaystyle=c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+g2(ρ(𝐱1)+ρ(𝐱2))ψ1(𝐱1,𝐱2,t)),\displaystyle+\frac{g}{2}(\rho({\bf x}_{1})+\rho({\bf x}_{2}))\psi_{1}({\bf x}_{1},{\bf x}_{2},t))\,,
itψ1(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t) =2gψ2(𝐱1,𝐱2,t)+[c2(Δ𝐱1)1/2+c2(Δ𝐱2)1/2+Ω]ψ1(𝐱1,𝐱2,t).\displaystyle=2{g}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+\left[\frac{c}{2}(-\Delta_{{\bf x}_{1}})^{1/2}+\frac{c}{2}(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\right]\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\ . (53)

We will assume that the number density ρ(𝐱)\rho({\bf x}) is of the form

ρ(𝐱)=ρ0(1+η(𝐱)),\displaystyle\rho({\bf x})=\rho_{0}(1+\eta({\bf x}))\,, (54)

where ρ0\rho_{0} is a constant and η\eta is a real-valued random field. We assume that the correlations of η\eta are given by

η(𝐱)\displaystyle\langle\eta({\bf x})\rangle =0,\displaystyle=0\,, (55)
η(𝐱1)η(𝐱2)\displaystyle\langle\eta({\bf x}_{1})\eta({\bf x}_{2})\rangle =C(𝐱1𝐱2).\displaystyle=C({\bf x}_{1}-{\bf x}_{2}). (56)

where CC is the two-point correlation function and \langle\cdots\rangle denotes statistical averaging. We further assume that the medium is statistically homogeneous and isotropic, so that CC depends only upon the quantity |𝐱𝐲||{\bf x}-{\bf y}|. If we define

𝚿(𝐱1,𝐱2,t)=[2ψ2(𝐱1,𝐱2,t)ρ0ψ1(𝐱1,𝐱2,t)]\displaystyle{\bf\Psi}({\bf x}_{1},{\bf x}_{2},t)=\begin{bmatrix}\sqrt{2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\\ \sqrt{\rho_{0}}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\end{bmatrix} (57)

then the above system of equation can be rewritten as

it𝚿(𝐱1,𝐱2,t)=A(𝐱1,𝐱2)𝚿(𝐱1,𝐱2,t)+gρ02(η(𝐱1)+η(𝐱2))K𝚿(𝐱1,𝐱2,t),\displaystyle i\partial_{t}{\bf\Psi}({\bf x}_{1},{\bf x}_{2},t)=A({\bf x}_{1},{\bf x}_{2}){\bf\Psi}({\bf x}_{1},{\bf x}_{2},t)+{g}\sqrt{\frac{\rho_{0}}{2}}(\eta({\bf x}_{1})+\eta({\bf x}_{2}))K{\bf\Psi}({\bf x}_{1},{\bf x}_{2},t)\,, (58)

where

A(𝐱1,𝐱2)\displaystyle A({\bf x}_{1},{\bf x}_{2}) =[c(Δ𝐱1)1/2+c(Δ𝐱2)1/22gρ02gρ0c2(Δ𝐱1)1/2+c2(Δ𝐱2)1/2+Ω],\displaystyle=\begin{bmatrix}c(-\Delta_{{\bf x}_{1}})^{1/2}+c(-\Delta_{{\bf x}_{2}})^{1/2}&\sqrt{2}{g}\sqrt{\rho_{0}}\\ \sqrt{2}{g}\sqrt{\rho_{0}}&\frac{c}{2}(-\Delta_{{\bf x}_{1}})^{1/2}+\frac{c}{2}(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\end{bmatrix}\,, (59)
K\displaystyle K =[0100].\displaystyle=\begin{bmatrix}0&1\\ 0&0\end{bmatrix}. (60)

To derive a kinetic equation in the high-frequency limit, we rescale the variables tt/ϵt\to t/\epsilon, 𝐱1𝐱1/ϵ{\bf x}_{1}\to{\bf x}_{1}/\epsilon, and 𝐱2𝐱2/ϵ{\bf x}_{2}\to{\bf x}_{2}/\epsilon. Additionally, we assume that the randomness is sufficiently weak so that the correlation function CC is O(ϵ)O(\epsilon). Eq. (58) thus becomes

iϵt𝚿ϵ(𝐱1,𝐱2,t)=Aϵ(𝐱1,𝐱2)𝚿ϵ(𝐱1,𝐱2,t)+ϵgρ02(η(𝐱1/ϵ)+η(𝐱2/ϵ))K𝚿ϵ(𝐱1,𝐱2,t),\displaystyle i\epsilon\partial_{t}{\bf\Psi}_{\epsilon}({\bf x}_{1},{\bf x}_{2},t)=A_{\epsilon}({\bf x}_{1},{\bf x}_{2}){\bf\Psi}_{\epsilon}({\bf x}_{1},{\bf x}_{2},t)+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}(\eta({\bf x}_{1}/\epsilon)+\eta({\bf x}_{2}/\epsilon))K{\bf\Psi}_{\epsilon}({\bf x}_{1},{\bf x}_{2},t)\,, (61)

where

Aϵ(𝐱1,𝐱2)=[ϵc(Δ𝐱1)1/2+ϵc(Δ𝐱2)1/22gρ02gρ0ϵc2(Δ𝐱1)1/2+ϵc2(Δ𝐱2)1/2+Ω].\displaystyle A_{\epsilon}({\bf x}_{1},{\bf x}_{2})=\begin{bmatrix}\epsilon c(-\Delta_{{\bf x}_{1}})^{1/2}+\epsilon c(-\Delta_{{\bf x}_{2}})^{1/2}&\sqrt{2}{g}\sqrt{\rho_{0}}\\ \sqrt{2}{g}\sqrt{\rho_{0}}&\epsilon\frac{c}{2}(-\Delta_{{\bf x}_{1}})^{1/2}+\epsilon\frac{c}{2}(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\end{bmatrix}. (62)

Next we introduce the scaled Wigner transform, which provides a phase space representation of the correlation functions of the various amplitudes. The Wigner transform Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t)W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t) is defined by

Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t)\displaystyle W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)
=\displaystyle= d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2𝚿ϵ(𝐱1ϵ𝐱1/2,𝐱2ϵ𝐱2/2,t)𝚿(𝐱1+ϵ𝐱1/2,𝐱2+ϵ𝐱2/2,t),\displaystyle\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}{\bf\Psi}_{\epsilon}({\bf x}_{1}-\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}-\epsilon{\bf x}_{2}^{\prime}/2,t){\bf\Psi}^{\dagger}({\bf x}_{1}+\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}+\epsilon{\bf x}_{2}^{\prime}/2,t)\,, (63)

where \dagger denotes the hermitian conjugate. The Wigner transform is real-valued and its diagonal elements are related to the probability densities |ψ1ϵ|2|\psi_{1\epsilon}|^{2} and |ψ2ϵ|2|\psi_{2\epsilon}|^{2} by

2|ψ2ϵ(𝐱1,𝐱2,t)|2=d3k1d3k2(Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t))11,\displaystyle 2|{\psi_{2}}_{\epsilon}({\bf x}_{1},{\bf x}_{2},t)|^{2}=\int d^{3}k_{1}d^{3}k_{2}(W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t))_{11}\,, (64)
ρ0|ψ1ϵ(𝐱1,𝐱2,t)|2=d3k1d3k2(Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t))22.\displaystyle\rho_{0}|{\psi_{1}}_{\epsilon}({\bf x}_{1},{\bf x}_{2},t)|^{2}=\int d^{3}k_{1}d^{3}k_{2}(W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t))_{22}. (65)

The above factor of two is due to the symmetry of the function ψ2(𝐱1,𝐱2)\psi_{2}({\bf x}_{1},{\bf x}_{2}). The off diagonal elements are related to correlations between the amplitudes:

2ρ0ψ2ϵ(𝐱1,𝐱2,t)ψ1ϵ(𝐱1,𝐱2,t)=d3k1d3k2(Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t))12.\displaystyle\sqrt{2\rho_{0}}{\psi_{2}}_{\epsilon}({\bf x}_{1},{\bf x}_{2},t){\psi_{1}}_{\epsilon}^{*}({\bf x}_{1},{\bf x}_{2},t)=\int d^{3}k_{1}d^{3}k_{2}(W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t))_{12}. (66)

As shown in Appendix B, the Wigner transform satisfies the Liouville equation

iϵtWϵ(𝐱1,𝐤1,𝐱2,𝐤2,t)\displaystyle i\epsilon\partial_{t}W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)
=d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2A^(𝐤1ϵ𝐤1/2,𝐤2ϵ𝐤2/2)W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2,t)\displaystyle=\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}\hat{A}({\bf k}_{1}-\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}-\epsilon{\bf k}_{2}^{\prime}/2)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2},t)
d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2,t)A^(𝐤1+ϵ𝐤1/2,𝐤2+ϵ𝐤2/2)\displaystyle-\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2},t)\hat{A}({\bf k}_{1}+\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}+\epsilon{\bf k}_{2}^{\prime}/2)
+ϵgρ02d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)[KWϵ(𝐱1,𝐤1+𝐪/2,𝐱2,𝐤2,t)Wϵ(𝐱1,𝐤1𝐪/2,𝐱2,𝐤2,t)KT]\displaystyle+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\,\hat{\eta}({\bf q})\left[KW_{\epsilon}({\bf x}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)-W_{\epsilon}({\bf x}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)K^{T}\right]
+ϵgρ02d3q(2π)3ei𝐪𝐱2/ϵη^(𝐪)[KWϵ(𝐱1,𝐤1,𝐱2,𝐤2+𝐪/2,t)Wϵ(𝐱1,𝐤1,𝐱2,𝐤2𝐪/2,t)KT],\displaystyle+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{2}/\epsilon}\,\hat{\eta}({\bf q})\left[KW_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2}+{\bf q}/2,t)-W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2}-{\bf q}/2,t)K^{T}\right]\ , (67)

where

A^(𝐤1,𝐤2)=[c|𝐤1|+c|𝐤2|2ρ0g2ρ0g(c|𝐤1|+c|𝐤2|)/2+Ω],\displaystyle\hat{A}({\bf k}_{1},{\bf k}_{2})=\begin{bmatrix}c|{\bf k}_{1}|+c|{\bf k}_{2}|&\sqrt{2\rho_{0}}{g}\\ \sqrt{2\rho_{0}}g&(c|{\bf k}_{1}|+c|{\bf k}_{2}|)/2+\Omega\end{bmatrix}\ , (68)

and the Fourier transform W^\hat{W} is defined as

W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2,t)=d3x1d3x2ei𝐱1𝐤1i𝐱2𝐤2Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t).\displaystyle\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2},t)=\int d^{3}x_{1}d^{3}x_{2}e^{-i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}-i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t). (69)

We study the behavior of WϵW_{\epsilon} in the high frequency limit ϵ0\epsilon\to 0. To this end, we introduce a multiscale expasion of the Wigner transform of the form

Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t) =W0(𝐱1,𝐤1,𝐱2,𝐤2,t)+ϵW1(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle=W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)+\sqrt{\epsilon}W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
+ϵW2(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)+,\displaystyle+\epsilon W_{2}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)+\cdots\,, (70)

where 𝐗1=𝐱1/ϵ{\bf X}_{1}={\bf x}_{1}/\epsilon and 𝐗2=𝐱2/ϵ{\bf X}_{2}={\bf x}_{2}/\epsilon are fast variables and W0W_{0} is assumed to be both deterministic and independent of the fast variables. We treat the variables 𝐱1,𝐗1{\bf x}_{1},{\bf X}_{1} and 𝐱2,𝐗2{\bf x}_{2},{\bf X}_{2} as independent and make the replacements

𝐱i𝐱i+1ϵ𝐗i,i=1,2.\displaystyle\nabla_{{\bf x}_{i}}\to\nabla_{{\bf x}_{i}}+\frac{1}{\epsilon}\nabla_{{\bf X}_{i}}\ ,\quad i=1,2\ . (71)

Hence the Liouville equation becomes

iϵtWϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle i\epsilon\partial_{t}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
=d3k1(2π)3d3k2(2π)3d3K1(2π)3d3K2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2+i𝐗1𝐊1+i𝐗2𝐊2\displaystyle=\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}+i{\bf X}_{1}\cdot{\bf K}_{1}+i{\bf X}_{2}\cdot{\bf K}_{2}}
×A^(𝐤1ϵ𝐤1/2𝐊1/2,𝐤2ϵ𝐤2/2𝐊2/2)W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2,t)\displaystyle\times\hat{A}({\bf k}_{1}-\epsilon{\bf k}_{1}^{\prime}/2-{\bf K}_{1}/2,{\bf k}_{2}-\epsilon{\bf k}_{2}^{\prime}/2-{\bf K}_{2}/2)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2},t)
d3k1(2π)3d3k2(2π)3d3K1(2π)3d3K2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2+i𝐗1𝐊1+i𝐗2𝐊2\displaystyle-\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}+i{\bf X}_{1}\cdot{\bf K}_{1}+i{\bf X}_{2}\cdot{\bf K}_{2}}
×W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2,t)A^(𝐤1ϵ𝐤1/2+𝐊1/2,𝐤2ϵ𝐤2/2+𝐊2/2)\displaystyle\times\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2},t)\hat{A}({\bf k}_{1}-\epsilon{\bf k}_{1}^{\prime}/2+{\bf K}_{1}/2,{\bf k}_{2}-\epsilon{\bf k}_{2}^{\prime}/2+{\bf K}_{2}/2)
+ϵgρ02L1Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)+ϵgρ02L2Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t),\displaystyle+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}L_{1}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}L_{2}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)\,, (72)

where

L1W=d3q(2π)3ei𝐪𝐗1η^(𝐪)\displaystyle L_{1}W=\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{1}}\,\hat{\eta}({\bf q}) [KW(𝐱1,𝐗1,𝐤1+𝐪/2,𝐱2,𝐗2,𝐤2,t)\displaystyle\left[KW({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)\right.
W1(𝐱1,𝐗1,𝐤1𝐪/2,𝐱2,𝐗2,𝐤2,t)KT],\displaystyle\left.-W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)K^{T}\right]\ , (73)
L2W=d3q(2π)3ei𝐪𝐗2η^(𝐪)\displaystyle L_{2}W=\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{2}}\,\hat{\eta}({\bf q}) [KW(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2+𝐪/2,t)\displaystyle\left[KW({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}+{\bf q}/2,t)\right.
W1(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2𝐪/2,t)KT],\displaystyle\left.-W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}-{\bf q}/2,t)K^{T}\right]\ , (74)

and the Fourier transform W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2,t)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2},t) is defined as

W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2,t)\displaystyle\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2},t)
=d3x1d3x2d3X1d3X2ei𝐱1𝐤1i𝐗1𝐊1i𝐱2𝐤2i𝐗2𝐊2Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t).\displaystyle=\int d^{3}x_{1}d^{3}x_{2}d^{3}X_{1}d^{3}X_{2}e^{-i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}-i{\bf X}_{1}\cdot{\bf K}_{1}-i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}-i{\bf X}_{2}\cdot{\bf K}_{2}}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)\ . (75)

Substituting (5.1) into (5.1) and equating terms of the same order in ϵ\sqrt{\epsilon} leads to a hierarchy of equations. At O(1)O(1) we have

A^(𝐤1,𝐤2)W0(𝐱1,𝐤1,𝐱2,𝐤2,t)W0(𝐱1,𝐤1,𝐱1,𝐤2,t)A^(𝐤1,𝐤2)=0.\displaystyle\hat{A}({\bf k}_{1},{\bf k}_{2})W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)-W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{1},{\bf k}_{2},t)\hat{A}({\bf k}_{1},{\bf k}_{2})=0. (76)

Since A^\hat{A} is symmetric it can be diagonalized by a unitary transformation. The eigenvalues and eigenvectors of A^\hat{A} are given by

λ±(𝐤1,𝐤2)\displaystyle\lambda_{\pm}({\bf k}_{1},{\bf k}_{2}) =3d(𝐤1,𝐤2)+Ω±(d(𝐤1,𝐤2)Ω)2+8g2ρ02,\displaystyle=\frac{3d({\bf k}_{1},{\bf k}_{2})+\Omega\pm\sqrt{(d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+8g^{2}\rho_{0}}}{2}\,, (77)
𝐯±(𝐤1,𝐤2)\displaystyle{\bf v}_{\pm}({\bf k}_{1},{\bf k}_{2}) =1(λ±(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+2g2ρ0[λ±(𝐤1,𝐤2)d(𝐤1,𝐤2)Ωg2ρ0],\displaystyle=\frac{1}{\sqrt{(\lambda_{\pm}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+2g^{2}\rho_{0}}}\begin{bmatrix}\lambda_{\pm}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega\\ {g}\sqrt{2\rho_{0}}\end{bmatrix}\ , (78)

where

d(𝐤1,𝐤2)=c(|𝐤1|+|𝐤2|)2.\displaystyle d({\bf k}_{1},{\bf k}_{2})=\frac{c(|{\bf k}_{1}|+|{\bf k}_{2}|)}{2}\ . (79)

Evidently W0W_{0} is also diagonal in this basis and can be expanded as

W0(𝐱1,𝐤1,𝐱2,𝐤2,t)=a+(𝐱1,𝐤1,𝐱2,𝐤2,t)𝐯+(𝐤1,𝐤2)𝐯+T(𝐤1,𝐤2)+a(𝐱1,𝐤1,𝐱2,𝐤2,t)𝐯(𝐤1,𝐤2)𝐯T(𝐤1,𝐤2).\displaystyle W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)=a_{+}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t){\bf v}_{+}({\bf k}_{1},{\bf k}_{2}){\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2})+a_{-}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t){\bf v}_{-}({\bf k}_{1},{\bf k}_{2}){\bf v}_{-}^{T}({\bf k}_{1},{\bf k}_{2}). (80)

At order O(ϵ)O(\sqrt{\epsilon}) we have

A^(𝐤1𝐊1/2,𝐤2𝐊2/2)W^1(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)\displaystyle\hat{A}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\hat{W}_{1}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2})
W^1(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2)A^(𝐤1+𝐊2/2,𝐤2+𝐊2/2)\displaystyle-\hat{W}_{1}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2})\hat{A}({\bf k}_{1}+{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2)
=gρ02(2π)3(η^(𝐊1)δ(𝐊2)+η^(𝐊2)δ(𝐊1))\displaystyle={g}\sqrt{\frac{\rho_{0}}{2}}(2\pi)^{3}\left(\hat{\eta}({\bf K}_{1})\delta({\bf K}_{2})+\hat{\eta}({\bf K}_{2})\delta({\bf K}_{1})\right)
×[W0(𝐱1,𝐤1𝐊1/2,𝐱2,𝐤2𝐊2/2)KTKW0(𝐱1,𝐤1+𝐊1/2,𝐱2,𝐤2+𝐊2/2)].\displaystyle\times\left[W_{0}({\bf x}_{1},{\bf k}_{1}-{\bf K}_{1}/2,{\bf x}_{2},{\bf k}_{2}-{\bf K}_{2}/2)K^{T}-KW_{0}({\bf x}_{1},{\bf k}_{1}+{\bf K}_{1}/2,{\bf x}_{2},{\bf k}_{2}+{\bf K}_{2}/2)\right]. (81)

We can then decompose W1^\hat{W_{1}} as

W^1(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)\displaystyle\hat{W}_{1}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2})
=i,jwi,j(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)𝐯i(𝐤1𝐊1/2,𝐤2𝐊2/2)𝐯jT(𝐤1+𝐊1/2,𝐤2+𝐊2/2).\displaystyle=\sum_{i,j}w_{i,j}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2}){\bf v}_{i}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2){\bf v}_{j}^{T}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2). (82)

Multiplying (5.1) on the left by 𝐯mT(𝐤1𝐊1/2,𝐤2𝐊2/2){\bf v}_{m}^{T}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2) and the right by 𝐯n(𝐤1+𝐊1/2,𝐤2+𝐊2/2){\bf v}_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2), we arrive at

(λm(𝐤1𝐊1/2,𝐤2𝐊2/2)λn(𝐤1+𝐊1/2,𝐤2+𝐊2/2)+iθ)wm,n(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)\displaystyle(\lambda_{m}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)-\lambda_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)+i\theta)w_{m,n}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2})
=\displaystyle= gρ02(2π)3{η(𝐊1)δ(𝐊2)+η(𝐊2)δ(𝐊1)}\displaystyle{g}\sqrt{\frac{\rho_{0}}{2}}(2\pi)^{3}\left\{\eta({\bf K}_{1})\delta({\bf K}_{2})+\eta({\bf K}_{2})\delta({\bf K}_{1})\right\}
×[am(𝐤1𝐊1/2,𝐤2𝐊2/2)Km,n(𝐤1𝐊1/2,𝐤2𝐊2/2,𝐤1+𝐊1/2,𝐤2+𝐊2/2)]\displaystyle\times\left[a_{m}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)K_{m,n}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2,{\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)\right]
\displaystyle- gρ02(2π)3{η(𝐊1)δ(𝐊2)+η(𝐊2)δ(𝐊1)}\displaystyle{g}\sqrt{\frac{\rho_{0}}{2}}(2\pi)^{3}\left\{\eta({\bf K}_{1})\delta({\bf K}_{2})+\eta({\bf K}_{2})\delta({\bf K}_{1})\right\}
×[an(𝐤1+𝐊1/2,𝐤2+𝐊2/2)Km,n(𝐤1+𝐊1/2,𝐤2+𝐊2/2,𝐤1𝐊1/2,𝐤2𝐊2/2)],\displaystyle\times\left[a_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)K_{m,n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2,{\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\right]\,, (83)

where θ0\theta\to 0 is a small positive regularizing parameter and

Km,n(𝐤1,𝐤2,𝐪1,𝐪2)\displaystyle K_{m,n}({\bf k}_{1},{\bf k}_{2},{\bf q}_{1},{\bf q}_{2})
=𝐯mT(𝐤1,𝐤2)K𝐯n(𝐪1,𝐪2)\displaystyle={\bf v}_{m}^{T}({\bf k}_{1},{\bf k}_{2})K{\bf v}_{n}({\bf q}_{1},{\bf q}_{2})
=g2ρ0(λm(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)(λm(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+2g2ρ0(λn(𝐪1,𝐪2)d(𝐪1,𝐪2)Ω)2+2g2ρ0.\displaystyle=\frac{{g}\sqrt{2\rho_{0}}(\lambda_{m}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)}{\sqrt{(\lambda_{m}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+2{g}^{2}\rho_{0}}\sqrt{(\lambda_{n}({\bf q}_{1},{\bf q}_{2})-d({\bf q}_{1},{\bf q}_{2})-\Omega)^{2}+2{g}^{2}\rho_{0}}}. (84)

At order O(ϵ)O(\epsilon) we find that

itW0(𝐱1,𝐤1,𝐱2,𝐤2,t)=LW2(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle i\partial_{t}W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)=LW_{2}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
M(𝐱1,𝐤1,𝐱2,𝐤2)W0(𝐱1,𝐤1,𝐱2,𝐤2,t)W0(𝐱1,𝐤1,𝐱2,𝐤2,t)M(𝐱1,𝐤1,𝐱2,𝐤2)\displaystyle-M({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2})W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)-W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)M({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2})
+L1W1+L2W1,\displaystyle+L_{1}W_{1}+L_{2}W_{1}, (85)

where

LW2(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle LW_{2}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
=d3K1(2π)3d3K2(2π)3ei𝐗1𝐊1+i𝐗2𝐊2[A^(𝐤1𝐊1/2,𝐤2𝐊2/2)W^2(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2,t)\displaystyle=\int\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf X}_{1}\cdot{\bf K}_{1}+i{\bf X}_{2}\cdot{\bf K}_{2}}\left[\hat{A}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\hat{W}_{2}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2},t)\right.
W^2(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2,t)A^(𝐤1+𝐊1/2,𝐤2+𝐊2/2)],\displaystyle\left.-\hat{W}_{2}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2},t)\hat{A}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)\right]\,,
M(𝐱1,𝐤1,𝐱2,𝐤2)=i2[c𝐤^1𝐱1+c𝐤^2𝐱200c2𝐤^1𝐱1+c2𝐤^2𝐱2].\displaystyle M({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2})=\frac{i}{2}\begin{bmatrix}c\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}+c\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}&0\\ 0&\frac{c}{2}\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}+\frac{c}{2}\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}\end{bmatrix}. (86)

In order to obtain an equation satisfied by a±a_{\pm}, we multiply this equation on the left by 𝐯+T(𝐤1,𝐤2){\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2}) (𝐯T(𝐤1,𝐤2){\bf v}_{-}^{T}({\bf k}_{1},{\bf k}_{2})) and on the right by 𝐯+(𝐤1,𝐤2){\bf v}_{+}({\bf k}_{1},{\bf k}_{2}) (𝐯(𝐤1,𝐤2){\bf v}_{-}({\bf k}_{1},{\bf k}_{2})) and take the average. Additionally, we assume that 𝐯±TLW2𝐯±\langle{\bf v}_{\pm}^{T}LW_{2}{\bf v}_{\pm}\rangle is identically zero, which corresponds to W2W_{2} being statistically stationary with respect to the fast variables 𝐗1{\bf X}_{1} and 𝐗2{\bf X}_{2}. This relation closes the hierarchy of equations and leads to the kinetic equation

1cta±+f±(𝐤1,𝐤2)(𝐤^1𝐱1+𝐤^2𝐱2)a±+μ1±a±+μ2±a±\displaystyle\frac{1}{c}\partial_{t}a_{\pm}+f_{\pm}({\bf k}_{1},{\bf k}_{2})\left(\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}+\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}\right)a_{\pm}+\mu_{1\pm}a_{\pm}+\mu_{2\pm}a_{\pm}
=μ1±𝑑𝐤^A(𝐤^1,𝐤^,|𝐤1|)a±(|𝐤1|𝐤^,𝐤2)+μ2±𝑑𝐤^A(𝐤^2,𝐤^,|𝐤2|)a±(𝐤1,|𝐤2|𝐤^),\displaystyle=\mu_{1\pm}\int d{\hat{{\bf k}}}^{\prime}\,A({\hat{{\bf k}}}_{1},{\hat{{\bf k}}}^{\prime},|{\bf k}_{1}|)a_{\pm}(|{\bf k}_{1}|{\hat{{\bf k}}}^{\prime},{\bf k}_{2})+\mu_{2\pm}\int d{\hat{{\bf k}}}^{\prime}\,A({\hat{{\bf k}}}_{2},{\hat{{\bf k}}}^{\prime},|{\bf k}_{2}|)a_{\pm}({\bf k}_{1},|{\bf k}_{2}|{\hat{{\bf k}}}^{\prime})\,, (87)

where the scattering coefficients μi±\mu_{i\pm}, the scattering kernel AA, and the functions f±f_{\pm} are defined as

μ1±(𝐤1,𝐤2)\displaystyle\mu_{1\pm}({\bf k}_{1},{\bf k}_{2}) =g2ρ0π2K±,±(𝐤1,𝐤2,𝐤1,𝐤2)2c4|d(𝐤1,𝐤2)Ω+32(d(𝐤1,𝐤2)Ω)2+8g2ρ0||𝐤1|2d𝐤^(2π)3C^(|𝐤1|(𝐤^1𝐤^)),\displaystyle=\frac{g^{2}\rho_{0}\pi}{2}\frac{K_{\pm,\pm}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})^{2}}{\frac{c}{4}\left|d({\bf k}_{1},{\bf k}_{2})-\Omega+\frac{3}{2}\sqrt{(d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+8g^{2}\rho_{0}}\right|}|{\bf k}_{1}|^{2}\int\frac{d{\hat{{\bf k}}}^{\prime}}{(2\pi)^{3}}\,\hat{C}(|{\bf k}_{1}|({\hat{{\bf k}}}_{1}-{\hat{{\bf k}}}^{\prime}))\,, (88)
μ2±(𝐤1,𝐤2)\displaystyle\mu_{2\pm}({\bf k}_{1},{\bf k}_{2}) =g2ρ0π2K±,±(𝐤1,𝐤2,𝐤1,𝐤2)2c4|d(𝐤1,𝐤2)Ω+32(d(𝐤1,𝐤2)Ω)2+8g2ρ0||𝐤2|2d𝐤^(2π)3C^(|𝐤2|(𝐤^2𝐤^)),\displaystyle=\frac{g^{2}\rho_{0}\pi}{2}\frac{K_{\pm,\pm}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})^{2}}{\frac{c}{4}\left|d({\bf k}_{1},{\bf k}_{2})-\Omega+\frac{3}{2}\sqrt{(d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+8g^{2}\rho_{0}}\right|}|{\bf k}_{2}|^{2}\int\frac{d{\hat{{\bf k}}}^{\prime}}{(2\pi)^{3}}\,\hat{C}(|{\bf k}_{2}|({\hat{{\bf k}}}_{2}-{\hat{{\bf k}}}^{\prime}))\,, (89)
A(𝐤^,𝐤^,k)\displaystyle A({\hat{{\bf k}}},{\hat{{\bf k}}}^{\prime},k) =C^(k(𝐤^𝐤^))𝑑𝐤^C^(k(𝐤^𝐤^)),\displaystyle=\frac{\hat{C}(k({\hat{{\bf k}}}-{\hat{{\bf k}}}^{\prime}))}{\displaystyle\int d{\hat{{\bf k}}}^{\prime}\hat{C}(k({\hat{{\bf k}}}-{\hat{{\bf k}}}^{\prime}))}\,, (90)
f±(𝐤1,𝐤2)\displaystyle f_{\pm}({\bf k}_{1},{\bf k}_{2}) =(λ±(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+g2ρ0(λ±(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+2g2ρ0.\displaystyle=\frac{(\lambda_{\pm}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+{g}^{2}\rho_{0}}{(\lambda_{\pm}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+2{g}^{2}\rho_{0}}\ . (91)

Some details of the derivation of  (5.1) are included in Appendix C.

5.2. Diffusion approximation

We now consider the diffusion limit of the kinetic equation (5.1). The diffusion approximation (DA) to a kinetic equation of the form

1ctI\displaystyle\frac{1}{c}\partial_{t}I +f1(|𝐤1|,|𝐤2|)𝐤^1𝐱1I+f2(|𝐤1|,|𝐤2|)𝐤^2𝐱2I+μ1(|𝐤1|,|𝐤2|)I+μ2(|𝐤1|,|𝐤2|)I\displaystyle+f_{1}(|{\bf k}_{1}|,|{\bf k}_{2}|){\hat{{\bf k}}}_{1}\cdot\nabla_{{\bf x}_{1}}I+f_{2}(|{\bf k}_{1}|,|{\bf k}_{2}|){\hat{{\bf k}}}_{2}\cdot\nabla_{{\bf x}_{2}}I+\mu_{1}(|{\bf k}_{1}|,|{\bf k}_{2}|)I+\mu_{2}(|{\bf k}_{1}|,|{\bf k}_{2}|)I
=μ1(|𝐤1|,|𝐤2|)𝑑𝐤^A1(𝐤^1,𝐤^)I(|𝐤1|𝐤^,𝐤2)\displaystyle=\mu_{1}(|{\bf k}_{1}|,|{\bf k}_{2}|)\int d{\hat{{\bf k}}}^{\prime}\,A_{1}({\hat{{\bf k}}}_{1},{\hat{{\bf k}}}^{\prime})I(|{\bf k}_{1}|{\hat{{\bf k}}}^{\prime},{\bf k}_{2})
+μ2(|𝐤1|,|𝐤2|)𝑑𝐤^A2(𝐤^2,𝐤^)I(𝐤1,|𝐤2|𝐤^),\displaystyle+\mu_{2}(|{\bf k}_{1}|,|{\bf k}_{2}|)\int d{\hat{{\bf k}}}^{\prime}\,A_{2}({\hat{{\bf k}}}_{2},{\hat{{\bf k}}}^{\prime})I({\bf k}_{1},|{\bf k}_{2}|{\hat{{\bf k}}}^{\prime})\,, (92)

is obtained by expanding II into spherical harmonics as

I=116π2u+316π2𝐉1𝐤^1+316π2𝐉2𝐤^2+,\displaystyle I=\frac{1}{16\pi^{2}}u+\frac{3}{16\pi^{2}}{\bf J}_{1}\cdot{\hat{{\bf k}}}_{1}+\frac{3}{16\pi^{2}}{\bf J}_{2}\cdot{\hat{{\bf k}}}_{2}+\cdots\,, (93)

where

u(𝐱1,𝐱2,t)\displaystyle u({\bf x}_{1},{\bf x}_{2},t) =𝑑𝐤^1𝑑𝐤^2I(𝐱1,𝐤^1,𝐱2,𝐤^2,t),\displaystyle=\int{{d}}{\hat{{\bf k}}}_{1}{{d}}{\hat{{\bf k}}}_{2}\,I({\bf x}_{1},{\hat{{\bf k}}}_{1},{\bf x}_{2},{\hat{{\bf k}}}_{2},t)\,, (94)
𝐉1(𝐱1,𝐱2,t)\displaystyle{\bf J}_{1}({\bf x}_{1},{\bf x}_{2},t) =𝑑𝐤^1𝑑𝐤^2𝐤^1I(𝐱1,𝐤^1,𝐱2,𝐤^2,t),\displaystyle=\int{{d}}{\hat{{\bf k}}}_{1}{{d}}{\hat{{\bf k}}}_{2}\,{\hat{{\bf k}}}_{1}I({\bf x}_{1},{\hat{{\bf k}}}_{1},{\bf x}_{2},{\hat{{\bf k}}}_{2},t)\ , (95)
𝐉2(𝐱1,𝐱2,t)\displaystyle{\bf J}_{2}({\bf x}_{1},{\bf x}_{2},t) =𝑑𝐤^1𝑑𝐤^2𝐤^2I(𝐱1,𝐤^1,𝐱2,𝐤^2,t).\displaystyle=\int{{d}}{\hat{{\bf k}}}_{1}{{d}}{\hat{{\bf k}}}_{2}\,{\hat{{\bf k}}}_{2}I({\bf x}_{1},{\hat{{\bf k}}}_{1},{\bf x}_{2},{\hat{{\bf k}}}_{2},t)\ . (96)

Integrating (5.2) with respect to 𝐤^1{\hat{{\bf k}}}_{1} and 𝐤^2{\hat{{\bf k}}}_{2} we arrive at

1ctu+f1𝐱1𝐉1+f2𝐱2𝐉2=0.\displaystyle\frac{1}{c}\partial_{t}u+f_{1}\nabla_{{\bf x}_{1}}\cdot{\bf J}_{1}+f_{2}\nabla_{{\bf x}_{2}}\cdot{\bf J}_{2}=0. (97)

If instead we multiply by 𝐤^1{\hat{{\bf k}}}_{1} and integrate we obtain

1ct𝐉1+f1𝐱1σ1+f2𝐱2σ3+μ1(1g1)𝐉1=0,\displaystyle\frac{1}{c}\partial_{t}{\bf J}_{1}+f_{1}\nabla_{{\bf x}_{1}}\cdot\sigma_{1}+f_{2}\nabla_{{\bf x}_{2}}\cdot\sigma_{3}+\mu_{1}(1-g_{1}){\bf J}_{1}=0\,, (98)

where

g1\displaystyle g_{1} =𝑑𝐤^1𝐤^1𝐤^1A1(𝐤^1,𝐤^1),\displaystyle=\int{{d}}{\hat{{\bf k}}}_{1}\,{\hat{{\bf k}}}_{1}\cdot{\hat{{\bf k}}}_{1}^{\prime}A_{1}({\hat{{\bf k}}}_{1},{\hat{{\bf k}}}_{1}^{\prime})\ , (99)

and

σ1(𝐱1,𝐱2,t)\displaystyle\sigma_{1}({\bf x}_{1},{\bf x}_{2},t) =𝑑𝐤^1𝑑𝐤^2𝐤^1𝐤^1I(𝐱1,𝐤^1,𝐱2,𝐤^2,t),\displaystyle=\int{{d}}{\hat{{\bf k}}}_{1}{{d}}{\hat{{\bf k}}}_{2}\,{\hat{{\bf k}}}_{1}\otimes{\hat{{\bf k}}}_{1}I({\bf x}_{1},{\hat{{\bf k}}}_{1},{\bf x}_{2},{\hat{{\bf k}}}_{2},t)\,, (100)
σ3(𝐱1,𝐱2,t)\displaystyle\sigma_{3}({\bf x}_{1},{\bf x}_{2},t) =𝑑𝐤^1𝑑𝐤^2𝐤^1𝐤^2I(𝐱1,𝐤^1,𝐱2,𝐤^2,t).\displaystyle=\int{{d}}{\hat{{\bf k}}}_{1}{{d}}{\hat{{\bf k}}}_{2}\,{\hat{{\bf k}}}_{1}\otimes{\hat{{\bf k}}}_{2}I({\bf x}_{1},{\hat{{\bf k}}}_{1},{\bf x}_{2},{\hat{{\bf k}}}_{2},t)\ . (101)

Similarly, multiplying (5.2) by 𝐤^2{\hat{{\bf k}}}_{2} and carrying out the indicated integrals leads to

1ct𝐉2+f2𝐱2σ2+f2𝐱2σ3+μ2(1g2)𝐉2=0,\displaystyle\frac{1}{c}\partial_{t}{\bf J}_{2}+f_{2}\nabla_{{\bf x}_{2}}\cdot\sigma_{2}+f_{2}\nabla_{{\bf x}_{2}}\cdot\sigma_{3}+\mu_{2}(1-g_{2}){\bf J}_{2}=0\,, (102)

where

g2\displaystyle g_{2} =𝑑𝐤^2𝐤^2𝐤^2A2(𝐤^2,𝐤^2)\displaystyle=\int{{d}}{\hat{{\bf k}}}_{2}\,{\hat{{\bf k}}}_{2}\cdot{\hat{{\bf k}}}_{2}^{\prime}A_{2}({\hat{{\bf k}}}_{2},{\hat{{\bf k}}}_{2}^{\prime})\ (103)

and

σ2(𝐱1,𝐱2,t)\displaystyle\sigma_{2}({\bf x}_{1},{\bf x}_{2},t) =𝑑𝐤^2𝑑𝐤^2𝐤^1𝐤^2I(𝐱1,𝐤^1,𝐱2,𝐤^2,t).\displaystyle=\int{{d}}{\hat{{\bf k}}}_{2}{{d}}{\hat{{\bf k}}}_{2}\,{\hat{{\bf k}}}_{1}\otimes{\hat{{\bf k}}}_{2}I({\bf x}_{1},{\hat{{\bf k}}}_{1},{\bf x}_{2},{\hat{{\bf k}}}_{2},t)\ . (104)

Next we substitute (93) into (100), (101), and (104) and carry out the indicated integrations. We find that

𝐱1σ1\displaystyle\nabla_{{\bf x}_{1}}\cdot\sigma_{1} =13𝐱1u,\displaystyle=\frac{1}{3}\nabla_{{\bf x}_{1}}u\ , (105)
𝐱2σ2\displaystyle\nabla_{{\bf x}_{2}}\cdot\sigma_{2} =13𝐱2u,\displaystyle=\frac{1}{3}\nabla_{{\bf x}_{2}}u\ , (106)
𝐱1σ3\displaystyle\nabla_{{\bf x}_{1}}\cdot\sigma_{3} =𝐱2σ3=0.\displaystyle=\nabla_{{\bf x}_{2}}\cdot\sigma_{3}=0\ . (107)

Using the above results, (98) and (102) become

1ct𝐉1+μ1(1g1)𝐉1=f13𝐱1u,\displaystyle\frac{1}{c}\partial_{t}{\bf J}_{1}+\mu_{1}(1-g_{1}){\bf J}_{1}=-\frac{f_{1}}{3}\nabla_{{\bf x}_{1}}u\ , (108)
1ct𝐉2+μ2(1g2)𝐉2=f23𝐱2u.\displaystyle\frac{1}{c}\partial_{t}{\bf J}_{2}+\mu_{2}(1-g_{2}){\bf J}_{2}=-\frac{f_{2}}{3}\nabla_{{\bf x}_{2}}u\ . (109)

At long times (t1/[c(1g1,2)μ1,2]t\gg 1/[c(1-g_{1,2})\mu_{1,2}]), the first terms on the right-hand sides of (108) and (109) can be neglected. Substituting the resulting expressions for 𝐉1{\bf J}_{1} and 𝐉2{\bf J}_{2} into (97), we obtain the diffusion equation obeyed by uu:

tuD1Δ𝐱1uD2Δ𝐱2u=0.\displaystyle\partial_{t}u-D_{1}\Delta_{{\bf x}_{1}}u-D_{2}\Delta_{{\bf x}_{2}}u=0\ . (110)

Here the diffusion coefficients are defined by

Di=cfi23μi(1gi),i=1,2.\displaystyle D_{i}=\frac{cf_{i}^{2}}{3\mu_{i}(1-g_{i})}\ ,\quad i=1,2\ . (111)

In the case of white noise disorder, where the correlation function C(𝐱)=C0δ(𝐱)C({\bf x})=C_{0}\delta({\bf x}), with constant C0C_{0}, the phase functions A1,2=1/4πA_{1,2}={1}/{4\pi}, which corresponds to isotropic scattering.

The solution to (110) for an infinite medium is given by

u(𝐱1,𝐱2,t)=1(4πD1t)3/2(4πD2t)3/2d3x1d3x2exp[|𝐱1𝐱1|24D1t|𝐱2𝐱2|24D2t]u(𝐱1,𝐱2,0).\displaystyle u({\bf x}_{1},{\bf x}_{2},t)=\frac{1}{(4\pi D_{1}t)^{3/2}(4\pi D_{2}t)^{3/2}}\int d^{3}x_{1}^{\prime}d^{3}x_{2}^{\prime}\exp\left[-\frac{|{\bf x}_{1}-{\bf x}_{1}^{\prime}|^{2}}{4D_{1}t}-\frac{|{\bf x}_{2}-{\bf x}_{2}^{\prime}|^{2}}{4D_{2}t}\right]u({\bf x}_{1}^{\prime},{\bf x}_{2}^{\prime},0)\ . (112)

Making use of the above results, we see that each of the modes a±a_{\pm} satisfy (5.1) and thus their first angular moments, which are defined by

u±(𝐱1,k1,𝐱2,k2,t)=𝑑𝐤^1𝑑𝐤^2a±(𝐱1,k1𝐤^1,𝐱2,k2𝐤^2,t),\displaystyle u_{\pm}({\bf x}_{1},k_{1},{\bf x}_{2},k_{2},t)=\int d{\hat{{\bf k}}}_{1}d{\hat{{\bf k}}}_{2}a_{\pm}({\bf x}_{1},k_{1}{\hat{{\bf k}}}_{1},{\bf x}_{2},k_{2}{\hat{{\bf k}}}_{2},t)\,, (113)

satisfy the equations

tu±D1,±Δ𝐱1u±D2,±Δ𝐱2u±=0,\displaystyle\partial_{t}u_{\pm}-D_{1,\pm}\Delta_{{\bf x}_{1}}u_{\pm}-D_{2,\pm}\Delta_{{\bf x}_{2}}u_{\pm}=0\,, (114)

where

Di,±=cf±23μi±.\displaystyle D_{i,\pm}=\frac{cf_{\pm}^{2}}{3\mu_{i\pm}}\ . (115)

We assume that initially there are two photons present in the field localized around the points 𝐫1{\bf r}_{1} and 𝐫2{\bf r}_{2} in a volume of linear size lsl_{s}. The corresponding initial conditions are given by

ψ2(𝐱1,𝐱2,0)\displaystyle\psi_{2}({\bf x}_{1},{\bf x}_{2},0) =1ls3[e|𝐱1𝐫1|2/2ls2e|𝐱2𝐫2|2/2ls2+e|𝐱1𝐫2|2/2ls2e|𝐱2𝐫1|2/2ls2],\displaystyle=\frac{1}{l_{s}^{3}}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/2l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/2l_{s}^{2}}\right]\ , (116)
ψ1(𝐱1,𝐱2,0)\displaystyle\psi_{1}({\bf x}_{1},{\bf x}_{2},0) =0.\displaystyle=0\ . (117)

Note that ψ2\psi_{2} corresponds to an entangled two-photon state. These initial conditions imply initial conditions for the Wigner transform W0W_{0} from (5.1), which in turn imply initial conditions for the modes a±a_{\pm} from (80):

a(𝐱1,𝐤1,𝐱2,𝐤2,0)\displaystyle a_{-}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)
=1π3γ(|𝐤1|,|𝐤2|)[e|𝐱1𝐫1|2/ls2e|𝐱2𝐫2|2/ls2+e|𝐱1𝐫2|2/ls2e|𝐱2𝐫1|2/ls2\displaystyle=\frac{1}{\pi^{3}}{\gamma_{-}(|{\bf k}_{1}|,|{\bf k}_{2}|)}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/l_{s}^{2}}\right.
+e|𝐱1(𝐫1+𝐫2)/2|2/ls2e|𝐱2(𝐫1+𝐫2)/2|2/ls2ei𝐤1(𝐫1𝐫2)i𝐤2(𝐫2𝐫1)\displaystyle+e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-i{\bf k}_{1}\cdot({\bf r}_{1}-{\bf r}_{2})-i{\bf k}_{2}\cdot({\bf r}_{2}-{\bf r}_{1})}
+e|𝐱1(𝐫1+𝐫2)/2|2/ls2e|𝐱2(𝐫1+𝐫2)/2|2/ls2ei𝐤1(𝐫2𝐫1)i𝐤2(𝐫1𝐫2)],\displaystyle\left.+e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-i{\bf k}_{1}\cdot({\bf r}_{2}-{\bf r}_{1})-i{\bf k}_{2}\cdot({\bf r}_{1}-{\bf r}_{2})}\right]\,, (118)
a+(𝐱1,𝐤1,𝐱2,𝐤2,0)\displaystyle a_{+}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)
=1π3γ+(|𝐤1|,|𝐤2|)[e|𝐱1𝐫1|2/ls2e|𝐱2𝐫2|2/ls2+e|𝐱1𝐫2|2/ls2e|𝐱2𝐫1|2/ls2\displaystyle=\frac{1}{\pi^{3}}\gamma_{+}(|{\bf k}_{1}|,|{\bf k}_{2}|)\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/l_{s}^{2}}\right.
+e|𝐱1(𝐫1+𝐫2)/2|2/ls2e|𝐱2(𝐫1+𝐫2)/2|2/ls2ei𝐤1(𝐫1𝐫2)i𝐤2(𝐫2𝐫1)\displaystyle+e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-i{\bf k}_{1}\cdot({\bf r}_{1}-{\bf r}_{2})-i{\bf k}_{2}\cdot({\bf r}_{2}-{\bf r}_{1})}
+e|𝐱1(𝐫1+𝐫2)/2|2/ls2e|𝐱2(𝐫1+𝐫2)/2|2/ls2ei𝐤1(𝐫2𝐫1)i𝐤2(𝐫1𝐫2)],\displaystyle\left.+e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-i{\bf k}_{1}\cdot({\bf r}_{2}-{\bf r}_{1})-i{\bf k}_{2}\cdot({\bf r}_{1}-{\bf r}_{2})}\right]\,, (119)

where

γ±(k1,k2)=(λ±(k1,k2)d(k1,k2)Ω)2+2g2ρ0(λ±(k1,k2)d(k1,k2)Ω)2(λ(k1,k2)d(k1,k2)Ω)2els2k12ls2k22.\displaystyle\gamma_{\pm}(k_{1},k_{2})=\frac{(\lambda_{\pm}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}+2g^{2}\rho_{0}}{(\lambda_{\pm}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}-(\lambda_{\mp}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}\ . (120)

The initial conditions for the first angular moments u±u_{\pm} are then found using  (113):

u(𝐱1,k1,𝐱2,k2,0)\displaystyle u_{-}({\bf x}_{1},k_{1},{\bf x}_{2},k_{2},0)
=16γ(k1,k2)π[e|𝐱1𝐫1|2/ls2e|𝐱2𝐫2|2/ls2+e|𝐱1𝐫2|2/ls2e|𝐱2𝐫1|2/ls2\displaystyle=\frac{16\gamma_{-}(k_{1},k_{2})}{\pi}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/l_{s}^{2}}\right.
+2e|𝐱1(𝐫1+𝐫2)/2|2/ls2e|𝐱2(𝐫1+𝐫2)/2|2/ls2sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|].\displaystyle+\left.2e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ . (121)
u+(𝐱1,k1,𝐱2,k2,0)\displaystyle u_{+}({\bf x}_{1},k_{1},{\bf x}_{2},k_{2},0)
=16γ+(k1,k2)π[e|𝐱1𝐫1|2/ls2e|𝐱2𝐫2|2/ls2+e|𝐱1𝐫2|2/ls2e|𝐱2𝐫1|2/ls2\displaystyle=\frac{16\gamma_{+}(k_{1},k_{2})}{\pi}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/l_{s}^{2}}\right.
+2e|𝐱1(𝐫1+𝐫2)/2|2/ls2e|𝐱2(𝐫1+𝐫2)/2|2/ls2sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle+\left.2e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/l_{s}^{2}}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ , (122)

The above initial conditions are then inserted into  (112) and the Gaussian integrals carried out. This results in the following formulas for the angular moments u±u_{\pm}:

u(𝐱1,k1,𝐱2,k2,t)\displaystyle u_{-}({\bf x}_{1},k_{1},{\bf x}_{2},k_{2},t)
=16γ(k1,k2)π(ls2ls2+4tD1,)3/2(ls2ls2+4tD2,)3/2\displaystyle=\frac{16\gamma_{-}(k_{1},k_{2})}{\pi}\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1,-}}\right)^{3/2}\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2,-}}\right)^{3/2}
×[e|𝐱1𝐫1|2/(ls2+4tD1,)e|𝐱2𝐫2|2/(ls2+4tD2,)+e|𝐱1𝐫2|2/(ls2+4tD1,)e|𝐱2𝐫1|2/(ls2+4tD2,)\displaystyle\times\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2,-})}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2,-})}\right. (123)
+2e|𝐱1(𝐫1+𝐫2)/2|2/(ls2+4tD1,)e|𝐱2(𝐫1+𝐫2)/2|2/(ls2+4tD2,)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\left.+2e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{2,-})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ , (124)
u+(𝐱1,k1,𝐱2,k2,t)\displaystyle u_{+}({\bf x}_{1},k_{1},{\bf x}_{2},k_{2},t)
=16γ+(k1,k2)π(ls2ls2+4tD1,+)3/2(ls2ls2+4tD2,+)3/2\displaystyle=\frac{16\gamma_{+}(k_{1},k_{2})}{\pi}\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1,+}}\right)^{3/2}\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2,+}}\right)^{3/2}
×[e|𝐱1𝐫1|2/(ls2+4tD1,+)e|𝐱2𝐫2|2/(ls2+4tD2,+)+e|𝐱1𝐫2|2/(ls2+4tD1,+)e|𝐱2𝐫1|2/(ls2+4tD2,+)\displaystyle\times\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1,+})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2,+})}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1,+})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2,+})}\right. (125)
+2e|𝐱1(𝐫1+𝐫2)/2|2/(ls2+4tD1,+)e|𝐱2(𝐫1+𝐫2)/2|2/(ls2+4tD2,+)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|].\displaystyle\left.+2e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{1,+})}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{2,+})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]. (126)

Finally, combining the above with  (64), (80) and (113), we see that the average probability densities are given by

ρ0|ψ1(𝐱1,𝐱2,t)|2\displaystyle\rho_{0}\langle|\psi_{1}({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle
=32g2ρ0πi=±00𝑑k1𝑑k2ηi(k1,k2)(ls2ls2+4tD1,i~)3/2(ls2ls2+4tD2,i~)3/2\displaystyle=\frac{32{g}^{2}\rho_{0}}{\pi}\sum_{i=\pm}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}\ \eta_{i}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1,\tilde{i}}}\right)^{3/2}\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2,\tilde{i}}}\right)^{3/2}
×[e|𝐱1𝐫1|2/(ls2+4tD1,i~)e|𝐱2𝐫2|2/(ls2+4tD2,i~)+e|𝐱1𝐫2|2/(ls2+4tD1,)e|𝐱2𝐫1|2/(ls2+4tD2,)\displaystyle\times\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1,\tilde{i}})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2,\tilde{i}})}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2,-})}\right.
+2e|𝐱1(𝐫1+𝐫2)/2|2/(ls2+4tD1,)e|𝐱2(𝐫1+𝐫2)/2|2/(ls2+4tD2,)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\left.+2e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{2,-})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\,, (127)
|ψ2(𝐱1,𝐱2,t)|2\displaystyle\langle|\psi_{2}({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle
=16πi=±00𝑑k1𝑑k2ζi(k1,k2)(ls2ls2+4tD1,)3/2(ls2ls2+4tD2,)3/2\displaystyle=\frac{16}{\pi}\sum_{i=\pm}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}\ \zeta_{i}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1,-}}\right)^{3/2}\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2,-}}\right)^{3/2}
×[e|𝐱1𝐫1|2/(ls2+4tD1,)e|𝐱2𝐫2|2/(ls2+4tD2,)+e|𝐱1𝐫2|2/(ls2+4tD1,)e|𝐱2𝐫1|2/(ls2+4tD2,)\displaystyle\times\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2,-})}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2,-})}\right.
+2e|𝐱1(𝐫1+𝐫2)/2|2/(ls2+4tD1,)e|𝐱2(𝐫1+𝐫2)/2|2/(ls2+4tD2,)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\left.+2e^{-|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{1,-})}e^{-|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}/(l_{s}^{2}+4tD_{2,-})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ ,

where we have introduced the notation i~=i\tilde{i}=-i for i=±i=\pm, and the coefficients η±\eta_{\pm} and ζ±\zeta_{\pm} are defined by

η±(k1,k2)\displaystyle\eta_{\pm}(k_{1},k_{2}) =k12k22els2k12ls2k22(λ±(k1,k2)d(k1,k2)Ω)2(λ(k1,k2)d(k1,k2)Ω)2,\displaystyle=\frac{k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}}{(\lambda_{\pm}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}-(\lambda_{\mp}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}}\ , (128)
ζ±(k1,k2)\displaystyle\zeta_{\pm}(k_{1},k_{2}) =k12k22els2k12ls2k22(λ+(k1,k2)d(k1,k2)Ω)2(λ+(k1,k2)d(k1,k2)Ω)2(λ(k1,k2)d(k1,k2)Ω)2.\displaystyle=\frac{k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}(\lambda_{+}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}}{(\lambda_{+}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}-(\lambda_{-}(k_{1},k_{2})-d(k_{1},k_{2})-\Omega)^{2}}\ . (129)

It is readily seen that long times, |ψ1|2\langle|\psi_{1}|^{2}\rangle and |ψ2|2\langle|\psi_{2}|^{2}\rangle decay algebraically according to the formulas

ρ0|ψ1|2\displaystyle\rho_{0}\langle|\psi_{1}|^{2}\rangle =C3t3C4(𝐱1,𝐱2,𝐫1,𝐫2)t4,\displaystyle=\frac{C_{3}}{t^{3}}-\frac{C_{4}({\bf x}_{1},{\bf x}_{2},{\bf r}_{1},{\bf r}_{2})}{t^{4}}\ , (130)
|ψ2|2\displaystyle\langle|\psi_{2}|^{2}\rangle =C1t3C2(𝐱1,𝐱2,𝐫1,𝐫2)t4,\displaystyle=\frac{C_{1}}{t^{3}}-\frac{C_{2}({\bf x}_{1},{\bf x}_{2},{\bf r}_{1},{\bf r}_{2})}{t^{4}}\ , (131)

where the constants CiC_{i} for i=1,2,3,4i=1,2,3,4 are given by

C1=i=±64π00\displaystyle C_{1}=\sum_{i=\pm}\frac{64}{\pi}\int_{0}^{\infty}\int_{0}^{\infty} dk1dk2ζi(k1,k2)(ls24D1,i~)3/2(ls24D2,i~)3/2\displaystyle dk_{1}dk_{2}\ \zeta_{i}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{4D_{1,\tilde{i}}}\right)^{3/2}\left(\frac{l_{s}^{2}}{4D_{2,\tilde{i}}}\right)^{3/2}
×[1+sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\times\left[1+\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ , (132)
C2\displaystyle C_{2} =i=±16π00𝑑k1𝑑k2ζi(k1,k2)(ls24D1,i~)3/2(ls24D2,i~)3/2\displaystyle=\sum_{i=\pm}\frac{16}{\pi}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}\ \zeta_{i}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{4D_{1,\tilde{i}}}\right)^{3/2}\left(\frac{l_{s}^{2}}{4D_{2,\tilde{i}}}\right)^{3/2}
×[|𝐱1𝐫1|24D1,i+|𝐱2𝐫2|24D2,i+|𝐱1𝐫2|24D1,i+|𝐱2𝐫1|24D2,i\displaystyle\times\left[\frac{|{\bf x}_{1}-{\bf r}_{1}|^{2}}{4D_{1,i}}+\frac{|{\bf x}_{2}-{\bf r}_{2}|^{2}}{4D_{2,i}}+\frac{|{\bf x}_{1}-{\bf r}_{2}|^{2}}{4D_{1,i}}+\frac{|{\bf x}_{2}-{\bf r}_{1}|^{2}}{4D_{2,i}}\right. (133)
+2(|𝐱1(𝐫1+𝐫2)/2|24D1,i+|𝐱2(𝐫1+𝐫2)/2|24D2,i)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\left.+2\left(\frac{|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}}{4D_{1,i}}+\frac{|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}}{4D_{2,i}}\right)\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ ,
C3=i=±32g2ρ0π00\displaystyle C_{3}=\sum_{i=\pm}\frac{32{g}^{2}\rho_{0}}{\pi}\int_{0}^{\infty}\int_{0}^{\infty} dk1dk2ηi(k1,k2)(ls24D1,i~)3/2(ls24D2,i~)3/2\displaystyle dk_{1}dk_{2}\ \eta_{i}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{4D_{1,\tilde{i}}}\right)^{3/2}\left(\frac{l_{s}^{2}}{4D_{2,\tilde{i}}}\right)^{3/2}
×[2+2sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\times\left[2+2\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ , (134)
C4\displaystyle C_{4} =i=±32g2ρ0π00𝑑k1𝑑k2k12ηi(k1,k2)(ls24D1,i)3/2(ls24D2,i)3/2\displaystyle=\sum_{i=\pm}\frac{32{g}^{2}\rho_{0}}{\pi}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}k_{1}^{2}\ \eta_{i}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{4D_{1,i}}\right)^{3/2}\left(\frac{l_{s}^{2}}{4D_{2,i}}\right)^{3/2}
×[|𝐱1𝐫1|24D1,i+|𝐱2𝐫2|24D2,i+|𝐱1𝐫2|24D1,i+|𝐱2𝐫1|24D2,i\displaystyle\times\left[\frac{|{\bf x}_{1}-{\bf r}_{1}|^{2}}{4D_{1,i}}+\frac{|{\bf x}_{2}-{\bf r}_{2}|^{2}}{4D_{2,i}}+\frac{|{\bf x}_{1}-{\bf r}_{2}|^{2}}{4D_{1,i}}+\frac{|{\bf x}_{2}-{\bf r}_{1}|^{2}}{4D_{2,i}}\right.
+2(|𝐱1(𝐫1+𝐫2)/2|24D1,i+|𝐱2(𝐫1+𝐫2)/2|24D2,i)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|].\displaystyle\left.+2\left(\frac{|{\bf x}_{1}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}}{4D_{1,i}}+\frac{|{\bf x}_{2}-({\bf r}_{1}+{\bf r}_{2})/2|^{2}}{4D_{2,i}}\right)\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\ . (135)

To illustrate the above results, we consider the case of isotropic scattering and set the dimensionless quantities Ω/ρ0g=c/lsρ0g=1{\Omega}/{\sqrt{\rho_{0}}{g}}={c}/{l_{s}\sqrt{\rho_{0}}{g}}=1. In addition, we choose 𝐱1=(ls,0,0){\bf x}_{1}=(l_{s},0,0), 𝐱2=(ls,0,0){\bf x}_{2}=(-l_{s},0,0), 𝐫1=(0,0,ls){\bf r}_{1}=(0,0,l_{s}) and 𝐫2=(0,0,ls){\bf r}_{2}=(0,0,-l_{s}), so that the distances from the points of excitation (𝐫1{\bf r}_{1} and 𝐫2{\bf r}_{2}) to the points of detection are equal to lsl_{s}. In Figure 2 we plot the time dependence of the probability densities |ψ1|2|\langle\psi_{1}\rangle|^{2} and |ψ2|2|\langle\psi_{2}\rangle|^{2}. We note that |ψ2|2|\psi_{2}|^{2} is monotonically decreasing while |ψ1|2|\psi_{1}|^{2} has a peak near Ωt=1\Omega t=1. A comparison of these results with the asymptotic formulas (130) and (131) is shown in Figures 3 and 4 . There is good agreement at long times.

Refer to caption
Figure 2. One- and two-photon probability densities for stimulated emission in a random medium.
Refer to caption
Figure 3. Comparison of diffusion approximation and long-time asymptote for |ψ1|2\langle|\psi_{1}|^{2}\rangle.
Refer to caption
Figure 4. Comparison of diffusion approximation and long-time asymptote for |ψ2|2\langle|\psi_{2}|^{2}\rangle.

6. Kinetic Equations for Two-Photon Light

In this section, we consider the general problem of two photons interacting with a random medium. That is, we will study the the time evolution of the amplitudes a(𝐱1,𝐱2,t)a({\bf x}_{1},{\bf x}_{2},t), ψ1(𝐱1,𝐱2,t)\psi_{1}({\bf x}_{1},{\bf x}_{2},t) and ψ2(𝐱1,𝐱2,t)\psi_{2}({\bf x}_{1},{\bf x}_{2},t) and derive the related kinetic equations. We begin with the system (17), where we have canceled overall factors of ρ\rho:

itψ2(𝐱1,𝐱2,t)=c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)=c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+g2(ρ(𝐱1)ψ1(𝐱1,𝐱2,t)+ρ(𝐱2)ψ1(𝐱2,𝐱1,t)),\displaystyle+\frac{g}{2}(\rho({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)+\rho({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t))\ ,
itψ1(𝐱1,𝐱2,t)=2gψ2(𝐱1,𝐱2,t)+[c(Δ𝐱2)1/2+Ω]ψ1(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)=2{g}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+\left[c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\right]\psi_{1}({\bf x}_{1},{\bf x}_{2},t)
2gρ(𝐱2)a(𝐱1,𝐱2,t),\displaystyle-2{g}\rho({\bf x}_{2})a({\bf x}_{1},{\bf x}_{2},t)\ , (136)
ita(𝐱1,𝐱2,t)=g2(ψ1(𝐱2,𝐱1,t)ψ1(𝐱1,𝐱2,t))+2Ωa(𝐱1,𝐱2,t).\displaystyle i\partial_{t}a({\bf x}_{1},{\bf x}_{2},t)=\frac{g}{2}(\psi_{1}({\bf x}_{2},{\bf x}_{1},t)-\psi_{1}({\bf x}_{1},{\bf x}_{2},t))+2\Omega a({\bf x}_{1},{\bf x}_{2},t)\ .

Here the number density ρ\rho is a random field of the form (54). Eq. (6) can now be rewritten as

it𝚿=A(𝐱1,𝐱2)𝚿+gρ0η(𝐱1)K1𝚿+gρ0η(𝐱2)K2𝚿,\displaystyle i\partial_{t}{\bf\Psi}=A({\bf x}_{1},{\bf x}_{2}){\bf\Psi}+{g}\sqrt{\rho_{0}}\eta({\bf x}_{1})K_{1}{\bf\Psi}+{g}\sqrt{\rho_{0}}\eta({\bf x}_{2})K_{2}{\bf\Psi}\,, (137)

where 𝚿{\bf\Psi} is defined by (35) and

A(𝐱1,𝐱2)\displaystyle A({\bf x}_{1},{\bf x}_{2}) =[c(Δ𝐱1)1/2+c(Δ𝐱2)1/2gρ0gρ00gρ0c(Δ𝐱2)1/2+Ω0gρ0gρ00c(Δ𝐱1)1/2+Ωgρ00gρ0gρ02Ω],\displaystyle=\begin{bmatrix}c(-\Delta_{{\bf x}_{1}})^{1/2}+c(-\Delta_{{\bf x}_{2}})^{1/2}&{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&0\\ {g}\sqrt{\rho_{0}}&c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega&0&-{g}\sqrt{\rho_{0}}\\ {g}\sqrt{\rho_{0}}&0&c(-\Delta_{{\bf x}_{1}})^{1/2}+\Omega&{g}\sqrt{\rho_{0}}\\ 0&-{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&2\Omega\end{bmatrix}\,, (138)
K1\displaystyle K_{1} =[0100000000010000],K2=[0010000100000000].\displaystyle=\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix}\,,\quad K_{2}=\begin{bmatrix}0&0&1&0\\ 0&0&0&-1\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}. (139)

As before. to derive a kinetic equation in the high-frequency limit, we rescale t,𝐱1,𝐱2t,{\bf x}_{1},{\bf x}_{2} according to tt/ϵt\to t/\epsilon, 𝐱1𝐱1/ϵ{\bf x}_{1}\to{\bf x}_{1}/\epsilon and 𝐱2𝐱2/ϵ{\bf x}_{2}\to{\bf x}_{2}/\epsilon. Additionally, we assume that the randomness is sufficiently weak so that the correlations of η\eta are O(ϵ)O(\epsilon). Eq. (137) thus becomes

iϵt𝚿ϵ=Aϵ(𝐱1,𝐱2)𝚿ϵ+ϵgρ0η(𝐱1/ϵ)K1𝚿ϵ+ϵgρ0η(𝐱2/ϵ)K2𝚿ϵ,\displaystyle i\epsilon\partial_{t}{\bf\Psi}_{\epsilon}=A_{\epsilon}({\bf x}_{1},{\bf x}_{2}){\bf\Psi}_{\epsilon}+\sqrt{\epsilon}{g}\sqrt{\rho_{0}}\eta({\bf x}_{1}/\epsilon)K_{1}{\bf\Psi}_{\epsilon}+\sqrt{\epsilon}{g}\sqrt{\rho_{0}}\eta({\bf x}_{2}/\epsilon)K_{2}{\bf\Psi}_{\epsilon}\,, (140)

where

Aϵ(𝐱1,𝐱2)=[cϵ(Δ𝐱1)1/2+cϵ(Δ𝐱2)1/2gρ0gρ00gρ0cϵ(Δ𝐱2)1/2+Ω0gρ0gρ00cϵ(Δ𝐱1)1/2+Ωgρ00gρ0gρ02Ω].\displaystyle A_{\epsilon}({\bf x}_{1},{\bf x}_{2})=\begin{bmatrix}c\epsilon(-\Delta_{{\bf x}_{1}})^{1/2}+c\epsilon(-\Delta_{{\bf x}_{2}})^{1/2}&{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&0\\ {g}\sqrt{\rho_{0}}&c\epsilon(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega&0&-{g}\sqrt{\rho_{0}}\\ {g}\sqrt{\rho_{0}}&0&c\epsilon(-\Delta_{{\bf x}_{1}})^{1/2}+\Omega&{g}\sqrt{\rho_{0}}\\ 0&-{g}\sqrt{\rho_{0}}&{g}\sqrt{\rho_{0}}&2\Omega\end{bmatrix}. (141)

To proceed further, we introduce the 4×44\times 4 matrix Wigner transform WϵW_{\epsilon} which is defined by (5.1). The diagonal elements of WϵW_{\epsilon} are related to the probability densities by

2|ψ2ϵ(𝐱1,𝐱2,t)|2=d3k1d3k2(Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t))11,\displaystyle 2|\psi_{2\epsilon}({\bf x}_{1},{\bf x}_{2},t)|^{2}=\int d^{3}k_{1}d^{3}k_{2}(W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t))_{11}\ , (142)
ρ02|ψ1ϵ(𝐱1,𝐱2,t)|2=d3k1d3k2(Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t))22,\displaystyle\frac{\rho_{0}}{2}|\psi_{1\epsilon}({\bf x}_{1},{\bf x}_{2},t)|^{2}=\int d^{3}k_{1}d^{3}k_{2}(W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t))_{22}\,, (143)
ρ02|aϵ(𝐱1,𝐱2,t)|2=d3k1d3k2(Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t))44,\displaystyle\rho_{0}^{2}|a_{\epsilon}({\bf x}_{1},{\bf x}_{2},t)|^{2}=\int d^{3}k_{1}d^{3}k_{2}(W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t))_{44}\,, (144)

while the off diagonal elements of WϵW_{\epsilon} are related to correlations between the amplitudes. It can be seen by direct calculation that the Wigner transform satisfies the Liouville equation

iϵtWϵ(𝐱1,𝐤1,𝐱2,𝐤2,t)\displaystyle i\epsilon\partial_{t}W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)
=d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2A^(𝐤1ϵ𝐤1/2,𝐤2ϵ𝐤2/2)W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2,t)\displaystyle=\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}\hat{A}({\bf k}_{1}-\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}-\epsilon{\bf k}_{2}^{\prime}/2)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2},t)
d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2,t)A^(𝐤1+ϵ𝐤1/2,𝐤2+ϵ𝐤2/2)\displaystyle-\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2},t)\hat{A}({\bf k}_{1}+\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}+\epsilon{\bf k}_{2}^{\prime}/2)
+ϵgρ0d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)[K1Wϵ(𝐱1,𝐤1+𝐪/2,𝐱2,𝐤2,t)Wϵ(𝐱1,𝐤1𝐪/2,𝐱2,𝐤2,t)K1T]\displaystyle+\sqrt{\epsilon}{g}\sqrt{\rho_{0}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\,\hat{\eta}({\bf q})\left[K_{1}W_{\epsilon}({\bf x}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)-W_{\epsilon}({\bf x}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)K_{1}^{T}\right]
+ϵgρ0d3q(2π)3ei𝐪𝐱2/ϵη^(𝐪)[K2Wϵ(𝐱1,𝐤1,𝐱2,𝐤2+𝐪/2,t)Wϵ(𝐱1,𝐤1,𝐱2,𝐤2𝐪/2,t)K2T],\displaystyle+\sqrt{\epsilon}{g}\sqrt{\rho_{0}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{2}/\epsilon}\,\hat{\eta}({\bf q})\left[K_{2}W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2}+{\bf q}/2,t)-W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2}-{\bf q}/2,t)K_{2}^{T}\right]\ , (145)

where A^\hat{A} is given by (39), and the Fourier transform Wϵ^\hat{W_{\epsilon}} is defined by

W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2,t)=d3x1d3x2ei𝐱1𝐤1i𝐱2𝐤2Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t).\displaystyle\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2},t)=\int d^{3}x_{1}d^{3}x_{2}e^{-i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}-i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t). (146)

Once again we study the behavior of WϵW_{\epsilon} in the high-frequency limit ϵ0\epsilon\to 0 and introduce a multiscale expansion of the Wigner transform of the form

Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t) =W0(𝐱1,𝐤1,𝐱2,𝐤2,t)+ϵW1(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle=W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)+\sqrt{\epsilon}W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
+ϵW2(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)+,\displaystyle+\epsilon W_{2}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)+\cdots\,, (147)

where 𝐗1=𝐱1/ϵ{\bf X}_{1}={\bf x}_{1}/\epsilon and 𝐗2=𝐱2/ϵ{\bf X}_{2}={\bf x}_{2}/\epsilon are fast variables and W0W_{0} is both deterministic and independent of the fast variables. We will treat the slow and fast variables 𝐱1{\bf x}_{1} and 𝐗1{\bf X}_{1} (respectively 𝐱2{\bf x}_{2} and 𝐗2{\bf X}_{2}) as independent and make the replacement (71). Hence (6) becomes

iϵtWϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle i\epsilon\partial_{t}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
=d3k1(2π)3d3k2(2π)3d3K1(2π)3d3K2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2+i𝐗1𝐊1+i𝐗2𝐊2\displaystyle=\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}+i{\bf X}_{1}\cdot{\bf K}_{1}+i{\bf X}_{2}\cdot{\bf K}_{2}}
×[A^(𝐤1𝐊1/2ϵ𝐤1/2,𝐤2𝐊2/2ϵ𝐤2/2)W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2,t)\displaystyle\times\left[\hat{A}({\bf k}_{1}-{\bf K}_{1}/2-\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}-{\bf K}_{2}/2-\epsilon{\bf k}_{2}^{\prime}/2)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2},t)\right.
W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2,t)A^(𝐤1+𝐊2/2+ϵ𝐤1/2,𝐤2+𝐊2/2+ϵ𝐤2/2)]\displaystyle-\left.\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2},t)\hat{A}({\bf k}_{1}+{\bf K}_{2}/2+\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}+{\bf K}_{2}/2+\epsilon{\bf k}_{2}^{\prime}/2)\right]
+ϵgρ0d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)[K1Wϵ(𝐱1,𝐗1,𝐤1+𝐪/2,𝐱2,𝐗2,𝐤2,t)\displaystyle+\sqrt{\epsilon}{g}\sqrt{\rho_{0}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\,\hat{\eta}({\bf q})\left[K_{1}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)\right.
Wϵ(𝐱1,𝐗1,𝐤1𝐪/2,𝐱2,𝐗2,𝐤2,t)K1T]\displaystyle-W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)K_{1}^{T}]
+ϵgρ0d3q(2π)3ei𝐪𝐱2/ϵη^(𝐪)[K2Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2+𝐪/2,t)\displaystyle+\sqrt{\epsilon}{g}\sqrt{\rho_{0}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{2}/\epsilon}\,\hat{\eta}({\bf q})\left[K_{2}W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}+{\bf q}/2,t)\right.
Wϵ(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2𝐪/2,t)K2T],\displaystyle-W_{\epsilon}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}-{\bf q}/2,t)K_{2}^{T}]\ , (148)

where the Fourier transform W^ϵ(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2}) is defined by (5.1). Next we substitute (6) into (5.1) and collect terms at each order of ϵ\sqrt{\epsilon}. At order O(1)O(1) we have

A^(𝐤1,𝐤2)W0(𝐱1,𝐤1,𝐱2,𝐤2)W0(𝐱1,𝐤1,𝐱1,𝐤2)A^(𝐤1,𝐤2)=0.\displaystyle\hat{A}({\bf k}_{1},{\bf k}_{2})W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2})-W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{1},{\bf k}_{2})\hat{A}({\bf k}_{1},{\bf k}_{2})=0. (149)

Since A^\hat{A} is symmetric it can be diagonalized. We then define {𝐯i(𝐤1,𝐤2),λi(𝐤1,𝐤2)}\{{\bf v}_{i}({\bf k}_{1},{\bf k}_{2}),\lambda_{i}({\bf k}_{1},{\bf k}_{2})\}, i=1,2,3,4i=1,2,3,4 be the eigenvector-eigenvalue pairs given by (4) and (4). It follows from (149) that W0W_{0} is also diagonal in this basis and can be expanded as

W0(𝐱1,𝐤1,𝐱2,𝐤2,t)=i=14ai(𝐱1,𝐤1,𝐱2,𝐤2,t)𝐯i(𝐤1,𝐤2)𝐯iT(𝐤1,𝐤2).\displaystyle W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)=\sum_{i=1}^{4}a_{i}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t){\bf v}_{i}({\bf k}_{1},{\bf k}_{2}){\bf v}_{i}^{T}({\bf k}_{1},{\bf k}_{2}). (150)

At order O(ϵ)O(\sqrt{\epsilon}) we find that

A^(𝐤1𝐊1/2,𝐤2𝐊2/2)W^1(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)\displaystyle\hat{A}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\hat{W}_{1}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2})
W^1(𝐤1,𝐊1,𝐤1,𝐤2,𝐊2,𝐤2)A^(𝐤1+𝐊2/2,𝐤2+𝐊2/2)\displaystyle-\hat{W}_{1}({\bf k}_{1}^{\prime},{\bf K}_{1},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf K}_{2},{\bf k}_{2})\hat{A}({\bf k}_{1}+{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2)
+gρ0(2π)3η^(𝐊1)δ(𝐊2)[K1W0(𝐱1,𝐤1+𝐊1/2,𝐱2,𝐤2+𝐊2)\displaystyle+{g}\sqrt{\rho_{0}}(2\pi)^{3}\hat{\eta}({\bf K}_{1})\delta({\bf K}_{2})\left[K_{1}W_{0}({\bf x}_{1},{\bf k}_{1}+{\bf K}_{1}/2,{\bf x}_{2},{\bf k}_{2}+{\bf K}_{2})\right.
W0(𝐱1,𝐤1𝐊1/2,𝐱2,𝐤2𝐊2)K1T]\displaystyle\left.-W_{0}({\bf x}_{1},{\bf k}_{1}-{\bf K}_{1}/2,{\bf x}_{2},{\bf k}_{2}-{\bf K}_{2})K_{1}^{T}\right]
+gρ0(2π)3η^(𝐊2)δ(𝐊1)[K2W0(𝐱1,𝐤1+𝐊1,𝐱2,𝐤2+𝐊2/2)\displaystyle+{g}\sqrt{\rho_{0}}(2\pi)^{3}\hat{\eta}({\bf K}_{2})\delta({\bf K}_{1})\left[K_{2}W_{0}({\bf x}_{1},{\bf k}_{1}+{\bf K}_{1},{\bf x}_{2},{\bf k}_{2}+{\bf K}_{2}/2)\right.
W0(𝐱1,𝐤1𝐊1,𝐱2,𝐤2𝐊2/2)K2T]=0.\displaystyle\left.-W_{0}({\bf x}_{1},{\bf k}_{1}-{\bf K}_{1},{\bf x}_{2},{\bf k}_{2}-{\bf K}_{2}/2)K_{2}^{T}\right]=0. (151)

Although W1W_{1} is not diagonal, we can still decompose its Fourier transform W1^\hat{W_{1}} as

W^1(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)\displaystyle\hat{W}_{1}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2})
=i,jwi,j(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)𝐯i(𝐤1𝐊1/2,𝐤2𝐊2/2)𝐯jT(𝐤1+𝐊1/2,𝐤2+𝐊2/2).\displaystyle=\sum_{i,j}w_{i,j}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2}){\bf v}_{i}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2){\bf v}_{j}^{T}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2). (152)

Multiplying (6) on the left by 𝐯mT(𝐤1𝐊1/2,𝐤2𝐊2/2){\bf v}_{m}^{T}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2) and the right by 𝐯n(𝐤1+𝐊1/2,𝐤2+𝐊2/2){\bf v}_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2), we obtain

(λm(𝐤1𝐊1/2,𝐤2𝐊2/2)λn(𝐤1+𝐊1/2,𝐤2+𝐊2/2)+iθ)wm,n(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2)\displaystyle(\lambda_{m}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)-\lambda_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)+i\theta)w_{m,n}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2})
=\displaystyle= gρ0(2π)3η(𝐊1)δ(𝐊2)[am(𝐤1𝐊1/2,𝐤2𝐊2/2)K1,m,n(𝐤1𝐊1/2,𝐤2𝐊2/2,𝐤1+𝐊1/2,𝐤2+𝐊2/2)]\displaystyle{g}\sqrt{\rho_{0}}(2\pi)^{3}\eta({\bf K}_{1})\delta({\bf K}_{2})\left[a_{m}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)K_{1,m,n}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2,{\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)\right]
+\displaystyle+ gρ0(2π)3η(𝐊2)δ(𝐊1)[am(𝐤1𝐊1/2,𝐤2𝐊2/2)K2,m,n(𝐤1𝐊1/2,𝐤2𝐊2/2,𝐤1+𝐊1/2,𝐤2+𝐊2/2)]\displaystyle{g}\sqrt{\rho_{0}}(2\pi)^{3}\eta({\bf K}_{2})\delta({\bf K}_{1})\left[a_{m}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)K_{2,m,n}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2,{\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)\right]
\displaystyle- gρ0(2π)3η(𝐊1)δ(𝐊2)[an(𝐤1+𝐊1/2,𝐤2+𝐊2/2)K1,m,n(𝐤1+𝐊1/2,𝐤2+𝐊2/2,𝐤1𝐊1/2,𝐤2𝐊2/2)]\displaystyle{g}\sqrt{\rho_{0}}(2\pi)^{3}\eta({\bf K}_{1})\delta({\bf K}_{2})\left[a_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)K_{1,m,n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2,{\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\right]
\displaystyle- gρ0(2π)3η(𝐊2)δ(𝐊1)[an(𝐤1+𝐊1/2,𝐤2+𝐊2/2)K2,m,n(𝐤1+𝐊1/2,𝐤2+𝐊2/2,𝐤1𝐊1/2,𝐤2𝐊2/2)],\displaystyle{g}\sqrt{\rho_{0}}(2\pi)^{3}\eta({\bf K}_{2})\delta({\bf K}_{1})\left[a_{n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)K_{2,m,n}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2,{\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\right]\ , (153)

where

K1,m,n(𝐤1,𝐤2,𝐪1,𝐪2)\displaystyle K_{1,m,n}({\bf k}_{1},{\bf k}_{2},{\bf q}_{1},{\bf q}_{2}) =𝐯mT(𝐤1,𝐤2)K1𝐯n(𝐪1,𝐪2),\displaystyle={\bf v}_{m}^{T}({\bf k}_{1},{\bf k}_{2})K_{1}{\bf v}_{n}({\bf q}_{1},{\bf q}_{2})\ , (154)
K2,m,n(𝐤1,𝐤2,𝐪1,𝐪2)\displaystyle K_{2,m,n}({\bf k}_{1},{\bf k}_{2},{\bf q}_{1},{\bf q}_{2}) =𝐯mT(𝐤1,𝐤2)K2𝐯n(𝐪1,𝐪2).\displaystyle={\bf v}_{m}^{T}({\bf k}_{1},{\bf k}_{2})K_{2}{\bf v}_{n}({\bf q}_{1},{\bf q}_{2})\ . (155)

Here θ0+\theta\to 0^{+} is a regularizing parameter. At order O(ϵ)O(\epsilon) we find that

itW0(𝐱1,𝐤1,𝐱2,𝐤2,t)=LW2(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)i2MW0(𝐱1,𝐤1,𝐱2,𝐤2)i2W0(𝐱1,𝐤1,𝐱2,𝐤2)M\displaystyle i\partial_{t}W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)=LW_{2}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)-\frac{i}{2}MW_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2})-\frac{i}{2}W_{0}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2})M
+gρ0d3q(2π)3ei𝐪𝐗1η^(𝐪)[K1W1(𝐱1,𝐗1,𝐤1+𝐪/2,𝐱2,𝐗2,𝐤2)W1(𝐱1,𝐗1,𝐤1𝐪/2,𝐱2,𝐗2,𝐤2)K1T]\displaystyle+{g}\sqrt{\rho_{0}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{1}}\,\hat{\eta}({\bf q})\left[K_{1}W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2})-W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2})K_{1}^{T}\right]
+gρ0d3q(2π)3ei𝐪𝐗2η^(𝐪)[K2W1(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2+𝐪/2)W1(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2𝐪/2)K2T],\displaystyle+{g}\sqrt{\rho_{0}}\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{2}}\,\hat{\eta}({\bf q})\left[K_{2}W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}+{\bf q}/2)-W_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}-{\bf q}/2)K_{2}^{T}\right]\,, (156)

where

M=[c𝐤^1𝐱1+c𝐤^2𝐱20000c𝐤^2𝐱20000c𝐤^1𝐱100000]\displaystyle M=\begin{bmatrix}c\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}+c\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}&0&0&0\\ 0&c\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}&0&0\\ 0&0&c\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}&0\\ 0&0&0&0\end{bmatrix} (157)

and

LW2(𝐱1,𝐗1,𝐤1,𝐱2,𝐗2,𝐤2,t)\displaystyle LW_{2}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1},{\bf x}_{2},{\bf X}_{2},{\bf k}_{2},t)
=d3K1(2π)3d3K2(2π)3ei𝐊1𝐗1+i𝐊2𝐗2A^(𝐤1𝐊1/2,𝐤2𝐊2/2)W^2(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2,t)\displaystyle=\int\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf K}_{1}\cdot{\bf X}_{1}+i{\bf K}_{2}\cdot{\bf X}_{2}}\hat{A}({\bf k}_{1}-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\hat{W}_{2}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2},t)
\displaystyle- W^2(𝐱1,𝐊1,𝐤1,𝐱2,𝐊2,𝐤2,t)A^(𝐤1+𝐊1/2,𝐤2+𝐊2/2).\displaystyle\hat{W}_{2}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1},{\bf x}_{2},{\bf K}_{2},{\bf k}_{2},t)\hat{A}({\bf k}_{1}+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2). (158)

In order to obtain the equations satisfied by the aia_{i}, we multiply (6) on the left by 𝐯iT(𝐤1,𝐤2){\bf v}_{i}^{T}({\bf k}_{1},{\bf k}_{2}) and the right by 𝐯i(𝐤1,𝐤2){\bf v}_{i}({\bf k}_{1},{\bf k}_{2}), and take the ensemble average. In order to close the hierarchy of equations, we assume that 𝐯iTLW2𝐯i=0\langle{\bf v}_{i}^{T}LW_{2}{\bf v}_{i}\rangle=0, which corresponds to the assumption that W2W_{2} is statistically stationary with respect to the fast variables 𝐗1{\bf X}_{1} and 𝐗2{\bf X}_{2}. Following procedures similar to those in Appendix C, we find that

1ctai+\displaystyle\frac{1}{c}\partial_{t}a_{i}+ f1i(𝐤1,𝐤2)𝐤^1𝐱1ai+f2i(𝐤1,𝐤2)𝐤^2𝐱2ai+μ1i(𝐤1,𝐤2)ai(𝐤1,𝐤2)+μ2i(𝐤1,𝐤2)ai(𝐤1,𝐤2)\displaystyle f_{1i}({\bf k}_{1},{\bf k}_{2})\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}a_{i}+f_{2i}({\bf k}_{1},{\bf k}_{2})\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}a_{i}+\mu_{1i}({\bf k}_{1},{\bf k}_{2})a_{i}({\bf k}_{1},{\bf k}_{2})+\mu_{2i}({\bf k}_{1},{\bf k}_{2})a_{i}({\bf k}_{1},{\bf k}_{2})
=μ1i(𝐤1,𝐤2)d2K^A(𝐤1^,𝐊^,|𝐤1|)ai(|𝐤1|𝐊^,𝐤2)+μ2i(𝐤1,𝐤2)d2K^A(𝐤2^,𝐊^,|𝐤2|)ai(𝐤1,|𝐤2|𝐊^),\displaystyle=\mu_{1i}({\bf k}_{1},{\bf k}_{2})\int d^{2}\hat{K}A(\hat{{\bf k}_{1}},\hat{{\bf K}},|{\bf k}_{1}|)a_{i}(|{\bf k}_{1}|\hat{{\bf K}},{\bf k}_{2})+\mu_{2i}({\bf k}_{1},{\bf k}_{2})\int d^{2}\hat{K}A(\hat{{\bf k}_{2}},\hat{{\bf K}},|{\bf k}_{2}|)a_{i}({\bf k}_{1},|{\bf k}_{2}|\hat{{\bf K}})\ , (159)

where

f1i(𝐤1,𝐤2)\displaystyle f_{1i}({\bf k}_{1},{\bf k}_{2}) =𝐯i1(𝐤1,𝐤2)2+𝐯i3(𝐤1,𝐤2)2,\displaystyle={\bf v}_{i1}({\bf k}_{1},{\bf k}_{2})^{2}+{\bf v}_{i3}({\bf k}_{1},{\bf k}_{2})^{2}\,, (160)
f2i(𝐤1,𝐤2)\displaystyle f_{2i}({\bf k}_{1},{\bf k}_{2}) =𝐯i1(𝐤1,𝐤2)2+𝐯i2(𝐤1,𝐤2)2,\displaystyle={\bf v}_{i1}({\bf k}_{1},{\bf k}_{2})^{2}+{\bf v}_{i2}({\bf k}_{1},{\bf k}_{2})^{2}\,, (161)
μ1i(𝐤1,𝐤2)\displaystyle\mu_{1i}({\bf k}_{1},{\bf k}_{2}) =g2ρ0πK1,i,i(𝐤1,𝐤2,𝐤1,𝐤2)2|𝐤1|2|𝐤1λi(𝐤1,𝐤2)|,\displaystyle=\frac{g^{2}\rho_{0}\pi K_{1,i,i}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})^{2}|{\bf k}_{1}|^{2}}{|\partial_{{\bf k}_{1}}\lambda_{i}({\bf k}_{1},{\bf k}_{2})|}\,, (162)
μ2i(𝐤1,𝐤2)\displaystyle\mu_{2i}({\bf k}_{1},{\bf k}_{2}) =g2ρ0πK2,i,i(𝐤1,𝐤2,𝐤1,𝐤2)2|𝐤2|2|𝐤2λi(𝐤1,𝐤2)|,\displaystyle=\frac{g^{2}\rho_{0}\pi K_{2,i,i}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})^{2}|{\bf k}_{2}|^{2}}{|\partial_{{\bf k}_{2}}\lambda_{i}({\bf k}_{1},{\bf k}_{2})|}\,, (163)
A(𝐤^1,𝐤^2,k)\displaystyle A({\hat{{\bf k}}}_{1},{\hat{{\bf k}}}_{2},k) =C~(k(𝐤^1𝐤^2))d2k^C~(k(𝐤^1𝐤^)).\displaystyle=\frac{\tilde{C}(k({\hat{{\bf k}}}_{1}-{\hat{{\bf k}}}_{2}))}{\displaystyle\int d^{2}\hat{k^{\prime}}\tilde{C}(k({\hat{{\bf k}}}_{1}-{\hat{{\bf k}}}^{\prime}))}. (164)

6.1. Diffusion approximation

In this section we consider the diffusion limit of the kinetic equation (6). We again specialize to the case of white-noise correlations, which leads to the phase function A=1/(4π)A={1}/{(4\pi)}, corresponding to isotropic scattering. Making use of the diffusion approximation developed in section 5.2, we see that the first angular moments

ui(𝐱1,|𝐤1|,𝐱2,|𝐤2|,t)=𝑑𝐤^1𝑑𝐤^2ai(𝐱1,𝐤1,𝐱2,𝐤2,t)\displaystyle u_{i}({\bf x}_{1},|{\bf k}_{1}|,{\bf x}_{2},|{\bf k}_{2}|,t)=\int d{\hat{{\bf k}}}_{1}d{\hat{{\bf k}}}_{2}a_{i}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t) (165)

satisfy the equations

tuiD1i(|𝐤1|,|𝐤2|)Δ𝐱1uiD2i(|𝐤1|,|𝐤2|)Δ𝐱2ui=0,\displaystyle\partial_{t}u_{i}-D_{1i}(|{\bf k}_{1}|,|{\bf k}_{2}|)\Delta_{{\bf x}_{1}}u_{i}-D_{2i}(|{\bf k}_{1}|,|{\bf k}_{2}|)\Delta_{{\bf x}_{2}}u_{i}=0\ , (166)

where

D1i\displaystyle D_{1i} =cf1i23μ1i,\displaystyle=\frac{cf_{1i}^{2}}{3\mu_{1i}}\ , (167)
D2i\displaystyle D_{2i} =cf2i23μ2i.\displaystyle=\frac{cf_{2i}^{2}}{3\mu_{2i}}\ . (168)

Suppose that initially there are two photons in the field localized around the points 𝐫1{\bf r}_{1} and 𝐫2{\bf r}_{2} in a volume of linear size lsl_{s}. The corresponding initial conditions are given by

2ψ2(𝐱1,𝐱2,0)\displaystyle\sqrt{2}\psi_{2}({\bf x}_{1},{\bf x}_{2},0) =1C[e|𝐱1𝐫1|2/2ls2e|𝐱2𝐫2|2/2ls2+e|𝐱1𝐫2|2/2ls2e|𝐱2𝐫1|2/2ls2],\displaystyle=\frac{1}{C}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/2l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/2l_{s}^{2}}\right]\,, (169)
ψ1(𝐱1,𝐱2,0)\displaystyle\psi_{1}({\bf x}_{1},{\bf x}_{2},0) =a(𝐱1,𝐱2,0)=0,\displaystyle=a({\bf x}_{1},{\bf x}_{2},0)=0\,, (170)

where

C=e|𝐱1𝐫1|2/2ls2e|𝐱2𝐫2|2/2ls2+e|𝐱1𝐫2|2/2ls2e|𝐱2𝐫1|2/2ls2L𝐱1,𝐱22.\displaystyle C=\|e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/2l_{s}^{2}}+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/2l_{s}^{2}}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/2l_{s}^{2}}\|_{L_{{\bf x}_{1},{\bf x}_{2}}^{2}}\ . (171)

Note that this corresponds to an entangled two-photon state.

The above initial conditions imply initial conditions for the Wigner transform W0W_{0}. The initial conditions for the modes aia_{i} are determined by solving the linear system

[(W0)11(𝐱1,𝐤1,𝐱2,𝐤2,0)(W0)22(𝐱1,𝐤1,𝐱2,𝐤2,0)(W0)33(𝐱1,𝐤1,𝐱2,𝐤2,0)(W0)44(𝐱1,𝐤1,𝐱2,𝐤2,0)]=V(𝐤1,𝐤2)[a1(𝐱1,𝐤1,𝐱2,𝐤2,0)a2(𝐱1,𝐤1,𝐱2,𝐤2,0)a3(𝐱1,𝐤1,𝐱2,𝐤2,0)a4(𝐱1,𝐤1,𝐱2,𝐤2,0)],\displaystyle\begin{bmatrix}(W_{0})_{11}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\\ (W_{0})_{22}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\\ (W_{0})_{33}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\\ (W_{0})_{44}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\end{bmatrix}=V({\bf k}_{1},{\bf k}_{2})\begin{bmatrix}a_{1}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\\ a_{2}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\\ a_{3}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\\ a_{4}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0)\end{bmatrix}\,, (172)

where

(V(𝐤1,𝐤2))ij=𝐯ji(𝐤1,𝐤2)2.\displaystyle(V({\bf k}_{1},{\bf k}_{2}))_{ij}={\bf v}_{ji}({\bf k}_{1},{\bf k}_{2})^{2}. (173)

It follows that the initial conditions for the first angular moments are given by

ui(𝐱1,|𝐤1|,𝐱2,|𝐤2|,0)=𝑑𝐤^1𝑑𝐤^2ai(𝐱1,𝐤1,𝐱2,𝐤2,0).\displaystyle u_{i}({\bf x}_{1},|{\bf k}_{1}|,{\bf x}_{2},|{\bf k}_{2}|,0)=\int d{\hat{{\bf k}}}_{1}d{\hat{{\bf k}}}_{2}a_{i}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},0). (174)

The diffusion equations (166) can then be solved using (112). Combining this result with (142)–(144), (150) and (165) we see that the average probability densities are given by

|ψ2(𝐱1,𝐱2,t)|2\displaystyle\langle|\psi_{2}({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle
=12C2i=1400𝑑k1𝑑k2k12k22els2k12ls2k22𝐯1i2(k1,k2)(V1)i1(k1,k2)(ls2ls2+4tD1i)3/2\displaystyle=\frac{1}{2C^{2}}\sum_{i=1}^{4}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}{\bf v}_{1i}^{2}(k_{1},k_{2})(V^{-1})_{i1}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1i}}\right)^{3/2}
×(ls2ls2+4tD2i)3/2[e|𝐱1𝐫1|2/(ls2+4tD1i)e|𝐱2𝐫2|2/(ls2+4tD2i)\displaystyle\times\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2i}}\right)^{3/2}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2i})}\right.
+e|𝐱1𝐫2|2/(ls2+4tD1i)e|𝐱2𝐫1|2/(ls2+4tD2i)\displaystyle+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2i})}
+2e|𝐱1(𝐫1+𝐫2)2|2/(ls2+4tD1i)e|𝐱2(𝐫1+𝐫2)2|2/(ls2+4tD2i)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\left.+2e^{-|{\bf x}_{1}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}/(l_{s}^{2}+4tD_{2i})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\,, (175)
|ψ1(𝐱2,𝐱1,t)|2\displaystyle\langle|\psi_{1}({\bf x}_{2},{\bf x}_{1},t)|^{2}\rangle
=2ρ0C2i=1400𝑑k1𝑑k2k12k22els2k12ls2k22𝐯2i2(k1,k2)(V1)i1(k1,k2)(ls2ls2+4tD1i)3/2\displaystyle=\frac{2}{\rho_{0}C^{2}}\sum_{i=1}^{4}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}{\bf v}_{2i}^{2}(k_{1},k_{2})(V^{-1})_{i1}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1i}}\right)^{3/2}
×(ls2ls2+4tD2i)3/2[e|𝐱1𝐫1|2/(ls2+4tD1i)e|𝐱2𝐫2|2/(ls2+4tD2i)\displaystyle\times\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2i}}\right)^{3/2}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2i})}\right.
+e|𝐱1𝐫2|2/(ls2+4tD1i)e|𝐱2𝐫1|2/(ls2+4tD2i)\displaystyle+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2i})}
+2e|𝐱1(𝐫1+𝐫2)2|2/(ls2+4tD1i)e|𝐱2(𝐫1+𝐫2)2|2/(ls2+4tD2i)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\left.+2e^{-|{\bf x}_{1}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}/(l_{s}^{2}+4tD_{2i})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\,, (176)
|a(𝐱1,𝐱2,t)|2\displaystyle\langle|a({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle
=12ρ02C2i=1400𝑑k1𝑑k2k12k22els2k12ls2k22𝐯4i2(k1,k2)(V1)i1(k1,k2)(ls2ls2+4tD1i)3/2\displaystyle=\frac{1}{2\rho_{0}^{2}C^{2}}\sum_{i=1}^{4}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}{\bf v}_{4i}^{2}(k_{1},k_{2})(V^{-1})_{i1}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{1i}}\right)^{3/2}
×(ls2ls2+4tD2i)3/2[e|𝐱1𝐫1|2/(ls2+4tD1i)e|𝐱2𝐫2|2/(ls2+4tD2i)\displaystyle\times\left(\frac{l_{s}^{2}}{l_{s}^{2}+4tD_{2i}}\right)^{3/2}\left[e^{-|{\bf x}_{1}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{2i})}\right.
+e|𝐱1𝐫2|2/(ls2+4tD1i)e|𝐱2𝐫1|2/(ls2+4tD2i)\displaystyle+e^{-|{\bf x}_{1}-{\bf r}_{2}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-{\bf r}_{1}|^{2}/(l_{s}^{2}+4tD_{2i})}
+2e|𝐱1(𝐫1+𝐫2)2|2/(ls2+4tD1i)e|𝐱2(𝐫1+𝐫2)2|2/(ls2+4tD2i)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|].\displaystyle\left.+2e^{-|{\bf x}_{1}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}/(l_{s}^{2}+4tD_{1i})}e^{-|{\bf x}_{2}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}/(l_{s}^{2}+4tD_{2i})}\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]. (177)

We note that at long times, the average probability densities decay algebraically according to

|ψ2(𝐱1,𝐱2,t)|2\displaystyle\langle|\psi_{2}({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle =B11t3B21(𝐱1,𝐱2,𝐫1,𝐫2)t4,\displaystyle=\frac{B_{11}}{t^{3}}-\frac{B_{21}({\bf x}_{1},{\bf x}_{2},{\bf r}_{1},{\bf r}_{2})}{t^{4}}\,, (178)
|ψ1(𝐱1,𝐱2,t)|2\displaystyle\langle|\psi_{1}({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle =4B12ρ0t34B22(𝐱1,𝐱2,𝐫1,𝐫2)ρ0t4,\displaystyle=\frac{4B_{12}}{\rho_{0}t^{3}}-\frac{4B_{22}({\bf x}_{1},{\bf x}_{2},{\bf r}_{1},{\bf r}_{2})}{\rho_{0}t^{4}}\,, (179)
|a(𝐱1,𝐱2,t)|2\displaystyle\langle|a({\bf x}_{1},{\bf x}_{2},t)|^{2}\rangle =B14ρ02t3B24(𝐱1,𝐱2,𝐫1,𝐫2)ρ02t4,\displaystyle=\frac{B_{14}}{\rho_{0}^{2}t^{3}}-\frac{B_{24}({\bf x}_{1},{\bf x}_{2},{\bf r}_{1},{\bf r}_{2})}{\rho_{0}^{2}t^{4}}\ , (180)

where the constants B1jB_{1j} and B2jB_{2j}, j=1,2,4j=1,2,4 are given by

B1j\displaystyle B_{1j} =1C2i=1400𝑑k1𝑑k2k12k22els2k12ls2k22𝐯ji2(k1,k2)(V1)i1(k1,k2)(ls24D1i)3/2\displaystyle=\frac{1}{C^{2}}\sum_{i=1}^{4}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}{\bf v}_{ji}^{2}(k_{1},k_{2})(V^{-1})_{i1}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{4D_{1i}}\right)^{3/2} (181)
×(ls24D2i)3/2[1+1sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|],\displaystyle\times\left(\frac{l_{s}^{2}}{4D_{2i}}\right)^{3/2}\left[1+1\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]\,,
B2j\displaystyle B_{2j} =12C2i=1400𝑑k1𝑑k2k12k22els2k12ls2k22𝐯ji2(k1,k2)(V1)i1(k1,k2)(ls24D1i)3/2\displaystyle=\frac{1}{2C^{2}}\sum_{i=1}^{4}\int_{0}^{\infty}\int_{0}^{\infty}dk_{1}dk_{2}k_{1}^{2}k_{2}^{2}e^{-l_{s}^{2}k_{1}^{2}-l_{s}^{2}k_{2}^{2}}{\bf v}_{ji}^{2}(k_{1},k_{2})(V^{-1})_{i1}(k_{1},k_{2})\left(\frac{l_{s}^{2}}{4D_{1i}}\right)^{3/2} (182)
×(ls24D2i)3/2[|𝐱1𝐫1|24D1i+|𝐱2𝐫2|24D2i+|𝐱1𝐫2|24D1i+|𝐱2𝐫1|24D2i\displaystyle\times\left(\frac{l_{s}^{2}}{4D_{2i}}\right)^{3/2}\left[\frac{|{\bf x}_{1}-{\bf r}_{1}|^{2}}{4D_{1i}}+\frac{|{\bf x}_{2}-{\bf r}_{2}|^{2}}{4D_{2i}}+\frac{|{\bf x}_{1}-{\bf r}_{2}|^{2}}{4D_{1i}}+\frac{|{\bf x}_{2}-{\bf r}_{1}|^{2}}{4D_{2i}}\right.
+2(|𝐱1(𝐫1+𝐫2)2|24D1i+|𝐱2(𝐫1+𝐫2)2|24D2i)sin(k1|𝐫1𝐫2|)k1|𝐫1𝐫2|sin(k2|𝐫1𝐫2|)k2|𝐫1𝐫2|].\displaystyle\left.+2\left(\frac{|{\bf x}_{1}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}}{4D_{1i}}+\frac{|{\bf x}_{2}-\frac{({\bf r}_{1}+{\bf r}_{2})}{2}|^{2}}{4D_{2i}}\right)\frac{\sin(k_{1}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{1}|{\bf r}_{1}-{\bf r}_{2}|}\frac{\sin(k_{2}|{\bf r}_{1}-{\bf r}_{2}|)}{k_{2}|{\bf r}_{1}-{\bf r}_{2}|}\right]. (183)

In order to illustrate the above results, we consider the case of isotropic scattering and set the dimensionless quantities Ω/ρ0g=c/lsρ0g=1{\Omega}/{\sqrt{\rho_{0}}{g}}={c}/{l_{s}\sqrt{\rho_{0}}{g}}=1. In addition, we choose 𝐱1=(ls,0,0){\bf x}_{1}=(l_{s},0,0), 𝐱2=(ls,0,0){\bf x}_{2}=(-l_{s},0,0), 𝐫1=(0,0,ls){\bf r}_{1}=(0,0,l_{s}) and 𝐫2=(0,0,ls){\bf r}_{2}=(0,0,-l_{s}), so that the distances from the points of excitation (𝐫1{\bf r}_{1} and 𝐫2{\bf r}_{2}) to the points of detection are equal to lsl_{s}. In Figure 5 we plot the time dependence of the probability densities aa, |ψ1|2|\langle\psi_{1}\rangle|^{2} and |ψ2|2|\langle\psi_{2}\rangle|^{2}. We note that the negative values of these quantities are due to the breakdown of the diffusion approximation at short times. We observe that the two-photon probability density increases before eventually decaying. A comparison of these results with the asymptotic formulas (178), (179) and (180) is shown in Figures 6, 7 and 8. There is good agreement at long times.

7. Discussion

We have investigated the propagation of two-photon light in a random medium of two-level atoms. Our main results are kinetic equations that govern the behavior of the field and atomic probability densities. Several topics for further research are apparent. An alternative derivation of these equations may be possible using diagrammatic perturbation theory rather than multiscale asymptotic analysis. This is the case for the classical theory of wave propagation in random media, where a comparative exposition of the two approaches has been presented in [41]. It would be of some interest to quantify the evolution of the entanglement of a two-photon state as it propagates through the medium. One approach to this problem is to introduce a suitable measure of entanglement such as the entropy defined by the singular values of the two-photon amplitude [37]. Here the evolution of the entanglement of an initially entangled state is of particular importance, especially in applications to communications and imaging. Finally, accounting for atomic motion is a challenging problem. One possible approach is to view the density ρ\rho as a quantum field whose dynamics must be taken into account.

Refer to caption
Figure 5. Atomic, one-photon, and two-photon probability densities in a random medium.
Refer to caption
Figure 6. Comparison of diffusion approximation and long-time asymptote for |ψ2|2\langle|\psi_{2}|^{2}\rangle.
Refer to caption
Figure 7. Comparison of diffusion approximation and long-time asymptote for |ψ1|2\langle|\psi_{1}|^{2}\rangle.
Refer to caption
Figure 8. Comparison of diffusion approximation and long-time asymptote for |a|2\langle|a|^{2}\rangle.

Appendix A Derivation of the System (17)

Here we derive the system (17). We begin by computing both sides of the time-dependent Schrodinger equation (14), employing the Hamiltonian HH and the state (11). The left-hand side is equal to

it|Ψ=d3x1d3x2\displaystyle i\hbar\partial_{t}|\Psi\rangle=\int d^{3}x_{1}d^{3}x_{2} (itψ2(𝐱1,𝐱2,t)ϕ(𝐱1)ϕ(𝐱2)+itψ1(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)ϕ(𝐱2)\displaystyle\left(i\hbar\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})+i\hbar\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})\right.
+\displaystyle+ ita(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)σ(𝐱1)σ(𝐱2))|0,\displaystyle\left.i\hbar\partial_{t}a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})\right)|0\rangle\ , (184)

while the right-hand side is given by

H|Ψ\displaystyle H|\Psi\rangle =d3xd3x1d3x2{c(Δ)1/2ϕ(𝐱)ϕ(𝐱)+Ωρ(𝐱)σ(𝐱)σ(𝐱)+gρ(𝐱)(ϕ(𝐱)σ(𝐱)+ϕ(𝐱)σ(𝐱))}\displaystyle=\hbar\int d^{3}xd^{3}x_{1}d^{3}x_{2}\left\{c(-\Delta)^{1/2}\phi^{\dagger}({\bf x})\phi({\bf x})+\Omega\rho({\bf x})\sigma^{\dagger}({\bf x})\sigma({\bf x})+{g}\rho({\bf x})\left(\phi^{\dagger}({\bf x})\sigma({\bf x})+\phi({\bf x})\sigma^{\dagger}({\bf x})\right)\right\}
×{ψ2(𝐱1,𝐱2,t)ϕ(𝐱1)ϕ(𝐱2)+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)ϕ(𝐱2)\displaystyle\times\{\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+a(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)σ(𝐱1)σ(𝐱2)}|0\displaystyle+a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})\}|0\rangle
=d3xd3x1d3x2{ψ2(𝐱1,𝐱2,t)c(Δ)1/2ϕ(𝐱)ϕ(𝐱)ϕ(𝐱1)ϕ(𝐱2)\displaystyle=\hbar\int d^{3}xd^{3}x_{1}d^{3}x_{2}\{\psi_{2}({\bf x}_{1},{\bf x}_{2},t)c(-\Delta)^{1/2}\phi^{\dagger}({\bf x})\phi({\bf x})\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)c(Δ)1/2ϕ(𝐱)ϕ(𝐱)σ(𝐱1)ϕ(𝐱2)\displaystyle+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})c(-\Delta)^{1/2}\phi^{\dagger}({\bf x})\phi({\bf x})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)Ωρ(𝐱)σ(𝐱)σ(𝐱)σ(𝐱1)ϕ(𝐱2)\displaystyle+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\Omega\rho({\bf x})\sigma^{\dagger}({\bf x})\sigma({\bf x})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+a(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)Ωρ(𝐱)σ(𝐱)σ(𝐱)σ(𝐱1)σ(𝐱2)\displaystyle+a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\Omega\rho({\bf x})\sigma^{\dagger}({\bf x})\sigma({\bf x})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})
+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)gρ(𝐱)ϕ(𝐱)σ(𝐱)σ(𝐱1)ϕ(𝐱2)\displaystyle+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1}){g}\rho({\bf x})\phi^{\dagger}({\bf x})\sigma({\bf x})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+a(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)gρ(𝐱)ϕ(𝐱)σ(𝐱)σ(𝐱1)σ(𝐱2)\displaystyle+a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2}){g}\rho({\bf x})\phi^{\dagger}({\bf x})\sigma({\bf x})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})
+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)gρ(𝐱)ϕ(𝐱)σ(𝐱)σ(𝐱1)ϕ(𝐱2)\displaystyle+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1}){g}\rho({\bf x})\phi({\bf x})\sigma^{\dagger}({\bf x})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+ψ2(𝐱1,𝐱2,t)gρ(𝐱)ϕ(𝐱)σ(𝐱)ϕ(𝐱1)ϕ(𝐱2)}|0.\displaystyle+\psi_{2}({\bf x}_{1},{\bf x}_{2},t){g}\rho({\bf x})\phi({\bf x})\sigma^{\dagger}({\bf x})\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})\}|0\rangle.

Using the commutation and anticommutation relations (3) and (8) we arrive at

d3x1d3x2{(c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t))ϕ(𝐱1)ϕ(𝐱2)\displaystyle\hbar\int d^{3}x_{1}d^{3}x_{2}\{(c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t))\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+c(Δ𝐱2)1/2ψ1(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)ϕ(𝐱2)+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)Ωσ(𝐱1)ϕ(𝐱2)\displaystyle+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\Omega\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
+2a(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)Ωσ(𝐱1)σ(𝐱2)+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)gϕ(𝐱1)ϕ(𝐱2)\displaystyle+2a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\Omega\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1}){g}\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})
2ga(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)ϕ(𝐱2)σ(𝐱1)+gψ1(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)σ(𝐱2)\displaystyle-2{g}a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\phi^{\dagger}({\bf x}_{2})\sigma^{\dagger}({\bf x}_{1})+{g}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})
+2gψ2(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)ϕ(𝐱2)}|0.\displaystyle+2{g}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})\}|0\rangle. (185)

Computing the inner products

0|ϕ(𝐱1)ϕ(𝐱2)it|Ψ\displaystyle\langle 0|\phi({\bf x}_{1})\phi({\bf x}_{2})i\hbar\partial_{t}|\Psi\rangle =2itψ2(𝐱1,𝐱2,t),\displaystyle=2i\hbar\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\ , (186)
0|ϕ(𝐱1)ϕ(𝐱2)H|Ψ\displaystyle\langle 0|\phi({\bf x}_{1})\phi({\bf x}_{2})H|\Psi\rangle =2(c(Δ𝐱1)1/2+c(Δ𝐱2)1/2)ψ2(𝐱1,𝐱2,t)\displaystyle=2(c(-\Delta_{{\bf x}_{1}})^{1/2}+c(-\Delta_{{\bf x}_{2}})^{1/2})\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+gρ(𝐱1)ψ1(𝐱1,𝐱2,t)+gρ(𝐱2)ψ1(𝐱2,𝐱1,t),\displaystyle+{g}\rho({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)+{g}\rho({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t)\,, (187)

yields (2). The inner products

0|ϕ(𝐱2)σ(𝐱1)ρ(𝐱1)it|Ψ\displaystyle\langle 0|\phi({\bf x}_{2})\sigma({\bf x}_{1})\rho({\bf x}_{1})i\hbar\partial_{t}|\Psi\rangle =ρ(𝐱1)itψ1(𝐱1,𝐱2,t),\displaystyle=\rho({\bf x}_{1})i\hbar\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\ , (188)
0|ϕ(𝐱2)σ(𝐱1)ρ(𝐱1)H|Ψ\displaystyle\langle 0|\phi({\bf x}_{2})\sigma({\bf x}_{1})\rho({\bf x}_{1})H|\Psi\rangle =(c(Δ𝐱2)1/2+Ω)ρ(𝐱1)ψ1(𝐱1,𝐱2,t)\displaystyle=(c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega)\rho({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)
+2gρ(𝐱1)ψ2(𝐱1,𝐱2,t)2gρ(𝐱1)ρ(𝐱2)a(𝐱1,𝐱2,t),\displaystyle+2{g}\rho({\bf x}_{1})\psi_{2}({\bf x}_{1},{\bf x}_{2},t)-2{g}\rho({\bf x}_{1})\rho({\bf x}_{2})a({\bf x}_{1},{\bf x}_{2},t)\,, (189)

give (16), while

0|σ(𝐱1)σ(𝐱2)ρ(𝐱1)ρ(𝐱2)it|Ψ\displaystyle\langle 0|\sigma({\bf x}_{1})\sigma({\bf x}_{2})\rho({\bf x}_{1})\rho({\bf x}_{2})i\hbar\partial_{t}|\Psi\rangle =2ρ(𝐱1)ρ(𝐱2)ita(𝐱1,𝐱2,t),\displaystyle=2\rho({\bf x}_{1})\rho({\bf x}_{2})i\hbar\partial_{t}a({\bf x}_{1},{\bf x}_{2},t)\ , (190)
0|σ(𝐱1)σ(𝐱2)ρ(𝐱1)ρ(𝐱2)H|Ψ\displaystyle\langle 0|\sigma({\bf x}_{1})\sigma({\bf x}_{2})\rho({\bf x}_{1})\rho({\bf x}_{2})H|\Psi\rangle =gρ(𝐱1)ρ(𝐱2)ψ1(𝐱1,𝐱2,t)gρ(𝐱1)ρ(𝐱2)ψ1(𝐱2,𝐱1,t)\displaystyle={g}\rho({\bf x}_{1})\rho({\bf x}_{2})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)-{g}\rho({\bf x}_{1})\rho({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t)
+4Ωρ(𝐱1)ρ(𝐱2)a(𝐱1,𝐱2,t),\displaystyle+4\Omega\rho({\bf x}_{1})\rho({\bf x}_{2})a({\bf x}_{1},{\bf x}_{2},t)\ , (191)

gives (17).

Appendix B Derivation of the Liouville Equation (5.1)

Here we derive  (5.1). We first define

Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)=𝚿ϵ(𝐱1ϵ𝐱1/2,𝐱2ϵ𝐱2/2,t)𝚿ϵ(𝐱1+ϵ𝐱1/2,𝐱2+ϵ𝐱2/2,t).\displaystyle\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)={\bf\Psi}_{\epsilon}({\bf x}_{1}-\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}-\epsilon{\bf x}_{2}^{\prime}/2,t){\bf\Psi}_{\epsilon}^{\dagger}({\bf x}_{1}+\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}+\epsilon{\bf x}_{2}^{\prime}/2,t)\ . (192)

The Wigner transform is defined by

Wϵ(𝐱1,𝐤1,𝐱2,𝐤2,t)=d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t).\displaystyle W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2},t)=\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\ . (193)

We begin by computing iϵtWϵi\epsilon\partial_{t}W_{\epsilon}:

iϵtWϵ=d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2iϵtΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle i\epsilon\partial_{t}W_{\epsilon}=\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}i\epsilon\partial_{t}\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)
=d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2[{Aϵ(𝐱1ϵ𝐱1/2,𝐱2ϵ𝐱2/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle=\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left[\left\{A_{\epsilon}({\bf x}_{1}-\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}-\epsilon{\bf x}_{2}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.\right.
+ϵgρ02(η(𝐱1/ϵ𝐱1/2)+η(𝐱2/ϵ𝐱2/2))KΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)}\displaystyle\left.+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}(\eta({\bf x}_{1}/\epsilon-{\bf x}_{1}^{\prime}/2)+\eta({\bf x}_{2}/\epsilon-{\bf x}_{2}^{\prime}/2))K\ \Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right\}
Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)Aϵ(𝐱1+ϵ𝐱1/2,𝐱2+ϵ𝐱2/2)\displaystyle-\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)A_{\epsilon}({\bf x}_{1}+\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}+\epsilon{\bf x}_{2}^{\prime}/2)
+ϵgρ02(η(𝐱1/ϵ+𝐱1/2)+η(𝐱2/ϵ+𝐱2/2))Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)KT}]\displaystyle+\left.\left.\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}(\eta({\bf x}_{1}/\epsilon+{\bf x}_{1}^{\prime}/2)+\eta({\bf x}_{2}/\epsilon+{\bf x}_{2}^{\prime}/2))\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)K^{T}\right\}\right]
=d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2{Aϵ(𝐱1ϵ𝐱1/2,𝐱2ϵ𝐱2/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle=\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left\{A_{\epsilon}({\bf x}_{1}-\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}-\epsilon{\bf x}_{2}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.
Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)Aϵ(𝐱1+ϵ𝐱1/2,𝐱2+ϵ𝐱2/2)}\displaystyle\left.-\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)A_{\epsilon}({\bf x}_{1}+\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}+\epsilon{\bf x}_{2}^{\prime}/2)\right\}
+ϵgρ02d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2{η(𝐱1/ϵ𝐱1/2)KΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left\{\eta({\bf x}_{1}/\epsilon-{\bf x}_{1}^{\prime}/2)K\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.
η(𝐱1/ϵ+𝐱1/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)KT}\displaystyle\left.-\eta({\bf x}_{1}/\epsilon+{\bf x}_{1}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)K^{T}\right\}
+ϵgρ02d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2{η(𝐱2/ϵ𝐱2/2)KΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle+\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left\{\eta({\bf x}_{2}/\epsilon-{\bf x}_{2}^{\prime}/2)K\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.
η(𝐱2/ϵ+𝐱2/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)KT}.\displaystyle\left.-\eta({\bf x}_{2}/\epsilon+{\bf x}_{2}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)K^{T}\right\}. (194)

The first term becomes

d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2{Aϵ(𝐱1ϵ𝐱1/2,𝐱2ϵ𝐱2/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left\{A_{\epsilon}({\bf x}_{1}-\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}-\epsilon{\bf x}_{2}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.
Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)Aϵ(𝐱1+ϵ𝐱1/2,𝐱2+ϵ𝐱2/2)}\displaystyle\left.-\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)A_{\epsilon}({\bf x}_{1}+\epsilon{\bf x}_{1}^{\prime}/2,{\bf x}_{2}+\epsilon{\bf x}_{2}^{\prime}/2)\right\}
=d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2{A^(𝐤1ϵ𝐤1/2,𝐤2ϵ𝐤2/2)W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2)\displaystyle=\int\frac{{{d}}^{3}k_{1}^{\prime}}{(2\pi)^{3}}\frac{{{d}}^{3}k_{2}^{\prime}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}^{\prime}+i{\bf x}_{2}\cdot{\bf k}_{2}^{\prime}}\left\{\hat{A}({\bf k}_{1}-\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}-\epsilon{\bf k}_{2}^{\prime}/2)\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2})\right.
W^ϵ(𝐤1,𝐤1,𝐤2,𝐤2)A^(𝐤1+ϵ𝐤1/2,𝐤2+ϵ𝐤2/2)},\displaystyle-\left.\hat{W}_{\epsilon}({\bf k}_{1}^{\prime},{\bf k}_{1},{\bf k}_{2}^{\prime},{\bf k}_{2})\hat{A}({\bf k}_{1}+\epsilon{\bf k}_{1}^{\prime}/2,{\bf k}_{2}+\epsilon{\bf k}_{2}^{\prime}/2)\right\}\,, (195)

where

(Aϵf)(𝐱1,𝐱2)=d3k1(2π)3d3k2(2π)3ei𝐱1𝐤1+i𝐱2𝐤2A^(ϵ𝐤1,ϵ𝐤2)f^(𝐤1,𝐤2).\displaystyle(A_{\epsilon}f)({\bf x}_{1},{\bf x}_{2})=\int\frac{d^{3}k_{1}}{(2\pi)^{3}}\frac{d^{3}k_{2}}{(2\pi)^{3}}e^{i{\bf x}_{1}\cdot{\bf k}_{1}+i{\bf x}_{2}\cdot{\bf k}_{2}}\hat{A}(\epsilon{\bf k}_{1},\epsilon{\bf k}_{2})\hat{f}({\bf k}_{1},{\bf k}_{2})\ . (196)

Likewise, the second term becomes

ϵgρ02d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2{η(𝐱1/ϵ𝐱1/2)KΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left\{\eta({\bf x}_{1}/\epsilon-{\bf x}_{1}^{\prime}/2)K\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.
η(𝐱1/ϵ+𝐱1/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)KT}\displaystyle\left.-\eta({\bf x}_{1}/\epsilon+{\bf x}_{1}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)K^{T}\right\}
=ϵgρ02d3x1(2π)3d3x2(2π)3d3q(2π)3ei𝐤1𝐱1i𝐤2𝐱2+i𝐪(𝐱1/ϵ𝐱1/2)η^(𝐪)KΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle=\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}\frac{d^{3}q}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}+i{\bf q}\cdot({\bf x}_{1}/\epsilon-{\bf x}_{1}^{\prime}/2)}\hat{\eta}({\bf q})K\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)
ϵgρ02d3x1(2π)3d3x2(2π)3d3q(2π)3ei𝐤1𝐱1i𝐤2𝐱2+i𝐪(𝐱1/ϵ+𝐱1/2)η^(𝐪)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)KT\displaystyle-\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}\frac{d^{3}q}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}+i{\bf q}\cdot({\bf x}_{1}/\epsilon+{\bf x}_{1}^{\prime}/2)}\hat{\eta}({\bf q})\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)K^{T}
=ϵgρ02d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)KWϵ(𝐱1,𝐤1+𝐪/2,𝐱2,𝐤2,t)\displaystyle=\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\hat{\eta}({\bf q})KW_{\epsilon}({\bf x}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)
ϵgρ02d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)Wϵ(𝐱1,𝐤1𝐪/2,𝐱2,𝐤2,t)KT\displaystyle-\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\hat{\eta}({\bf q})W_{\epsilon}({\bf x}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)K^{T}
=ϵgρ02d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)[KWϵ(𝐱1,𝐤1+𝐪/2,𝐱2,𝐤2,t)Wϵ(𝐱1,𝐤1𝐪/2,𝐱2,𝐤2,t)KT].\displaystyle=\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\hat{\eta}({\bf q})\left[KW_{\epsilon}({\bf x}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)-W_{\epsilon}({\bf x}_{1},{\bf k}_{1}-{\bf q}/2,{\bf x}_{2},{\bf k}_{2},t)K^{T}\right]. (197)

Finally, the third term becomes

ϵgρ02d3x1(2π)3d3x2(2π)3ei𝐤1𝐱1i𝐤2𝐱2{η(𝐱2/ϵ𝐱2/2)KΦϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)\displaystyle\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}x_{1}^{\prime}}{(2\pi)^{3}}\frac{d^{3}x_{2}^{\prime}}{(2\pi)^{3}}e^{-i{\bf k}_{1}\cdot{\bf x}_{1}^{\prime}-i{\bf k}_{2}\cdot{\bf x}_{2}^{\prime}}\left\{\eta({\bf x}_{2}/\epsilon-{\bf x}_{2}^{\prime}/2)K\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)\right.
η(𝐱2/ϵ+𝐱2/2)Φϵ(𝐱1,𝐱1,𝐱2,𝐱2,t)KT}\displaystyle\left.-\eta({\bf x}_{2}/\epsilon+{\bf x}_{2}^{\prime}/2)\Phi_{\epsilon}({\bf x}_{1},{\bf x}_{1}^{\prime},{\bf x}_{2},{\bf x}_{2}^{\prime},t)K^{T}\right\}
=ϵgρ02d3q(2π)3ei𝐪𝐱1/ϵη^(𝐪)[KWϵ(𝐱1,𝐤1,𝐱2,𝐤2+𝐪/2,t)Wϵ(𝐱1,𝐤1,𝐱2,𝐤2𝐪/2,t)KT].\displaystyle=\sqrt{\epsilon}{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{d^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf x}_{1}/\epsilon}\hat{\eta}({\bf q})\left[KW_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2}+{\bf q}/2,t)-W_{\epsilon}({\bf x}_{1},{\bf k}_{1},{\bf x}_{2},{\bf k}_{2}-{\bf q}/2,t)K^{T}\right]. (198)

Appendix C Derivation of the Kinetic Equation (5.1)

Here we derive the kinetic equation (5.1) which is satisfied by the quantity a+a_{+}. The first two terms are elementary and so we must compute

𝐯+TL1W1𝐯+,𝐯+TL2W1𝐯+.\displaystyle\langle{\bf v}_{+}^{T}L_{1}W_{1}{\bf v}_{+}\rangle\ ,\quad\langle{\bf v}_{+}^{T}L_{2}W_{1}{\bf v}_{+}\rangle\ . (199)

We compute each of the above in two steps. The first term is

d3q(2π)3ei𝐪𝐗1η^(𝐪)[𝐯+T(𝐤1,𝐤2)KW1(𝐱1,𝐗1,𝐤1+𝐪/2,𝐱2,𝐗2,𝐤2)𝐯+(𝐤1,𝐤2)]\displaystyle\langle\int\frac{{{d}}^{3}q}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{1}}\,\hat{\eta}({\bf q})\left[{\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2})KW_{1}({\bf x}_{1},{\bf X}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf X}_{2},{\bf k}_{2}){\bf v}_{+}({\bf k}_{1},{\bf k}_{2})\right]\rangle
=\displaystyle= d3q(2π)3d3K1(2π)3d3K2(2π)3ei𝐪𝐗1+i𝐊1𝐗1+i𝐊2𝐗2η^(𝐪)\displaystyle\langle\int\frac{{{d}}^{3}q}{(2\pi)^{3}}\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{1}+i{\bf K}_{1}\cdot{\bf X}_{1}+i{\bf K}_{2}\cdot{\bf X}_{2}}\,\hat{\eta}({\bf q})
×[𝐯+T(𝐤1,𝐤2)KW^1(𝐱1,𝐊1,𝐤1+𝐪/2,𝐱2,𝐊2,𝐤2)𝐯+(𝐤1,𝐤2)]\displaystyle\times\left[{\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2})K\hat{W}_{1}({\bf x}_{1},{\bf K}_{1},{\bf k}_{1}+{\bf q}/2,{\bf x}_{2},{\bf K}_{2},{\bf k}_{2}){\bf v}_{+}({\bf k}_{1},{\bf k}_{2})\right]\rangle
=\displaystyle= d3q(2π)3d3K1(2π)3d3K2(2π)3ei𝐪𝐗1+i𝐊1𝐗1+i𝐊2𝐗2η^(𝐪)𝐯+T(𝐤1,𝐤2)K\displaystyle\langle\int\frac{{{d}}^{3}q}{(2\pi)^{3}}\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{1}+i{\bf K}_{1}\cdot{\bf X}_{1}+i{\bf K}_{2}\cdot{\bf X}_{2}}\,\hat{\eta}({\bf q}){\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2})K
×{m,n=±wm,n(𝐊1,𝐤1+𝐪/2,𝐊2,𝐤2)𝐯m(𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2)\displaystyle\times\left\{\sum_{m,n=\pm}w_{m,n}({\bf K}_{1},{\bf k}_{1}+{\bf q}/2,{\bf K}_{2},{\bf k}_{2}){\bf v}_{m}({\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\right.
×𝐯nT(𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2)𝐯+(𝐤1,𝐤2)}.\displaystyle\left.\times{\bf v}_{n}^{T}({\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2){\bf v}_{+}({\bf k}_{1},{\bf k}_{2})\right\}\rangle.

Next we substitute the expression wm,nw_{m,n} using equation (5.1) to arrive at

d3q(2π)3d3K1(2π)3d3K2(2π)3ei𝐪𝐗1+i𝐊1𝐗1+i𝐊2𝐗2η^(𝐪)𝐯+T(𝐤1,𝐤2)K\displaystyle\langle\int\frac{{{d}}^{3}q}{(2\pi)^{3}}\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}e^{i{\bf q}\cdot{\bf X}_{1}+i{\bf K}_{1}\cdot{\bf X}_{1}+i{\bf K}_{2}\cdot{\bf X}_{2}}\,\hat{\eta}({\bf q}){\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2})K
×{m,n=±gρ02(2π)3{η(𝐊1)δ(𝐊2)+η(𝐊2)δ(𝐊1)}}\displaystyle\times\left\{\sum_{m,n=\pm}g\sqrt{\frac{\rho_{0}}{2}}(2\pi)^{3}\left\{\eta({\bf K}_{1})\delta({\bf K}_{2})+\eta({\bf K}_{2})\delta({\bf K}_{1})\right\}\right\}
×([am(𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2)Km,n(𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2,𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2)]λm(𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2)λn(𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2)+iθ\displaystyle\times\left(\frac{\left[a_{m}({\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)K_{m,n}({\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2,{\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)\right]}{\lambda_{m}({\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)-\lambda_{n}({\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)+i\theta}\right.
[an(𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2)Km,n(𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2,𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2)]λm(𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2)λn(𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2)+iθ)\displaystyle-\left.\frac{\left[a_{n}({\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)K_{m,n}({\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2,{\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)\right]}{\lambda_{m}({\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2)-\lambda_{n}({\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2)+i\theta}\right)
×𝐯m(𝐤1+𝐪/2𝐊1/2,𝐤2𝐊2/2)𝐯nT(𝐤1+𝐪/2+𝐊1/2,𝐤2+𝐊2/2)𝐯+(𝐤1,𝐤2).\displaystyle\times{\bf v}_{m}({\bf k}_{1}+{\bf q}/2-{\bf K}_{1}/2,{\bf k}_{2}-{\bf K}_{2}/2){\bf v}_{n}^{T}({\bf k}_{1}+{\bf q}/2+{\bf K}_{1}/2,{\bf k}_{2}+{\bf K}_{2}/2){\bf v}_{+}({\bf k}_{1},{\bf k}_{2})\rangle.

We separate the above into two terms and use the orthogonality of the basis {𝐯i}\{{\bf v}_{i}\} to see that n=+n=+ in the first term. We thus obtain

=gρ02d3K1(2π)3C^(𝐊1)m=±([am(𝐤1𝐊1,𝐤2)Km,+(𝐤1𝐊1,𝐤2,𝐤1,𝐤2)]λm(𝐤1𝐊1,𝐤2)λ+(𝐤1,𝐤2)+iθ\displaystyle=g\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K_{1}}{(2\pi)^{3}}\,\hat{C}({\bf K}_{1})\sum_{m=\pm}\left(\frac{\left[a_{m}({\bf k}_{1}-{\bf K}_{1},{\bf k}_{2})K_{m,+}({\bf k}_{1}-{\bf K}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})\right]}{\lambda_{m}({\bf k}_{1}-{\bf K}_{1},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})+i\theta}\right.
[a+(𝐤1,𝐤2)Km,+(𝐤1,𝐤2,𝐤1𝐊1,𝐤2)]λm(𝐤1𝐊1,𝐤2)λ+(𝐤1,𝐤2)+iθ)K+,m(𝐤1,𝐤2,𝐤1𝐊1,𝐤2)\displaystyle-\left.\frac{\left[a_{+}({\bf k}_{1},{\bf k}_{2})K_{m,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1}-{\bf K}_{1},{\bf k}_{2})\right]}{\lambda_{m}({\bf k}_{1}-{\bf K}_{1},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})+i\theta}\right)K_{+,m}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1}-{\bf K}_{1},{\bf k}_{2})
+gρ02d3K2(2π)3ei𝐊2(𝐗2𝐗1)C^(𝐊2)𝐯+T(𝐤1,𝐤2)Km,n=±\displaystyle+g\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K_{2}}{(2\pi)^{3}}\,e^{i{\bf K}_{2}\cdot({\bf X}_{2}-{\bf X}_{1})}\hat{C}({\bf K}_{2}){\bf v}_{+}^{T}({\bf k}_{1},{\bf k}_{2})K\sum_{m,n=\pm}
×([am(𝐤1𝐊2/2,𝐤2𝐊2/2)Km,n(𝐤1𝐊2/2,𝐤2𝐊2/2,𝐤1𝐊2/2,𝐤2+𝐊2/2)]λm(𝐤1𝐊2/2,𝐤2𝐊2/2)λn(𝐤1𝐊2/2,𝐤2+𝐊2/2)+iθ\displaystyle\times\left(\frac{\left[a_{m}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}-{\bf K}_{2}/2)K_{m,n}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}-{\bf K}_{2}/2,{\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2)\right]}{\lambda_{m}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}-{\bf K}_{2}/2)-\lambda_{n}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2)+i\theta}\right.
[an(𝐤1𝐊2/2,𝐤2+𝐊2/2)Km,n(𝐤1𝐊2/2,𝐤2+𝐊2/2,𝐤1𝐊2/2,𝐤2𝐊2/2)]λm(𝐤1𝐊2/2,𝐤2𝐊2/2)λn(𝐤1𝐊2/2,𝐤2+𝐊2/2)+iθ)\displaystyle-\left.\frac{\left[a_{n}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2)K_{m,n}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2,{\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}-{\bf K}_{2}/2)\right]}{\lambda_{m}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}-{\bf K}_{2}/2)-\lambda_{n}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2)+i\theta}\right)
×𝐯m(𝐤1𝐊2/2,𝐤2𝐊2/2)𝐯nT(𝐤1𝐊2/2,𝐤2+𝐊2/2)𝐯+(𝐤1,𝐤2).\displaystyle\times{\bf v}_{m}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}-{\bf K}_{2}/2){\bf v}_{n}^{T}({\bf k}_{1}-{\bf K}_{2}/2,{\bf k}_{2}+{\bf K}_{2}/2){\bf v}_{+}({\bf k}_{1},{\bf k}_{2}). (200)

As ϵ0\epsilon\to 0 the above converges to

gρ02d3K(2π)3C^(𝐤1𝐊)m=±([am(𝐊,𝐤2)Km,+(𝐊,𝐤2,𝐤1,𝐤2)]λm(𝐊,𝐤2)λ+(𝐤1,𝐤2)+iθ\displaystyle g\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{1}-{\bf K})\sum_{m=\pm}\left(\frac{\left[a_{m}({\bf K},{\bf k}_{2})K_{m,+}({\bf K},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})\right]}{\lambda_{m}({\bf K},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})+i\theta}\right. (201)
[a+(𝐤1,𝐤2)Km,+(𝐤1,𝐤2,𝐊,𝐤2)]λm(𝐊,𝐤2)λ+(𝐤1,𝐤2)+iθ)K+,m(𝐤1,𝐤2,𝐊,𝐤2),\displaystyle-\left.\frac{\left[a_{+}({\bf k}_{1},{\bf k}_{2})K_{m,+}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})\right]}{\lambda_{m}({\bf K},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})+i\theta}\right)K_{+,m}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})\ , (202)

which follows from the Riemann-Lebesgue Lemma and the fact that W0W_{0} is independent of the fast variables 𝐗1{\bf X}_{1} and 𝐗2{\bf X}_{2}. Similarly the other three terms become

gρ02d3K(2π)3C^(𝐤1𝐊)n=±([a+(𝐤1,𝐤2)K+,n(𝐤1,𝐤2,𝐊,𝐤2)]λ+(𝐤1,𝐤2)λn(𝐊,𝐤2)+iθ\displaystyle-g\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{1}-{\bf K})\sum_{n=\pm}\left(\frac{\left[a_{+}({\bf k}_{1},{\bf k}_{2})K_{+,n}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})\right]}{\lambda_{+}({\bf k}_{1},{\bf k}_{2})-\lambda_{n}({\bf K},{\bf k}_{2})+i\theta}\right.
[an(𝐊,𝐤2)K+,n(𝐊,𝐤2,𝐤1,𝐤2)]λ+(𝐤1,𝐤2)λn(𝐊,𝐤2)+iθ)K+,n(𝐤1,𝐤2,𝐊,𝐤2)\displaystyle-\left.\frac{\left[a_{n}({\bf K},{\bf k}_{2})K_{+,n}({\bf K},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})\right]}{\lambda_{+}({\bf k}_{1},{\bf k}_{2})-\lambda_{n}({\bf K},{\bf k}_{2})+i\theta}\right)K_{+,n}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})
+gρ02d3K(2π)3C^(𝐤2𝐊)m=±([am(𝐤1,𝐊)Km,+(𝐤1,𝐊,𝐤1,𝐤2)]λm(𝐤1,𝐊)λ+(𝐤1,𝐤2)+iθ\displaystyle+g\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{2}-{\bf K})\sum_{m=\pm}\left(\frac{\left[a_{m}({\bf k}_{1},{\bf K})K_{m,+}({\bf k}_{1},{\bf K},{\bf k}_{1},{\bf k}_{2})\right]}{\lambda_{m}({\bf k}_{1},{\bf K})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})+i\theta}\right.
[a+(𝐤1,𝐤2)Km,+(𝐤1,𝐤2,𝐤1,𝐊)]λm(𝐤1,𝐊)λ+(𝐤1,𝐤2)+iθ)K+,m(𝐤1,𝐤2,𝐤1,𝐊)\displaystyle-\left.\frac{\left[a_{+}({\bf k}_{1},{\bf k}_{2})K_{m,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})\right]}{\lambda_{m}({\bf k}_{1},{\bf K})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})+i\theta}\right)K_{+,m}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})
gρ02d3K(2π)3C^(𝐤2𝐊)+,n=±([a+(𝐤1,𝐤2)K+,n(𝐤1,𝐤2,𝐤1,𝐊)]λ+(𝐤1,𝐤2)λn(𝐤1,𝐊)+iθ\displaystyle-g\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{2}-{\bf K})\sum_{+,n=\pm}\left(\frac{\left[a_{+}({\bf k}_{1},{\bf k}_{2})K_{+,n}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})\right]}{\lambda_{+}({\bf k}_{1},{\bf k}_{2})-\lambda_{n}({\bf k}_{1},{\bf K})+i\theta}\right.
[an(𝐤1,𝐊)K+,n(𝐤1,𝐊,𝐤1,𝐤2)]λ+(𝐤1,𝐤2)λn(𝐤1,𝐊)+iθ)K+,n(𝐤1,𝐤2,𝐤1,𝐊).\displaystyle-\left.\frac{\left[a_{n}({\bf k}_{1},{\bf K})K_{+,n}({\bf k}_{1},{\bf K},{\bf k}_{1},{\bf k}_{2})\right]}{\lambda_{+}({\bf k}_{1},{\bf k}_{2})-\lambda_{n}({\bf k}_{1},{\bf K})+i\theta}\right)K_{+,n}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K}). (203)

Making use of the identity

limθ0(1xiθ1x+iθ)=2πiδ(x),\displaystyle\lim_{\theta\to 0}\left(\frac{1}{x-i\theta}-\frac{1}{x+i\theta}\right)=2\pi i\delta(x)\ , (204)

we see that we must have m,n=+m,n=+, to ensure that the support of the delta function is nonempty since λ+\lambda_{+} and λ\lambda_{-} are never equal. Thus the above equation simplifies as

iπgρ02d3K(2π)3C^(𝐤1𝐊)δ(λ+(𝐊,𝐤2)λ+(𝐤1,𝐤2))\displaystyle-i\pi{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{1}-{\bf K})\delta(\lambda_{+}({\bf K},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2}))
×(a+(𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐊,𝐤2)2a+(𝐊,𝐤2)K+,+(𝐊,𝐤2,𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐊,𝐤2))\displaystyle\times\left(a_{+}({\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})^{2}-a_{+}({\bf K},{\bf k}_{2})K_{+,+}({\bf K},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})\right)
iπgρ02d3K(2π)3C^(𝐤2𝐊)δ(λ+(𝐤1,𝐊)λ+(𝐤1,𝐤2))\displaystyle-i\pi{g}\sqrt{\frac{\rho_{0}}{2}}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{2}-{\bf K})\delta(\lambda_{+}({\bf k}_{1},{\bf K})-\lambda_{+}({\bf k}_{1},{\bf k}_{2}))
×(a+(𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐤1,𝐊)2a+(𝐤1,𝐊)K+,+(𝐤1,𝐊,𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐤1,𝐊)).\displaystyle\times\left(a_{+}({\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})^{2}-a_{+}({\bf k}_{1},{\bf K})K_{+,+}({\bf k}_{1},{\bf K},{\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})\right). (205)

Putting everything together, we see that a+a_{+} satisfies the equation

1cta++[(λ+(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+g2ρ0(λ+(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+2g2ρ0](𝐤^1𝐱1+𝐤^2𝐱2)a+\displaystyle\frac{1}{c}\partial_{t}a_{+}+\left[\frac{(\lambda_{+}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+{g}^{2}\rho_{0}}{(\lambda_{+}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+2{g}^{2}\rho_{0}}\right]\left(\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}+\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}\right)a_{+}
=\displaystyle= πgρ02d3K(2π)3C^(𝐤1𝐊)δ(λ+(𝐊,𝐤2)λ+(𝐤1,𝐤2))\displaystyle-\pi{g}\frac{\rho_{0}}{2}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{1}-{\bf K})\delta(\lambda_{+}({\bf K},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})) (206)
×(a+(𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐊,𝐤2)2a+(𝐊,𝐤2)K+,+(𝐊,𝐤2,𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐊,𝐤2))\displaystyle\times\left(a_{+}({\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})^{2}-a_{+}({\bf K},{\bf k}_{2})K_{+,+}({\bf K},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf K},{\bf k}_{2})\right)
πg2ρ02d3K(2π)3C^(𝐤2𝐊)δ(λ+(𝐤1,𝐊)λ+(𝐤1,𝐤2))\displaystyle-\pi{g}^{2}\frac{\rho_{0}}{2}\int\frac{{{d}}^{3}K}{(2\pi)^{3}}\,\hat{C}({\bf k}_{2}-{\bf K})\delta(\lambda_{+}({\bf k}_{1},{\bf K})-\lambda_{+}({\bf k}_{1},{\bf k}_{2}))
×(a+(𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐤1,𝐊)2a+(𝐤1,𝐊)K+,+(𝐤1,𝐊,𝐤1,𝐤2)K+,+(𝐤1,𝐤2,𝐤1,𝐊)).\displaystyle\times\left(a_{+}({\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})^{2}-a_{+}({\bf k}_{1},{\bf K})K_{+,+}({\bf k}_{1},{\bf K},{\bf k}_{1},{\bf k}_{2})K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf K})\right). (207)

The delta function can be simplified using the identity

δ(g(x))=δ(xx0)|g(x0)|\displaystyle\delta(g(x))=\frac{\delta(x-x_{0})}{|g^{\prime}(x_{0})|} (208)

where gg has a single real root at x=x0x=x_{0}. Thus

δ(λ+(𝐊,𝐤2)λ+(𝐤1,𝐤2))\displaystyle\delta(\lambda_{+}({\bf K},{\bf k}_{2})-\lambda_{+}({\bf k}_{1},{\bf k}_{2})) =δ(|𝐊||𝐤1|)c4|c(|𝐤|+|𝐤2|)/2Ω+32(c(|𝐤|+|𝐤2|)/2Ω)2+8g2ρ0|.\displaystyle=\frac{\delta(|{\bf K}|-|{\bf k}_{1}|)}{\frac{c}{4}\left|{c(|{\bf k}|+|{\bf k}_{2}|)}/{2}-\Omega+\frac{3}{2}\sqrt{({c(|{\bf k}|+|{\bf k}_{2}|)}/{2}-\Omega)^{2}+8g^{2}\rho_{0}}\right|}\ . (209)

Hence  (C) becomes

1cta++[(λ+(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+g2ρ0(λ+(𝐤1,𝐤2)d(𝐤1,𝐤2)Ω)2+2g2ρ0](𝐤^1𝐱1+𝐤^2𝐱2)a+\displaystyle\frac{1}{c}\partial_{t}a_{+}+\left[\frac{(\lambda_{+}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+{g}^{2}\rho_{0}}{(\lambda_{+}({\bf k}_{1},{\bf k}_{2})-d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+2{g}^{2}\rho_{0}}\right]\left(\hat{\bf k}_{1}\cdot\nabla_{{\bf x}_{1}}+\hat{\bf k}_{2}\cdot\nabla_{{\bf x}_{2}}\right)a_{+}
=\displaystyle= 2g2ρ0πcK+,+(𝐤1,𝐤2,𝐤1,𝐤2)2|d(𝐤1,𝐤2)Ω+32(d(𝐤1,𝐤2)Ω)2+8g2ρ0||𝐤1|2\displaystyle-\frac{2g^{2}\rho_{0}\pi}{c}\frac{K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})^{2}}{\left|d({\bf k}_{1},{\bf k}_{2})-\Omega+\frac{3}{2}\sqrt{(d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+8g^{2}\rho_{0}}\right|}|{\bf k}_{1}|^{2}
×d𝐤^(2π)3C^(|𝐤1|(𝐤^1𝐤^))(a+(𝐤1,𝐤2)a+(|𝐤1|𝐤^,𝐤2))\displaystyle\times\int\frac{d{\hat{{\bf k}}}^{\prime}}{(2\pi)^{3}}\,\hat{C}(|{\bf k}_{1}|({\hat{{\bf k}}}_{1}-{\hat{{\bf k}}}^{\prime}))\left(a_{+}({\bf k}_{1},{\bf k}_{2})-a_{+}(|{\bf k}_{1}|{\hat{{\bf k}}}^{\prime},{\bf k}_{2})\right)
2g2ρ0πcK+,+(𝐤1,𝐤2,𝐤1,𝐤2)2|d(𝐤1,𝐤2)Ω+32(d(𝐤1,𝐤2)Ω)2+8g2ρ0||𝐤2|2\displaystyle-\frac{2g^{2}\rho_{0}\pi}{c}\frac{K_{+,+}({\bf k}_{1},{\bf k}_{2},{\bf k}_{1},{\bf k}_{2})^{2}}{\left|d({\bf k}_{1},{\bf k}_{2})-\Omega+\frac{3}{2}\sqrt{(d({\bf k}_{1},{\bf k}_{2})-\Omega)^{2}+8g^{2}\rho_{0}}\right|}|{\bf k}_{2}|^{2}
×d𝐤^(2π)3C^(|𝐤2|(𝐤^2𝐤^))(a+(𝐤1,𝐤2)a+(𝐤1,|𝐤2|𝐤^)),\displaystyle\times\int\frac{d{\hat{{\bf k}}}^{\prime}}{(2\pi)^{3}}\,\hat{C}(|{\bf k}_{2}|({\hat{{\bf k}}}_{2}-{\hat{{\bf k}}}^{\prime}))\left(a_{+}({\bf k}_{1},{\bf k}_{2})-a_{+}({\bf k}_{1},|{\bf k}_{2}|{\hat{{\bf k}}}^{\prime})\right)\ , (210)

as desired.

Appendix D Bosonic Model

Here we consider the bosonic analog of the model described in section 2. The physical implications of the bosonic model will be explored elsewhere.

We suppose that the atomic field σ\sigma satisfies the bosonic commutation relations

[σ(𝐱),σ(𝐱)]\displaystyle[\sigma({\bf x}),\sigma^{\dagger}({\bf x}^{\prime})] =1ρ(𝐱)δ(𝐱𝐱),\displaystyle=\frac{1}{\rho({\bf x})}\delta({\bf x}-{\bf x}^{\prime})\ , (211)
[σ(𝐱),σ(𝐱)]\displaystyle[\sigma({\bf x}),\sigma({\bf x}^{\prime})] =0.\displaystyle=0\ . (212)

The Hamiltonian (1) remains unchanged. As in section 2, we assume that the state |Ψ|\Psi\rangle is of the form

|Ψ=d3x1d3x2\displaystyle|\Psi\rangle=\int d^{3}x_{1}d^{3}x_{2} (ψ2(𝐱1,𝐱2,t)ϕ(𝐱1)ϕ(𝐱2)+ψ1(𝐱1,𝐱2,t)ρ(𝐱1)σ(𝐱1)ϕ(𝐱2)\displaystyle\left(\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\phi^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})+\psi_{1}({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\sigma^{\dagger}({\bf x}_{1})\phi^{\dagger}({\bf x}_{2})\right. (213)
+\displaystyle+ a(𝐱1,𝐱2,t)ρ(𝐱1)ρ(𝐱2)σ(𝐱1)σ(𝐱2))|0.\displaystyle\left.a({\bf x}_{1},{\bf x}_{2},t)\rho({\bf x}_{1})\rho({\bf x}_{2})\sigma^{\dagger}({\bf x}_{1})\sigma^{\dagger}({\bf x}_{2})\right)|0\rangle\ .

The amplitudes ψ2\psi_{2} and aa are now both taken to be symmetric,

ψ2(𝐱2,𝐱1,t)=ψ2(𝐱1,𝐱2,t),a(𝐱2,𝐱1,t)=a(𝐱1,𝐱2,t),\psi_{2}({\bf x}_{2},{\bf x}_{1},t)=\psi_{2}({\bf x}_{1},{\bf x}_{2},t)\ ,\quad a({\bf x}_{2},{\bf x}_{1},t)=a({\bf x}_{1},{\bf x}_{2},t)\ , (214)

consistent with the bosonic character of the fields. Making use of the Schrodinger equation (14), we find that ψ1\psi_{1}, ψ2\psi_{2}, and aa satisfy the system of equations

itψ2(𝐱1,𝐱2,t)=c(Δ𝐱1)1/2ψ2(𝐱1,𝐱2,t)+c(Δ𝐱2)1/2ψ2(𝐱1,𝐱2,t)\displaystyle i\partial_{t}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)=c(-\Delta_{{\bf x}_{1}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+c(-\Delta_{{\bf x}_{2}})^{1/2}\psi_{2}({\bf x}_{1},{\bf x}_{2},t)
+g2(ρ(𝐱1)ψ1(𝐱1,𝐱2,t)+ρ(𝐱2)ψ1(𝐱2,𝐱1,t)),\displaystyle+\frac{g}{2}(\rho({\bf x}_{1})\psi_{1}({\bf x}_{1},{\bf x}_{2},t)+\rho({\bf x}_{2})\psi_{1}({\bf x}_{2},{\bf x}_{1},t))\ , (215)
ρ(𝐱1)itψ1(𝐱1,𝐱2,t)=2gρ(𝐱1)ψ2(𝐱1,𝐱2,t)+ρ(𝐱1)[c(Δ𝐱2)1/2+Ω]ψ1(𝐱1,𝐱2,t)\displaystyle\rho({\bf x}_{1})i\partial_{t}\psi_{1}({\bf x}_{1},{\bf x}_{2},t)=2{g}\rho({\bf x}_{1})\psi_{2}({\bf x}_{1},{\bf x}_{2},t)+\rho({\bf x}_{1})\left[c(-\Delta_{{\bf x}_{2}})^{1/2}+\Omega\right]\psi_{1}({\bf x}_{1},{\bf x}_{2},t)
+2gρ(𝐱1)ρ(𝐱2)a(𝐱1,𝐱2,t),\displaystyle+2{g}\rho({\bf x}_{1})\rho({\bf x}_{2})a({\bf x}_{1},{\bf x}_{2},t)\ , (216)
ρ(𝐱1)ρ(𝐱2)ita(𝐱1,𝐱2,t)=ρ(𝐱1)ρ(𝐱2)g2(ψ1(𝐱2,𝐱1,t)+ψ1(𝐱1,𝐱2,t))+2Ωρ(𝐱1)ρ(𝐱2)a(𝐱1,𝐱2,t).\displaystyle\rho({\bf x}_{1})\rho({\bf x}_{2})i\partial_{t}a({\bf x}_{1},{\bf x}_{2},t)=\rho({\bf x}_{1})\rho({\bf x}_{2})\frac{g}{2}(\psi_{1}({\bf x}_{2},{\bf x}_{1},t)+\psi_{1}({\bf x}_{1},{\bf x}_{2},t))+2\Omega\rho({\bf x}_{1})\rho({\bf x}_{2})\,a({\bf x}_{1},{\bf x}_{2},t)\ . (217)

Note that there is a difference in the equations of motion for the bosonic and fermionic cases. Namely, a single term in each of (16), (17) and (216), (217) changes sign. We also note that there is no corresponding change in the single excitation theory of [43].

The bosonic model allows more than one atomic excitation to be present at the same point in space. To address this difficulty, the Hamiltonian is modified by adding an interaction term of the form

H=Ud3xρ(𝐱)n(𝐱)(n(𝐱)1),\displaystyle H=\hbar U\int d^{3}x\rho({\bf x})n({\bf x})\left(n({\bf x})-1\right)\ , (218)

where the number operator n(𝐱)=σ(𝐱)σ(𝐱)n({\bf x})=\sigma^{\dagger}({\bf x})\sigma({\bf x}) and the repulsion UU is a large positive number. The above term penalizes the creation of an excitation at a point where another is present. A similar term arises in the Hubbard model for fermionic systems.

Acknowledgments

This work was performed when the authors were members of the Department of Mathematics at University of Michigan. We thank Nick Read for valuable discussions. This work was supported in part by the NSF grant DMS-1912821 and the AFOSR grant FA9550-19-1-0320. J.E.K. was supported, in part, by Simons Foundation Math + X Investigator Award No. 376319 (Michael I. Weinstein).

Author Declarations

Conflict of Interest

The authors have no conflicts to disclose.

Data Sharing

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • [1] M. C. W. van Rossum and Th. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).
  • [2] P. Lodahl, A.P. Mosk and A. Lagendijk, Phys. Rev. Lett. 95, 173901 (2005).
  • [3] S. Smolka, A. Huck, U. L. Andersen, A. Lagendijk and P. Lodahl, Phys. Rev. Lett. 102, 193901 (2009).
  • [4] S. Smolka, J. R. Ott, A. H. Ulrik, L. Andersen and P. Lodahl, Phys. Rev. A 86, 033814 (2012).
  • [5] W. H. Peeters, J. J. D. Moerman and M. P. van Exter Phys. Rev. Lett. 104, 173601 (2010).
  • [6] H. D. Pires, J. Woudenberg and M. P. van Exter, Phys. Rev. A 85, 033807 (2012).
  • [7] S. Smolka, O. L. Muskens, A. Lagendijk and P. Lodahl, Phys. Rev. A 83, 043819 (2011).
  • [8] M. P. van Exter, J. Woudenberg, H. Di Lorenzo Pires and W. H. Peeters, Phys. Rev. A 85, 033823 (2012).
  • [9] P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
  • [10] P. Lodahl, Opt. Express 14, 6919 (2006).
  • [11] P. Lodahl, Opt. Lett. 31, 110 (2006).
  • [12] M. Patra and C.W.J. Beenakker, Phys. Rev. A 60, 4059 (1999).
  • [13] C. W. J. Beenakker, J. W. F. Venderbos and M. P. van Exter, Phys. Rev. Lett. 102, 193601 (2009).
  • [14] J. Tworzydlo and C. W. J. Beenakker, Phys. Rev. Lett. 89, 043902 (2002).
  • [15] C.W.J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
  • [16] Y. Lahini, Y. Bromberg, D. N. Christodoulides and Y. Silberberg, Phys. Rev. Lett. 105, 63905 (2010).
  • [17] J. R. Ott, N. A. Mortensen and P. Lodahl, Phys. Rev. Lett. 105 090501 (2010).
  • [18] N. Cherroret and A. Buchleitner, Phys. Rev. A 83, 033827 (2011) .
  • [19] M. Cande and S. E. Skipetrov, Phys. Rev. A 87, 013846 (2013).
  • [20] M. Cande, A. Goetschy, and S. E. Skipetrov, Europhys. Lett. 107, 54004 (2014).
  • [21] S. E. Skipetrov, Phys. Rev. A 75, 053808 (2007).
  • [22] D. N. Klyshko, Zh. Eksp. Teor. Fiz. 94, 82 (1988) [Sov. Phys. JETP 67, 1131 (1988)].
  • [23] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko and Y. H. Shih, Phys. Rev. Lett. 74, 3600 (1995).
  • [24] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, Phys. Rev. Lett. 87, 123602 (2001).
  • [25] A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh and M. C. Teich, Phys. Rev. Lett. 93, 213903 (2004).
  • [26] A. Gatti, E. Brambilla, M. Bache and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).
  • [27] G. Scarcelli, A. Valencia and Y.H. Shih, Europhys. Lett. 68, 618 (2004).
  • [28] G. Scarcelli, V. Berardi and Y.H. Shih, Phys. Rev. Lett. 96, 063602 (2006).
  • [29] B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 78, 023835 (2008).
  • [30] M. D’Angelo, A. Valencia, M.H. Rubin and Y.H. Shih, Phys. Rev. A 72, 013810 (2005).
  • [31] J. C. Schotland, Opt. Lett. 35, 3309 (2010).
  • [32] A. L. Moustakas, H. U. Baranger, L. Balents, A. M. Sengupta and S. H. Simon, Science 287, 287 (2000).
  • [33] S. E. Skipetrov, Phys. Rev. E 67, 036621 (2003).
  • [34] J. H. Shapiro, IEEE J. Selected Topics in Quantum Electronics, 15 (2009).
  • [35] B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko and M. C. Teich, Phys. Rev. A 62, 043816 (2000).
  • [36] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, J. Opt. Soc. Am. B 19, 1174 (2002).
  • [37] J. C. Schotland, A. Caze and T. B. Norris, Opt. Lett. 41, 444-447 (2016).
  • [38] V. A. Markel and J. C. Schotland, Phys. Rev. A 90, 033815 (2014).
  • [39] L. Ryzhik, G. Papanicolaou and J. B. Keller, Wave Motion 24, 327 (1996).
  • [40] G. Bal, Wave Motion 43, 132 (2005).
  • [41] A. Caze and J. C. Schotland, J. Opt. Soc. Am. A 32, 1475 (2015).
  • [42] R. Carminati and J. C. Schotland, Principles of Scattering and Transport of Light (Cambridge University Press, 2021).
  • [43] J. Kraisler and J. C. Schotland, J. Math. Phys. 63, 031901 (2022).