This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kida’s formula for graphs with ramifications

Takenori Kataoka Department of Mathematics, Faculty of Science Division II, Tokyo University of Science. 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan [email protected]
Abstract.

Recently Iwasawa theory for graphs is developing. A significant achievement includes an analogue of Iwasawa class number formula, which describes the asymptotic growth of the numbers of spanning trees for p\mathbb{Z}_{p}-coverings of graphs. Moreover, an analogue of Kida’s formula concerning the behavior of the λ\lambda- and μ\mu-invariants is obtained for unramified coverings. In this paper, we establish Kida’s formula for possibly ramified coverings.

Key words and phrases:
graphs, Jacobian groups, Iwasawa theory, Kida’s formula
2020 Mathematics Subject Classification:
05C25 (Primary), 11R23

1. Introduction

1.1. Classical Iwasawa theory

We begin with a brief review of classical Iwasawa theory. Let pp be a prime number. In classical Iwasawa theory, we mainly deal with a p\mathbb{Z}_{p}-extension K/KK_{\infty}/K of number fields, that is,

K=K0K1K2,K=K_{0}\subset K_{1}\subset K_{2}\subset\cdots,

where Kn/KK_{n}/K is a /pn\mathbb{Z}/p^{n}\mathbb{Z}-extension. The so-called Iwasawa class number formula due to Iwasawa [3, Theorem 11] (see also Washington [13, Theorem 13.13]) claims

ordp(#Cl(Kn))=λn+μpn+ν,n0\operatorname{ord}_{p}(\#\operatorname{Cl}(K_{n}))=\lambda n+\mu p^{n}+\nu,\quad n\gg 0

for some integers λ=λ(K/K)0\lambda=\lambda(K_{\infty}/K)\geq 0, μ=μ(K/K)0\mu=\mu(K_{\infty}/K)\geq 0, and ν\nu, which are called the Iwasawa invariants. Here, Cl(Kn)\operatorname{Cl}(K_{n}) denotes the class group of KnK_{n} and ordp()\operatorname{ord}_{p}(-) denotes the pp-adic valuation that is normalized by ordp(p)=1\operatorname{ord}_{p}(p)=1.

Kida [7] obtained a formula that describes the behavior of the Iwasawa invariants when K/KK_{\infty}/K varies. To be concrete, let GG be a finite pp-group and K~/K~\widetilde{K}_{\infty}/\widetilde{K} be another p\mathbb{Z}_{p}-extension such that K~n/K\widetilde{K}_{n}/K is a /pn×G\mathbb{Z}/p^{n}\mathbb{Z}\times G-extension for any n0n\geq 0. Then conceptually the formula claims that μ(K/K)=0\mu(K_{\infty}/K)=0 is equivalent to μ(K~/K~)=0\mu(\widetilde{K}_{\infty}/\widetilde{K})=0, in which case λ(K~/K~)\lambda(\widetilde{K}_{\infty}/\widetilde{K}) can be described by using λ(K/K)\lambda(K_{\infty}/K) together with the ramification information in K~/K\widetilde{K}_{\infty}/K_{\infty}. (To be precise, the original Kida’s formula only concerns the minus components for the cyclotomic p\mathbb{Z}_{p}-extensions of CM-fields.)

1.2. Iwasawa theory for graphs

The main object in this paper is graphs, which we assume to be finite and connected in this introduction. For a graph XX, let κ(X)\kappa(X) be the number of spanning trees of XX. By Kirchhoff’s theorem, the number κ(X)\kappa(X) is equal to the order of the Jacobian group Jac(X)\operatorname{Jac}(X) of XX (see §2.1). Note that Jac(X)\operatorname{Jac}(X) is also known as the Picard group of degree zero, the sandpile group, and the critical group. This interpretation enables us to study κ(X)\kappa(X) by an algebraic investigation of Jac(X)\operatorname{Jac}(X).

Let X/XX_{\infty}/X be an unramified (or unbranched) p\mathbb{Z}_{p}-covering of graphs, that is, we are given a family of graphs

X=X0X1X2,X=X_{0}\leftarrow X_{1}\leftarrow X_{2}\leftarrow\cdots,

where Xn/XX_{n}/X is an unramified /pn\mathbb{Z}/p^{n}\mathbb{Z}-covering. This XnX_{n} is called the nn-th layer of X/XX_{\infty}/X. Then an analogue of the Iwasawa class number formula, due to Gonet [2, Theorem 1.1] or McGown–Valliéres [8, Theorem 6.1] (see also the author’s article [5, §8.1]), claims

ordp(κ(Xn))=λn+μpn+ν,n0\operatorname{ord}_{p}(\kappa(X_{n}))=\lambda n+\mu p^{n}+\nu,\quad n\gg 0

for some integers λ=λ(X/X)0\lambda=\lambda(X_{\infty}/X)\geq 0, μ=μ(X/X)0\mu=\mu(X_{\infty}/X)\geq 0, and ν\nu.

To discuss Kida’s formula, let GG be a finite pp-group. Let X~/X~\widetilde{X}_{\infty}/\widetilde{X} be another unramified p\mathbb{Z}_{p}-covering such that the nn-th layer X~n\widetilde{X}_{n} is an unramified /pn×G\mathbb{Z}/p^{n}\mathbb{Z}\times G-covering of XX for any n0n\geq 0. Then the analogue of Kida’s formula, due to Ray–Valliéres [10, Theorem 4.1] (see also [5, §8.2]), says that μ(X/X)=0\mu(X_{\infty}/X)=0 is equivalent to μ(X~/X~)=0\mu(\widetilde{X}_{\infty}/\widetilde{X})=0, in which case we have

λ(X~/X~)+1=[X~:X](λ(X/X)+1)\lambda(\widetilde{X}_{\infty}/\widetilde{X})+1=[\widetilde{X}_{\infty}:X_{\infty}](\lambda(X_{\infty}/X)+1)

with [X~:X]=#G[\widetilde{X}_{\infty}:X_{\infty}]=\#G. Compared to the original formula of Kida, the ramification terms disappear naturally because X~/X\widetilde{X}_{\infty}/X_{\infty} is assumed to be unramified.

1.3. Main theorem

As we have emphasized, Iwasawa theory for graphs has been developed mainly for unramified coverings so far. In a latest paper of Gambheera–Valliéres [1], they initiated an Iwasawa theoretic study of ramified (or branched) coverings of graphs (see §2.2). As a fundamental result, for a possibly ramified p\mathbb{Z}_{p}-covering X/XX_{\infty}/X, they proved that the aforementioned analogue of the Iwasawa class number formula is still valid literally (see Theorem 4.1).

In this paper, we establish Kida’s formula for graphs with ramifications. As above, let GG be a finite pp-group and we consider p\mathbb{Z}_{p}-coverings X/XX_{\infty}/X and X~/X~\widetilde{X}_{\infty}/\widetilde{X} such that X~n/X\widetilde{X}_{n}/X is a /pn×G\mathbb{Z}/p^{n}\mathbb{Z}\times G-covering for any n0n\geq 0. Let us stress that we allow the ramifications both in X~/X\widetilde{X}_{\infty}/X_{\infty} and in X/XX_{\infty}/X. The main theorem is the following:

Theorem 1.1.

We have μ(X~/X~)=0\mu(\widetilde{X}_{\infty}/\widetilde{X})=0 if and only if we have μ(X/X)=0\mu(X_{\infty}/X)=0 and ()(\star) holds:

()(\star) any vertex of XX is either ramified in X/XX_{\infty}/X or unramified in X~/X\widetilde{X}_{\infty}/X_{\infty}.

If these equivalent conditions hold, then we have

λ(X~/X~)+1=[X~:X](λ(X/X)+1)vVXnv(X~/X)(mv(X~/X)1).\lambda(\widetilde{X}_{\infty}/\widetilde{X})+1=[\widetilde{X}_{\infty}:X_{\infty}](\lambda(X_{\infty}/X)+1)-\sum_{v\in V_{X}}n_{v}(\widetilde{X}_{\infty}/X)(m_{v}(\widetilde{X}_{\infty}/X_{\infty})-1).

Here, VXV_{X} denotes the set of vertices of XX, mv(X~/X)m_{v}(\widetilde{X}_{\infty}/X_{\infty}) denotes the ramification index of vv in X~/X\widetilde{X}_{\infty}/X_{\infty}, and nv(X~/X)n_{v}(\widetilde{X}_{\infty}/X) denotes the number of vertices of X~\widetilde{X}_{\infty} lying over vv.

Remark 1.2.

Theorem 1.1 is formulated symbolically, and to be precise it is better to rephrase it by using only finite graphs X~n\widetilde{X}_{n} and XnX_{n} instead of X~\widetilde{X}_{\infty} and XX_{\infty}. The degree [X~:X][\widetilde{X}_{\infty}:X_{\infty}] is understood to be #G\#G (which equals the degree [X~n:Xn][\widetilde{X}_{n}:X_{n}] for any nn). Let vv be a vertex of XX.

  • Using the ramification indices mv(Xn/X)1m_{v}(X_{n}/X)\geq 1, we say vv is ramified in X/XX_{\infty}/X if mv(Xn/X)>1m_{v}(X_{n}/X)>1 for some nn.

  • Using the ramification indices mv(X~n/Xn)1m_{v}(\widetilde{X}_{n}/X_{n})\geq 1, which are decreasing with respect to nn, we define mv(X~/X)m_{v}(\widetilde{X}_{\infty}/X_{\infty}) as its limit. We say vv is unramified in X~/X\widetilde{X}_{\infty}/X_{\infty} if mv(X~/X)=1m_{v}(\widetilde{X}_{\infty}/X_{\infty})=1.

  • Using the numbers nv(X~n/X)n_{v}(\widetilde{X}_{n}/X) of vertices of X~n\widetilde{X}_{n} lying above vv, which are increasing with respect to nn, we define nv(X~/X)n_{v}(\widetilde{X}_{\infty}/X) as its limit.

In general, nv(X~/X)n_{v}(\widetilde{X}_{\infty}/X) can be infinite. However, in this case, vv is unramified in X/XX_{\infty}/X, so condition ()(\star) implies that mv(X~/X)=1m_{v}(\widetilde{X}_{\infty}/X_{\infty})=1 and we set

nv(X~/X)(mv(X~/X)1)=0.n_{v}(\widetilde{X}_{\infty}/X)(m_{v}(\widetilde{X}_{\infty}/X_{\infty})-1)=0.

This is why the formula makes sense.

Remark 1.3.

(1) If X~/X\widetilde{X}_{\infty}/X_{\infty} is unramified, then condition ()(\star) holds, no matter how X/XX_{\infty}/X is ramified. Therefore, we have the equivalence between μ=0\mu=0 for X~/X~\widetilde{X}_{\infty}/\widetilde{X} and for X/XX_{\infty}/X, in which case

λ(X~/X~)+1=[X~:X](λ(X/X)+1)\lambda(\widetilde{X}_{\infty}/\widetilde{X})+1=[\widetilde{X}_{\infty}:X_{\infty}](\lambda(X_{\infty}/X)+1)

holds. This formula is of the same form as the previous one for the unramified case.

(2) In the original Kida’s formula concerning class groups, the terms corresponding to nv(X~/X)n_{v}(\widetilde{X}_{\infty}/X) are automatically finite since we deal with cyclotomic p\mathbb{Z}_{p}-extensions of number fields, in which all finite primes are finitely split. Contrary to this, Iwasawa [4, Theorem 1] constructed p\mathbb{Z}_{p}-extensions of number fields with μ>0\mu>0 by using the anti-cyclotomic p\mathbb{Z}_{p}-extensions of imaginary quadratic fields, in which finite primes often splits completely. Moreover, Iwasawa [4, Theorem 2] also showed that μ=0\mu=0 is retained as long as a condition like ()(\star) holds. These observations imply that condition ()(\star) is natural.

1.4. Organization of this paper

In §2, we introduce basic notations concerning graphs. In §3, we study precise functoriality properties of Picard groups, which is essential to prove the main theorem. Then in §4, we prove the main theorem. Finally, in §5, we observe very simple examples.

2. Preliminaries

In §2.1, we fix our convention concerning graphs and then define the Jacobian groups. In §2.2, we define Galois coverings of graphs with ramifications. In §§2.32.4, we show that Galois coverings arise as the derived graphs of voltage graphs.

2.1. Graphs and Jacobian groups

We first introduce the notions of graphs and the Jacobian groups. See [1, §§2.1–2.2] or the author’s article [5, §2] for the details. We use Serre’s formalism of graphs [11, Chapter I, §2.1].

Definition 2.1.

A finite graph XX consists of a finite set VXV_{X} of vertices, a finite set 𝔼X\mathbb{E}_{X} of edges, an involution on 𝔼X\mathbb{E}_{X} without fixed points, denoted by ee¯e\mapsto\overline{e}, and two maps s,t:𝔼XVXs,t:\mathbb{E}_{X}\to V_{X} satisfying s(e¯)=t(e)s(\overline{e})=t(e) and t(e¯)=s(e)t(\overline{e})=s(e).

Each e𝔼Xe\in\mathbb{E}_{X} is regarded as an edge that connects s(e)s(e) to t(e)t(e), and e¯\overline{e} is the opposite of ee. For each vVXv\in V_{X}, we write 𝔼X,v\mathbb{E}_{X,v} for the set of e𝔼Xe\in\mathbb{E}_{X} such that s(e)=vs(e)=v. Note that we allow multi-edges and loops, so our graphs may be called multigraphs. We will usually study connected graphs, which means that any two vertices can be connected by a path of edges.

Definition 2.2.

Let XX be a finite connected graph. We define the divisor group of XX as the free \mathbb{Z}-module on the set VXV_{X}, i.e.,

Div(X)=vVX[v].\operatorname{Div}(X)=\bigoplus_{v\in V_{X}}\mathbb{Z}[v].

We define a \mathbb{Z}-homomorphism X:Div(X)Div(X)\mathcal{L}_{X}:\operatorname{Div}(X)\to\operatorname{Div}(X), called the Laplacian operator, by

X([v])=e𝔼X,v([v][t(e)]),vVX.\mathcal{L}_{X}([v])=\sum_{e\in\mathbb{E}_{X,v}}\left([v]-[t(e)]\right),\quad v\in V_{X}.

We define the Picard group Pic(X)\operatorname{Pic}(X) of XX as the cokernel of X\mathcal{L}_{X}.

Let degX:Div(X)\deg_{X}:\operatorname{Div}(X)\to\mathbb{Z} be the degree map, i.e., degX\deg_{X} is the \mathbb{Z}-homomorphism that sends any [v][v] to 11. We clearly have degXX=0\deg_{X}\circ\mathcal{L}_{X}=0, so degX\deg_{X} factors through Pic(X)\operatorname{Pic}(X). Then we define the Jacobian group Jac(X)\operatorname{Jac}(X) as the kernel of the induced map degX:Pic(X)\deg_{X}:\operatorname{Pic}(X)\to\mathbb{Z}.

It is known that Jac(X)\operatorname{Jac}(X) is a finite abelian group. Indeed, by Kirchhoff’s theorem, the order of Jac(X)\operatorname{Jac}(X) is equal to the number κ(X)\kappa(X) of spanning trees of XX. It also follows that the kernel of X\mathcal{L}_{X} is a free \mathbb{Z}-module of rank one with a basis vVX[v]\sum_{v\in V_{X}}[v]. Therefore, we have two fundamental exact sequences

(2.1) 0ιXDiv(X)XDiv(X)Pic(X)0,0\to\mathbb{Z}\overset{\iota_{X}}{\to}\operatorname{Div}(X)\overset{\mathcal{L}_{X}}{\to}\operatorname{Div}(X)\to\operatorname{Pic}(X)\to 0,

where ιX\iota_{X} sends 11 to vVX[v]\sum_{v\in V_{X}}[v], and

(2.2) 0Jac(X)Pic(X)degX0.0\to\operatorname{Jac}(X)\to\operatorname{Pic}(X)\overset{\deg_{X}}{\to}\mathbb{Z}\to 0.

2.2. Galois coverings of graphs

We introduce the notion of (possibly ramified) Galois coverings, basically following [1, §3.1]. We begin with the definition of morphisms of graphs. Let XX and YY be finite graphs.

Definition 2.3 ([1, Definition 2.1]).

A morphism f:YXf:Y\to X of graphs consists of maps fV:VYVXf_{V}:V_{Y}\to V_{X} and f𝔼:𝔼Y𝔼Xf_{\mathbb{E}}:\mathbb{E}_{Y}\to\mathbb{E}_{X} such that

fV(s(e))=s(f𝔼(e)),fV(t(e))=t(f𝔼(e)),f𝔼(e¯)=f𝔼(e)¯f_{V}(s(e))=s(f_{\mathbb{E}}(e)),\quad f_{V}(t(e))=t(f_{\mathbb{E}}(e)),\quad f_{\mathbb{E}}(\overline{e})=\overline{f_{\mathbb{E}}(e)}

for any e𝔼Ye\in\mathbb{E}_{Y}.

Definition 2.4 ([1, Definition 3.1] or Sunada [12, page 69]).

A (ramified) covering f:YXf:Y\to X is a morphism of graphs that satisfies the following condition:

For each vertex wVYw\in V_{Y}, there is a positive integer mw(f)m_{w}(f) such that the map

f𝔼:𝔼Y,w𝔼X,fV(w)f_{\mathbb{E}}:\mathbb{E}_{Y,w}\to\mathbb{E}_{X,f_{V}(w)}

is mw(f)m_{w}(f)-to-one.

We often write Y/XY/X for this covering, making ff implicit.

A vertex wVYw\in V_{Y} is said to be lying above vVXv\in V_{X} if fV(w)=vf_{V}(w)=v. The number mw(Y/X)=mv(f)m_{w}(Y/X)=m_{v}(f) is referred to as the ramification index of ww. Naturally we say ww is unramified if mw(Y/X)=1m_{w}(Y/X)=1, and a vertex vv of XX is unramified if all vertices of YY lying above vv are unramified. An unramified covering is by definition a covering such that any vertices are unramified.

Now we go on to the definition of Galois coverings. The general definition does not explicitly written in [1]; instead, they only deal with derived graphs associated to voltage graphs (see §2.3). In this paper, we introduce a reasonable definition of Galois coverings. We will see that actually all of them can be constructed as derived graphs (Proposition 2.11).

Definition 2.5.

Let Γ\Gamma be a finite group. A Γ\Gamma-covering Y/XY/X (or a Galois covering with Galois group Γ\Gamma) is a morphism f:YXf:Y\to X equipped with an action of Γ\Gamma on YY satisfying the following:

  • The action of Γ\Gamma on YY respects f:YXf:Y\to X, so the fibers fV1(v)VYf_{V}^{-1}(v)\subset V_{Y} and f𝔼1(e)𝔼Yf_{\mathbb{E}}^{-1}(e)\subset\mathbb{E}_{Y} are Γ\Gamma-stable for each vVXv\in V_{X} and e𝔼Xe\in\mathbb{E}_{X}.

  • For each vVXv\in V_{X}, the action of Γ\Gamma on fV1(v)f_{V}^{-1}(v) is transitive.

  • For each e𝔼Xe\in\mathbb{E}_{X}, the action of Γ\Gamma on f𝔼1(e)f_{\mathbb{E}}^{-1}(e) is transitive and free.

In other words, the action of Γ\Gamma on 𝔼Y\mathbb{E}_{Y} is free and ff induces an isomorphism between the quotient graph Γ\Y\Gamma\backslash Y, defined in an obvious way, and XX.

It is easy to see that a Γ\Gamma-covering Y/XY/X is actually a covering (cf. [1, Proposition 3.3(1)]). The ramification index mw(Y/X)m_{w}(Y/X) coincides with the order of the stabilizer subgroup StabΓ(w)\operatorname{Stab}_{\Gamma}(w) of ww. This depends only on the vertex v=fV(w)VXv=f_{V}(w)\in V_{X} since the action of Γ\Gamma on fV1(v)f_{V}^{-1}(v) is transitive. We then define the ramification index of vVXv\in V_{X} as mv(Y/X)=mw(Y/X)m_{v}(Y/X)=m_{w}(Y/X) by using any wVYw\in V_{Y} lying above vv.

Finally, let us introduce the notion of infinite Galois coverings.

Definition 2.6.

Let Γ\Gamma be a profinite group. A Γ\Gamma-covering of a finite graph XX is an inverse system (XU)U(X_{U})_{U} of graphs, indexed by the open normal subgroups UU of Γ\Gamma (the order \preceq is defined by UVU\preceq V if UVU\supset V), equipped with an action of Γ\Gamma that induces a Γ/U\Gamma/U-covering structure on XU/XX_{U}/X for any UU.

For instance, for Γ=p\Gamma=\mathbb{Z}_{p}, the open subgroups are precisely {Γpn}n0\{\Gamma^{p^{n}}\}_{n\geq 0}, so a Γ\Gamma-covering of XX consists of a system of graphs

X=X0X1X2X=X_{0}\leftarrow X_{1}\leftarrow X_{2}\leftarrow\cdots

such that Xn/XX_{n}/X is a /pn\mathbb{Z}/p^{n}\mathbb{Z}-covering.

2.3. Voltage graphs and derived graphs

To deal with (finite or infinite) Galois coverings, it is convenient to use voltage graphs and derived graphs. See [5, §5] for the unramified cases, and [1, §4] for the ramified cases.

Firstly, we introduce the voltage graphs.

Definition 2.7.

A voltage graph (X,Γ,α)(X,\Gamma,\alpha) consists of a finite graph XX, a group Γ\Gamma, and a map α:𝔼XΓ\alpha:\mathbb{E}_{X}\to\Gamma satisfying

α(e¯)=α(e)1\alpha(\overline{e})=\alpha(e)^{-1}

for any e𝔼Xe\in\mathbb{E}_{X}. To handle the ramifications, we consider an extra structure =(IvΓ)vVX\mathcal{I}=(I_{v}\subset\Gamma)_{v\in V_{X}}, which is a family of subgroups. By abuse of notation, we also call (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) a voltage graph.

Definition 2.8.

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph. Let HH be a normal subgroup of Γ\Gamma. Then the induced voltage graph (X,Γ/H,αH,H)(X,\Gamma/H,\alpha_{H},\mathcal{I}_{H}) is defined as follows: Letting π:ΓΓ/H\pi:\Gamma\to\Gamma/H be the natural projection, we define αH=πα:𝔼XΓ/H\alpha_{H}=\pi\circ\alpha:\mathbb{E}_{X}\to\Gamma/H and H=(Iv,H)vVX\mathcal{I}_{H}=(I_{v,H})_{v\in V_{X}} with Iv,H=π(Iv)=IvH/HΓ/HI_{v,H}=\pi(I_{v})=I_{v}H/H\subset\Gamma/H.

Now we introduce the derived graphs.

Definition 2.9.

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph with Γ\Gamma finite. We construct a finite graph X(Γ,)X(\Gamma,\mathcal{I}) (the map α\alpha is implicit), called the derived graph, as follows. The set of vertices and edges are defined by

VX(Γ,)=vVX(Γ/Iv×{v}),𝔼X(Γ,)=Γ×𝔼X.V_{X(\Gamma,\mathcal{I})}=\coprod_{v\in V_{X}}(\Gamma/I_{v}\times\{v\}),\quad\mathbb{E}_{X(\Gamma,\mathcal{I})}=\Gamma\times\mathbb{E}_{X}.

For an edge (γ,e)(\gamma,e), we set

s((γ,e))=(γIs(e),s(e)),t((γ,e))=(γα(e)It(e),t(e)),(γ,e)¯=(γα(e),e¯).s((\gamma,e))=(\gamma I_{s(e)},s(e)),\quad t((\gamma,e))=(\gamma\alpha(e)I_{t(e)},t(e)),\quad\overline{(\gamma,e)}=(\gamma\alpha(e),\overline{e}).

The group Γ\Gamma acts on the graph X(Γ,)X(\Gamma,\mathcal{I}) from the left in the natural way. We also have a natural morphism X(Γ,)XX(\Gamma,\mathcal{I})\to X by projections to the second components. It is quite easy to see that this morphism is indeed a Γ\Gamma-covering. More generally, given a normal subgroup HH of Γ\Gamma, setting (X,Γ/H,αH,H)(X,\Gamma/H,\alpha_{H},\mathcal{I}_{H}) as in Definition 2.8, we have an HH-covering X(Γ,)X(Γ/H,H)X(\Gamma,\mathcal{I})\to X(\Gamma/H,\mathcal{I}_{H}).

Definition 2.10.

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph with Γ\Gamma profinite. For each open normal subgroup UU of Γ\Gamma, we have a voltage graph (X,Γ/U,αU,U)(X,\Gamma/U,\alpha_{U},\mathcal{I}_{U}) by Definition 2.8, so we can construct the derived graph X(Γ/U,U)X(\Gamma/U,\mathcal{I}_{U}) by Definition 2.9. We write X(Γ,)=(X(Γ/U,U))UX(\Gamma,\mathcal{I})=(X(\Gamma/U,\mathcal{I}_{U}))_{U} for the Γ\Gamma-covering of XX obtained in this way.

2.4. Galois coverings from voltage graphs

Now let us show that any Galois covering arises from a voltage graph. We begin with the finite case.

Proposition 2.11.

Let f:YXf:Y\to X be a Γ\Gamma-covering with Γ\Gamma finite. Then there is a voltage graph structure (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) such that YX(Γ,)Y\simeq X(\Gamma,\mathcal{I}) as Γ\Gamma-coverings of XX.

Proof.

We construct a voltage graph (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) in the following way. The construction depends on two choices:

  • For each vVXv\in V_{X}, choose a vertex v~VY\widetilde{v}\in V_{Y} such that fV(v~)=vf_{V}(\widetilde{v})=v.

  • For each e𝔼Xe\in\mathbb{E}_{X}, choose an edge e~𝔼Y\widetilde{e}\in\mathbb{E}_{Y} such that f𝔼(e~)=ef_{\mathbb{E}}(\widetilde{e})=e and s(e~)=s(e)~s(\widetilde{e})=\widetilde{s(e)}.

Then we define α\alpha and =(Iv)vVX\mathcal{I}=(I_{v})_{v\in V_{X}} as follows:

  • Let α(e)Γ\alpha(e)\in\Gamma be the unique element such that α(e)e¯~=e~¯\alpha(e)\cdot\widetilde{\overline{e}}=\overline{\widetilde{e}}.

  • Let IvΓI_{v}\subset\Gamma be the stabilizer of v~\widetilde{v}.

Note that α(e)\alpha(e) exists uniquely because both e¯~\widetilde{\overline{e}} and e~¯\overline{\widetilde{e}} are in the fiber of e¯\overline{e} with respect to ff and the action of Γ\Gamma on such a fiber is free and transitive. Then we have t(e~)=α(e)t(e)~t(\widetilde{e})=\alpha(e)\widetilde{t(e)} by

t(e~)=s(e~¯)=s(α(e)e¯~)=α(e)s(e¯~)=α(e)s(e¯)~=α(e)t(e)~.t(\widetilde{e})=s(\overline{\widetilde{e}})=s(\alpha(e)\cdot\widetilde{\overline{e}})=\alpha(e)s(\widetilde{\overline{e}})=\alpha(e)\widetilde{s(\overline{e})}=\alpha(e)\widetilde{t(e)}.

We construct a morphism ϕ=(ϕV,ϕ𝔼):X(Γ,)Y\phi=(\phi_{V},\phi_{\mathbb{E}}):X(\Gamma,\mathcal{I})\to Y by

ϕV((γIv,v))=γv~,ϕ𝔼((γ,e))=γe~.\phi_{V}((\gamma I_{v},v))=\gamma\widetilde{v},\quad\phi_{\mathbb{E}}((\gamma,e))=\gamma\widetilde{e}.

The well-definedness of ϕV\phi_{V} follows from the definition of IvI_{v}. It is straightforward to see that ϕ\phi is indeed a morphism:

ϕV(s(γ,e))=ϕV((γIs(e),s(e)))=γs(e)~=γs(e~)=s(γe~)=s(ϕ𝔼((γ,e))),\phi_{V}(s(\gamma,e))=\phi_{V}((\gamma I_{s(e)},s(e)))=\gamma\widetilde{s(e)}=\gamma s(\widetilde{e})=s(\gamma\widetilde{e})=s(\phi_{\mathbb{E}}((\gamma,e))),
ϕV(t(γ,e))=ϕV((γα(e)It(e),t(e)))=γα(e)t(e)~=γt(e~)=t(γe~)=t(ϕ𝔼((γ,e))),\phi_{V}(t(\gamma,e))=\phi_{V}((\gamma\alpha(e)I_{t(e)},t(e)))=\gamma\alpha(e)\widetilde{t(e)}=\gamma t(\widetilde{e})=t(\gamma\widetilde{e})=t(\phi_{\mathbb{E}}((\gamma,e))),

and

ϕ𝔼((γ,e))¯=γe~¯=γe~¯=γα(e)e¯~=ϕ𝔼((γα(e),e¯))=ϕ𝔼((γ,e)¯).\overline{\phi_{\mathbb{E}}((\gamma,e))}=\overline{\gamma\widetilde{e}}=\gamma\overline{\widetilde{e}}=\gamma\alpha(e)\widetilde{\overline{e}}=\phi_{\mathbb{E}}((\gamma\alpha(e),\overline{e}))=\phi_{\mathbb{E}}(\overline{(\gamma,e)}).

Moreover, by the definition of the Γ\Gamma-coverings, both ϕV\phi_{V} and ϕ𝔼\phi_{\mathbb{E}} are bijective, so ϕ\phi is an isomorphism. ∎

Proposition 2.12.

Let Γ\Gamma be a profinite group and (XU)U(X_{U})_{U} be a Γ\Gamma-covering of XX. Then there is a voltage graph structure (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) such that (XU)U(X_{U})_{U} is isomorphic to X(Γ,)X(\Gamma,\mathcal{I}) as Γ\Gamma-coverings of XX.

Proof.

As in the proof of Proposition 2.11, we firstly make two choices:

  • For each vertex vv of XX and UΓU\subset\Gamma, choose a vertex v~U\widetilde{v}^{U} of XUX_{U} that goes to vv. Moreover, we impose the compatibility with respect to UU, that is, v~V\widetilde{v}^{V} goes to v~U\widetilde{v}^{U} whenever UVU\supset V.

  • For each edge ee of XX, choose an edge e~U\widetilde{e}^{U} of XUX_{U} that goes to ee and satisfies s(e~U)=s(e)~Us(\widetilde{e}^{U})=\widetilde{s(e)}^{U}. Moreover, we impose the compatibility with respect to UU, that is, e~V\widetilde{e}^{V} goes to e~U\widetilde{e}^{U} whenever UVU\supset V.

Then, for each UU, we define αU:𝔼XΓ/U\alpha_{U}:\mathbb{E}_{X}\to\Gamma/U and Iv,UΓ/UI_{v,U}\subset\Gamma/U as in the proof of Proposition 2.11 applied to XU/XX_{U}/X. It is straightforward to see that αU\alpha_{U} and Iv,UI_{v,U} are compatible with respect to UU, so we may define α:𝔼XΓ\alpha:\mathbb{E}_{X}\to\Gamma and IvΓI_{v}\subset\Gamma as the limits. By the proof of Proposition 2.11, for any UU, we have XUX(Γ/U,U)X_{U}\simeq X(\Gamma/U,\mathcal{I}_{U}) as Γ/U\Gamma/U-coverings. Therefore, (XU)UX(Γ,)(X_{U})_{U}\simeq X(\Gamma,\mathcal{I}) as Γ\Gamma-coverings. ∎

3. Functorialities of Picard groups

The behavior of the Picard groups with respect to coverings plays important roles in the proof of Theorem 1.1. We first consider general coverings in §3.1. Then we will consider finite and infinite Galois coverings in §3.2 and §3.3, respectively.

3.1. Coverings

Let f:YXf:Y\to X be a covering (Definition 2.4) between finite connected graphs. We define the degree of the covering Y/XY/X as the number

[Y:X]:=wfV1(v)mw(f),[Y:X]:=\sum_{w\in f_{V}^{-1}(v)}m_{w}(f),

which is independent of vVXv\in V_{X} (see [1, §3.1]; here we need the connectedness of XX). Note that, for any edge e𝔼Xe\in\mathbb{E}_{X}, we have

[Y:X]=#(f𝔼1(e)),[Y:X]=\#(f_{\mathbb{E}}^{-1}(e)),

that is, the fiber of an arbitrary edge of XX consists of [Y:X][Y:X] edges of YY.

As in [1, §3.2], let

f,f𝗋:Div(Y)Div(X)f_{*},f_{\mathsf{r}}:\operatorname{Div}(Y)\to\operatorname{Div}(X)

be the \mathbb{Z}-homomorphisms such that

f([w])=[fV(w)],f𝗋([w])=mw(f)[fV(w)]f_{*}([w])=[f_{V}(w)],\quad f_{\mathsf{r}}([w])=m_{w}(f)[f_{V}(w)]

for each wVYw\in V_{Y}.

Proposition 3.1.

The exact sequences (2.1) for XX and YY satisfy a commutative diagram

(3.1) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιX\scriptstyle{\iota_{X}}[Y:X]\scriptstyle{[Y:X]}Div(Y)\textstyle{\operatorname{Div}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y\scriptstyle{\mathcal{L}_{Y}}f𝗋\scriptstyle{f_{\mathsf{r}}}Div(Y)\textstyle{\operatorname{Div}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f_{*}}Pic(Y)\textstyle{\operatorname{Pic}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιY\scriptstyle{\iota_{Y}}Div(X)\textstyle{\operatorname{Div}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\scriptstyle{\mathcal{L}_{X}}Div(X)\textstyle{\operatorname{Div}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pic(X)\textstyle{\operatorname{Pic}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0,\textstyle{0,}

where the rightmost vertical map between the Picard groups is induced by ff_{*}.

Proof.

This proposition follows from direct computations. The commutativity of the left one follows from

f𝗋(wVY[w])=wVYmw(f)[f(w)]=vVX(wfV1(v)mw(f))[v]=[Y:X]vVX[v].f_{\mathsf{r}}\left(\sum_{w\in V_{Y}}[w]\right)=\sum_{w\in V_{Y}}m_{w}(f)[f(w)]=\sum_{v\in V_{X}}\left(\sum_{w\in f_{V}^{-1}(v)}m_{w}(f)\right)[v]=[Y:X]\sum_{v\in V_{X}}[v].

The commutativity of the middle square is [1, Proposition 3.4]. Indeed, for each wVYw\in V_{Y}, setting v=fV(w)VXv=f_{V}(w)\in V_{X}, we see

fY([w])=f(e𝔼Y,w([w][t(e)]))=e𝔼Y,w([fV(w)][fV(t(e))])=e𝔼Y,w([v][t(f𝔼(e))])f_{*}\circ\mathcal{L}_{Y}([w])=f_{*}\left(\sum_{e\in\mathbb{E}_{Y,w}}([w]-[t(e)])\right)=\sum_{e\in\mathbb{E}_{Y,w}}([f_{V}(w)]-[f_{V}(t(e))])=\sum_{e\in\mathbb{E}_{Y,w}}([v]-[t(f_{\mathbb{E}}(e))])

and

Xf𝗋([w])=mw(f)X([v])=mw(f)e𝔼X,v([v][t(e)]).\mathcal{L}_{X}\circ f_{\mathsf{r}}([w])=m_{w}(f)\mathcal{L}_{X}([v])=m_{w}(f)\sum_{e\in\mathbb{E}_{X,v}}([v]-[t(e)]).

Since f𝔼:𝔼Y,w𝔼X,vf_{\mathbb{E}}:\mathbb{E}_{Y,w}\to\mathbb{E}_{X,v} is mw(f)m_{w}(f)-to-one, these coincide. ∎

3.2. Finite Galois coverings

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph with Γ\Gamma finite.

Set [Γ/Iv]=[Γ][Iv]\mathbb{Z}[\Gamma/I_{v}]=\mathbb{Z}[\Gamma]\otimes_{\mathbb{Z}[I_{v}]}\mathbb{Z}, which we regard as a left [Γ]\mathbb{Z}[\Gamma]-module. Then we may identify

(3.2) Div(X(Γ,))vVX[Γ/Iv][v]vVX[Γ/Iv]\operatorname{Div}(X(\Gamma,\mathcal{I}))\simeq\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}][v]\simeq\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]

as [Γ]\mathbb{Z}[\Gamma]-modules. Here, the first isomorphism is given by (γIv,v)γ[v](\gamma I_{v},v)\leftrightarrow\gamma[v] and the second by simply omitting [v][v] to ease the notation. Then, associated to the endomorphism X(Γ,)\mathcal{L}_{X(\Gamma,\mathcal{I})} on Div(X(Γ,))\operatorname{Div}(X(\Gamma,\mathcal{I})), we introduce an endomorphism X,Γ,\mathcal{L}_{X,\Gamma,\mathcal{I}} on vVX[Γ/Iv][v]\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}][v] (or vVX[Γ/Iv]\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]). In other words, X,Γ,\mathcal{L}_{X,\Gamma,\mathcal{I}} is defined by a commutative diagram

Div(X(Γ,))\textstyle{\operatorname{Div}(X(\Gamma,\mathcal{I}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X(Γ,)\scriptstyle{\mathcal{L}_{X(\Gamma,\mathcal{I})}}\scriptstyle{\simeq}Div(X(Γ,))\textstyle{\operatorname{Div}(X(\Gamma,\mathcal{I}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}vVX[Γ/Iv][v]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}][v]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ,\scriptstyle{\mathcal{L}_{X,\Gamma,\mathcal{I}}}vVX[Γ/Iv][v].\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}][v].}
Remark 3.2.

It is straightforward to see that X,Γ,\mathcal{L}_{X,\Gamma,\mathcal{I}} may be explicitly defined by

X,Γ,([v])=NIve𝔼X,v([v]α(e)[t(e)]),vVX.\mathcal{L}_{X,\Gamma,\mathcal{I}}([v])=N_{I_{v}}\cdot\sum_{e\in\mathbb{E}_{X,v}}\left([v]-\alpha(e)[t(e)]\right),\quad v\in V_{X}.

Here, NIv=σIvσ[Iv]N_{I_{v}}=\sum_{\sigma\in I_{v}}\sigma\in\mathbb{Z}[I_{v}] denotes the norm element of IvI_{v}. However, this explicit formula will not be used.

Proposition 3.3.

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph with Γ\Gamma finite. Suppose that X(Γ,)X(\Gamma,\mathcal{I}) is connected (so XX is also connected).

  • (1)

    We have an exact sequence

    0vVX[Γ/Iv]X,Γ,vVX[Γ/Iv]Pic(X(Γ,))0.0\to\mathbb{Z}\to\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]\overset{\mathcal{L}_{X,\Gamma,\mathcal{I}}}{\to}\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]\to\operatorname{Pic}(X(\Gamma,\mathcal{I}))\to 0.
  • (2)

    Let HH be a normal subgroup of Γ\Gamma. We introduce a voltage graph (X,Γ/H,αH,H)(X,\Gamma/H,\alpha_{H},\mathcal{I}_{H}) as in Definition 2.8. Then we have a commutative diagram

    (3.3) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}#H\scriptstyle{\#H}vVX[Γ/Iv]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ,\scriptstyle{\mathcal{L}_{X,\Gamma,\mathcal{I}}}β\scriptstyle{\beta}vVX[Γ/Iv]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}proj\scriptstyle{\operatorname{proj}}Pic(X(Γ,))\textstyle{\operatorname{Pic}(X(\Gamma,\mathcal{I}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVX[Γ/IvH]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}H]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ/H,H\scriptstyle{\mathcal{L}_{X,\Gamma/H,\mathcal{I}_{H}}}vVX[Γ/IvH]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}H]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pic(X(Γ/H,H))\textstyle{\operatorname{Pic}(X(\Gamma/H,\mathcal{I}_{H}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

    Here, the map proj\operatorname{proj} is the natural projection, and the map β\beta sends 1[Γ/Iv]1\in\mathbb{Z}[\Gamma/I_{v}] to #(HIv)[Γ/IvH]\#(H\cap I_{v})\in\mathbb{Z}[\Gamma/I_{v}H].

Proof.

(1) This is simply a reformulation of (2.1).

(2) Let f:X(Γ,)X(Γ/H,H)f:X(\Gamma,\mathcal{I})\to X(\Gamma/H,\mathcal{I}_{H}) be the HH-covering. It is quite easy to see that the following diagrams commute:

vVX[Γ/Iv]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}β\scriptstyle{\beta}Div(X(Γ,))\textstyle{\operatorname{Div}(X(\Gamma,\mathcal{I}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f𝗋\scriptstyle{f_{\mathsf{r}}}vVX[Γ/IvH]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}H]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}Div(X(Γ/H,H)),\textstyle{\operatorname{Div}(X(\Gamma/H,\mathcal{I}_{H})),}   vVX[Γ/Iv]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}proj\scriptstyle{\operatorname{proj}}Div(X(Γ,))\textstyle{\operatorname{Div}(X(\Gamma,\mathcal{I}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f_{*}}vVX[Γ/IvH]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}H]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}Div(X(Γ/H,H)),\textstyle{\operatorname{Div}(X(\Gamma/H,\mathcal{I}_{H})),}

where the horizontal isomorphisms are (3.2). Then the claimed digram is simply a reformulation of Proposition 3.1 applied to ff. ∎

This description of β\beta in this proposition will be crucial in what follows.

3.3. Infinite Galois coverings

As in [5, §5.2], we shall define the Picard group of an infinite Galois covering by using the projective limit. Let Λ\Lambda be a compact flat \mathbb{Z}-algebra; in the applications we will set Λ=p\Lambda=\mathbb{Z}_{p}. This Λ\Lambda will be used to make the projective limit functor exact.

Definition 3.4.

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph with Γ\Gamma profinite. Suppose that X(Γ/U,U)X(\Gamma/U,\mathcal{I}_{U}) are connected for all UU. By Proposition 3.3(2), the Picard groups Pic(X(Γ/U,U))\operatorname{Pic}(X(\Gamma/U,\mathcal{I}_{U})) form a projective system. We define

PicΛ(X(Γ,))=limUΛPic(X(Γ/U,U)).\operatorname{Pic}_{\Lambda}(X(\Gamma,\mathcal{I}))=\varprojlim_{U}\Lambda\otimes_{\mathbb{Z}}\operatorname{Pic}(X(\Gamma/U,\mathcal{I}_{U})).

This is a module over the Iwasawa algebra Λ[[Γ]]=limUΛ[Γ/U]\Lambda[[\Gamma]]=\varprojlim_{U}\Lambda[\Gamma/U].

For any profinite group Γ\Gamma, we define an ideal ΛΓ{}_{\Gamma}\Lambda of Λ\Lambda by

ΛΓ=U[Γ:U]Λ,{}_{\Gamma}\Lambda=\bigcap_{U}[\Gamma:U]\Lambda,

where UU runs over the open normal subgroups of Γ\Gamma. For instance, if Λ=p\Lambda=\mathbb{Z}_{p}, we have ΛΓ=0{}_{\Gamma}\Lambda=0 if and only if the order of Γ\Gamma is divisible by pp^{\infty}.

Proposition 3.5.

Let (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) be a voltage graph with Γ\Gamma profinite. Suppose that X(Γ/U,U)X(\Gamma/U,\mathcal{I}_{U}) are connected for all UU.

  • (1)

    We have an exact sequence

    (3.4) 0ΛΓvVXΛIv[[Γ/Iv]]X,Γ,vVXΛ[[Γ/Iv]]PicΛ(X(Γ,))0,0\to{}_{\Gamma}\Lambda\to\bigoplus_{v\in V_{X}}{}_{I_{v}}\Lambda[[\Gamma/I_{v}]]\overset{\mathcal{L}_{X,\Gamma,\mathcal{I}}}{\to}\bigoplus_{v\in V_{X}}\Lambda[[\Gamma/I_{v}]]\to\operatorname{Pic}_{\Lambda}(X(\Gamma,\mathcal{I}))\to 0,

    where X,Γ,\mathcal{L}_{X,\Gamma,\mathcal{I}} is introduced in the proof below.

  • (2)

    Let HH be a closed normal subgroup of Γ\Gamma. Let (X,Γ/H,αH,H)(X,\Gamma/H,\alpha_{H},\mathcal{I}_{H}) be as in Definition 2.8. Then we have a commutative diagram

    (3.5) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΛΓ\textstyle{{}_{\Gamma}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVXΛIv[[Γ/Iv]]\textstyle{\bigoplus_{v\in V_{X}}{}_{I_{v}}\Lambda[[\Gamma/I_{v}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ,\scriptstyle{\mathcal{L}_{X,\Gamma,\mathcal{I}}}vVXΛ[[Γ/Iv]]\textstyle{\bigoplus_{v\in V_{X}}\Lambda[[\Gamma/I_{v}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}PicΛ(X(Γ,))\textstyle{\operatorname{Pic}_{\Lambda}(X(\Gamma,\mathcal{I}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΛΓ/H\textstyle{{}_{\Gamma/H}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVXΛIvH[[Γ/IvH]]\textstyle{\bigoplus_{v\in V_{X}}{}_{I_{v}H}\Lambda[[\Gamma/I_{v}H]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ/H,H\scriptstyle{\mathcal{L}_{X,\Gamma/H,\mathcal{I}_{H}}}vVXΛ[[Γ/IvH]]\textstyle{\bigoplus_{v\in V_{X}}\Lambda[[\Gamma/I_{v}H]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}PicΛ(X(Γ/H,H))\textstyle{\operatorname{Pic}_{\Lambda}(X(\Gamma/H,\mathcal{I}_{H}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

    Here, all the vertical arrows are the natural ones: The left two ones are induced by the inclusions ΛΓΛΓ/H{}_{\Gamma}\Lambda\hookrightarrow{}_{\Gamma/H}\Lambda and ΛIvΛIvH{}_{I_{v}}\Lambda\hookrightarrow{}_{I_{v}H}\Lambda.

Proof.

By Proposition 3.3(2), for open normal subgroups V,UV,U of Γ\Gamma with UVU\supset V, we have

(3.6) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[U:V]\scriptstyle{[U:V]}vVX[Γ/IvV]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}V]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ/V,V\scriptstyle{\mathcal{L}_{X,\Gamma/V,\mathcal{I}_{V}}}β\scriptstyle{\beta}vVX[Γ/IvV]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}V]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}proj\scriptstyle{\operatorname{proj}}Pic(X(Γ/V,V))\textstyle{\operatorname{Pic}(X(\Gamma/V,\mathcal{I}_{V}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVX[Γ/IvU]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}U]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ/U,U\scriptstyle{\mathcal{L}_{X,\Gamma/U,\mathcal{I}_{U}}}vVX[Γ/IvU]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}[\Gamma/I_{v}U]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pic(X(Γ/U,U))\textstyle{\operatorname{Pic}(X(\Gamma/U,\mathcal{I}_{U}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Here, β\beta on the vv-component sends 11 to

#((U/V)(IvV/V))=[UIvV:V].\#((U/V)\cap(I_{v}V/V))=[U\cap I_{v}V:V].

By taking the tensor product with Λ\Lambda over \mathbb{Z} and then taking the projective limit with respect to UU, we obtain claim (1). For claim (2), we only have to take the limit of the above diagram (after Λ()\Lambda\otimes_{\mathbb{Z}}(-)) with the restriction UHU\supset H. ∎

4. Kida’s formula

In §4.1, we review the Iwasawa class number formula in our settings. Then in §4.2, we prove our main theorem (Theorem 1.1).

4.1. Iwasawa class number formula

From now on, we fix a prime number pp and work over Λ=p\Lambda=\mathbb{Z}_{p}.

Let Γ\Gamma be a profinite group that is isomorphic to p\mathbb{Z}_{p}. For a finitely generated torsion p[[Γ]]\mathbb{Z}_{p}[[\Gamma]]-module MM, we have the λ\lambda, μ\mu-invariants λ(M)\lambda(M), μ(M)\mu(M), which are non-negative integers. They are usually defined by using the structure theorem for p[[Γ]]\mathbb{Z}_{p}[[\Gamma]]-modules (see Neukirch–Schmidt–Wingberg [9, Definition (5.3.9)]). Instead of the usual definition, we only recall the following properties:

  • We have μ(M)=0\mu(M)=0 if and only if MM is finitely generated over p\mathbb{Z}_{p}.

  • We have λ(M)=dimp(ppM)\lambda(M)=\dim_{\mathbb{Q}_{p}}(\mathbb{Q}_{p}\otimes_{\mathbb{Z}_{p}}M).

Now the Iwasawa class number formula is the following:

Theorem 4.1 (Gambheera–Valliéres [1, Theorem A]).

Let X/XX_{\infty}/X be a p\mathbb{Z}_{p}-covering of finite connected graphs and XnX_{n} be its nn-th layer. Then we have

ordp(κ(Xn))=λn+μpn+ν,n0\operatorname{ord}_{p}(\kappa(X_{n}))=\lambda n+\mu p^{n}+\nu,\quad n\gg 0

with

λ=λ(X/X)=λ(Picp(X))1,μ=μ(X/X)=μ(Picp(X))\lambda=\lambda(X_{\infty}/X)=\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))-1,\quad\mu=\mu(X_{\infty}/X)=\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))

and some integer ν=ν(X/X)\nu=\nu(X_{\infty}/X).

Proof.

The result [1, Theorem A] claims the formula with λ=λ(Jacp(X))\lambda=\lambda(\operatorname{Jac}_{\mathbb{Z}_{p}}(X_{\infty})) and μ=μ(Jacp(X))\mu=\mu(\operatorname{Jac}_{\mathbb{Z}_{p}}(X_{\infty})), where Jacp(X)\operatorname{Jac}_{\mathbb{Z}_{p}}(X_{\infty}) is defined as the projective limit of pJac(Xn)\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\operatorname{Jac}(X_{n}) (cf. Definition 3.4). We have an exact sequence

0Jacp(X)Picp(X)p00\to\operatorname{Jac}_{\mathbb{Z}_{p}}(X_{\infty})\to\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty})\to\mathbb{Z}_{p}\to 0

induced by (2.2). This implies

λ(Jacp(X))=λ(Picp(X))1,μ(Jacp(X))=μ(Picp(X)),\lambda(\operatorname{Jac}_{\mathbb{Z}_{p}}(X_{\infty}))=\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))-1,\quad\mu(\operatorname{Jac}_{\mathbb{Z}_{p}}(X_{\infty}))=\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty})),

so Theorem 4.1 is also valid. ∎

4.2. Kida’s formula

A key to prove the main theorem is the following algebraic proposition.

Proposition 4.2 ([5, Proposition 8.5]).

Let Γ\Gamma be a profinite group that is isomorphic to p\mathbb{Z}_{p}, and GG a finite pp-group. Let MM be a finitely generated torsion p[[Γ]][G]\mathbb{Z}_{p}[[\Gamma]][G]-module. We write MGM_{G} for the GG-coinvariant of MM.

  • (1)

    We have μ(M)=0\mu(M)=0 if and only if μ(MG)=0\mu(M_{G})=0.

  • (2)

    Suppose that we have pdp[[Γ]][G](M)1\operatorname{pd}_{\mathbb{Z}_{p}[[\Gamma]][G]}(M)\leq 1, where pd\operatorname{pd} denotes the projective dimension. If the equivalent conditions in (1) hold, then we have λ(M)=(#G)λ(MG)\lambda(M)=(\#G)\lambda(M_{G}).

Proof.

Because of its importance, we include a rough sketch of the proof. Claim (1) follows from Nakayama’s lemma over the local ring p[G]\mathbb{Z}_{p}[G]. Under the assumptions in claim (2), the p[G]\mathbb{Z}_{p}[G]-module MM is indeed free of finite rank. Then the equality λ(M)=(#G)λ(MG)\lambda(M)=(\#G)\lambda(M_{G}) is clear. ∎

The author [6] extended this proposition to perfect complexes. The result is so useful that we can deduce analogues of Kida’s formula in various arithmetic situations. However, we do not need such an extension in this paper.

We are in a position to prove Theorem 1.1. By Proposition 2.12, the situation in Theorem 1.1 can be realized by a voltage graph. To be precise, let Γ~\widetilde{\Gamma} be a profinite group of the form

Γ~=Γ×G\widetilde{\Gamma}=\Gamma\times G

with Γ\Gamma isomorphic to p\mathbb{Z}_{p} and GG a finite pp-group. Let (X,Γ~,α~,~)(X,\widetilde{\Gamma},\widetilde{\alpha},\widetilde{\mathcal{I}}) be a voltage graph with ~=(Iv~Γ~)vVX\widetilde{\mathcal{I}}=(\widetilde{I_{v}}\subset\widetilde{\Gamma})_{v\in V_{X}}. Let us assume that X(Γ~/U,~U)X(\widetilde{\Gamma}/U,\widetilde{\mathcal{I}}_{U}) is connected for any open normal subgroup UU of Γ~\widetilde{\Gamma}. We also obtain (X,Γ,α,)(X,\Gamma,\alpha,\mathcal{I}) (write =(IvΓ)vVX\mathcal{I}=(I_{v}\subset\Gamma)_{v\in V_{X}}) by using Definition 2.8 applied to the closed subgroup GG of Γ~\widetilde{\Gamma}. We set

X=X(Γ,),X~=X(Γ~,~).X_{\infty}=X(\Gamma,\mathcal{I}),\quad\widetilde{X}_{\infty}=X(\widetilde{\Gamma},\widetilde{\mathcal{I}}).

Now Theorem 1.1 can be rephrased as follows:

Theorem 4.3.

We have μ(Picp(X~))=0\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty}))=0 if and only if we have μ(Picp(X))=0\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))=0 and ()(\star) holds:

()(\star) for any vVXv\in V_{X}, the group Iv~\widetilde{I_{v}} is either infinite or trivial.

If these equivalent conditions hold, then we have

λ(Picp(X~))=(#G)λ(Picp(X))vVX[Γ~:Iv~](#(GIv~)1).\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty}))=(\#G)\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))-\sum_{v\in V_{X}}[\widetilde{\Gamma}:\widetilde{I_{v}}](\#(G\cap\widetilde{I_{v}})-1).

As in Remark 1.2, if [Γ~:Iv~][\widetilde{\Gamma}:\widetilde{I_{v}}] is infinity, condition ()(\star) implies Iv~\widetilde{I_{v}} is trivial, so we set [Γ~:Iv~](#(GIv~)1)=0[\widetilde{\Gamma}:\widetilde{I_{v}}](\#(G\cap\widetilde{I_{v}})-1)=0 in this formula.

Proof.

Set VX0={vVXIv=0}V_{X}^{0}=\{v\in V_{X}\mid I_{v}=0\}. Note that

Iv=0Iv is finiteIv~ is finite,I_{v}=0\quad\Leftrightarrow\quad\text{$I_{v}$ is finite}\quad\Leftrightarrow\quad\text{$\widetilde{I_{v}}$ is finite},

where the first equivalence holds since IvI_{v} is pp-torsion-free. The motivation for this definition is that we have ΛIv=ΛIv~=0{}_{I_{v}}\Lambda={}_{\widetilde{I_{v}}}\Lambda=0 if (and only if) vVX0v\not\in V_{X}^{0}. Then Proposition 3.5(2) yields a commutative diagram

(4.1) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVX0p[[Γ~/Iv~]]\textstyle{\bigoplus_{v\in V_{X}^{0}}\mathbb{Z}_{p}[[\widetilde{\Gamma}/\widetilde{I_{v}}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ~,~\scriptstyle{\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}}}β\scriptstyle{\beta}vVXp[[Γ~/Iv~]]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}_{p}[[\widetilde{\Gamma}/\widetilde{I_{v}}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}proj\scriptstyle{\operatorname{proj}}Picp(X~)\textstyle{\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVX0p[[Γ]]\textstyle{\bigoplus_{v\in V_{X}^{0}}\mathbb{Z}_{p}[[\Gamma]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ,\scriptstyle{\mathcal{L}_{X,\Gamma,\mathcal{I}}}vVXp[[Γ/Iv]]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}_{p}[[\Gamma/I_{v}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Picp(X)\textstyle{\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Here, β\beta on the vv-component sends 11 to #Iv~\#\widetilde{I_{v}}. By taking the GG-coinvariant of the upper sequence, we obtain

(4.2) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVX0p[[Γ]]\textstyle{\bigoplus_{v\in V_{X}^{0}}\mathbb{Z}_{p}[[\Gamma]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ~,~¯\scriptstyle{\overline{\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}}}}β¯\scriptstyle{\overline{\beta}}vVXp[[Γ/Iv]]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}_{p}[[\Gamma/I_{v}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Picp(X~)G\textstyle{\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty})_{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vVX0p[[Γ]]\textstyle{\bigoplus_{v\in V_{X}^{0}}\mathbb{Z}_{p}[[\Gamma]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,Γ,\scriptstyle{\mathcal{L}_{X,\Gamma,\mathcal{I}}}vVXp[[Γ/Iv]]\textstyle{\bigoplus_{v\in V_{X}}\mathbb{Z}_{p}[[\Gamma/I_{v}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Picp(X)\textstyle{\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Here, β¯\overline{\beta} is the injective homomorphism that is the multiplication by #Iv~\#\widetilde{I_{v}} on the vv-component. This also explains why the induced homomorphism X,Γ~,~¯\overline{\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}}} is injective. By the snake lemma, we obtain an exact sequence

0vVX0(p/#Iv~)[[Γ]]Picp(X~)GPicp(X)0.0\to\bigoplus_{v\in V_{X}^{0}}(\mathbb{Z}_{p}/\#\widetilde{I_{v}})[[\Gamma]]\to\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty})_{G}\to\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty})\to 0.

Note that μ((p/#Iv~)[[Γ]])=0\mu((\mathbb{Z}_{p}/\#\widetilde{I_{v}})[[\Gamma]])=0 if and only if #Iv~=1\#\widetilde{I_{v}}=1. Thus, we have μ(Picp(X~)G)=0\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty})_{G})=0 if and only if μ(Picp(X))=0\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))=0 and #Iv~=1\#\widetilde{I_{v}}=1 for any vVX0v\in V_{X}^{0}. Thanks to Proposition 4.2(1), this shows the first claim on the equivalence concerning μ=0\mu=0.

In what follows, we assume the equivalent conditions. Then the β¯\overline{\beta} in (4.2) is the identity map, so we have Picp(X~)GPicp(X)\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty})_{G}\simeq\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}). However, Proposition 4.2(2) is not applicable to Picp(X~)\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty}). This is because the condition pd1\operatorname{pd}\leq 1 does not hold in general. To remedy this, we use a slightly modified version of the Picard groups that satisfies pd1\operatorname{pd}\leq 1.

We define

X,Γ~,~:vVX0p[[Γ~]]vVX0p[[Γ~]]\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}}^{\prime}:\bigoplus_{v\in V_{X}^{0}}\mathbb{Z}_{p}[[\widetilde{\Gamma}]]\to\bigoplus_{v\in V_{X}^{0}}\mathbb{Z}_{p}[[\widetilde{\Gamma}]]

as the composition of X,Γ~,~\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}} with the projection to the VX0V_{X}^{0}-components. Define Picp(X~)\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}) as the cokernel of this X,Γ~,~\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}}^{\prime}. Clearly we have an exact sequence

0vVXVX0p[Γ~/Iv~]Picp(X~)Picp(X~)0.0\to\bigoplus_{v\in V_{X}\setminus V_{X}^{0}}\mathbb{Z}_{p}[\widetilde{\Gamma}/\widetilde{I_{v}}]\to\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty})\to\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty})\to 0.

Therefore, we have

λ(Picp(X~))=λ(Picp(X~))+vVXVX0[Γ~:Iv~]\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty}))=\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}))+\sum_{v\in V_{X}\setminus V_{X}^{0}}[\widetilde{\Gamma}:\widetilde{I_{v}}]

and μ(Picp(X~))=μ(Picp(X~))=0\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}))=\mu(\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty}))=0. We also define Picp(X)\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(X_{\infty}) in the same way: We introduce X,Γ,\mathcal{L}_{X,\Gamma,\mathcal{I}}^{\prime} that is the projection of X,Γ,\mathcal{L}_{X,\Gamma,\mathcal{I}} to the VX0V_{X}^{0}-components and then define Picp(X)\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(X_{\infty}) as its cokernel. Then the same reasoning shows

λ(Picp(X))=λ(Picp(X))+vVXVX0[Γ:Iv].\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))=\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(X_{\infty}))+\sum_{v\in V_{X}\setminus V_{X}^{0}}[\Gamma:I_{v}].

Since Picp(X~)\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}) is torsion, the homomorphism X,Γ~,~\mathcal{L}_{X,\widetilde{\Gamma},\widetilde{\mathcal{I}}}^{\prime} is injective (cf. [5, Lemma A.3]), so we have

pdp[[Γ~]](Picp(X~))1.\operatorname{pd}_{\mathbb{Z}_{p}[[\widetilde{\Gamma}]]}(\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}))\leq 1.

By the same reasoning as the original Picard groups, since the homomorphism β¯\overline{\beta} is the identity, we have

Picp(X~)GPicp(X).\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty})_{G}\simeq\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(X_{\infty}).

Now we are able to apply Proposition 4.2(2) to Picp(X~)\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}). As a result, we obtain

λ(Picp(X~))=(#G)λ(Picp(X)).\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(\widetilde{X}_{\infty}))=(\#G)\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}^{\prime}(X_{\infty})).

By combining these formulas, we obtain

λ(Picp(X~))vVXVX0[Γ~:Iv~]=(#G)(λ(Picp(X))vVXVX0[Γ:Iv]).\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(\widetilde{X}_{\infty}))-\sum_{v\in V_{X}\setminus V_{X}^{0}}[\widetilde{\Gamma}:\widetilde{I_{v}}]=(\#G)\left(\lambda(\operatorname{Pic}_{\mathbb{Z}_{p}}(X_{\infty}))-\sum_{v\in V_{X}\setminus V_{X}^{0}}[\Gamma:I_{v}]\right).

An elementary observation shows

(#G)[Γ:Iv][Γ~:Iv~]=[Γ~:Iv~](#(GIv)1).(\#G)[\Gamma:I_{v}]-[\widetilde{\Gamma}:\widetilde{I_{v}}]=[\widetilde{\Gamma}:\widetilde{I_{v}}](\#(G\cap I_{v})-1).

This completes the proof of Theorem 4.3. ∎

5. Examples

Let mm be a positive integer. Let XX be the cycle graph with mm vertices: The vertices are

VX={v1,,vm}V_{X}=\{v_{1},\dots,v_{m}\}

and the edges are

𝔼X={e1,,em,e1¯,,em¯}\mathbb{E}_{X}=\{e_{1},\dots,e_{m},\overline{e_{1}},\dots,\overline{e_{m}}\}

such that s(ei)=vis(e_{i})=v_{i} and t(ei)=vi+1t(e_{i})=v_{i+1} for 1im1\leq i\leq m (vm+1v_{m+1} is understood to be v1v_{1}).

Let Γp\Gamma\simeq\mathbb{Z}_{p} and GG a cyclic group of order pp. Let

α:𝔼XΓ~=Γ×G\alpha:\mathbb{E}_{X}\to\widetilde{\Gamma}=\Gamma\times G

be a voltage assignment such that the components of α(e1)\alpha(e_{1}) are generators of Γ\Gamma and GG, and α(e2),,α(em)\alpha(e_{2}),\dots,\alpha(e_{m}) are all the unit element.

We consider three choices of ~\widetilde{\mathcal{I}}:

  • (a)

    Iv~=G\widetilde{I_{v}}=G for any vv.

  • (b)

    Iv~=Γ\widetilde{I_{v}}=\Gamma for any vv.

  • (c)

    Iv~=Γ×G\widetilde{I_{v}}=\Gamma\times G for any vv.

Note that condition ()(\star) holds for (b) and (c) but does not hold for (a). In each case, we set

X=X(Γ,),X~=X(Γ~,~),Xn=X(Γ/Γpn,Γpn),X~n=X(Γ~/Γpn,~Γpn).X_{\infty}=X(\Gamma,\mathcal{I}),\quad\widetilde{X}_{\infty}=X(\widetilde{\Gamma},\widetilde{\mathcal{I}}),\quad X_{n}=X(\Gamma/\Gamma^{p^{n}},\mathcal{I}_{\Gamma^{p^{n}}}),\quad\widetilde{X}_{n}=X(\widetilde{\Gamma}/\Gamma^{p^{n}},\widetilde{\mathcal{I}}_{\Gamma^{p^{n}}}).

As will be clear, X~n\widetilde{X}_{n} are indeed connected.

To compute the Iwasawa λ\lambda, μ\mu-invariants, it is convenient to prepare a lemma. For positive integers mm and NN, we define a graph Ym,NY_{m,N} as follows. We set Ym,1=XY_{m,1}=X, which is the cycle graph with mm vertices. Then we set Ym,NY_{m,N} to be the “totally ramified” covering of Ym,1Y_{m,1} of degree NN. More precisely, Ym,NY_{m,N} has mm vertices, say v1,,vmv_{1},\dots,v_{m}, and mNmN unoriented edges, and for each 1im1\leq i\leq m, exactly NN edges connects viv_{i} and vi+1v_{i+1}.

Lemma 5.1.

We have κ(Ym,N)=mNm1\kappa(Y_{m,N})=mN^{m-1}.

Proof.

This is easily proved by counting the number of spanning trees. ∎

Table 1.
Case (a) Case (b) Case (c)
XnX_{n} Ympn,1\simeq Y_{mp^{n},1} Ym,pn\simeq Y_{m,p^{n}} Ym,pn\simeq Y_{m,p^{n}}
κ(Xn)\kappa(X_{n}) mpnmp^{n} mpn(m1)mp^{n(m-1)} mpn(m1)mp^{n(m-1)}
μ(X/X)\mu(X_{\infty}/X) 0 0 0
λ(X/X)\lambda(X_{\infty}/X) 11 m1m-1 m1m-1
X~n\widetilde{X}_{n} Ympn,p\simeq Y_{mp^{n},p} Ymp,pn\simeq Y_{mp,p^{n}} Ym,pn+1\simeq Y_{m,p^{n+1}}
κ(X~n)\kappa(\widetilde{X}_{n}) mpnpmpn1mp^{n}\cdot p^{mp^{n}-1} mppn(mp1)mp\cdot p^{n(mp-1)} mp(m1)(n+1)m\cdot p^{(m-1)(n+1)}
μ(X~/X~)\mu(\widetilde{X}_{\infty}/\widetilde{X}) mm 0 0
λ(X~/X~)\lambda(\widetilde{X}_{\infty}/\widetilde{X}) 11 pm1pm-1 m1m-1

Using this lemma, we can directly compute the Iwasawa λ\lambda, μ\mu-invariants of X/XX_{\infty}/X and of X~/X~\widetilde{X}_{\infty}/\widetilde{X} for cases (a), (b), and (c). The results are summarized in Table LABEL:table:1 . For example, in case (a), we have XnYmpn,1X_{n}\simeq Y_{mp^{n},1}, so κ(Xn)=mpn\kappa(X_{n})=mp^{n} by Lemma 5.1. This implies μ=0\mu=0, λ=1\lambda=1 for X/XX_{\infty}/X. The other entries are filled in a similar way (note that X/XX_{\infty}/X for (b) is the same as that for (c)).

Let us discuss the validity of Theorem 1.1. In case (a), μ=0\mu=0 is not retained because condition (\star) does not hold, as the theorem predicts. In case (b), we have

(pm1)+1=p((m1)+1)(pm-1)+1=p\cdot((m-1)+1)

as predicted. In case (c), we have

(m1)+1=p((m1)+1)i=1m1(p1)(m-1)+1=p\cdot((m-1)+1)-\sum_{i=1}^{m}1\cdot(p-1)

as predicted.

Acknowledgments

I am grateful to Daniel Vallières and Rusiru Gambheera for giving helpful comments on an earlier version of this paper. This work is supported by JSPS KAKENHI Grant Number 22K13898.

References

  • [1] R. Gambheera and D. Vallières. Iwasawa theory for branched p\mathbb{Z}_{p}-towers of finite graphs. preprint, arXiv:2404.05131, 2024.
  • [2] S. R. Gonet. Iwasawa Theory of Jacobians of Graphs. Algebr. Comb., 5(5):827–848, 2022.
  • [3] K. Iwasawa. On Γ\Gamma-extensions of algebraic number fields. Bull. Amer. Math. Soc., 65:183–226, 1959.
  • [4] K. Iwasawa. On the μ\mu-invariants of ZZ_{\ell}-extensions. In Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, pages 1–11. Kinokuniya Book Store, Tokyo, 1973.
  • [5] T. Kataoka. Fitting ideals of Jacobian groups of graphs. Algebr. Comb., 7(3):597–625, 2024.
  • [6] T. Kataoka. Kida’s formula via Selmer complexes. preprint, arXiv:2401.07036, 2024.
  • [7] Y. Kida. ll-extensions of CM-fields and cyclotomic invariants. J. Number Theory, 12(4):519–528, 1980.
  • [8] K. McGown and D. Vallières. On abelian \ell-towers of multigraphs III. Ann. Math. Qué., 48(1):1–19, 2024.
  • [9] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.
  • [10] A. Ray and D. Vallières. An analogue of Kida’s formula in graph theory. preprint, arXiv:2209.04890, 2022.
  • [11] J.-P. Serre. Trees. Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell.
  • [12] T. Sunada. Topological crystallography, volume 6 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, Tokyo, 2013. With a view towards discrete geometric analysis.
  • [13] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.