This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kerr magnon assisted asymptotic stationary photon-phonon squeezing

Shi-fan Qi Email address: [email protected] College of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China    Jun Jing Email address: [email protected] School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
Abstract

Bosonic two-mode squeezed states are paradigmatic entangled states in continuous variable systems, which have broad applications in quantum information processing. In this work, we propose a photon-phonon squeezing protocol assisted by a Kerr magnon within a hybrid cavity magnomechanical system. We construct an effective Hamiltonian that accounts for photon-phonon squeezing through strong photon-magnon interaction and precise modulation over the driving frequency on the photon mode. The effective Hamiltonian can be confirmed by a fascinating method about the diagonalization of the system’s Liouvilian superoperator. This method can address the level attractions rather than avoided level crossings in the energy diagram of the whole system. With the effective Hamiltonian and quantum Langevin equation, we provide a rigorous theoretical solution for the dynamical process of squeezing generation. Our finding indicates that asymptotic stationary squeezing can be obtained by optimizing the squeezing quadrature operator, even when the covariance matrix of the system still varies with time. This squeezing level can exceed the maximum value under stable conditions. Moreover, our analysis also reveals that the Kerr nonlinearity of the magnon can further promote the squeezing generation. Our work provides an extendable framework for generating squeezed states that entangle two Gaussian modes with indirect coupling.

I Introduction

Hybrid quantum systems consisting of collective spin excitations in ferromagnetic crystals have recently attracted intensive attention [1, 2, 3, 4, 5, 6]. They offer promising avenues for advancements in quantum computing [7], quantum communication [8], and quantum sensing [9]. Similar to cavity-QED [10] and cavity optomechanics [11], cavity magnomechanics [12, 13, 14] developed rapidly as an alternative candidate for quantum information processing in both theoretical and experimental aspects. In particular, a cavity magnomechanical system comprises a single-crystal yttrium iron garnet (YIG) sphere inside a microwave cavity. The magnon mode arises from excitations of the collective angular momentum within the magnetic-material sphere, coupling with the cavity photon through magnetic dipole interaction and coupling with the sphere deformation phonon mode via magnetostrictive force. Typical applications based on such hybrid system include quantum entanglement [15, 16] and steering [17, 18], quantum squeezed states [19, 20, 21], and quantum memory [22, 23, 24].

Two-mode squeezed states (TMSS), also named Einstein-Podolsky-Rosen (EPR) states, are crucial in quantum computation [25], information [26], teleportation [27], and metrology [28]. Bosonic TMSS can be generated by mixing two single-mode squeezed states on a beam splitter [29] or via a nonlinear interaction [30, 31] such as spontaneous parametric down conversion [32]. A nondegenerate optical parametric amplifier is often used to generate optical TMSS [33, 34, 35]. Cavity optomechanics [11] provides an alternative model for creating optical [36, 37, 38] or mechanical [39, 40] TMSS. In addition, TMSS are well established in thermal gases [41], Bose-Einstein condensates of ultracold atoms [42, 43, 44, 45], spin ensembles in cavities [46, 47, 48, 49], antiferromagnet magnons [50], and superconducting circuits based on Josephson junctions [51, 52].

In this work, we propose an approach to generate photon-phonon TMSS in the cavity magnomechanics [12, 13, 14] on account of the fundamental interest in a level-resolved process. The squeezing generation is governed by an effective Hamiltonian that describes photon-phonon squeezing interaction, assisted by magnon through exploiting strong or even ultrastrong magnon-photon and magnon-phonon interactions. Inspired by the earlier method, which applies to the condition of avoided level crossing in the energy diagram [53, 54], we propose an intriguing method to confirm the effective Hamiltonian with level attractions. The method uses the diagonalization of the Liouvilian superoperator of the whole system. It can be extended to arbitrary bosonic systems, such as cavity optomechanics [11] and cavity optomagnomechanics [55], to evaluate the two-mode squeezing induced by virtual processes.

Such a two-mode squeezing naturally leads to entanglement without reservoir engineering. Under the constraint of the stable condition, the maximum logarithmic negativity [56] (a standard quantification of entanglement) is smaller than ln20.69\ln 2\sim 0.69, by which the squeezing level cannot go beyond 33 dB{\rm dB} below the vacuum limit. However, by analyzing the system’s dynamic behavior within the open-quantum-system framework, we find that the stability of the Gaussian system, i.e., the covariance matrix (CM) becomes invariant under time evolution, is a sufficient but not necessary condition for the stationary generation of TMSS. We find that the asymptotic stationary TMSS can be obtained in unstable evolutions, displaying an enhanced squeezing level exceeding the stable limit. Environmental noises alter the optimized quadrature operator of two-mode squeezing while simultaneously providing TMSS an asymptotic stationary property. The coupling between two modes can influence the squeezing level, but it does not destroy the squeezing stationarity, even if it is beyond the stability threshold [32] of the CM. Through analysis of the system’s dynamical process, we found that strong coupling essentially implies strong and stationary quantum entanglement.

The rest of this work is organized as follows. In Sec. II, we introduce a hybrid cavity magnomechanical system and provide an effective Hamiltonian for photon-phonon squeezing mediated by the magnon. In Sec. III, we confirm the effective Hamiltonian by comparing the effective coupling strength and energy shift with numerical results obtained by diagonalization of the system’s Liouvilian superoperator. Section IV phenomenologically analyzes the generation process of the photon-phonon TMSS by the quantum Langevin equation. We find that the asymptotic stationary two-mode squeezing can be obtained even in an unstable dynamic regime. Finally, we discuss the experimental feasibility and summarize the work in Sec. V.

II Model and the effective Hamiltonian

Refer to caption
Figure 1: Schematic diagram: a YIG sphere is placed inside a microwave cavity near the maximum magnetic field of the cavity mode, which establishes the magnon-photon coupling along the zz axis. The photon mode is driven by a microwave source along the xx axis (with a Rabi frequency ϵd\epsilon_{d}). The inset shows how the dynamic magnetization of a magnon (vertical black arrows) causes the deformation (compression along the yy direction) of the YIG sphere (and vice versa). Frequencies and linewidths of the system adopted to generate photon-phonon TMSS are shown in the bottom right corner.

Consider a hybrid cavity magnomechanical system as shown in Fig. 1, where a YIG sphere is inserted into a three-dimensional microwave cavity. The system is constituted by the microwave-mode photons, the magnons provided by the YIG sphere, and the vibrational modes (phonons) of the sphere. The magnons are coupled to photons via the Zeeman interaction and to phonons by the magnetostrictive interaction. The hybrid system has been experimentally realized in recent works [12, 13]. The whole system Hamiltonian thus reads (1\hbar\equiv 1)

Hs\displaystyle H_{s} =ωaaa+ωmmmKmmmmm+ωbbb\displaystyle=\omega_{a}a^{\dagger}a+\omega_{m}m^{\dagger}m-K_{m}m^{\dagger}mm^{\dagger}m+\omega_{b}b^{\dagger}b (1)
+gma(am+am)+gmbmm(b+b)\displaystyle+g_{ma}(a^{\dagger}m+am^{\dagger})+g_{mb}m^{\dagger}m(b+b^{\dagger})
+ϵd(aeiωdt+aeiωdt),\displaystyle+\epsilon_{d}(a^{\dagger}e^{-i\omega_{d}t}+ae^{i\omega_{d}t}),

where a(a)a(a^{\dagger}), m(m)m(m^{\dagger}), and b(b)b(b^{\dagger}) are the annihilation (creation) operators of the photon mode, the magnon of the ground Kittel mode [1], and the phonon mode with transition frequencies ωa\omega_{a}, ωm\omega_{m}, and ωb\omega_{b}, respectively. The magnon-mode frequency is ωm=γh\omega_{m}=\gamma h, where γ\gamma is the gyromagnetic ratio and hh is the external bias magnetic field. Thus, it can be appropriately tuned by the external magnetic field. KmK_{m} is the nonlinear coefficient for the Kerr effect due to the ensued magnetocrystalline anisotropy, which can be either positive or negative by adjusting the crystallographic axis of the YIG sphere along the bias magnetic field and is inversely proportional to the volume of the YIG sphere. The Kerr effect cannot be neglected when the magnon excitation number is sufficiently large [13, 57]. gmag_{ma} is the phonon-magnon coupling strength, entering into the strong-coupling regime. The single-magnon magnomechanical coupling strength gmbg_{mb} is typically small, considering the large frequency mismatch between the magnon and the phonon modes, yet it can be compensated by a strong drive. The last term in Eq. (1) describes the external driving of the photon mode, where ϵd\epsilon_{d} is the Rabi frequency and ωd\omega_{d} is the driving frequency.

The magnon mode under strong diving is assumed to have a large expectation value |m|1|\langle m\rangle|\gg 1, which allows us to linearize the system dynamics. Following the standard linearization approach [11, 15], the whole system Hamiltonian turns into

H\displaystyle H =Δaaa+Δmmm+ωbbb+gcoshr(am+am)\displaystyle=\Delta_{a}a^{\dagger}a+\Delta^{\prime}_{m}m^{\dagger}m+\omega_{b}b^{\dagger}b+g\cosh r(am^{\dagger}+a^{\dagger}m) (2)
+gsinhr(ameiθ+ameiθ)\displaystyle+g\sinh r(ame^{-i\theta}+a^{\dagger}m^{\dagger}e^{i\theta})
+Ger(meiθ2+meiθ2)(b+b),\displaystyle+Ge^{r}(me^{-i\frac{\theta}{2}}+m^{\dagger}e^{i\frac{\theta}{2}})(b+b^{\dagger}),

where Δm=Δm/cosh(2r)\Delta^{\prime}_{m}=\Delta_{m}/\cosh(2r) is the magnon-number-dependent frequency detuning (Δm=ωmωd2K\Delta_{m}=\omega_{m}-\omega_{d}-2K and K=Km|m|2K=K_{m}|\langle m\rangle|^{2}). rr is the squeezing parameter induced by the linearization of the Kerr effects and tanh(2r)=2K/Δm\tanh(2r)=2K/\Delta_{m}. g=gmag=g_{ma} for simplicity, G=gmb|m|G=g_{mb}|\langle m\rangle| is the effective magnomechanical coupling strength. θ\theta is a phase associated with m=|m|eiθ/2\langle m\rangle=|\langle m\rangle|e^{i\theta/2}. The details can be found in Appendix A.

At the large detuning regime, i.e., gcoshr,gsinhr,Ger|Δmωb|,|ΔmΔa|g\cosh r,g\sinh r,Ge^{r}\ll|\Delta^{\prime}_{m}-\omega_{b}|,|\Delta^{\prime}_{m}-\Delta_{a}|, and under the near-resonant condition Δa=ωb+δ\Delta_{a}=-\omega_{b}+\delta, we can extract an effective Hamiltonian describing the photon-phonon squeezing by perturbative theory [53, 54]. The effective Hamiltonian is found to be

Heff=geff(eiθ2ab+eiθ2ab),H_{\rm eff}=g_{\rm eff}(e^{i\frac{\theta}{2}}a^{\dagger}b^{\dagger}+e^{-i\frac{\theta}{2}}ab), (3)

where the effective coupling strength

geff=gGer(sinhrΔmωb+coshrΔm+ωb),g_{\rm eff}=-gGe^{r}\left(\frac{\sinh r}{\Delta^{\prime}_{m}-\omega_{b}}+\frac{\cosh r}{\Delta^{\prime}_{m}+\omega_{b}}\right), (4)

and the energy shift

δ=G2e2r+g2cosh2rΔm+ωb+G2e2r+g2sinh2rΔmωb.\delta=\frac{G^{2}e^{2r}+g^{2}\cosh^{2}r}{\Delta^{\prime}_{m}+\omega_{b}}+\frac{G^{2}e^{2r}+g^{2}\sinh^{2}r}{\Delta^{\prime}_{m}-\omega_{b}}. (5)

The details can be found in Appendix B. The phase θ\theta specifies the squeezing quadrature operator but does not affect the squeezing level. Therefore, we set θ=π\theta=\pi in the following contents for simplicity and with no loss of generality. The corresponding squeezing operators can be written as

X(t)=12[Xa(t)+Xb(t)],X(t)=\frac{1}{\sqrt{2}}[X_{a}(t)+X_{b}(t)], (6)

where Xo=(o+o)/2,o=a,bX_{o}=(o+o^{\dagger})/\sqrt{2},o=a,b. When the initial state is a vacuum state, its variance turns into ΔX(t)=X2(t)X(t)2=e2gefft/2\Delta X(t)=\langle X^{2}(t)\rangle-\langle X(t)\rangle^{2}=e^{2g_{\rm eff}t}/2 under the time-evolution of Hamiltonian (3[32, 40]. Obviously, the quadrature operator XX is squeezed when geff<0g_{\rm eff}<0.

III The application range of the effective Hamiltonian

Refer to caption
Refer to caption
Figure 2: (a) The complete real parts of the normalized eigenvalues of the Liouvilian superoperator are depicted as a function of the detuning frequency Δa/ωb\Delta_{a}/\omega_{b}. (b) The partial imaginary parts of the normalized eigenvalues are depicted as a function of the detuning frequency Δa/ωb\Delta_{a}/\omega_{b}. The parameters used are Δm=3ωb\Delta_{m}=3\omega_{b}, g=G=0.1ωbg=G=0.1\omega_{b}, and r=0r=0.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: [(a), (c)] Comparison between the numerically calculated normalized effective coupling strength |geff|/ωb|g_{\rm eff}|/\omega_{b} (points) and the corresponding analytical results (lines) in Eq. (4) as a function of g/ωbg/\omega_{b} and G/ωbG/\omega_{b}, respectively. [(b), (d)] Comparison between the numerically calculated normalized energy shift δ/ωb\delta/\omega_{b} (points) and the corresponding analytical results (lines) in Eq. (5) as a function of g/ωbg/\omega_{b} and G/ωbG/\omega_{b}, respectively. For panels (a) and (b), G=0.1ωbG=0.1\omega_{b}, and for panels (c) and (d), g=0.1ωbg=0.1\omega_{b}. Here we fix Δm=3ωb\Delta_{m}=3\omega_{b}.

In this section, we check the applicability range of the effective Hamiltonian in Eq. (3) in terms of the coupling strengths and Kerr parameters. In previous works [53, 54], a method about diagonalizing the whole system Hamiltonian was employed to confirm the effective Hamiltonian constructed by virtual transitions. This method relies on a precondition that the energy splitting at the avoided level crossing point exactly equals twice the effective coupling strength, making it applicable only if the eigenenergy diagram exhibits avoided level crossings. Inspired by this method, we propose an interesting method to validate the two-mode squeezing effective Hamiltonian (3) that the energy diagram lacks avoided level crossings.

Under the evolution of the whole system Hamiltoian (2), the time-evolved quadrature operators in the Heisenberg picture can be written as

u˙(t)=i[H,u(t)]=iu(t),\dot{u}(t)=i[H,u(t)]=i\mathcal{L}u(t), (7)

where u(t)=[Xa(t),Ya(t),Xb(t),Yb(t),Xm(t),Ym(t)]Tu(t)=[X_{a}(t),Y_{a}(t),X_{b}(t),Y_{b}(t),X_{m}(t),Y_{m}(t)]^{T} is the vector of quadrature operators, and Xo=(o+o)/2,Yo=(oo)/i2,o=a,b,mX_{o}=(o+o^{\dagger})/\sqrt{2},Y_{o}=(o-o^{\dagger})/i\sqrt{2},o=a,b,m. \mathcal{L} represents the Liouvilian superoperator,

=i[0Δa000g+Δa000g0000ωb0000ωb00Gr0g+Gr00Δmg000Δm0],\displaystyle\mathcal{L}=-i\begin{bmatrix}0&\Delta_{a}&0&0&0&g_{+}\\ -\Delta_{a}&0&0&0&g_{-}&0\\ 0&0&0&\omega_{b}&0&0\\ 0&0&-\omega_{b}&0&0&-G_{r}\\ 0&g_{+}&G_{r}&0&0&\Delta^{\prime}_{m}\\ g_{-}&0&0&0&-\Delta^{\prime}_{m}&0\end{bmatrix}, (8)

where g±=gsinhr±gcoshrg_{\pm}=g\sinh r\pm g\cosh r and Gr=2GerG_{r}=2Ge^{r}. The Heisenberg equation (7) can be seen as a discrete Schrödinger equation, where u(t)u(t) is conceptualized as an effective operator wave function [58]. The superoperator \mathcal{L} then can be analogously regarded as the whole system Hamiltonian, and its diagonalization values are the system’s eigenvalues.

We now analyze the distinct phenomenon observed in the energy diagram of the Liouvilian superoperator at two-mode squeezing. Rotating the effective Hamiltonian (3) at θ=π\theta=\pi into the lab frame, it turns into

Hab=Δaaa+ωbbb+geff(iabiab).H_{\rm ab}=\Delta_{a}a^{\dagger}a+\omega_{b}b^{\dagger}b+g_{\rm eff}(ia^{\dagger}b^{\dagger}-iab). (9)

The corresponding Heisenberg equation is

u˙eff(t)=i[Hab,ueff(t)]=iabueff(t),\dot{u}^{\rm eff}(t)=i[H_{\rm ab},u^{\rm eff}(t)]=i\mathcal{L}_{\rm ab}u^{\rm eff}(t), (10)

where ueff(t)=[Xa(t),Ya(t),Xb(t),Yb(t)]Tu^{\rm eff}(t)=[X_{a}(t),Y_{a}(t),X_{b}(t),Y_{b}(t)]^{T}. Four eigenvalues of the Liouvbilian superoperator ab\mathcal{L}_{\rm ab} can be derived as

E±\displaystyle E_{\pm} =ωbΔa±(ωb+Δa)24geff22,\displaystyle=\frac{\omega_{b}-\Delta_{a}\pm\sqrt{(\omega_{b}+\Delta_{a})^{2}-4g_{\rm eff}^{2}}}{2}, (11)
E±\displaystyle E^{\prime}_{\pm} =E.\displaystyle=-E_{\mp}.

As the detuning Δa\Delta_{a} gradually approaches ωb-\omega_{b}, the real parts of the eigenvalues E±E_{\pm} (E±E^{\prime}_{\pm}) progressively converge, while the imaginary parts simultaneously increase splitting. Until Δa=ωb\Delta_{a}=-\omega_{b}, the real parts of E±E_{\pm} (E±E^{\prime}_{\pm}) become identical, while the imaginary parts reach their extreme values of ±geff\pm g_{\rm eff}. Then, in the energy-level diagram of the whole superoperator \mathcal{L} with Δa\Delta_{a} as the variable, one can analyze the specific phenomenon, i.e., the level attractions of the real parts and the maximal splittings of the imaginary parts, to demonstrate the two-mode squeezing interaction.

We plot the energy levels (complete real and partial imaginary parts) in Fig. 2(a) and (b), where the eigenvalues {En}\{E_{n}\} are obtained by the standard numerical diagonalization on the whole system superoperator \mathcal{L} in Eq. (8). Fig. 2(a) shows the real parts of all six eigenvalues. The lowest and highest correspond to magnon mode and are independent of photon-phonon squeezing. For the middle four eigenvalues, two level attractions appear simultaneously as the detuning frequency of photon Δa\Delta_{a} approaches (but does not exactly equal) the opposite frequency of phonon ωb-\omega_{b}. One is highlighted in the dark circle, with the inset further emphasizing this level attraction. The imaginary parts of the two typical eigenvalues (red and orange lines) are illustrated in Fig. 2(b). As the real parts of the two eigenvalues gradually converge, their imaginary parts progressively increase, reaching a maximum absolute value |geff||g_{\rm eff}| at Δa=ωb+δ\Delta_{a}=-\omega_{b}+\delta. The shift δ\delta is induced by the mutual interaction between the photon (phonon) and the magnon.

The maximal splitting |geff||g_{\rm eff}| of the imaginary parts of the two eigenvalues [see Fig. 2(b)] is presented in Figs. 3(a) and 3(c) as a function of the original coupling strengths gg and GG in Eq. (2), respectively. The result given by the analytical expression in Eq. (4) is compared to that evaluated by the numerical simulation over the superoperator \mathcal{L} in Eq. (8). Blue dots and purple squares represent the numerical results at parameters r=0r=0 and r=0.25r=0.25, respectively. The red solid and black dashed lines are the analytical results at r=0r=0 and r=0.25r=0.25, respectively. In Fig. 3(a), the analytical geffg_{\rm eff} do match well with their numerical results for the coupling strength g0.3ωbg\leq 0.3\omega_{b}, regardless of whether rr is 0 or 0.250.25. The valid range has entered the ultrastrong coupling regime, g/ωb0.1g/\omega_{b}\geq 0.1 [59]. As rr increases to 0.250.25, the effective coupling geffg_{\rm eff} is significantly amplified. That can enhance the photon-phonon squeezing level in the following discussion. The value distinguished by the black box corresponds to Fig. 2 (b). In Fig. 3(c), geffg_{\rm eff} is valid at the range of G/ωb0.3G/\omega_{b}\leq 0.3 when r=0r=0. As rr increases to 0.250.25, the valid range reduces to G/ωb0.24G/\omega_{b}\leq 0.24. Similarly, the energy shift δ\delta in Eq. (5) can also be justified by Figs. 3(b) and 3(d). We check the same range of gg and GG as in Figs. 3(a) and 3(c). In Fig. 3(b), the analytical δ\delta shows a slight deviation from the numerical results, but this deviation gradually decreases as gg and rr increase. In Fig. 3(d), it is found that the energy shift δ\delta is valid at G/ωb0.3G/\omega_{b}\leq 0.3, whatever the parameters rr is 0 or 0.250.25.

IV Photon-phonon squeezing

Refer to caption
Refer to caption
Figure 4: (a) Dynamics of the CM elements using the effective Hamiltonian (3) or the full Hamiltonian (2). The inset shows the ratio R(t)=2V13(t)/[V11(t)V33(t)]R(t)=2V_{13}(t)/[V_{11}(t)-V_{33}(t)] dynamics. (b) Dynamics of the ΔX(t)\Delta X(t) and ΔXϕ(t)\Delta X_{\phi}(t) with the effective Hamiltonian (3) or the system Hamiltonian (2). Here, the parameters are set as Δm=3ωb\Delta_{m}=3\omega_{b}, g=G=0.1ωbg=G=0.1\omega_{b}, r=0.25r=0.25, κb=105ωb,κa=100κb,κm=10κa\kappa_{b}=10^{-5}\omega_{b},\kappa_{a}=100\kappa_{b},\kappa_{m}=10\kappa_{a}, and the thermal numbers Na=Nm=0,Nb=10N_{a}=N_{m}=0,N_{b}=10.

Using the effective Hamiltonian (3), one can generate naturally and directly the photon-phonon TMSS. In this section, we will take the open-quantum-system framework to discuss the dynamics of TMSS generation and explain why the asymptotic two-mode squeezing can be obtained even in an unstable dynamical regime. Under the standard assumptions, i.e., Markovian approximation and structure-free environment at zero temperature, the dynamics of the quantum system are governed by the quantum Langevin equation (QLE), written in a matrix form

u˙eff(t)=Aeffueff(t)+neff(t),\dot{u}^{\rm eff}(t)=A_{\rm eff}u^{\rm eff}(t)+n^{\rm eff}(t), (12)

where ueff(t)u^{\rm eff}(t) is the same as Eq. (10). The transition matrix Aeff(t)A_{\rm eff}(t) is

Aeff=[κa0geff00κa0geffgeff0κb00geff0κb]\displaystyle A_{\rm eff}=\begin{bmatrix}-\kappa_{a}&0&g_{\rm eff}&0\\ 0&-\kappa_{a}&0&-g_{\rm eff}\\ g_{\rm eff}&0&-\kappa_{b}&0\\ 0&-g_{\rm eff}&0&-\kappa_{b}\end{bmatrix} (13)

where κa\kappa_{a} and κb\kappa_{b} are the decay rates of the modes aa and bb, respectively. neff(t)=[Xain(t),Yain(t),Xbin(t),Ybin(t)]Tn^{\rm eff}(t)=[X^{in}_{a}(t),Y^{in}_{a}(t),X^{in}_{b}(t),Y^{in}_{b}(t)]^{T} is the vector of Gaussian noise operators, and Xoin=(oin+oin)/2,Yoin=(oinoin)/i2,o=a,bX^{in}_{o}=(o_{in}+o^{\dagger}_{in})/\sqrt{2},Y^{in}_{o}=(o_{in}-o^{\dagger}_{in})/i\sqrt{2},o=a,b. aina_{in} and binb_{in} are characterized by their covariance functions: oin(t)oin(t)=[No+1]δ(tt)\langle o_{in}(t)o^{\dagger}_{in}(t^{\prime})\rangle=[N_{o}+1]\delta(t-t^{\prime}) and oin(t)oin(t)=Noδ(tt)\langle o^{\dagger}_{in}(t)o_{in}(t^{\prime})\rangle=N_{o}\delta(t-t^{\prime}), where NoN_{o} is the mean population of mode oo at the thermal equilibrium state.

By virtue of the QLE in Eq (12), the system evolution can be completely characterized by a 4×44\times 4 covariance matrix (CM) Veff(t)V^{\rm eff}(t). The dynamics of the CM Veff(t)V^{\rm eff}(t) satisfies

V˙eff(t)=AeffVeff(t)+Veff(t)AeffT+Deff.\dot{V}^{\rm eff}(t)=A_{\rm eff}V^{\rm eff}(t)+V^{\rm eff}(t)A_{\rm eff}^{T}+D^{\rm eff}. (14)

The entries of Veff(t)V^{\rm eff}(t) are defined as

Vijeff(t)=uieff(t)ujeff(t)+ujeff(t)uieff(t)2,V^{\rm eff}_{ij}(t)=\frac{\langle u^{\rm eff}_{i}(t)u^{\rm eff}_{j}(t)+u^{\rm eff}_{j}(t)u^{\rm eff}_{i}(t)\rangle}{2}, (15)

where uieff(t)u^{\rm eff}_{i}(t) is the ii-term of ueff(t)u^{\rm eff}(t) and i=1,2,3,4i=1,2,3,4. Deff=Diag[κa(2Na+1),κa(2Na+1),κb(2Nb+1),κb(2Nb+1)]D^{\rm eff}=Diag[\kappa_{a}(2N_{a}+1),\kappa_{a}(2N_{a}+1),\kappa_{b}(2N_{b}+1),\kappa_{b}(2N_{b}+1)] is the diffusion matrix, which is defined through Dijeff(t)=nieff(t)njeff(t)+njeff(t)nieff(t)/2D^{\rm eff}_{ij}(t)=\langle n^{\rm eff}_{i}(t)n^{\rm eff}_{j}(t)+n^{\rm eff}_{j}(t)n^{\rm eff}_{i}(t)\rangle/2. In the stable condition, the CM is invariant under time evolution, i.e, V˙eff=0\dot{V}^{\rm eff}=0 in Eq. (14), which requires geff2<κaκbg^{2}_{\rm eff}<\kappa_{a}\kappa_{b}.

Assume the photon and phonon are both in vacuum states initially, which can be realized by precooling them to their respective ground states [60]. Then the initial CM can be written as Veff(0)=I4/2V^{\rm eff}(0)=I_{4}/2, I4I_{4} is an identity matrix with four dimensions. With this condition, the non-zero matrix elements in Veff(t)V^{\rm eff}(t) can be solved as

V11eff(t)\displaystyle V^{\rm eff}_{11}(t) =C+(1sinφ)e(Ωκaκb)tC0cosφe(κa+κb)t\displaystyle=C_{+}(1-\sin\varphi)e^{(\Omega-\kappa_{a}-\kappa_{b})t}-C_{0}\cos\varphi e^{-(\kappa_{a}+\kappa_{b})t} (16)
+C(1+sinφ)e(Ω+κa+κb)t+ca;\displaystyle+C_{-}(1+\sin\varphi)e^{-(\Omega+\kappa_{a}+\kappa_{b})t}+c_{a};
V33eff(t)\displaystyle V^{\rm eff}_{33}(t) =C+(1+sinφ)e(Ωκaκb)t+C0cosφe(κa+κb)t\displaystyle=C_{+}(1+\sin\varphi)e^{(\Omega-\kappa_{a}-\kappa_{b})t}+C_{0}\cos\varphi e^{-(\kappa_{a}+\kappa_{b})t}
+C(1sinφ)e(Ω+κa+κb)t+cb;\displaystyle+C_{-}(1-\sin\varphi)e^{-(\Omega+\kappa_{a}+\kappa_{b})t}+c_{b};
V13eff(t)\displaystyle V^{\rm eff}_{13}(t) =C+cosφe(Ωκaκb)tC0sinφe(κa+κb)t\displaystyle=C_{+}\cos\varphi e^{(\Omega-\kappa_{a}-\kappa_{b})t}-C_{0}\sin\varphi e^{-(\kappa_{a}+\kappa_{b})t}
Ccosφe(Ω+κa+κb)t+c,\displaystyle-C_{-}\cos\varphi e^{-(\Omega+\kappa_{a}+\kappa_{b})t}+c,

and V22eff(t)=V11eff(t),V44eff(t)=V33eff(t),V24eff(t)=V13eff(t)V^{\rm eff}_{22}(t)=V^{\rm eff}_{11}(t),V^{\rm eff}_{44}(t)=V^{\rm eff}_{33}(t),V^{\rm eff}_{24}(t)=-V^{\rm eff}_{13}(t). The parameters are defined as

Ω\displaystyle\Omega =4geff2+(κaκb)2,tanφ=κaκb2geff,\displaystyle=\sqrt{4g^{2}_{\rm eff}+(\kappa_{a}-\kappa_{b})^{2}},\quad\tan\varphi=\frac{\kappa_{a}-\kappa_{b}}{2g_{\rm eff}}, (17)
C±\displaystyle C_{\pm} =±κ+sinφκ4[Ω(κa+κb)]+14,C0=cosφκ2(κa+κb),\displaystyle=\pm\frac{\kappa_{+}\mp\sin\varphi\kappa_{-}}{4[\Omega\mp(\kappa_{a}+\kappa_{b})]}+\frac{1}{4},\quad C_{0}=\frac{\cos\varphi\kappa_{-}}{2(\kappa_{a}+\kappa_{b})},
κ±\displaystyle\kappa_{\pm} =κa(2Na+1)±κb(2Nb+1).\displaystyle=\kappa_{a}(2N_{a}+1)\pm\kappa_{b}(2N_{b}+1).

And

co\displaystyle c_{o} =No+12+geffκoc,o=a,b\displaystyle=N_{o}+\frac{1}{2}+\frac{g_{\rm eff}}{\kappa_{o}}c,\quad o=a,b (18)
c\displaystyle c =geffκaκb(Na+Nb+1)(κaκbgeff2)(κa+κb).\displaystyle=\frac{g_{\rm eff}\kappa_{a}\kappa_{b}(N_{a}+N_{b}+1)}{(\kappa_{a}\kappa_{b}-g^{2}_{\rm eff})(\kappa_{a}+\kappa_{b})}.

which also exactly equal to the matrix elements V11effV^{\rm eff}_{11}, V33effV^{\rm eff}_{33}, and V13effV^{\rm eff}_{13} in the stable regime, obtained by setting V˙eff=0\dot{V}^{\rm eff}=0 in Eq. (14). These stable CM elements are the asymptotic values as tt\to\infty.

With the CM definition in Eq. (15) and its solution in Eq. (16), the variance of the quadrature operator XX in Eq. (6) can be derived as

ΔX(t)\displaystyle\Delta X(t) =12[V11eff(t)+V33eff(t)+2V13eff(t)]\displaystyle=\frac{1}{2}[V^{\rm eff}_{11}(t)+V^{\rm eff}_{33}(t)+2V^{\rm eff}_{13}(t)] (19)
=(1+cosφ)C+e(Ωκaκb)tsinφC0e(κa+κb)t\displaystyle=(1+\cos\varphi)C_{+}e^{(\Omega-\kappa_{a}-\kappa_{b})t}-\sin\varphi C_{0}e^{-(\kappa_{a}+\kappa_{b})t}
+(1cosφ)Ce(Ω+κa+κb)t+C,\displaystyle+(1-\cos\varphi)C_{-}e^{-(\Omega+\kappa_{a}+\kappa_{b})t}+C,

where

C\displaystyle C =12(Na+Nb+1)κaκb(2geff+κa+κb)(κaκbgeff2)(κa+κb).\displaystyle=\frac{1}{2}(N_{a}+N_{b}+1)\frac{\kappa_{a}\kappa_{b}(2g_{\rm eff}+\kappa_{a}+\kappa_{b})}{(\kappa_{a}\kappa_{b}-g^{2}_{\rm eff})(\kappa_{a}+\kappa_{b})}. (20)

In the stable regime, geff2<κaκbg^{2}_{\rm eff}<\kappa_{a}\kappa_{b}, one can demonstrate that the exponent factor Ωκaκb\Omega-\kappa_{a}-\kappa_{b} in Eq. (19) is negative through the definition of Ω\Omega in Eq. (17). That leads to ΔX()=C\Delta X(\infty)=C, consistent with the result obtained by V˙eff(t)=0\dot{V}^{\rm eff}(t)=0. When the photon decay rate is larger than the phonon decay rate, i.e., κa>κb\kappa_{a}>\kappa_{b}, the minimal value of CC can be obtained as

Cmin=12(Na+Nb+1)κaκa+κbC_{\rm min}=\frac{1}{2}(N_{a}+N_{b}+1)\frac{\kappa_{a}}{\kappa_{a}+\kappa_{b}} (21)

at geff=κbg_{\rm eff}=-\kappa_{b}. Even at the zero temperature, Na=Nb=0N_{a}=N_{b}=0, the minimum Cmin>0.25C_{\rm min}>0.25. The value 0.250.25 corresponds to the upper bound of the squeezing level, S=3S=3dB, under the stable condition. The squeezing level SS in the decibel unit is defined by S=10log10(ΔX/ΔXzp)S=-10\log_{10}(\Delta X/\Delta X_{zp}), where ΔXzp=0.5\Delta X_{zp}=0.5 is the standard fluctuation in the zero-point level. The decay rates satisfy κaκb\kappa_{a}\gg\kappa_{b} in the recent cavity magnomechanical system [12], resulting in Cmin0.5C_{\rm min}\approx 0.5 even when Na=Nb=0N_{a}=N_{b}=0. That implies that XX cannot be squeezed under stable conditions in this specific experimental platform.

It the unstable regime, geff2>κaκbg^{2}_{\rm eff}>\kappa_{a}\kappa_{b}, all the CM elements V11effV^{\rm eff}_{11}, V33effV^{\rm eff}_{33}, and V13effV^{\rm eff}_{13} in Eq. (16) exhibit exponential divergence due to the exponential factor Ωκaκb>0\Omega-\kappa_{a}-\kappa_{b}>0. These are clearly illustrated by their respective numerical results, shown by a blue-solid line, a red-dashed line, and a black dash-dotted line in Fig. 4(a). The corresponding variance ΔX(t)\Delta X(t) in Eq. (19) is depicted by a blue solid line in Fig. 4(b). One can observe that it initially decreases until it reaches its minimum value ΔX(τ)\Delta X(\tau), where the moment τ\tau can be analytically determined by setting the derivation ΔX˙(τ)=0\dot{\Delta X}(\tau)=0. After reaching its minimum, ΔX(t)\Delta X(t) increases exponentially, and ΔX()+\Delta X(\infty)\to+\infty.

However, both the CM and the variance ΔX(t)\Delta X(t) instabilities do not imply nonstationary TMSS. To find a stationary TMSS with a higher squeezing level, we define a general two-mode squeezing operator Xϕ=cosϕXa+sinϕXbX_{\phi}=\cos\phi X_{a}+\sin\phi X_{b}, where ϕ\phi is an angle to optimize. With the CM elements (16), its variance ΔXϕ=Xϕ2Xϕ2\Delta X_{\phi}=\langle X_{\phi}^{2}\rangle-\langle X_{\phi}\rangle^{2} can be described as

ΔXϕ(t)\displaystyle\Delta X_{\phi}(t) =cos2ϕV11eff(t)+sin2ϕV33eff(t)+sin(2ϕ)V13eff(t)\displaystyle=\cos^{2}\phi V^{\rm eff}_{11}(t)+\sin^{2}\phi V^{\rm eff}_{33}(t)+\sin(2\phi)V^{\rm eff}_{13}(t) (22)
=C+(1sinφ~)e(Ωκaκb)tC0cosφ~e(κa+κb)t\displaystyle=C_{+}(1-\sin\tilde{\varphi})e^{(\Omega-\kappa_{a}-\kappa_{b})t}-C_{0}\cos\tilde{\varphi}e^{-(\kappa_{a}+\kappa_{b})t}
+C(1+sinφ~)e(Ω+κa+κb)t+Cϕ,\displaystyle+C_{-}(1+\sin\tilde{\varphi})e^{-(\Omega+\kappa_{a}+\kappa_{b})t}+C_{\phi},

where φ~=φ2ϕ\tilde{\varphi}=\varphi-2\phi and Cϕ=cos2ϕca+sin2ϕcb+sin(2ϕ)cC_{\phi}=\cos^{2}\phi c_{a}+\sin^{2}\phi c_{b}+\sin(2\phi)c, ca,cb,cc_{a},c_{b},c are constants in Eq. (18).

From Eq. (22), one can find that the exponential divergence term of ΔXϕ(t)\Delta X_{\phi}(t) can be canceled at an optimized angle φ~=π/2\tilde{\varphi}=\pi/2, i.e., the angle ϕ\phi satisfies

tan(2ϕ)=cot(φ)=2geffκbκa.\tan(2\phi)=-\cot(\varphi)=\frac{2g_{\rm eff}}{\kappa_{b}-\kappa_{a}}. (23)

Specifically, ΔXϕ(t)=ΔX(t)\Delta X_{\phi}(t)=\Delta X(t) at κa=κb\kappa_{a}=\kappa_{b}. Under this optimized angle, ΔXϕ(t)\Delta X_{\phi}(t) turns into

ΔXϕ(t)=12+2Ce(Ω+κa+κb)t2C,\Delta X_{\phi}(t)=\frac{1}{2}+2C_{-}e^{-(\Omega+\kappa_{a}+\kappa_{b})t}-2C_{-}, (24)

which shows an asymptotic stationary squeezing over a long evolution, i.e., ΔXϕ()\Delta X_{\phi}(\infty) equals to

ΔXϕ()=Ωκ++(κaκb)κ2Ω(Ω+κa+κb).\Delta X_{\phi}(\infty)=\frac{\Omega\kappa_{+}+(\kappa_{a}-\kappa_{b})\kappa_{-}}{2\Omega(\Omega+\kappa_{a}+\kappa_{b})}. (25)

Given the definition of Ω\Omega in Eq. (17), it follows that ΔXϕ()\Delta X_{\phi}(\infty) decreases as well as the two-mode squeezing enhances as geffg_{\rm eff} increases.

In Fig. 4 (b), we plot the variance ΔXϕ(t)\Delta X_{\phi}(t) using the effective Hamiltonian by blue dash-dotted line. After a long time evolution ωbt4501.5τ\omega_{b}t\geq 450\approx 1.5\tau, it tends to stabilize a certain value of 0.050.05, and the corresponding squeezing level SS is about 1010dB below vacuum fluctuation, which is larger than the upper bound 33dB in the stable condition.

We also simulate the logarithmic negativity (LN) to quantify the photon-phonon squeezing (EPR entanglement), which is defined as

EN=Max[0,12ln{2[𝒫(𝒫24detVeff)1/2}].E_{N}=\rm{Max}\left[0,-\frac{1}{2}\rm{ln}\left\{2[\mathcal{P}-(\mathcal{P}^{2}-4\det V^{\rm eff})^{1/2}\right\}\right]. (26)

Veff=[Va,Vab;VabT,Vb]V^{\rm eff}=[V_{a},V_{ab};V^{T}_{ab},V_{b}], with VaV_{a}, VbV_{b}, and VabV_{ab} being the 2×22\times 2 blocks of VeffV^{\rm eff}, and 𝒫detVa+detVb2detVab\mathcal{P}\equiv\det V_{a}+\det V_{b}-2\det V_{ab}. Then, the time-dependent LN can be derived as

EN(t)=Max{0,ln[η(11+δ)]}.E_{N}(t)=\rm{Max}\{0,-\rm{ln}\left[\eta\left(1-\sqrt{1+\delta^{\prime}}\right)\right]\}. (27)

where η=V11eff(t)+V33eff(t)\eta=V^{\rm eff}_{11}(t)+V^{\rm eff}_{33}(t) and δ={4[V13eff(t)]24V11eff(t)V33eff(t)}/η2\delta^{\prime}=\{4[V^{\rm eff}_{13}(t)]^{2}-4V^{\rm eff}_{11}(t)V^{\rm eff}_{33}(t)\}/\eta^{2}. In the unstable dynamical regime geff2>κaκbg^{2}_{eff}>\kappa_{a}\kappa_{b}, using the solutions in Eq. (16), one can demonstrate that δ0\delta^{\prime}\to 0 when tt\to\infty. With the Taylor expansion 1+δ1+δ/2\sqrt{1+\delta^{\prime}}\approx 1+\delta^{\prime}/2 up to the first order of δ\delta^{\prime}, one can finally obtain the LN at infinity

EN()=ln[2ΔXϕ()].E_{N}(\infty)=-\ln[2\Delta X_{\phi}(\infty)]. (28)

The above results obtained by the effective Hamiltonian in Eq. (3) can be further confirmed by the whole system’s dynamics. Similar as Eq. (14), using the full Hamiltonian HH (2), the dynamics of the whole system CM V(t)V(t) is determined by

V˙(t)=AV(t)+V(t)AT+D.\dot{V}(t)=AV(t)+V(t)A^{T}+D. (29)

The entries of V(t)V(t) are defined as Vij(t)=ui(t)uj(t)+uj(t)ui(t)/2,(i,j=1,2,6)V_{ij}(t)=\langle u_{i}(t)u_{j}(t)+u_{j}(t)u_{i}(t)\rangle/2,(i,j=1,2,...6), where u(t)u(t) is shown in Eq. (7). The transition matrix A=i+A~A=i\mathcal{L}+\tilde{A}, where \mathcal{L} is the superoperator in Eq. (8) and A~=Diag[κa,κa,κb,κb,e2rκm,e2rκm]\tilde{A}=Diag[-\kappa_{a},-\kappa_{a},-\kappa_{b},-\kappa_{b},-e^{2r}\kappa_{m},-e^{2r}\kappa_{m}]. The magnon decay rate is exponentially enlarged due to the Kerr effect, i.e., it turns into e2rκme^{2r}\kappa_{m} [61]. D=Diag[κa(2Na+1),κa(2Na+1),κb(2Nb+1),κb(2Nb+1),e2rκm(2Nm+1),e2rκm(2Nm+1)]D=Diag[\kappa_{a}(2N_{a}+1),\kappa_{a}(2N_{a}+1),\kappa_{b}(2N_{b}+1),\kappa_{b}(2N_{b}+1),e^{2r}\kappa_{m}(2N_{m}+1),e^{2r}\kappa_{m}(2N_{m}+1)] is the matrix of noises covariance. Then, the dynamics of ΔX(t)\Delta X(t) and ΔXϕ(t)\Delta X_{\phi}(t) can be obtained by numerically calculating the CM V(t)V(t),

ΔX(t)\displaystyle\Delta X(t) =12[V11(t)+V33(t)+2V13(t)],\displaystyle=\frac{1}{2}[V_{11}(t)+V_{33}(t)+2V_{13}(t)], (30)
ΔXϕ(t)\displaystyle\Delta X_{\phi}(t) =cos2ϕV11(t)+sin2ϕV33(t)+sin(2ϕ)V13(t).\displaystyle=\cos^{2}\phi V_{11}(t)+\sin^{2}\phi V_{33}(t)+\sin(2\phi)V_{13}(t).

The initial condition is V(0)=I6/2V(0)=I_{6}/2, and I6I_{6} is a six-dimensional identity matrix.

Numerical results are shown in Figs. 4(a) and (b). All of the matrix elements in Fig. 4(a), V11(t)V_{11}(t), V33(t)V_{33}(t), and V13(t)V_{13}(t), along with the variances in Fig. 4(b), ΔX(t)\Delta X(t) and ΔXϕ(t)\Delta X_{\phi}(t) obtained using Eq. (29) do match well with the corresponding results via the effective Hamiltonian (3).

Refer to caption
Refer to caption
Figure 5: (a). LN EN()E_{N}(\infty) in the coupling strengths gg and GG parameter space. Here, Δm=3ωb\Delta_{m}=3\omega_{b} and r=0.25r=0.25. (b). EN()E_{N}(\infty) in the parameter space spanned by magnon detuning Δm\Delta_{m} and squeezing parameter rr. Here, g=G=0.1ωbg=G=0.1\omega_{b}. Other parameters are κb=105ωb,κa=100κb,κm=10κa\kappa_{b}=10^{-5}\omega_{b},\kappa_{a}=100\kappa_{b},\kappa_{m}=10\kappa_{a}, and the thermal numbers Na=Nm=0,Nb=10N_{a}=N_{m}=0,N_{b}=10.

We also numerically analyze the asymptotic stationary LN, EN()E_{N}(\infty), using the whole system dynamics to evaluate our protocol. For the whole system, the ENE_{N} is defined by replacing the VeffV^{\rm eff} in Eq. (26) with V(1:4,1:4)V(1:4,1:4) in Eq. (29). Besides, we approximate EN()E_{N}(\infty) by evaluating the value at a sufficient long time, specifically EN()=EN(2τ)E_{N}(\infty)=E_{N}(2\tau), where τ\tau is the moment when ΔX(t)\Delta X(t) in Eq. (19) reaches its minimum, as shown in Fig. 4 (b).

In Fig. 5(a), we illustrate the EN()E_{N}(\infty) in the parameter space of coupling strengths gg and GG. One can observe that a high entanglement LN can be obtained when the coupling strengths gg and GG are increased. The LN EN()E_{N}(\infty) is greater than 2.52.5 for the coupling strengths g,G0.2ωbg,G\geq 0.2\omega_{b}. In Fig. 5(b), we present EN()E_{N}(\infty) in the parameter space defined by magnon detuning Δm\Delta_{m} and the parameter rr. A low entanglement regime EN()0.5E_{N}(\infty)\leq 0.5 around Δmωb\Delta_{m}\approx\omega_{b} is observed, and the low-region enhances with increasing rr, which is attributed to the invalidity of the effective Hamiltonian constructed in perturbation condition (3). For a fixed rr, as |Δmωb||\Delta_{m}-\omega_{b}| increases, EN()E_{N}(\infty) generally increases first and then decreases. A larger |Δmωb||\Delta_{m}-\omega_{b}| allows a broader range of rr to achieve a high LN. An optimal parameter space EN()2E_{N}(\infty)\geq 2 exists at Δm3.5ωb,r0.15\Delta_{m}\leq 3.5\omega_{b},r\geq 0.15. From these findings, we conclude that our protocol significantly enhances the asymptotic stationary LN, ENE_{N}, from the previously reported values of approximately 0.10.30.1-0.3 [15]. It can also exceed the maximum theoretical value at the stable regime, i.e., 0.690.69 [36].

V Discussion and Conclusion

Our protocol is primarily centered on the cavity magnomechanical system, focusing on constructing the magnon-assisted photon-phonon squeezing via precise modulating of the driving pulse frequency in the photon mode. The parameters required are feasible in recent experiments. The phonon frequency is about 10MHz10\rm{MHz}, with a decay rate close to κb105ωb\kappa_{b}\sim 10^{-5}\omega_{b} [12, 13]. The transition frequency of microwave photon is around 10GHz10\rm{GHz}, with a high quality Qa105107Q_{a}\sim 10^{5}-10^{7}, corresponding to the decay rate κa101000κb\kappa_{a}\sim 10-1000\kappa_{b}. The magnon decay rate, κm1MHz1000κb\kappa_{m}\sim 1\rm{MHz}\sim 1000\kappa_{b}, is challenging to reduce further due to intrinsic damping [2]. However, its impact on our protocol is insignificant as the magnon primarily serves as an interface. At a low temperature T10mKT\sim 10\rm{mK}, both the photon and magnon excitation numbers approach zero, while the phonon number Nb10N_{b}\approx 10 when ωb=10MHz\omega_{b}=10\rm{MHz}. The magnon Kerr effect has been experimentally demonstrated in this hybrid system [13], which can be enhanced by reducing the YIG sphere’s volume [57]. In addition to the cavity magnomechanics, our protocol can be extended to other bosonic systems to generate TMSS entangled by two indirectly coupled Gaussian models. For instance, we can utilize a mechanical interface to realize the microwave-optical photon squeezing state [62, 63] or generate a photon-magnon squeezed state [55]. Hence, our scheme presents an extendable framework to create TMSS, which will be widely applied in quantum information processing and quantum metrology using bosonic systems.

In summary, we have presented a protocol for achieving photon-phonon two-mode squeezing in the cavity magnomechanics, where the magnon in the YIG sphere is coupled to both microwave photons and the mechanical vibration modes in the same sphere. Our protocol offers significant advantages in terms of solid controllability within the system, and the Kerr effect of magnon can further enhance the squeezing level. This magnon-assisted protocol relies on the two-mode squeezing effective Hamiltonian for coupling photons and phonons. We apply an interesting method by diagonalizing the whole system’s Liouvilian superoperator to numerically confirm the validity range of the effective Hamiltonian, which is beneficial in shedding light on more physics in the specific case. In the open-quantum-system framework, we derive the process for generating TMSS with the effective Hamiltonian. Our analysis demonstrates that the asymptotic stationary TMSS with high squeezing levels can be achieved even in an unstable dynamic regime. Our work provides an important implementation of TMSS generation in a solid system under realistic noises. It extends the application of cavity magnomechanics as a promising hybrid platform for quantum information processing.

Acknowledgments

We acknowledge financial support from the National Science Foundation of China (Grant No. 12404405) and the Science Foundation of Hebei Normal University of China (Grant No.13114122).

Appendix A System linearized Hamiltonian

This appendix contributes to deriving the linearized Hamiltonian in Eq. (2). With respect to the transformation U(t)=exp{iωdtaa+iωdtmm}U(t)=\exp\{i\omega_{d}ta^{\dagger}a+i\omega_{d}tm^{\dagger}m\}, the original Hamiltonian in Eq. (1) turns out to be

Hs\displaystyle H_{s} =Δaaa+ΔmmmKmmmmm+ωbbb+gma(am+am)+gmbmm(b+b)+Ω(a+a),\displaystyle=\Delta_{a}a^{\dagger}a+\Delta_{m}m^{\dagger}m-K_{m}m^{\dagger}mm^{\dagger}m+\omega_{b}b^{\dagger}b+g_{ma}(a^{\dagger}m+am^{\dagger})+g_{mb}m^{\dagger}m(b+b^{\dagger})+\Omega(a^{\dagger}+a), (31)

where Δa=ωaωd\Delta_{a}=\omega_{a}-\omega_{d} and Δm=ωmωd\Delta_{m}=\omega_{m}-\omega_{d}. Due to the Heisenberg-Langevin equation, the time evolution of the system operators satisfies

a˙\displaystyle\dot{a} =(iΔa+κa)aigmamiΩ+2κaain,\displaystyle=-(i\Delta_{a}+\kappa_{a})a-ig_{ma}m-i\Omega+\sqrt{2\kappa_{a}}a_{in}, (32)
m˙\displaystyle\dot{m} =(iΔm+κm)m+iKmmmm+iKmmmmigmaaigmbm(b+b)+2κmmin,\displaystyle=-(i\Delta_{m}+\kappa_{m})m+iK_{m}mm^{\dagger}m+iK_{m}m^{\dagger}mm-ig_{ma}a-ig_{mb}m(b+b^{\dagger})+\sqrt{2\kappa_{m}}m_{in},
b˙\displaystyle\dot{b} =(iωb+κb)bigmbmm+2κbbin.\displaystyle=-(i\omega_{b}+\kappa_{b})b-ig_{mb}m^{\dagger}m+\sqrt{2\kappa_{b}}b_{in}.

where aina_{in}, minm_{in} and binb_{in} are input noise operators for the cavity photon, magnon, and phonon modes, respectively, which are characterized by the following covariance functions: oin(t)oin(t)=[No+1]δ(tt)\langle o_{in}(t)o^{\dagger}_{in}(t^{\prime})\rangle=[N_{o}+1]\delta(t-t^{\prime}) and oin(t)oin(t)=Noδ(tt),o=a,m,b\langle o^{\dagger}_{in}(t)o_{in}(t^{\prime})\rangle=N_{o}\delta(t-t^{\prime}),o=a,m,b, where a Markovian approximation has been made. No={exp[(ωo/kBT)]1}1N_{o}=\{\exp[(\hbar\omega_{o}/k_{B}T)]-1\}^{-1} is the mean population of mode oo at the thermal equilibrium state. κa\kappa_{a}, κm\kappa_{m}, and κb\kappa_{b} are the decay rates of the modes aa, mm and bb, respectively.

Under the condition that the photon mode is strongly driven, it has a large amplitude |a|1|\langle a\rangle|\gg 1 at its steady state. Due to the strong photon-magnon dipole-dipole interaction, the magnon mode also has a large amplitude |m|1|\langle m\rangle|\gg 1. This allows us to linearize the system’s dynamics around the steady state values by writing any operators o=o+δoo=\langle o\rangle+\delta o and neglecting second-order fluctuation terms. The steady values satisfy

(iΔa+κa)aigmamiΩ=0,\displaystyle-(i\Delta_{a}+\kappa_{a})\langle a\rangle-ig_{ma}\langle m\rangle-i\Omega=0, (33)
(iΔm+κm)m+2iKmm|m2|igmaaigmbm(b+b)=0,\displaystyle-(i\Delta_{m}+\kappa_{m})\langle m\rangle+2iK_{m}\langle m\rangle|\langle m\rangle^{2}|-ig_{ma}\langle a\rangle-ig_{mb}\langle m\rangle(\langle b\rangle+\langle b\rangle^{*})=0,
(iωb+κb)bigmb|m2|=0.\displaystyle-(i\omega_{b}+\kappa_{b})\langle b\rangle-ig_{mb}|\langle m\rangle^{2}|=0.

This leads to

a=igmam+iΩiΔa+κa,b=igmb|m2|iωb+κb,\displaystyle\langle a\rangle=-\frac{ig_{ma}\langle m\rangle+i\Omega}{i\Delta_{a}+\kappa_{a}},\quad\langle b\rangle=-\frac{ig_{mb}|\langle m\rangle^{2}|}{i\omega_{b}+\kappa_{b}}, (34)
(iΔm+κm)m+2iKm(κb2+ωb2)+gmb2ωbκb2+ωb2m|m2|gma2iΔa+κamgmaΩiΔa+κa=0.\displaystyle-(i\Delta_{m}+\kappa_{m})\langle m\rangle+2i\frac{K_{m}(\kappa_{b}^{2}+\omega^{2}_{b})+g_{mb}^{2}\omega_{b}}{\kappa_{b}^{2}+\omega^{2}_{b}}\langle m\rangle|\langle m\rangle^{2}|-\frac{g^{2}_{ma}}{i\Delta_{a}+\kappa_{a}}\langle m\rangle-\frac{g_{ma}\Omega}{i\Delta_{a}+\kappa_{a}}=0.

The quantum Langevin equations describing the fluctuation operators δo\delta o can be written as

δa˙\displaystyle\dot{\delta a} =(iΔa+κa)δaigmaδm+2κaain,\displaystyle=-(i\Delta_{a}+\kappa_{a})\delta a-ig_{ma}\delta m+\sqrt{2\kappa_{a}}a_{in}, (35)
δm˙\displaystyle\dot{\delta m} =(iΔm+κm)δm+2iKm|m2|δm+2iKmm2δmigmaδaigmbδm(b+b)\displaystyle=-(i\Delta m+\kappa_{m})\delta m+2iK_{m}|\langle m\rangle^{2}|\delta m+2iK_{m}\langle m\rangle^{2}\delta m^{\dagger}-ig_{ma}\delta a-ig_{mb}\delta m(\langle b\rangle+\langle b\rangle^{*})
igmbm(δb+δb)+2κmmin,\displaystyle-ig_{mb}\langle m\rangle(\delta b+\delta b^{\dagger})+\sqrt{2\kappa_{m}}m_{in},
δb˙\displaystyle\dot{\delta b} =(iωb+κb)δbigmb(mδm+mδm)+2κbbin.\displaystyle=-(i\omega_{b}+\kappa_{b})\delta b-ig_{mb}(\langle m\rangle^{*}\delta m+\langle m\rangle\delta m^{\dagger})+\sqrt{2\kappa_{b}}b_{in}.

Then the corresponding effective linearized Hamiltonian can be described as

Hlin\displaystyle H_{\rm lin} =Δaδaδa+Δ~mδmδm+ωbδbδbKδm2Kδm2+g(δaδm+δaδm)+(Gδm+Gδm)(δb+δb),\displaystyle=\Delta_{a}\delta a^{\dagger}\delta a+\tilde{\Delta}_{m}\delta m^{\dagger}\delta m+\omega_{b}\delta b^{\dagger}\delta b-K\delta m^{{\dagger}2}-K^{*}\delta m^{2}+g(\delta a\delta m^{\dagger}+\delta a^{\dagger}\delta m)+(G\delta m^{\dagger}+G^{*}\delta m)(\delta b+\delta b^{\dagger}), (36)

where Δ~m=Δm2|K|\tilde{\Delta}_{m}=\Delta_{m}-2|K|, K=Kmm2K=K_{m}\langle m\rangle^{2}, g=gmag=g_{ma}, and G=gmbmG=g_{mb}\langle m\rangle. We apply the convention δoo,o=a,m,b\delta o\rightarrow o,o=a,m,b in the following content for simplicity. Then, the linearized Hamiltonian turns into

Hlin\displaystyle H_{\rm lin} =Δaaa+Δ~mmm+ωbbbKm2Km2+g(am+am)+(Gm+Gm)(b+b).\displaystyle=\Delta_{a}a^{\dagger}a+\tilde{\Delta}_{m}m^{\dagger}m+\omega_{b}b^{\dagger}b-Km^{{\dagger}2}-K^{*}m^{2}+g(am^{\dagger}+a^{\dagger}m)+(Gm^{\dagger}+G^{*}m)(b+b^{\dagger}). (37)

In the rotating frame with the unitary transformation U(ϵ)=exp[12(ϵm2ϵm2)]U(\epsilon)=\exp[\frac{1}{2}(\epsilon^{*}m^{2}-\epsilon m^{{\dagger}2})], the linearized Hamiltonian turns into

Hrot\displaystyle H_{\rm rot} =Δaaa+ωbbb+Δ~m(mmcosh2r+mmsinh2r+m2coshrsinhreiθ+m2coshrsinhreiθ)\displaystyle=\Delta_{a}a^{\dagger}a+\omega_{b}b^{\dagger}b+\tilde{\Delta}_{m}(m^{\dagger}m\cosh^{2}r+mm^{\dagger}\sinh^{2}r+m^{{\dagger}2}\cosh r\sinh re^{i\theta}+m^{2}\cosh r\sinh re^{-i\theta}) (38)
K(m2cosh2r+mmeiθcoshrsinhr+mmeiθcoshrsinhr+m2e2iθsinh2r)\displaystyle-K(m^{{\dagger}2}\cosh^{2}r+mm^{\dagger}e^{-i\theta}\cosh r\sinh r+m^{\dagger}me^{-i\theta}\cosh r\sinh r+m^{2}e^{-2i\theta}\sinh^{2}r)
K(m2cosh2r+mmeiθcoshrsinhr+mmeiθcoshrsinhr+m2e2iθsinh2r)\displaystyle-K^{*}(m^{2}\cosh^{2}r+mm^{\dagger}e^{i\theta}\cosh r\sinh r+m^{\dagger}me^{i\theta}\cosh r\sinh r+m^{{\dagger}2}e^{2i\theta}\sinh^{2}r)
+gcoshr(am+am)+gsinhr(ameiθ+ameiθ)\displaystyle+g\cosh r(am^{\dagger}+a^{\dagger}m)+g\sinh r(ame^{-i\theta}+a^{\dagger}m^{\dagger}e^{i\theta})
+(Gmcoshr+Gmeiθsinhr+Gmcoshr+Gmeiθsinhr)(b+b),\displaystyle+(Gm^{\dagger}\cosh r+Gme^{-i\theta}\sinh r+G^{*}m\cosh r+G^{*}m^{\dagger}e^{i\theta}\sinh r)(b+b^{\dagger}),

where ϵ=reiθ\epsilon=re^{i\theta}. Here, we use the relation

U(ϵ)mU(ϵ)=mcoshr+meiθsinhr,U(ϵ)mU(ϵ)=mcoshr+meiθsinhr.U(\epsilon)mU^{\dagger}(\epsilon)=m\cosh r+m^{\dagger}e^{i\theta}\sinh r,\quad U(\epsilon)m^{\dagger}U^{\dagger}(\epsilon)=m^{\dagger}\cosh r+me^{-i\theta}\sinh r. (39)

Setting K=|K|eiθK=|K|e^{i\theta} and tanh(2r)=2|K|/Δ~m\tanh(2r)=2|K|/\tilde{\Delta}_{m}, the Hamiltonian (38) can be reduced into

H\displaystyle H =H0+V,\displaystyle=H_{0}+V, (40)
H0\displaystyle H_{0} =Δaaa+Δmmm+ωbbb,\displaystyle=\Delta_{a}a^{\dagger}a+\Delta^{\prime}_{m}m^{\dagger}m+\omega_{b}b^{\dagger}b,
V\displaystyle V =gcoshr(am+am)+gsinhr(ameiθ+ameiθ)+|G|er(meiθ2+meiθ2)(b+b),\displaystyle=g\cosh r(am^{\dagger}+a^{\dagger}m)+g\sinh r(ame^{-i\theta}+a^{\dagger}m^{\dagger}e^{i\theta})+|G|e^{r}(me^{-i\frac{\theta}{2}}+m^{\dagger}e^{i\frac{\theta}{2}})(b+b^{\dagger}),

where Δm=Δ~m/cosh(2r)\Delta^{\prime}_{m}=\tilde{\Delta}_{m}/\cosh(2r). The effective magnon coupling strength GG can be written as G=gmbm=|G|eiθ/2G=g_{mb}\langle m\rangle=|G|e^{i\theta/2} due to K=Kmm2=|K|eiθK=K_{m}\langle m\rangle^{2}=|K|e^{i\theta}. It is the linearized Hamiltonian (2) in the main text. For simplicity, we apply the conventions |G|G|G|\to G, |K|K|K|\to K, and Δ~mΔm\tilde{\Delta}_{m}\to\Delta_{m} in the main manuscript and the following content.

Appendix B Effective Hamiltonian for photon-phonon squeezing

Refer to caption
Figure 6: All the second-order (leading-order) paths involving arbitrary base pair |nlk|na|lm|kb|nlk\rangle\equiv|n\rangle_{a}|l\rangle_{m}|k\rangle_{b} and |(n+1)l(k+1)|(n+1)l(k+1)\rangle. Blue solid (Golden dotted) lines mark the transitions mediated by the counterrotating (rotating) photon-magnon coupling. Red long-dashed lines mark the transitions mediated by magnon-phonon coupling.

To realize the photon-phonon squeezing assisted by the magnon mode via the linearized approximate Hamiltonian (40), generally one can extract an effective transition from the near-degenerate subspaces based on the standard perturbation theory concerning the coupling strengths gg and GG. When the photon detuning frequency Δa\Delta_{a} is near opposite the phonon frequency ωb\omega_{b}, and both of them are far resonant from the detuning Δm\Delta^{\prime}_{m}, i.e., Δa+ωb0\Delta_{a}+\omega_{b}\approx 0 and |ΔmΔa|,|Δmωb|Ger,gsinhr,gcoshr|\Delta^{\prime}_{m}-\Delta_{a}|,|\Delta^{\prime}_{m}-\omega_{b}|\gg Ge^{r},g\sinh r,g\cosh r, it is found that the tensor-product state |nlk|na|lm|kb|nlk\rangle\equiv|n\rangle_{a}|l\rangle_{m}|k\rangle_{b} is near degenerate with |(n+1)l(k+1)|(n+1)l(k+1)\rangle. Here the subscripts a,m,ba,m,b respectively represent the photon, magnon, and phonon modes, and n,l,kn,l,k indicate their individual Fock states. To the second order, the effective coupling strength or the energy shift between any eigenstates |i|i\rangle and |j|j\rangle of the unperturbed Hamiltonian H0H_{0} in Eq. (40) is given by [53, 54, 64]

g~=ni,jVjnVniωiωn,\tilde{g}=\sum_{n\neq i,j}\frac{V_{jn}V_{ni}}{\omega_{i}-\omega_{n}}, (41)

where Vnmn|V|mV_{nm}\equiv\langle n|V|m\rangle and ωn\omega_{n} is the eigenenergy of state |n|n\rangle, provided the interaction Hamiltonian VV is regarded as a perturbation to H0H_{0}.

A good approximation of the effective Hamiltonian describing the transition between arbitrary base pair |nlk|nlk\rangle and |(n+1)l(k+1)|(n+1)l(k+1)\rangle can be analytically obtained using the preceding second-order perturbation theory. It can be expressed in the form

Heff=ϵ1|nlknlk|+(Δa+ωb+ϵ2)|(n+1)l(k+1)(n+1)l(k+1)|+(G~|nlk(n+1)l(k+1)|+H.c.),H_{\rm eff}=\epsilon_{1}|nlk\rangle\langle nlk|+(\Delta_{a}+\omega_{b}+\epsilon_{2})|(n+1)l(k+1)\rangle\langle(n+1)l(k+1)|+(\tilde{G}|nlk\rangle\langle(n+1)l(k+1)|+\rm{H.c.}), (42)

where ϵ1\epsilon_{1} and ϵ2\epsilon_{2} are the energy shifts due to the coupling for the states |nlk|nlk\rangle and |(n+1)l(k+1)|(n+1)l(k+1)\rangle, respectively, and G~\tilde{G} is the effective coupling strength. These are three coefficients to be determined in this ansatz. Notice, here we omit the common unperturbed eigenenergy of two bases nΔa+lΔm+kωbn\Delta_{a}+l\Delta^{\prime}_{m}+k\omega_{b}.

We first consider the energy shift ϵ1\epsilon_{1} for the state |nlk|nlk\rangle. Summarizing all the eight paths from |nlk|nlk\rangle and back to |(n+1)l(k+1)|(n+1)l(k+1)\rangle through an intermediate state, as shown in Fig. 6, one can obtain the second-order energy correction ϵ1\epsilon_{1} for the |nlk|nlk\rangle according to Eq. (41)

ϵ1=(nl)g2cosh2rΔaΔm(n+l+1)g2sinh2rΔa+Δm+(lk)G2e2rωbΔm(l+k+1)G2e2rωb+Δm.\epsilon_{1}=\frac{(n-l)g^{2}\cosh^{2}r}{\Delta_{a}-\Delta^{\prime}_{m}}-\frac{(n+l+1)g^{2}\sinh^{2}r}{\Delta_{a}+\Delta^{\prime}_{m}}+\frac{(l-k)G^{2}e^{2r}}{\omega_{b}-\Delta^{\prime}_{m}}-\frac{(l+k+1)G^{2}e^{2r}}{\omega_{b}+\Delta^{\prime}_{m}}. (43)

And in the same way, the energy shift ϵ2\epsilon_{2} for the state |(n+1)l(k+1)|(n+1)l(k+1)\rangle is found to be

ϵ2=(nl+1)g2cosh2rΔaΔm(n+l+2)g2sinh2rΔa+Δm+(lk1)G2e2rωbΔm(l+k+2)G2e2rωb+Δm.\epsilon_{2}=\frac{(n-l+1)g^{2}\cosh^{2}r}{\Delta_{a}-\Delta^{\prime}_{m}}-\frac{(n+l+2)g^{2}\sinh^{2}r}{\Delta_{a}+\Delta^{\prime}_{m}}+\frac{(l-k-1)G^{2}e^{2r}}{\omega_{b}-\Delta^{\prime}_{m}}-\frac{(l+k+2)G^{2}e^{2r}}{\omega_{b}+\Delta^{\prime}_{m}}. (44)

An exact resonance between arbitrary |nlk|nlk\rangle and |(n+1)l(k+1)|(n+1)l(k+1)\rangle requires that the first two terms in Eq. (42) constitute the identity operator in the relevant subspace. Thus, ϵ1=Δa+ωb+ϵ2\epsilon_{1}=\Delta_{a}+\omega_{b}+\epsilon_{2}. Assuming the distance between Δa\Delta_{a} and ωb-\omega_{b} is δ\delta, one can have

δ\displaystyle\delta Δa+ωb=ϵ1ϵ2=g2cosh2rΔaΔm+g2sinh2rΔa+ΔmG2e2rωbΔm+G2e2rωb+Δm\displaystyle\equiv\Delta_{a}+\omega_{b}=\epsilon_{1}-\epsilon_{2}=-\frac{g^{2}\cosh^{2}r}{\Delta_{a}-\Delta^{\prime}_{m}}+\frac{g^{2}\sinh^{2}r}{\Delta_{a}+\Delta^{\prime}_{m}}-\frac{G^{2}e^{2r}}{\omega_{b}-\Delta^{\prime}_{m}}+\frac{G^{2}e^{2r}}{\omega_{b}+\Delta^{\prime}_{m}} (45)
=G2e2r+g2cosh2rΔm+ωb+G2e2r+g2sinh2rΔmωb+[g2cosh2r(Δm+ωb)2g2sinh2r(Δmωb)2]δ+O(δ2)\displaystyle=\frac{G^{2}e^{2r}+g^{2}\cosh^{2}r}{\Delta^{\prime}_{m}+\omega_{b}}+\frac{G^{2}e^{2r}+g^{2}\sinh^{2}r}{\Delta^{\prime}_{m}-\omega_{b}}+\left[\frac{g^{2}\cosh^{2}r}{(\Delta^{\prime}_{m}+\omega_{b})^{2}}-\frac{g^{2}\sinh^{2}r}{(\Delta^{\prime}_{m}-\omega_{b})^{2}}\right]\delta+O(\delta^{2})
A+Bδ+O(δ2),\displaystyle\equiv A+B\delta+O(\delta^{2}),

where O(δ2)O(\delta^{2}) represents all the higher orders of δ\delta from the first order in Taylor expansion. Then δ\delta is consistently solved as δ=A/(1B)\delta=A/(1-B) up to the second-order correction. Note BO(g2/|Δmωb|2)B\approx O(g^{2}/|\Delta^{\prime}_{m}-\omega_{b}|^{2}), so that up to the second order of the coupling strengths gg and GG, we have

δ=G2e2r+g2cosh2rΔm+ωb+G2e2r+g2sinh2rΔmωb.\delta=\frac{G^{2}e^{2r}+g^{2}\cosh^{2}r}{\Delta^{\prime}_{m}+\omega_{b}}+\frac{G^{2}e^{2r}+g^{2}\sinh^{2}r}{\Delta^{\prime}_{m}-\omega_{b}}. (46)

Note δ\delta is a Fock-state-independent coefficient in comparison to both ϵ1\epsilon_{1} and ϵ2\epsilon_{2}.

Next, we consider the contribution from the four paths connecting |nlk|nlk\rangle and |(n+1)l(k+1)|(n+1)l(k+1)\rangle in Fig. 6 to their effective coupling strength. By virtue of Eq. (41), one can have

G~=(n+1)(k+1)eiθ2gGer(sinhrΔmωb+coshrΔm+ωb),\tilde{G}=-\sqrt{(n+1)(k+1)}e^{i\frac{\theta}{2}}gGe^{r}\left(\frac{\sinh r}{\Delta^{\prime}_{m}-\omega_{b}}+\frac{\cosh r}{\Delta^{\prime}_{m}+\omega_{b}}\right), (47)

up to the second order of the coupling strengths gg and GG. Eventually, the effective Hamiltonian (42) can be written as

Heff=G~|nlk(n+1)l(k+1)|+H.c.=(G~|nk(n+1)(k+1)|+H.c.)|lml|.H_{\rm eff}=\tilde{G}|nlk\rangle\langle(n+1)l(k+1)|+{\rm{H.c.}}=\left(\tilde{G}|nk\rangle\langle(n+1)(k+1)|+{\rm{H.c.}}\right)\otimes|l\rangle_{m}\langle l|. (48)

Discard the magnon mode and extend the Hamiltonian (48) to the whole Hilbert space of photon and phonon, the effective Hamiltonian can be eventually expressed as

Heff=geff(eiθ2ab+eiθ2ab),H_{\rm eff}=g_{\rm eff}(e^{i\frac{\theta}{2}}a^{\dagger}b^{\dagger}+e^{-i\frac{\theta}{2}}ab), (49)

where

geff=gGer(sinhrΔmωb+coshrΔm+ωb).g_{\rm eff}=-gGe^{r}\left(\frac{\sinh r}{\Delta^{\prime}_{m}-\omega_{b}}+\frac{\cosh r}{\Delta^{\prime}_{m}+\omega_{b}}\right). (50)

is the effective coupling strength of the two modes, which is in the same order as the energy derivation δ\delta.

References

  • Rameshti et al. [2022] B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Usami, D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang, G. E. Bauer,  and Y. M. Blanter, Cavity magnonics, Phys. Rep. 979, 1 (2022).
  • Yuan et al. [2022] H. Yuan, Y. Cao, A. Kamra, R. A. Duine,  and P. Yan, Quantum magnonics: When magnon spintronics meets quantum information science, Phys. Rep. 965, 1 (2022).
  • Tabuchi et al. [2014] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami,  and Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113, 083603 (2014).
  • Shen et al. [2021] R.-C. Shen, Y.-P. Wang, J. Li, S.-Y. Zhu, G. S. Agarwal,  and J. Q. You, Long-time memory and ternary logic gate using a multistable cavity magnonic system, Phys. Rev. Lett. 127, 183202 (2021).
  • Tabuchi et al. [2015] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami,  and Y. Nakamura, Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science 349, 405 (2015).
  • Xu et al. [2023] D. Xu, X.-K. Gu, H.-K. Li, Y.-C. Weng, Y.-P. Wang, J. Li, H. Wang, S.-Y. Zhu,  and J. Q. You, Quantum control of a single magnon in a macroscopic spin system, Phys. Rev. Lett. 130, 193603 (2023).
  • Ladd et al. [2010] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,  and J. L. O’Brien, Quantum computers, Nature (London) 464, 45 (2010).
  • Reiserer and Rempe [2015] A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical photons, Rev. Mod. Phys. 87, 1379 (2015).
  • Degen et al. [2017] C. L. Degen, F. Reinhard,  and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
  • Blais et al. [2021] A. Blais, A. L. Grimsmo, S. M. Girvin,  and A. Wallraff, Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).
  • Aspelmeyer et al. [2014] M. Aspelmeyer, T. J. Kippenberg,  and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  • Zhang et al. [2016] X. Zhang, C.-L. Zou, L. Jiang,  and H. Tang, Cavity magnonmechanics, Sci. Adv. 2, e1501286 (2016).
  • Shen et al. [2022] R.-C. Shen, J. Li, Z.-Y. Fan, Y.-P. Wang,  and J. Q. You, Mechanical bistability in kerr-modified cavity magnomechanics, Phys. Rev. Lett. 129, 123601 (2022).
  • Zuo et al. [2024] X. Zuo, Z.-Y. Fan, H. Qian, M.-S. Ding, H. Tan, H. Xiong,  and J. Li, Cavity magnomechanics: from classical to quantum, New J. Phys. 26, 031201 (2024).
  • Li et al. [2018] J. Li, S.-Y. Zhu,  and G. S. Agarwal, Magnon-photon-phonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121, 203601 (2018).
  • Yu et al. [2020] M. Yu, H. Shen,  and J. Li, Magnetostrictively induced stationary entanglement between two microwave fields, Phys. Rev. Lett. 124, 213604 (2020).
  • Chen et al. [2021] Y.-T. Chen, L. Du, Y. Zhang,  and J.-H. Wu, Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system, Phys. Rev. A 103, 053712 (2021).
  • Tan [2019] H. Tan, Genuine photon-magnon-phonon einstein-podolsky-rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system, Phys. Rev. Res. 1, 033161 (2019).
  • Li et al. [2019] J. Li, S.-Y. Zhu,  and G. S. Agarwal, Squeezed states of magnons and phonons in cavity magnomechanics, Phys. Rev. A 99, 021801 (2019).
  • Li et al. [2023] J. Li, Y.-P. Wang, J.-Q. You,  and S.-Y. Zhu, Squeezing microwaves by magnetostriction, Natl. Sci. Rev. 10, nwac247 (2023).
  • Qian et al. [2024] H. Qian, X. Zuo, Z.-Y. Fan, J. Cheng,  and J. Li, Strong squeezing of microwave output fields via reservoir-engineered cavity magnomechanics, Phys. Rev. A 109, 013704 (2024).
  • Sarma et al. [2021] B. Sarma, T. Busch,  and J. Twamley, Cavity magnomechanical storage and retrieval of quantum states, New J. Phys. 23, 0 41 (2021).
  • Qi and Jing [2021] S.-f. Qi and J. Jing, Magnon-assisted photon-phonon conversion in the presence of structured environments, Phys. Rev. A 103, 043704 (2021).
  • Qi and Jing [2022] S.-f. Qi and J. Jing, Accelerated adiabatic passage in cavity magnomechanics, Phys. Rev. A 105, 053710 (2022).
  • Lloyd and Braunstein [1999] S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, Phys. Rev. Lett. 82, 1784 (1999).
  • Braunstein and van Loock [2005] S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
  • Furusawa et al. [1998] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble,  and E. S. Polzil, Unconditional quantum teleportation, Science 282, 706 (1998).
  • Giovannetti et al. [2011] V. Giovannetti, S. Lloyd,  and L. Maccone, Advanced in quantum metrology, Nat. Photonics 5, 222 (2011).
  • Masada et al. [2015] G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L.O’Brien,  and A. Furusawa, Continuous-variable entanglement on a chip, Nat. Photonics 9, 316 (2015).
  • Villar et al. [2005] A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli,  and P. Nussenzveig, Generation of bright two-color continuous variable entanglement, Phys. Rev. Lett. 95, 243603 (2005).
  • Heidmann et al. [1987] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre,  and G. Camy, Observation of quantum noise reduction on twin laser beams, Phys. Rev. Lett. 59, 2555 (1987).
  • Sahu et al. [2023] R. Sahu, L. Qiu, W. Hease, G. Arnold, Y. Minoguchi, P. Rabl,  and J. Fink, Entangling microwaves with light, Science 380, 718 (2023).
  • Reid and Drummond [1988] M. D. Reid and P. D. Drummond, Quantum correlations of phase in nondegenerate parametric oscillation, Phys. Rev. Lett. 60, 2731 (1988).
  • Ou et al. [1992] Z. Y. Ou, S. F. Pereira, H. J. Kimble,  and K. C. Peng, Realization of the einstein-podolsky-rosen paradox for continuous variables, Phys. Rev. Lett. 68, 3663 (1992).
  • Qurjoumtsev et al. [2011] A. Qurjoumtsev, A. Kubanek, M. Koch, C. Sames, P. W. H. Pinkse, G. Rempe,  and K. Murr, Observation of squeezed light from one atom excited with two photons, Nature (London) 474, 623 (2011).
  • Wang and Clerk [2013] Y.-D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110, 253601 (2013).
  • Tian [2013] L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110, 233602 (2013).
  • Li et al. [2015] Z. Li, S.-l. Ma,  and F.-l. Li, Generation of broadband two-mode squeezed light in cascaded double-cavity optomechanical systems, Phys. Rev. A 92, 023856 (2015).
  • Tan et al. [2013] H. Tan, G. Li,  and P. Meystre, Dissipation-driven two-mode mechanical squeezed states in optomechanical systems, Phys. Rev. A 87, 033829 (2013).
  • Pontin et al. [2016] A. Pontin, M. Bonaldi, A. Borrielli, L. Marconi, F. Marino, G. Pandraud, G. A. Prodi, P. M. Sarro, E. Serra,  and F. Marin, Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system, Phys. Rev. Lett. 116, 103601 (2016).
  • Julsgaard et al. [2001] B. Julsgaard, A. Kozhekin,  and E. S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature (London) 413, 400 (2001).
  • Gross et al. [2011] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki,  and M. K. Oberthaler, Atomic homodyne detection of continuous-variable entangled twin-atom states, Nature (London) 480, 219 (2011).
  • Bookjans et al. [2011] E. M. Bookjans, C. D. Hamley,  and M. S. Chapman, Strong quantum spin correlations observed in atomic spin mixing, Phys. Rev. Lett. 107, 210406 (2011).
  • Qu et al. [2020] A. Qu, B. Evrard, J. Dalibard,  and F. Gerbier, Probing spin correlations in a bose-einstein condensate near the single-atom level, Phys. Rev. Lett. 125, 033401 (2020).
  • Kim et al. [2021] K. Kim, J. Hur, S. Huh, S. Choi,  and J.-y. Choi, Emission of spin-correlated matter-wave jets from spinor bose-einstein condensates, Phys. Rev. Lett. 127, 043401 (2021).
  • Sundar et al. [2023] B. Sundar, D. Barberena, A. P. n. Orioli, A. Chu, J. K. Thompson, A. M. Rey,  and R. J. Lewis-Swan, Bosonic pair production and squeezing for optical phase measurements in long-lived dipoles coupled to a cavity, Phys. Rev. Lett. 130, 113202 (2023).
  • Bilitewski and Rey [2023] T. Bilitewski and A. M. Rey, Manipulating growth and propagation of correlations in dipolar multilayers: From pair production to bosonic kitaev models, Phys. Rev. Lett. 131, 053001 (2023).
  • Duha and Bilitewski [2024] A. Duha and T. Bilitewski, Two-mode squeezing in floquet-engineered power-law interacting spin models, Phys. Rev. A 109, L061304 (2024).
  • Mamaev et al. [2024] M. Mamaev, M. Koppenhöfer, A. Pocklington,  and A. A.Clerk, Non-gaussian generalized two-mode squeezing: applications to two-ensemble spin squeezing and beyond, arxiv: 2407, 00721v1 (2024).
  • Römling and Kamra [2024] A.-L. E. Römling and A. Kamra, Quantum sensing of antiferromagnetic magnon two-mode squeezed vacuum, Phys. Rev. B 109, 174410 (2024).
  • Esposito et al. [2022] M. Esposito, A. Ranadive, L. Planat, S. Leger, D. Fraudet, V. Jouanny, O. Buisson, W. Guichard, C. Naud, J. Aumentado, F. Lecocq,  and N. Roch, Observation of two-mode squeezing in a traveling wave parametric amplifier, Phys. Rev. Lett. 128, 153603 (2022).
  • Andersson et al. [2022] G. Andersson, S. W. Jolin, M. Scigliuzzo, R. Borgani, M. O. Tholén, J. Rivera Hernández, V. Shumeiko, D. B. Haviland,  and P. Delsing, Squeezing and multimode entanglement of surface acoustic wave phonons, PRX Quantum 3, 010312 (2022).
  • Garziano et al. [2016] L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori,  and S. Savasta, One photon can simultaneously excite two or more atoms, Phys. Rev. Lett. 117, 043601 (2016).
  • Kockum et al. [2017] A. F. Kockum, A. Miranowicz, V. Macrì, S. Savasta,  and F. Nori, Deterministic quantum nonlinear optics with single atoms and virtual photons, Phys. Rev. A 95, 063849 (2017).
  • Fan et al. [2023] Z.-Y. Fan, L. Qiu, S. Gröblacher,  and J. Li, Microwave-optics entanglement via cavity optomagnomechanics, Laser Photonics Rev. 17, 2200866 (2023).
  • Vidal and Werner [2002] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  • Xiong et al. [2022] W. Xiong, M. Tian, G.-Q. Zhang,  and J. Q. You, Strong long-range spin-spin coupling via a kerr magnon interface, Phys. Rev. B 105, 245310 (2022).
  • Chu et al. [2024] Y. Chu, X. Li,  and J. Cai, Quantum delocalization on correlation landscape: The key to exponentially fast multipartite entanglement generation, arxiv: 2404, 10973 (2024).
  • Forn-Díaz et al. [2019] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono,  and E. Solano, Ultrastrong coupling regimes of light-matter interaction, Rev. Mod. Phys. 91, 025005 (2019).
  • Ding et al. [2020] M.-S. Ding, L. Zheng,  and C. Li, Ground-state cooling of a magnomechanical resonator induced by magnetic damping, J. Opt. Soc. Am. B 37, 627 (2020).
  • Hei et al. [2023] X.-L. Hei, P.-B. Li, X.-F. Pan,  and F. Nori, Enhanced tripartite interactions in spin-magnon-mechanical hybrid systems, Phys. Rev. Lett. 130, 073602 (2023).
  • Barzanjeh et al. [2015] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro,  and S. Pirandola, Microwave quantum illumination, Phys. Rev. Lett. 114, 080503 (2015).
  • Wu et al. [2020] M. Wu, E. Zeuthen, K. C. Balram,  and K. Srinivasan, Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators, Phys. Rev. Appl. 13, 014027 (2020).
  • Shao et al. [2017] W. Shao, C. Wu,  and X.-L. Feng, Generalized james’ effective hamiltonian method, Phys. Rev. A 95, 032124 (2017).