This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

K-moduli of log Del Pezzo pairs

Long Pan Fudan University [email protected] Fei Si Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, P.R.China 100871 [email protected]  and  Haoyu Wu Fudan University [email protected]
Abstract.

We establish the full explicit wall-crossing for K-moduli space P¯cK\overline{P}^{K}_{c} of degree 88 del Pezzo pairs (X,cC)(X,cC) where generically X𝔽1X\cong\mathbb{F}_{1} and C2KXC\sim-2K_{X}. We also show K-moduli spaces P¯cK\overline{P}^{K}_{c} coincide with Hassett-Keel-Looijenga(HKL) models (s){\mathcal{F}}(s) of a 1818-dimensional locally symmetric spaces associated to the lattice E8U2E7A1E_{8}\oplus U^{2}\oplus E_{7}\oplus A_{1} under the transform s(c)=12c56c4s(c)=\frac{1-2c}{56c-4}. Some discussions with relation to KSBA moduli spaces are also provided.

1. Introduction

1.1. Background

This is a continuation of our investigation on the birational geometry of moduli spaces PdP_{d} of del Pezzo pairs of degree dd. Here a del Pezzo pair (X,C)(X,C) of degree dd consists of a del Pezzo surface XX with (KX)2=d(-K_{X})^{2}=d and a curve C2KXC\sim-2K_{X}. In [PSW23], we propose to study the Hasset-Keel-Looijenga (HKL) program for PdP_{d} to connect various compactifications of PdP_{d}. Moreover, the HKL program for PdP_{d} should coincide with the wall crossings of K-moduli spaces P¯d,cK\overline{P}^{K}_{d,c}.

In this paper, we focus on the K-moduli space P¯cK=P¯8,cK\overline{P}^{K}_{c}=\overline{P}^{K}_{8,c} compactifications of del Pezzo pairs of degree 88 and confirm the above proposal in the case of degree 88. The method should work for other toric del Pezzo pairs.

Recall for a del Pezzo pair (𝔽1,C)(\mathbb{F}_{1},C), one can obtain a K3 pair (Y,τ)(Y,\tau) where YXY\rightarrow X is a doubld covering branched along curve CC and τ:YY\tau:Y\rightarrow Y is the natural involution. Then the complement of Néron-Severi group NS(Y)\operatorname{\mathrm{NS}}(Y) in K3 lattice has orthogonal lattice Ξ=U2E7E8A1\Xi=U^{2}\oplus E_{7}\oplus E_{8}\oplus A_{1}. Thus one can associate a period point in the locally symmetric variety :=O~(Ξ)𝒟Ξ{\mathcal{F}}:=\widetilde{O}(\Xi)\setminus{\mathcal{D}}_{\Xi} for degree 88 del Pezzo pair (𝔽1,C)(\mathbb{F}_{1},C) where 𝒟Ξ{\mathcal{D}}_{\Xi} is the period domain of Ξ\Xi. In particular, there is period map

p:P8p:P_{8}\rightarrow{\mathcal{F}}

The Torelli theorem for the pairs implies P8P_{8}\subset{\mathcal{F}} is an open subset and thus P8P_{8} has Baily-Borel compactification P=P^{\ast}={\mathcal{F}}^{\ast}. The lattice embedding LΞ=U2E7E8A1L\hookrightarrow\Xi=U^{2}\oplus E_{7}\oplus E_{8}\oplus A_{1} will induce the natural morphism of locally symmetric variety

(1.1) Sh(L):=O~(L)𝒟L\operatorname{\mathrm{Sh}}(L):=\widetilde{O}(L)\setminus{\mathcal{D}}_{L}\longrightarrow{\mathcal{F}}

The Noether-Lefschetz locus NL(L)\operatorname{\mathrm{NL}}(L) on {\mathcal{F}} is defined as the image of natural morphism (1.1). In particular, there are two specific codimension one Noether-Lefschetz locus known as Heegener divisors. One may refer to [BLMM17] for general theory of Noether-Lefschetz locus in moduli spaces of K3 surfaces. These two divisors are defined by the complement lattice

L=(E7A2)IIandL=(E8A1)IIL=(E_{7}\oplus A_{2})_{I\!I}^{\perp}\ \ \hbox{and}\ \ L=(E_{8}\oplus A_{1})_{I\!I}^{\perp}

in the Borcherds lattice II=E83U2I\!I=E_{8}^{3}\oplus U^{2}, which we call hyperelliptic divisor HhH_{h} and unigonal divisor HuH_{u}. In [PSW23], we give an arithmetic stratification for the Baily-Borel compactification PP^{\ast} by using sublattice tower in Borcherds lattice II=E83U2I\!I=E_{8}^{3}\oplus U^{2}. More precisely, looking at the complement (Ξ)IIE7A1(\Xi)^{\perp}_{I\!I}\cong E_{7}\oplus A_{1} and by adding roots and some modifications, [PSW23, Section 5] provide three types of the tower for hyperelliptic divisor HhH_{h}

  1. (1)

    AA type: E7A1E7A2E7A3E7A5\ E_{7}\oplus A_{1}\subset E_{7}\oplus A_{2}\subset E_{7}\oplus A_{3}\subset\cdots\subset E_{7}\oplus A_{5} and its modification tower

    (E7A5)(E7A6)(E7A6)′′(E7A7)′′(E7A7)′′′(E_{7}\oplus A_{5})^{\prime}\subset(E_{7}\oplus A_{6})^{\prime}\subset(E_{7}\oplus A_{6})^{\prime\prime}\subset(E_{7}\oplus A_{7})^{\prime\prime}\subset(E_{7}\oplus A_{7})^{\prime\prime\prime}

    where the modified lattice (E7An)(E_{7}\oplus A_{n})^{\prime} is spanned by E7AnE_{7}\oplus A_{n} and a root δ\delta, similarly (E7An)′′(E_{7}\oplus A_{n})^{\prime\prime} is spanned by E7AnE_{7}\oplus A_{n} and two roots 111These roots could be long roots. δ1,δ2\delta_{1},\delta_{2} and so on for (E7An)′′′(E_{7}\oplus A_{n})^{\prime\prime\prime}

  2. (2)

    DD type: E7D3=E7A3E7D4E7D6\ E_{7}\oplus D_{3}=E_{7}\oplus A_{3}\subset E_{7}\oplus D_{4}\subset\cdots\subset E_{7}\oplus D_{6} and its modification tower

    (E7D7)(E7D8)(E7D8)′′(E7D8)′′′(E_{7}\oplus D_{7})^{\prime}\subset(E_{7}\oplus D_{8})^{\prime}\subset(E_{7}\oplus D_{8})^{\prime\prime}\subset(E_{7}\oplus D_{8})^{\prime\prime\prime}
  3. (3)

    EE type: E7E6E7E7E7E8\ E_{7}\oplus E_{6}\subset E_{7}\oplus E_{7}\subset E_{7}\oplus E_{8}

The complement of the lattice from the above tower will produce natural lattice embedding LΞL\hookrightarrow\Xi. Thus it makes sense to denote NL(An)\operatorname{\mathrm{NL}}(A_{n}) the Noether-Lefschetz locus associated with the complement of E7AnE_{7}\oplus A_{n}. The similar notation NL(An)\operatorname{\mathrm{NL}}(A_{n}^{\prime}) for the modified lattice in the tower. Then there is stratification for HhH_{h} given by

A-type:NL(A4)NL(A3)NL(A2)NL(A1)=A-modified type:NL(A7′′)NL(A7)NL(A6)NL(A5)NL(A5)D-type:NL(D7)NL(D4)NL(D3)=NL(A3)D-modified type:NL(D8)NL(D7)NL(D7)E-type:NL(E8)NL(E7)NL(E6)\begin{split}A\hbox{-type}:&\operatorname{\mathrm{NL}}(A_{4})\subset\operatorname{\mathrm{NL}}(A_{3})\subset\operatorname{\mathrm{NL}}(A_{2})\subset\operatorname{\mathrm{NL}}(A_{1})={\mathcal{F}}^{\ast}\\ A\hbox{-modified type}:&\operatorname{\mathrm{NL}}(A_{7}^{\prime\prime})\subset\operatorname{\mathrm{NL}}(A_{7}^{\prime})\subset\operatorname{\mathrm{NL}}(A_{6}^{\prime})\subset\operatorname{\mathrm{NL}}(A_{5}^{\prime})\subset\operatorname{\mathrm{NL}}(A_{5})\\ D\hbox{-type}:&\operatorname{\mathrm{NL}}(D_{7})\subset\cdots\subset\operatorname{\mathrm{NL}}(D_{4})\subset\operatorname{\mathrm{NL}}(D_{3})=\operatorname{\mathrm{NL}}(A_{3})\\ D\hbox{-modified type}:&\operatorname{\mathrm{NL}}(D_{8}^{\prime})\subset\operatorname{\mathrm{NL}}(D_{7}^{\prime})\subset\operatorname{\mathrm{NL}}(D_{7})\\ E\hbox{-type}:&\operatorname{\mathrm{NL}}(E_{8})\subset\operatorname{\mathrm{NL}}(E_{7})\subset\operatorname{\mathrm{NL}}(E_{6})\subset{\mathcal{F}}^{\ast}\end{split}

Similarly, [PSW23, Section 5] also introduces towers of latices for unigonal divisor HuH_{u} as follows

E7A1E8A1E8A12E8A22E8D4A2\ E_{7}\oplus A_{1}\subset E_{8}\oplus A_{1}\subset E_{8}\oplus A_{1}^{2}\subset E_{8}\oplus A_{2}^{2}\subset E_{8}\oplus D_{4}\oplus A_{2}

where the rank jump number two is due to a modification. Denote NL(Un)\operatorname{\mathrm{NL}}(U_{n}) the Noether-Lefschetz locus associated with the complement lattice (E8An)II(E_{8}\oplus A_{n})^{\perp}_{I\!I} as before. Then an arithmetic stratification for HuH_{u} is obtained as follows

unigonal type:NL(U4′′)NL(U3)NL(U2)NL(U1)=Hu.\hbox{unigonal type}:\operatorname{\mathrm{NL}}(U_{4}^{\prime\prime})\subset\operatorname{\mathrm{NL}}(U_{3}^{\prime})\subset\operatorname{\mathrm{NL}}(U_{2}^{\prime})\subset\operatorname{\mathrm{NL}}(U_{1})=H_{u}.

Define the scheme

(1.2) (s):=Proj(R(,Δ(s))),s[0,1]{\mathcal{F}}(s):=\operatorname{Proj}(R({\mathcal{F}}^{\ast},\Delta(s))),\ \ s\in[0,1]\cap{\mathbb{Q}}

where the {\mathbb{Q}}-line bundle Δ(s)\Delta(s) is given by

Δ(s)=λ+s(Hh+25Hu).\Delta(s)=\lambda+s(H_{h}+25H_{u}).

Here λ\lambda is the Hodge line bundle on locally symmetric variety {\mathcal{F}}^{\ast}. (s){\mathcal{F}}(s) is called Hassett-Keel-Looijenga (HKL) model. In [PSW23], according to the arithmetic strategy under the assumption that R(,Δ(s))R({\mathcal{F}}^{\ast},\Delta(s)) is finitely generated, the walls for (s){\mathcal{F}}(s) when s[0,1]s\in[0,1]\cap{\mathbb{Q}} varies is predicted as

(1.3) {1n|n=1,2,3,4,6,8,10,12,16,25,27,28,31}.\{\ \frac{1}{n}\ |\ n=1,2,3,4,6,8,10,12,16,25,27,28,31\ \}.

Let P¯GIT\overline{P}^{GIT} be the GIT partial compactification space of smooth del pezzo pairs (see Section 5.1.1 for precise definition) birational to {\mathcal{F}}^{\ast}. The HKL program for degree 88 del Pezzo pair proposed in [PSW23] is the following conjecture.

Conjecture 1.1 (HKL for P8P_{8}).

Notation as above,

  1. (1)

    The section rings R(,Δ(s))R({\mathcal{F}}^{\ast},\Delta(s)) are finitely generated for all ss. In particular, (s){\mathcal{F}}(s) is a projective variety of dimension 1818.

  2. (2)

    (s){\mathcal{F}}(s) will interpolate PP^{\ast} and P¯GIT\overline{P}^{GIT}.

  3. (3)

    There is isomorphism P¯cK(s)\overline{P}_{c}^{K}\cong{\mathcal{F}}(s) under the transformation

    s=s(c)=12c56c4.s=s(c)=\frac{1-2c}{56c-4}.

    In particular, the K-moduli walls coincide with HKL walls given by (1.3).

The main purpose of the paper is to very the above conjectural picture for resolution of birational period map P¯GIT\overline{P}^{GIT}\dashrightarrow{\mathcal{F}}^{\ast}. In particular, we will provide a resolution of this birational period map with modular meanings.

1.2. Main results

Our first results establish the full wall crossings for the K-moduli spaces P¯cK\overline{P}^{K}_{c}. Let P¯cK\overline{P}^{K}_{c} be the good moduli space of K-semistable pairs of degree 88. Denote π:X2\pi:X\rightarrow{\mathbb{P}}^{2} or π:X(1,1,4)\pi:X\rightarrow{\mathbb{P}}(1,1,4) the blowup at a point pp. For any curve CC on XX such that C2KXC\sim-2K_{X}, we write B=π(C)B=\pi(C). Let YY be the double cover of XX branched along CC if X=𝔽1X=\mathbb{F}_{1} or the double cover of minimal resolution X~\widetilde{X} of XX branched along the proper transform C~\widetilde{C} of curve CC if X=Bl[1,0,0](1,1,4)X=Bl_{[1,0,0]}{\mathbb{P}}(1,1,4).

Theorem 1.2.

Notation as above, then

  1. (1)

    The walls for K-moduli can be divided into hyperelliptic type walls WhW_{h} and unigonal type walls WuW_{u} where

    (1.4) Wh={114,558,110,762,18,534,16,738,15,522,27}Wu={29106,31110,27,35118}\begin{split}W_{h}=&\{\ \frac{1}{14},\frac{5}{58},\frac{1}{10},\frac{7}{62},\frac{1}{8},\frac{5}{34},\frac{1}{6},\frac{7}{38},\frac{1}{5},\frac{5}{22},\frac{2}{7}\ \}\\ W_{u}=&\{\ \frac{29}{106},\frac{31}{110},\frac{2}{7},\frac{35}{118}\ \}\end{split}

    Moreover, the center ZwZ_{w} of each wall for the K-moduli space P¯cK\overline{P}_{c}^{K} is either a point or a rational curve. The curve parametrized by ZwZ_{w} are listed in the Table 1 and Table 2

    wall curve BB on 2{\mathbb{P}}^{2} weight curve singularity at pp
    114\frac{1}{14} x4zy=0x^{4}zy=0 (1,0,0) A1A_{1}
    558\frac{5}{58} x4z2+x3y3=0x^{4}z^{2}+x^{3}y^{3}=0 (0,2,3) A2A_{2}
    110\frac{1}{10} x4z2+x3zy2+ax2y4=0,ax^{4}z^{2}+x^{3}zy^{2}+a\cdot x^{2}y^{4}=0,a\in{\mathbb{C}}^{\ast} (0,1,2) A3A_{3}
    762\frac{7}{62} x4z2+xy5=0x^{4}z^{2}+xy^{5}=0 (0,2,5) A4A_{4}
    18\frac{1}{8} x4z2+x2zy3+ay6=0,ax^{4}z^{2}+x^{2}zy^{3}+a\cdot y^{6}=0,\ a\in{\mathbb{C}}^{\ast} (0,1,3) A5A_{5} tangent to LzL_{z}
    x3f3(z,y)=0x^{3}f_{3}(z,y)=0 (0,1,1) D4D_{4}
    534\frac{5}{34} x4z2+xzy4=0x^{4}z^{2}+xzy^{4}=0 (0,1,4) A7A_{7} with a line
    x3z2y+x2y4=0x^{3}z^{2}y+x^{2}y^{4}=0 (0,2,3) D5D_{5}
    16\frac{1}{6} x4z2+zy5=0x^{4}z^{2}+zy^{5}=0 (0,1,5) A9A_{9} with a line
    x3z2y+x2zy3+axy5=0,ax^{3}z^{2}y+x^{2}zy^{3}+a\cdot xy^{5}=0,a\in{\mathbb{C}}^{\ast} (0,1,2) D6D_{6}
    738\frac{7}{38} x3z2y+y6=0x^{3}z^{2}y+y^{6}=0 (0,2,5) D7D_{7} tangent to LzL_{z}
    x3z3+x2y4=0x^{3}z^{3}+x^{2}y^{4}=0 (0,3,4) E6E_{6}
    15\frac{1}{5} x3z2y+xzy4=0x^{3}z^{2}y+xzy^{4}=0 (0,1,3) D8D_{8} with LzL_{z}
    522\frac{5}{22} x3z2y+zy5=0x^{3}z^{2}y+zy^{5}=0 (0,1,4) D9D_{9} with LzL_{z}
    x3z3+x2zy3=0x^{3}z^{3}+x^{2}zy^{3}=0 (0,2,3) E7E_{7}
    27\frac{2}{7} x3z3+xy5=0x^{3}z^{3}+xy^{5}=0 (0,3,5) E8E_{8}
    Table 1. K-moduli walls from Gorenstein del Pezzo 𝔽1=Bl[1,0,0]2\mathbb{F}_{1}=Bl_{[1,0,0]}{\mathbb{P}}^{2}

    where LzL_{z} is the line defined by {z=0}\{z=0\} in the Table 1. The weight in the Table 1 or 2 means the weight of 𝔾m\mathbb{G}_{m}-action on 2{\mathbb{P}}^{2} or (1,1,4){\mathbb{P}}(1,1,4).

    wall curve BB on (1,1,4){\mathbb{P}}(1,1,4) weight (a,b,m)(a,b,m) singularity
    29106\frac{29}{106} z3+z2x4=0z^{3}+z^{2}x^{4}=0 (1,0,4) (0,1,0)(0,1,0) A1A_{1}
    31110\frac{31}{110} z3+zyx7=0z^{3}+zyx^{7}=0 (2,0,7) (1,1,1)(1,1,1) A1A_{1} with a tangent line
    27\frac{2}{7} z3+y2x10=0z^{3}+y^{2}x^{10}=0 (3,0,10) (2,1,2)(2,1,2) A2A_{2} with a tangent line
    35118\frac{35}{118} z3+zy2x6+y3x9=0z^{3}+zy^{2}x^{6}+y^{3}x^{9}=0 (1,0,3) (1,0,1) D4D_{4} with a tangent line
    Table 2. K-moduli walls from index 22 del Pezzo Bl[1,0,0](1,1,4)Bl_{[1,0,0]}{\mathbb{P}}(1,1,4)
  2. (2)

    There are birational morphisms

    P¯w+ϵKp+P¯wKpP¯wϵK\overline{P}^{K}_{w+\epsilon}\ \xrightarrow{p^{+}}\ \overline{P}^{K}_{w}\ \xleftarrow{p^{-}}\ \overline{P}^{K}_{w-\epsilon}

    for each wWhWuw\in W_{h}\cup W_{u}. If w=558w=\frac{5}{58} (rep. w=29106w=\frac{29}{106}), p+p^{+} is a divisorial contraction with exceptional divisor birational to hyperelliptic divisor HhH_{h} (resp. unigonal divisor HuH_{u}) and pp^{-} is an isomorphism. For the remaining walls ww, p+p^{+} and pp^{-} are flips. Let Ew±E_{w}^{\pm} be the exceptional locus of p±p^{\pm}, then Ew+E_{w}^{+} are described in the Table 3, 4, 5, 6 and EwE_{w}^{-} are described in the Table 7, 8. In the following tables, QQ is an irreducible plane quintic curve.

wall ww Branched curve BB BB vs. line LxL_{x} NL loci dimNL\dim\operatorname{\mathrm{NL}}
558\frac{5}{58} irreducible, A2A_{2} at pp LxB={3p,p,p′′,p′′′}L_{x}\cap B=\{3p,p^{\prime},p^{\prime\prime},p^{\prime\prime\prime}\} NL(A2)\operatorname{\mathrm{NL}}(A_{2}) 17
110\frac{1}{10} irreducible , A3A_{3} at pp LxB={4p,p,p′′}L_{x}\cap B=\{4p,p^{\prime},p^{\prime\prime}\} NL(A3)\operatorname{\mathrm{NL}}(A_{3}) 16
762\frac{7}{62} irreducible, A4A_{4} at pp LxB={5p,p}L_{x}\cap B=\{5p,p^{\prime}\} NL(A4)\operatorname{\mathrm{NL}}(A_{4}) 15
18\frac{1}{8} irreducible, A5A_{5} at pp BB tangent to LxL_{x} NL(A5)\operatorname{\mathrm{NL}}(A_{5}^{\prime}) 13
534\frac{5}{34} Lx+QL_{x}+Q, A7A_{7} at pp LxQ={4p,p}L_{x}\cap Q=\{4p,p^{\prime}\} NL(A6′′)\operatorname{\mathrm{NL}}(A_{6}^{\prime\prime}) 11
16\frac{1}{6} Lx+QL_{x}+Q, A9A_{9} at pp LxQ={5p}L_{x}\cap Q=\{5p\} NL(A7′′′)\operatorname{\mathrm{NL}}(A_{7}^{\prime\prime\prime}) 9
Table 3. Geometric descriptions of curves in exceptional locus Ew+E^{+}_{w} of AA-type wall-crossing on 𝔽1\mathbb{F}_{1}
wall ww Branched curve BB BB vs. line LxL_{x} NL loci dimNL\dim\operatorname{\mathrm{NL}}
18\frac{1}{8} irreducible, D4D_{4} at pp LxB={3p,p,p′′,p′′′}L_{x}\cap B=\{3p,p^{\prime},p^{\prime\prime},p^{\prime\prime\prime}\} NL(D4)\operatorname{\mathrm{NL}}(D_{4}) 1515
534\frac{5}{34} irreducible , D5D_{5} at pp LxB={4p,p,p′′}L_{x}\cap B=\{4p,p^{\prime},p^{\prime\prime}\} NL(D5)\operatorname{\mathrm{NL}}(D_{5}) 1414
16\frac{1}{6} irreducible, D6D_{6} at pp LxB={5p,p}L_{x}\cap B=\{5p,p^{\prime}\} NL(D6)\operatorname{\mathrm{NL}}(D_{6}) 1313
738\frac{7}{38} irreducible, D7D_{7} at pp LxB={6p}L_{x}\cap B=\{6p\} NL(D7)\operatorname{\mathrm{NL}}(D_{7}^{\prime}) 1111
15\frac{1}{5} Lx+QL_{x}+Q, D8D_{8} at pp LxQ={4p,p}L_{x}\cap Q=\{4p,p^{\prime}\} NL(D8)\operatorname{\mathrm{NL}}(D_{8}^{\prime}) 1010
522\frac{5}{22} Lx+QL_{x}+Q, D10D_{10} at pp LxQ={5p}L_{x}\cap Q=\{5p\} NL(D9)\operatorname{\mathrm{NL}}(D_{9}^{\prime}) 99
Table 4. Geometric description of curves in exceptional locus Ew+E^{+}_{w} of DD-type wall-crossing on 𝔽1\mathbb{F}_{1}
wall ww Branched curve BB BB vs. line LxL_{x} NL loci dimNL\dim\operatorname{\mathrm{NL}}
738\frac{7}{38} irreducible, E6E_{6} at pp LxB={4p,p,p′′}L_{x}\cap B=\{4p,p^{\prime},p^{\prime\prime}\} NL(E6)\operatorname{\mathrm{NL}}(E_{6}) 1313
522\frac{5}{22} irreducible, E7E_{7} at pp LxB={5p,p}L_{x}\cap B=\{5p,p^{\prime}\} NL(E7)\operatorname{\mathrm{NL}}(E_{7}) 1212
27\frac{2}{7} irreducible, E8E_{8} at pp LxB={5p,p}L_{x}\cap B=\{5p,p^{\prime}\} NL(E8)\operatorname{\mathrm{NL}}(E_{8}) 1111
Table 5. Geometric description of curves in exceptional locus Ew+E^{+}_{w} of EE-type wall-crossing on 𝔽1\mathbb{F}_{1}
wall ww curve BB on (1,1,4){\mathbb{P}}(1,1,4) NL loci dimNL\dim\operatorname{\mathrm{NL}}
29106\frac{29}{106} irreducible, A1A_{1} at pp NL(U1)\operatorname{\mathrm{NL}}(U_{1}) 1717
31110\frac{31}{110} irreducible, A1A_{1} at pp and tangent to the line LyL_{y} and passing through another fixed point NL(U2)\operatorname{\mathrm{NL}}(U_{2}^{\prime}) 1515
27\frac{2}{7} irreducible, A2A_{2} at pp tangent to the line LyL_{y} and passing through another fixed point NL(U3)\operatorname{\mathrm{NL}}(U_{3}\textquoteright) 1414
35118\frac{35}{118} irreducible, D4D_{4} at pp tangent to the line LyL_{y} and passing through another fixed point NL(U4′′)\operatorname{\mathrm{NL}}(U_{4}^{\prime\prime}) 1212
Table 6. Geometric description of curves in exceptional locus Ew+E^{+}_{w} of K-moduli wall-crossing on X=Blp(1,1,4)X=Bl_{p}{\mathbb{P}}(1,1,4)
Remark 1.3.

For d=9d=9, the wall crossing results are established in [ADL19]. For d=8d=8 and the surface is deformation equivalent to 1×1{\mathbb{P}}^{1}\times{\mathbb{P}}^{1}, the explicit wall crossing is known due to [ADL21]. In [ADL21], the authors proved K-moduli spaces of (X,cC)(X,cC) pairs is isomorphic to a global VGIT for all c(0,12)c\in(0,\frac{1}{2}) and the walls follow from the computation of Laza-O’Grady [LO21] directly. But in our case it seemss there is no global VGIT construction.

Remark 1.4.

After the double cover construction, locally if the curves BB on 2{\mathbb{P}}^{2} or (1,1,4){\mathbb{P}}(1,1,4) has ADEADE singularity, then so does YY. In particular, YY is a K3 surface possibly with ADE singularities. In the table above, the Noether-Lefchetz locus NL\operatorname{\mathrm{NL}} parameterizes such K3 surface YY obtained by the curve BB.

Our second result is to establish the following isomorphism of K-moduli space and HKL models.

Theorem 1.5 (= Theorem 6.2).

There is natural isomorphism P¯cK(s)\overline{P}_{c}^{K}\cong{\mathcal{F}}(s)induced by the period map under the transformation

s=s(c)=12c56c4\ s=s(c)=\frac{1-2c}{56c-4}

where 114<c<12\frac{1}{14}<c<\frac{1}{2}. In particular, PcKP_{c}^{K} will interpolates the GIT space P¯GIT\overline{P}^{GIT} and Baily-Borel compactification {\mathcal{F}}^{\ast}.

Combining the results of theorem 1.2 and theorem 1.5, we also deduce the following directly

Theorem 1.6.

Conjecture 1.1 holds.

As a application of our results, we can also determine some walls for K-moduli space of Fano 3-fold pairs via cone construction ([ADL22, Theorem5.2]).

Corollary 1.7 (= Corollary 7.3).

The stability threshold of Fano 3-fold pairs (X,cS)(X,cS) from cone construction of del Pezzo pairs (𝔽1,wnC)(\mathbb{F}_{1},w_{n}C) are given by the rational numbers

{c=11+n27+n|n=1,2,,5}{c=3+n11+n|n=6,7,8,9,11}\{\ c=\frac{11+n}{27+n}\ |\ n=1,2,\cdots,5\ \}\cup\{\ c=\frac{3+n}{11+n}\ |\ n=6,7,8,9,11\ \}

Similarly, the stability threshold of Fano 3-fold pairs (X,cS)(X,cS) from (Blp(1,1,4),wnC)(Bl_{p}{\mathbb{P}}(1,1,4),w_{n}C) are given by

{c=36+m52+m|m=1,3,4,7}.\{\ c=\frac{36+m}{52+m}\ |\ m=1,3,4,7\ \}.

In particular, the above rational numbers are walls for K-moduli space of Fano 33-fold pairs.

Relations to other works

(1)

In [ABB+23], the authors construct a compact moduli spaces PdCYP_{d}^{CY} parameterizing S-equivalence classes of log Calabi-Yau pairs (2,3dCd)({\mathbb{P}}^{2},\frac{3}{d}C_{d}) and their degenerations. Their work builds a birdge connecting K-moduli of plane curves in [ADL19] and KSBA moduli of plane curves by Hacking [Hac04]. It would be interesting to extend their work to our setting. Note that for the KSBA moduli space parametrizing del pezzo surface pairs (X,cC)(X,cC) with c=12+ϵc=\frac{1}{2}+\epsilon, [AEH21] has related it to the toroidal compactification of locally symmetric varieties.

(2)

Our results also provide the birational contractability of Heenger divisors. It would be useful to detect walls for other HKL model on a locally symmetric variety, as long as the locally symmetric variety is associated to a lattice Λ\Lambda of signature (2,n)(2,n) and admitting an embedding E8U2E7A1ΛE_{8}\oplus U^{2}\oplus E_{7}\oplus A_{1}\hookrightarrow\Lambda (up to a lattice saturation). For example, in the forthcoming work [GLL+], the authors study the HKL on locally symmetric variety given by lattice E8U2E7A2E_{8}\oplus U^{2}\oplus E_{7}\oplus A_{2}, where they use the birational contractability of Heegner divisors obtained as birational transform of excetional locus in our K-moduli P¯cK\overline{P}_{c}^{K} wall-crossing to give prediction the walls for HKL of modui space of quasi-polarised K3 of genus 44.

Organization of the paper

In section 2, we collect basic results from algebraic K-stability theory, including the equivariant K-stability criterion, K-moduli theory and the existentce of wall-crossings in K-moduli. In Section 3, we discuss the K-degeneration of del Pezzo pairs based on local to global volume comparison and TT-singularities theory. In Section 4 we use the method of equivariant K-stability criterion from complexity one del Pezzo pairs to find all walls for K-moduli space P¯cK\overline{P}^{K}_{c}. Based on the computation in Section 4, we finish the explicit wall crossing in Section 5. In Section 6, we realize the K-moduli space P¯cK\overline{P}^{K}_{c} as the HKL model under the transformation of the parameter. In the final section 7, we discuss some possible relations on the K-moduli space P¯cK\overline{P}^{K}_{c} to the moduli of log CY pairs and KSBA moduli theory for the pairs.

Acknowledgement

We would like to thank Zhiyuan Li and Yuchen Liu for many helpful discussions. The second author would also like to thank Chen Jiang for the helpful discussion on quotient singularities and Junyan Zhao for the comments on the drafts. Part of this work was written when the second author visited SCMS and he would like to thank their hospitality. The second author was partially supported by LMNS (the Laboratory of Mathematics for Nonlinear Science, Fudan University). This project is supported by the NKRD Program of China (No.2020YFA0713200), NSFC Innovative Research Groups (Grant No.12121001) and General Program (No.12171090).

2. Preliminaries on K-stability and K-moduli

2.1. Notation of K-stability

All varieties are over {\mathbb{C}}. A pair (X,D)(X,D) is consisting of a projective normal variety XX with an effective {\mathbb{Q}}-divisor DD such that KX+DK_{X}+D is {\mathbb{Q}}-Cartier. By taking a log resolution f:Y(X,D)f:Y\rightarrow(X,D), we have

KY+DY=f(KX+D).K_{Y}+D_{Y}=f^{\ast}(K_{X}+D).

We call a pair (X,D)(X,D) is log canonical (lc) if DYD_{Y} has coefficients 1\leq 1 and Kawamata log terminal (klt) if DYD_{Y} has coefficients <1<1.

Definition 2.1.

A pair (X,D)(X,D) is called log Fano if (X,D)(X,D) is klt and the {\mathbb{Q}}-Cartier divisor KXD-K_{X}-D is ample.

Let EE be a prime divisor on a birational model π:YX\pi:Y\rightarrow X of XX. The divisor EE defines a valuation vev_{e} on the function field (X){\mathbb{C}}(X), which is known as divisorial valuation. Given such a divisorial valuation vEv_{E}, define its AA-function

A(X,D)(E):=1+coeffE(KYπ(KX+D))A_{(X,D)}(E):=1+\operatorname{coeff}_{E}(K_{Y}-\pi^{\ast}(K_{X}+D))

and SS-function

S(X,D)(E):=1(KXD)n0τvol(π(KX+D)tE)𝑑tS_{(X,D)}(E):=\frac{1}{(-K_{X}-D)^{n}}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(-\pi^{\ast}(K_{X}+D)-tE)dt

where

τ:=sup{t|π(KX+D)tEis pseudo-effective}\tau:=\sup\{t\,|\,-\pi^{\ast}(K_{X}+D)-tE\ \hbox{is pseudo-effective}\ \}

is the pseudo-effective threshold.

Definition-Theorem 1 (Fujita-Li).

Notation as above,

  1. (1)

    The pair (X,D)(X,D) is K-semistable if and only if

    β(X,D)(E):=A(X,D)(E)S(X,D)(E)0\beta_{(X,D)}(E):=A_{(X,D)}(E)-S_{(X,D)}(E)\geq 0

    for any prime divisor EE over XX

  2. (2)

    The pair (X,D)(X,D) is uniform K-stable if and only if

    δ(X,D):=infEA(X,D)(E)S(X,D)(E)>1\delta(X,D):=\mathop{\inf}\limits_{E}\frac{A_{(X,D)}(E)}{S_{(X,D)}(E)}>1

    where EE runs over all prime divisors over XX.

2.2. Normalised Volume

Let ValX,x\operatorname{Val}_{X,x} be the valuation space centered at the point xXx\in X. Motivated by the problem of Kähler-Einstein metric, Chi Li in [Li17] introduced the notation of normalised volume, which plays a very important role in controlling singularities of K-semistable Fano varieties.

Definition 2.2 (Chi Li).

Let x(X,D)x\in(X,D) be a klt singularity. Define the normalised volume function vol^(X,D),x:ValX,x>0{}\widehat{\operatorname{\mathrm{vol}}}_{(X,D),x}:\operatorname{Val}_{X,x}\rightarrow{\mathbb{R}}_{>0}\cup\{\infty\} by

vol^(X,D),x(v)={A(X,D)(v)nvol(v)if A(X,D)(v)<,if A(X,D)(v)=.\widehat{\operatorname{\mathrm{vol}}}_{(X,D),x}(v)=\begin{cases}A_{(X,D)}(v)^{n}\cdot\operatorname{\mathrm{vol}}(v)&\text{if }\ A_{(X,D)}(v)<\infty,\\ \infty&\text{if }\ A_{(X,D)}(v)=\infty.\end{cases}

The normalised volume of klt singularity x(X,D)x\in(X,D) is defined as

vol^(X,D;x):=infvValX,xvol^(X,D),x(v)\widehat{\operatorname{\mathrm{vol}}}(X,D;x):=\mathop{\inf}\limits_{v\in\operatorname{Val}_{X,x}}\widehat{\operatorname{\mathrm{vol}}}_{(X,D),x}(v)
Theorem 2.3.

(Local-to-Global volume comparison [LL19]) Let (X,D)(X,D) be a K-semistable log Fano pair, then

(KXD)n(1+1n)nvol^(X,D;x)(-K_{X}-D)^{n}\leq(1+\frac{1}{n})^{n}\cdot\widehat{\operatorname{\mathrm{vol}}}(X,D;x)

for any closed point xXx\in X.

Theorem 2.4.

(Finite degree formula [XZ21] ) Let f:(Y,DY)(X,DX)f:(Y,D_{Y})\rightarrow(X,D_{X}) be a quasi-étale morphism, then

vol^(Y,DY;y)=deg(f)vol^(X,DX;x)\widehat{\operatorname{\mathrm{vol}}}(Y,D_{Y};y)=\deg(f)\cdot\widehat{\operatorname{\mathrm{vol}}}(X,D_{X};x)

2.3. 𝔾m\mathbb{G}_{m}-equivariant K-stability

In general, determining whether a given log Fano pair is K-semistable is a challenging problem in algebraic K-stability theory (see [Xu21]). But for log Fano pairs of complexity 11, due to the work of Zhuang and Ilten-Süß, there is an effective method to detect K-stability. It is a main tool for us to find walls of K-moduli spaces. Now let’s briefly recall the theory. Let TT be a maximal torus of Aut(X,D)\operatorname{Aut}(X,D). By a deep theorem of [ABHLX20], reductivity of Aut(X,D)\operatorname{Aut}(X,D) is a necessary condition for (X,D)(X,D) to be K-polystable, so we may assume this and thus TT is the unique (up to conjugation) maximal torus of Aut(X,D)\operatorname{Aut}(X,D). Denote (X)T{\mathbb{C}}(X)^{T} the TT-invariant rational function on XX. Assume TT acts on (X,D)(X,D) effectively.

Definition 2.5.

We say a nn-dimensional pair (X,D)(X,D) is of complexity mm where m=ndimTm=n-\dim T.

Clearly, XX is of complexity 0 if and only if XX is a toric variety. In this paper, we are interested in the surface of complexity 11. Such surface XX admits a natural rational map f:X1f:X\dashrightarrow{\mathbb{P}}^{1} with (X)T=(1){\mathbb{C}}(X)^{T}={\mathbb{C}}({\mathbb{P}}^{1}).

Definition 2.6.

A prime divisor EE on XX is called TT-vertical if the maximal TT-orbit in EE has dimension dimT\dim T. Otherwise, it is called TT-horizontal.

Geometrically, TT-vertical divisors on XX can be viewed as the fibers of the natural rational map f:X1f:X\dashrightarrow{\mathbb{P}}^{1} . The following criterion for log Fano pairs of complexity 11 is useful.

Theorem 2.7.

([IS17], see also [Liu23, Theorem 3.2]) Let (X,D)(X,D) be a log Fano pair of dimension 22 with an effective 𝔾m\mathbb{G}_{m}-action λ\lambda. Then (X,D)(X,D) is K-polystable if and only if the following conditions hold:

  1. (1)

    β(X,D)(F)>0\beta_{(X,D)}(F)>0 for all vertical λ\lambda-invariant prime divisors FF on XX;

  2. (2)

    β(X,D)(F)=0\beta_{(X,D)}(F)=0 for all horizontal λ\lambda-invariant prime divisors FF on XX;

  3. (3)

    β(X,D)(v)=0\beta_{(X,D)}(v)=0 for the valuation vv induced by the 1-PS λ\lambda.

2.4. K-moduli stack and its good moduli space

For c(0,12)c\in(0,\frac{1}{2})\cap{\mathbb{Q}}, we consider the moduli stack of pairs 𝒫cK:Sch()Set{\mathcal{P}}^{K}_{c}\colon Sch({\mathbb{C}})\rightarrow Set by

𝒫cK(B)={(𝒳,𝒟)B|smoothable K-semistable  family with𝒟b2cK𝒳bfor anybB}.\begin{split}{\mathcal{P}}^{K}_{c}(B)=\big{\{}&({\mathcal{X}},{\mathcal{D}})\rightarrow B\ |\ \hbox{smoothable K-semistable \ family }\\ &\hbox{with}\ {\mathcal{D}}_{b}\sim_{\mathbb{Q}}-2cK_{{\mathcal{X}}_{b}}\ \hbox{for\ any}\ b\in B\ \big{\}}.\end{split}

The framework of [ADL19] [LXZ22] establishes the existence of good moduli space P¯cK\overline{P}_{c}^{K} in the sense of J. Alper [Alp13].

Theorem 2.8.

The moduli stack 𝒫cK{\mathcal{P}}^{K}_{c} is a separated Artin stack admitting a good moduli space P¯cK\overline{P}_{c}^{K}

𝒫cKP¯cK{\mathcal{P}}^{K}_{c}\rightarrow\overline{P}_{c}^{K}

which is a projective normal scheme. Moreover, P¯cK()\overline{P}_{c}^{K}({\mathbb{C}}) parametrizes SS-equivalence of cc-K-polystable log Fano pairs.

When we vary the coefficient c(0,12)c\in(0,\frac{1}{2})\cap{\mathbb{Q}}, there are wall-crossing phenomenon that are established in [ADL19](see also [Zho23] for more explanations). More precisely, they prove

Theorem 2.9.

There are finitely many rational numbers (i.e., walls ) 0<w1<<wm<120<w_{1}<\cdots<w_{m}<\frac{1}{2} such that

P¯cKP¯cKfor anywi<c,c<wi+1and  any  1im1.\overline{P}_{c}^{K}\cong\overline{P}_{c^{\prime}}^{K}\ \ \hbox{for\ any}\ w_{i}<c,c^{\prime}<w_{i+1}\ \hbox{and \ any }\ 1\leq i\leq m-1.

Denote P¯(wi,wi+1)K:=P¯cK\overline{P}_{(w_{i},w_{i+1})}^{K}:=\overline{P}_{c}^{K} for some c(wi,wi+1)c\in(w_{i},w_{i+1}), then at each wall wiw_{i} there is a flip (or divisorial contraction)

P¯(wi1,wi)K{\overline{P}_{(w_{i-1},w_{i})}^{K}}P¯(wi,wi+1)K{\overline{P}_{(w_{i},w_{i+1})}^{K}}P¯wiK{\overline{P}_{w_{i}}^{K}}p\scriptstyle{p^{-}}p+\scriptstyle{p^{+}}

which fits into a local variation of geometric invariant theory (VGIT) in the sense of [AFS17, Section 2.2].

At a wall ww, let UwP¯wKU_{w}\subset\overline{P}_{w}^{K} be the open subset where p±p^{\pm} is isomorphic. Denote Zw:=P¯wKUwZ_{w}:=\subset\overline{P}_{w}^{K}-U_{w} the complement and Ew±:=(p±)1(Zw)E_{w}^{\pm}:=(p^{\pm})^{-1}(Z_{w}). Locally p±|Ew±:Ew±Zwp\pm|_{E_{w}\pm}:\ E_{w}^{\pm}\rightarrow Z_{w} is a fibration with fiber a weighted projective space by the general theory of VGIT (see [DH98]) and local VGIT interpretation of K-moduli space.

Definition-Proposition 1.

(see [ADL19, Section 2.4]) The CM-line bundle λc(f)\lambda_{c}(f) on Zc,mredZ_{c,m}^{red} is defined by

c1(λc(f))=f((Kf+c𝒟)3)c_{1}(\lambda_{c}(f))=-f_{\ast}((K_{f}+c{\mathcal{D}})^{3})

where the pushforward is in the sense of cycle.

Theorem 2.10.

([XZ20, Theorem1.1] or [ADL19, Theorem 3.36]) The λc(f)\lambda_{c}(f) can descend to the good moduli space P¯cK\overline{P}^{K}_{c} and it is ample.

3. Moduli of del Pezzo pairs and K-semistable degenerations

3.1. K-polystable degeneration of log Fano pairs

Let (𝒮,c𝒟)(B,o)({\mathcal{S}},c{\mathcal{D}})\rightarrow(B,o) be a flat and {\mathbb{Q}}-Goresntein family of log Fano pairs over a smooth pointed curve (B,o)(B,o). Assume generic fiber (𝒮η,c𝒟η)({\mathcal{S}}_{\eta},c{\mathcal{D}}_{\eta}) is a K-semistable smooth pair and set (X,cC)=(𝒮o,cDo)(X,cC)=({\mathcal{S}}_{o},cD_{o}), it is a very important and also difficult problem in K-moduli theory to understand the geometry of the degeneration (X,cC)(X,cC). In general, we have

Theorem 3.1.

(Odaka [Oda13] for absolute version) If (𝒮0,c𝒟o)({\mathcal{S}}_{0},c{\mathcal{D}}_{o}) is K-semitable, then (𝒮o,c𝒟o)({\mathcal{S}}_{o},c{\mathcal{D}}_{o}) has klt singularity at worst. In particular, 𝒮o{\mathcal{S}}_{o} is normal.

Recall the ADE surface singularities are isolated singularities defined by the following local equations

An:x2+y2+zn+1=0,Dn:x2+y2z+zn1=0,n4E6:x2+y3+z4=0,E7:x2+y3+yz3=0,E8:x2+y3+z5=0.\begin{split}&A_{n}:x^{2}+y^{2}+z^{n+1}=0,\\ &D_{n}:x^{2}+y^{2}z+z^{n-1}=0,n\geq 4\\ &E_{6}:x^{2}+y^{3}+z^{4}=0,\\ &E_{7}:x^{2}+y^{3}+yz^{3}=0,\\ &E_{8}:x^{2}+y^{3}+z^{5}=0.\\ \end{split}

By the classification of klt surface singularities (see [Kol13]), (𝒮0,cD0)({\mathcal{S}}_{0},cD_{0}) has quotient singularities. We are only interested in such quotient singularities that are smoothable and these singularities are so called TT-singularity in the literature (see [Hac04] [HP10]).

Definition 3.2.

({\mathbb{Q}}-Gorenstein smoothing) Given a log Fano pair (X,cD)(X,cD), we call a proper flat morphism (𝒳,𝒟)𝑓B({\mathcal{X}},{\mathcal{D}})\xrightarrow{f}B is a {\mathbb{Q}}-Gorenstein smoothing of (X,D)(X,D) if

  1. (1)

    K𝒳/𝒟-K_{{\mathcal{X}}/{\mathcal{D}}} is {\mathbb{Q}} Cartier-divisor and ff-ample

  2. (2)

    𝒟rK𝒳/𝒟{\mathcal{D}}\sim-rK_{{\mathcal{X}}/{\mathcal{D}}} is an effective {\mathbb{Q}} Cartier-divisor on 𝒳{\mathcal{X}} and supp(𝒟)supp({\mathcal{D}}) does not contain any fiber. Here the index 0<r<0<r<.

  3. (3)

    ff and f|𝒟f|_{\mathcal{D}} is smooth over B{o}B-\{o\} and (𝒳o,𝒟o)(X,D)({\mathcal{X}}_{o},{\mathcal{D}}_{o})\cong(X,D).

In the dimension 22 without boundaries, TT-singularity can be classified.

Proposition 3.3.

A TT-singularity is one of the following

  1. (1)

    AnA_{n}, DnD_{n} or E6,E7,E8E_{6},\ E_{7},\ E_{8};

  2. (2)

    Cyclic Quotient singularity of type 1ln2(1,lna1)\frac{1}{ln^{2}}(1,lna-1) for some l,n,a0l,n,a\in{\mathbb{Z}}_{\geq 0} and gcd(a,n)=1\gcd(a,n)=1, i.e., (0𝔸x,y2/μln2)(0\in{\mathbb{A}}^{2}_{x,y}/\mu_{ln^{2}}) given by

    ξ(x,y)=(ξx,ξlna1y)\xi\cdot(x,y)=(\xi\cdot x,\xi^{lna-1}\cdot y)

    where ξ\xi is ln2ln^{2}-th primitive root.

Proof.

See [HP10, Proposition 3.10]. ∎

We collect basic properties of TT-singularity as follows.

Proposition 3.4.

Let XX be a projective surface with TT-singularity at worst.

  1. (1)

    the following Noether type formula holds

    KX2+etop(X)+pXsingμp=12χ(𝒪X)K_{X}^{2}+e_{top}(X)+\mathop{\sum}\limits_{p\in X_{sing}}\mu_{p}=12\chi({\mathcal{O}}_{X})

    where μp=b2(Mp)\mu_{p}=b_{2}(M_{p}) is the second Betti number of the Milnor fiber MpM_{p} of its smoothing family. In particular,

    μp={rif pisAr,DrorEr,l1if pisoftype1ln2(1,lna1).\mu_{p}=\begin{cases}r&\text{if }\ p\ is\ A_{r},D_{r}\ or\ E_{r},\\ l-1&\text{if }\ p\ is\ of\ type\ \frac{1}{ln^{2}}(1,lna-1).\end{cases}

    Moreover, if XX is rational, then

    (3.5) KX2+ρ(X)+pXsingμp=10K_{X}^{2}+\rho(X)+\mathop{\sum}\limits_{p\in X_{sing}}\mu_{p}=10
  2. (2)

    if in addition KX-K_{X} is big and nef, then

    dimH0(X,mKX)=m(m+1)2KX2+1.\dim H^{0}(X,-mK_{X})=\frac{m(m+1)}{2}K_{X}^{2}+1.

Based on the above characterization of TT-singularity, we will give a Cartier index estimate for the K-semistable degeneration of del Pezzo surface pairs of degree d=8d=8.

Theorem 3.5.

Let (X,C)(X,C) be the a central fiber of a family (𝒳,𝒞)B({\mathcal{X}},{\mathcal{C}})\rightarrow B over a curve BB where the general fiber (𝒳b,𝒞b)({\mathcal{X}}_{b},{\mathcal{C}}_{b}) is a smooth pair of degree d=8d=8 , then the Cartier index of canonical bundle satisfies ind(KX,x)3ind(K_{X},x)\leq 3.

Proof.

By the deformation invariance of KX2K_{X}^{2} and the formula (3.5), the T-singularities appeared on XX must be of type

1n2(1,an1)or12n2(1,2an1).\frac{1}{n^{2}}(1,an-1)\ \hbox{or}\ \frac{1}{2n^{2}}(1,2an-1).

By the local to global volume comparison (2.3) and finite degree formula (2.4),

(3.6) 4d9(12c)2vol^(X,cD;x)=1n2vol^(X~,cD~;x~)1n2(2cordx~(D~))2\frac{4d}{9}(1-2c)^{2}\leq\widehat{\operatorname{\mathrm{vol}}}(X,cD;x)=\frac{1}{n^{2}}\widehat{\operatorname{\mathrm{vol}}}(\widetilde{X},c\widetilde{D};\widetilde{x})\leq\frac{1}{n^{2}}(2-c\cdot\operatorname{\mathrm{ord}}_{\widetilde{x}}(\widetilde{D}))^{2}

where (X~,D~)(X,D)(\widetilde{X},\widetilde{D})\rightarrow(X,D) is a smooth covering. By the Skoda’s inequality

2cordx~(D~)>0.2-c\cdot\operatorname{\mathrm{ord}}_{\widetilde{x}}(\widetilde{D})>0.

Thus, if ordx~(D~)4\operatorname{\mathrm{ord}}_{\widetilde{x}}(\widetilde{D})\geq 4, then the inequality (3.6) will show

2nd32(ordx~(D~)4)c12c2,\frac{2n\sqrt{d}}{3}\leq 2-(\operatorname{\mathrm{ord}}_{\widetilde{x}}(\widetilde{D})-4)\frac{c}{1-2c}\leq 2,

which implies n3dn\leq\frac{3}{\sqrt{d}}. Thus, n=1n=1.

Now we may assume 1ordx~(D~)=i+j31\leq\operatorname{\mathrm{ord}}_{\widetilde{x}}(\widetilde{D})=i+j\leq 3 where xiyjx^{i}y^{j} is the monomial with minimal degree of defining equation for D~\widetilde{D} under coordinate (x,y)(x,y) for X~\widetilde{X}. As 2KX~+D~2K_{\widetilde{X}}+\widetilde{D} descends to a Cartier divisor 2KX+D02K_{X}+D\sim 0, then

(3.7) 2ani+(na1)jmodn22an\equiv i+(na-1)j\ \mod n^{2}

In particular, ijmodni\equiv j\mod\ n holds.

If i+j=3i+j=3, then by n|(ij)n|(i-j), we know n=1n=1 or n=3n=3. For the latter case, if (i,j)=(0,3)(i,j)=(0,3), the indefinite equation (3.7) is just

an3modn2,an\equiv 3\ \mod\ n^{2},

thus (a,n)=(1,3)(a,n)=(1,3) gives a solution.

If i+j=2i+j=2, n|ijn|i-j shows n=1n=1 or 22. This finishes proof. ∎

Combining the classification results in [Nak07, Table 6] and [FY17, Table 10], we have

Corollary 3.6.

Let (X,C)(X,C) be the K-semistable degeneration of log del Pezzo pairs of degree d=8d=8,

  1. (1)

    if the Cartier index of KXK_{X} is 22, then XX is isomorphic to the blowup along a smooth point of (1,1,4){\mathbb{P}}(1,1,4);

  2. (2)

    if the Cartier index of KXK_{X} is 33, then XX is the surface in Subsection 3.2.

Proof.

(1) is the direct consequence of [Nak07, Table 6] and [Nak07, Proposition 7.1]. (2) follows from classification results in [FY17]. ∎

3.2. Geometry of log del Pezzo of index 33

Let 𝔽n\mathbb{F}_{n} be the Hirzebruch surface and σ,f\sigma,f be the section and fiber. Thus, we have intersection numbers

σ2=n,f2=0,f.σ=1\sigma^{2}=-n,\ f^{2}=0,f.\sigma=1

According to Nakayama’s strategy (see [Nak07]) of classification of log del Pezzo surface XX of index a>1a>1, one can first take a minimal resolution π:MX\pi:M\rightarrow X to obtain a nonsingular rational surface MM and thus there is a birational morphism

μ:MS,Sis either𝔽nor2.\mu:M\rightarrow S,\ S\ \hbox{is either}\ \mathbb{F}_{n}\ \hbox{or}\ {\mathbb{P}}^{2}.

Then one inductively runs MMP to decompose μ\mu into a series of birational morphisms contracting (1)(-1)-curves. It turns out that one can recover the surface XX from MM and the dual graph of exceptional divisors of π\pi. In the case a=3a=3 and degree d=8d=8, Fujita-Yasutake’s results (see [FY17, Table 10]) show that S=𝔽5S=\mathbb{F}_{5} and μ\mu is just blowup of distinct two points on the fiber ff but not in the section σ\sigma with exceptional divisor E1E_{1} and E2E_{2}. Then

π:MX\pi:\ M\longrightarrow X

is the morphism contracting two divisors F1,F2F_{1},F_{2} where F1F_{1} and F2F_{2} are proper transforms of section σ\sigma and fiber ff so that

F12=5,F1.F2=1,F22=2.F_{1}^{2}=-5,\ F_{1}.F_{2}=1,\ F_{2}^{2}=-2.

Thus, F1F_{1} and F2F_{2} are contracted to a singularity of type 19(2,1)\frac{1}{9}(2,1) and

3Kπ=3(KMπKX)=2F1+F2.-3K_{\pi}=-3(K_{M}-\pi^{\ast}K_{X})=2\cdot F_{1}+F_{2}.

We can write the intersection matrix on MM as follows:

(3.8) (F1F2E1E2F15100F21211E10110E20101)\left(\begin{array}[]{c|c c c c }&F_{1}&F_{2}&E_{1}&E_{2}\\ \hline\cr F_{1}&-5&1&0&0\\ F_{2}&1&-2&1&1\\ E_{1}&0&1&-1&0\\ E_{2}&0&1&0&-1\\ \end{array}\right)

4. Computation of K-moduli walls

4.1. SS-function on 𝔽1\mathbb{F}_{1} and Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4)

To apply equivariant K-stability criterion in Theorem 2.7, we need to compute SS-function associated to exceptional divisor of weighted blowup centered at the invariant points under the maximal torus action. First, observe that the boundary C|2KX|C\in|-2K_{X}| will imply

(4.9) S(X,cC)(F)=1(KXcC)20vol(μ(KX+cC)tF)𝑑t=12c(KX)20vol(μKXtF)𝑑t,\begin{split}S_{(X,cC)}(F)&=\frac{1}{(-K_{X}-cC)^{2}}\int^{\infty}_{0}vol(-\mu^{*}(K_{X}+cC)-tF)dt\\ &=\frac{1-2c}{(-K_{X})^{2}}\int^{\infty}_{0}vol(-\mu^{*}K_{X}-tF)dt,\end{split}

where the second identity is due to the change of variable. Thus, the computations of S(F)S(F)-function for divisor FF is reduced to the computation of volume of divisor Lt:=μKXtFL_{t}:=-\mu^{*}K_{X}-tF. In the computation of volume, Zariski decomposition on surface is a very useful tool and let’s recall the following

Proposition 4.1.

If XX is a normal projective surface and DD is an pesudo-effective {\mathbb{Q}}- divisor on XX, then there is a unique decomposition

D=P+ND=P+N

where P,NP,N are two {\mathbb{Q}}- effective divisors such that P.Ni=0P.N_{i}=0 for each irreducibel component of NN, PP is nef and the intersection matrix of irreducible components of NN is negative or N=0N=0. In particular,

vol(D)=P2.\operatorname{\mathrm{vol}}(D)=P^{2}.

Second, we recall the basics of weighted blowup in dimension 2 following [Pro01, Chapter 3.2]. Let X=(2/r(a,b),0)X=({\mathbb{C}}^{2}/{\mathbb{Z}}_{r}(a,b),0) be the local germ of 2-dimensional quotient singularity of order rr where a,b,r>0a,b,r\in{\mathbb{Z}}_{>0} with gcd(a,b)=1\gcd(a,b)=1. A weighted blowup π:YX\pi:Y\rightarrow X of weight (a,b)(a,b) is a projective birational morphism which is isomorphic over X{0}X-\{0\} and E:=π1(0)E:=\pi^{-1}(0). By [Pro01, Lemma 3.2.1], we have

(4.10) KY=πKX+(1+a+br)EπC=C~+mC(a,b)E\begin{split}K_{Y}=&\pi^{\ast}K_{X}+(-1+\frac{a+b}{r})E\\ \pi^{\ast}C=&\widetilde{C}+m_{C}(a,b)E\end{split}

where C~\widetilde{C} is the proper transform of CC and

mC(a,b):=min{ai+bj|xiyjis a monomial of local equation defining C}.m_{C}(a,b):=\min\{a\cdot i+b\cdot j\ |\ x^{i}y^{j}\ \hbox{is a monomial of local equation defining }C\ \}.

4.1.1. SS-functions of 𝔾m\mathbb{G}_{m}-invariant prime divisors on 𝔽1\mathbb{F}_{1}

Let Hx,Hy,HzH_{x},H_{y},H_{z} be the proper transform of divisors {x=0}\{x=0\},{y=0}\{y=0\} and {z=0}\{z=0\} under the blowup μ:𝔽12\mu:\mathbb{F}_{1}\rightarrow{\mathbb{P}}^{2} of 2{\mathbb{P}}^{2} at point [0,0,1][0,0,1]. Then

HxHyHzEμ𝒪2(1)EH_{x}\sim H_{y}\sim H_{z}-E\sim\mu^{\ast}{\mathcal{O}}_{{\mathbb{P}}^{2}}(1)-E

where EE is exceptional divisor. Moreover,

Hx2=0,Hx.E=1.H_{x}^{2}=0,\ H_{x}.E=1.

By a theorem of Miyaoka (see also [Ful11, Lemma2.1]), the nef cone Nef(𝔽1)Nef(\mathbb{F}_{1}) of 𝔽1\mathbb{F}_{1} is generated by HxH_{x} and E+HxE+H_{x}, or equivalently, the Mori cone NE(𝔽1)\operatorname{\mathrm{NE}}(\mathbb{F}_{1}) of 𝔽1\mathbb{F}_{1} is generated by HxH_{x} and EE. Actually, if CC is an effective curve on 𝔽1\mathbb{F}_{1}, one can write Caσ+bfC\sim a\sigma+bf for a,ba,b\in{\mathbb{Z}} and CC is not zero. Note that

p(𝒪𝔽1(aσ+bf))={0,a<0,𝒪1(b)syma(𝒪𝒪(1)),a0.p_{\ast}({\mathcal{O}}_{\mathbb{F}_{1}}(a\sigma+bf))=\left\{\begin{aligned} 0&,&\ a<0,\\ {\mathcal{O}}_{{\mathbb{P}}^{1}}(b)\otimes sym^{a}({\mathcal{O}}\oplus{\mathcal{O}}(-1))&,&a\geq 0.\end{aligned}\right.

implies a0a\geq 0 and b0b\geq 0. Conversely,

H0(𝒪𝔽1(aσ+bf))0ifa0,b0H^{0}({\mathcal{O}}_{\mathbb{F}_{1}}(a\sigma+bf))\neq 0\ \ \hbox{if}\ \ a\geq 0,\ b\geq 0
Proposition 4.2.

Notation as above, then

S(𝔽1,cC)(Hz)=56(12c),S(𝔽1,cC)(Hx)=S(𝔽1,cC)(Hy)=1312(12c)S(𝔽1,cC)(E)=76(12c).\begin{split}S_{(\mathbb{F}_{1},cC)}(H_{z})=&\frac{5}{6}(1-2c),\ \ \ S_{(\mathbb{F}_{1},cC)}(H_{x})=S_{(\mathbb{F}_{1},cC)}(H_{y})=\frac{13}{12}(1-2c)\\ S_{(\mathbb{F}_{1},cC)}(E)=&\frac{7}{6}(1-2c).\end{split}
Proof.

Clearly, we have

KX=3Hx+2E.-K_{X}=3H_{x}+2E.

To compute the volume function , it is sufficient to find Zariski decomposition for Lt:=KXtFL_{t}:=-K_{X}-tF where FF is either EE, HxH_{x}, HyH_{y} or HzH_{z}.

  1. (1)

    If F=EF=E, then

    Lt=3Hx+(2t)E=(2t)(EHx)+(5t)HxL_{t}=3H_{x}+(2-t)E=(2-t)(E-H_{x})+(5-t)H_{x}

    is nef for t2t\leq 2 and

    Lt2=(4+t)(2t)L_{t}^{2}=(4+t)\cdot(2-t)

    Thus, the psudo-effective threshold is τ=2\tau=2 and thus

    02vol(Lt)𝑑t=02Lt2𝑑t=283\begin{split}\int_{0}^{2}\operatorname{\mathrm{vol}}(L_{t})dt=&\int_{0}^{2}L_{t}^{2}dt=\frac{28}{3}\end{split}

    and the formula (4.9) shows S(𝔽1,cC)(E)=76(12c)S_{(\mathbb{F}_{1},cC)}(E)=\frac{7}{6}(1-2c).

  2. (2)

    If F=HxF=H_{x}, then Lt=(3(12c)t)Hx+2(12c)EL_{t}=(3(1-2c)-t)H_{x}+2(1-2c)E is nef for 0t(12c)0\leq t\leq(1-2c) and thus its volume is

    Lt2=4(12c)t+8(12c)2.L_{t}^{2}=-4(1-2c)t+8(1-2c)^{2}.

    For (12c)t(1-2c)\leq t, the Zariski decomposition Lt=Pt+NtL_{t}=P_{t}+N_{t} where

    Pt=(3(12c)t)(Hx+E)P_{t}=(3(1-2c)-t)(H_{x}+E)

    Therefore, we get

    Pt2=(3(12c)t)2P_{t}^{2}=(3(1-2c)-t)^{2}

    In particular, the pesudo-effective threshold is 3(12c)3(1-2c) and thus

    0τvol(Lt)𝑑t=0(12c)Lt2𝑑t+12c3(12c)Pt2𝑑t=263(12c)3\begin{split}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(L_{t})dt=&\int_{0}^{(1-2c)}L_{t}^{2}dt+\int_{1-2c}^{3(1-2c)}P_{t}^{2}dt=\frac{26}{3}(1-2c)^{3}\end{split}
  3. (3)

    If F=HzF=H_{z}, then Lt=(3(12c)t)Hx+(2(12c)t)EL_{t}=(3(1-2c)-t)H_{x}+(2(1-2c)-t)E is nef for 0t0\leq t and

    Lt2=(4(12c)t)(2(12c)t)L_{t}^{2}=(4(1-2c)-t)\cdot(2(1-2c)-t)

    Thus, the pesudo-effective threshold is 2(12c)2(1-2c) and

    0τvol(Lt)𝑑t=03(12c)Lt2𝑑t=203(12c)3\begin{split}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(L_{t})dt=&\int_{0}^{3(1-2c)}L_{t}^{2}dt=\frac{20}{3}(1-2c)^{3}\end{split}

Then we finish the proof by applying the formula (4.9). ∎

Fix the blowup π:𝔽1Blp22\pi:\mathbb{F}_{1}\cong Bl_{p}{\mathbb{P}}^{2}\rightarrow{\mathbb{P}}^{2} where p=[1,0,0]p=[1,0,0]. For complexity one pair (𝔽1,cC)(\mathbb{F}_{1},cC), we can choose a suitable coordinate [x,y,z][x,y,z] on 2{\mathbb{P}}^{2} such that the maximal torus action λ:𝔾mAut(𝔽1,C)\lambda:\mathbb{G}_{m}\rightarrow\operatorname{Aut}(\mathbb{F}_{1},C) can be regarded as the lifting of the action λ(t)[x,y,z]=[tλ1x,tλ2y,tλ3z]\lambda(t)[x,y,z]=[t^{\lambda_{1}}x,t^{\lambda_{2}}y,t^{\lambda_{3}}z]. To compute SS-function of the divisorial valuation determined by λ\lambda, we need to figure out the relation between the weight (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}) and the induced valuation ordF\operatorname{\mathrm{ord}}_{F}.

Case 1.
min{λ1,λ2,λ3}=λ2(resp.λ3)\min\{\lambda_{1},\lambda_{2},\lambda_{3}\}=\lambda_{2}(\text{resp}.\leavevmode\nobreak\ \lambda_{3})

In this case ordF\operatorname{\mathrm{ord}}_{F} is given by the exceptional divisor of the weighted blowup along the point [0,1,0][0,1,0] (resp[0,0,1][0,0,1]) with weight

wt(x)=λ1λ2,wt(z)=λ3λ2\operatorname{wt}(x)=\lambda_{1}-\lambda_{2},\operatorname{wt}(z)=\lambda_{3}-\lambda_{2}
(resp.wt(x)=λ1λ3,wt(y)=λ2λ3)(\text{resp}.\leavevmode\nobreak\ \operatorname{wt}(x)=\lambda_{1}-\lambda_{3},\operatorname{wt}(y)=\lambda_{2}-\lambda_{3})

on the local parameter (x,z)(x,z)( (resp(x,y)(x,y)). To simplify the symbol, we write

a:=λ1λ2,b:=λ3λ2a:=\lambda_{1}-\lambda_{2},b:=\lambda_{3}-\lambda_{2}
(resp.a:=λ1λ3,b:=λ2λ3)(\text{resp}.\leavevmode\nobreak\ a:=\lambda_{1}-\lambda_{3},b:=\lambda_{2}-\lambda_{3})
Case 2.
min{λ1,λ2,λ3}=λ1\min\{\lambda_{1},\lambda_{2},\lambda_{3}\}=\lambda_{1}

In this case the description about ordF\operatorname{\mathrm{ord}}_{F} is slightly complicated. Its center located on the exceptional divisor EE over 2{\mathbb{P}}^{2}, but the local parameter not only comes from 2{\mathbb{P}}^{2}. Note that 𝔽1[x,y,z]2×[u,v]1\mathbb{F}_{1}\subset{\mathbb{P}}^{2}_{[x,y,z]}\times{\mathbb{P}}^{1}_{[u,v]} is defined by equation {yvzu=0}\{yv-zu=0\} and 𝔾m\mathbb{G}_{m}-action on 𝔽1\mathbb{F}_{1} is restricted from a 𝔾m\mathbb{G}_{m}-action λ\lambda^{\prime} on 2×1{\mathbb{P}}^{2}\times{\mathbb{P}}^{1} given by

λ(t)([x,y,z],[u,v]):=([tλ1x,tλ2y,tλ3z],[tλ2u,tλ3v]).\lambda^{\prime}(t)([x,y,z],[u,v]):=([t^{\lambda_{1}}x,t^{\lambda_{2}}y,t^{\lambda_{3}}z],[t^{\lambda_{2}}u,t^{\lambda_{3}}v]).

Using the coordinate [u,v][u,v], we can accurately describe the induced valuation ordF\operatorname{\mathrm{ord}}_{F}.

  • If λ2>λ3\lambda_{2}>\lambda_{3}, then FF is the exceptional divisor of weighted blowup Y𝔽1Y\rightarrow\mathbb{F}_{1} where the center is ([1,0,0],[1,0])([1,0,0],[1,0]) and the local parameter is (z,u)(z,u) with weight

    a:=wt(z)=λ3λ1,b:=wt(u)=λ2λ3.a:=\operatorname{wt}(z)=\lambda_{3}-\lambda_{1},\ b:=\operatorname{wt}(u)=\lambda_{2}-\lambda_{3}.
  • If λ3>λ2\lambda_{3}>\lambda_{2}, then FF is the exceptional divisor of weighted blowup Y𝔽1Y\rightarrow\mathbb{F}_{1} where the center is ([1,0,0],[0,1])([1,0,0],[0,1]) and the local parameter is (y,v)(y,v) with weight

    a:=wt(y)=λ2λ1,b:=wt(v)=λ3λ2.a:=\operatorname{wt}(y)=\lambda_{2}-\lambda_{1},\ b:=\operatorname{wt}(v)=\lambda_{3}-\lambda_{2}.

We denote all the weighted blowups mentioned above as μ:Y𝔽1\mu\colon Y\rightarrow\mathbb{F}_{1}.

Lemma 4.3.

If μ:Y𝔽1\mu\colon Y\rightarrow\mathbb{F}_{1} is in the Case 2 mentioned above, then

NE¯(Y)=0[F]+0[E¯]+0[L¯]\overline{\operatorname{\mathrm{NE}}}(Y)={\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{L}]

where L¯\overline{L} is the strict transform of a line LL on 2{\mathbb{P}}^{2} passing through all the blowup centers, and E¯\overline{E} is the strict transform of exceptional divisor EE on 𝔽1\mathbb{F}_{1}.

Proof.

It is enough to prove the lemma under condition λ2>λ3\lambda_{2}>\lambda_{3}, the same argument applies to the remaining case. It is easy to check NS(Y)\operatorname{\mathrm{NS}}(Y) is generated by F,E¯F,\overline{E} and L¯\overline{L}. Moreover, their intersection matrix on YY is following

(FE¯L¯F1ab1b1aE¯1b1ab0L¯1a0ba)\left(\begin{array}[]{c|c c c }&F&\overline{E}&\overline{L}\\ \hline\cr F&-\frac{1}{ab}&\frac{1}{b}&\frac{1}{a}\\ \overline{E}&\frac{1}{b}&-1-\frac{a}{b}&0\\ \overline{L}&\frac{1}{a}&0&-\frac{b}{a}\\ \end{array}\right)

Note that F,E¯F,\overline{E} and L¯\overline{L} all have negative self intersections, so they are extremal curves by [Pro01, Section 11.2]. On the other hand, for any irreducible curve DYD\subset Y, if DFD\neq F and E¯\overline{E}, then we can write the equation of its image on 2{\mathbb{P}}^{2} by

xdefe(y,z)++xfd1(y,z)+fd(y,z)=0.x^{d-e}f_{e}(y,z)+\cdots+xf_{d-1}(y,z)+f_{d}(y,z)=0.

for some integers dd and ee. Thus the class of DD can be written as

dL¯+(de)E¯+(db+(de)am)F,d\overline{L}+(d-e)\overline{E}+(db+(d-e)a-m)F,

where m=ordF(μ(μ(D))D)m=\operatorname{\mathrm{ord}}_{F}(\mu^{*}(\mu(D))-D) is computed as in formula (4.10). In the local coordinate (z,u)(z,u), the equation of μ(D)\mu(D) is

fe(z)++ude1fd1(z)+udefd(z)=0.f_{e}(z)+\cdots+u^{d-e-1}f_{d-1}(z)+u^{d-e}f_{d}(z)=0.

DD is irreducible and so is μ(D)\mu(D). Thus there must exists uiu^{i} term, which implies that mibdbm\leq ib\leq db. So any curve on YY can be written as the positive linear combination of {F,E¯,L¯}\{F,\overline{E},\overline{L}\}, we deduce that NE¯(Y)=0[F]+0[E¯]+0[L¯]\overline{\operatorname{\mathrm{NE}}}(Y)={\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{L}].

Proposition 4.4.

If the weight of λ\lambda is in the Case 1, we have

S(𝔽1,cC)(ordF)={(a+bb212a)(12c),0<b<a13a+10b12(12c),baS_{(\mathbb{F}_{1},cC)}(\operatorname{\mathrm{ord}}_{F})=\begin{cases}(a+b-\frac{b^{2}}{12a})(1-2c),&0<b<a\\ \frac{13a+10b}{12}(1-2c),&b\geq a\end{cases}
Proposition 4.5.

If the weight of λ\lambda is in the Case 2, we have

S(𝔽1,cC)(ordF)=14a+13b12(12c)S_{(\mathbb{F}_{1},cC)}(\operatorname{\mathrm{ord}}_{F})=\frac{14a+13b}{12}(1-2c)
Proof.

By (4.9), we need to compute the volume of Lt=μK𝔽1tFL_{t}=-\mu^{*}K_{\mathbb{F}_{1}}-tF. To do so, it is sufficient to find the positive part of LtL_{t} defined in Proposition 4.1. Direct computation shows

(4.11) Lt.F=t,Lt.E¯=1tb,Lt.L¯=2ta.L_{t}.F=t,\ \ L_{t}.\overline{E}=1-\frac{t}{b},\ \ L_{t}.\overline{L}=2-\frac{t}{a}.

According to Lemma 4.3, LtL_{t} is nef when 0tmin{2a,b}0\leq t\leq\min\{2a,b\}. On the other hand, observe 8ab>min{2a,b}\sqrt{8ab}>\min\{2a,b\} and

Lt2=8t2ab0L_{t}^{2}=8-\frac{t^{2}}{ab}\geq 0

for 0tmin{2a,b}0\leq t\leq\min\{2a,b\}. So we get

P(Lt)=Lt, 0tmin{2a,b}P(L_{t})=L_{t},\ \ 0\leq t\leq\min\{2a,b\}

and we need to compute the positive part P(Lt)P(L_{t}) for tmin{2a,b}t\geq\min\{2a,b\}. We divide the remaining computations into two cases.

  • If min{2a,b}=b\min\{2a,b\}=b, from (4.11) LtL_{t} fails to be nef for t>bt>b which is due to Lt.E¯<0L_{t}.\overline{E}<0 for t>bt>b. So we may assume the negative part for t>bt>b is sE¯s\overline{E} for some s>0s>0 and thus the positive part P(Lt)=LtsE¯P(L_{t})=L_{t}-s\overline{E}. By Proposition 4.1, we know that

    P(Lt).E¯=(LtsE¯).E¯=0,P(L_{t}).\overline{E}=(L_{t}-s\overline{E}).\overline{E}=0,

    which implies s=LtE¯(E¯)2=tba+bs=\frac{L_{t}\overline{E}}{(\overline{E})^{2}}=\frac{t-b}{a+b}. Thus, the intersection numbers of P(Lt)P(L_{t}) with F,E¯F,\overline{E} and L¯\overline{L} are given by

    P(Lt).F=t+aa(a+b),P(Lt).E¯=0,P(Lt).L¯=2ataP(L_{t}).F=\frac{t+a}{a(a+b)},\ \ \ P(L_{t}).\overline{E}=0,\ \ \ P(L_{t}).\overline{L}=\frac{2a-t}{a}

    which implies that P2(Lt)P_{2}(L_{t}) is nef bt2ab\leq t\leq 2a. Then we have

    (P(Lt))2=Lt2sLtE¯=9(t+a)2a(a+b)>0,forbt2a.(P(L_{t}))^{2}=L_{t}^{2}-sL_{t}\cdot\overline{E}=9-\frac{(t+a)^{2}}{a(a+b)}>0,\ \ \ \ \hbox{for}\ b\leq t\leq 2a.

    So we need to continue finding the positive part of P(Lt)P(L_{t}) for t>2at>2a. The trick to find the positive part for Lt,bt2aL_{t},\ b\leq t\leq 2a will be applied again. We assume the negative part for P(Lt)P(L_{t}) is sL¯s^{\prime}\cdot\overline{L} for some s>0s^{\prime}>0 due to the fact P(Lt).L¯<0P(L_{t}).\overline{L}<0 for t>2at>2a. Then from

    P(Lt).L¯=(P(Lt)sL¯).L¯=0,P(L_{t}).\overline{L}=(P(L_{t})-s^{\prime}\overline{L}).\overline{L}=0,

    we get s=t2abs^{\prime}=\frac{t-2a}{b} and

    P(Lt)=(3b+2at)(1bμπLa(a+b)bμEaa+bF).P(L_{t})=(3b+2a-t)(\frac{1}{b}\mu^{*}\pi^{*}L-\frac{a}{(a+b)b}\mu^{*}E-\frac{a}{a+b}F).

    Thus, we have the following intersection number

    (P(Lt))2=(LtsE¯sL¯)2=(3b+2at)2(a+b)b(P(L_{t}))^{2}=(L_{t}-s\cdot\overline{E}-s^{\prime}\cdot\overline{L})^{2}=\frac{(3b+2a-t)^{2}}{(a+b)b}

    and P(Lt).F,P(Lt).E¯,P3(Lt).L¯P(L_{t}).F,\ P(L_{t}).\overline{E},\ P_{3}(L_{t}).\overline{L} are non-negative for 2at2a+3b2a\leq t\leq 2a+3b. Therefore, we conclude that the pesudo-effective threshold of LtL_{t} is

    τ=3b+2a.\tau=3b+2a.

    In a summary, the Zariski decomposition of LtL_{t} in this case is given by

    P(Lt)={Lt, 0tb,Lttba+bE¯,bt2a,Lttba+bE¯t2abL¯, 2at2a+3bP(L_{t})=\begin{cases}L_{t},&\ \ 0\leq t\leq b,\\ L_{t}-\frac{t-b}{a+b}\overline{E},&\ \ b\leq t\leq 2a,\\ L_{t}-\frac{t-b}{a+b}\overline{E}-\frac{t-2a}{b}\overline{L},&\ \ 2a\leq t\leq 2a+3b\end{cases}
  • if min{2a,b}=2a\min\{2a,b\}=2a, the computation is parallel to the case min{2a,b}=b\min\{2a,b\}=b and we leave it to the interested reader. In the case, we have Zariski decomposition

    P(Lt)={Lt, 0t2a,Ltt2abL¯, 2atb,Ltt2abL¯tba+bE¯,bt2a+3bP(L_{t})=\begin{cases}L_{t},&\ 0\leq t\leq 2a,\\ L_{t}-\frac{t-2a}{b}\overline{L},&\ 2a\leq t\leq b,\\ L_{t}-\frac{t-2a}{b}\overline{L}-\frac{t-b}{a+b}\overline{E},&\ b\leq t\leq 2a+3b\end{cases}

A direct computation shows that in both cases we have

0vol(Lt)𝑑t=0(Pt)2𝑑t=28a+26b3.\int_{0}^{\infty}\operatorname{\mathrm{vol}}(L_{t})dt=\int_{0}^{\infty}(P_{t})^{2}dt=\frac{28a+26b}{3}.

So we conclude that

S(𝔽1,cC)(F)=12c828a+26b3=14a+13b12(12c).S_{(\mathbb{F}_{1},cC)}(F)=\frac{1-2c}{8}\cdot\frac{28a+26b}{3}=\frac{14a+13b}{12}(1-2c).

4.1.2. S-functions on Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4)

Now we consider S-functions on Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4) for 𝔾m\mathbb{G}_{m}-invariant prime divisors. Let π:X=Blp(1,1,4)(1,1,4)\pi:X=Bl_{p}{\mathbb{P}}(1,1,4)\rightarrow{\mathbb{P}}(1,1,4) be the blowup at the smooth point p=[1,0,0]p=[1,0,0]. As before, denote Hx,Hy,HzH_{x},H_{y},H_{z} be the proper transform of divisors {x=0}\{x=0\},{y=0}\{y=0\} and {z=0}\{z=0\}. Then

Hz4Hy+3E,HyHxE,Hxπ𝒪(1).H_{z}\sim 4H_{y}+3E,\ \ H_{y}\sim H_{x}-E,\ H_{x}\sim\pi^{\ast}{\mathcal{O}}(1).

Their intersection numbers are

Hy2=34,Hy.E=1,E2=1.H_{y}^{2}=-\frac{3}{4},\ H_{y}.E=1,\ E^{2}=-1.

Let CaHy+bEC\sim aH_{y}+bE be an effective curve on Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4), thus

H0(X,𝒪X(C))=H0((1,1,4),𝒪(a)μ𝒪X((ba)E))0H^{0}(X,{\mathcal{O}}_{X}(C))=H^{0}({\mathbb{P}}(1,1,4),{\mathcal{O}}(a)\otimes\mu_{\ast}{\mathcal{O}}_{X}((b-a)E))\neq 0

provided either a>0a>0 and or a=0a=0 and b1b\geq 1.

Proposition 4.6.

On the surface X=Blp(1,1,4)X=Bl_{p}{\mathbb{P}}(1,1,4), we have

S(X,cC)(E)=8348(12c),S(X,cC)(Hx)=4124(12c),S(X,cC)(Hy)=5324(12c),S(X,cC)(Hz)=2548(12c)\begin{split}S_{(X,cC)}(E)=&\frac{83}{48}(1-2c),\ \ \ S_{(X,cC)}(H_{x})=\frac{41}{24}(1-2c),\\ S_{(X,cC)}(H_{y})=&\frac{53}{24}(1-2c),\ \ \ S_{(X,cC)}(H_{z})=\frac{25}{48}(1-2c)\\ \end{split}
Proof.

First we note that a non-zero nef {\mathbb{Q}}-divisor LL on XX is of the form

(4.12) LHy+tEfor34t1.L\sim_{\mathbb{Q}}H_{y}+t\cdot E\ \ \ \hbox{for}\ \ \ \frac{3}{4}\leq t\leq 1.

Then following the procedure of computations for 𝔽1\mathbb{F}_{1}, We need to compute the volume function of Lt:=KXcCtFL_{t}:=-K_{X}-cC-tF for FF is EE, HxH_{x}, HyH_{y} or HzH_{z}. Note that

KXcC(12c)(6Hy+5E).-K_{X}-cC\sim(1-2c)(6H_{y}+5E).
  1. (1)

    If F=EF=E, then by the (4.12) Lt=6(12c)Hy+(5(12c)t)EL_{t}=6(1-2c)H_{y}+(5(1-2c)-t)E is nef for 0t(12c)20\leq t\leq\frac{(1-2c)}{2} and so its volume is

    Lt2=t22(12c)t+8(12c)2.L_{t}^{2}=-t^{2}-2(1-2c)t+8(1-2c)^{2}.

    For (12c)2t\frac{(1-2c)}{2}\leq t, we get the Zariski decomposition Lt=Pt+NtL_{t}=P_{t}+N_{t} of LtL_{t} where

    Pt=(5(12c)t)(43Hy+E).P_{t}=(5(1-2c)-t)(\frac{4}{3}H_{y}+E).

    Therefore,

    vol(Lt)=Pt2=(5(12c)t)23.\operatorname{\mathrm{vol}}(L_{t})=P_{t}^{2}=\frac{(5(1-2c)-t)^{2}}{3}.

    In particular, the pesudo-effective threshold is 5(12c)5(1-2c). Thus, we get

    0τvol(Lt)𝑑t=0(12c)2Lt2𝑑t+(12c)25(12c)Pt2𝑑t=836(12c)3.\begin{split}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(L_{t})dt=&\int_{0}^{\frac{(1-2c)}{2}}L_{t}^{2}dt+\int_{\frac{(1-2c)}{2}}^{5(1-2c)}P_{t}^{2}dt=\frac{83}{6}(1-2c)^{3}.\end{split}
  2. (2)

    If F=HyF=H_{y}, then Lt=(6(12c)t)Hy+5(12c)EL_{t}=(6(1-2c)-t)H_{y}+5(1-2c)E is nef for 0t(12c)0\leq t\leq(1-2c) and

    Lt2=14(3t8(12c))(t+4(12c)).L_{t}^{2}=-\frac{1}{4}(3t-8(1-2c))(t+4(1-2c)).

    For (12c)t(1-2c)\geq t, we get the Zariski decomposition Lt=Pt+NtL_{t}=P_{t}+N_{t} of LtL_{t} with

    Pt=(6(12c)t)(Hy+E)P_{t}=(6(1-2c)-t)(H_{y}+E)

    So the pesudo-effective threshold is 6(12c)6(1-2c). Therefore, we have

    0τvol(Lt)𝑑t=125+8712(12c)3.\begin{split}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(L_{t})dt=\frac{125+87}{12}(1-2c)^{3}.\end{split}
  3. (3)

    If F=HxF=H_{x}, then Lt=6(12c)t)Hy+(5(12c)t)EL_{t}=6(1-2c)-t)H_{y}+(5(1-2c)-t)E is nef for 0t2(12c)0\leq t\leq 2(1-2c) and

    Lt2=14t23(12c))t+8(12c)2.L_{t}^{2}=\frac{1}{4}t^{2}-3(1-2c))t+8(1-2c)^{2}.

    For 2(12c)>t2(1-2c)>t, the positive part of Zariski decomposition for LtL_{t} is

    Pt=5(12c)t3(4Hy+3E)P_{t}=\frac{5(1-2c)-t}{3}(4H_{y}+3E)

    and thus the volume of LtL_{t} is

    Pt2=(5(12c)t)23.P_{t}^{2}=\frac{(5(1-2c)-t)^{2}}{3}.

    Therefore, the pesudo-effective threshold is 5(12c)5(1-2c) and

    0τvol(Lt)𝑑t=413(12c)3\begin{split}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(L_{t})dt=\frac{41}{3}(1-2c)^{3}\end{split}
  4. (4)

    If F=HzF=H_{z}, then Lt=6(12c)4t)Hy+(5(12c)3t)EL_{t}=6(1-2c)-4t)H_{y}+(5(1-2c)-3t)E is nef for 0t(12c)0\leq t\leq(1-2c) and

    Lt2=3t210(12c)t+8(12c)2.L_{t}^{2}=3t^{2}-10(1-2c)t+8(1-2c)^{2}.

    For t>(12c)t>(1-2c), the positive part of LtL_{t} is given by

    Pt=(6(12c)4t)(Hy+E)P_{t}=(6(1-2c)-4t)\cdot(H_{y}+E)

    and thus

    Pt2=(3(12c)2t)2.P_{t}^{2}=(3(1-2c)-2t)^{2}.

    So the pesudo-effective threshold τ\tau is 32(12c)\frac{3}{2}(1-2c). This gives

    0τvol(Lt)𝑑t=012cLt2𝑑t+12c32(12c)Pt2𝑑t=256(12c)3.\begin{split}\int_{0}^{\tau}\operatorname{\mathrm{vol}}(L_{t})dt=&\int_{0}^{1-2c}L_{t}^{2}dt+\int_{1-2c}^{\frac{3}{2}(1-2c)}P_{t}^{2}dt=\frac{25}{6}(1-2c)^{3}.\end{split}

Let 𝔾m\mathbb{G}_{m} be a 1-PS acting on (1,1,4){\mathbb{P}}(1,1,4) with weight (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}). Similar to the case in 𝔽1\mathbb{F}_{1}, we can classify the induced divisorial valuation ordF\operatorname{\mathrm{ord}}_{F} by the weight (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}). In the affine open subset U={x=1}U=\{x=1\}, π1(U)Bl[1,0,0](1,1,4)\pi^{-1}(U)\subset Bl_{[1,0,0]}{\mathbb{P}}(1,1,4) is isomorphic to

{(y,z)×[u,v]|yv=zu}.\{(y,z)\times[u,v]\ |\ yv=zu\}.
  • Case 11^{\prime}

    : λ2λ1<λ34λ1<0\lambda_{2}-\lambda_{1}<\lambda_{3}-4\lambda_{1}<0. Then FF is the exceptional divisor of the weighted blow up μ:YX\mu:Y\rightarrow X where the center is ([1,0,0],[1,0])([1,0,0],[1,0]) and the local coordinate is (z,u)(z,u) with weight

    a:=wt(z)=(λ34λ1),b:=wt(u)=λ2+λ1+(λ34λ1)a:=\mathrm{wt}(z)=-(\lambda_{3}-4\lambda_{1}),\ \ b:=\mathrm{wt}(u)=-\lambda_{2}+\lambda_{1}+(\lambda_{3}-4\lambda_{1})
  • Case 22^{\prime}

    : λ34λ1>λ2λ1>0\lambda_{3}-4\lambda_{1}>\lambda_{2}-\lambda_{1}>0. Then FF is the exceptional divisor of the weighted blowup μ:YX\mu:Y\rightarrow X where the center is ([1,0,0],[0,1])([1,0,0],[0,1]) and the local coordinate is (y,v)(y,v) with weight

    a:=wt(y)=λ2λ1,b:=wt(v)=λ34λ1(λ2λ1).a:=\mathrm{wt}(y)=\lambda_{2}-\lambda_{1},\ \ b:=\mathrm{wt}(v)=\lambda_{3}-4\lambda_{1}-(\lambda_{2}-\lambda_{1}).
  • Case 33^{\prime}

    : λ1λ2>0,λ34λ2>0\lambda_{1}-\lambda_{2}>0,\lambda_{3}-4\lambda_{2}>0. Then FF is the exceptional divisor of the weighted blowup μ:YX\mu:Y\rightarrow X where the center on (1,1,4){\mathbb{P}}(1,1,4) is [0,1,0][0,1,0] and the local coordinate is (x,z)(x,z) with weight

    a:=wt(x)=λ1λ2,b:=wt(z)=λ34λ2.a:=\mathrm{wt}(x)=\lambda_{1}-\lambda_{2},\ \ b:=\mathrm{wt}(z)=\lambda_{3}-4\lambda_{2}.

The remaining cases can be reduced to the above cases. For example, if λ1λ2>0,λ34λ2<0\lambda_{1}-\lambda_{2}>0,\lambda_{3}-4\lambda_{2}<0, then it can be reduced to Case1’ or Case2’ by replace (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}) by (λ1,λ2,λ3)(-\lambda_{1},-\lambda_{2},-\lambda_{3}).

Lemma 4.7.

Let μ:YX\mu\colon Y\rightarrow X be the weighted blowup mentioned above. We denote the strict transform of EE, HxH_{x}, HyH_{y}, HzH_{z} on YY by E¯\overline{E}, H¯x\overline{H}_{x}, H¯y\overline{H}_{y}, H¯z\overline{H}_{z} respectively. Then

  1. (1)

    in the Case 11^{\prime},

    NE¯(Y)=0[F]+0[E¯]+0[H¯y]\overline{\operatorname{\mathrm{NE}}}(Y)={\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{y}]
  2. (2)

    in the Case 22^{\prime},

    NE¯(Y)={0[F]+0[E¯]+0[H¯y]if 0<b3a0[F]+0[E¯]+0[H¯y]+0[H¯z]otherwise\overline{\operatorname{\mathrm{NE}}}(Y)=\begin{cases}{\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{y}]&\hbox{if}\ 0<b\leq 3a\\ {\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{y}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{z}]&\ \hbox{otherwise}\end{cases}
  3. (3)

    in the Case 33^{\prime},

    NE¯(Y)={0[F]+0[E¯]+0[H¯x]0<b3a0[F]+0[E¯]+0[H¯x]+0[H¯z]a<b4a0[F]+0[E¯]+0[H¯z]b4a\overline{\operatorname{\mathrm{NE}}}(Y)=\begin{cases}{\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{x}]&0<b\leq 3a\\ {\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{x}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{z}]&a<b\leq 4a\\ {\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{z}]&b\geq 4a\end{cases}
Proof.

It is clear that ρ(Y)=3\rho(Y)=3. Now we determine the Mori cone in the three cases as discussed above.

  • Case 11^{\prime}

    : In this case the basis of Pic(Y)\operatorname{\mathrm{Pic}}(Y)_{{\mathbb{R}}} can be chosen by {F,E¯,H¯y}\{F,\overline{E},\overline{H}_{y}\}. The intersection matrix on YY is the following:

    (FE¯H¯yF1ab1b1aE¯1b1ab0H¯y1a034ba)\left(\begin{array}[]{c|c c c}&F&\overline{E}&\overline{H}_{y}\\ \hline\cr F&-\frac{1}{ab}&\frac{1}{b}&\frac{1}{a}\\ \overline{E}&\frac{1}{b}&-1-\frac{a}{b}&0\\ \overline{H}_{y}&\frac{1}{a}&0&-\frac{3}{4}-\frac{b}{a}\\ \end{array}\right)

    Note that F,E¯F,\overline{E} and H¯y\overline{H}_{y} all have negative self-intersections, so they are extremal curves by [Pro01, Section 11.2]. On the other hand, for any irreducible curve DYD\subset Y, if DFD\neq F and E¯\overline{E}, then we can write the equation of its image on (1,1,4){\mathbb{P}}(1,1,4) by

    zdfl(x,y)+zd1fl+4(x,y)++f4d+l(x,y)=0z^{d}f_{l}(x,y)+z^{d-1}f_{l+4}(x,y)+...+f_{4d+l}(x,y)=0

    for some integer dd and l{0,1,2,3}l\in\{0,1,2,3\}. Thus the class of DD can be written as

    (4d+l)H¯y+(4d+le)E¯+((4d+l)bm+(4d+le)a)F,(4d+l)\overline{H}_{y}+(4d+l-e)\overline{E}+((4d+l)b-m+(4d+l-e)a)F,

    where e=ordE(μ(D))e=\operatorname{\mathrm{ord}}_{E}(\mu(D)) and m=ordF(μ(μ(D))D)m=\operatorname{\mathrm{ord}}_{F}(\mu^{*}(\mu(D))-D) is computed as in formula (4.10). Note that ed+le\leq d+l. In the local coordinate (z,u)(z,u), the equation of μ(D)\mu(D) is

    ze(zdfl(zu)++zf4d+l4(zu)+f4d+l(zu))=0.z^{-e}(z^{d}f_{l}(zu)+\cdots+zf_{4d+l-4}(zu)+f_{4d+l}(zu))=0.

    DD is irreducible and so is μ(D)\mu(D). Thus there must exists uiu^{i} term, which implies that mib(4d+l)bm\leq ib\leq(4d+l)b. So any curve on YY can be written as the positive linear combination of {F,E¯,H¯y}\{F,\overline{E},\overline{H}_{y}\}, we deduce that NE¯(Y)=0[F]+0[E¯]+0[H¯y]\overline{\operatorname{\mathrm{NE}}}(Y)={\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{y}].

  • Case 22^{\prime}

    : In this case the basis of Pic(Y)\operatorname{\mathrm{Pic}}(Y)_{{\mathbb{R}}} can be chosen by {F,E¯,H¯y}\{F,\overline{E},\overline{H}_{y}\} and their intersection matrix is the following

    (FE¯H¯yF1ab1b1aE¯1b1ab0H¯y1a034)\left(\begin{array}[]{ c |c c c }&F&\overline{E}&\overline{H}_{y}\\ \hline\cr F&-\frac{1}{ab}&\frac{1}{b}&\frac{1}{a}\\ \overline{E}&\frac{1}{b}&-1-\frac{a}{b}&0\\ \overline{H}_{y}&\frac{1}{a}&0&-\frac{3}{4}\\ \end{array}\right)

    Observe that {F,E¯,L¯y}\{F,\overline{E},\overline{L}_{y}\} both have negative self-intersection, so they must be extremal. However, (H¯z)2=3ba(\overline{H}_{z})^{2}=3-\frac{b}{a}, its sign depends on (a,b)(a,b). Using the same arguments as above, we see that

    NE¯(Y)={0[F]+0[E¯]+0[H¯y]if 0<b3a0[F]+0[E¯]+0[H¯y]+0[H¯z]ifb>3a\overline{\operatorname{\mathrm{NE}}}(Y)=\begin{cases}{\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{y}]&\ \hbox{if}\ 0<b\leq 3a\\ {\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{y}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{z}]&\ \hbox{if}\ b>3a\\ \end{cases}
  • Case 33^{\prime}

    : In this case the basis of Pic(Y)\operatorname{\mathrm{Pic}}(Y)_{{\mathbb{R}}} can be chosen by {F,E¯,H¯x}\{F,\overline{E},\overline{H}_{x}\}. The intersection matrix on YY is the following

    (FE¯H¯xF1ab01aE¯010H¯x1a014ab)\left(\begin{array}[]{c|c c c }&F&\overline{E}&\overline{H}_{x}\\ \hline\cr F&-\frac{1}{ab}&0&\frac{1}{a}\\ \overline{E}&0&-1&0\\ \overline{H}_{x}&\frac{1}{a}&0&\frac{1}{4}-\frac{a}{b}\\ \end{array}\right)

    We can see that FF and E¯\overline{E} are extremal. Note that

    (H¯x)2=14ab,(H¯z)2=3ba.(\overline{H}_{x})^{2}=\frac{1}{4}-\frac{a}{b},\ \ (\overline{H}_{z})^{2}=3-\frac{b}{a}.

    Hence

    • if 0<b3a0<b\leq 3a, then H¯x\overline{H}_{x} is extremal but H¯z\overline{H}_{z} is not extremal.

    • if 3a<b4a3a<b\leq 4a, then H¯x\overline{H}_{x} and H¯z\overline{H}_{z} are both extremal.

    • if b4ab\geq 4a, then H¯z\overline{H}_{z} is extremal but H¯x\overline{H}_{x} is not extremal.

    Using the same arguments again we conclude that

    NE¯(Y)={0[F]+0[E¯]+0[H¯x]0<b3a0[F]+0[E¯]+0[H¯x]+0[H¯z]3a<b4a0[F]+0[E¯]+0[H¯z]b4a\overline{\operatorname{\mathrm{NE}}}(Y)=\begin{cases}{\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{x}]&0<b\leq 3a\\ {\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{x}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{z}]&3a<b\leq 4a\\ {\mathbb{R}}_{\geq 0}[F]+{\mathbb{R}}_{\geq 0}[\overline{E}]+{\mathbb{R}}_{\geq 0}[\overline{H}_{z}]&b\geq 4a\end{cases}

Proposition 4.8.

If the weight of λ\lambda in the Case 11^{\prime}, then SS-function of the valuation ordF\operatorname{\mathrm{ord}}_{F} is given by

S(X,cC)(ordF)=106b+83a48(12c)S_{(X,cC)}(\operatorname{\mathrm{ord}}_{F})=\frac{106b+83a}{48}(1-2c)
Proof.

By (4.9), we need to compute the volume of Lt=μKXtFL_{t}=-\mu^{*}K_{X}-tF. To do so, finding the positive part of LtL_{t} defined in Proposition 4.1 is sufficient. Direct computation shows

(4.13) Lt.F=tab,Lt.E¯=1tb,Lt.H¯y=12ta.L_{t}.F=\frac{t}{ab},\ \ L_{t}.\overline{E}=1-\frac{t}{b},\ \ L_{t}.\overline{H}_{y}=\frac{1}{2}-\frac{t}{a}.

Thus, according to Lemma 4.7, LtL_{t} is nef when 0tmin{a2,b}0\leq t\leq\min\{\frac{a}{2},b\}. On the other hand, observe 8ab>min{a2,b}\sqrt{8ab}>\min\{\frac{a}{2},b\} and thus

Lt2=8t2ab0L_{t}^{2}=8-\frac{t^{2}}{ab}\geq 0

for 0tmin{a2,b}0\leq t\leq\min\{\frac{a}{2},b\}. So we get

P(Lt)=Lt, 0tmin{a2,b}P(L_{t})=L_{t},\ \ 0\leq t\leq\min\{\frac{a}{2},b\}

and need to compute the positive part P(Lt)P(L_{t}) for tmin{a2,b}t\geq\min\{\frac{a}{2},b\}.

We divide the remaining computations into two cases.

  • If min{a2,b}=b\min\{\frac{a}{2},b\}=b, from (4.13) LtL_{t} fails to be nef for t>bt>b since Lt.E¯<0L_{t}.\overline{E}<0 for t>bt>b. So we may assume the negative part for t>bt>b is sE¯s\overline{E} for some s>0s>0 and thus the positive part P2(Lt)=LtsE¯P_{2}(L_{t})=L_{t}-s\overline{E}. By Proposition 4.1, we know that

    P(Lt).E¯=(LtsE¯).E¯=0,P(L_{t}).\overline{E}=(L_{t}-s\overline{E}).\overline{E}=0,

    which implies

    s=LtE¯(E¯)2=tba+b.s=\frac{L_{t}\overline{E}}{(\overline{E})^{2}}=\frac{t-b}{a+b}.

    Then by direct computation, the intersection numbers of P(Lt)P(L_{t}) with F,E¯F,\overline{E} and L¯\overline{L} are given by

    P(Lt).F=t+aa(a+b),P(Lt).E¯=0,P(Lt).H¯y=12taP(L_{t}).F=\frac{t+a}{a(a+b)},\ \ \ P(L_{t}).\overline{E}=0,\ \ \ P(L_{t}).\overline{H}_{y}=\frac{1}{2}-\frac{t}{a}

    which implies that P(Lt)P(L_{t}) is nef bta2b\leq t\leq\frac{a}{2}. So we have

    P(Lt)2=Lt2sLtE¯=8t2abtba+b(1tb)>0,forbta2.P(L_{t})^{2}=L_{t}^{2}-sL_{t}\cdot\overline{E}=8-\frac{t^{2}}{ab}-\frac{t-b}{a+b}(1-\frac{t}{b})>0,\ \ \ \hbox{for}\ b\leq t\leq\frac{a}{2}.

    And we need to continue finding the positive part of P(Lt)P(L_{t}) for t>a2t>\frac{a}{2}. The same trick to find the positive part LtL_{t} for bta2b\leq t\leq\frac{a}{2} will be applied again. We assume the negative part for P(Lt)P(L_{t}) is sH¯ys^{\prime}\cdot\overline{H}_{y} for some s>0s^{\prime}>0 due to the fact P(Lt).H¯y<0P(L_{t}).\overline{H}_{y}<0 for t>a2t>\frac{a}{2}. Then from

    P(L).H¯y=(P(Lt)sH¯y).H¯y=0,P(L).\overline{H}_{y}=(P(L_{t})-s^{\prime}\overline{H}_{y}).\overline{H}_{y}=0,

    we get s=4t2a3a+4bs^{\prime}=\frac{4t-2a}{3a+4b} and

    P(Lt)2=(LtsE¯sH¯y)2=(5a+6b)2(a+b)(3a+4b).P(L_{t})^{2}=(L_{t}-s\cdot\overline{E}-s^{\prime}\cdot\overline{H}_{y})^{2}=\frac{(5a+6b)^{2}}{(a+b)(3a+4b)}.

    Moreover, P(Lt).F,P(Lt).E¯,P(Lt).H¯yP(L_{t}).F,\ P(L_{t}).\overline{E},\ P(L_{t}).\overline{H}_{y} are non-negative for a2t5a+6b\frac{a}{2}\leq t\leq 5a+6b. Thus, we conclude that the pesudo-effective threshold of LtL_{t} is

    τ=5b+6a.\tau=5b+6a.

    In a summary, the Zariski decomposition of LtL_{t} in this case is given by

    P(Lt)={Lt, 0tb,Lttba+bE¯,bta2,Lttba+bE¯4t2a3a+4bH¯y,a2t5a+6bP(L_{t})=\begin{cases}L_{t},&\ \ 0\leq t\leq b,\\ L_{t}-\frac{t-b}{a+b}\overline{E},&\ \ b\leq t\leq\frac{a}{2},\\ L_{t}-\frac{t-b}{a+b}\overline{E}-\frac{4t-2a}{3a+4b}\overline{H}_{y},&\ \ \frac{a}{2}\leq t\leq 5a+6b\end{cases}
  • if min{a2,b}=a2\min\{\frac{a}{2},b\}=\frac{a}{2}, the computation is parallel to the case min{a2,b}=b\min\{\frac{a}{2},b\}=b and we leave it to the interested reader. In the case, we have Zariski decomposition

    P(Lt)={Lt, 0ta2,Lt4t2a3a+4bH¯y,a2tb,Lt4t2a3a+4bH¯ytba+bE¯,bt5a+6bP(L_{t})=\begin{cases}L_{t},&\ 0\leq t\leq\frac{a}{2},\\ L_{t}-\frac{4t-2a}{3a+4b}\overline{H}_{y},&\ \frac{a}{2}\leq t\leq b,\\ L_{t}-\frac{4t-2a}{3a+4b}\overline{H}_{y}-\frac{t-b}{a+b}\overline{E},&\ b\leq t\leq 5a+6b\end{cases}

    A direct computation shows that in both cases we have

    0vol(Lt)𝑑t=0Pt2𝑑t=106a+83b6.\int_{0}^{\infty}\operatorname{\mathrm{vol}}(L_{t})dt=\int_{0}^{\infty}P_{t}^{2}dt=\frac{106a+83b}{6}.

    So we conclude that

    S(𝔽1,cC)(F)=12c8106a+83b6=106a+83b48(12c).S_{(\mathbb{F}_{1},cC)}(F)=\frac{1-2c}{8}\cdot\frac{106a+83b}{6}=\frac{106a+83b}{48}(1-2c).

For Case 22^{\prime} and Case 33^{\prime}, the computation is similar. We omit it and state the computational result as follows

Proposition 4.9.

The SS-function of the valuation ordF\operatorname{\mathrm{ord}}_{F} in Case 22^{\prime} is given by

S(X,cC)(ordF)={(18a(a+b)b+26a3)12c8,b<3a;25b+83a48(12c),b3a.S_{(X,cC)}(\operatorname{\mathrm{ord}}_{F})=\begin{dcases}(18\sqrt{a(a+b)}-\frac{b+26a}{3})\frac{1-2c}{8},&b<3a;\\ \frac{25b+83a}{48}(1-2c),&b\geq 3a.\end{dcases}
Proposition 4.10.

The SS-function of the valuation ordF\operatorname{\mathrm{ord}}_{F} in Case 33^{\prime} is given by

S(X,cC)(ordF)={72a+27b+4a(4ab)48(12c),b<3a;82a+25b48(12c),3ab<4a;2b(b3a)+110b+375a216(12c),b>4a.S_{(X,cC)}(\operatorname{\mathrm{ord}}_{F})=\begin{dcases}\frac{72a+27b+4\sqrt{a(4a-b)}}{48}(1-2c),&b<3a;\\ \frac{82a+25b}{48}(1-2c),&3a\leq b<4a;\\ \frac{2\sqrt{b(b-3a)}+110b+375a}{216}(1-2c),&b>4a.\end{dcases}
Proposition 4.11.

If CX=Bl[1,0,0](1,1,4)C\subset X=Bl_{[1,0,0]}{\mathbb{P}}(1,1,4) is a curve in |2KX||-2K_{X}| and B=π(C)B=\pi(C) passing the 14(1,1)\frac{1}{4}(1,1) singularity [0,0,1][0,0,1], then (X,cC)(X,cC) is K-unstable for any c(0,12)c\in(0,\frac{1}{2}).

Proof.

Let μ:X~X\mu:\widetilde{X}\rightarrow X be the minimal resolution of the 14(1,1)\frac{1}{4}(1,1) singularity with exceptional divisor FF. Then

KX~=μKX12F.K_{\widetilde{X}}=\mu^{\ast}K_{X}-\frac{1}{2}F.

Denote HyH_{y} the proper transform of the line {y=0}\{y=0\} on (1,1,4){\mathbb{P}}(1,1,4) and thus

μπ{y=0}=Hy+E+14F\mu^{\ast}\pi^{\ast}\{y=0\}=H_{y}+E+\frac{1}{4}F

Since the curve BB passes though [0,0,1][0,0,1], the BB is of the following form

{z2f4(x,y)+zf8(x,y)+f12(x,y)=0}.\{z^{2}f_{4}(x,y)+zf_{8}(x,y)+f_{12}(x,y)=0\}.

Therefore ordF(C)1\operatorname{\mathrm{ord}}_{F}(C)\geq 1, in particular,

A(X,cC)(F)=12cordF(C)12c.A_{(X,cC)}(F)=\frac{1}{2}-c\cdot\operatorname{\mathrm{ord}}_{F}(C)\leq\frac{1}{2}-c.

On the other hand, NS(X~)\operatorname{\mathrm{NS}}(\widetilde{X}) is generated by negative curves Hy,EH_{y},E and FF with

(FEHyF401E011Hy111)\left(\begin{array}[]{c|c c c }&F&E&H_{y}\\ \hline\cr F&-4&0&1\\ E&0&-1&1\\ H_{y}&1&1&-1\\ \end{array}\right)

Then we deduce that

vol(μKXtF)=02(84t2)𝑑t=1623.\int\operatorname{\mathrm{vol}}(-\mu^{\ast}K_{X}-tF)=\int_{0}^{\sqrt{2}}(8-4t^{2})dt=\frac{16\sqrt{2}}{3}.

Thus by the formula (4.9)

S(X,cC)(F)=223(12c)>A(X,cC)(F).S_{(X,cC)}(F)=\frac{2\sqrt{2}}{3}(1-2c)>A_{(X,cC)}(F).

This proves the pair (X,cC)(X,cC) is destabilised by the valuation ordF\operatorname{\mathrm{ord}}_{F} according to Fujita-Li’s criterion. ∎

4.1.3. S-function on index 33 del Pezzo pairs and their stability

Recall from the Section 3.2 , we know XX has a unique quotient singularity of type 19(1,2)\frac{1}{9}(1,2). We take a weighted blowup ϕ:ZX\phi:Z\rightarrow X of weight (1,2)(1,2) with exceptional divisor FF and then ZZ has a A1A_{1} singularity in FF, then we continue to take the blowup at A1A_{1} singularity and then the minimal resolution π:MX\pi:M\rightarrow X is a composition of ϕ\phi and blowup q:MZq:M\rightarrow Z at the A1A_{1} singularity .

Proposition 4.12.

Let (X,C)(X,C) be a index 33 del Pezzo pair of degree 88, then it is K-unstable for all c<12c<\frac{1}{2}.

Proof.

We are going to show β(F)=A(X.cC)(F)S(X.cC)(F)<0\beta(F)=A_{(X.cC)}(F)-S_{(X.cC)}(F)<0 for all index 3 del Pezzo pairs. By the proof in Proposition 3.5 and formula (4.10),

A(X.cC)(F)=AX(F)cordF(C)=1323c.A_{(X.cC)}(F)=A_{X}(F)-c\cdot\operatorname{\mathrm{ord}}_{F}(C)=\frac{1}{3}-\frac{2}{3}\cdot c.

Observe that vol(ϕKXtF)=vol(q(ϕKXtF))\operatorname{\mathrm{vol}}(-\phi^{\ast}K_{X}-t\cdot F)=\operatorname{\mathrm{vol}}(q^{\ast}(-\phi^{\ast}K_{X}-t\cdot F)) and

Lt:=q(ϕKXtF)=πKX23F113F2tqF.L_{t}:=q^{\ast}(-\phi^{\ast}K_{X}-t\cdot F)=-\pi^{\ast}K_{X}-\frac{2}{3}F_{1}-\frac{1}{3}F_{2}-t\cdot q^{*}F.

Therefore, we will calculate the volume function vol(Lt)\operatorname{\mathrm{vol}}(L_{t}) for LtL_{t} on MM. As

qF=F1+12F2,q^{*}F=F_{1}+\frac{1}{2}F_{2},

we get

Lt=(43t)F1+(203t2)F2+6E1+6E2L_{t}=(\frac{4}{3}-t)F_{1}+(\frac{20}{3}-\frac{t}{2})F_{2}+6E_{1}+6E_{2}

By the intersection matrix on MM mentioned in (3.8), LtL_{t} is nef for t0t\geq 0. Thus we have P(Lt)=LtP(L_{t})=L_{t} for t0t\geq 0 and vol(Lt)=(Lt)2=892t2\operatorname{\mathrm{vol}}(L_{t})=(L_{t})^{2}=8-\frac{9}{2}t^{2}. Hence the psedudo effective threold of LtL_{t} is 43\frac{4}{3}. So we get

S(X,cC)(F)=(12c)8043(892t2)𝑑t=89(12c)>A(X,cC)(F)=1323c.\begin{split}S_{(X,cC)}(F)=\frac{(1-2c)}{8}\int_{0}^{\frac{4}{3}}(8-\frac{9}{2}t^{2})dt=\frac{8}{9}(1-2c)>A_{(X,cC)}(F)=\frac{1}{3}-\frac{2}{3}\cdot c.\end{split}

This finishes the proof.

4.2. The K-moduli walls

We apply the computation of SS function to determine all the walls for the K-moduli P¯cK\overline{P}_{c}^{K}.

Proposition 4.13.

Let C|2K𝔽1|C\in|-2K_{\mathbb{F}_{1}}| be the curve on 𝔽1\mathbb{F}_{1} such that π(C)\pi(C) is one of the curves on 2{\mathbb{P}}^{2} given in the Table 1, then the stability threshold of (𝔽1,C)(\mathbb{F}_{1},C) is a point in [0,12][0,\frac{1}{2}] given by

{114,558,110,762,18,534,16,738,15,522,27}.\{\ \frac{1}{14},\frac{5}{58},\frac{1}{10},\frac{7}{62},\frac{1}{8},\frac{5}{34},\frac{1}{6},\frac{7}{38},\frac{1}{5},\frac{5}{22},\frac{2}{7}\ \}.

In particular, these numbers are K-moduli walls.

Proof.

We check the curves given in the Table 1 case by case. We first give a proof for the first critical value c=114c=\frac{1}{14}. Note that for the curve CBlp2C\subset Bl_{p}{\mathbb{P}}^{2}, whose image in 2{\mathbb{P}}^{2} is the plane curve {z4xy=0}\{z^{4}xy=0\}, we have

C=Hx+Hy+4Hz.C=H_{x}+H_{y}+4H_{z}.

By Fujita-Li’s criterion 1 and Proposition 4.2,

A(𝔽1,cC)(Hz)=14cS(𝔽1,cC)(Hz)=56(12c).A_{(\mathbb{F}_{1},cC)}(H_{z})=1-4c\geq S_{(\mathbb{F}_{1},cC)}(H_{z})=\frac{5}{6}(1-2c).

Thus, we get c114c\leq\frac{1}{14}. Similarly, for the divisorial valuation given by HxH_{x}, we have

A(𝔽1,cC)(Hx)=1cS(𝔽1,cC)(Hz)=1312(12c)A_{(\mathbb{F}_{1},cC)}(H_{x})=1-c\geq S_{(\mathbb{F}_{1},cC)}(H_{z})=\frac{13}{12}(1-2c)

and thus we get c114c\geq\frac{1}{14}. This shows the stabilty threshold of (𝔽1,C)(\mathbb{F}_{1},C) is either empty or {114}\{\frac{1}{14}\}. Thus, it remains to show the pair (𝔽1,114C)(\mathbb{F}_{1},\frac{1}{14}C) is K-semistable. It is sufficient to show β(𝔽1,114C)(F)0\beta_{(\mathbb{F}_{1},\frac{1}{14}C)}(F)\geq 0 for any plt type blowup divisor FF over 𝔽1\mathbb{F}_{1} by Fujita’s criterion. It is well known that  any plt type blowup is weighted blowup. Then by Proposition 4.4 and Proposition 4.5, one can easily cheack that

β(𝔽1,114C)(F)=a+bS(𝔽1,114C)(ordF)0\begin{split}\beta_{(\mathbb{F}_{1},\frac{1}{14}C)}(F)=a+b-S_{(\mathbb{F}_{1},\frac{1}{14}C)}(\operatorname{\mathrm{ord}}_{F})\geq 0\end{split}

Observe that for other ww the pair (𝔽1,C)(\mathbb{F}_{1},C) given by Table 1 is of complexity one. We will apply equivariant K-stability criterion in theorem 2.7 to show the stability threshold for (𝔽1,C)(\mathbb{F}_{1},C) is exactly {w}\{w\}. Let us show for w=558w=\frac{5}{58} and leave the remaining cases to interested reads. Denote λ=(1,t2,t3)\lambda=(1,t^{2},t^{3}) the 1-PS acting on 2{\mathbb{P}}^{2}, which can be lifted to 𝔽1\mathbb{F}_{1}, then the Futaki character is just the β\beta-invariant of divisor valuation ordF\operatorname{\mathrm{ord}}_{F}. Here FF is the exceptional divisor of weighted blowup of 𝔽1\mathbb{F}_{1} at the point ([1,0,0],[1,0])([1,0,0],[1,0]) under the coordinate in Case 2. In this case, the weight for the blowup is a=2,b=1a=2,\ b=1, then by Proposition 4.4,

β(𝔽1,558C)(ordF)=A(𝔽1,558C)(ordF)S(𝔽1,558C)(ordF)=(a+b)255814a+13b12(12558)=0\begin{split}\beta_{(\mathbb{F}_{1},\frac{5}{58}C)}(\operatorname{\mathrm{ord}}_{F})&=A_{(\mathbb{F}_{1},\frac{5}{58}C)}(\operatorname{\mathrm{ord}}_{F})-S_{(\mathbb{F}_{1},\frac{5}{58}C)}(ord_{F})\\ &=(a+b)-2\cdot\frac{5}{58}-\frac{14a+13b}{12}(1-2\cdot\frac{5}{58})=0\end{split}

The λ\lambda-vertical divisors FF are given by Hx,Hy,HzH_{x},H_{y},H_{z} and EE, L={yz=0}L=\{y-z=0\}, then by Proposition 4.2, it is easy to see β(𝔽1,558C)(ordF)>0\beta_{(\mathbb{F}_{1},\frac{5}{58}C)}(\operatorname{\mathrm{ord}}_{F})>0. This finishes the proof of K-polystablity of (𝔽1,114C)(\mathbb{F}_{1},\frac{1}{14}C) by theorem 2.7.

Proposition 4.14.

Let C|2KBlp(1,1,4)|C\in|-2K_{Bl_{p}{\mathbb{P}}(1,1,4)}| be the curve on Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4) such that π(C)\pi(C) is one of the curve on (1,1,4){\mathbb{P}}(1,1,4) given in the Table 2, then the stability threshold of (Blp(1,1,4),C)(Bl_{p}{\mathbb{P}}(1,1,4),C) is a point in (0,12)(0,\frac{1}{2}) given by

{29106,31110,27,35118}.\{\ \frac{29}{106},\frac{31}{110},\frac{2}{7},\frac{35}{118}\ \}.

In particular, these numbers are K-moduli walls.

Proof.

The computation to check the curve on (1,1,4){\mathbb{P}}(1,1,4) given in the Table 2 is similar to that in Proposition 4.13. We omit the computation. ∎

4.3. Proof of part (1) of theorem 1.2

By the local VGIT structure of K-moduli space P¯cK\overline{P}_{c}^{K} (see theorem 2.9), we know each log del Pezzo pair (X,C)(X,C) parametrized by the center of each wall ww is a 𝔾m\mathbb{G}_{m}-equivariant degeneration of the log del Pezzo pairs on exceptional loci. Thus, (X,C)(X,C) admits a 𝔾m\mathbb{G}_{m}-action. Moreover, by Proposition 3.6 and Proposition 4.12, such XX is either 𝔽1\mathbb{F}_{1} or Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4). Therefore to prove part (1) of theorem 1.2, it remains to show the curves listed in the Table 1 and Table 2 are all curves such that the pair (X,C)(X,C) admits 𝔾m\mathbb{G}_{m}-action and its K-stability threshold is a point. This is done by Proposition 4.13, Proposition 4.14 and the following algorithm 222We write an easy Python code to help us find the wall. The code for walls on 𝔽1\mathbb{F}_{1} can be found here and for Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4) is here. to find the potential critical curves. Let λ\lambda be the 𝔾m\mathbb{G}_{m}-action with weight (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}) as in Section 4.1.1 and Section 4.1.2. If the pair (X,C)(X,C) is in the center of wall ww, then the β\beta-invariant of the valuation associated to λ\lambda is zero. In particular,

(4.14) A(X,wC)=S(X,wC).A_{(X,w\cdot C)}=S_{(X,w\cdot C)}.

Now we use the equation (4.14) to give algorithm to find the potential walls for X=𝔽1X=\mathbb{F}_{1}. The same algorithm works for X=Blp(1,1,4)X=Bl_{p}{\mathbb{P}}(1,1,4) and we omit the details. As in the same coordinate chart of the computation of SS-function in Proposition 4.4 and Proposition 4.5, each curve C|2K𝔽1|C\in|-2K_{\mathbb{F}_{1}}| is of the form

C=π1(D)2EC=\pi^{-1}(D)-2E

where DD is a curve on 2{\mathbb{P}}^{2} defined by

(4.15) x4f2(y,z)+x3f3(y,z)+x2f4(y,z)+xf5(y,z)+f6(y,z)=0.x^{4}f_{2}(y,z)+x^{3}f_{3}(y,z)+x^{2}f_{4}(y,z)+xf_{5}(y,z)+f_{6}(y,z)=0.

If DD is defined by one monomial in (4.15), say {yizjx6ij=0}\{y^{i}z^{j}x^{6-i-j}=0\}, then it is easy to check that {x4yz=0}\{x^{4}yz=0\} is the only possibility. Indeed, by Proposition 4.2, we have

β(𝔽1,wC)(Hx)=A(X,wC)S(X,wC)=1wi1312(12w)0\beta_{(\mathbb{F}_{1},wC)}(H_{x})=A_{(X,wC)}-S_{(X,wC)}=1-w\cdot i-\frac{13}{12}(1-2w)\geq 0

Thus 0i10\leq i\leq 1 since w<12w<\frac{1}{2} and the same reason imply for 0j10\leq j\leq 1. So the unique solution is i=j=1i=j=1.

Otherwise, DD is defined by more than two monomials. By the 𝔾m\mathbb{G}_{m}- invariance on the curve CC, any two monomials in the defining equation of DD, say yizjx6ijy^{i}z^{j}x^{6-i-j} and yizjx6ijy^{i^{\prime}}z^{j^{\prime}}x^{6-i^{\prime}-j^{\prime}} have the same weights under λ\lambda, that is,

(4.16) iλ2+jλ3+(6ij)λ1=iλ2+jλ3+(6ij)λ1i\cdot\lambda_{2}+j\cdot\lambda_{3}+(6-i-j)\cdot\lambda_{1}=i^{\prime}\cdot\lambda_{2}+j^{\prime}\cdot\lambda_{3}+(6-i^{\prime}-j^{\prime})\cdot\lambda_{1}

Then we divide the remaining discussion according to the different chart in the computation of SS-function of divisorial valuation.

In the Case (1).

Recall that ordF\operatorname{\mathrm{ord}}_{F} is given by the exceptional divisor of the weighted blowup. For simplicity wo only consider the weighted blowup along the point [0,1,0][0,1,0] with weight

wt(x)=λ1λ2=a,wt(z)=λ3λ2=b\operatorname{wt}(x)=\lambda_{1}-\lambda_{2}=a,\ \ \ \operatorname{wt}(z)=\lambda_{3}-\lambda_{2}=b

By the equation (4.16), we may set a=(jj),b=i+j(i+j)a=(j^{\prime}-j),b=i^{\prime}+j^{\prime}-(i+j). We have

A(𝔽1,wC)=a+bmwA_{(\mathbb{F}_{1},wC)}=a+b-m\cdot w

where m=(6ij)a+jbm=(6-i-j)a+jb. By Proposition 4.4 and equation (4.14), we get

w={b212am24a224ab2b2,0<b<a2ba12m26a20b,baw=\begin{cases}\frac{b^{2}}{12am-24a^{2}-24ab-2b^{2}},&0<b<a\\ \frac{2b-a}{12m-26a-20b},&b\geq a\end{cases}

Let yizjx6ijy^{i}z^{j}x^{6-i-j} and yizjx6ijy^{i^{\prime}}z^{j^{\prime}}x^{6-i^{\prime}-j^{\prime}} go through all monimals appeared in equation (4.15), then we obtain all potential walls ww and corresponding curves CC in this case.

In the Case (2).

Recall that in this case, then FF is the exceptional divisor of weighted blowup Y𝔽1Y\rightarrow\mathbb{F}_{1} where the center is ([1,0,0],[1,0])([1,0,0],[1,0]) and the local parameter is (z,u)(z,u) with weight (λ3λ1,λ2λ3)(\lambda_{3}-\lambda_{1},\lambda_{2}-\lambda_{3}). (We can assume λ2>λ3\lambda_{2}>\lambda_{3}. If λ3<λ2\lambda_{3}<\lambda_{2}, the computation is similar). We first write the equation of CC in terms of (z,u)(z,u) as follows:

(4.17) f~2(u)+zf~3(u)+z2f~4(u)+z3f~5(u)+z4f~6(u)=0\widetilde{f}_{2}(u)+z\widetilde{f}_{3}(u)+z^{2}\widetilde{f}_{4}(u)+z^{3}\widetilde{f}_{5}(u)+z^{4}\widetilde{f}_{6}(u)=0

where f~k(u)=zkfk(zu,z)\widetilde{f}_{k}(u)=z^{-k}f_{k}(zu,z). Then yizjx6ijy^{i}z^{j}x^{6-i-j} and yizjx6ijy^{i^{\prime}}z^{j^{\prime}}x^{6-i^{\prime}-j^{\prime}} should be replaced by zi+j2uiz^{i+j-2}u^{i} and zi+j2uiz^{i^{\prime}+j^{\prime}-2}u^{i^{\prime}}. They have same weight. Let a=λ3λ1a=\lambda_{3}-\lambda_{1}, b=λ2λ3b=\lambda_{2}-\lambda_{3}. We have

(i+j2)a+jb=(i+j2)a+jb.(i+j-2)a+jb=(i^{\prime}+j^{\prime}-2)a+j^{\prime}b.

So we may set a=jja=j^{\prime}-j and b=i+j(i+j)b=i+j-(i^{\prime}+j^{\prime}). As

A(𝔽1,wC)=a+bmw,m=(i+j2)a+jbA_{(\mathbb{F}_{1},wC)}=a+b-m\cdot w,\ m=(i+j-2)a+jb

by Proposition 4.5, we get

w=2a+b28a+26b12m.w=\frac{2a+b}{28a+26b-12m}.

As before let zi+j2uiz^{i+j-2}u^{i} and zi+j2uiz^{i^{\prime}+j^{\prime}-2}u^{i^{\prime}} go through all monomials appeared in equation (4.17), we obtain all potential walls ww and the corresponding curves CC in this case.

Remark 4.15.

For the above algorithm in the case X=Bl[1,0,0](1,1,4)X=Bl_{[1,0,0]}{\mathbb{P}}(1,1,4), we only need to consider the local equations for curve CC containing at least two monomials. Since by Proposition 4.11, the monomial z3z^{3} for BB must appear and it is also easy to check (X,cC)(X,cC) is unstable for any c(0,12)c\in(0,\frac{1}{2}) if B={z3=0}B=\{z^{3}=0\} by the divisorial valuation ordHz\operatorname{\mathrm{ord}}_{H_{z}}.

Remark 4.16.

For the last wall w=35118w=\frac{35}{118}, the general equation for BB obtained by the algorithm is

z3+a1z2yx3+a2zy2x6+a3y3x6=0.z^{3}+a_{1}z^{2}yx^{3}+a_{2}zy^{2}x^{6}+a_{3}y^{3}x^{6}=0.

But under the transform zz+ayx3z\mapsto z+ayx^{3} for suitable aa\in{\mathbb{C}}, the equation will be equivalent the one in the Table 2.

5. Explicit wall-crossings for K-moduli of degree 8 log Fano pairs

In this section, we will describe the wall-crossings for K-moduli space P¯cK\overline{P}^{K}_{c} explicitly.

5.1. Wall-crossings on surface 𝔽1\mathbb{F}_{1}

5.1.1. First wall w=114w=\frac{1}{14}

In the case del Pezzo pairs of deg 88 where the surface is X1×1X\cong{\mathbb{P}}^{1}\times{\mathbb{P}}^{1}, the K-moduli space are studied in [ADL21] and is shown always nonempty for c>0c>0. Our case is a little different and we first show

Proposition 5.1.

For 0<c<c0=1140<c<c_{0}=\frac{1}{14}, then P¯cK\overline{P}^{K}_{c} is empty.

Proof.

To prove the first Proposition, it is enough to show that for any c<114c<\frac{1}{14} there exists a divisor FF over (𝔽1,cC)(\mathbb{F}_{1},cC) such that δ(𝔽1,cC)(F)<1\delta_{(\mathbb{F}_{1},cC)}(F)<1. We use the notation as (2). Let μ:Y𝔽1\mu\colon Y\rightarrow\mathbb{F}_{1} be a weighted blowup of 𝔽1\mathbb{F}_{1} which centered at ([1,0,0],[1,0])([1,0,0],[1,0]) and the weight on zz and uu are a=1a=1 and b=2b=2 respectively. From the formula (4.10)

A(𝔽1,cC)(F)=3c(i0+2j0),A_{(\mathbb{F}_{1},cC)}(F)=3-c(i_{0}+2j_{0}),

By Proposition 4.5, we know that S(𝔽1,cC)(F)=103(12c)S_{(\mathbb{F}_{1},cC)}(F)=\frac{10}{3}(1-2c). The Fujita-Li’s criteria implies if ((𝔽1,cC))((\mathbb{F}_{1},cC)) is K-semistable, then

3c(i0+2j0)103(12c).3-c(i_{0}+2j_{0})\geq\frac{10}{3}(1-2c).

It turns out that

c1203i06j0c\geq\frac{1}{20-3i_{0}-6j_{0}}

Note that the local equation for CC at ([1,0,0],[1,0])([1,0,0],[1,0]) in the coordinate (z,u)(z,u) is

f2(1,u)+zf3(1,u)++z4f6(1,u)=0.f_{2}(1,u)+zf_{3}(1,u)+\cdots+z^{4}f_{6}(1,u)=0.

Thus i00i_{0}\geq 0 and j01j_{0}\geq 1 which implies c114c\geq\frac{1}{14}. This finishes the proof. ∎

Before description of the second wall, let us identify the K-moduli space as a GIT quotient space V//{\mathbb{P}}V/\!\!/{\mathbb{C}}^{\ast}. First we give the construction for V//{\mathbb{P}}V/\!\!/{\mathbb{C}}^{\ast}. Recall π:𝔽12\pi:\mathbb{F}_{1}\rightarrow{\mathbb{P}}^{2} is the blowup at p=[1,0,0]p=[1,0,0] and Δ|𝒪2(6)|\Delta\subset|{\mathcal{O}}_{{\mathbb{P}}^{2}}(6)| be the discriminant locus of plane sextic curves, then there is a universal nodal curve with two projections p1:𝒱2p_{1}:{\mathcal{V}}\rightarrow{\mathbb{P}}^{2} and p2:𝒱Δp_{2}:{\mathcal{V}}\rightarrow\Delta. So p2(𝒱p)p_{2}({\mathcal{V}}_{p}) is the locus of plane sextic curves singular at pp where 𝒱p:=p11([1,0,0]){\mathcal{V}}_{p}:=p_{1}^{-1}([1,0,0]). It is not hard to see

p2(𝒱p)|𝒪2(6)𝔪p2|24.p_{2}({\mathcal{V}}_{p})\cong|{\mathcal{O}}_{{\mathbb{P}}^{2}}(6)\otimes\mathfrak{m}_{p}^{2}|\cong{\mathbb{P}}^{24}.

Note that |𝒪2(6)𝔪p2||{\mathcal{O}}_{{\mathbb{P}}^{2}}(6)\otimes\mathfrak{m}_{p}^{2}| is also the parameter space of the polynomials of the form

(5.18) x4f2(y,z)+x3f3(y,z)++f6(y,z).x^{4}f_{2}(y,z)+x^{3}f_{3}(y,z)+\cdots+f_{6}(y,z).

The non-reductive group Aut(𝔽1)=GL(2,)2\operatorname{Aut}(\mathbb{F}_{1})=\operatorname{\mathrm{GL}}(2,{\mathbb{C}})\rtimes{\mathbb{C}}^{2} acts on |𝒪2(6)𝔪p2||{\mathcal{O}}_{{\mathbb{P}}^{2}}(6)\otimes\mathfrak{m}_{p}^{2}| by

ya11y+a12zza21y+a22zxx+b1y+b2z,(b1,b2)2.\begin{split}y\mapsto&a_{11}y+a_{12}z\\ z\mapsto&a_{21}y+a_{22}z\\ x\mapsto&x+b_{1}y+b_{2}z,(b_{1},b_{2})\in{\mathbb{C}}^{2}.\end{split}

Let U|𝒪2(6)𝔪p2|U\subset|{\mathcal{O}}_{{\mathbb{P}}^{2}}(6)\otimes\mathfrak{m}_{p}^{2}| be the locus where f2(y,z)f_{2}(y,z) is a smooth conic, i.e., the sextic curve with a node at pp, then modulo the action of Aut(𝔽1)\operatorname{Aut}(\mathbb{F}_{1}), each fUf\in U has the normal form f=x4yz+hf=x^{4}yz+h where

(5.19) h=x3f~3(y,z)+x2f4(y,z)+xf5(y,z)+f6(y,z),f~3(y,z)=a1yz2+a2y2z\begin{split}&h=x^{3}\widetilde{f}_{3}(y,z)+x^{2}f_{4}(y,z)+xf_{5}(y,z)+f_{6}(y,z),\\ &\widetilde{f}_{3}(y,z)=a_{1}yz^{2}+a_{2}y^{2}z\end{split}

Denote the VV by the {\mathbb{C}}-vector space spanned by the monomials in the normal form. Thus, UU is the orbit Aut(𝔽1)W\operatorname{Aut}(\mathbb{F}_{1})\cdot{\mathbb{P}}W. Moreover, the stabilizer of W{\mathbb{P}}W is a 2-dimensional torus T={diag(a,b,c)|abc=1}×T=\left\{\operatorname{diag}(a,b,c)\,\middle|\,abc=1\right\}\cong{\mathbb{C}}^{*}\times{\mathbb{C}}^{\ast}. Therefore, we have a reductive GIT space

(5.20) V//T.{\mathbb{P}}V/\!\!/T.
Theorem 5.2.

There is an isomorphism

P¯cKV//\overline{P}^{K}_{c}\cong{\mathbb{P}}V/\!\!/{\mathbb{C}}^{\ast}

for 114<c<558\frac{1}{14}<c<\frac{5}{58}.

Proof.

To show the K-moduli is isomorphic to a GIT quotient space, we follow the arguments in [LX19, proof of therorem 1.1]. First, we claim that for any K-semistable pair (X,cC)(X,cC) in P¯cK\overline{P}^{K}_{c} for 114<c<558\frac{1}{14}<c<\frac{5}{58}, we have

XBl[1,0,0]2,π(C)={f=0}.X\cong Bl_{[1,0,0]}{\mathbb{P}}^{2},\ \ \ \pi(C)=\{f=0\}.

where fV{0}f\in V-\{0\}. Indeed, by Corollary 3.6 and Proposition 4.12, XX is either 𝔽1\mathbb{F}_{1}, Blp((1,1,4))Bl_{p}({\mathbb{P}}(1,1,4)). If X=Blp(1,1,4)X=Bl_{p}{\mathbb{P}}(1,1,4), by taking divisorial valuation ordHy\operatorname{\mathrm{ord}}_{H_{y}}, we get

c2910624ordHy(C)>558,c\geq\frac{29}{106-24\cdot\operatorname{\mathrm{ord}}_{H_{y}}(C)}>\frac{5}{58},

which is impossible. This shows XBl[1,0,0]2X\cong Bl_{[1,0,0]}{\mathbb{P}}^{2}. If

π(C):={x4f2(y,z)+x3f3(y,z)++f6(y,z)=0}2\pi(C):=\{x^{4}f_{2}(y,z)+x^{3}f_{3}(y,z)+\cdots+f_{6}(y,z)=0\}\subset{\mathbb{P}}^{2}

is not nodal at [1,0,0][1,0,0], that is the quadratic f2(x,y)f_{2}(x,y) has rank 1\leq 1. Then we take a weighted blowup of 𝔽1\mathbb{F}_{1} at [1,0,0]×[1,0][1,0,0]\times[1,0] with weight (2,1)(2,1) under local coordinate (y,u)(y,u) and FF is the exceptional divisor. By Proposition 4.5,

β(𝔽1,cC)(F)32c4112(12c)=296c512<0\beta_{(\mathbb{F}_{1},cC)}(F)\leq 3-2c-\frac{41}{12}(1-2c)=\frac{29}{6}c-\frac{5}{12}<0

for c<558c<\frac{5}{58}. This finishes the proof of the claim.

Next, there is a universal family of surface pairs (𝒳,𝒞)({\mathcal{X}},{\mathcal{C}}) over V{\mathbb{P}}V where 𝒳=𝔽1×V{\mathcal{X}}=\mathbb{F}_{1}\times{\mathbb{P}}V and 𝒞𝔽1×V{\mathcal{C}}\subset\mathbb{F}_{1}\times{\mathbb{P}}V is the restriction of hypersurfaces

{x4yz+x3f3(y,z)++f6(y.z)=0}𝔽1×(V2V6)\{x^{4}yz+x^{3}f_{3}(y,z)+...+f_{6}(y.z)=0\}\subset\mathbb{F}_{1}\times{\mathbb{P}}(V_{2}\oplus\cdots\oplus V_{6})

on 𝔽1×V\mathbb{F}_{1}\times{\mathbb{P}}V under the closed embedding 𝔽1×V𝔽1×(V2V6)\mathbb{F}_{1}\times{\mathbb{P}}V\hookrightarrow\mathbb{F}_{1}\times{\mathbb{P}}(V_{2}\oplus\cdots\oplus V_{6}). By the claim, the parameter space 𝒫c{\mathcal{P}}_{c} of K-semistable del Pezzo pairs can be realised as a subset of V{\mathbb{P}}V. By direct computation, the CM line bundle λCM,c\lambda_{CM,c} is propositional to the restriction of 𝒪V(1){\mathcal{O}}_{{\mathbb{P}}V}(1). Thus, we get injective morphism

(5.21) 𝒫c(V)ss{\mathcal{P}}_{c}\ \hookrightarrow\ ({\mathbb{P}}V)^{ss}

By properness of K-moduli stack (see [ADL19, Theorem 3.1] for smoothable case and [LXZ22] for general case), the morphism (5.21) descends to an isomorphism of P¯cKV//\overline{P}^{K}_{c}\cong{\mathbb{P}}V/\!\!/{\mathbb{C}}^{\ast}. ∎

Remark 5.3.

The reductive GIT quotient space V//{\mathbb{P}}V/\!\!/{\mathbb{C}}^{\ast} is isomorphic to the non-reductive GIT quotient space |2K𝔽1|//Aut(𝔽1)\lvert-2K_{\mathbb{F}_{1}}\rvert/\!\!/\operatorname{Aut}(\mathbb{F}_{1}) in the sense of Doran-Kirwan [DK07, definition].

5.1.2. The second wall w=558w=\frac{5}{58} and the 1st divisorial contraction

Denote C1C^{-}_{1} and C10C^{0}_{1} the curve on 𝔽1\mathbb{F}_{1} such that π(C1)={x4z2+x4zy+x3y3=0}\pi(C^{-}_{1})=\{x^{4}z^{2}+x^{4}zy+x^{3}y^{3}=0\} and π(C10)={x4z2+x3y3=0}\pi(C^{0}_{1})=\{x^{4}z^{2}+x^{3}y^{3}=0\} respectively.

Proposition 5.4.

At the wall w=558w=\frac{5}{58}, there are natural birational morphisms

P¯558ϵK\xlongrightarrowpP¯558K\xlongleftarrowp+P¯558+ϵK\overline{P}^{K}_{\frac{5}{58}-\epsilon}\ \xlongrightarrow{p^{-}}\ \overline{P}^{K}_{\frac{5}{58}}\ \xlongleftarrow{p^{+}}\ \overline{P}^{K}_{\frac{5}{58}+\epsilon}

where

  1. (1)

    pp^{-} is an isomorphism. More precisely, pp^{-} is identity outside the point representing K-polystable pair (𝔽1,558C10)(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1}) and maps K-polystable pair (𝔽1,(558ϵ)C1)(\mathbb{F}_{1},(\frac{5}{58}-\epsilon)C^{-}_{1}) to (𝔽1,558C10)(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1}) .

  2. (2)

    p+p^{+} is a Kirwan type blowup at the point [(𝔽1,558C10)][(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1})]. The exceptional divisor Ec+E_{c}^{+} parametrizes SS-equivalence classes of K-semistable pairs (𝔽1,C)(\mathbb{F}_{1},C) where B=π(C)B=\pi(C) is described in the second row in the table 3. Moreover, Ec+E_{c}^{+} is birational to the hyperelliptic divisor NL(A2)Hh\operatorname{\mathrm{NL}}(A_{2})\cong H_{h} in {\mathcal{F}}.

Proof.

We first show that pp^{-} is an isomorphism. It is clear that pp^{-} is a birational morphism between normal proper varieties since there exists a common open subset shared by P¯558K\overline{P}^{K}_{\frac{5}{58}} and P¯558ϵKP¯GIT\overline{P}^{K}_{\frac{5}{58}-\epsilon}\cong\overline{P}^{GIT}. Indeed, the Picard number ρ(P¯GIT)\rho(\overline{P}^{GIT}) is one. Note that we have the following relations:

Pic(V//)Pic(Vss)Pic(Vss)\operatorname{\mathrm{Pic}}({\mathbb{P}}V/\!\!/{\mathbb{C}}^{\ast})\hookrightarrow\operatorname{\mathrm{Pic}}_{{\mathbb{C}}^{*}}({\mathbb{P}}V^{ss})\hookrightarrow\operatorname{\mathrm{Pic}}({\mathbb{P}}V^{ss})

Since we have a surjective morphism from Pic(V)\operatorname{\mathrm{Pic}}({\mathbb{P}}V)\cong{\mathbb{Z}} to Pic(Vss)\operatorname{\mathrm{Pic}}({\mathbb{P}}V^{ss}), we know that ρ(P¯GIT)=1\rho(\overline{P}^{GIT})=1. Thus pp^{-} is isomorphism between good moduli spaces. Now we give the explicit description of K-semistable replacement for pp^{-} and p+p^{+}. Note that as in the proof of theorem 5.2, the pair (𝔽1,558C)(\mathbb{F}_{1},\frac{5}{58}C) is K-semistable only if B=π(C)B=\pi(C) is a plane curve with at worst A2A_{2}-singularity at p=[1,0,0]p=[1,0,0] . Assume BB has A2A_{2}-singularity at p=[1,0,0]p=[1,0,0], then up to a coordinate changes it is a plane curve defined by the following equation

(5.22) x4z2+x3f3(y,z)+x2f4(y,z)+xf5(y,z)+f6(y,z)=0x^{4}z^{2}+x^{3}f_{3}(y,z)+x^{2}f_{4}(y,z)+xf_{5}(y,z)+f_{6}(y,z)=0

By checking the stability threshold of pairs (𝔽1,C)(\mathbb{F}_{1},C) via the computation of SS-function in Proposition 4.5, one can see that (𝔽1,C10)(\mathbb{F}_{1},C^{0}_{1}) is the only curve with the stability threshold {558}\{\frac{5}{58}\} and (𝔽1,558C10)(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1}) is K-polystable. Therefore, outside the point [(𝔽1,558C10)]P¯558ϵK[(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1})]\in\overline{P}^{K}_{\frac{5}{58}-\epsilon}, the K-moduli stacks for P¯558ϵK\overline{P}^{K}_{\frac{5}{58}-\epsilon} and P¯558K\overline{P}^{K}_{\frac{5}{58}} will share the same parameter space and then the morphism of K-moduli stack will descend to the isomorphism pp^{-} over P¯558ϵK[(𝔽1,558C10)]\overline{P}^{K}_{\frac{5}{58}-\epsilon}-[(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1})]. Note that under 1-PS λ\lambda with weight given by (0,2,3)(0,2,3),

limt0λ(t)C1=C10\mathop{\lim}\limits_{t\rightarrow 0}\ \lambda(t)C_{1}^{-}=C_{1}^{0}

This will induces a 𝔾m\mathbb{G}_{m}-equivariant degeneration (𝔛,𝒞)𝔸1({\mathfrak{X}},{\mathcal{C}})\rightarrow{\mathbb{A}}^{1} with generic fiber isomorphic to (𝔽1,C1)(\mathbb{F}_{1},C^{-}_{1}) and central fiber isomorphic to (𝔽1,C10)(\mathbb{F}_{1},C^{0}_{1}). Thus by the local VGIT interpretation of K-moduli at the point [(𝔽1,558C10)][(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1})] (see [ADL19, Theorem 3.33], [DH98]), pp^{-} will map the point [(𝔽1,(558ϵ)C1)][(\mathbb{F}_{1},(\frac{5}{58}-\epsilon)C^{-}_{1})] to the point [(𝔽1,558C10)][(\mathbb{F}_{1},\frac{5}{58}C^{0}_{1})] and the exceptional locus Ew+E_{w}^{+} of p+p^{+} parametrizes pairs (𝔽1,C)(\mathbb{F}_{1},C) such that π(C)\pi(C) is a plane curve defined by equation (5.22) and limt0λ1(t)C=C10\mathop{\lim}\limits_{t\rightarrow 0}\ \lambda^{-1}(t)C=C_{1}^{0}.

By the computation of Néron-Severi group of K3 surface (Y,τ)(Y,\tau) with involution τ\tau obtained by a generic pair (𝔽1,C)(\mathbb{F}_{1},C) in Ew+E_{w}^{+} (see [PSW23, Section 4.1]), we know the isomorphic class [(Y,τ)]NL(A2)[(Y,\tau)]\in\operatorname{\mathrm{NL}}(A_{2}) and so this shows Ew+E_{w}^{+} is birational to NL(A2)\operatorname{\mathrm{NL}}(A_{2}).

5.1.3. The remaining walls on 𝔽1\mathbb{F}_{1}

Proposition 5.5.

At the walls w{110,762,18,534,16,738,15,522,27}w\in\{\frac{1}{10},\frac{7}{62},\frac{1}{8},\frac{5}{34},\frac{1}{6},\frac{7}{38},\frac{1}{5},\frac{5}{22},\frac{2}{7}\}, there are flips

P¯w+ϵKp+P¯wKp1P¯wϵK\overline{P}^{K}_{w+\epsilon}\ \xrightarrow{p^{+}}\ \overline{P}^{K}_{w}\ \xleftarrow{p^{-1}}\ \overline{P}^{K}_{w-\epsilon}

where the center ZwZ_{w} is either points or a rational curve described in the Table1. Moreover,

  • Ew=(p)1(Zw)E_{w}^{-}=(p^{-})^{-1}(Z_{w}) parametrizes SS-equivalence classes of K-semistable pairs (𝔽1,(wϵ)C)(\mathbb{F}_{1},(w-\epsilon)\cdot C) where B=π(C)2B=\pi(C)\subset{\mathbb{P}}^{2} is a plane curve of the form listed in the Table7.

  • Ew+=(p+)1(Zw)E_{w}^{+}=(p^{+})^{-1}(Z_{w}) parametrizes SS-equivalence classes of K-semistable pairs (𝔽1,(w+ϵ)C)(\mathbb{F}_{1},(w+\epsilon)\cdot C) where BB is listed in the Table3, 4 ,5. Ew+E_{w}^{+} is birational to a Noether-Lefschetz locus NL(L)\operatorname{\mathrm{NL}}(L) where LL is the complement of (E7An)(E_{7}\oplus A_{n}), (E7Dn)(E_{7}\oplus D_{n}), (E7En)(E_{7}\oplus E_{n}) or the their modifications in III\!I.

When cc changes from wϵw-\epsilon to w+ϵw+\epsilon, the K-polystable pairs in EwE_{w}^{-} is replaced by the K-polystable pairs in Ew+E_{w}^{+}.

cc equation for curve BB on 2{\mathbb{P}}^{2} dimE\dim E^{-}
110ϵ\frac{1}{10}-\epsilon x4z2+x3zy2+ax2y4+x3y(xl(y,z)+by2)=0x^{4}z^{2}+x^{3}zy^{2}+a\cdot x^{2}y^{4}+x^{3}y(xl(y,z)+by^{2})=0 22
762ϵ\frac{7}{62}-\epsilon x4z2+xy5+x2y(x2l1(z,y)+xyl2(y,z)+by3)=0x^{4}z^{2}+xy^{5}+x^{2}y(x^{2}l_{1}(z,y)+xyl_{2}(y,z)+by^{3})=0 22
18ϵ\frac{1}{8}-\epsilon x4z2+x2zy3+ay6x^{4}z^{2}+x^{2}zy^{3}+a\cdot y^{6} 55
+xy(x3l1(y,z)+x2yl2(y,z)+y3l3(x,y))=0+xy(x^{3}l_{1}(y,z)+x^{2}yl_{2}(y,z)+y^{3}l_{3}(x,y))=0
x3f3(y,z)+x4f2(y,z)x^{3}f_{3}(y,z)+x^{4}f_{2}(y,z) 22
534ϵ\frac{5}{34}-\epsilon x3z2y+x2y4+x4f2(y,z)+x3y2l1(y.z)=0x^{3}z^{2}y+x^{2}y^{4}+x^{4}f_{2}(y,z)+x^{3}y^{2}l_{1}(y.z)=0 33
x4z2+xzy4+x4yl1(y,z)+x^{4}z^{2}+xzy^{4}+x^{4}yl_{1}(y,z)+ 66
x3y2l2(y,z)+x2y3l3(y,z)+y5l4(x,y)=0{x^{3}y^{2}l_{2}(y,z)}+x^{2}y^{3}l_{3}(y,z)+y^{5}l_{4}(x,y)=0
16ϵ\frac{1}{6}-\epsilon x3z2y+x2zy3+axy5+x4f2(y,z)+x2y2(l1(y,z)+by2)=0x^{3}z^{2}y+x^{2}zy^{3}+a\cdot xy^{5}+x^{4}f_{2}(y,z)+x^{2}y^{2}(l_{1}(y,z)+by^{2})=0 55
x4z2+zy5+x^{4}z^{2}+zy^{5}+ 88
x4yl1(y,z)+y2(x3l2(y,z)+x2l3(y,z)+xy2l4(y,z)+by4)=0x^{4}yl_{1}(y,z)+y^{2}(x^{3}l_{2}(y,z)+x^{2}l_{3}(y,z)+xy^{2}l_{4}(y,z)+by^{4})=0
738ϵ\frac{7}{38}-\epsilon x3z2y+y6+x4f2(y,z)+x3y2l1(y,z)+x2y3l2(y,z)+xy5=0x^{3}z^{2}y+y^{6}+x^{4}f_{2}(y,z)+x^{3}y^{2}l_{1}(y,z)+x^{2}y^{3}l_{2}(y,z)+xy^{5}=0 66
x3z3+x2y4+x4f2(y,z)+x3yg2(y,z)=0x^{3}z^{3}+x^{2}y^{4}+x^{4}f_{2}(y,z)+x^{3}yg_{2}(y,z)=0 44
15ϵ\frac{1}{5}-\epsilon x3z2y+xzy4+x4f2(y,z)+x3y2l1(y,z)x^{3}z^{2}y+xzy^{4}+x^{4}f_{2}(y,z)+x^{3}y^{2}l_{1}(y,z) 77
+x2y3l2(y,z)+y5l3(x,y)=0+x^{2}y^{3}l_{2}(y,z)+y^{5}l_{3}(x,y)=0
522ϵ\frac{5}{22}-\epsilon x3z3+x2zy3+x4f2(y,z)+x3yf2(y,z)+x2y4=0x^{3}z^{3}+x^{2}zy^{3}+x^{4}f_{2}(y,z)+x^{3}yf_{2}(y,z)+x^{2}y^{4}=0 55
x3z2y+zy5+x3(xf2(y,z)+y2l1(y,z))x^{3}z^{2}y+zy^{5}+x^{3}(xf_{2}(y,z)+y^{2}l_{1}(y,z)) 99
+y3(x2l2(y,z)+xyl3(y,z)+ay3)=0+y^{3}(x^{2}l_{2}(y,z)+xyl_{3}(y,z)+ay^{3})=0
27ϵ\frac{2}{7}-\epsilon x3z3+xy5+x4f2(y,z)+x3yf2(y,z)+x2y3l1(y,z)=0x^{3}z^{3}+xy^{5}+x^{4}f_{2}(y,z)+x^{3}yf_{2}(y,z)+x^{2}y^{3}l_{1}(y,z)=0 66
Table 7. Equations for curves in exceptional locus EE^{-}
Proof.

The proof is similar to Proposition 5.4. Let

w{110,762,18,534,16,738,15,522,27}.w\in\{\frac{1}{10},\frac{7}{62},\frac{1}{8},\frac{5}{34},\frac{1}{6},\frac{7}{38},\frac{1}{5},\frac{5}{22},\frac{2}{7}\}.

be the walls. By part (1) of theorem 1.2, the center ZwZ_{w} of P¯wK\overline{P}^{K}_{w} is known in Table 1, which is either a point or a rational curve. Let C0C_{0} be a curve listed by the Table 1 at wall ww Then using the local VGIT presentation of K-moduli space P¯wK\overline{P}^{K}_{w} at the point [(𝔽1,wC0)][(\mathbb{F}_{1},wC_{0})] in center ZwZ_{w}, we get the description of local behavior at [(𝔽1,wC0)][(\mathbb{F}_{1},wC_{0})] as follows: EwE_{w}^{-} parametrizes the curves CC^{-} on 𝔽1\mathbb{F}_{1} such that the limits limt0λ(t)C=C0\mathop{\lim}\limits_{t\rightarrow 0}\ \lambda(t)C^{-}=C^{0} under 1-PS λ\lambda of the corresponding weight in the Table1. In particular, we get the equation of curve CC^{-} listed in Table 7. One can use such 1-PS λ\lambda to produce special degeneration from the pair (𝔽1,C)(\mathbb{F}_{1},C^{-}) to the pair (𝔽1,wC0)(\mathbb{F}_{1},wC_{0}). Ew+E_{w}^{+} is described similarly by using 1-PS λ1\lambda^{-1}, that is, EwE_{w}^{-} parametrizes the curves C+C^{+} on 𝔽1\mathbb{F}_{1} such that the limits limt0λ(t)C+=C0\mathop{\lim}\limits_{t\rightarrow 0}\ \lambda^{-}(t)C^{+}=C^{0}. Note that the stabilizer of the pair (𝔽1,C)(\mathbb{F}_{1},C) is a one dimensional torus. Then by the following dimension formula [DH98, Theorem 0.2.5] in VGIT

(5.23) dimEw+dimEw+=17+dimZw,\dim E_{w}^{-}+\dim E_{w}^{+}=17+\dim Z_{w},

the dimension for EE^{-} is computed. In this way we finish the proof. ∎

5.2. Wall-crossing on surface Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4)

5.2.1. Wall w=29106w=\frac{29}{106} and the 2nd divisorial contraction

We will construct an explicit degeneration from 𝔽1\mathbb{F}_{1} to Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4) based on [ADL19, Section 5] and study the walls crossings on the surface pair (Blp(1,1,4),C)(Bl_{p}{\mathbb{P}}(1,1,4),C). Let [x0,,x3][x_{0},\cdots,x_{3}] be the homogeneous coordinate of (1,1,1,2){\mathbb{P}}(1,1,1,2) and then consider the embedding

[x,y,z]2(1,1,1,2){\mathbb{P}}^{2}_{[x,y,z]}\hookrightarrow{\mathbb{P}}(1,1,1,2)

given by

(5.24) x0=x,x1=y,x2=z,x3=xzy2x_{0}=x,\ x_{1}=y,\ x_{2}=z,\ x_{3}=xz-y^{2}

and the the embedding

(1,1,4)[x,y,z](1,1,1,2){\mathbb{P}}(1,1,4)_{[x,y,z]}\hookrightarrow{\mathbb{P}}(1,1,1,2)

given by

(5.25) x0=x2,x1=xy,x2=y2,x3=z.x_{0}=x^{2},\ x_{1}=xy,\ x_{2}=y^{2},\ x_{3}=z.

It is easy to see that the hypersurface

𝒴:={(s,[x0,,x3])|sx3=x0x2x12}𝔸1×(1,1,1,2){\mathcal{Y}}:=\{(s,[x_{0},\cdots,x_{3}])\ |\ s\cdot x_{3}=x_{0}x_{2}-x_{1}^{2}\}\subset{\mathbb{A}}^{1}\times{\mathbb{P}}(1,1,1,2)

under the natural projection 𝒴𝔸1{\mathcal{Y}}\rightarrow{\mathbb{A}}^{1} provides a degeneration of 2{\mathbb{P}}^{2} to (1,1,4){\mathbb{P}}(1,1,4). Now we take a section γ\gamma and then a blowup 𝔛:=Blγ(𝔸1)𝒴𝒴{\mathfrak{X}}:=Bl_{\gamma}({\mathbb{A}}^{1}){\mathcal{Y}}\rightarrow{\mathcal{Y}} along the image of γ\gamma. Then we get a family of surface

(5.26) φ:𝔛𝔸1\varphi:{\mathfrak{X}}\rightarrow{\mathbb{A}}^{1}

such that 𝔛s𝔽1{\mathfrak{X}}_{s}\cong\mathbb{F}_{1} for s0s\neq 0 and 𝔛0Blp(1,1,4){\mathfrak{X}}_{0}\cong Bl_{p}{\mathbb{P}}(1,1,4). We denote the curve C0=2Hz+Q0C_{0}=2H_{z}+Q_{0} whose image is B0:=π(C0)={z3+z2x4=0}B_{0}:=\pi(C_{0})=\{z^{3}+z^{2}x^{4}=0\} where Q0Q_{0} is proper transform of curve {z+x4=0}\{z+x^{4}=0\}. Let

B:={(xzy2)2(xyy2+x2)=0}=2Q1+Q2B^{-}:=\{(xz-y^{2})^{2}(xy-y^{2}+x^{2})=0\}=2Q_{1}+Q_{2}

be the union of two plane conics Q1Q_{1} and Q2Q_{2} with multiplicity 22 and 11 and C=:πB2EC^{-}=:\pi^{\ast}B^{-}-2E.

Proposition 5.6.

At the wall w=29106w=\frac{29}{106}, there are biratinal morphisms

P¯29106+ϵKp+P¯29106KpP¯29106ϵK\overline{P}^{K}_{\frac{29}{106}+\epsilon}\ \xrightarrow{p_{+}}\ \overline{P}^{K}_{\frac{29}{106}}\ \xleftarrow{p_{-}}\ \overline{P}^{K}_{\frac{29}{106}-\epsilon}

where pp^{-} is an isomorphism and p+p^{+} is a Kirwan type blowup. The exceptional locus EwE_{w}^{-} is a point parametrizing K-polystable pairs (𝔽1,(wϵ)C)(\mathbb{F}_{1},(w-\epsilon)C^{-}) and Ew+E_{w}^{+} is a divisor parametrizing K-polystable pairs (Blp𝔽(1,1,4),C+)(Bl_{p}\mathbb{F}(1,1,4),C^{+}) described in first row of Table 6. Moreover, Ew+E_{w}^{+} is birational to the unigoal divisor HuH_{u} in {\mathcal{F}}.

Proof.

The 𝔾m\mathbb{G}_{m}-action with weight (1,0,4)(1,0,4) on (1,1,4){\mathbb{P}}(1,1,4) is induced from the 𝔾m\mathbb{G}_{m}-action λ\lambda on (1,1,1,2){\mathbb{P}}(1,1,1,2)

t[x0,x1,x2,x3]=[t2x0,tx1,x2,t4x3]t\cdot[x_{0},x_{1},x_{2},x_{3}]=[t^{2}x_{0},tx_{1},x_{2},t^{4}x_{3}]

under the embedding (1,1,4)(1,1,1,2){\mathbb{P}}(1,1,4)\hookrightarrow{\mathbb{P}}(1,1,1,2) via (5.25). In particular λ\lambda induces a 𝔾m\mathbb{G}_{m}-action on 𝒴{\mathcal{Y}} by

t(s,[x0,x1,x2,x3])=(t2s,[t2x0,tx1,x2,t4x3]).t\cdot(s,[x_{0},x_{1},x_{2},x_{3}])=(t^{-2}s,[t^{2}x_{0},tx_{1},x_{2},t^{4}x_{3}]).

By taking a section

γ:𝔸1𝒴,s(s,[1,0,0,0])\gamma:{\mathbb{A}}^{1}\rightarrow{\mathcal{Y}},\ s\mapsto(s,[1,0,0,0])

equivariant with respect to such 𝔾m\mathbb{G}_{m} action, then the degeneration construction 𝔛𝔸1{\mathfrak{X}}\rightarrow{\mathbb{A}}^{1} in (5.26) is also 𝔾m\mathbb{G}_{m}-equivariant. Then the pair (𝔽1,C)(\mathbb{F}_{1},C^{-}) admits a special degeneration to the pair (Blp𝔽(1,1,4),C0)(Bl_{p}\mathbb{F}(1,1,4),C_{0}), whose moduli point is exactly the center ZwZ_{w} at the wall w=29106w=\frac{29}{106} by part (1) of theorem 1.2. For the general curve B+B^{+} of the form

(5.27) z3+z2x4+z2yf3(x,y)+zyf7(x,y)+yf11(x,y)=0,z^{3}+z^{2}x^{4}+z^{2}yf_{3}(x,y)+zyf_{7}(x,y)+yf_{11}(x,y)=0,

there is a degeneration from B+B^{+} to B0B_{0} under the 1-PS λ\lambda with weight (1,0,4)(1,0,4) in the Table 2. This will induce a 𝔾m\mathbb{G}_{m} degeneration from the pair (Blp𝔽(1,1,4),C+)(Bl_{p}\mathbb{F}(1,1,4),C^{+}) to (Blp𝔽(1,1,4),C0)(Bl_{p}\mathbb{F}(1,1,4),C_{0}) . Thus (Blp𝔽(1,1,4),C+)Ew+(Bl_{p}\mathbb{F}(1,1,4),C^{+})\in E^{+}_{w} by local VGIT interpretation of P¯wK\overline{P}^{K}_{w} . Observe that such general curve B+B^{+} in equation (5.27) is exactly general member in |2KBlp𝔽(1,1,4)||-2K_{Bl_{p}\mathbb{F}(1,1,4)}|. By the dimension counting,

dimE+=dim|2KBlp𝔽(1,1,4)|//Aut(Blp𝔽(1,1,4))=dim17.\dim E^{+}=\dim|-2K_{Bl_{p}\mathbb{F}(1,1,4)}|/\!\!/\operatorname{Aut}(Bl_{p}\mathbb{F}(1,1,4))=\dim 17.

So dimE=0\dim E^{-}=0 by dimension formula (5.23). This proves pp^{-} must be an isomorphism and p+p^{+} is a weighted blowup. By the computation of period point for K3 surfaces in [PSW23, Section 4.1.1] obtained by the pairs in Ew+E^{+}_{w}, Ew+E^{+}_{w} is birational to HuH_{u}. Then we finish the proof. ∎

Remark 5.7.

Under the transform zzyf3(x,y)z\mapsto z-yf_{3}(x,y), the equation (5.27) has the normal form

z3+z2x4+zyf7(x,y)+y2f10(x,y)=0.z^{3}+z^{2}x^{4}+zyf_{7}(x,y)+y^{2}f_{10}(x,y)=0.

Then 𝔾m\mathbb{G}_{m} will act on the projective space 18([x,y]7[x,y]10){\mathbb{P}}^{18}\cong{\mathbb{P}}({\mathbb{C}}[x,y]_{7}\oplus{\mathbb{C}}[x,y]_{10}) induced from the action on the equation (5.27) and E+18//𝔾mE^{+}\cong{\mathbb{P}}^{18}/\!\!/\mathbb{G}_{m}.

5.2.2. The remaining walls on Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4)

Proposition 5.8.

At the third wall w{31110,27,35118}w\in\{\frac{31}{110},\frac{2}{7},\frac{35}{118}\}, there are flips

P¯w+ϵKp+P¯wKpP¯wϵK\overline{P}^{K}_{w+\epsilon}\ \xrightarrow{p_{+}}\ \overline{P}^{K}_{w}\ \xleftarrow{p_{-}}\ \overline{P}^{K}_{w-\epsilon}

The centers of p+p_{+} and pp_{-} are given by Table 2. Moreover,

  1. (1)

    The exceptional locus Ew=p1(Zw)E_{w}^{-}=p_{-}^{-1}(Z_{w}) parametrizes SS-equivalence classes of K-semistable pairs (X,(wϵ)C)(X,(w-\epsilon)\cdot C) where B=π(C)(1,1,4)(1,1,1,2)B=\pi(C)\subset{\mathbb{P}}(1,1,4)\subset{\mathbb{P}}(1,1,1,2) or B=π(C)2(1,1,1,2)B=\pi(C)\subset{\mathbb{P}}^{2}\subset{\mathbb{P}}(1,1,1,2) is a curve of complete intersection the form listed in the Table 8.

  2. (2)

    The exceptional locus Ew+=p+1(Zw)E_{w}^{+}=p_{+}^{-1}(Z_{w}) parametrizes SS-equivalence classes of K-semistable pairs (X,(w+ϵ)C)(X,(w+\epsilon)\cdot C) with B=π(C)(1,1,4)B=\pi(C)\subset{\mathbb{P}}(1,1,4) listed in the Table 6. In addition, Ew+E_{w}^{+} is birational to a Noether-Lefschetz locus

cc equation for curve BB on (1,1,1,2){\mathbb{P}}(1,1,1,2) dimE\dim E^{-}
31110ϵ\frac{31}{110}-\epsilon a1x3=x0x2+x12a_{1}x_{3}=x_{0}x_{2}+x_{1}^{2} x33+x3x1x03+a2x32x02=0x_{3}^{3}+x_{3}x_{1}x_{0}^{3}+a_{2}x_{3}^{2}x_{0}^{2}=0 22
27ϵ\frac{2}{7}-\epsilon a1x3=x0x2+x12a_{1}x_{3}=x_{0}x_{2}+x_{1}^{2} x33+x2x05+a2x3x1x03+a3x32x02x_{3}^{3}+x_{2}x_{0}^{5}+a_{2}x_{3}x_{1}x_{0}^{3}+a_{3}x_{3}^{2}x_{0}^{2} 33
35118ϵ\frac{35}{118}-\epsilon a1x3=x0x2+x12a_{1}x_{3}=x_{0}x_{2}+x_{1}^{2} x33+x3x2x03+x12x03+x04f2(x1,x2)=0x_{3}^{3}+x_{3}x_{2}x_{0}^{3}+x_{1}^{2}x_{0}^{3}+x_{0}^{4}f_{2}(x_{1},x_{2})=0 44
Table 8. Equations for curves in exceptional locus EE^{-}
Proof.

We give a proof for w=31110w=\frac{31}{110}. The remaining cases are the same arguments and we leave the details to the interested readers. Under the embedding (5.25), the curve BZwB\in Z_{w} in is cut out by the equations

q0:=x0x2x12,F0=x33+x3x1x03=0.q_{0}:=x_{0}x_{2}-x_{1}^{2},\ F_{0}=x_{3}^{3}+x_{3}x_{1}x_{0}^{3}=0.

Note that by Proposition 5.26, t is shown for any K-semistable pairs (X,C)(X,C), there is a blowup morphism π:X2\pi:X\rightarrow{\mathbb{P}}^{2} or π:X(1,1,4)\pi:X\rightarrow{\mathbb{P}}(1,1,4). Let [x0,x1,x2,x3]i{\mathbb{C}}[x_{0},x_{1},x_{2},x_{3}]_{i} be the space of homogeneous polynomial degree ii in x0,x1,x2,x3x_{0},x_{1},x_{2},x_{3}, then the pair of polynomials (q,fmodq)(q,f\mod q) form a parameter space for K-semistable pairs (X,C)(X,C) where q[x0,x1,x2,x3]2q\in{\mathbb{C}}[x_{0},x_{1},x_{2},x_{3}]_{2} and f[x0,x1,x2,x3]6f\in{\mathbb{C}}[x_{0},x_{1},x_{2},x_{3}]_{6}. Let λ\lambda be the action on (1,1,1,2){\mathbb{P}}(1,1,1,2) by

t[x0,x1,x2,x3]=[t4x0,t2x1,x2,t7x3]t\cdot[x_{0},x_{1},x_{2},x_{3}]=[t^{4}x_{0},t^{2}x_{1},x_{2},t^{7}x_{3}]

induced from the 1-PS in the Table 2, which is the stabilizer group of the center ZwZ_{w}. Then the action λ\lambda on the pair is

t(q,fmodq):=(t4(tq),t21(tf))t\cdot(q,f\mod q):=(t^{-4}(t\cdot q),t^{-21}(t\cdot f))

where tqt\cdot q or tft\cdot f is the action of λ\lambda on [x0,x1,x2,x3]2{\mathbb{C}}[x_{0},x_{1},x_{2},x_{3}]_{2} or [x0,x1,x2,x3]6{\mathbb{C}}[x_{0},x_{1},x_{2},x_{3}]_{6}. Then by the local VGIT interpretation of K-moduli at P¯wK\overline{P}^{K}_{w}, EE^{-} also parametrizes pairs {(q,fmodq)}\{(q,f\mod q)\} such that the curve defined by {q=0,f=0}\{q=0,\ f=0\} is nodal at [1,0,0,0][1,0,0,0] at least and

limt0t(q,fmodq):=(limt0t4tq,limt0t21tfmodq)=(q0,F0modq)\mathop{\lim}\limits_{t\rightarrow 0}t(q,f\mod q):=(\mathop{\lim}\limits_{t\rightarrow 0}t^{-4}\cdot tq,\mathop{\lim}\limits_{t\rightarrow 0}t^{-21}\cdot tf\mod q)=(q_{0},F_{0}\mod q)

In this way, we obtain equation

q=q0+x0l(x0,x1)+a1x3,f=F0+a2x32x02q=q_{0}+x_{0}l(x_{0},x_{1})+a_{1}x_{3},\ \ f=F_{0}+a_{2}x_{3}^{2}x_{0}^{2}

for curves BEwB\in E_{w}^{-}. Up to the possible action under x3x3+f2(x0,x1,x2)x_{3}\mapsto x_{3}+f_{2}(x_{0},x_{1},x_{2}), the normalised equation is obtained for BB as in Table 8. This proves the description in (1). By the parallel computation and discussion for curves in Ew+E_{w}^{+}, we prove the the description in (2). ∎

5.3. Proof of part (2) of theorem 1.2

This is just the combination of Proposition 5.4 , Proposition 5.5 and Proposition 5.6, Proposition 5.8.

6. K-moduli v.s. HKL

In in section, we established the relation of K-moduli spaces P¯cK\overline{P}^{K}_{c} with the Hassett-Keel-Looignega(HKL) program for the moduli space of lattice polarised K3 surfaces studied in [PSW23].

Lemma 6.1.

The K-moduli space P¯cK\overline{P}^{K}_{c} is a normal projective variety for any 114<c<12\frac{1}{14}<c<\frac{1}{2}.

Proof.

By the structure of K-moduli and Luna’s slice theorem, it is known that for any pairs [X,C]P¯cK[X,C]\in\overline{P}^{K}_{c} (see [ADL19, Theorem 3.33]), there is a étable map

U//Aut(X,C)P¯cKU/\!\!/\operatorname{Aut}(X,C)\ \rightarrow\overline{P}^{K}_{c}

whose image is a open neighborhood of [X,C][X,C]. As Aut(X,C)\operatorname{Aut}(X,C) is a reductive group, then it is sufficient to show the deformation of {\mathbb{Q}}-Gorenstein del Pezzo pair (X,C)(X,C) has no obstruction so that UU can be choose as a open subset of the 1st order deformation space of the pair (X,C)(X,C), which is smooth and thus the GIT U//Aut(X,C)U/\!\!/\operatorname{Aut}(X,C) is normal by the general results of Mumford’s GIT [MFK94, Charter 0 §02].

Now let us compute the 1st order deformation space and obstruction space to finish the proof. Recall from [Ser06, Chapter 3], deformation space and obstruction space of a klt pair (X,C)(X,C) in dimension 22 are given by

Def(X,C)=Ext1(ΩX1(log(C)red),𝒪X),Obs(X,C)=Ext2(ΩX1(log(C)red),𝒪X).\mathrm{Def}_{(X,C)}=\operatorname{Ext}^{1}(\Omega^{1}_{X}(\log(C)_{red}),{\mathcal{O}}_{X}),\ \ \mathrm{Obs}_{(X,C)}=\operatorname{Ext}^{2}(\Omega^{1}_{X}(\log(C)_{red}),{\mathcal{O}}_{X}).

where ΩX1(log(C)red)\Omega^{1}_{X}(\log(C)_{red}) is the logarithmetic differential sheaf along the reduced part (C)red(C)_{red} of the curve CC. By [HP10, Proposition 3.1],

H2(X,TX)Ext2(ΩX1(logC),𝒪X)=0H^{2}(X,T_{X})\cong\operatorname{Ext}^{2}(\Omega^{1}_{X}(\log C),{\mathcal{O}}_{X})=0

by Serre duality. Note that there is the short exact sequence

(6.28) 0ΩX1ΩX1(logC)i𝒪Ci00\rightarrow\Omega^{1}_{X}\rightarrow\Omega^{1}_{X}(\log C)\rightarrow\mathop{\oplus}\limits_{i}{\mathcal{O}}_{C_{i}}\rightarrow 0

where CiC_{i} is the irreducible component of (C)red(C)_{red}. Thus by taking the Ext(,𝒪X)\operatorname{Ext}(-,{\mathcal{O}}_{X}) of (6.28), it is sufficient to show the vanishing Ext2(𝒪Ci,𝒪X)=0\operatorname{Ext}^{2}({\mathcal{O}}_{C_{i}},{\mathcal{O}}_{X})=0 for each component CiC_{i}. By taking Ext(,𝒪X)\operatorname{Ext}(-,{\mathcal{O}}_{X}) for the short exact sequence

0𝒪X(Ci)𝒪X𝒪Ci0,0\rightarrow{\mathcal{O}}_{X}(-C_{i})\rightarrow{\mathcal{O}}_{X}\rightarrow{\mathcal{O}}_{C_{i}}\rightarrow 0,

it is easy to see that the vanishing Ext2(𝒪Ci,𝒪X)=0\operatorname{Ext}^{2}({\mathcal{O}}_{C_{i}},{\mathcal{O}}_{X})=0 will follows from the following vanishings

(6.29) Ext2(𝒪X,𝒪X)=H2(X,𝒪X)=0,Ext1(𝒪X(Ci),𝒪X)=H1(X,𝒪X(Ci))=0.\begin{split}&\operatorname{Ext}^{2}({\mathcal{O}}_{X},{\mathcal{O}}_{X})=H^{2}(X,{\mathcal{O}}_{X})=0,\\ &\operatorname{Ext}^{1}({\mathcal{O}}_{X}(-C_{i}),{\mathcal{O}}_{X})=H^{1}(X,{\mathcal{O}}_{X}(C_{i}))=0.\end{split}

The first vanishing result in (6.29) is just Kodaira vanishing for del Pezzo surface. The second in (6.29) will follow from the proof of [MS20, Lemma2.1] since CiC_{i} is an effective divisor on the klt del Pezzo surface. ∎

Recall there is a uniform embedding into N{\mathbb{P}}^{N} for all K-semistable pair (X,D)(X,D) and denote Hilbi=Hilbi(N)\operatorname{\mathrm{Hilb}}_{i}=\operatorname{\mathrm{Hilb}}_{i}({\mathbb{P}}^{N}) the Hilbert scheme with Hilbert polynomial

χ1(t)=m2d2t2+md2t+1,χ2(t)=2mdtd.\chi_{1}(t)=\frac{m^{2}d}{2}t^{2}+\frac{md}{2}t+1,\ \ \ \chi_{2}(t)=2mdt-d.

Let πc:(𝔛,𝒟;)Zcred\pi_{c}:({\mathfrak{X}},{\mathcal{D}};\mathcal{L})\rightarrow Z_{c}^{red} be the universal family of polarised del Pezzo pairs of degree 88 where ZcredHilb1×Hilb2Z_{c}^{red}\subset\operatorname{\mathrm{Hilb}}_{1}\times\operatorname{\mathrm{Hilb}}_{2} is the reduced locally closed subscheme in the product of Hilber scheme parametrizing the incidence pair. By [ADL19], the K-moduli P¯cK\overline{P}^{K}_{c} is the good moduli space of quotient stack [Zcred/PGL(N+1)][Z_{c}^{red}/\operatorname{\mathrm{PGL}}(N+1)]. Denote λc,c\lambda_{c,c^{\prime}} the descent of the log CM line bundle with coefficient cc^{\prime} on P¯cK\overline{P}^{K}_{c}, that is, λc,c\lambda_{c,c^{\prime}} is the descent of

πc(Kπcc𝒟)3.\pi_{c\ast}(-K_{\pi_{c}}-c^{\prime}{\mathcal{D}})^{3}.

It is known that λc=λc,c\lambda_{c}=\lambda_{c,c} is an ample {\mathbb{Q}}-line bundle on P¯cK\overline{P}^{K}_{c} for all c(114,12)c\in(\frac{1}{14},\frac{1}{2})\cap{\mathbb{Q}} by theorem 2.10. Moreover, there is birational contraction map

P¯12ϵKP¯cK\overline{P}^{K}_{\frac{1}{2}-\epsilon}\dashrightarrow\overline{P}^{K}_{c}

for any cc. Then arguments as in [ADL19, Theorem 9.4] will show

(6.30) P¯cKProj(R(P¯12ϵK,λ12ϵ,c))\overline{P}^{K}_{c}\cong\operatorname{Proj}\big{(}R(\overline{P}^{K}_{\frac{1}{2}-\epsilon},\lambda_{\frac{1}{2}-\epsilon,c})\big{)}

for c(114,12)c\in(\frac{1}{14},\frac{1}{2})\cap{\mathbb{Q}} and 0<ϵ10<\epsilon\ll 1.

Theorem 6.2.

There is a natural isomorphism of projective varieties P¯cK(s)\overline{P}^{K}_{c}\cong{\mathcal{F}}(s)\ induced by the period map under the transformation

s=s(c)=12c56c4\ s=s(c)=\frac{1-2c}{56c-4}

where 114<c<12\frac{1}{14}<c<\frac{1}{2}.

Proof.

Let p:P¯12ϵKp:\overline{P}^{K}_{\frac{1}{2}-\epsilon}\dashrightarrow{\mathcal{F}}^{\ast} be the period map. By the results in Section 5, we know

p1:P¯12ϵKp^{-1}:{\mathcal{F}}\hookrightarrow\overline{P}^{K}_{\frac{1}{2}-\epsilon}

is a open immersion whose image is a big open subset of P¯12ϵK\overline{P}^{K}_{\frac{1}{2}-\epsilon}. Thus by the normality of K-moduli space P¯cK\overline{P}^{K}_{c} proved in Lemma 6.1 and (6.30), it is enough to show the pullback (p1)λ12ϵ,c(p^{-1})^{\ast}\lambda_{\frac{1}{2}-\epsilon,c} on {\mathcal{F}}^{\ast} is proportional to

λ+12c56c4(Hh+25Hu).\lambda+\frac{1-2c}{56c-4}(H_{h}+25H_{u}).

By interpolation formula of CM line bundles in [ADL19, Proposition3.35], we have

(6.31) (12c)2λ12ϵ,c=(12c)λ12ϵ,0+48cλ12ϵ,Hdg.(1-2c)^{-2}\cdot\lambda_{\frac{1}{2}-\epsilon,c}=(1-2c)\cdot\lambda_{\frac{1}{2}-\epsilon,0}+48c\cdot\lambda_{\frac{1}{2}-\epsilon,Hdg}.

Then we claim

(6.32) p1λ12ϵ,Hdg=λ,p1λ12ϵ,0=Hh+25Hu4λp^{-1\ \ast}\lambda_{\frac{1}{2}-\epsilon,Hdg}=\lambda,\ \ p^{-1\ \ast}\lambda_{\frac{1}{2}-\epsilon,0}=H_{h}+25H_{u}-4\lambda

Assume the claim (6.32), the formula (6.31) will imply

R(P¯12ϵK,λ12ϵ,c)=R(,(56c4)λ+(12c)(Hh+25Hu)).\begin{split}R(\overline{P}^{K}_{\frac{1}{2}-\epsilon},\lambda_{\frac{1}{2}-\epsilon,c}\big{)}=R({\mathcal{F}}^{\ast},(56c-4)\lambda+(1-2c)(H_{h}+25H_{u})).\end{split}

Thus, to prove the theorem it is sufficient to prove the claim (6.32). The first identity is obtained by adjunction as in the proof of [ADL22, Theorem 6.2]. As Pic()\operatorname{Pic}({\mathcal{F}})_{\mathbb{Q}} is generated by λ,Hh,Hu\lambda,H_{h},H_{u}, we may assume

p1λ12ϵ,0=ahHh+auHu+aλλ,au,ah,aλ.p^{-1\ \ast}\lambda_{\frac{1}{2}-\epsilon,0}=a_{h}H_{h}+a_{u}H_{u}+a_{\lambda}\lambda,\ a_{u},a_{h},a_{\lambda}\in{\mathbb{Q}}.

By Proposition 5.1, the section ring

R(c):=R(,48cλ+(12c)(ahHh+auHu+aλλ)R(c):=R({\mathcal{F}},48c\lambda+(1-2c)\cdot(a_{h}H_{h}+a_{u}H_{u}+a_{\lambda}\lambda)

will satisfy

R(c)={0, 0<c<114,c=114.R(c)=\begin{cases}0,\ &\ 0<c<\frac{1}{14}\\ {\mathbb{C}},\ &\ c=\frac{1}{14}.\end{cases}

Since λ\lambda is ample while HhH_{h} and HuH_{u} are contractable, the coefficient of λ\lambda in 48cλ+(12c)(ahHh+auHu+aλλ)48c\lambda+(1-2c)\cdot(a_{h}H_{h}+a_{u}H_{u}+a_{\lambda}\lambda) must vanish, that is,

4814+1214aλ=0.\frac{48}{14}+\frac{12}{14}a_{\lambda}=0.

This shows aλ=4a_{\lambda}=-4. In particular, the CM line bundle λ12ϵ,c\lambda_{\frac{1}{2}-\epsilon,c} is proportional to

λ+12c56c4(ahHh+auHu).\lambda+\frac{1-2c}{56c-4}\cdot(a_{h}H_{h}+a_{u}H_{u}).

By the computation in [PSW23, Theorem 1.2],

(6.33) (λ+Hu)|Hu=0,(λ+Hh)|Hh=0.(\lambda+H_{u})|_{H_{u}}=0,\ \ (\lambda+H_{h})|_{H_{h}}=0.

where we still use HuH_{u} and HhH_{h} denote their birational transform in the K-moduli space P¯cK\overline{P}^{K}_{c}. Note that by the computation in Proposition 5.4 and Proposition 5.6, the walls where the proper transforms of HhH_{h} and HuH_{u} in PcKP_{c}^{K} appear as divisorial contractions are wh=558w_{h}=\frac{5}{58} and wu=29106w_{u}=\frac{29}{106} . Then we have

12wh56wh4ah=1,12wu56wu4au=1\begin{split}\frac{1-2w_{h}}{56\cdot w_{h}-4}\cdot a_{h}=1,\ \ \frac{1-2w_{u}}{56\cdot w_{u}-4}\cdot a_{u}=1\end{split}

as in the proof of [ADL22, Theorem 6.2]. It turns out that ah=1,au=25a_{h}=1,\ a_{u}=25. Then we finish the proof. ∎

Remark 6.3.

Under the the transformation s=s(c)=12c56c4s=s(c)=\frac{1-2c}{56c-4}, the walls in (1.2) on hyperelliptic divisor HhH_{h} will be

sWh,A={1,12,13,}WA={14,16,18}WD={14,16,18,}WD={110,112,116}WE={110,116,128}\begin{split}s\ \in\ &W_{h,A}=\{1,\frac{1}{2},\frac{1}{3},\}\cup W_{A^{\prime}}=\{\frac{1}{4},\frac{1}{6},\frac{1}{8}\}\\ &\cup W_{D}=\{\frac{1}{4},\frac{1}{6},\frac{1}{8},\}\cup W_{D^{\prime}}=\{\frac{1}{10},\frac{1}{12},\frac{1}{16}\}\cup W_{E}=\{\frac{1}{10},\frac{1}{16},\frac{1}{28}\}\end{split}

and the walls on unigonal divisor HuH_{u} will be

sWu={125,127,128,131}.s\in W_{u}=\{\frac{1}{25},\frac{1}{27},\frac{1}{28},\frac{1}{31}\}.

These numbers are just walls from prediction of arithmetic side in [PSW23, Prediction 1 and Prediction 2]. In particular, we verify the walls in conjecture 1.1.

7. Further discussion

7.1. Application to K-stability of Fano 3-fold pairs

Let us recall the construction of log Fano 33-fold pair associated to the del Pezzo surface via the cone construction. Let XX be a normal surface such that KX-K_{X} is ample and Cartier. Denote C|2KX|C\in|-2K_{X}| an effective curve. The 33-fold VV is defined as projective cone

V:=Cp(X,KX)=Proj(m0n=0mH0(X,nKX))tmn)V:=C_{p}(X,-K_{X})=\operatorname{Proj}(\mathop{\oplus}\limits_{m\geq 0}\mathop{\oplus}\limits_{n=0}^{m}H^{0}(X,-nK_{X}))t^{m-n})

and the surface SS as an anti-canonical divisor on VV is obtained by double covering SXS\rightarrow X branched along the curve CC. We call such (V,S)(V,S) the log Fano 3-fold pair associated to the del Pezzo surface pair (X,C)(X,C).

A powerful results proved in [ADL22, Theorem 5.2] is the following

Theorem 7.1.

Notation as above, then the log Fano 3-fold pair (V,4c+13S)(V,\frac{4c+1}{3}S) is K-semistable if and only if the del Pezzo surface pair (X,cC)(X,cC) is K-semistable.

Remark 7.2.

The 33-fold VV has volume (KV)3=8(KX)2(-K_{V})^{3}=8(-K_{X})^{2}.

As a application of the results in Section 6, we have

Corollary 7.3.

Let (V,S)(V,S) be the log Fano 3-fold pair obtained by the cone construction of del Pezzo pairs (𝔽1,C)(\mathbb{F}_{1},C) for curve CC given by the Table 1, then

kst(V,S)={c=11+n27+n|n=1,2,,5}{c=3+n11+n|n=6,7,8,9,11}.kst(V,S)=\{\ c=\frac{11+n}{27+n}\ |\ n=1,2,\cdots,5\ \}\cup\{\ c=\frac{3+n}{11+n}\ |\ n=6,7,8,9,11\ \}.
Proof.

By the computation of walls in Section 6, the assertion is a direct consequence of theorem 7.1. ∎

7.2. KSBA moduli vs toroidal compactification

Definition 7.4.

A KSBA stable pair (X,Δ)(X,\Delta) consists of a projective variety XX with an effective {\mathbb{Q}}-divisor Δ\Delta such that

  1. (1)

    KX+ΔK_{X}+\Delta is ample,

  2. (2)

    (X,Δ)(X,\Delta) has slc singularities. That is, the pair (Xν,Δν)(X^{\nu},\Delta^{\nu}) is lc where ν:XνX\nu:X^{\nu}\rightarrow X is a normalization of XX such that

    KXν+Δν=ν(KX+Δ).K_{X^{\nu}}+\Delta^{\nu}=\nu^{\ast}(K_{X}+\Delta).

If we add coefficient c>12c>\frac{1}{2} to the boundary curve CC of del Pezzo pair (X,C)(X,C), then (X,cC)(X,cC) will be a KSBA stable pair. Due to the frame work of Kollar-Shepherd-Barron (see [KSB88] or Kollar’s book [Kol23] for the details), there is an irreducible component P¯d,cKSBA\overline{P}_{d,c}^{KSBA} of a complete projective scheme which parametrizes KSBA stable pairs such that the general member is the isomorphic class of (X,cC)(X,cC). Moreover, varying c>12c>\frac{1}{2} there is also wall-crossing phenomenon for KSBA moduli space by [ABIP23, Theorem 1.1].

Given a stable pair (X,C)P¯d,12+ϵKSBA(X,C)\in\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA} and by the double cover construction ϕ:YX\phi:Y\rightarrow X branched along curve CC, one can obtain another pair (Y,R)(Y,R) where KY=0K_{Y}=0 (a singular K3 ) and R=ϕ1(C)R=\phi^{-1}(C) is a {\mathbb{Q}}-divisor. It turns out (Y,cR)(Y,c^{\prime}R) is another KSBA stable pair for any c>0c^{\prime}>0 by [AEH21, Proposition 4.1 ]. Under such construction Alexeev-Engel-Han show ([AEH21, Theorem 4.2 and Corollary 4.3]) P¯d,12+ϵKSBA\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA} is also the coarse moduli space of KSBA stable (Y,ϵR)(Y,\epsilon R) where 0<ϵ10<\epsilon\ll 1. By realising RR as a recognizable divisor, they also show there is a normalization map

μ:ΣP¯d,12+ϵKSBA\mu:{\mathcal{F}}^{\Sigma}\rightarrow\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA}

where Σ{\mathcal{F}}^{\Sigma} is a certain semi-toric compactification of {\mathcal{F}} determined by a O(Λ)O(\Lambda)-admissble semifan Σ\Sigma. From arithmetic compactification side, there is a natural contraction morphism from the semi-toric compactification Σ{\mathcal{F}}^{\Sigma} to the Baily-Borel compactification {\mathcal{F}}^{\ast}

Σ=Pd.{\mathcal{F}}^{\Sigma}\rightarrow{\mathcal{F}}^{\ast}=P_{d}^{\ast}.

It maps the simple normal crossing boundary divisors Σ=D1Dm{\mathcal{F}}^{\Sigma}-{\mathcal{F}}=D_{1}\cup\cdots\cup\cdot\cup D_{m} to 11-dimensional cusps B1,,BmB_{1},\cdots,B_{m} of the boundaries {\mathcal{F}}^{\ast}-{\mathcal{F}}. Let P¯d,12+ϵKSBA,\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA,\circ} be the Zariski open subset parametrizing ADE stable pairs. We expect that the period map p:P¯d,12+ϵKSBA,p:\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA,\circ}\rightarrow{\mathcal{F}}^{\ast} will extend to a morphism p:P¯d,12+ϵKSBAp:\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA}\rightarrow{\mathcal{F}}^{\ast} such that there is a commutative diagram

Σ{{\mathcal{F}}^{\Sigma}}P¯d,12+ϵKSBA{\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA}}{{\mathcal{F}}^{\ast}}μ\scriptstyle{\mu}p\scriptstyle{p}

Then as analogue to HKL, we consider the projective scheme

Σ(b1,,bm):=Proj(R(Σ,λ+i=imbiDi)),bi[0,1){\mathcal{F}}^{\Sigma}(b_{1},\cdots,b_{m}):=\operatorname{Proj}\big{(}R({\mathcal{F}}^{\Sigma},\lambda+\mathop{\sum}\limits_{i=i}^{m}b_{i}D_{i})\ \big{)},\ b_{i}\in[0,1)\cap{\mathbb{Q}}

As the pair (Σ,i=imbiDi)({\mathcal{F}}^{\Sigma},\mathop{\sum}\limits_{i=i}^{m}b_{i}D_{i}) is klt, then the general result of [BCHM10, Corollary 1.1.2 ] will imply Σ(b1,,bm){\mathcal{F}}^{\Sigma}(b_{1},\cdots,b_{m}) is a projective variety. An interesting question is

Question 7.5.

If we vary the parameter (b1,,bm)(b_{1},\cdots,b_{m}), is it true that Σ(b1,,bm){\mathcal{F}}^{\Sigma}(b_{1},\cdots,b_{m}) is the normalization of KSBA moduli space P¯d,cKSBA\overline{P}_{d,c}^{KSBA} for certain c=c(b1,,bm)>12c=c(b_{1},\cdots,b_{m})>\frac{1}{2} ?

If the answer is positive, then the similar arithmetic strategy in [GLL+, Section 10] should provide an effective algorithm to find walls for KSBA moduli spcace.

7.3. Wall crossing relating K-moduli and KSBA moduli

Motivated by the [ADL19, Conjecture 9.19], we ask the following

Question 7.6.

Is there a good stability notion for log CY surfaces (X,12C)(X,\frac{1}{2}C) such that the log CY surfaces (X,12C)(X,\frac{1}{2}C) with such stability forms a good moduli problem , which admits a good moduli space P¯dCY\overline{P}_{d}^{CY} and P¯dCY\overline{P}_{d}^{CY} fits into the wall-crossing of K-moduli P¯d,12ϵK\overline{P}_{d,\frac{1}{2}-\epsilon}^{K} and KSBA-moduli P¯d,12+ϵKSBA\overline{P}_{d,\frac{1}{2}+\epsilon}^{KSBA} ?

An evidence for a positive answer to the Question 7.6 is provided by the following result.

Proposition 7.7.

{\mathcal{F}}^{\ast} is the ample model of of the Hodge line bundle P¯12ϵK\overline{P}^{K}_{\frac{1}{2}-\epsilon}.

Proof.

The proof is parallel to that of [ADL19, Theorem 6.5]. Let UU\subset{\mathcal{F}}^{\ast} be the open subset parametrizing K3 surface with involution (X,τ)(X,\tau) such that X/τX/\tau is either 𝔽1\mathbb{F}_{1} or Blp(1,1,4)~\widetilde{Bl_{p}{\mathbb{P}}(1,1,4)} the minimal resolution of Blp(1,1,4)Bl_{p}{\mathbb{P}}(1,1,4). Since ρ()=3\rho({\mathcal{F}}^{\ast})=3, then UU\subset{\mathcal{F}}^{\ast} is a big open subset, i.e., codim(U)2codim({\mathcal{F}}^{\ast}-U)\geq 2. By the explicit wall-crossing description in Section 5, UP¯12ϵKU\subset\overline{P}^{K}_{\frac{1}{2}-\epsilon} is also a big open subset. Denote λHodge\lambda_{Hodge} the Hodge line bundle on P¯12ϵK\overline{P}^{K}_{\frac{1}{2}-\epsilon}. Note that λHodge|U\lambda_{Hodge}|_{U} is obtained by the restriction of Hodge line bundle λ\lambda on locally symmetric variety =𝒟Γ{\mathcal{F}}={\mathcal{D}}\setminus\Gamma. As arguments in the proof of [ADL19, Theorem 6.5], the line bundle λHodge\lambda_{Hodge} is big and semiample on P¯12ϵK\overline{P}^{K}_{\frac{1}{2}-\epsilon}. Thus,

Proj(R(,λ))Proj(R(U,λ|U))Proj(R(U,λHodge|U))Proj(R(P¯12ϵK,λHodge)).\begin{split}{\mathcal{F}}^{\ast}&\cong\operatorname{Proj}(R({\mathcal{F}},\lambda))\cong\operatorname{Proj}(R(U,\lambda|_{U}))\\ &\cong\operatorname{Proj}(R(U,\lambda_{Hodge}|_{U}))\cong\operatorname{Proj}(R(\overline{P}^{K}_{\frac{1}{2}-\epsilon},\lambda_{Hodge})).\end{split}

This finishes proof. ∎

Recently, the authors in [ABB+23] succeed in constructing the moduli of log Calabi-Yau pairs in plane curves case, which connects the KSBA moduli and the K-moduli for the plane curve pairs. Their work provides further evidence to the Question 7.6. We expect extending their work to give an answer to this question.

Remark 7.8.

The full explicit wall crossing description of K-moduli P¯d,cK\overline{P}^{K}_{d,c} for other degree dd will imply the same result that {\mathcal{F}}^{\ast} is the ample model of of the Hodge line bundle P¯d,12ϵK\overline{P}^{K}_{d,\frac{1}{2}-\epsilon}.

References

  • [ABB+23] Kenneth Ascher, Dori Bejleri, Harold Blum, Kristin DeVleming, Giovanni Inchiostro, Yuchen Liu, and Xiaowei Wang. Moduli of boundary polarized calabi-yau pairs. arXiv preprint arXiv:2307.06522, 2023.
  • [ABHLX20] Jarod Alper, Harold Blum, Daniel Halpern-Leistner, and Chenyang Xu. Reductivity of the automorphism group of KK-polystable Fano varieties. Invent. Math., 222(3):995–1032, 2020.
  • [ABIP23] Kenneth Ascher, Dori Bejleri, Giovanni Inchiostro, and Zsolt Patakfalvi. Wall crossing for moduli of stable log pairs. Annals of Mathematics, 198(2):825–866, 2023.
  • [ADL19] Kenneth Ascher, Kristin DeVleming, and Yuchen Liu. Wall crossing for K-moduli spaces of plane curves. arXiv e-prints, page arXiv:1909.04576, September 2019.
  • [ADL21] Kenneth Ascher, Kristin DeVleming, and Yuchen Liu. K-moduli of curves on a quadric surface and K3 surfaces. Journal of the Institute of Mathematics of Jussieu, pages 1–41, 2021.
  • [ADL22] Kenneth Ascher, Kristin DeVleming, and Yuchen Liu. K-stability and birational models of moduli of quartic K3 surfaces. Inventiones mathematicae, pages 1–82, 2022.
  • [AEH21] Valery Alexeev, Philip Engel, and Changho Han. Compact moduli of K3 surfaces with a nonsymplectic automorphism. arXiv e-prints, page arXiv:2110.13834, October 2021.
  • [AFS17] Jarod Alper, Maksym Fedorchuk, and David Ishii Smyth. Second flip in the Hassett-Keel program: existence of good moduli spaces. Compos. Math., 153(8):1584–1609, 2017.
  • [Alp13] Jarod Alper. Good moduli spaces for Artin stacks. Ann. Inst. Fourier (Grenoble), 63(6):2349–2402, 2013.
  • [BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.
  • [BLMM17] Nicolas Bergeron, Zhiyuan Li, John Millson, and Colette Moeglin. The Noether-Lefschetz conjecture and generalizations. Invent. Math., 208(2):501–552, 2017.
  • [DH98] Igor V. Dolgachev and Yi Hu. Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math., (87):5–56, 1998. With an appendix by Nicolas Ressayre.
  • [DK07] Brent Doran and Frances Kirwan. Towards non-reductive geometric invariant theory. Pure Appl. Math. Q., 3(1, Special Issue: In honor of Robert D. MacPherson. Part 3):61–105, 2007.
  • [Ful11] Mihai Fulger. The cones of effective cycles on projective bundles over curves. Math. Z., 269(1-2):449–459, 2011.
  • [FY17] Kento FUJITA and Kazunori YASUTAKE. Classification of log del Pezzo surfaces of index three. Journal of the Mathematical Society of Japan, 69(1):163 – 225, 2017.
  • [GLL+] Francois Greer, Radu Laza, Zhiyuan Li, Fei Si, and Zhiyu Tian. Compactifications of moduli space of K3 surfaces of degree 6. In preparation.
  • [Hac04] Paul Hacking. Compact moduli of plane curves. Duke Math. J., 124(2):213–257, 2004.
  • [HP10] Paul Hacking and Yuri Prokhorov. Smoothable del Pezzo surfaces with quotient singularities. Compos. Math., 146(1):169–192, 2010.
  • [IS17] Nathan Ilten and Hendrik Süß. K-stability for Fano manifolds with torus action of complexity 1. Duke Math. J., 166(1):177–204, 2017.
  • [Kol13] János Kollár. Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács.
  • [Kol23] János Kollár. Families of varieties of general type, volume 231 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2023. With the collaboration of Klaus Altmann and Sándor J. Kovács.
  • [KSB88] J. Kollár and N. I. Shepherd-Barron. Threefolds and deformations of surface singularities. Invent. Math., 91(2):299–338, 1988.
  • [Li17] Chi Li. K-semistability is equivariant volume minimization. Duke Math. J., 166(16):3147–3218, 2017.
  • [Liu23] Yuchen Liu. K-stability of Fano threefolds of rank 2 and degree 14 as double covers. Math. Z., 303(2):Paper No. 38, 9, 2023.
  • [LL19] Chi Li and Yuchen Liu. Kähler-Einstein metrics and volume minimization. Adv. Math., 341:440–492, 2019.
  • [LO21] Radu Laza and Kieran O’Grady. GIT versus Baily-Borel compactification for K3’s which are double covers of 1×1\mathbb{P}^{1}\times\mathbb{P}^{1}. Advances in Mathematics, 383:107680, 2021.
  • [LX19] Yuchen Liu and Chenyang Xu. K-stability of cubic threefolds. Duke Math. J., 168(11):2029–2073, 2019.
  • [LXZ22] Yuchen Liu, Chenyang Xu, and Ziquan Zhuang. Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. of Math. (2), 196(2):507–566, 2022.
  • [MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.
  • [MS20] Davesh Maulik and Junliang Shen. Cohomological χ\chi-independence for moduli of one-dimensional sheaves and moduli of higgs bundles. arXiv preprint arXiv:2012.06627, 2020.
  • [Nak07] Noboru Nakayama. Classification of log del Pezzo surfaces of index two. J. Math. Sci. Univ. Tokyo, 14(3):293–498, 2007.
  • [Oda13] Yuji Odaka. The GIT stability of polarized varieties via discrepancy. Ann. of Math. (2), 177(2):645–661, 2013.
  • [Pro01] Yuri G. Prokhorov. Lectures on complements on log surfaces, volume 10 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2001.
  • [PSW23] Long Pan, Fei Si, and Haoyu Wu. Birational geometry of moduli space of log del pezzo pairs. arXiv preprint arXiv:2309.10467, 2023.
  • [Ser06] Edoardo Sernesi. Deformations of algebraic schemes, volume 334 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
  • [Xu21] Chenyang Xu. K-stability of Fano varieties: an algebro-geometric approach. EMS Surv. Math. Sci., 8(1-2):265–354, 2021.
  • [XZ20] Chenyang Xu and Ziquan Zhuang. On positivity of the CM line bundle on K-moduli spaces. Ann. of Math. (2), 192(3):1005–1068, 2020.
  • [XZ21] Chenyang Xu and Ziquan Zhuang. Uniqueness of the minimizer of the normalized volume function. Camb. J. Math., 9(1):149–176, 2021.
  • [Zho23] Chuyu Zhou. On wall-crossing for K-stability. Advances in Mathematics, 413:108857, 2023.