This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

K-stability of Fano threefolds of rank 22 and degree 1414 as double covers

Yuchen Liu Department of Mathematics, Northwestern University, Evanston, IL 60208, USA. [email protected]
Abstract.

We prove that every smooth Fano threefold from the family №2.8 is K-stable. Such a Fano threefold is a double cover of the blow-up of 3\mathbb{P}^{3} at one point branched along an anti-canonical divisor.

1. Introduction

Every smooth Fano threefold belongs to one of the 105105 families according to the Iskovskikh-Mori-Mukai classification, see [IP99, MM03] for the complete list and labeling of the families. The celebrated Calabi problem arised from differential geometry asks to find Kähler-Einstein metrics on Fano manifolds. From the solutions to the Yau-Tian-Donaldson Conjecture [CDS15, Tia15], the Calabi problem reduces to checking the algebraic condition, namely K-polystability, for Fano manifolds. Recently there has been much progress on the study of K-stability especially from an algebraic point of view, see [Xu21] for a survey on this topic. Notably, the Calabi problem for a general Fano threefold in each of the 105 families has been solved by Araujo et al. in [ACC+21]. Nevertheless, there are still many families of Fano threefolds where the Calabi problem remains open for all smooth members.

In this short note, we prove that every smooth member of the family №2.8 is K-stable. From now on, let XX be a smooth Fano threefold from the family №2.8. Then XX has Picard rank 22 and degree 1414. Let π:Y=Blp33\pi:Y=\mathrm{Bl}_{p}\mathbb{P}^{3}\to\mathbb{P}^{3} be the blow-up of 3\mathbb{P}^{3} at a point pp where EYE\subset Y is the exceptional divisor of π\pi. Then XX is a double cover σ:XY\sigma:X\to Y branched along a smooth anti-canonical divisor S¯Y\overline{S}\subset Y. According to [ACC+21, Section 5.1], a general member of the family №2.8 is K-stable.

Theorem 1.1.

Every smooth Fano threefold XX from the family №2.8 is K-stable hence admits Kähler-Einstein metrics.

Since Aut(X)\operatorname{Aut}(X) is finite by [CPS19], it suffices to show that XX is K-polystable. From [Der16, LZ22, Zhu21] on K-stability of cyclic covers, we know that to show XX is K-polystable it suffices to show that (Y,12S¯)(Y,\frac{1}{2}\overline{S}) is K-polystable. By [ADL21, Theorem 2.10] (see also [JMR16, Corollary 1]) we know that (Y,(1ϵ)S¯)(Y,(1-\epsilon)\overline{S}) is K-stable for 0<ϵ10<\epsilon\ll 1. Thus using interpolation of K-stability [ADL19, Proposition 2.13] it suffices to show that (Y,cS¯)(Y,c\overline{S}) is K-semistable for some c(0,12)c\in(0,\frac{1}{2}). This is done by finding a suitable special degeneration (Y,cS¯)(Y,cS¯0)(Y,c\overline{S})\rightsquigarrow(Y,c\overline{S}_{0}), showing (equivariant) K-semistability of (Y,cS¯0)(Y,c\overline{S}_{0}), and then using openness of K-semistability [BLX22, Xu20].

The smooth members of the family №2.8 split into two subfamilies: №2.8(a) where S¯E\overline{S}\cap E is a smooth conic curve, and №2.8(b) where S¯E\overline{S}\cap E is a union of two transversal lines. In fact, if S¯E\overline{S}\cap E is a double line then S¯\overline{S} cannot be smooth. We shall split the proof into two cases accordingly.

Remark 1.2.

There are two families of smooth Fano threefolds of Picard rank 22 and degree 1414: №2.7 and №2.8. The family №2.7 are Fano threefolds as blow-up of a smooth quadric hypersurface Q4Q\subset\mathbb{P}^{4} at a complete intersection of two divisors in |𝒪Q(2)||\mathcal{O}_{Q}(2)|. It is known from [ACC+21, Section 4.5] that a general member of the family №2.7 is K-stable. It is not known whether every smooth member of the family №2.7 is K-stable.

Notation.

Throughout the paper, we work over \mathbb{C}. We follow the definitions and notation from [Xu21, ACC+21].

Acknowledgements.

I would like to thank Hamid Abban, Ivan Cheltsov, Kento Fujita, Anne-Sophie Kaloghiros, Andrea Petracci, Chenyang Xu, and Ziquan Zhuang for helpful discussions and comments. The author is partially supported by NSF Grant DMS-2148266 (formerly DMS-2001317).

2. №2.8(a\mathrm{a})

Recall that π:Y=Blp33\pi:Y=\mathrm{Bl}_{p}\mathbb{P}^{3}\to\mathbb{P}^{3} is the blow-up of 3\mathbb{P}^{3} at a point pp with exceptional divisor EYE\subset Y. Let S¯Y\overline{S}\subset Y be a smooth anti-canonical surface. Let σ:XY\sigma:X\to Y be the double cover branched along S¯\overline{S}. Every smooth Fano threefold XX of the family №2.8 arises this way. Our goal is to show that (Y,cS¯)(Y,c\overline{S}) is K-semistable for some c(0,12)c\in(0,\frac{1}{2}) which would imply the K-stability of XX.

Throughout this section, we assume that XX belongs to the subfamily №2.8(a). In this case, the anti-canonical surface S¯\overline{S} of YY satisfies that S¯E\overline{S}\cap E is a smooth conic. Denote by S:=πS¯S:=\pi_{*}\overline{S} a quartic surface in 3\mathbb{P}^{3}. Then the assumption that S¯E\overline{S}\cap E being smooth is equivalent to saying that SS has an ordinary double point (equivalently, an A1A_{1}-singularity) at pp. Choose a projective coordinate [x,y,z,w][x,y,z,w] of 3\mathbb{P}^{3} such that p=[0,0,0,1]p=[0,0,0,1]. Then the equation of SS is

S=(f2(x,y,z)w2+f3(x,y,z)w+f4(x,y,z)=0),S=(f_{2}(x,y,z)w^{2}+f_{3}(x,y,z)w+f_{4}(x,y,z)=0),

where fif_{i} is a degree ii homogeneous polynomial in (x,y,z)(x,y,z), and f2f_{2} is a quadratic form of full rank. Let C0:=(f2(x,y,z)=0)2C_{0}:=(f_{2}(x,y,z)=0)\subset\mathbb{P}^{2} be a smooth conic curve. Consider the 11-PS λ:𝔾mPGL(4)\lambda:\mathbb{G}_{m}\to\mathrm{PGL}(4) given by λ(t)[x,y,z,w]=[x,y,z,tw]\lambda(t)\cdot[x,y,z,w]=[x,y,z,tw]. Then it is clear that limt0λ(t)S=S0\lim_{t\to 0}\lambda(t)_{*}S=S_{0} where

S0=(f2(x,y,z)w2=0).S_{0}=(f_{2}(x,y,z)w^{2}=0).

Let S¯0:=π1S0\overline{S}_{0}:=\pi_{*}^{-1}S_{0}. Then πλ\pi^{*}\lambda induces a special degeneration (Y,cS¯)(Y,cS¯0)(Y,c\overline{S})\rightsquigarrow(Y,c\overline{S}_{0}) for c(0,1)c\in(0,1).

Proposition 2.1.

The log Fano pair (Y,317S¯0)(Y,\frac{3}{17}\overline{S}_{0}) is K-semistable.

Using 𝕋\mathbb{T}-log Fano pairs of complexity 11 (see e.g. Theorem 3.2), one can show that this pair is indeed K-polystable, although K-semistability is enough in proving Theorem 1.1.

Proof.

We follow the computation of stability thresholds for projective bundles from [ZZ22] (see Lemma 2.2). Let c(0,1)c\in(0,1) be a rational number. Let ϕ:Y2\phi:Y\to\mathbb{P}^{2} be the 1\mathbb{P}^{1}-bundle induced by central projection from pp. Denote by (V,Δ):=(2,cC0)(V,\Delta):=(\mathbb{P}^{2},cC_{0}) and ΔY:=ϕΔ\Delta_{Y}:=\phi^{*}\Delta. Then YV(L1𝒪V)Y\cong\mathbb{P}_{V}(L^{-1}\oplus\mathcal{O}_{V}) where L=𝒪2(1)L=\mathcal{O}_{\mathbb{P}^{2}}(1). Let r=32cr=3-2c so that Lr1(KV+Δ)L\sim_{\mathbb{Q}}-r^{-1}(K_{V}+\Delta). Let VV_{\infty} be the section of YY at infinity. Thus we have cS¯0=ΔY+2cVc\overline{S}_{0}=\Delta_{Y}+2cV_{\infty}. By Lemma 2.2 with a=0a=0 and b=2cb=2c, we have

δ(Y,cS¯0)=min{(32c)δ(V,Δ)34B4A4B3A3,134B4A4B3A3A,12cB34B4A4B3A3},\delta(Y,c\overline{S}_{0})=\min\left\{\frac{(3-2c)\delta(V,\Delta)}{\frac{3}{4}\frac{B^{4}-A^{4}}{B^{3}-A^{3}}},\frac{1}{\frac{3}{4}\frac{B^{4}-A^{4}}{B^{3}-A^{3}}-A},\frac{1-2c}{B-\frac{3}{4}\frac{B^{4}-A^{4}}{B^{3}-A^{3}}}\right\}, (2.1)

where A=r(1a)=22cA=r-(1-a)=2-2c and B=r+(1b)=44cB=r+(1-b)=4-4c. Thus we have

34B4A4B3A3=157A=157(22c).\frac{3}{4}\frac{B^{4}-A^{4}}{B^{3}-A^{3}}=\frac{15}{7}A=\frac{15}{7}(2-2c). (2.2)

Combining (2.1) and (2.2) yields

δ(Y,cS¯0)=min{28(32c)45(22c)δ(V,Δ),2817(22c),28(12c)11(22c)}.\delta(Y,c\overline{S}_{0})=\min\left\{\frac{28(3-2c)}{45(2-2c)}\delta(V,\Delta),\frac{28}{17(2-2c)},\frac{28(1-2c)}{11(2-2c)}\right\}. (2.3)

Suppose we take c=317c=\frac{3}{17}, then it is easy to see that

28(32c)45(22c)=2817(22c)=28(12c)11(22c)=1.\frac{28(3-2c)}{45(2-2c)}=\frac{28}{17(2-2c)}=\frac{28(1-2c)}{11(2-2c)}=1.

Since c<34c<\frac{3}{4}, by [LS14, Theorem 1.5] (see also [Fuj20]) the log Fano pair (V,Δ)=(2,cC0)(V,\Delta)=(\mathbb{P}^{2},cC_{0}) is K-polystable, which implies δ(V,Δ)=1\delta(V,\Delta)=1. Thus (2.3) becomes δ(Y,317S¯0)=1\delta(Y,\frac{3}{17}\overline{S}_{0})=1 which implies K-semistability of (Y,317S¯0)(Y,\frac{3}{17}\overline{S}_{0}) by [FO18, BJ20]. ∎

Lemma 2.2 (cf. [ZZ22, Theorem 1.3]).

Let (V,Δ)(V,\Delta) be a log Fano pair of dimension nn. Let LL be an ample line bundle on VV such that Lr1(KV+Δ)L\sim_{\mathbb{Q}}-r^{-1}(K_{V}+\Delta) for some r>0r\in\mathbb{Q}_{>0}. Let ϕ:Y=V(L1𝒪V)V\phi:Y=\mathbb{P}_{V}(L^{-1}\oplus\mathcal{O}_{V})\to V be a 1\mathbb{P}^{1}-bundle. Denote by ΔY:=ϕΔ\Delta_{Y}:=\phi^{*}\Delta. Let V0V_{0} and VV_{\infty} be sections of YY at zero and infinity respectively, so that 𝒪Y(V0)|V0L1\mathcal{O}_{Y}(V_{0})|_{V_{0}}\cong L^{-1} and 𝒪Y(V)|VL\mathcal{O}_{Y}(V_{\infty})|_{V_{\infty}}\cong L. Let a,ba,b be rational numbers such that 0a<10\leq a<1, 0b<10\leq b<1 if r>1r>1, and 1r<a<11-r<a<1, 0b<10\leq b<1 if 0<r10<r\leq 1. Then

δ(Y,ΔY+aV0+bV)=min{rδ(V,Δ)n+1n+2Bn+2An+2Bn+1An+1,1an+1n+2Bn+2An+2Bn+1An+1A,1bBn+1n+2Bn+2An+2Bn+1An+1},\delta(Y,\Delta_{Y}+aV_{0}+bV_{\infty})=\min\left\{\frac{r\delta(V,\Delta)}{\frac{n+1}{n+2}\frac{B^{n+2}-A^{n+2}}{B^{n+1}-A^{n+1}}},\frac{1-a}{\frac{n+1}{n+2}\frac{B^{n+2}-A^{n+2}}{B^{n+1}-A^{n+1}}-A},\frac{1-b}{B-\frac{n+1}{n+2}\frac{B^{n+2}-A^{n+2}}{B^{n+1}-A^{n+1}}}\right\},

where A=r(1a)A=r-(1-a) and B=r+(1b)B=r+(1-b).

Proof.

The proof is the same as [ZZ22, Section 3] after replacing VV and YY therein by (V,Δ)(V,\Delta) and (Y,ΔY)(Y,\Delta_{Y}) respectively. ∎

Corollary 2.3.

Assume the smooth anti-canonical surface S¯\overline{S} of YY satisfies that S¯E\overline{S}\cap E is a smooth conic. Then (Y,317S¯)(Y,\frac{3}{17}\overline{S}) is K-semistable.

Proof.

Since πλ\pi^{*}\lambda induces a special degeneration (Y,317S¯)(Y,317S¯0)(Y,\frac{3}{17}\overline{S})\rightsquigarrow(Y,\frac{3}{17}\overline{S}_{0}), the statement follows from Proposition 2.1 and the openness of K-semistability [BLX22, Xu20]. ∎

3. №2.8(b\mathrm{b})

We adapt the notation from the first paragraph of Section 2.

Throughout this section, we assume that XX belongs to subfamily №2.8(b). In this case, the anti-canonical surface S¯\overline{S} of YY satisfies that S¯E\overline{S}\cap E is a union of two transversal lines. Denote by S:=πS¯S:=\pi_{*}\overline{S} a quartic surface in 3\mathbb{P}^{3}. Choose a projective coordinate [x,y,z,w][x,y,z,w] of 3\mathbb{P}^{3} such that p=[0,0,0,1]p=[0,0,0,1] and the equation of SS is

S=(xyw2+f3(x,y,z)w+f4(x,y,z)=0),S=(xyw^{2}+f_{3}(x,y,z)w+f_{4}(x,y,z)=0),

where fif_{i} is a degree ii homogeneous polynomial in (x,y,z)(x,y,z).

Claim. The polynomial f3f_{3} has a non-zero z3z^{3}-term. This is equivalent to saying that SS has an A2A_{2}-singularity at pp.

We choose an affine coordindate [x,y,z,1][x,y,z,1] on 3\mathbb{P}^{3} and an affine coordinate (x0,x1,x2)(x_{0},x_{1},x_{2}) on YY such that (x,y,z)=(x0x2,x1x2,x2)(x,y,z)=(x_{0}x_{2},x_{1}x_{2},x_{2}). Then the equation of S¯\overline{S} in the coordinate (x0,x1,x2)(x_{0},x_{1},x_{2}) becomes

x0x1+f3(x0,x1,1)x2+f4(x0,x1,1)x22=0.x_{0}x_{1}+f_{3}(x_{0},x_{1},1)x_{2}+f_{4}(x_{0},x_{1},1)x_{2}^{2}=0.

Since S¯\overline{S} is smooth at the origin of the coordinate (x0,x1,x2)(x_{0},x_{1},x_{2}), we conclude that f3(0,0,1)0f_{3}(0,0,1)\neq 0 which implies that f3f_{3} has a non-zero z3z^{3}-term. The claim is proved.

Next, after rescaling of zz we may assume that the z3z^{3}-term has coefficient 11 in f3f_{3}. Let λ:𝔾mPGL(4)\lambda^{\prime}:\mathbb{G}_{m}\to\mathrm{PGL}(4) be a 11-PS given by λ(t)[x,y,z,w]=[x,y,tz,t3w]\lambda^{\prime}(t)\cdot[x,y,z,w]=[x,y,tz,t^{3}w]. Then it is clear that limt0λ(t)S=S0\lim_{t\to 0}\lambda^{\prime}(t)_{*}S=S_{0}^{\prime} where

S0=(xyw2+z3w=0).S_{0}^{\prime}=(xyw^{2}+z^{3}w=0).

Let S¯0:=π1S0\overline{S}_{0}^{\prime}:=\pi_{*}^{-1}S_{0}^{\prime}. Then πλ\pi^{*}\lambda^{\prime} induces a special degeneration (Y,cS¯)(Y,cS¯0)(Y,c\overline{S})\rightsquigarrow(Y,c\overline{S}_{0}^{\prime}) for c(0,1)c\in(0,1).

Proposition 3.1.

The log Fano pair (Y,29S¯0)(Y,\frac{2}{9}\overline{S}_{0}^{\prime}) is K-polystable.

Proof.

Let μ\mu be a 11-PS in PGL(4)\mathrm{PGL}(4) given by μ(t)[x,y,z,w]=[tx,t1y,z,w]\mu(t)\cdot[x,y,z,w]=[tx,t^{-1}y,z,w]. Then clearly λ\lambda^{\prime} and μ\mu generates a 𝕋=𝔾m2\mathbb{T}=\mathbb{G}_{m}^{2}-action on (3,S0)(\mathbb{P}^{3},S_{0}^{\prime}) which lifts through π\pi^{*} to a 𝕋\mathbb{T}-action on (Y,S¯0)(Y,\overline{S}_{0}^{\prime}). Since the 𝕋\mathbb{T}-action on YY is of complexity 11, by Theorem 3.2 we only need to check β(Y,29S¯0)(F)\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(F) and Fut(Y,29S¯0)\operatorname{Fut}_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}.

We first show that β(Y,29S¯0)(F)>0\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(F)>0 for every 𝕋\mathbb{T}-invariant prime divisor FF on YY. In fact, all 𝕋\mathbb{T}-invariant prime divisors on YY are vertical from the following classification. Denote by H¯x,H¯y,H¯z,H¯w\overline{H}_{x},\overline{H}_{y},\overline{H}_{z},\overline{H}_{w} the strict transform of the coordinate hyperplanes of 3\mathbb{P}^{3} to YY. A straightforward analysis of the 𝕋\mathbb{T}-action on 3\mathbb{P}^{3} shows that every 𝕋\mathbb{T}-invariant prime divisor on YY belongs to one of the following classes:

  1. (i)

    EE;

  2. (ii)

    H¯w\overline{H}_{w};

  3. (iii)

    H¯x\overline{H}_{x}, H¯y\overline{H}_{y}, H¯z\overline{H}_{z};

  4. (iv)

    T¯s:=π1Ts\overline{T}_{s}:=\pi_{*}^{-1}T_{s} where Ts:=(xyw+sz3=0)3T_{s}:=(xyw+sz^{3}=0)\subset\mathbb{P}^{3} for s0s\neq 0.

Next, we split into four cases according to the above classes. We will frequently use the equality

S(Y,cD)(F)=(1c)SY(F)S_{(Y,cD)}(F)=(1-c)S_{Y}(F)

for an anti-canonical surface DYD\subset Y and c(0,1)c\in(0,1) which follows from KYcD(1c)(KY)-K_{Y}-cD\sim_{\mathbb{Q}}(1-c)(-K_{Y}) and [BJ20, Lemma 3.7(i)].

(i) It is clear that A(Y,29S¯0)(E)=AY(E)=1A_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(E)=A_{Y}(E)=1. Next we compute SY(E)S_{Y}(E). We know that KY4H¯w2E-K_{Y}\sim 4\overline{H}_{w}-2E where H¯wπ𝒪3(1)\overline{H}_{w}\sim\pi^{*}\mathcal{O}_{\mathbb{P}^{3}}(1). The pseudoeffective cone of YY is generated by H¯xH¯wE\overline{H}_{x}\sim\overline{H}_{w}-E and EE. The nef cone of YY is generated by H¯w\overline{H}_{w} and H¯x\overline{H}_{x}. Thus we have KYtE4H¯w(2+t)E-K_{Y}-tE\sim 4\overline{H}_{w}-(2+t)E is nef if 0t20\leq t\leq 2, and not big if t2t\geq 2. Thus

SY(E)\displaystyle S_{Y}(E) =1(KY)30vol(KYtE)𝑑t\displaystyle=\frac{1}{(-K_{Y})^{3}}\int_{0}^{\infty}\operatorname{vol}(-K_{Y}-tE)dt
=15602(4H¯w(2+t)E)3𝑑t\displaystyle=\frac{1}{56}\int_{0}^{2}(4\overline{H}_{w}-(2+t)E)^{3}dt
=15602(43(2+t)3)𝑑t=1714.\displaystyle=\frac{1}{56}\int_{0}^{2}(4^{3}-(2+t)^{3})dt=\frac{17}{14}.

As a consequence,

β(Y,29S¯0)(E)=1791714=118>0.\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(E)=1-\frac{7}{9}\cdot\frac{17}{14}=\frac{1}{18}>0.

(ii) We have A(Y,29S¯0)(H¯w)=AY(H¯w)29ordH¯w(S¯0)=79A_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\overline{H}_{w})=A_{Y}(\overline{H}_{w})-\frac{2}{9}\operatorname{ord}_{\overline{H}_{w}}(\overline{S}_{0}^{\prime})=\frac{7}{9}. Next we compute SY(H¯w)S_{Y}(\overline{H}_{w}). It is clear that KYtH¯w=(4t)H¯w2E-K_{Y}-t\overline{H}_{w}=(4-t)\overline{H}_{w}-2E is nef if 0t20\leq t\leq 2, and not big if t2t\geq 2. Thus

SY(H¯w)\displaystyle S_{Y}(\overline{H}_{w}) =1(KY)30vol(KYtH¯w)𝑑t\displaystyle=\frac{1}{(-K_{Y})^{3}}\int_{0}^{\infty}\operatorname{vol}(-K_{Y}-t\overline{H}_{w})dt
=15602((4t)H¯w2E)3𝑑t\displaystyle=\frac{1}{56}\int_{0}^{2}((4-t)\overline{H}_{w}-2E)^{3}dt
=15602((4t)323)𝑑t=1114.\displaystyle=\frac{1}{56}\int_{0}^{2}((4-t)^{3}-2^{3})dt=\frac{11}{14}.

As a consequence,

β(Y,29S¯0)(H¯w)=79791114=16>0.\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\overline{H}_{w})=\frac{7}{9}-\frac{7}{9}\cdot\frac{11}{14}=\frac{1}{6}>0.

(iii) Since H¯xH¯yH¯z\overline{H}_{x}\sim\overline{H}_{y}\sim\overline{H}_{z}, their SS-invariants are the same. As neither of these three divisors is contained in Supp(S¯0)\operatorname{Supp}(\overline{S}_{0}^{\prime}), their log discrepancies with respect to (Y,29S¯0)(Y,\frac{2}{9}\overline{S}_{0}^{\prime}) are the same which is 11. It suffices to show that β(H¯x)>0\beta(\overline{H}_{x})>0 as these three divisors have the same β\beta-invariant. Next we compute SY(H¯x)S_{Y}(\overline{H}_{x}). The divisor KYtH¯x=(4t)H¯w(2t)E-K_{Y}-t\overline{H}_{x}=(4-t)\overline{H}_{w}-(2-t)E is nef if 0t20\leq t\leq 2 and not big if t4t\geq 4. When 2<t<42<t<4, it admits a Zariski decomposition

KYtH¯x=(4t)H¯w+(t2)E,-K_{Y}-t\overline{H}_{x}=(4-t)\overline{H}_{w}+(t-2)E,

which implies that vol(KYtH¯x)=((4t)H¯w)3\operatorname{vol}(-K_{Y}-t\overline{H}_{x})=((4-t)\overline{H}_{w})^{3} when 2t42\leq t\leq 4. Thus we have

SY(H¯x)\displaystyle S_{Y}(\overline{H}_{x}) =1(KY)30vol(KYtH¯x)𝑑t\displaystyle=\frac{1}{(-K_{Y})^{3}}\int_{0}^{\infty}\operatorname{vol}(-K_{Y}-t\overline{H}_{x})dt
=156(02((4t)H¯w(2t)E)3𝑑t+24((4t)H¯w)3𝑑t)\displaystyle=\frac{1}{56}\left(\int_{0}^{2}((4-t)\overline{H}_{w}-(2-t)E)^{3}dt+\int_{2}^{4}((4-t)\overline{H}_{w})^{3}dt\right)
=156(02((4t)3(2t)3)𝑑t+24(4t)3𝑑t)=1514.\displaystyle=\frac{1}{56}\left(\int_{0}^{2}((4-t)^{3}-(2-t)^{3})dt+\int_{2}^{4}(4-t)^{3}dt\right)=\frac{15}{14}.

As a consequence,

β(Y,29S¯0)(H¯x)=1791514=16>0.\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\overline{H}_{x})=1-\frac{7}{9}\cdot\frac{15}{14}=\frac{1}{6}>0.

(iv) Since T¯s3H¯w2E\overline{T}_{s}\sim 3\overline{H}_{w}-2E for every s0s\neq 0, their SS-invariant are the same. We also have ordT¯s(S¯0)1\operatorname{ord}_{\overline{T}_{s}}(\overline{S}_{0}^{\prime})\leq 1, which implies A(Y,29S¯0)(T¯s)79A_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\overline{T}_{s})\geq\frac{7}{9}. Next we compute SY(T¯s)S_{Y}(\overline{T}_{s}). The divisor KYtT¯s=(43t)H¯w(22t)E-K_{Y}-t\overline{T}_{s}=(4-3t)\overline{H}_{w}-(2-2t)E is nef if 0t10\leq t\leq 1 and not big if t34t\geq\frac{3}{4}. When 1<t<341<t<\frac{3}{4}, it admits a Zariski decomposition

KYtT¯s=(43t)H¯w+(2t2)E,-K_{Y}-t\overline{T}_{s}=(4-3t)\overline{H}_{w}+(2t-2)E,

which implies that vol(KYtH¯x)=((43t)H¯w)3\operatorname{vol}(-K_{Y}-t\overline{H}_{x})=((4-3t)\overline{H}_{w})^{3} when 1t431\leq t\leq\frac{4}{3}. Thus we have

SY(T¯s)\displaystyle S_{Y}(\overline{T}_{s}) =1(KY)30vol(KYtT¯s)𝑑t\displaystyle=\frac{1}{(-K_{Y})^{3}}\int_{0}^{\infty}\operatorname{vol}(-K_{Y}-t\overline{T}_{s})dt
=156(01((43t)H¯w(22t)E)3𝑑t+143((43t)H¯w)3𝑑t)\displaystyle=\frac{1}{56}\left(\int_{0}^{1}((4-3t)\overline{H}_{w}-(2-2t)E)^{3}dt+\int_{1}^{\frac{4}{3}}((4-3t)\overline{H}_{w})^{3}dt\right)
=156(01((43t)3(22t)3)𝑑t+143(43t)3𝑑t)=2984.\displaystyle=\frac{1}{56}\left(\int_{0}^{1}((4-3t)^{3}-(2-2t)^{3})dt+\int_{1}^{\frac{4}{3}}(4-3t)^{3}dt\right)=\frac{29}{84}.

As a consequence,

β(Y,29S¯0)(T¯s)79792984=55108>0.\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\overline{T}_{s})\geq\frac{7}{9}-\frac{7}{9}\cdot\frac{29}{84}=\frac{55}{108}>0.

So far we verified that β(Y,29S¯0)(F)>0\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(F)>0 for every 𝕋\mathbb{T}-invariant prime divisor FF on YY. It remains to show that Fut(Y,29S¯0)=0\operatorname{Fut}_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}=0 on the cocharacter lattice N=Hom(𝔾m,𝕋)N=\mathrm{Hom}(\mathbb{G}_{m},\mathbb{T}) of 𝕋\mathbb{T}. Let λ0\lambda_{0} and λ1\lambda_{1} be two 11-PS in PGL(4)\mathrm{PGL}(4) given by

λ0(t)[x,y,z,w]=[t3x,y,tz,w]andλ1(t)[x,y,z,w]=[x,t3y,tz,w].\lambda_{0}(t)\cdot[x,y,z,w]=[t^{3}x,y,tz,w]\quad\textrm{and}\quad\lambda_{1}(t)\cdot[x,y,z,w]=[x,t^{3}y,tz,w].

Then it is not hard to see that λ0\lambda_{0} and λ1\lambda_{1} form a basis of N:=NN_{\mathbb{Q}}:=N\otimes_{\mathbb{Z}}\mathbb{Q}. Meanwhile, the involution τ:33\tau:\mathbb{P}^{3}\to\mathbb{P}^{3} defined by [x,y,z,w][y,x,z,w][x,y,z,w]\mapsto[y,x,z,w] induces an involution πτAut(Y,S¯0)\pi^{*}\tau\in\operatorname{Aut}(Y,\overline{S}_{0}^{\prime}) such that τλ0τ1=λ1\tau\lambda_{0}\tau^{-1}=\lambda_{1}. Thus it suffices to show that Fut(Y,29S¯0)(πλ0)=0\operatorname{Fut}_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\pi^{*}\lambda_{0})=0 as this implies Fut(Y,29S¯0)(πλ1)=0\operatorname{Fut}_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\pi^{*}\lambda_{1})=0 and hence the vanishing of Fut(Y,29S¯0)\operatorname{Fut}_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})} on the entire NN_{\mathbb{Q}}.

Let vv be the monomial divisorial valuation on 3\mathbb{P}^{3} centered at (x=z=0)(x=z=0) such that v(x)=3v(x)=3 and v(z)=1v(z)=1. Then it is clear that λ0\lambda_{0} is the 11-PS induced by vv. As abuse of notation we also denote by vv the lifting valuation πv\pi^{*}v on YY. According to [Fuj19, Theorem 5.1], we have Fut(Y,29S¯0)(λ0)=β(Y,29S¯0)(v)\operatorname{Fut}_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(\lambda_{0})=\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(v). Thus it suffices to show β(v)=0\beta(v)=0. Since π:Y3\pi:Y\to\mathbb{P}^{3} is isomorphic at the generic point of the center of vv, we know that

A(Y,29S¯0)(v)=A(3,29S0)(v)=A3(v)29v(S0)=4293=103.A_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(v)=A_{(\mathbb{P}^{3},\frac{2}{9}S_{0}^{\prime})}(v)=A_{\mathbb{P}^{3}}(v)-\frac{2}{9}\cdot v(S_{0}^{\prime})=4-\frac{2}{9}\cdot 3=\frac{10}{3}. (3.1)

Next, we compute SY(v)S_{Y}(v). Let F0F_{0} be the exceptional divisor of the (3,0,1)(3,0,1)-weighted blow up in the affine (x,y,z)(x,y,z) with w=1w=1. Then it is clear that v=ordF0v=\operatorname{ord}_{F_{0}}. Thus we have vol(KYtv)=vol(𝒪3(4)2EtF0)\operatorname{vol}(-K_{Y}-tv)=\operatorname{vol}(\mathcal{O}_{\mathbb{P}^{3}}(4)-2E-tF_{0}). As both EE and F0F_{0} are toric divisors over 3\mathbb{P}^{3}, we have

vol(𝒪3(4)2EtF0)=3!vol(Pt),\operatorname{vol}(\mathcal{O}_{\mathbb{P}^{3}}(4)-2E-tF_{0})=3!\cdot\operatorname{vol}(P_{t}),

where

Pt:={(u0,u1,u2)032u0+u1+u24 and 3u0+u2t}.P_{t}:=\{(u_{0},u_{1},u_{2})\in\mathbb{R}_{\geq 0}^{3}\mid 2\leq u_{0}+u_{1}+u_{2}\leq 4\textrm{ and }3u_{0}+u_{2}\geq t\}.

Let

Qt:={(u0,u1,u2)03u0+u1+u21 and 3u0+u2t}.Q_{t}:=\{(u_{0},u_{1},u_{2})\in\mathbb{R}_{\geq 0}^{3}\mid u_{0}+u_{1}+u_{2}\leq 1\textrm{ and }3u_{0}+u_{2}\geq t\}.

Then it is clear that vol(Pt)=43vol(Qt4)23vol(Qt2)\operatorname{vol}(P_{t})=4^{3}\operatorname{vol}(Q_{\frac{t}{4}})-2^{3}\operatorname{vol}(Q_{\frac{t}{2}}). Using convex geometry it is not hard to show that

vol(Qt)={1616t2+227t3if 0t1;1108(3t)3if 1t3;0if t3.\operatorname{vol}(Q_{t})=\begin{cases}\frac{1}{6}-\frac{1}{6}t^{2}+\frac{2}{27}t^{3}&\textrm{if }0\leq t\leq 1;\\ \frac{1}{108}(3-t)^{3}&\textrm{if }1\leq t\leq 3;\\ 0&\textrm{if }t\geq 3.\end{cases}

Computation shows that 03vol(Qt)𝑑t=16\int_{0}^{3}\operatorname{vol}(Q_{t})dt=\frac{1}{6}. Thus we have

0vol(KYtv)𝑑t\displaystyle\int_{0}^{\infty}\operatorname{vol}(-K_{Y}-tv)dt =06vol(Pt)𝑑t\displaystyle=\int_{0}^{\infty}6\operatorname{vol}(P_{t})dt
=012643vol(Qt4)𝑑t06623vol(Qt2)𝑑t\displaystyle=\int_{0}^{12}6\cdot 4^{3}\operatorname{vol}(Q_{\frac{t}{4}})dt-\int_{0}^{6}6\cdot 2^{3}\operatorname{vol}(Q_{\frac{t}{2}})dt
=6(4424)03vol(Qt)𝑑t=240.\displaystyle=6\cdot(4^{4}-2^{4})\int_{0}^{3}\operatorname{vol}(Q_{t})dt=240.

As a result, we have

S(Y,29S¯0)(v)=79SY(v)=791560vol(KYtv)𝑑t=79156240=103.S_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(v)=\frac{7}{9}S_{Y}(v)=\frac{7}{9}\cdot\frac{1}{56}\int_{0}^{\infty}\operatorname{vol}(-K_{Y}-tv)dt=\frac{7}{9}\cdot\frac{1}{56}\cdot 240=\frac{10}{3}. (3.2)

Combining (3.1) and (3.2), we get β(Y,29S¯0)(v)=103103=0\beta_{(Y,\frac{2}{9}\overline{S}_{0}^{\prime})}(v)=\frac{10}{3}-\frac{10}{3}=0. Thus the proof is finished. ∎

The following theorem is a logarithmic version of a result in [ACC+21] which originated from [IS17]. There is little change to the proof so we omit it.

Theorem 3.2 (cf. [ACC+21, Theorem 1.3.9]).

Let (X,Δ)(X,\Delta) be a log Fano pair with an algebraic torus 𝕋\mathbb{T}-action of complexity 11. Then (X,Δ)(X,\Delta) is K-polystable if and only if all of the following conditions hold.

  1. (1)

    β(X,Δ)(F)>0\beta_{(X,\Delta)}(F)>0 for every vertical 𝕋\mathbb{T}-invariant prime divisor FF on XX;

  2. (2)

    β(X,Δ)(F)=0\beta_{(X,\Delta)}(F)=0 for every horizontal 𝕋\mathbb{T}-invariant prime divisor FF on XX;

  3. (3)

    Fut(X,Δ)=0\operatorname{Fut}_{(X,\Delta)}=0 on the cocharacter lattice of 𝕋\mathbb{T}.

Corollary 3.3.

Assume the smooth anti-canonical surface S¯\overline{S} of YY satisfies that S¯E\overline{S}\cap E is a union of two transversal lines. Then (Y,29S¯)(Y,\frac{2}{9}\overline{S}) is K-semistable.

Proof.

Since πλ\pi^{*}\lambda^{\prime} induces a special degeneration (Y,29S¯)(Y,29S¯0)(Y,\frac{2}{9}\overline{S})\rightsquigarrow(Y,\frac{2}{9}\overline{S}_{0}^{\prime}), the statement follows from Proposition 3.1 and the openness of K-semistability [BLX22, Xu20]. ∎

Proof of Theorem 1.1.

Let σ:XY\sigma:X\to Y be the double cover branched along a smooth anti-canonical surface S¯Y\overline{S}\subset Y. By [Der16, Theorem 1.3], [LZ22, Theorem 1.2], and [Zhu21, Corollary 4.13], it suffices to show K-stability of (Y,12S¯)(Y,\frac{1}{2}\overline{S}) as Aut(X)\operatorname{Aut}(X) is finite according to [CPS19, Lemma 12.4]. By [ADL21, Theorem 2.10] (see also [JMR16, Corollary 1]), we know that (Y,(1ϵ)S¯)(Y,(1-\epsilon)\overline{S}) is K-stable for 0<ϵ10<\epsilon\ll 1. Combining Corollaries 2.3 and 3.3, we know that (Y,cS¯)(Y,c\overline{S}) is K-semistable for some c(0,12)c\in(0,\frac{1}{2}) (more precisely, c=317c=\frac{3}{17} in family №2.8(a) or c=29c=\frac{2}{9} in family №2.8(b)). Thus the interpolation of K-stability [ADL19, Proposition 2.13] implies that (Y,12S¯)(Y,\frac{1}{2}\overline{S}) is K-stable. The existence of Kähler-Einstein metrics follows from [CDS15, Tia15]. Thus the proof is finished. ∎

Remark 3.4.

Our arguments can give some K-polystable and K-semistable singular members in the family №2.8 as well. If a quartic surface S3S\subset\mathbb{P}^{3} has an A1A_{1} or A2A_{2}-singularity at pp and is canonical (resp. semi-log-canonical) elsewhere, then similar arguments show that (Y,12S¯)(Y,\frac{1}{2}\overline{S}) is K-stable (resp. K-semistable) which implies that the double cover X(Y,12S¯)X\to(Y,\frac{1}{2}\overline{S}) is K-polystable (resp. K-semistable).

It is an interesting problem to describe the boundary of the K-moduli compactification of all smooth Fano threefolds in the family №2.8. For comparison, see [ADL21, Theorem 1.4] where a complete description of the K-moduli compactification of quartic double solids is given.

References

  • [ACC+21] Carolina Araujo, Ana-Maria Castravet, Ivan Cheltsov, Kento Fujita, Anne-Sophie Kaloghiros, Jesus Martinez-Garcia, Constantin Shramov, Hendrik Süß, and Nivedita Viswanathan. The Calabi problem for Fano threefolds. 2021. Cambridge University Press, London Mathematical Society Lecture Series, to appear.
  • [ADL19] Kenneth Ascher, Kristin DeVleming, and Yuchen Liu. Wall crossing for K-moduli spaces of plane curves. 2019. arXiv:1909.04576.
  • [ADL21] Kenneth Ascher, Kristin DeVleming, and Yuchen Liu. K-stability and birational models of moduli of quartic K3 surfaces. 2021. arXiv:2108.06848.
  • [BJ20] Harold Blum and Mattias Jonsson. Thresholds, valuations, and K-stability. Adv. Math., 365:107062, 2020.
  • [BLX22] Harold Blum, Yuchen Liu, and Chenyang Xu. Openness of K-semistability for Fano varieties. Duke Math. J., 171(13):2753–2797, 2022.
  • [CDS15] Xiuxiong Chen, Simon Donaldson, and Song Sun. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, II: Limits with cone angle less than 2π2\pi, III: Limits as cone angle approaches 2π2\pi and completion of the main proof. J. Amer. Math. Soc., 28(1):183–197, 199–234, 235–278, 2015.
  • [CPS19] Ivan Cheltsov, V. V. Przhiyalkovskiĭ, and Constantin Shramov. Fano threefolds with infinite automorphism groups. Izv. Ross. Akad. Nauk Ser. Mat., 83(4):226–280, 2019.
  • [Der16] Ruadhaí Dervan. On K-stability of finite covers. Bull. Lond. Math. Soc., 48(4):717–728, 2016.
  • [FO18] Kento Fujita and Yuji Odaka. On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2), 70(4):511–521, 2018.
  • [Fuj19] Kento Fujita. A valuative criterion for uniform K-stability of \mathbb{Q}-Fano varieties. J. Reine Angew. Math., 751:309–338, 2019.
  • [Fuj20] Kento Fujita. On K-polystability for log del Pezzo pairs of Maeda type. Acta Math. Vietnam., 45(4):943–965, 2020.
  • [IP99] V. A. Iskovskikh and Yu. G. Prokhorov. Fano varieties. In Algebraic geometry, V, volume 47 of Encyclopaedia Math. Sci., pages 1–247. Springer, Berlin, 1999.
  • [IS17] Nathan Ilten and Hendrik Süß. K-stability for Fano manifolds with torus action of complexity 1. Duke Math. J., 166(1):177–204, 2017.
  • [JMR16] Thalia Jeffres, Rafe Mazzeo, and Yanir A. Rubinstein. Kähler-Einstein metrics with edge singularities. Ann. of Math. (2), 183(1):95–176, 2016.
  • [LS14] Chi Li and Song Sun. Conical Kähler-Einstein metrics revisited. Comm. Math. Phys., 331(3):927–973, 2014.
  • [LZ22] Yuchen Liu and Ziwen Zhu. Equivariant KK-stability under finite group action. Internat. J. Math., 33(1):Paper No. 2250007, 21, 2022.
  • [MM03] Shigefumi Mori and Shigeru Mukai. Erratum: “Classification of Fano 3-folds with B22B_{2}\geq 2” [Manuscripta Math. 36 (1981/82), no. 2, 147–162; MR0641971 (83f:14032)]. Manuscripta Math., 110(3):407, 2003.
  • [Tia15] Gang Tian. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math., 68(7):1085–1156, 2015.
  • [Xu20] Chenyang Xu. A minimizing valuation is quasi-monomial. Ann. of Math. (2), 191(3):1003–1030, 2020.
  • [Xu21] Chenyang Xu. K-stability of Fano varieties: an algebro-geometric approach. EMS Surv. Math. Sci., 8(1-2):265–354, 2021.
  • [Zhu21] Ziquan Zhuang. Optimal destabilizing centers and equivariant K-stability. Invent. Math., 226(1):195–223, 2021.
  • [ZZ22] Kewei Zhang and Chuyu Zhou. Delta invariants of projective bundles and projective cones of Fano type. Math. Z., 300(1):179–207, 2022.