This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kähler metrics of negative holomorphic (bi)sectional curvature on a compact relative Kähler fibration

Xueyuan Wan Mathematical Science Research Center, Chongqing University of Technology, Chongqing 400054, China [email protected]
Abstract.

For a compact relative Kähler fibration over a compact Kähler manifold with negative holomorphic sectional curvature, if the relative Kähler form on each fiber also exhibits negative holomorphic sectional curvature, we can construct Kähler metrics with negative holomorphic sectional curvature on the total space. Additionally, if this form induces a Griffiths negative Hermitian metric on the relative tangent bundle, and the base admits a Kähler metric with negative holomorphic bisectional curvature, we can also construct Kähler metrics with negative holomorphic bisectional curvature on the total space. As an application, for a non-trivial fibration where both the fibers and base have Kähler metrics with negative holomorphic bisectional curvature, and the fibers are one-dimensional, we can explicitly construct Kähler metrics of negative holomorphic bisectional curvature on the total space, thus resolving a question posed by To and Yeung for the case where the fibers have dimension one.

Key words and phrases:
Kähler metrics, Negative holomorphic (bi)sectional curvature, Griffiths negative, relative tangent bundle, relative Kähler fibration
2020 Mathematics Subject Classification:
32Q05, 32G05, 53C55

1. Introduction

Negative curvature has long been a significant focus of research in complex geometry. It is well known that any compact complex manifold with negative holomorphic sectional curvature must be Kobayashi hyperbolic. Moreover, when such a manifold possesses a fibration structure, studying its negative curvature properties becomes even more intriguing. In this paper, we investigate the curvature properties of such manifolds. Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a compact holomorphic fibration, where pp is a proper holomorphic submersion between two compact complex manifolds 𝒳\mathcal{X} and \mathcal{B}.

In complex geometry, the notions of holomorphic sectional curvature and holomorphic bisectional curvature are two fundamental concepts (see Definition 2.2). A natural question arises: under what conditions does the total space 𝒳\mathcal{X} admit Hermitian (or Kähler) metrics with negative holomorphic (bi)sectional curvature?

The simplest nontrivial compact holomorphic fibration is the Kodaira surface, defined as a smooth compact complex surface admitting a Kodaira fibration [Kod75]. The study of negative curvature properties on Kodaira surfaces has been rich. Cheung [Che89] constructed a Kähler metric with negative holomorphic sectional curvature, while Tsai [Tsa89] developed a Hermitian metric with negative holomorphic bisectional curvature. By defining a local immersion from a Kodaira surface into the Teichmüller space 𝒯g,1\mathcal{T}_{g,1}, To and Yeung [TY11] demonstrated the existence of a Kähler metric with negative holomorphic bisectional curvature on the Kodaira surface. Independently, Tsui [Tsu06] constructed a Kähler metric with negative holomorphic bisectional curvature on certain special Kodaira surfaces using a completely different approach.

For general compact holomorphic fibrations, if both the base and the fiber admit Hermitian metrics with negative holomorphic sectional curvature, Cheung [Che89, Theorem 1] proved that the entire compact holomorphic fibration also admits a Hermitian metric with negative holomorphic sectional curvature. Consequently, it is natural to consider the existence of Kähler metrics with negative holomorphic sectional curvature on such fibrations. Regarding this question, we have obtained the following result for compact relative Kähler fibrations. A relative Kähler fibration is a holomorphic fibration equipped with a relative Kähler form, that is, a smooth closed (1,1)(1,1)-form that is positive along each fiber (see Definition 3.1).

Theorem 1.1.

Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a compact relative Kähler fibration such that the restriction of the relative Kähler form to each fiber has negative holomorphic sectional curvature. If the base manifold \mathcal{B} also admits a Kähler metric of negative holomorphic sectional curvature, then there exist Kähler metrics on 𝒳\mathcal{X} with negative holomorphic sectional curvature.

On the other hand, finding a Kähler metric with negative holomorphic bisectional curvature on a general compact holomorphic fibration is a challenging problem. In [TY11, Theorem 1], To and Yeung successfully proved the existence of such Kähler metrics on the Kodaira surface. Subsequently, in [TY11, Remark (i)], they posed a related question in the higher-dimensional setting:

Problem 1.2.

In general given a non-trivial fibration for which fibers and base are all equipped with Kähler metrics of negative holomorphic bisectional curvature, one may ask whether the total space of the fibration admits a Kähler metric with a similar curvature property. [TY11, Theorem 1] provides an affirmative example to such a problem.

In response to this question, we have obtained the following result, addressing the case where the relative tangent bundle is Griffiths negative (see Definition 2.1 for Griffiths negative vector bundles).

Theorem 1.3.

Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a compact relative Kähler fibration over a compact Kähler manifold \mathcal{B} with negative holomorphic bisectional curvature. Suppose the relative Kähler form induces a Griffiths negative Hermitian metric on the relative tangent bundle T𝒳/T_{\mathcal{X}/\mathcal{B}}. Then there exist Kähler metrics on 𝒳\mathcal{X} with negative holomorphic bisectional curvature.

In particular, when the fiber is one-dimensional, we can solve Problem 1.2 by explicitly constructing a family of Kähler metrics with negative holomorphic bisectional curvature. The specific result is as follows:

Corollary 1.4.

Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a compact holomorphic fibration over a compact Kähler manifold \mathcal{B} with negative holomorphic bisectional curvature. Suppose the fibration is a holomorphic family of compact Riemann surfaces of genus 2\geq 2 and is effectively parametrized (i.e., the Kodaira-Spencer map is injective at each point). Then there exist Kähler metrics on 𝒳\mathcal{X} with negative holomorphic bisectional curvature.

Remark 1.5.

For the Kodaira surface, defined as a smooth compact complex surface 𝒳\mathcal{X} that admits a Kodaira fibration, there exists a connected fibration p:𝒳p:\mathcal{X}\rightarrow\mathcal{B} over a smooth compact Riemann surface \mathcal{B}, where pp is a proper holomorphic submersion and the associated Kodaira-Spencer map is injective at each point (see [TY11]). By [Sch12, Application], the genus of \mathcal{B} is 2\geq 2, and so \mathcal{B} is a negatively curved Riemann surface. Based on the above corollary, we can explicitly construct a smooth family of Kähler metrics Ω=k(pω)+ω𝒳\Omega=k(p^{*}\omega_{\mathcal{B}})+\omega_{\mathcal{X}} on the Kodaira surface with negative holomorphic bisectional curvature for sufficiently large kk. Our approach is notably different from the method in [TY11].

This article is organized as follows:

In Section 2, we will review the definitions of Griffiths negative vector bundles and the negativity of holomorphic (bi)sectional curvature. Section 3 focuses on constructing a family of Kähler metrics on the total space and analyzing its curvature properties. In this section, we will prove Theorems 1.1 and 1.3. Finally, in Section 4, we will explore a special case of relative Kähler fibrations, specifically holomorphic families of canonically polarized manifolds, and we will prove Corollary 1.4.

Acknowledgments. The author would like to thank Ya Deng and Xu Wang for many helpful discussions. Xueyuan Wan is partially supported by the National Natural Science Foundation of China (Grant No. 12101093) and the Natural Science Foundation of Chongqing (Grant No. CSTB2022NSCQ-JQX0008).

2. Griffiths negativity and holomorphic (bi)sectional curvature

This section will review the definitions of the Chern connection and its curvature for a Hermitian holomorphic vector bundle. One can refer to [Kob87, Chapter 1] for more details. Throughout this paper, we will adopt the Einstein summation convention.

Let π:(E,hE)X\pi:(E,h^{E})\to X be a Hermitian holomorphic vector bundle over a complex manifold XX, where rankE=r\mathrm{rank}E=r and dimX=n\dim X=n. The Chern connection of (E,hE)(E,h^{E}), denoted by E\nabla^{E}, preserves the metric hEh^{E} and is of (1,0)(1,0)-type. Given a local holomorphic frame {ei}1ir\{e_{i}\}_{1\leq i\leq r} of EE, the connection satisfies

Eei=θijej,\nabla^{E}e_{i}=\theta^{j}_{i}e_{j},

where θ=(θij)\theta=(\theta^{j}_{i}) represents the connection form of E\nabla^{E}. More precisely,

θij=hik¯hk¯j,\theta^{j}_{i}=\partial h_{i\bar{k}}h^{\bar{k}j},

where hik¯:=h(ei,ek)h_{i\bar{k}}:=h(e_{i},e_{k}). The Chern curvature of (E,hE)(E,h^{E}) is denoted by RE=(E)2A1,1(X,End(E))R^{E}=(\nabla^{E})^{2}\in A^{1,1}(X,\mathrm{End}(E)), and can be written as

RE=RijejeiA1,1(X,End(E)),R^{E}=R^{j}_{i}e_{j}\otimes e^{i}\in A^{1,1}(X,\mathrm{End}(E)),

where R=(Rij)R=(R^{j}_{i}) is the curvature matrix, whose entries are (1,1)(1,1)-forms. Here, {ei}1ir\{e^{i}\}_{1\leq i\leq r} represents the dual frame of {ei}1ir\{e_{i}\}_{1\leq i\leq r}. The curvature matrix R=(Rij)R=(R^{j}_{i}) is given by

Rij=dθij+θkjθik=¯θij.R^{j}_{i}=d\theta^{j}_{i}+\theta^{j}_{k}\wedge\theta^{k}_{i}=\bar{\partial}\theta^{j}_{i}.

Let {zα}1αn\{z^{\alpha}\}_{1\leq\alpha\leq n} be local holomorphic coordinates of XX. The components of the curvature can be expressed as

Rij=Riαβ¯jdzαdz¯β,R^{j}_{i}=R^{j}_{i\alpha\bar{\beta}}dz^{\alpha}\wedge d\bar{z}^{\beta},

with

Rij¯:=Rikhkj¯=Rij¯αβ¯dzαdz¯β.R_{i\bar{j}}:=R^{k}_{i}h_{k\bar{j}}=R_{i\bar{j}\alpha\bar{\beta}}dz^{\alpha}\wedge d\bar{z}^{\beta}.

Thus, we have

Rij¯αβ¯=Riαβ¯khkj¯=αβ¯hij¯+hl¯kαhil¯β¯hkj¯,R_{i\bar{j}\alpha\bar{\beta}}=R^{k}_{i\alpha\bar{\beta}}h_{k\bar{j}}=-\partial_{\alpha}\partial_{\bar{\beta}}h_{i\bar{j}}+h^{\bar{l}k}\partial_{\alpha}h_{i\bar{l}}\partial_{\bar{\beta}}h_{k\bar{j}},

where α:=/zα\partial_{\alpha}:=\partial/\partial z^{\alpha} and β¯:=/z¯β\partial_{\bar{\beta}}:=\partial/\partial\bar{z}^{\beta}.

Griffiths positivity and negativity are defined as follows:

Definition 2.1.

A Hermitian holomorphic vector bundle π:(E,hE)X\pi:(E,h^{E})\to X is said to be Griffiths positive (resp. negative) if

Rij¯αβ¯viv¯jξαξ¯β>0(resp.<0)R_{i\bar{j}\alpha\bar{\beta}}v^{i}\bar{v}^{j}\xi^{\alpha}\bar{\xi}^{\beta}>0\quad(\text{resp.}<0)

for any non-zero elements v=vieiE|zv=v^{i}e_{i}\in E|_{z} and ξ=ξαzαTX|z\xi=\xi^{\alpha}\frac{\partial}{\partial z^{\alpha}}\in T_{X}|_{z} at any point zXz\in X.

In particular, when E=TXE=T_{X}, the holomorphic tangent bundle of XX, the holomorphic (bi)sectional curvatures are defined as follows, see also [GK67].

Definition 2.2.

For any two non-zero (1,0)(1,0)-type tangent vectors ξ=ξαzα\xi=\xi^{\alpha}\frac{\partial}{\partial z^{\alpha}} and η=ηαzα\eta=\eta^{\alpha}\frac{\partial}{\partial z^{\alpha}}, the holomorphic sectional curvature along the direction ξ\xi is given by

H(ξ):=Rξξ¯ξξ¯ξ4=Rγδ¯αβ¯ξαξ¯βξγξ¯δ(hαβ¯ξαξ¯β)2.H(\xi):=\frac{R_{\xi\bar{\xi}\xi\bar{\xi}}}{\|\xi\|^{4}}=\frac{R_{\gamma\bar{\delta}\alpha\bar{\beta}}\xi^{\alpha}\bar{\xi}^{\beta}\xi^{\gamma}\bar{\xi}^{\delta}}{(h_{\alpha\bar{\beta}}\xi^{\alpha}\bar{\xi}^{\beta})^{2}}.

The holomorphic bisectional curvature along ξ\xi and η\eta is

H(ξ,η):=Rξξ¯ηη¯ξ2η2=Rγδ¯αβ¯ηγη¯δξαξ¯β(hαβ¯ξαξ¯β)(hγδ¯ηγη¯δ).H(\xi,\eta):=\frac{R_{\xi\bar{\xi}\eta\bar{\eta}}}{\|\xi\|^{2}\|\eta\|^{2}}=\frac{R_{\gamma\bar{\delta}\alpha\bar{\beta}}\eta^{\gamma}\bar{\eta}^{\delta}\xi^{\alpha}\bar{\xi}^{\beta}}{(h_{\alpha\bar{\beta}}\xi^{\alpha}\bar{\xi}^{\beta})(h_{\gamma\bar{\delta}}\eta^{\gamma}\bar{\eta}^{\delta})}.

The holomorphic sectional (resp. bisectional) curvature is said to be negative if H(ξ)<0H(\xi)<0 (resp. H(ξ,η)<0H(\xi,\eta)<0).

3. Curvature of Kähler metrics on a fibration

This section will prove the negativity of holomorphic sectional curvature and holomorphic bisectional curvature for a compact relative Kähler fibration.

3.1. Definition of Kähler metrics

Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a holomorphic fibration with compact fibers, that is, a proper holomorphic submersion between two compact complex manifolds 𝒳\mathcal{X} and \mathcal{B}. Let (z,v)=(z1,,zm,v1,,vn)(z,v)=(z^{1},\dots,z^{m},v^{1},\dots,v^{n}) denote the local holomorphic coordinates of the total space 𝒳\mathcal{X}, where p(z,v)=zp(z,v)=z. Here, z=(zα)1αmz=(z^{\alpha})_{1\leq\alpha\leq m}, m=dimm=\dim\mathcal{B}, represents the local holomorphic coordinates on \mathcal{B}, and v=(vi)1inv=(v^{i})_{1\leq i\leq n}, n=dimXzn=\dim X_{z} (Xz:=p1(z)X_{z}:=p^{-1}(z)), represents the local holomorphic coordinates on the fibers.

First, we will define a relative Kähler fibration. One can refer to [WW23, Section 1] for more details.

Definition 3.1.

We call a holomorphic fibration p:𝒳p:\mathcal{X}\rightarrow\mathcal{B} a relative Kähler fibration if there exists a real, smooth, dd-closed (1,1)-form ω𝒳\omega_{\mathcal{X}} on 𝒳\mathcal{X} such that ω𝒳\omega_{\mathcal{X}} is positive on each fiber XzX_{z}.

Now we assume that p:(𝒳,ω𝒳)p:(\mathcal{X},\omega_{\mathcal{X}})\to\mathcal{B} is a relative Kähler fibration. By ¯\bar{\partial}-Poincaré Lemma, there exists a local weight, say ϕ\phi, such that

ω𝒳=1¯ϕ.\omega_{\mathcal{X}}=\sqrt{-1}\partial\bar{\partial}\phi.

By utilizing this relative Kähler form, we can obtain a canonical horizontal-vertical decomposition of the holomorphic tangent bundle of 𝒳\mathcal{X}. See for example [FLW19, Section 1]. With respect to ϕ\phi, the canonical lift of zα\frac{\partial}{\partial z^{\alpha}} is given by

δδzα:=zαϕαj¯ϕij¯vi.\tfrac{\delta}{\delta z^{\alpha}}:=\tfrac{\partial}{\partial z^{\alpha}}-\phi_{\alpha\bar{j}}\phi^{i\bar{j}}\tfrac{\partial}{\partial v^{i}}.

Here (ϕij¯)(\phi^{i\bar{j}}) denotes the inverse matrix of (ϕij¯)(\phi_{i\bar{j}}). Similarly, we define

δvi=dvi+ϕij¯ϕj¯αdzα.\delta v^{i}=dv^{i}+\phi^{i\bar{j}}\phi_{\bar{j}\alpha}dz^{\alpha}.

It can be verified that

=Span{δδzα}\mathcal{H}=\mathrm{Span}_{\mathbb{C}}\left\{\tfrac{\delta}{\delta z^{\alpha}}\right\}

forms a horizontal subbundle of T𝒳T_{\mathcal{X}}. The holomorphic vertical subbundle is

𝒱=Span{vi}\mathcal{V}=\mathrm{Span}_{\mathbb{C}}\left\{\tfrac{\partial}{\partial v^{i}}\right\}

which corresponds to the relative tangent bundle T𝒳/T_{\mathcal{X}/\mathcal{B}}.

The local frame {δδzα,vi}\left\{\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\partial}{\partial v^{i}}\right\} of T𝒳T_{\mathcal{X}} is dual to {dzα,δvi}\{dz^{\alpha},\delta v^{i}\}. Furthermore, we have the following decomposition

ω𝒳=1¯ϕ=c(ϕ)+1ϕij¯δviδv¯j,\omega_{\mathcal{X}}=\sqrt{-1}\partial\bar{\partial}\phi=c(\phi)+\sqrt{-1}\phi_{i\bar{j}}\delta v^{i}\wedge\delta\bar{v}^{j},

where c(ϕ)c(\phi) is the geodesic curvature form given by

c(ϕ)=1c(ϕ)αβ¯dzαdz¯β,c(ϕ)αβ¯=ϕαβ¯ϕαj¯ϕj¯iϕiβ¯.c(\phi)=\sqrt{-1}c(\phi)_{\alpha\bar{\beta}}dz^{\alpha}\wedge d\bar{z}^{\beta},\quad c(\phi)_{\alpha\bar{\beta}}=\phi_{\alpha\bar{\beta}}-\phi_{\alpha\bar{j}}\phi^{\bar{j}i}\phi_{i\bar{\beta}}.

Let ω=1ψαβ¯dzαdz¯β\omega_{\mathcal{B}}=\sqrt{-1}\psi_{\alpha\bar{\beta}}dz^{\alpha}\wedge d\bar{z}^{\beta} be a Kähler metric on the base manifold \mathcal{B}. We define

(3.1) Ω=k(pω)+ω𝒳,\Omega=k(p^{*}\omega_{\mathcal{B}})+\omega_{\mathcal{X}},

which is a Kähler metric on the total space 𝒳\mathcal{X} for large kk. In terms of local coordinates, we have

Ω=1Ωαβ¯dzαdz¯β+1ϕij¯δviδv¯j,\Omega=\sqrt{-1}\Omega_{\alpha\bar{\beta}}dz^{\alpha}\wedge d\bar{z}^{\beta}+\sqrt{-1}\phi_{i\bar{j}}\delta v^{i}\wedge\delta\bar{v}^{j},

where

Ωαβ¯=kψαβ¯+c(ϕ)αβ¯.\Omega_{\alpha\bar{\beta}}=k\psi_{\alpha\bar{\beta}}+c(\phi)_{\alpha\bar{\beta}}.

3.2. Negativity of holomorphic sectional curvature

In this subsection, we will prove the Kähler metrics in (3.1) have holomorphic sectional curvature and prove Theorem 1.1.

Let =1,0+¯\nabla=\nabla^{1,0}+\bar{\partial} denote the Chern connection associated with Ω\Omega, and define the Chern curvature as

R=2=1,0¯+¯1,0A1,1(𝒳,End(T𝒳)).R=\nabla^{2}=\nabla^{1,0}\circ\bar{\partial}+\bar{\partial}\circ\nabla^{1,0}\in A^{1,1}(\mathcal{X},\mathrm{End}(T_{\mathcal{X}})).

Then we have the following expressions

(3.2) 1,0δδzα=1,0δδzα,δδzβΩβ¯γδδzγ+1,0δδzα,vjϕj¯ivi=Ωαβ¯Ωβ¯γδδzγ\displaystyle\begin{split}\nabla^{1,0}\tfrac{\delta}{\delta z^{\alpha}}&=\left\langle\nabla^{1,0}\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle\Omega^{\bar{\beta}\gamma}\tfrac{\delta}{\delta z^{\gamma}}+\left\langle\nabla^{1,0}\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\partial}{\partial v^{j}}\right\rangle\phi^{\bar{j}i}\tfrac{\partial}{\partial v^{i}}\\ &=\partial\Omega_{\alpha\bar{\beta}}\Omega^{\bar{\beta}\gamma}\tfrac{\delta}{\delta z^{\gamma}}\end{split}

and

(3.3) 1,0vi=1,0vi,δδzβΩβ¯αδδzα+1,0vi,vjϕj¯kvk=(ϕβ¯kϕkj¯)ϕij¯Ωβ¯αδδzα+ϕij¯ϕj¯kvk.\displaystyle\begin{split}\nabla^{1,0}\tfrac{\partial}{\partial v^{i}}&=\left\langle\nabla^{1,0}\tfrac{\partial}{\partial v^{i}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle\Omega^{\bar{\beta}\alpha}\tfrac{\delta}{\delta z^{\alpha}}+\left\langle\nabla^{1,0}\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle\phi^{\bar{j}k}\tfrac{\partial}{\partial v^{k}}\\ &=\partial(\phi_{\bar{\beta}k}\phi^{k\bar{j}})\phi_{i\bar{j}}\Omega^{\bar{\beta}\alpha}\tfrac{\delta}{\delta z^{\alpha}}+\partial\phi_{i\bar{j}}\phi^{\bar{j}k}\tfrac{\partial}{\partial v^{k}}.\end{split}

From (3.2) and (3.3), the Chern curvature RR of Ω\Omega can be expressed as

Rδδzα=(1,0¯+¯1,0)(δδzα)=1,0(¯(ϕαj¯ϕj¯i)vi)+¯(Ωαβ¯Ωβ¯γδδzγ)=[¯(Ωαβ¯Ωβ¯γ)+¯(ϕαj¯ϕj¯i)(ϕβ¯kϕkl¯)ϕil¯Ωβ¯γ]δδzγ+[¯(ϕαj¯ϕj¯i)+¯(ϕαj¯ϕj¯k)ϕkj¯ϕj¯i+Ωαβ¯Ωβ¯γ¯(ϕγj¯ϕj¯i)]vi\displaystyle\begin{split}R\tfrac{\delta}{\delta z^{\alpha}}&=(\nabla^{1,0}\circ\bar{\partial}+\bar{\partial}\circ\nabla^{1,0})(\tfrac{\delta}{\delta z^{\alpha}})\\ &=\nabla^{1,0}(\bar{\partial}(-\phi_{\alpha\bar{j}}\phi^{\bar{j}i})\tfrac{\partial}{\partial v^{i}})+\bar{\partial}\left(\partial\Omega_{\alpha\bar{\beta}}\Omega^{\bar{\beta}\gamma}\tfrac{\delta}{\delta z^{\gamma}}\right)\\ &=\left[\bar{\partial}\left(\partial\Omega_{\alpha\bar{\beta}}\Omega^{\bar{\beta}\gamma}\right)+\bar{\partial}(\phi_{\alpha\bar{j}}\phi^{\bar{j}i})\wedge\partial(\phi_{\bar{\beta}k}\phi^{k\bar{l}})\phi_{i\bar{l}}\Omega^{\bar{\beta}\gamma}\right]\tfrac{\delta}{\delta z^{\gamma}}\\ &\quad+\left[-\partial\bar{\partial}(\phi_{\alpha\bar{j}}\phi^{\bar{j}i})+\bar{\partial}(\phi_{\alpha\bar{j}}\phi^{\bar{j}k})\wedge\partial\phi_{k\bar{j}}\phi^{\bar{j}i}\right.\\ &\quad\left.+\partial\Omega_{\alpha\bar{\beta}}\Omega^{\bar{\beta}\gamma}\wedge\bar{\partial}(\phi_{\gamma\bar{j}}\phi^{\bar{j}i})\right]\tfrac{\partial}{\partial v^{i}}\end{split}

and

Rvi=¯1,0(vi)=¯[(ϕβ¯kϕkj¯)ϕij¯Ωβ¯αδδzα+ϕij¯ϕj¯kvk]=¯((ϕβ¯kϕkj¯)ϕij¯Ωβ¯α)δδzα+[¯(ϕij¯ϕj¯k)+(ϕβ¯sϕsj¯)ϕij¯Ωβ¯α¯(ϕαl¯ϕl¯k)]vk.\displaystyle\begin{split}R\tfrac{\partial}{\partial v^{i}}&=\bar{\partial}\circ\nabla^{1,0}(\tfrac{\partial}{\partial v^{i}})\\ &=\bar{\partial}\left[\partial(\phi_{\bar{\beta}k}\phi^{k\bar{j}})\phi_{i\bar{j}}\Omega^{\bar{\beta}\alpha}\tfrac{\delta}{\delta z^{\alpha}}+\partial\phi_{i\bar{j}}\phi^{\bar{j}k}\tfrac{\partial}{\partial v^{k}}\right]\\ &=\bar{\partial}\left(\partial(\phi_{\bar{\beta}k}\phi^{k\bar{j}})\phi_{i\bar{j}}\Omega^{\bar{\beta}\alpha}\right)\tfrac{\delta}{\delta z^{\alpha}}\\ &\quad+\left[\bar{\partial}(\partial\phi_{i\bar{j}}\phi^{\bar{j}k})+\partial(\phi_{\bar{\beta}s}\phi^{s\bar{j}})\phi_{i\bar{j}}\Omega^{\bar{\beta}\alpha}\wedge\bar{\partial}(\phi_{\alpha\bar{l}}\phi^{\bar{l}k})\right]\tfrac{\partial}{\partial v^{k}}.\end{split}

By taking the inner product of RδδzαR\frac{\delta}{\delta z^{\alpha}} and RviR\frac{\partial}{\partial v^{i}} with δδzβ\frac{\delta}{\delta z^{\beta}} and vj\frac{\partial}{\partial v^{j}}, we obtain the following proposition.

Proposition 3.2.

We have

(3.4) Rδδzα,δδzβ\displaystyle\left\langle R\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle =Rδδzα,δδzβ+¯(ϕαj¯ϕj¯i)(ϕβ¯kϕkl¯)ϕil¯.\displaystyle=\left\langle R^{\mathcal{H}}\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle+\bar{\partial}(\phi_{\alpha\bar{j}}\phi^{\bar{j}i})\wedge\partial(\phi_{\bar{\beta}k}\phi^{k\bar{l}})\phi_{i\bar{l}}.
(3.5) Rvi,vj\displaystyle\left\langle R\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle =R𝒱vi,vj+(ϕβ¯sϕsq¯)ϕiq¯Ωβ¯α¯(ϕαl¯ϕl¯k)ϕkj¯.\displaystyle=\left\langle R^{\mathcal{V}}\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle+\partial(\phi_{\bar{\beta}s}\phi^{s\bar{q}})\phi_{i\bar{q}}\Omega^{\bar{\beta}\alpha}\wedge\bar{\partial}(\phi_{\alpha\bar{l}}\phi^{\bar{l}k})\phi_{k\bar{j}}.
(3.6) Rδδzα,vl\displaystyle\left\langle R\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\partial}{\partial v^{l}}\right\rangle =[¯(ϕαj¯ϕj¯i)+¯(ϕαj¯ϕj¯k)ϕkj¯ϕj¯i\displaystyle=\left[-\partial\bar{\partial}(\phi_{\alpha\bar{j}}\phi^{\bar{j}i})+\bar{\partial}(\phi_{\alpha\bar{j}}\phi^{\bar{j}k})\wedge\partial\phi_{k\bar{j}}\phi^{\bar{j}i}\right.
+Ωαβ¯Ωβ¯γ¯(ϕγj¯ϕj¯i)]ϕil¯.\displaystyle\left.\quad\,+\partial\Omega_{\alpha\bar{\beta}}\Omega^{\bar{\beta}\gamma}\wedge\bar{\partial}(\phi_{\gamma\bar{j}}\phi^{\bar{j}i})\right]\phi_{i\bar{l}}.

Here, RR^{\mathcal{H}} denotes the Chern curvature of the Hermitian vector bundle (,(Ωαβ¯))(\mathcal{H},(\Omega_{\alpha\bar{\beta}})), and R𝒱R^{\mathcal{V}} is the Chern curvature of the Hermitian vector bundle (𝒱,(ϕij¯))(\mathcal{V},(\phi_{i\bar{j}})).

Recall that Ωαβ¯=kψαβ¯+c(ϕ)αβ¯\Omega_{\alpha\bar{\beta}}=k\psi_{\alpha\bar{\beta}}+c(\phi)_{\alpha\bar{\beta}}. We now derive the following estimates.

Proposition 3.3.

As kk\to\infty, the following estimates hold:

(3.7) Rγσ¯αβ¯\displaystyle R_{\gamma\bar{\sigma}\alpha\bar{\beta}} :=R(δδzγ,δδz¯σ)δδzα,δδzβ=Rγσ¯αβ¯Tk+O(1),\displaystyle:=\left\langle R\left(\tfrac{\delta}{\delta z^{\gamma}},\tfrac{\delta}{\delta\bar{z}^{\sigma}}\right)\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle=R^{T_{\mathcal{B}}}_{\gamma\bar{\sigma}\alpha\bar{\beta}}k+O(1),
(3.8) Rγσ¯ij¯\displaystyle R_{\gamma\bar{\sigma}i\bar{j}} :=R(δδzγ,δδz¯σ)vi,vj=Rγσ¯ij¯𝒱+O(1k)=O(1),\displaystyle:=\left\langle R\left(\tfrac{\delta}{\delta z^{\gamma}},\tfrac{\delta}{\delta\bar{z}^{\sigma}}\right)\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle=R^{\mathcal{V}}_{\gamma\bar{\sigma}i\bar{j}}+O\left(\tfrac{1}{k}\right)=O(1),
(3.9) Rkl¯ij¯\displaystyle R_{k\bar{l}i\bar{j}} :=R(vk,v¯l)vi,vj=Rkl¯ij¯𝒱+O(1k),\displaystyle:=\left\langle R\left(\tfrac{\partial}{\partial v^{k}},\tfrac{\partial}{\partial\bar{v}^{l}}\right)\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle=R^{\mathcal{V}}_{k\bar{l}i\bar{j}}+O\left(\tfrac{1}{k}\right),
(3.10) Rkβ¯ij¯\displaystyle R_{k\bar{\beta}i\bar{j}} :=R(vk,δδz¯β)vi,vj=O(1),\displaystyle:=\left\langle R\left(\tfrac{\partial}{\partial v^{k}},\tfrac{\delta}{\delta\bar{z}^{\beta}}\right)\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle=O(1),
(3.11) Rαl¯ij¯\displaystyle R_{\alpha\bar{l}i\bar{j}} :=R(δδzα,v¯l)vi,vj=O(1),\displaystyle:=\left\langle R\left(\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\partial}{\partial\bar{v}^{l}}\right)\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle=O(1),
(3.12) Rαl¯γj¯\displaystyle R_{\alpha\bar{l}\gamma\bar{j}} :=R(δδzα,v¯l)δδzγ,vj=O(1),\displaystyle:=\left\langle R\left(\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\partial}{\partial\bar{v}^{l}}\right)\tfrac{\delta}{\delta z^{\gamma}},\tfrac{\partial}{\partial v^{j}}\right\rangle=O(1),
(3.13) Riσ¯αβ¯\displaystyle R_{i\bar{\sigma}\alpha\bar{\beta}} :=R(vi,δδz¯σ)δδzα,δδzβ=O(1).\displaystyle:=\left\langle R\left(\tfrac{\partial}{\partial v^{i}},\tfrac{\delta}{\delta\bar{z}^{\sigma}}\right)\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle=O(1).

Here, f(k)=O(g(k))f(k)=O(g(k)) as kk\to\infty means that there exist constants k0>0k_{0}>0 and C>0C>0 such that |f(k)|<Cg(k)|f(k)|<Cg(k) for any kk0k\geq k_{0}.

Proof.

First, note that 1kΩαβ¯=ψαβ¯+1kc(ϕ)αβ¯\frac{1}{k}\Omega_{\alpha\bar{\beta}}=\psi_{\alpha\bar{\beta}}+\frac{1}{k}c(\phi)_{\alpha\bar{\beta}}, so kΩαβ¯=ψαβ¯+O(1k)k\Omega^{\alpha\bar{\beta}}=\psi^{\alpha\bar{\beta}}+O\left(\frac{1}{k}\right). Using Proposition 3.2 (3.4), we have

Rδδzα,δδzβ\displaystyle\left\langle R\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle =¯Ωαβ¯+Ωασ¯¯Ωγβ¯Ωσ¯γ+O(1)\displaystyle=\bar{\partial}\partial\Omega_{\alpha\bar{\beta}}+\partial\Omega_{\alpha\bar{\sigma}}\wedge\bar{\partial}\Omega_{\gamma\bar{\beta}}\Omega^{\bar{\sigma}\gamma}+O(1)
=k¯ψαβ¯+O(1)\displaystyle=k\bar{\partial}\partial\psi_{\alpha\bar{\beta}}+O(1)
+(kψασ¯+O(1))(k¯ψγβ¯+O(1))(1kψσ¯γ+O(1k2))\displaystyle\quad+\left(k\partial\psi_{\alpha\bar{\sigma}}+O(1)\right)\wedge\left(k\bar{\partial}\psi_{\gamma\bar{\beta}}+O(1)\right)\left(\tfrac{1}{k}\psi^{\bar{\sigma}\gamma}+O\left(\tfrac{1}{k^{2}}\right)\right)
=k(¯ψαβ¯+ψασ¯¯ψγβ¯ψσ¯γ)+O(1)\displaystyle=k\left(\bar{\partial}\partial\psi_{\alpha\bar{\beta}}+\partial\psi_{\alpha\bar{\sigma}}\wedge\bar{\partial}\psi_{\gamma\bar{\beta}}\psi^{\bar{\sigma}\gamma}\right)+O(1)
=kRTδδzα,δδzβ+O(1).\displaystyle=k\left\langle R^{T_{\mathcal{B}}}\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right\rangle+O(1).

Thus, (3.7) and (3.13) are proved. Now, using Proposition 3.2 (3.5), we get

(3.14) Rvi,vj\displaystyle\left\langle R\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle =R𝒱vi,vj+O(1k)=O(1),\displaystyle=\left\langle R^{\mathcal{V}}\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle+O\left(\tfrac{1}{k}\right)=O(1),

which proves (3.8) through (3.11). Finally, Proposition 3.2 (3.6) gives the proof of (3.12). ∎

Next, we prove Theorem 1.1.

Proof of Theorem 1.1.

For any vector XX of type (1,0)(1,0), we decompose it as follows

X=Y+Z,Y=aαδδzα,Z=bivi.X=Y+Z,\quad Y=a^{\alpha}\tfrac{\delta}{\delta z^{\alpha}},\quad Z=b^{i}\tfrac{\partial}{\partial v^{i}}.

Using Proposition 3.3, the holomorphic sectional curvature along the direction XX is given by

(3.15) RXX¯XX¯=R(Y+Z,Y¯+Z¯)(Y+Z),Y+Z=RYY¯YY¯+2RYY¯YZ¯+2RYY¯ZY¯+4RYY¯ZZ¯+RYZ¯YZ¯+RZY¯ZY¯+2RYZ¯ZZ¯+2RZZ¯ZY¯+RZZ¯ZZ¯RpYpY¯pYpY¯Tk+RZZ¯ZZ¯𝒱+O(1k)b4+O(1)(a4+a3b+a2b2+ab3),\displaystyle\begin{split}R_{X\bar{X}X\bar{X}}&=\left\langle R(Y+Z,\bar{Y}+\bar{Z})(Y+Z),Y+Z\right\rangle\\ &=R_{Y\bar{Y}Y\bar{Y}}+2R_{Y\bar{Y}Y\bar{Z}}+2R_{Y\bar{Y}Z\bar{Y}}+4R_{Y\bar{Y}Z\bar{Z}}+R_{Y\bar{Z}Y\bar{Z}}\\ &\quad+R_{Z\bar{Y}Z\bar{Y}}+2R_{Y\bar{Z}Z\bar{Z}}+2R_{Z\bar{Z}Z\bar{Y}}+R_{Z\bar{Z}Z\bar{Z}}\\ &\leq R^{T_{\mathcal{B}}}_{p_{*}Y\overline{p_{*}Y}p_{*}Y\overline{p_{*}Y}}\cdot k+R^{\mathcal{V}}_{Z\bar{Z}Z\bar{Z}}+O\left(\tfrac{1}{k}\right)\|b\|^{4}\\ &\quad+O(1)(\|a\|^{4}+\|a\|^{3}\|b\|+\|a\|^{2}\|b\|^{2}+\|a\|\|b\|^{3}),\end{split}

where a=(a1,,am)a=(a^{1},\dots,a^{m}) and b=(b1,,bn)b=(b^{1},\dots,b^{n}), and the norms of aa and bb are defined as follows

(3.16) a2:=aαaβ¯ψαβ¯ and b2:=bibj¯ϕij¯.\|a\|^{2}:={a^{\alpha}\overline{a^{\beta}}\psi_{\alpha\bar{\beta}}}\text{ and }\|b\|^{2}:={b^{i}\overline{b^{j}}\phi_{i\bar{j}}}.

By assumption, both the base and the fibers have negative holomorphic sectional curvature. Therefore,

(3.17) RpYpY¯pYpY¯Tϵ0pY4=ϵ0|aαaβ¯ψαβ¯|2=ϵ0a4,R^{T_{\mathcal{B}}}_{p_{*}Y\overline{p_{*}Y}p_{*}Y\overline{p_{*}Y}}\leq-\epsilon_{0}\|p_{*}Y\|^{4}=-\epsilon_{0}|a^{\alpha}\overline{a^{\beta}}\psi_{\alpha\bar{\beta}}|^{2}=-\epsilon_{0}\|a\|^{4},

for some small positive constant ϵ0\epsilon_{0}, where ϵ0-\epsilon_{0} is taken to be the maximum holomorphic sectional curvature of (,ω)(\mathcal{B},\omega_{\mathcal{B}}). Similarly, we have

(3.18) RZZ¯ZZ¯𝒱ϵ1b4R^{\mathcal{V}}_{Z\bar{Z}Z\bar{Z}}\leq-\epsilon_{1}\|b\|^{4}

for some small positive constant ϵ1\epsilon_{1}. Substituting (3.17) and (3.18) into (3.15) yields

(3.19) RXX¯XX¯ϵ0ka4ϵ1b4+O(1k)b4+O(1)(a4+a3b+a2b2+ab3).\displaystyle\begin{split}R_{X\bar{X}X\bar{X}}&\leq-\epsilon_{0}k\|a\|^{4}-\epsilon_{1}\|b\|^{4}+O\left(\tfrac{1}{k}\right)\|b\|^{4}\\ &\quad+O(1)(\|a\|^{4}+\|a\|^{3}\|b\|+\|a\|^{2}\|b\|^{2}+\|a\|\|b\|^{3}).\end{split}

Using Young’s inequality, we have the following estimates:

a3b34k16a4+141kb4.b3a34k16b4+14ka4.a2b2k2a4+12kb4.\displaystyle\begin{split}\|a\|^{3}\|b\|&\leq\tfrac{3}{4}k^{\tfrac{1}{6}}\|a\|^{4}+\tfrac{1}{4}\tfrac{1}{\sqrt{k}}\|b\|^{4}.\\ \|b\|^{3}\|a\|&\leq\tfrac{3}{4}k^{-\tfrac{1}{6}}\|b\|^{4}+\tfrac{1}{4}\sqrt{k}\|a\|^{4}.\\ \|a\|^{2}\|b\|^{2}&\leq\tfrac{\sqrt{k}}{2}\|a\|^{4}+\tfrac{1}{2\sqrt{k}}\|b\|^{4}.\end{split}

Thus, (3.19) simplifies to

RXX¯XX¯a4(ϵ0k+O(1)(1+34k16+34k))+b4(ϵ1+O(1k)+O(1)(14k+34k16+12k))a4(ϵ0k+O(k))+b4(ϵ1+O(k16)).\displaystyle\begin{split}R_{X\bar{X}X\bar{X}}&\leq\|a\|^{4}(-\epsilon_{0}k+O(1)(1+\tfrac{3}{4}k^{\tfrac{1}{6}}+\tfrac{3}{4}\sqrt{k}))\\ &\quad+\|b\|^{4}(-\epsilon_{1}+O(\tfrac{1}{k})+O(1)(\tfrac{1}{4\sqrt{k}}+\tfrac{3}{4}k^{-\tfrac{1}{6}}+\tfrac{1}{2\sqrt{k}}))\\ &\leq\|a\|^{4}(-\epsilon_{0}k+O(\sqrt{k}))+\|b\|^{4}(-\epsilon_{1}+O(k^{-\tfrac{1}{6}})).\end{split}

Hence, there exists some k0>0k_{0}>0 such that for any kk0k\geq k_{0},

ϵ0k+O(k)<0andϵ1+O(k16)<0.-\epsilon_{0}k+O(\sqrt{k})<0\quad\text{and}\quad-\epsilon_{1}+O(k^{-\tfrac{1}{6}})<0.

Therefore,

RXX¯XX¯<0,R_{X\bar{X}X\bar{X}}<0,

for any a0\|a\|\neq 0 or b0\|b\|\neq 0, i.e., for any non-zero vector XX. This concludes the proof of the negativity of the holomorphic sectional curvature of the Kähler metric Ω=kω+ω𝒳\Omega=k\omega_{\mathcal{B}}+\omega_{\mathcal{X}} for any kk0k\geq k_{0}. ∎

Remark 3.4.

By [WY16] and [TY17], if each fiber has a Kähler metric with negative holomorphic sectional curvature, then the canonical bundle of each fiber is ample. Hence, this relative Kähler fibration is a holomorphic family of compact, canonically polarized manifolds.

3.3. Negativity of holomorphic bisectional curvature

In this section, we will prove that the Kähler metrics in (3.1) have negative holomorphic bisectional curvature and prove Theorem 1.3.

Recall that the relative Kähler form ω𝒳\omega_{\mathcal{X}} is a real (1,1)(1,1)-form on 𝒳\mathcal{X}, which is positive when restricted to each fiber. We express it as follows

ω𝒳=1¯ϕ=c(ϕ)+1ϕij¯δviδv¯j.\omega_{\mathcal{X}}=\sqrt{-1}\partial\bar{\partial}\phi=c(\phi)+\sqrt{-1}\phi_{i\bar{j}}\delta v^{i}\wedge\delta\bar{v}^{j}.

The relative tangent bundle T𝒳/=𝒱T_{\mathcal{X}/\mathcal{B}}=\mathcal{V} is spanned by {vi}1in\{\frac{\partial}{\partial v^{i}}\}_{1\leq i\leq n}. Hence the Kähler form ω𝒳\omega_{\mathcal{X}} induces a canonical Hermitian metric on 𝒱\mathcal{V} by

vi,vj:=ϕij¯.\left\langle\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle:=\phi_{i\bar{j}}.

In this section, we assume that the induced Hermitian metric has Griffiths negative curvature. Denote

Ω0:=pω+1ϕij¯δviδv¯j,\Omega_{0}:=p^{*}\omega_{\mathcal{B}}+\sqrt{-1}\phi_{i\bar{j}}\delta v^{i}\wedge\delta\bar{v}^{j},

which is a Hermitian metric on 𝒳\mathcal{X}. Since 𝒳\mathcal{X} is compact, there exist two uniform positive constants c0c_{0} and C0C_{0} such that

(3.20) c0XΩ02V2RXX¯VV¯𝒱C0XΩ02V2c_{0}\|X\|_{\Omega_{0}}^{2}\|V\|^{2}\leq-R^{\mathcal{V}}_{X\bar{X}V\bar{V}}\leq C_{0}\|X\|_{\Omega_{0}}^{2}\|V\|^{2}

for any tangent vector XX and V𝒱V\in\mathcal{V}.

For any non-zero vector XX of type (1,0)(1,0), we can decompose it as

X=Y+ZX=Y+Z

where Y=aαδδzαY=a^{\alpha}\tfrac{\delta}{\delta z^{\alpha}} and Z=biviZ=b^{i}\tfrac{\partial}{\partial v^{i}}. For any tt\in\mathbb{R}, we have

RY+tZY+tZ¯VV¯𝒱=t2RZZ¯VV¯𝒱+t(RYZ¯VV¯𝒱+RZY¯VV¯𝒱)+RYY¯VV¯𝒱.R^{\mathcal{V}}_{Y+tZ\overline{Y+tZ}V\bar{V}}=t^{2}R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}+t(R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}})+R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}.

If YY, ZZ, and VV are non-zero, by taking t=RYZ¯VV¯𝒱+RZY¯VV¯𝒱2RZZ¯VV¯𝒱t=-\tfrac{R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}}}{2R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}}, we obtain

RY+tZY+tZ¯VV¯𝒱=4RZZ¯VV¯𝒱RYY¯VV¯𝒱(RYZ¯VV¯𝒱+RZY¯VV¯𝒱)24RZZ¯VV¯𝒱<0.R^{\mathcal{V}}_{Y+tZ\overline{Y+tZ}V\bar{V}}=\frac{4R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}-\left(R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}}\right)^{2}}{4R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}}<0.

This implies that

(3.21) 2RZZ¯VV¯𝒱RYY¯VV¯𝒱|RYZ¯VV¯𝒱+RZY¯VV¯𝒱|c1V2ZΩ0YΩ0,2\sqrt{R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}}-\left|R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}}\right|\geq c_{1}\|V\|^{2}\|Z\|_{\Omega_{0}}\|Y\|_{\Omega_{0}},

for some constant c1>0c_{1}>0.

On the other hand, we also have

RZZ¯VV¯𝒱RYY¯VV¯𝒱C0V2ZΩ0YΩ0.\sqrt{R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}}\leq C_{0}\|V\|^{2}\|Z\|_{\Omega_{0}}\|Y\|_{\Omega_{0}}.

Combining this with (3.21), we obtain

(RZZ¯VV¯𝒱RYY¯VV¯𝒱)(1c12C0)|RYZ¯VV¯𝒱+RZY¯VV¯𝒱|\displaystyle\quad\left(-R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}-R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}\right)\left(1-\tfrac{c_{1}}{2C_{0}}\right)-\left|R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}}\right|
2RZZ¯VV¯𝒱RYY¯VV¯𝒱(1c12C0)|RYZ¯VV¯𝒱+RZY¯VV¯𝒱|\displaystyle\geq 2\sqrt{R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}}\left(1-\tfrac{c_{1}}{2C_{0}}\right)-\left|R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}}\right|
0.\displaystyle\geq 0.

Thus, we conclude

(3.22) RZZ¯VV¯𝒱RYY¯VV¯𝒱|RYZ¯VV¯𝒱+RZY¯VV¯𝒱|ϵ0(RZZ¯VV¯𝒱RYY¯VV¯𝒱),\displaystyle\begin{split}&\quad-R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}-R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}-\left|R^{\mathcal{V}}_{Y\bar{Z}V\bar{V}}+R^{\mathcal{V}}_{Z\bar{Y}V\bar{V}}\right|\\ &\geq\epsilon_{0}\left(-R^{\mathcal{V}}_{Z\bar{Z}V\bar{V}}-R^{\mathcal{V}}_{Y\bar{Y}V\bar{V}}\right),\end{split}

where ϵ0=c12C0>0\epsilon_{0}=\frac{c_{1}}{2C_{0}}>0.

For any two non-zero vectors XX and WW of type (1,0)(1,0), we decompose them as follows

X=Y+Z and W=U+V,X=Y+Z\text{ and }W=U+V,

where Y=aαδδzαY=a^{\alpha}\frac{\delta}{\delta z^{\alpha}}, Z=biviZ=b^{i}\frac{\partial}{\partial v^{i}}, U=cαδδzαU=c^{\alpha}\frac{\delta}{\delta z^{\alpha}}, and V=diviV=d^{i}\frac{\partial}{\partial v^{i}}. Then, the holomorphic bisectional curvature satisfies

(3.23) RXX¯WW¯=R(Y+Z,Y+Z¯)(U+V),U+V=RYY¯UU¯+RYY¯UV¯+RYY¯VU¯+RYY¯VV¯+RYZ¯UU¯+RYZ¯UV¯+RYZ¯VU¯+RYZ¯VV¯+RZY¯UU¯+RZY¯UV¯+RZY¯VU¯+RZY¯VV¯+RZZ¯UU¯+RZZ¯UV¯+RZZ¯VU¯+RZZ¯VV¯.\displaystyle\begin{split}R_{X\bar{X}W\bar{W}}&=\left\langle R(Y+Z,\overline{Y+Z})(U+V),U+V\right\rangle\\ &=R_{Y\bar{Y}U\bar{U}}+R_{Y\bar{Y}U\bar{V}}+R_{Y\bar{Y}V\bar{U}}+R_{Y\bar{Y}V\bar{V}}\\ &\quad+R_{Y\bar{Z}U\bar{U}}+R_{Y\bar{Z}U\bar{V}}+R_{Y\bar{Z}V\bar{U}}+R_{Y\bar{Z}V\bar{V}}\\ &\quad+R_{Z\bar{Y}U\bar{U}}+R_{Z\bar{Y}U\bar{V}}+R_{Z\bar{Y}V\bar{U}}+R_{Z\bar{Y}V\bar{V}}\\ &\quad+R_{Z\bar{Z}U\bar{U}}+R_{Z\bar{Z}U\bar{V}}+R_{Z\bar{Z}V\bar{U}}+R_{Z\bar{Z}V\bar{V}}.\end{split}

By Proposition 3.3 and equation (3.20), and following the same reasoning as in the proof of (3.17) and by assumption (,ω)(\mathcal{B},\omega_{\mathcal{B}}) has negative holomorphic bisectional curvature, there exists a small positive constant ϵ1\epsilon_{1} such that

RYY¯UU¯\displaystyle R_{Y\bar{Y}U\bar{U}} a2c2(ϵ1k+O(1)),\displaystyle\leq\|a\|^{2}\|c\|^{2}(-\epsilon_{1}k+O(1)),
RZZ¯VV¯\displaystyle R_{Z\bar{Z}V\bar{V}} b2d2(ϵ1+O(1k)),\displaystyle\leq\|b\|^{2}\|d\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k})),
RYY¯VV¯\displaystyle R_{Y\bar{Y}V\bar{V}} a2d2(ϵ1+O(1k)),\displaystyle\leq\|a\|^{2}\|d\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k})),
RZZ¯UU¯\displaystyle R_{Z\bar{Z}U\bar{U}} b2c2(ϵ1+O(1k)),\displaystyle\leq\|b\|^{2}\|c\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k})),

where the norms of a,b,c,d\|a\|,\|b\|,\|c\|,\|d\| are defined by (3.16).

The cross terms involving different combinations of YY, ZZ, UU, and VV have the following bounds

|RYY¯UV¯|=|RYY¯VU¯|\displaystyle|R_{Y\bar{Y}U\bar{V}}|=|R_{Y\bar{Y}V\bar{U}}| a2cdO(1),\displaystyle\leq\|a\|^{2}\|c\|\|d\|O(1),
|RYZ¯UU¯|=|RZY¯UU¯|\displaystyle|R_{Y\bar{Z}U\bar{U}}|=|R_{Z\bar{Y}U\bar{U}}| abc2O(1),\displaystyle\leq\|a\|\|b\|\|c\|^{2}O(1),
|RYZ¯VV¯|=|RZY¯VV¯|\displaystyle|R_{Y\bar{Z}V\bar{V}}|=|R_{Z\bar{Y}V\bar{V}}| abd2O(1),\displaystyle\leq\|a\|\|b\|\|d\|^{2}O(1),
|RZZ¯UV¯|=|RZZ¯VU¯|\displaystyle|R_{Z\bar{Z}U\bar{V}}|=|R_{Z\bar{Z}V\bar{U}}| b2cdO(1),\displaystyle\leq\|b\|^{2}\|c\|\|d\|O(1),
|RYZ¯UV¯|=|RZY¯VU¯|\displaystyle|R_{Y\bar{Z}U\bar{V}}|=|R_{Z\bar{Y}V\bar{U}}| abcdO(1).\displaystyle\leq\|a\|\|b\|\|c\|\|d\|O(1).

Using equations (3.14) and (3.22) and the symmetry of the curvature tensor, we obtain

(3.24) RZZ¯UU¯+RZZ¯VV¯+|RZZ¯UV¯+RZZ¯VU¯|=RUU¯ZZ¯+RVV¯ZZ¯+|RUV¯ZZ¯+RVU¯ZZ¯|RUU¯ZZ¯𝒱+RVV¯ZZ¯𝒱+|RUV¯ZZ¯𝒱+RVU¯ZZ¯𝒱|+O(1k)b2(c+d)2ϵ0(RUU¯ZZ¯𝒱+RVV¯ZZ¯𝒱)+O(1k)b2(c+d)2(ϵ0ϵ1+O(1k))b2(c2+d2).\displaystyle\begin{split}&\quad R_{Z\bar{Z}U\bar{U}}+R_{Z\bar{Z}V\bar{V}}+|R_{Z\bar{Z}U\bar{V}}+R_{Z\bar{Z}V\bar{U}}|\\ &=R_{U\bar{U}Z\bar{Z}}+R_{V\bar{V}Z\bar{Z}}+|R_{U\bar{V}Z\bar{Z}}+R_{V\bar{U}Z\bar{Z}}|\\ &\leq R_{U\bar{U}Z\bar{Z}}^{\mathcal{V}}+R_{V\bar{V}Z\bar{Z}}^{\mathcal{V}}+|R^{\mathcal{V}}_{U\bar{V}Z\bar{Z}}+R^{\mathcal{V}}_{V\bar{U}Z\bar{Z}}|\\ &\quad+O(\tfrac{1}{k})\|b\|^{2}(\|c\|+\|d\|)^{2}\\ &\leq\epsilon_{0}\left(R_{U\bar{U}Z\bar{Z}}^{\mathcal{V}}+R_{V\bar{V}Z\bar{Z}}^{\mathcal{V}}\right)+O(\tfrac{1}{k})\|b\|^{2}(\|c\|+\|d\|)^{2}\\ &\leq(-\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k}))\|b\|^{2}(\|c\|^{2}+\|d\|^{2}).\end{split}

Similarly, we have

RYY¯VV¯+RZZ¯VV¯+|RZY¯VV¯+RZY¯VV¯|(ϵ0ϵ1+O(1k))d2(a2+b2).\displaystyle\begin{split}&\quad R_{Y\bar{Y}V\bar{V}}+R_{Z\bar{Z}V\bar{V}}+|R_{Z\bar{Y}V\bar{V}}+R_{Z\bar{Y}V\bar{V}}|\\ &\leq(-\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k}))\|d\|^{2}(\|a\|^{2}+\|b\|^{2}).\end{split}

Now we begin to prove Theorem 1.3.

Proof of Theorem 1.3.

We will discuss the negativity of holomorphic bisectional curvature in the following five cases.

Case I: If b=0\|b\|=0, i.e. Z=0Z=0, then

RXX¯WW¯=RYY¯UU¯+RYY¯UV¯+RYY¯VU¯+RYY¯VV¯a2c2(ϵ1k+O(1))+2a2cdO(1)+a2d2(ϵ1+O(1k))a2c2(ϵ1k+O(1)+kO(1))+a2d2(ϵ1+O(1k)+1kO(1)),\displaystyle\begin{split}R_{X\bar{X}W\bar{W}}&=R_{Y\bar{Y}U\bar{U}}+R_{Y\bar{Y}U\bar{V}}+R_{Y\bar{Y}V\bar{U}}+R_{Y\bar{Y}V\bar{V}}\\ &\leq\|a\|^{2}\|c\|^{2}(-\epsilon_{1}k+O(1))+2\|a\|^{2}\|c\|\|d\|O(1)\\ &\quad+\|a\|^{2}\|d\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k}))\\ &\leq\|a\|^{2}\|c\|^{2}(-\epsilon_{1}k+O(1)+\sqrt{k}O(1))\\ &\quad+\|a\|^{2}\|d\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k})+\tfrac{1}{\sqrt{k}}O(1)),\end{split}

where the last inequality by the inequality 2cdc2k+d2/k2\|c\|\|d\|\leq\|c\|^{2}\sqrt{k}+\|d\|^{2}/\sqrt{k}. Hence there exists a large k00k_{0}\geq 0 such that

ϵ1k+O(1)+kO(1)<0 and ϵ1+O(1k)+1k<0-\epsilon_{1}k+O(1)+\sqrt{k}O(1)<0\text{ and }-\epsilon_{1}+O(\tfrac{1}{k})+\tfrac{1}{\sqrt{k}}<0

for any kk0k\geq k_{0}. Hence RXX¯WW¯<0R_{X\bar{X}W\bar{W}}<0.

Case II: If d=0\|d\|=0, i.e. V=0V=0, this reduces to the previous case since RXX¯WW¯=RWW¯XX¯R_{X\bar{X}W\bar{W}}=R_{W\bar{W}X\bar{X}}. Hence RXX¯WW¯<0R_{X\bar{X}W\bar{W}}<0 for any kk0k\geq k_{0}.

Case III: If b=d=1\|b\|=\|d\|=1 and ac\|a\|\leq\|c\|, using (3.24), (3.23) and the estimates on curvature tensors, then

RXX¯WW¯a2c2(ϵ1k+O(1))+2a2cO(1)+2ac2O(1)+4acO(1)+a2(ϵ1+O(1k))+2aO(1)+(ϵ0ϵ1+O(1k))(c2+1)a2c2(ϵ1k+O(1)+4kO(1))+a2(ϵ1+O(1k)+O(1k))+c2(ϵ0ϵ1+O(1k)+O(1k))+(ϵ0ϵ1+O(1k)+O(1k))+2aO(1).\displaystyle\begin{split}R_{X\bar{X}W\bar{W}}&\leq\|a\|^{2}\|c\|^{2}(-\epsilon_{1}k+O(1))+2\|a\|^{2}\|c\|O(1)+2\|a\|\|c\|^{2}O(1)\\ &\quad+4\|a\|\|c\|O(1)+\|a\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k}))+2\|a\|O(1)\\ &\quad+(-\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k}))(\|c\|^{2}+1)\\ &\leq\|a\|^{2}\|c\|^{2}(-\epsilon_{1}k+O(1)+4\sqrt{k}O(1))\\ &\quad+\|a\|^{2}(-\epsilon_{1}+O(\tfrac{1}{k})+O(\tfrac{1}{\sqrt{k}}))\\ &\quad+\|c\|^{2}(-\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k})+O(\tfrac{1}{\sqrt{k}}))+(-\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k})\\ &\quad+O(\tfrac{1}{\sqrt{k}}))+2\|a\|O(1).\end{split}

By choosing kk large enough such that

{ϵ1k+O(1)+4kO(1)<ϵ12k,ϵ1+O(1k)+O(1k)<0,ϵ0ϵ1+O(1k)+O(1k)<0,ϵ0ϵ1+O(1k)+O(1k)<12ϵ0ϵ1.\begin{cases}-\epsilon_{1}k+O(1)+4\sqrt{k}O(1)&<-\tfrac{\epsilon_{1}}{2}k,\\ -\epsilon_{1}+O(\tfrac{1}{k})+O(\tfrac{1}{\sqrt{k}})&<0,\\ -\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k})+O(\tfrac{1}{\sqrt{k}})&<0,\\ -\epsilon_{0}\epsilon_{1}+O(\tfrac{1}{k})+O(\tfrac{1}{\sqrt{k}})&<-\tfrac{1}{2}\epsilon_{0}\epsilon_{1}.\end{cases}

We obtain

RXX¯WW¯ϵ12ka412ϵ0ϵ1+2aO(1)(ϵ2k+k2O(1))a4+(12ϵ0ϵ1+32k16O(1)),\displaystyle\begin{split}R_{X\bar{X}W\bar{W}}&\leq-\tfrac{\epsilon_{1}}{2}k\|a\|^{4}-\tfrac{1}{2}\epsilon_{0}\epsilon_{1}+2\|a\|O(1)\\ &\leq(-\tfrac{\epsilon}{2}k+\tfrac{\sqrt{k}}{2}O(1))\|a\|^{4}+(-\tfrac{1}{2}\epsilon_{0}\epsilon_{1}+\tfrac{3}{2}k^{-\tfrac{1}{6}}O(1)),\end{split}

where the last inequality by Young inequality aa4k4+34k16\|a\|\leq\frac{\|a\|^{4}\sqrt{k}}{4}+\frac{3}{4}k^{-\tfrac{1}{6}}. By taking kk sufficiently large, one has

{ϵ12k+k2O(1)<0,12ϵ0ϵ1+32k16O(1)<0.\begin{cases}-\tfrac{\epsilon_{1}}{2}k+\tfrac{\sqrt{k}}{2}O(1)&<0,\\ -\tfrac{1}{2}\epsilon_{0}\epsilon_{1}+\tfrac{3}{2}k^{-\tfrac{1}{6}}O(1)&<0.\end{cases}

Thus, we can find k1>0k_{1}>0, such that RXX¯WW¯<0R_{X\bar{X}W\bar{W}}<0 for any kk1k\geq k_{1}.

Case IV: For the case where b=d=1\|b\|=\|d\|=1 and ac\|a\|\geq\|c\|, this follows from Case III, as

RXX¯WW¯=RWW¯XX¯<0R_{X\bar{X}W\bar{W}}=R_{W\bar{W}X\bar{X}}<0

for any kk1k\geq k_{1}.

Case V: If b0\|b\|\neq 0 and d0\|d\|\neq 0, then

RXX¯WW¯=b2d2RXX¯WW¯,R_{X\bar{X}W\bar{W}}=\|b\|^{2}\|d\|^{2}R_{X^{\prime}\overline{X^{\prime}}W^{\prime}\overline{W^{\prime}}},

where X=1bXX^{\prime}=\tfrac{1}{\|b\|}X and W=1dWW^{\prime}=\tfrac{1}{\|d\|}W. If we assume that X=aαδδzα+biviX^{\prime}=a^{\prime\alpha}\tfrac{\delta}{\delta z^{\alpha}}+b^{\prime i}\tfrac{\partial}{\partial v^{i}}, W=cαδδzα+diviW^{\prime}=c^{\prime\alpha}\tfrac{\delta}{\delta z^{\alpha}}+d^{\prime i}\tfrac{\partial}{\partial v^{i}}, then b=bbb^{\prime}=\tfrac{b}{\|b\|}, and so b=1\|b^{\prime}\|=1. Similarly, d=1\|d^{\prime}\|=1. By the above two cases, we obtain RXX¯WW¯<0R_{X\bar{X}W\bar{W}}<0 for any kk1k\geq k_{1}.

In summary, we can find k0,k1>0k_{0},k_{1}>0, for any kmax{k0,k1}k\geq\max\{k_{0},k_{1}\}, and for any two non-zero (1,0)(1,0)-type vectors X,WX,W, we have RXX¯WW¯<0R_{X\bar{X}W\bar{W}}<0. This completes the proof of Theorem 1.3. ∎

4. Applications

This section will consider the relative Kähler fibration comes from a holomorphic family of compact, canonically polarized manifolds. We assume that p:𝒳p:\mathcal{X}\to\mathcal{B} is a holomorphic family of compact, canonically polarized manifolds, and each fiber is equipped with a Kähler-Einstein metric of negative scalar curvature. One can refer to [Sch12] for more details.

Let

ω𝒳/=1gij¯(z,v)dvidv¯j\omega_{\mathcal{X}/\mathcal{B}}=\sqrt{-1}g_{i\bar{j}}(z,v)dv^{i}\wedge d\bar{v}^{j}

denote the smooth family of Kähler-Einstein metrics satisfying the equation

(4.1) 2viv¯jlogdet(gij¯)=gij¯.\tfrac{\partial^{2}}{\partial v^{i}\partial\bar{v}^{j}}\log\det(g_{i\bar{j}})=g_{i\bar{j}}.

Next, we define

ω𝒳=1¯logdet(gij¯)=1¯ϕ,\omega_{\mathcal{X}}=\sqrt{-1}\partial\bar{\partial}\log\det(g_{i\bar{j}})=\sqrt{-1}\partial\bar{\partial}\phi,

where ϕ:=logdet(gij¯)\phi:=\log\det(g_{i\bar{j}}). Hence ω𝒳\omega_{\mathcal{X}} is a relative Kähler form on 𝒳\mathcal{X}. By equation (4.1), we have

eϕ=det(gij¯)=det(ϕij¯).e^{\phi}=\det(g_{i\bar{j}})=\det(\phi_{i\bar{j}}).

The geodesic curvature form satisfies the equation:

(1+)c(ϕ)αβ¯=μα,μβ,(1+\Box)c(\phi)_{\alpha\bar{\beta}}=\langle\mu_{\alpha},\mu_{\beta}\rangle,

where

μα=¯V(δδzα)=l¯(ϕαj¯ϕj¯k)vkdv¯l0,1(Xz,TXz)\mu_{\alpha}=\bar{\partial}^{V}(\tfrac{\delta}{\delta z^{\alpha}})=-\partial_{\bar{l}}(\phi_{\alpha\bar{j}}\phi^{\bar{j}k})\tfrac{\partial}{\partial v^{k}}\otimes d\bar{v}^{l}\in\mathbb{H}^{0,1}(X_{z},T_{X_{z}})

is harmonic, and :=ϕij¯ij¯\Box:=-\phi^{i\bar{j}}\partial_{i}\partial_{\bar{j}}; see [Sch12, Proposition 3]. From [Sch12, Theorem 1], c(ϕ)c(\phi) is semi-positive and strictly positive in the horizontal directions for families that are not infinitesimally trivial. If the family is effectively parametrized, then Ω\Omega defined by

Ω=k(pω)+ω𝒳,\Omega=k(p^{*}\omega_{\mathcal{B}})+\omega_{\mathcal{X}},

remains a Kähler metric on 𝒳\mathcal{X} even for k=0k=0.

Note that the Kähler-Einstein metric on each fiber is given by ω𝒳/=1ϕij¯dvidv¯j\omega_{\mathcal{X}/\mathcal{B}}=\sqrt{-1}\phi_{i\bar{j}}dv^{i}\wedge d\bar{v}^{j}, which induces a Hermitian metric on the relative tangent bundle 𝒱=T𝒳/\mathcal{V}=T_{\mathcal{X}/\mathcal{B}} as

vi,vj:=ϕij¯.\left\langle\tfrac{\partial}{\partial v^{i}},\tfrac{\partial}{\partial v^{j}}\right\rangle:=\phi_{i\bar{j}}.

The Hermitian vector bundle (T𝒳/,ω𝒳/)(T_{\mathcal{X}/\mathcal{B}},\omega_{\mathcal{X}/\mathcal{B}}) is Griffiths negative if

(4.2) RXX¯VV¯𝒱:=R𝒱(X,X¯)V,V<0R^{\mathcal{V}}_{X\bar{X}V\bar{V}}:=\left\langle R^{\mathcal{V}}(X,\bar{X})V,V\right\rangle<0

for any non-zero vector XT(z,v)1,0𝒳X\in T^{1,0}_{(z,v)}\mathcal{X} and non-zero vector V𝒱(z,v)V\in\mathcal{V}_{(z,v)}.

In particular, the geodesic curvature form satisfies

c(ϕ)\displaystyle c(\phi) =¯ϕ(δδzα,δδzβ)1dzαdz¯β\displaystyle=\partial\bar{\partial}\phi\left(\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right)\sqrt{-1}dz^{\alpha}\wedge d\bar{z}^{\beta}
=¯logdet(ϕij¯)(δδzα,δδzβ)1dzαdz¯β\displaystyle=\partial\bar{\partial}\log\det(\phi_{i\bar{j}})\left(\tfrac{\delta}{\delta z^{\alpha}},\tfrac{\delta}{\delta z^{\beta}}\right)\sqrt{-1}dz^{\alpha}\wedge d\bar{z}^{\beta}
=Rαβ¯ij¯𝒱ϕij¯1dzαdz¯β,\displaystyle=-R^{\mathcal{V}}_{\alpha\bar{\beta}i\bar{j}}\phi^{i\bar{j}}\sqrt{-1}dz^{\alpha}\wedge d\bar{z}^{\beta},

which is strictly positive in the horizontal directions by (4.2). From Theorem 1.3, we obtain the following theorem.

Theorem 4.1.

Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a compact holomorphic fibration over a compact Kähler manifold \mathcal{B} with negative holomorphic bisectional curvature. Suppose the fiber is equipped with a smooth family of Kähler-Einstein metrics such that the induced Hermitian metric on the relative tangent bundle T𝒳/T_{\mathcal{X}/\mathcal{B}} is Griffiths negative. Then, there exist Kähler metrics on 𝒳\mathcal{X} with negative holomorphic bisectional curvature.

As an application, we can solve Problem 1.2 for the case where the fibers have dimension one.

Corollary 4.2.

Let p:𝒳p:\mathcal{X}\to\mathcal{B} be a compact holomorphic fibration over a Kähler manifold \mathcal{B} with negative holomorphic bisectional curvature. Suppose the fibration is a holomorphic family of compact Riemann surfaces of genus 2\geq 2 and is effectively parametrized. Then there exists a Kähler metric on 𝒳\mathcal{X} with negative holomorphic bisectional curvature.

Proof.

If each fiber has dimension one, then K𝒳/1=T𝒳/K_{\mathcal{X}/\mathcal{B}}^{-1}=T_{\mathcal{X}/\mathcal{B}}, where K𝒳/1K_{\mathcal{X}/\mathcal{B}}^{-1} denotes the anti-canonical line bundle, which is the dual of the relative canonical bundle K𝒳/K_{\mathcal{X}/\mathcal{B}}. By [Sch12, Theorem 1], the Ricci curvature of (T𝒳/,ω𝒳/)(T_{\mathcal{X}/\mathcal{B}},\omega_{\mathcal{X}/\mathcal{B}}) is negative. Therefore, T𝒳/T_{\mathcal{X}/\mathcal{B}} is Griffiths negative since each fiber has dimension one. The proof is complete. ∎

References

  • [Che89] Chi-Keung Cheung. Hermitian metrics of negative holomorphic sectional curvature on some hyperbolic manifolds. Math. Z., 201(1):105–119, 1989.
  • [FLW19] Huitao Feng, Kefeng Liu, and Xueyuan Wan. Geodesic-Einstein metrics and nonlinear stabilities. Trans. Amer. Math. Soc., 371(11):8029–8049, 2019.
  • [GK67] Samuel I. Goldberg and Shoshichi Kobayashi. Holomorphic bisectional curvature. J. Differential Geometry, 1:225–233, 1967.
  • [Kob87] Shoshichi Kobayashi. Differential Geometry of Complex Vector Bundles. Princeton University Press, Princeton, 1987.
  • [Kod75] K. Kodaira. A Certain Type Of Irregular Algebraic Surfaces, pages 1511–1519. Princeton University Press, Princeton, 1975.
  • [Sch12] Georg Schumacher. Positivity of relative canonical bundles and applications. Invent. Math., 190(1):1–56, 2012.
  • [Tsa89] I Hsun Tsai. Negatively curved metrics on Kodaira surfaces. Math. Ann., 285(3):369–379, 1989.
  • [Tsu06] Ho-Yu Tsui. Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces. Master’s thesis, The University of Hong Kong, Jan 2006.
  • [TY11] Wing-Keung To and Sai-Kee Yeung. Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces. Bull. Lond. Math. Soc., 43(3):507–512, 2011.
  • [TY17] Valentino Tosatti and Xiaokui Yang. An extension of a theorem of Wu-Yau. J. Differential Geom., 107(3):573–579, 2017.
  • [WW23] Xueyuan Wan and Xu Wang. Curvature of the base manifold of a Monge-Ampère fibration and its existence. Math. Ann., 387(1-2):353–387, 2023.
  • [WY16] Damin Wu and Shing-Tung Yau. Negative holomorphic curvature and positive canonical bundle. Invent. Math., 204(2):595–604, 2016.