This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

JUSTIFICATION OF THE HYDROSTATIC APPROXIMATION OF THE PRIMITIVE EQUATIONS IN ANISOTROPIC SPACE LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})

Ken Furukawa and Takahito Kashiwabara Institute of physical and chemical research (RIKEN), [email protected] university of Tokyo, [email protected] second author was partly supported by JSPS Grant-in-Aid for Early-Career Scientists (No. 20K14357) and by Grant for The University of Tokyo Excellent Young Researchers.
Abstract

The primitive equations are fundamental models in geophysical fluid dynamics and derived from the scaled Navier-Stokes equations. In the primitive equations, the evolution equation to the vertical velocity is replaced by the so-called hydrostatic approximation. In this paper, we give a justification of the hydrostatic approximation by the scaled Navier-Stoke equations in anisotropic spaces LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) for qβ‰₯1q\geq 1.

1 Introduction

We consider the primitive equations

βˆ‚tvβˆ’Ξ”β€‹v+vβ‹…βˆ‡Hv+wβ€‹βˆ‚3v+βˆ‡HΟ€=0in𝕋3Γ—(0,∞),βˆ‚3Ο€=0in𝕋3Γ—(0,∞),divH​v+βˆ‚3w=0in𝕋3Γ—(0,∞),v​(0)=v0in𝕋3,\displaystyle\begin{array}[]{rclcl}\partial_{t}v-\Delta v+v\cdot\nabla_{H}v+w\partial_{3}v+\nabla_{H}\pi&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ \partial_{3}\pi&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ \mathrm{div}_{H}\,v+\partial_{3}w&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ v(0)&=&v_{0}&\mathrm{in}&\mathbb{T}^{3},\\ \end{array} (1.5)

where u=(v,w)βˆˆβ„2×ℝu=(v,w)\in\mathbb{R}^{2}\times\mathbb{R} is a vector field, Ο€\pi is a scalar function, βˆ‡H=(βˆ‚1,βˆ‚2)T\nabla_{H}=(\partial_{1},\partial_{2})^{T} is the horizontal gradient, and 𝕋=ℝ/2​π​℀\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z} is the flat torus. We impose the periodic boundary conditions. The second equation in (1.5) is called the hydrostatic approximation. The vertical component ww is give by the formula

w​(t,xβ€²,x3)=βˆ’βˆ«βˆ’Ο€x3divH​v​(t,xβ€²,ΞΆ)​𝑑z,x=(xβ€²,x3)βˆˆπ•‹2×𝕋,t>0,\displaystyle w(t,x^{\prime},x_{3})=-\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,v(t,x^{\prime},\zeta)dz,\quad x=(x^{\prime},x_{3})\in\mathbb{T}^{2}\times\mathbb{T},\,t>0, (1.6)

where divH=βˆ‡Hβ‹…\mathrm{div}_{H}=\nabla_{H}\cdot is the horizontal divergence. This formula is from the divergence-free condition. We also impose w​(β‹…,β‹…,Β±Ο€)=0w(\cdot,\cdot,\pm\pi)=0. We always assume this assumption to the horizontal component of three-dimensional divergence-free vector fields in this paper. In the case of the Neumann boundary conditions in the domain 𝕋2Γ—(βˆ’Ο€,0)\mathbb{T}^{2}\times(-\pi,0) are reduced to the periodic case in 𝕋3\mathbb{T}^{3} by the even and odd extension for vv and ww, respectively. We invoke that ww satisfies the nonlinear parabolic equation

βˆ‚twβˆ’Ξ”β€‹w=βˆ«βˆ’Ο€x3divH​(v~β‹…βˆ‡Hv~)​𝑑z+divH​(βˆ«βˆ’Ο€x3v~​𝑑zβ‹…βˆ‡HvΒ―)+divH​(vΒ―β‹…βˆ‡Hβ€‹βˆ«βˆ’Ο€x3v~​𝑑z)+divH​(w​v~)+divH​(βˆ«βˆ’Ο€x3(divH​v~)​v~​𝑑z)βˆ’12​(x3βˆ’Ο€)​divHβ€‹βˆ«βˆ’Ο€x3v~β‹…βˆ‡Hv~+(divH​v~)​v~​d​z=:F(v,w),\displaystyle\begin{split}\partial_{t}w-\Delta w&=\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,\left(\tilde{v}\cdot\nabla_{H}\tilde{v}\right)dz+\mathrm{div}_{H}\left(\int_{-\pi}^{x_{3}}\tilde{v}dz\cdot\nabla_{H}\overline{v}\right)\\ &+\mathrm{div}_{H}\,\left(\overline{v}\cdot\nabla_{H}\int_{-\pi}^{x_{3}}\tilde{v}dz\right)+\mathrm{div}_{H}(w\tilde{v})\\ &+\mathrm{div}_{H}\left(\int_{-\pi}^{x_{3}}(\mathrm{div}_{H}\tilde{v})\tilde{v}dz\right)\\ &-\frac{1}{2}(x_{3}-\pi)\mathrm{div}_{H}\int_{-\pi}^{x_{3}}\tilde{v}\cdot\nabla_{H}\tilde{v}+(\mathrm{div}_{H}\,\tilde{v})\tilde{v}dz\\ &=:F(v,w),\end{split} (1.7)

for x3∈(βˆ’Ο€,Ο€)x_{3}\in(-\pi,\pi), where vΒ―=12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€v​𝑑z\overline{v}=\frac{1}{2\pi}\int_{-\pi}^{\pi}v\,dz and v~=vβˆ’vΒ―\tilde{v}=v-\overline{v}. Note that (1.7) differs from the equation for ww derived in Proposition 4.6 of [3] in that no vertical derivatives appear in the right-hand-side terms. The derivation is described in Appendix A.

Existence of the global weak solution to the primitive equations on spherical shells was proved by Lions, Temam and Wang [13]. Local well-posedness was proved by GuillΓ©n-GonzΓ‘lez, Masmoudi and RodrΓ­guez-Bellido [10] for H1H^{1} initial data, where HsH^{s} is the Sobolev space with sβˆˆβ„s\in\mathbb{R}. Cao and Titi [2] proved a H1H^{1} energy bound to establish the global well-posedness. Hieber and Kashiwabara [11] extended this result and proved the global well-posedness in Lebesgue spaces LpL^{p}-settings for pβ‰₯3p\geq 3. Recently, Giga, Gries, Hieber, Hussein, and Kashiwabara [5] showed the global well-posedness in LpL^{p}-LqL^{q} settings under the periodic, Neumann, Dirichlet, Dirichlet-Neumann mixed boundary conditions. Giga, Gries, Hieber, Hussein, and Kashiwabara [8] showed the global well-posedness in LHβˆžβ€‹Lx31​(𝕋3)L^{\infty}_{H}L^{1}_{x_{3}}(\mathbb{T}^{3}), where LHβˆžβ€‹Lx3p​(𝕋3)L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) for qβ‰₯1q\geq 1 denotes an anisotropic space equipped with the norm

β€–fβ€–LHβˆžβ€‹Lx3q​(𝕋3):=supxβ€²βˆˆπ•‹2(βˆ«π•‹|f​(xβ€²,x3)|q​𝑑x3)1/q.\displaystyle\|f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}:=\sup_{x^{\prime}\in\mathbb{T}^{2}}\left(\int_{\mathbb{T}}\left|f(x^{\prime},x_{3})\right|^{q}dx_{3}\right)^{1/q}. (1.8)

Giga, Gries, Hieber, Hussein, and Kashiwabara [7] also proved the global well-posedness in LHβˆžβ€‹Lx3q​(𝕋2Γ—(βˆ’h,0))L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{2}\times(-h,0)) for h>0h>0 and qβ‰₯3q\geq 3 under the Dirichlet-Neumann mixed boundary conditions. An advantage of LHβˆžβ€‹Lx3qL^{\infty}_{H}L^{q}_{x_{3}}-approach is that one need not assume smoothness for initial data.

The aim of this paper is to give a mathematically rigorous justification of the hydrostatic approximation for the primitive equations under less smoothness assumptions than the previous works. We first introduce a brief derivation of the primitive equations. The primitive equation is derived by the Navier-Stokes equations with anisotropic viscosity, which are horizontally O​(1)O(1) and vertically O​(Ξ΅2)O(\varepsilon^{2}). Applying a scaling to equations, we obtain the scaled Navier-Stokes equations

βˆ‚tvΞ΅βˆ’Ξ”β€‹vΞ΅+uΞ΅β‹…βˆ‡vΞ΅+βˆ‡HπΡ=0in𝕋3Γ—(0,∞),Ρ​(βˆ‚twΞ΅βˆ’Ξ”β€‹wΞ΅+uΞ΅β‹…βˆ‡wΞ΅)+βˆ‚3πΡ/Ξ΅=0in𝕋3Γ—(0,∞),div​u=0in𝕋3Γ—(0,∞),uΡ​(0)=u0in𝕋3,\displaystyle\left.\begin{array}[]{rclcl}\partial_{t}v_{\varepsilon}-\Delta v_{\varepsilon}+u_{\varepsilon}\cdot\nabla v_{\varepsilon}+\nabla_{H}\pi_{\varepsilon}&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ \varepsilon\left(\partial_{t}w_{\varepsilon}-\Delta w_{\varepsilon}+u_{\varepsilon}\cdot\nabla w_{\varepsilon}\right)+\partial_{3}\pi_{\varepsilon}/\varepsilon&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ \mathrm{div}\,u&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ u_{\varepsilon}(0)&=&u_{0}&\mathrm{in}&\mathbb{T}^{3},\\ \end{array}\right. (1.13)

see [3], [4], and [12] for the details. If we multiply Ξ΅\varepsilon to the seconde equation of (1.13) and take formal limit Ξ΅β†’0\varepsilon\rightarrow 0, then we obtain (1.5).

To justify this formal derivation we have to show the difference between the solutions to (1.5) and (1.13) converges to zero in some topologies. We put

UΞ΅=(VΞ΅,WΞ΅),VΞ΅=vΞ΅βˆ’v,WΞ΅=wΞ΅βˆ’w,Ξ Ξ΅=Ο€Ξ΅βˆ’Ο€.\displaystyle\begin{split}&U_{\varepsilon}=(V_{\varepsilon},W_{\varepsilon}),\\ &V_{\varepsilon}=v_{\varepsilon}-v,\quad W_{\varepsilon}=w_{\varepsilon}-w,\quad\Pi_{\varepsilon}=\pi_{\varepsilon}-\pi.\end{split}

Then we see that (UΞ΅,Ξ Ξ΅)(U_{\varepsilon},\Pi_{\varepsilon}) satisfies

βˆ‚tVΞ΅βˆ’Ξ”β€‹VΞ΅+βˆ‡HπΡ=FH​(UΞ΅,u)in𝕋3Γ—(0,∞),Ρ​(βˆ‚tWΞ΅βˆ’Ξ”β€‹WΞ΅)+βˆ‚3Ξ Ξ΅/Ξ΅=Ρ​F3​(UΞ΅,u)+Ρ​F~​(v,w)in𝕋3Γ—(0,∞),div​UΞ΅=0in𝕋3Γ—(0,∞),UΡ​(0)=0in𝕋3,\displaystyle\left.\begin{array}[]{rclcl}\partial_{t}V_{\varepsilon}-\Delta V_{\varepsilon}+\nabla_{H}\pi_{\varepsilon}&=&F_{H}(U_{\varepsilon},u)&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ \varepsilon\left(\partial_{t}W_{\varepsilon}-\Delta W_{\varepsilon}\right)+\partial_{3}\Pi_{\varepsilon}/\varepsilon&=&\varepsilon F_{3}(U_{\varepsilon},u)+\varepsilon\tilde{F}(v,w)&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ \mathrm{div}\,U_{\varepsilon}&=&0&\mathrm{in}&\mathbb{T}^{3}\times(0,\infty),\\ U_{\varepsilon}(0)&=&0&\mathrm{in}&\mathbb{T}^{3},\end{array}\right. (1.18)

where

FH​(UΞ΅,u)=βˆ’(UΞ΅β‹…βˆ‡VΞ΅+uβ‹…βˆ‡VΞ΅+UΞ΅β‹…βˆ‡v),F3​(UΞ΅,u)=βˆ’(UΞ΅β‹…βˆ‡WΞ΅+uβ‹…βˆ‡WΞ΅+UΞ΅β‹…βˆ‡w),F~​(v,w)=βˆ’(F​(v,w)+uβ‹…βˆ‡w).\displaystyle\begin{split}F_{H}(U_{\varepsilon},u)&=-\left(U_{\varepsilon}\cdot\nabla V_{\varepsilon}+u\cdot\nabla V_{\varepsilon}+U_{\varepsilon}\cdot\nabla v\right),\\ F_{3}(U_{\varepsilon},u)&=-\left(U_{\varepsilon}\cdot\nabla W_{\varepsilon}+u\cdot\nabla W_{\varepsilon}+U_{\varepsilon}\cdot\nabla w\right),\\ \tilde{F}(v,w)&=-\left(F(v,w)+u\cdot\nabla w\right).\end{split} (1.19)

Note that

div​UΞ΅=divH​VΞ΅+βˆ‚3Ρ​(Ρ​WΞ΅)=divΡ​(VΞ΅,Ρ​WΞ΅)T,\displaystyle\mathrm{div}\,U_{\varepsilon}=\mathrm{div}_{H}\,V_{\varepsilon}+\frac{\partial_{3}}{\varepsilon}(\varepsilon W_{\varepsilon})=\mathrm{div}_{\varepsilon}(V_{\varepsilon},\varepsilon W_{\varepsilon})^{T},

where divΡ​f=divH​fβ€²+βˆ‚3f3/Ξ΅\mathrm{div}_{\varepsilon}\,f=\mathrm{div}_{H}f^{\prime}+\partial_{3}f_{3}/\varepsilon for a vector field f=(fβ€²,f3)Tf=(f^{\prime},f_{3})^{T}.

The justification of the hydrostatic approximation is reduced to showing that UΞ΅U_{\varepsilon} converges to zero. AzΓ©rad and GuillΓ©n [1] proved the weak convergence in the energy space. Li and Titi [12] showed the strong convergence in the energy space. They also proved global well-posedness to (1.13) for small Ξ΅\varepsilon compared to the initial data. The authors together with Giga, Hieber, Hussein, and Wrona [3] extended Li and Titi’s result to LpL^{p}-LqL^{q} settings under the Neumann boundary conditions. The authors together with Giga [4] showed the strong convergence in LpL^{p}-LqL^{q} settings under the Dirichlet boundary conditions.

We consider the solution to (1.18) in the sense of a mild solution, namely

(VΡ​(t)Ρ​WΡ​(t))=∫0te(tβˆ’s)​Δ​ℙΡ​(FH​(UΡ​(s),u​(s))Ρ​F3​(UΡ​(s),u​(s))+Ρ​F~​(v​(s),w​(s)))​𝑑s,\displaystyle\left(\begin{array}[]{c}V_{\varepsilon}(t)\\ \varepsilon W_{\varepsilon}(t)\end{array}\right)=\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\left(\begin{array}[]{c}F_{H}(U_{\varepsilon}(s),u(s))\\ \varepsilon F_{3}(U_{\varepsilon}(s),u(s))+\varepsilon\tilde{F}(v(s),w(s))\end{array}\right)ds, (1.24)

where β„™Ξ΅\mathbb{P}_{\varepsilon} is the anisotropic Helmholtz projection which maps from LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})-vector fields to divΞ΅\mathrm{div}_{\varepsilon}-free LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})-vector fields.

The first main result of this paper is the global well-posedness to (1.18) in LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) setting for small Ξ΅\varepsilon compared to the initial data of the primitive equations. We write CH​Lx3q​(𝕋3)=C​(𝕋;Lq​(𝕋2))C_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})=C(\mathbb{T};L^{q}(\mathbb{T}^{2})) equipped with the norm (1.8) and Ct​CH​Lx3q​(𝕋3Γ—I)=C​(I;CH​Lx3q​(𝕋3))C_{t}C_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}\times I)=C(I;C_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})) equipped with the norm

β€–fβ€–Ct​LHβˆžβ€‹Lx3q​(𝕋3Γ—I):=supt∈Isupxβ€²βˆˆπ•‹2(βˆ«π•‹|f​(xβ€²,x3)|q​𝑑x3)1/q.\displaystyle\|f\|_{C_{t}L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}\times I)}:=\sup_{t\in I}\sup_{x^{\prime}\in\mathbb{T}^{2}}\left(\int_{\mathbb{T}}\left|f(x^{\prime},x_{3})\right|^{q}dx_{3}\right)^{1/q}. (1.25)

for qβ‰₯1q\geq 1 and an interval II.

Theorem 1.1.

Let T>0T>0, qβ‰₯1q\geq 1, u0=(v0,w0)∈CH​Lx3q​(𝕋3)u_{0}=(v_{0},w_{0})\in C_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) satisfy div​u0=0\mathrm{div}\,u_{0}=0 and βˆ‡Hv0∈LHβˆžβ€‹Lx3q​(𝕋3)\nabla_{H}v_{0}\in L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}), and Ξ΅>0\varepsilon>0. Let u∈Ct​CH​Lx3q​(𝕋3Γ—[0,T))u\in C_{t}C_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}\times[0,T)) be a solution to (1.5) with initial data u0u_{0}. Then there exists Ξ΅0>0\varepsilon_{0}>0 such that, if Ξ΅<Ξ΅0\varepsilon<\varepsilon_{0} the equation of the differences (1.18) admits a unique solution (VΞ΅,WΞ΅)∈Ct​CH​Lx3q​(𝕋3Γ—[0,T))(V_{\varepsilon},W_{\varepsilon})\in C_{t}C_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}\times[0,T))

sup0<t<Tβ€–VΞ΅β€–LHβˆžβ€‹Lx3q​(𝕋3)+sup0<t<Ttq/2β€‹β€–βˆ‡VΞ΅β€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle\sup_{0<t<T}\|V_{\varepsilon}\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{q/2}\|\nabla V_{\varepsilon}\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}
+sup0<t<T‖Ρ​WΞ΅β€–LHβˆžβ€‹Lx3q​(𝕋3)+sup0<t<Ttq/2β€‹β€–Ξ΅β€‹βˆ‡WΞ΅β€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle+\sup_{0<t<T}\|\varepsilon W_{\varepsilon}\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{q/2}\|\varepsilon\nabla W_{\varepsilon}\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}
≀C​Ρ,\displaystyle\leq C\varepsilon, (1.26)

where CC is independent of Ξ΅\varepsilon.

Remark 1.2.
  1. 1.

    Global well-posedness of (1.5) in Ct​CH​Lx31​(𝕋3Γ—[0,T))C_{t}C_{H}L^{1}_{x_{3}}(\mathbb{T}^{3}\times[0,T)) have been established by Giga et al. [8]. Although they consider in ℝ2×𝕋\mathbb{R}^{2}\times\mathbb{T}, we can use the result to derive the well-posedness in 𝕋3\mathbb{T}^{3} by periodic extension. In [8] they only consider the critical case LHβˆžβ€‹L1​(𝕋3)L^{\infty}_{H}L^{1}(\mathbb{T}^{3}). This result can be extended to LHβˆžβ€‹Lq​(𝕋3)L^{\infty}_{H}L^{q}(\mathbb{T}^{3}) for qβ‰₯1q\geq 1 using the same way in their proof.

  2. 2.

    It is impossible to see inclusion for initial data between Theorem 1.1 and the result in [3] directly since the spaces are quite different. We assumed less and more regularity with respect to the vertical and horizontal direction, respectively, compared to [3].

  3. 3.

    It worth mentioning why we need not assume regularity for v0v_{0} with respect to x3x_{3}. We see from the divergence-free condition that F~​(v,w)\tilde{F}(v,w) is replaced by

    βˆ’F~​(v,w)=F​(v,w)+vβ‹…βˆ‡wβˆ’βˆ«βˆ’Ο€x3divH​v​𝑑z​divH​v.\displaystyle-\tilde{F}(v,w)=F(v,w)+v\cdot\nabla w-\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,vdz\,\mathrm{div}_{H}\,v.

    In this formula no βˆ‚3\partial_{3} appears, thus we need not control vertical derivative of uu.

The global well-posedness to the primitive equations in LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}), Theorem 1.1, and the definition of UΞ΅U_{\varepsilon} imply

Corollary 1.3.

Under the same assumptions for Ξ΅,T,u0,Ξ΅0\varepsilon,T,u_{0},\varepsilon_{0}, if Ξ΅<Ξ΅0\varepsilon<\varepsilon_{0}, then there exists a unique solution uΞ΅=(vΞ΅,wΞ΅)∈Ct​LHβˆžβ€‹Lx3q​(𝕋3Γ—(0,T))u_{\varepsilon}=(v_{\varepsilon},w_{\varepsilon})\in C_{t}L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}\times(0,T)) to (1.13) such that

sup0<t<Tβ€–vΞ΅β€–LHβˆžβ€‹Lx31​(𝕋3)+sup0<t<Tt1/2β€‹β€–βˆ‡vΞ΅β€–LHβˆžβ€‹Lx31​(𝕋3)\displaystyle\sup_{0<t<T}\|v_{\varepsilon}\|_{L^{\infty}_{H}L^{1}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla v_{\varepsilon}\|_{L^{\infty}_{H}L^{1}_{x_{3}}(\mathbb{T}^{3})}
+sup0<t<T‖Ρ​wΞ΅β€–LHβˆžβ€‹Lx31​(𝕋3)+sup0<t<Tt1/2β€‹β€–Ξ΅β€‹βˆ‡wΞ΅β€–LHβˆžβ€‹Lx31​(𝕋3)\displaystyle+\sup_{0<t<T}\|\varepsilon w_{\varepsilon}\|_{L^{\infty}_{H}L^{1}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\varepsilon\nabla w_{\varepsilon}\|_{L^{\infty}_{H}L^{1}_{x_{3}}(\mathbb{T}^{3})}
≀C​Ρ+Cβ€²,\displaystyle\leq C\varepsilon+C^{\prime}, (1.27)

where C,Cβ€²>0C,\,C^{\prime}>0 are constants independent of Ξ΅\varepsilon.

The proof of Theorem 1.1 based on the contraction mapping principle. Note that the initial data of (1.24) is zero and the external force Ρ​F~​(v,w)\varepsilon\tilde{F}(v,w) can be small for small Ξ΅\varepsilon. To estimate the right-hand-side of (1.24), we need LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) bound for the composite operator etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚je^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{j} for j=1,2,3j=1,2,3. Since the Riesz operator is not bounded in LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}), we estimate etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚je^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{j} by direct calculations for their kernel. The formula (2.10) is a key observation. To estimate F~​(v,w)\tilde{F}(v,w) we need a control of βˆ‡Hv\nabla_{H}v since F~​(v,w)\tilde{F}(v,w) has a term such as βˆ‡Hvjβ€‹βˆ‡Hvk\nabla_{H}v_{j}\nabla_{H}v_{k} for j=1,2.3j=1,2.3 and k=1,2k=1,2. In the semi-group approach, such kind of term cannot be estimated without additional regularity assumptions. Note that if βˆ‡Hv0∈LHβˆžβ€‹Lx3q​(𝕋3)\nabla_{H}v_{0}\in L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) then βˆ‡Hv​(t)∈LHβˆžβ€‹Lx3q​(𝕋3)\nabla_{H}v(t)\in L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) for t∈[0,T)t\in[0,T) by proof of [8] and the integral formulation for the primitive equations. For this reason we assume βˆ‡Hv0∈LHβˆžβ€‹Lx3q​(𝕋3)\nabla_{H}v_{0}\in L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}).

To prove our main theorem, we first show short time well-posedness to (1.18) and obtain the estimate (1.1) in a short interval [0,T0][0,T_{0}] for T0>0T_{0}>0. We can extended this solution to the interval [0,2​T0)[0,2T_{0}) since β€–(VΡ​(T0),Ρ​WΡ​(T0))β€–LHβˆžβ€‹Lx3q​(𝕋3)\|(V_{\varepsilon}(T_{0}),\varepsilon W_{\varepsilon}(T_{0}))\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})} is also small. Since TT is finite, we can establish global well-posedness to (1.18) for small Ξ΅\varepsilon. This argument is used in [3] and [4].

We introduce some notation in this paper. For 1≀qβ‰€βˆž1\leq q\leq\infty, a domain Ξ©\Omega, and x∈Ωx\in\Omega, we write Lq​(Ξ©)=Lxq​(Ξ©)L^{q}(\Omega)=L^{q}_{x}(\Omega) to denote the Lebesgue space equipped with the norm

β€–fβ€–Lq​(Ξ©)=β€–fβ€–Lxq​(Ξ©):=(∫Ω|f​(x)|q​𝑑x)1/q.\displaystyle\|f\|_{L^{q}(\Omega)}=\|f\|_{L^{q}_{x}(\Omega)}:=\left(\int_{\Omega}\left|f(x)\right|^{q}dx\right)^{1/q}.

We use the usual modification when q=∞q=\infty. For 1≀q,rβ‰€βˆž1\leq q,r\leq\infty, domains Ξ©\Omega and Ξ©β€²\Omega^{\prime}, and (xβ€²,x)βˆˆΞ©β€²Γ—Ξ©(x^{\prime},x)\in\Omega^{\prime}\times\Omega, we write Lxβ€²q​Lxr​(Ξ©β€²Γ—Ξ©)L^{q}_{x^{\prime}}L^{r}_{x}(\Omega^{\prime}\times\Omega) to denote anisotropic Lebesgue spaces equipped with the norm

β€–fβ€–Lxβ€²q​Lxr​(Ξ©β€²Γ—Ξ©):=(βˆ«Ξ©β€²β€–f​(xβ€²,β‹…)β€–Lr​(Ξ©)q​𝑑xβ€²)1/q.\displaystyle\|f\|_{L^{q}_{x^{\prime}}L^{r}_{x}(\Omega^{\prime}\times\Omega)}:=\left(\int_{\Omega^{\prime}}\left\|f(x^{\prime},\cdot)\right\|_{L^{r}(\Omega)}^{q}dx^{\prime}\right)^{1/q}.

If xβ€²x^{\prime} and x3x_{3} are the horizontal and vertical variable, respectively, then we write LHq​Lx3q​(𝕋3)L^{q}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) to denote Lxβ€²q​Lx3q​(𝕋2×𝕋)L^{q}_{x^{\prime}}L^{q}_{x_{3}}(\mathbb{T}^{2}\times\mathbb{T}). For vector fields ff and gg, we denote their tensor product by fβŠ—g=(fi​gj)i​jf\otimes g=(f_{i}g_{j})_{ij}. For an integrable function ff on 𝕋3\mathbb{T}^{3}, we denote its vertical average by fΒ―=12β€‹βˆ«π•‹f​(xβ€²,z)​𝑑z\overline{f}=\frac{1}{2}\int_{\mathbb{T}}f(x^{\prime},z)dz. We write ℱ​f=βˆ«β„deβˆ’i​x⋅ξ​f​(x)​𝑑x/(2​π)d/2\mathcal{F}f=\int_{\mathbb{R}^{d}}e^{-ix\cdot\xi}f(x)dx/(2\pi)^{d/2} and β„±βˆ’1​f=βˆ«β„dei​x⋅ξ​f​(ΞΎ)​𝑑ξ/(2​π)d/2\mathcal{F}^{-1}f=\int_{\mathbb{R}^{d}}e^{ix\cdot\xi}f(\xi)d\xi/(2\pi)^{d/2} to denote the Fourier and Fourier inverse transform for a integrable function ff, respectively. We denote by Ξ”H=βˆ‚12+βˆ‚22\Delta_{H}=\partial_{1}^{2}+\partial_{2}^{2} the horizontal Laplace operator.

This paper is organized as follows. In Section 2, we show linear estimate for the heat semi-group et​Δe^{t\Delta} and the composite operator etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚je^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{j}. We also show some estimates for composite operators having fractional derivatives. In Section 3 and Section 4, we show non-linear estimates and the external force F~\tilde{F}, respectively, from the linear estimates of Section 2. In Section 5, we prove our main theorem.

2 Linear Estimates

We give LHβˆžβ€‹Lx3pL^{\infty}_{H}L^{p}_{x_{3}}-LHβˆžβ€‹Lx3qL^{\infty}_{H}L^{q}_{x_{3}}-estimate for the hear semi-group. The reader refers to Section 4 of Grafakos’s book [9] for properties of the heat semi-group on 𝕋d\mathbb{T}^{d}. Let KtK_{t} be the heat kernel on 𝕋d\mathbb{T}^{d} for dβ‰₯1d\geq 1 such that

Kt​(x)=βˆ‘kβˆˆβ„€dgt​(xβˆ’k),xβˆˆπ•‹d,\displaystyle K_{t}(x)=\sum_{k\in\mathbb{Z}^{d}}g_{t}(x-k),\quad x\in\mathbb{T}^{d},

where gg is the Gaussian of the form

gt​(x)=1(4​π​t)d2​eβˆ’|x|24​t,xβˆˆβ„d.\displaystyle g_{t}(x)=\frac{1}{\left(4\pi t\right)^{\frac{d}{2}}}e^{-\frac{|x|^{2}}{4t}},\quad x\in\mathbb{R}^{d}.

For a integrable function ff, we denote by et​Δ​f=Ktβˆ—fe^{t\Delta}f=K_{t}\ast f the heat semi-group on 𝕋d\mathbb{T}^{d}. It is known that

β€–Ktβ€–L1​(𝕋d)=1,β€–Ktβ€–Lβˆžβ€‹(𝕋d)≀C​(1+1t)d,\displaystyle\|K_{t}\|_{L^{1}(\mathbb{T}^{d})}=1,\quad\|K_{t}\|_{L^{\infty}(\mathbb{T}^{d})}\leq C\left(1+\frac{1}{\sqrt{t}}\right)^{d},
β€–βˆ‚xΞ±Ktβ€–L1​(𝕋d)≀C​tβˆ’|Ξ±|2,β€–βˆ‚xΞ±Ktβ€–Lβˆžβ€‹(𝕋d)≀C​tβˆ’|Ξ±|2βˆ’d2,\displaystyle\|\partial^{\alpha}_{x}K_{t}\|_{L^{1}(\mathbb{T}^{d})}\leq Ct^{-\frac{|\alpha|}{2}},\quad\|\partial^{\alpha}_{x}K_{t}\|_{L^{\infty}(\mathbb{T}^{d})}\leq Ct^{-\frac{|\alpha|}{2}-\frac{d}{2}},

for any multi-index Ξ±\alpha and some constant C>0C>0, see [9] for the proof. We find from interpolation inequalities that

β€–Ktβ€–Lp​(𝕋d)≀C​(1+1t)d​(1βˆ’1p),β€–βˆ‚xΞ±Ktβ€–Lp​(𝕋d)≀C​tβˆ’|Ξ±|2βˆ’d2​(1βˆ’1p),\displaystyle\begin{split}&\|K_{t}\|_{L^{p}(\mathbb{T}^{d})}\leq C\left(1+\frac{1}{\sqrt{t}}\right)^{d\left(1-\frac{1}{p}\right)},\\ &\|\partial_{x}^{\alpha}K_{t}\|_{L^{p}(\mathbb{T}^{d})}\leq Ct^{-\frac{|\alpha|}{2}-\frac{d}{2}\left(1-\frac{1}{p}\right)},\end{split} (2.1)

for all 1≀pβ‰€βˆž1\leq p\leq\infty.

We next consider the composite operator with fraction derivative (βˆ’Ξ”)s/2​et​Δ​f=Mtβˆ—f(-\Delta)^{s/2}e^{t\Delta}f=M_{t}\ast f for s>0s>0 and a integrable function ff on 𝕋d\mathbb{T}^{d}. We write M~t\widetilde{M}_{t} to denote the kernels of the corresponding composite operator on ℝd\mathbb{R}^{d}, respectively, namely

M~t=β„±βˆ’1​|ΞΎ|s​eβˆ’t​|ΞΎ|2,ΞΎβˆˆβ„d.\displaystyle\widetilde{M}_{t}=\mathcal{F}^{-1}|\xi|^{s}e^{-t|\xi|^{2}},\quad\xi\in\mathbb{R}^{d}.

We know from Proposition 4.2 of Giga et al. [8] that

β€–M~tβ€–L1​(ℝd)≀C​tβˆ’s2,β€–M~tβ€–Lβˆžβ€‹(ℝd)≀C​tβˆ’s2βˆ’d\displaystyle\|\widetilde{M}_{t}\|_{L^{1}(\mathbb{R}^{d})}\leq Ct^{-\frac{s}{2}},\quad\|\widetilde{M}_{t}\|_{L^{\infty}(\mathbb{R}^{d})}\leq Ct^{-\frac{s}{2}-d}

for some constant C>0C>0. Thus we obtain

β€–M~tβ€–Lp​(ℝd)≀C​tβˆ’s2βˆ’d2​(1βˆ’1p)\displaystyle\|\widetilde{M}_{t}\|_{L^{p}(\mathbb{R}^{d})}\leq Ct^{-\frac{s}{2}-\frac{d}{2}\left(1-\frac{1}{p}\right)}

for all 1≀pβ‰€βˆž1\leq p\leq\infty. The above observations and the Poisson summation formula yield

β€–Mtβ€–Lp​(𝕋d)=β€–1(2​π)dβ€‹βˆ‘nβˆˆβ„€d|n|s/2​ei​ξ⋅n​eβˆ’t​|n|2β€–Lp​(𝕋d)=β€–M~tβ€–Lp​(ℝd)≀C​tβˆ’s2βˆ’d2​(1βˆ’1p).\displaystyle\begin{split}\|M_{t}\|_{L^{p}(\mathbb{T}^{d})}&=\left\|\frac{1}{(2\pi)^{d}}\sum_{n\in\mathbb{Z}^{d}}|n|^{s/2}e^{i\xi\cdot n}e^{-t|n|^{2}}\right\|_{L^{p}(\mathbb{T}^{d})}\\ &=\|\widetilde{M}_{t}\|_{L^{p}(\mathbb{R}^{d})}\\ &\leq Ct^{-\frac{s}{2}-\frac{d}{2}\left(1-\frac{1}{p}\right)}.\end{split} (2.2)

The same way as above we define the horizontal and vertical composite operators (βˆ’Ξ”H)s/2​et​ΔH(-\Delta_{H})^{s/2}e^{t\Delta_{H}} and βˆ‚3setβ€‹βˆ‚32\partial^{s}_{3}e^{t\partial_{3}^{2}}. It worth mentioning that, in [8], they define the vertical operator using the Caputo derivative since they consider the well-posedness in the anisotropic domain ℝ2×𝕋\mathbb{R}^{2}\times\mathbb{T}. However, we do not use the Caputo derivative since we consider in 𝕋3\mathbb{T}^{3}.

Proposition 2.1.

Let 1≀p≀qβ‰€βˆž1\leq p\leq q\leq\infty. Let Ξ³=(Ξ±,Ξ²)βˆˆβ„€2Γ—β„€\gamma=(\alpha,\beta)\in\mathbb{Z}^{2}\times\mathbb{Z} (Ξ³β‰ 0\gamma\neq 0) be a multi-index and 0<s1,s2<10<s_{1},s_{2}<1. Then there exists a constant C>0C>0 such that

β€–et​Δ​fβ€–LHβˆžβ€‹Lx3q​(𝕋3)≀C​(1+1t)βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\|e^{t\Delta}f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}\leq C\left(1+\frac{1}{\sqrt{t}}\right)^{-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}, (2.3)
β€–βˆ‚xβ€²Ξ±βˆ‚3Ξ²et1​ΔH​et2β€‹βˆ‚32​fβ€–LHβˆžβ€‹Lx3q​(𝕋3)≀C​t1βˆ’|Ξ±|2​t2βˆ’|Ξ²|2βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\|\partial_{x^{\prime}}^{\alpha}\partial_{3}^{\beta}e^{t_{1}\Delta_{H}}e^{t_{2}\partial_{3}^{2}}f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}\leq Ct_{1}^{-\frac{|\alpha|}{2}}t_{2}^{-\frac{|\beta|}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}, (2.4)
β€–βˆ‚xβ€²Ξ±βˆ‚3Ξ²(βˆ’Ξ”H)s1/2β€‹βˆ‚3s2et1​ΔH​et2β€‹βˆ‚32​fβ€–LHβˆžβ€‹Lx3q​(𝕋3)≀C​t1βˆ’|Ξ±|+s12​t2βˆ’Ξ²+s22βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\begin{split}&\|\partial_{x^{\prime}}^{\alpha}\partial_{3}^{\beta}(-\Delta_{H})^{s_{1}/2}\partial_{3}^{s_{2}}e^{t_{1}\Delta_{H}}e^{t_{2}\partial_{3}^{2}}f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}\\ &\leq Ct_{1}^{-\frac{|\alpha|+s_{1}}{2}}t_{2}^{-\frac{\beta+s_{2}}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},\end{split} (2.5)

for all t,t1,t2>0t,t_{1},t_{2}>0 and f∈LHβˆžβ€‹Lx3p​(𝕋3)f\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}).

Proof.

The Young inequality and (2.1) imply

β€–βˆ‚xβ€²Ξ±βˆ‚3Ξ²et1​ΔH​et2β€‹βˆ‚32​f​(xβ€²,x3)β€–Lx3q​(𝕋)\displaystyle\left\|\partial_{x^{\prime}}^{\alpha}\partial_{3}^{\beta}e^{t_{1}\Delta_{H}}e^{t_{2}\partial_{3}^{2}}f(x^{\prime},x_{3})\right\|_{L^{q}_{x_{3}}(\mathbb{T})}
β‰€βˆ«π•‹2|βˆ‚xβ€²Ξ±Kt1​(xβ€²βˆ’yβ€²)|β€‹β€–βˆ«π•‹|β€‹βˆ‚3Ξ²Kt2​(x3βˆ’y3)​|f​(yβ€²,y3)|​d​y3βˆ₯Lx3q​(𝕋)​d​yβ€²\displaystyle\leq\int_{\mathbb{T}^{2}}\left|\partial_{x^{\prime}}^{\alpha}K_{t_{1}}(x^{\prime}-y^{\prime})\right|\left\|\int_{\mathbb{T}}|\partial_{3}^{\beta}K_{t_{2}}(x_{3}-y_{3})|f(y^{\prime},y_{3})|dy_{3}\right\|_{L^{q}_{x_{3}}(\mathbb{T})}dy^{\prime}
≀C​t2βˆ’|Ξ²|2βˆ’12​(1pβˆ’1q)β€‹βˆ«π•‹2|βˆ‚xβ€²Ξ±Kt1​(xβ€²βˆ’yβ€²)|​‖f​(yβ€²,β‹…)β€–Lx3p​(𝕋)​𝑑yβ€²\displaystyle\leq Ct_{2}^{-\frac{|\beta|}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\int_{\mathbb{T}^{2}}\left|\partial_{x^{\prime}}^{\alpha}K_{t_{1}}(x^{\prime}-y^{\prime})\right|\|f(y^{\prime},\cdot)\|_{L^{p}_{x_{3}}(\mathbb{T})}dy^{\prime}
≀C​t1βˆ’|Ξ±|2​t2βˆ’|Ξ²|2βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\leq Ct_{1}^{-\frac{|\alpha|}{2}}t_{2}^{-\frac{|\beta|}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

In view of (2.1) and (2.2), the inequalities (2.3) and (2.5) can be proved by the same way as above. ∎

Let β„™Ξ΅\mathbb{P}_{\varepsilon} be the anisotropic Helmholtz projection on 𝕋3\mathbb{T}^{3} with the matrix-valued symbol

σ​(β„™Ξ΅)=I3βˆ’1|ΞΎΞ΅|2​(ΞΎ1ΞΎ2ΞΎ3/Ξ΅)βŠ—(ΞΎ1ΞΎ2ΞΎ3/Ξ΅),ΞΎβˆˆβ„€3,\displaystyle\sigma(\mathbb{P}_{\varepsilon})=I_{3}-\frac{1}{|\xi_{\varepsilon}|^{2}}\left(\begin{array}[]{c}\xi_{1}\\ \xi_{2}\\ \xi_{3}/\varepsilon\end{array}\right)\otimes\left(\begin{array}[]{c}\xi_{1}\\ \xi_{2}\\ \xi_{3}/\varepsilon\end{array}\right),\quad\xi\in\mathbb{Z}^{3},

where ΞΎΞ΅=(ΞΎβ€²,ΞΎ3/Ξ΅)\xi_{\varepsilon}=(\xi^{\prime},\xi_{3}/\varepsilon) and σ​(A)\sigma(A) denotes the symbol of a multiplier operator AA. The projection β„™Ξ΅\mathbb{P}_{\varepsilon} is an unbounded operator on LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) since the Riesz operator is unbounded on Lβˆžβ€‹(𝕋d)L^{\infty}(\mathbb{T}^{d}) for all dβ‰₯1d\geq 1. However, the composite operators etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚je^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{j} for j=1,2,3j=1,2,3 and t>0t>0 are bounded on LHβˆžβ€‹Lx3p​(𝕋3)L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}). We can rewrite the anisotropic Helmholtz projection as

σ​(β„™Ξ΅)=(I2000)βˆ’1|ΞΎΞ΅|2​(ΞΎβ€²βŠ—ΞΎβ€²ΞΎβ€²β€‹ΞΎ3/Ρξ′T​ξ3/Ξ΅βˆ’|ΞΎβ€²|2).\displaystyle\sigma(\mathbb{P}_{\varepsilon})=\left(\begin{array}[]{cc}I_{2}&0\\ 0&0\end{array}\right)-\frac{1}{|\xi_{\varepsilon}|^{2}}\left(\begin{array}[]{cc}\xi^{\prime}\otimes\xi^{\prime}&\xi^{\prime}\xi_{3}/\varepsilon\\ {\xi^{\prime}}^{T}\xi_{3}/\varepsilon&-|\xi^{\prime}|^{2}\end{array}\right). (2.10)

This is a key formula to show the boundedness for etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚je^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{j}. We denote by RjR_{j} the anisotropic Riesz operator with symbol ΞΎj/|ΞΎΞ΅|\xi_{j}/|\xi_{\varepsilon}| for j=1,2,3j=1,2,3. We write Rβ€²=(R1,R2)TR^{\prime}=(R_{1},R_{2})^{T}.

We prove elementally estimates, which is used to show Ξ΅\varepsilon-independent bounds for composite operators. It may be somewhat prolix, but we show calculation to clarify dependence of Ξ΅\varepsilon for the estimates.

Proposition 2.2.

Let 0<α≀10<\alpha\leq 1 and 0<Ξ²<10<\beta<1. Then there exists a constant C>0C>0 such that

∫0∞(t+s)βˆ’1βˆ’Ξ±2​(t+sΞ΅2)βˆ’Ξ²2​𝑑s≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρβ,\displaystyle\int_{0}^{\infty}(t+s)^{-1-\frac{\alpha}{2}}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{\beta}{2}}ds\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\beta}, (2.11)
∫0∞(t+s)βˆ’12βˆ’Ξ±2​(t+sΞ΅2)βˆ’12βˆ’Ξ²2​𝑑s≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ1+Ξ²,\displaystyle\int_{0}^{\infty}(t+s)^{-\frac{1}{2}-\frac{\alpha}{2}}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{1}{2}-\frac{\beta}{2}}ds\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{1+\beta}, (2.12)
∫0∞(t+s)βˆ’1​(t+sΞ΅2)βˆ’Ξ±2βˆ’Ξ²2​𝑑s≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρα+Ξ²,\displaystyle\int_{0}^{\infty}(t+s)^{-1}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{\alpha}{2}-\frac{\beta}{2}}ds\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\alpha+\beta}, (2.13)
∫0∞(t+s)βˆ’12​(t+sΞ΅2)βˆ’12βˆ’Ξ±2βˆ’Ξ²2​𝑑s≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ.\displaystyle\int_{0}^{\infty}(t+s)^{-\frac{1}{2}}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{1}{2}-\frac{\alpha}{2}-\frac{\beta}{2}}ds\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon. (2.14)

for all t>0t>0 and 0<Ρ≀10<\varepsilon\leq 1.

Proof.

We first prove (2.11). The change of variable s=t​sβ€²s=ts^{\prime} and the inequality (Ξ΅2+s)βˆ’Ξ²/2≀sβˆ’Ξ²/2(\varepsilon^{2}+s)^{-\beta/2}\leq s^{-\beta/2} yield

∫0∞(t+s)βˆ’1βˆ’Ξ±2​(t+sΞ΅2)βˆ’Ξ²2​𝑑s\displaystyle\int_{0}^{\infty}(t+s)^{-1-\frac{\alpha}{2}}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{\beta}{2}}ds ≀C​tβˆ’Ξ±2βˆ’Ξ²2β€‹Ξ΅Ξ²β€‹βˆ«0∞(1+s)βˆ’1βˆ’Ξ±2​sβˆ’Ξ²β€‹π‘‘s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\beta}\int_{0}^{\infty}(1+s)^{-1-\frac{\alpha}{2}}s^{-\beta}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρβ.\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\beta}.

For (2.12) we divide the integral interval to see that

∫0∞(t+s)βˆ’12βˆ’Ξ±2​(t+sΞ΅2)βˆ’12βˆ’Ξ²2​𝑑s\displaystyle\int_{0}^{\infty}(t+s)^{-\frac{1}{2}-\frac{\alpha}{2}}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{1}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ1+Ξ²β€‹βˆ«01(1+s)βˆ’12βˆ’Ξ±2​(Ξ΅2+s)βˆ’12βˆ’Ξ²2​𝑑s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{1+\beta}\int_{0}^{1}(1+s)^{-\frac{1}{2}-\frac{\alpha}{2}}(\varepsilon^{2}+s)^{-\frac{1}{2}-\frac{\beta}{2}}ds
+C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ1+Ξ²β€‹βˆ«1∞(1+s)βˆ’12βˆ’Ξ±2​(Ξ΅2+s)βˆ’12βˆ’Ξ²2​𝑑s\displaystyle+Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{1+\beta}\int_{1}^{\infty}(1+s)^{-\frac{1}{2}-\frac{\alpha}{2}}(\varepsilon^{2}+s)^{-\frac{1}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ1+Ξ²β€‹βˆ«01sβˆ’12βˆ’Ξ²2​𝑑s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{1+\beta}\int_{0}^{1}s^{-\frac{1}{2}-\frac{\beta}{2}}ds
+C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ1+Ξ²β€‹βˆ«1∞(1+s)βˆ’12βˆ’Ξ±2​sβˆ’12βˆ’Ξ²2​𝑑s\displaystyle+Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{1+\beta}\int_{1}^{\infty}(1+s)^{-\frac{1}{2}-\frac{\alpha}{2}}s^{-\frac{1}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ1+Ξ².\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{1+\beta}. (2.15)

Similar to the first inequality, we use the change of variable s=t​sβ€²s=ts^{\prime} to estimate

1Ξ΅β€‹βˆ«0∞(t+s)βˆ’1​(t+sΞ΅2)βˆ’Ξ±2βˆ’Ξ²2​𝑑s\displaystyle\frac{1}{\varepsilon}\int_{0}^{\infty}(t+s)^{-1}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{\alpha}{2}-\frac{\beta}{2}}ds ≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρα+Ξ²β€‹βˆ«0∞(1+s)βˆ’1​(Ξ΅2+s)βˆ’Ξ±2βˆ’Ξ²2​𝑑s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\alpha+\beta}\int_{0}^{\infty}(1+s)^{-1}(\varepsilon^{2}+s)^{-\frac{\alpha}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρα+Ξ²β€‹βˆ«0∞(1+s)βˆ’1​sβˆ’Ξ±2+Ξ²2​𝑑s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\alpha+\beta}\int_{0}^{\infty}(1+s)^{-1}s^{-\frac{\alpha}{2}+\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρα+Ξ².\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{\alpha+\beta}.

We proved (2.13). For the last inequality, we apply the change of variables s=Ξ΅2​t​sβ€²s=\varepsilon^{2}ts^{\prime} and the estimate Ξ΅/(1+Ξ΅2​s)1/2≀1/s1/2\varepsilon/(1+\varepsilon^{2}s)^{1/2}\leq 1/s^{1/2} to get

∫0∞(t+s)βˆ’12​(t+sΞ΅2)βˆ’12βˆ’Ξ±2βˆ’Ξ²2​𝑑s\displaystyle\int_{0}^{\infty}(t+s)^{-\frac{1}{2}}\left(t+\frac{s}{\varepsilon^{2}}\right)^{-\frac{1}{2}-\frac{\alpha}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ2β€‹βˆ«0∞(1+Ξ΅2​s)βˆ’12​(1+s)βˆ’12βˆ’Ξ±2βˆ’Ξ²2​𝑑s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon^{2}\int_{0}^{\infty}(1+\varepsilon^{2}s)^{-\frac{1}{2}}(1+s)^{-\frac{1}{2}-\frac{\alpha}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2β€‹Ξ΅β€‹βˆ«0∞sβˆ’12​(1+s)βˆ’12βˆ’Ξ±2βˆ’Ξ²2​𝑑s\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon\int_{0}^{\infty}s^{-\frac{1}{2}}(1+s)^{-\frac{1}{2}-\frac{\alpha}{2}-\frac{\beta}{2}}ds
≀C​tβˆ’Ξ±2βˆ’Ξ²2​Ρ.\displaystyle\leq Ct^{-\frac{\alpha}{2}-\frac{\beta}{2}}\varepsilon.

We obtain (2.14). ∎

Proposition 2.3.

Let 1≀p,qβ‰€βˆž1\leq p,q\leq\infty, and 0<s<10<s<1. Then there exists a constant C>0C>0 such that

β€–etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚jfβ€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle\|e^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{j}f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})} ≀C​tβˆ’12βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\leq Ct^{-\frac{1}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}, (2.16)
β€–et​Δ​ℙΡ​(βˆ’Ξ”H)s/2​fβ€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle\|e^{t\Delta}\mathbb{P}_{\varepsilon}(-\Delta_{H})^{s/2}f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})} ≀C​tβˆ’s2βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\leq Ct^{-\frac{s}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}, (2.17)
β€–etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚3sfβ€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle\|e^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{3}^{s}f\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})} ≀C​tβˆ’s2βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\leq Ct^{-\frac{s}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}, (2.18)

for all 0<Ξ΅<10<\varepsilon<1, t>0t>0, f∈LHβˆžβ€‹Lx3q​(𝕋3)f\in L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}), and j=1,2,3j=1,2,3.

Proof.

We prove the first inequality. The second and third inequalities can be proved by the completely same way combining with Propositions 2.1 and 2.2. The formula (2.10) and

(βˆ’Ξ”)βˆ’Ξ±2​f=1Γ​(Ξ±2)β€‹βˆ«0∞sΞ±2βˆ’1​(Ksβˆ—f)​𝑑s\displaystyle(-\Delta)^{-\frac{\alpha}{2}}f=\frac{1}{\Gamma(\frac{\alpha}{2})}\int_{0}^{\infty}s^{\frac{\alpha}{2}-1}(K_{s}\ast f)ds

from Section 4 of [8], where Ξ±>0\alpha>0 and Ξ“\Gamma is the gamma function, lead to

βˆ‚jet​Δ​ℙΡ\displaystyle\partial_{j}e^{t\Delta}\mathbb{P}_{\varepsilon} =βˆ‚jet​Δ​(I2000)βˆ’βˆ‚jet​Δ​(Rβ€²βŠ—Rβ€²R′​R3/Ξ΅Rβ€²T​R3/Ξ΅βˆ’R12βˆ’R22)\displaystyle=\partial_{j}e^{t\Delta}\left(\begin{array}[]{cc}I_{2}&0\\ 0&0\end{array}\right)-\partial_{j}e^{t\Delta}\left(\begin{array}[]{cc}R^{\prime}\otimes R^{\prime}&R^{\prime}R_{3}/\varepsilon\\ {R^{\prime}}^{T}R_{3}/\varepsilon&-R_{1}^{2}-R_{2}^{2}\end{array}\right)
=βˆ‚jet​Δ​(I2000)\displaystyle=\partial_{j}e^{t\Delta}\left(\begin{array}[]{cc}I_{2}&0\\ 0&0\end{array}\right)
βˆ’βˆ«0βˆžβˆ‚j(βˆ‡HβŠ—βˆ‡Hβˆ‡Hβ€‹βˆ‚3/Ξ΅βˆ‡HTβ€‹βˆ‚3/Ξ΅βˆ’βˆ‚12βˆ’βˆ‚22)​e(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​d​s.\displaystyle-\int_{0}^{\infty}\partial_{j}\left(\begin{array}[]{cc}\nabla_{H}\otimes\nabla_{H}&\nabla_{H}\partial_{3}/\varepsilon\\ {\nabla_{H}}^{T}\partial_{3}/\varepsilon&-\partial_{1}^{2}-\partial^{2}_{2}\end{array}\right)e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}ds.

The operator norm of the first term from LHβˆžβ€‹Lx3p​(𝕋3)L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) to LHβˆžβ€‹Lx3q​(𝕋3)L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3}) is bounded by Proposition 2.1. We use Proposition 2.3 to estimate

β€–βˆ‚jβˆ‡HβŠ—βˆ‡Hβ€‹βˆ«0∞e(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​f​𝑑sβ€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle\left\|\partial_{j}\nabla_{H}\otimes\nabla_{H}\int_{0}^{\infty}e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}fds\right\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}
≀C​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)​{∫0∞(t+s)βˆ’32​(t+sΞ΅2)βˆ’12​(1pβˆ’1q)​𝑑s,j=1,2,∫0∞(t+s)βˆ’1​(t+sΞ΅2)βˆ’12βˆ’12​(1pβˆ’1q)​𝑑s,j=3.\displaystyle\leq C\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left\{\begin{array}[]{c}\int_{0}^{\infty}(t+s)^{-\frac{3}{2}}(t+\frac{s}{\varepsilon^{2}})^{-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}ds,\quad j=1,2,\\ \int_{0}^{\infty}(t+s)^{-1}(t+\frac{s}{\varepsilon^{2}})^{-\frac{1}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}ds,\quad j=3.\end{array}\right.

We use Proposition 2.2 to see that

β€–βˆ‚jβˆ‡HβŠ—βˆ‡Hβ€‹βˆ«0∞e(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​f​𝑑sβ€–LHβˆžβ€‹Lx3q​(𝕋3)≀C​tβˆ’12βˆ’12​(1pβˆ’1q)​Ρ1pβˆ’1q​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\begin{split}&\left\|\partial_{j}\nabla_{H}\otimes\nabla_{H}\int_{0}^{\infty}e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}fds\right\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}\\ &\leq Ct^{-\frac{1}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\varepsilon^{\frac{1}{p}-\frac{1}{q}}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.\end{split} (2.19)

Proposition 2.2 leads to

β€–βˆ‡Hβˆ‚3Ξ΅β€‹βˆ‚j∫0∞e(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​f​𝑑sβ€–LHβˆžβ€‹Lx3q​(𝕋3)\displaystyle\left\|\nabla_{H}\frac{\partial_{3}}{\varepsilon}\partial_{j}\int_{0}^{\infty}e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}fds\right\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}
≀C​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)​{1Ξ΅β€‹βˆ«0∞(t+s)βˆ’1​(t+sΞ΅2)βˆ’12βˆ’12​(1pβˆ’1q)​𝑑s,j=1,2,1Ξ΅β€‹βˆ«0∞(t+s)βˆ’12​(t+sΞ΅2)βˆ’1βˆ’12​(1pβˆ’1q)​𝑑s,j=3.\displaystyle\leq C\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left\{\begin{array}[]{l}\frac{1}{\varepsilon}\int_{0}^{\infty}(t+s)^{-1}(t+\frac{s}{\varepsilon^{2}})^{-\frac{1}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}ds,\quad j=1,2,\\ \frac{1}{\varepsilon}\int_{0}^{\infty}(t+s)^{-\frac{1}{2}}(t+\frac{s}{\varepsilon^{2}})^{-1-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}ds,\quad j=3.\end{array}\right.

Thus, Proposition 2.2 implies

β€–βˆ‡Hβˆ‚3Ξ΅β€‹βˆ‚j∫0∞e(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​f​𝑑sβ€–LHβˆžβ€‹Lx3q​(𝕋3)≀C​tβˆ’12βˆ’12​(1pβˆ’1q)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\left\|\nabla_{H}\frac{\partial_{3}}{\varepsilon}\partial_{j}\int_{0}^{\infty}e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}fds\right\|_{L^{\infty}_{H}L^{q}_{x_{3}}(\mathbb{T}^{3})}\leq Ct^{-\frac{1}{2}-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}. (2.20)

The conclusion follows from (2.19) and (2.20). We proved Proposition 2.3. ∎

Remark 2.4.

The formula (2.10) plays an essential role in the proof of Proposition 2.3. If we try to estimate the norm of etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚32/Ξ΅2e^{t\Delta}\mathbb{P}_{\varepsilon}\partial_{3}^{2}/\varepsilon^{2}, then we have to deal the term ∫0βˆžΞ΅βˆ’2β€‹βˆ‚32βˆ‚je(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​f​d​s\int_{0}^{\infty}\varepsilon^{-2}\partial_{3}^{2}\partial_{j}e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}fds for j=1,2j=1,2. However, it is impossible to get the uniform LHβˆžβ€‹Lx3pL^{\infty}_{H}L^{p}_{x_{3}}-bound on Ξ΅\varepsilon since

β€–βˆ«0βˆžβˆ‚32Ξ΅2β€‹βˆ‚je(t+s)​ΔH​e(t+s/Ξ΅2)β€‹βˆ‚32​f​d​sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{\infty}\frac{\partial_{3}^{2}}{\varepsilon^{2}}\partial_{j}e^{(t+s)\Delta_{H}}e^{(t+s/\varepsilon^{2})\partial_{3}^{2}}fds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)​1Ξ΅2β€‹βˆ«0∞1(t+s)12​(t+sΞ΅2)​𝑑s\displaystyle\leq C\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\frac{1}{\varepsilon^{2}}\int_{0}^{\infty}\frac{1}{(t+s)^{\frac{1}{2}}(t+\frac{s}{\varepsilon^{2}})}ds
=C​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)​tβˆ’12β€‹βˆ«0∞1(1+s)12​(Ξ΅2+s)​𝑑s,\displaystyle=C\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}t^{-\frac{1}{2}}\int_{0}^{\infty}\frac{1}{(1+s)^{\frac{1}{2}}(\varepsilon^{2}+s)}ds,

for a Ρ\varepsilon-independent constant C>0C>0. If Ρ\varepsilon tends to zero, then the integral of the right-hand-side goes to infinity as |log⁑Ρ||\log\varepsilon|. Thus, in this calculations, we lose uniform estimates on Ρ\varepsilon.

Corollary 2.5.

Let 1≀pβ‰€βˆž1\leq p\leq\infty and T>0T>0. Then there exists a constant C>0C>0 such that

sup0<t<Tβ€–βˆ«0te(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚jf​(s)​d​sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}\left\|\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\partial_{j}f(s)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})} ≀C​t1/2​sup0<t<Tβ€–f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq Ct^{1/2}\sup_{0<t<T}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}

for all f∈Ltβˆžβ€‹LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))f\in L^{\infty}_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)), 0<Ρ≀10<\varepsilon\leq 1, and j=1,2,3j=1,2,3.

3 Non-Linear Estimates in LHβˆžβ€‹Lx3p​(𝕋3)L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})

In this section, we show some non-linear estimates for some quadratic terms.

3.1 Non-linear estimates for composite operators

The following proposition is elemental but is very useful.

Proposition 3.1.

Let 1≀pβ‰€βˆž1\leq p\leq\infty. There exists a constant C>0C>0 such that

β€–fβ€–Lβˆžβ€‹(𝕋3)≀‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\|f\|_{L^{\infty}(\mathbb{T}^{3})}\leq\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},

for all f∈LHβˆžβ€‹Lx3p​(𝕋3)f\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) satisfying βˆ‚3f∈LHβˆžβ€‹Lx3p​(𝕋3)\partial_{3}f\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}). In particular, if fΒ―=0\overline{f}=0, then

β€–fβ€–Lβˆžβ€‹(𝕋3)β‰€β€–βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\|f\|_{L^{\infty}(\mathbb{T}^{3})}\leq\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}. (3.1)
Proof.

By the fundamental theorem of calculus, we have the pointwise estimate

|f​(β‹…,x3)βˆ’f¯​(β‹…)|β‰€βˆ«βˆ’Ο€Ο€|βˆ‚zf​(β‹…,z)|​𝑑z,\displaystyle\left|f(\cdot,x_{3})-\overline{f}(\cdot)\right|\leq\int_{-\pi}^{\pi}|\partial_{z}f(\cdot,z)|dz,

for all π≀x3≀π\pi\leq x_{3}\leq\pi. Applying LHβˆžβ€‹Lx3pL^{\infty}_{H}L^{p}_{x_{3}}-norm to the both sides and using the triangle inequality, we have (3.1). ∎

To estimate FH​(UΞ΅,u)F_{H}(U_{\varepsilon},u) and Ρ​F3​(UΞ΅,u)\varepsilon F_{3}(U_{\varepsilon},u) in (1.19), we show

Proposition 3.2.

Let 1≀pβ‰€βˆž1\leq p\leq\infty. Then there exists a constant C>0C>0 such that

β€–et​Δ​ℙΡ​divΡ​(fβŠ—g)β€–LHβˆžβ€‹Lx3p≀Ctβˆ’1/2min[βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)(βˆ₯gβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‡gβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)),(βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‡fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))βˆ₯gβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)]+C​tβˆ’1/2​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)β€‹β€–βˆ‡gβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\begin{split}&\|e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f\otimes g\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}}\\ &\leq Ct^{-1/2}\min\left[\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}(\|g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}),\right.\\ &\left.\left(\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\|g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right]\\ &+Ct^{-1/2}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|\nabla g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},\end{split} (3.2)

for all t>0t>0, divΞ΅\mathrm{div}_{\varepsilon}-free vector fields f,g∈LHβˆžβ€‹Lx3p​(𝕋3)f,g\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) satisfying βˆ‡f,βˆ‡g∈LHβˆžβ€‹Lx3p​(𝕋3)\nabla f,\nabla g\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}), and 0<Ρ≀10<\varepsilon\leq 1.

Proof.

We use Proposition 2.3 and the formula

et​Δ​ℙΡ​divΡ​(fβŠ—g)=et​Δ​ℙΡ​divH​(f​gHT)+etβ€‹Ξ”β€‹β„™Ξ΅β€‹βˆ‚3Ρ​(f​g3),\displaystyle e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}(f\otimes g)=e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{H}\left(fg_{H}^{T}\right)+e^{t\Delta}\mathbb{P}_{\varepsilon}\frac{\partial_{3}}{\varepsilon}\left(fg_{3}\right), (3.3)

to see

β€–et​Δ​ℙΡ​divΡ​(fβŠ—g)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}(f\otimes g)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’1/2​‖f​gHTβ€–LHβˆžβ€‹Lx3p​(𝕋3)+C​tβˆ’12Ρ​‖f​g3β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq Ct^{-1/2}\|fg_{H}^{T}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+C\frac{t^{-\frac{1}{2}}}{\varepsilon}\|fg_{3}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
=:I1+I2.\displaystyle=:I_{1}+I_{2}.

Proposition 3.1 implies

I1\displaystyle I_{1} ≀C​tβˆ’12​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)​(β€–gHβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3gHβ€–LHβˆžβ€‹Lx3p​(𝕋3)),\displaystyle\leq Ct^{-\frac{1}{2}}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left(\|g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right),

and

I1\displaystyle I_{1} ≀C​tβˆ’12​(β€–fβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3))​‖gHβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\leq Ct^{-\frac{1}{2}}\left(\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\|g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

Since the divΞ΅\mathrm{div}_{\varepsilon}-free condition yields the formula

g3=βˆ’Ξ΅β€‹βˆ«βˆ’Ο€x3divH​gH​𝑑z,x3βˆˆπ•‹,\displaystyle g_{3}=-\varepsilon\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,g_{H}dz,\quad x_{3}\in\mathbb{T}, (3.4)

we see the factor Ξ΅βˆ’1\varepsilon^{-1} in I2I_{2} is canceled and estimate I2I_{2} as

I2\displaystyle I_{2} ≀C​tβˆ’12​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)β€‹β€–βˆ‡HgHβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\leq Ct^{-\frac{1}{2}}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|\nabla_{H}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

Thus we obtained (3.2). ∎

Corollary 3.3.

Let 1≀pβ‰€βˆž1\leq p\leq\infty, T>0T>0. Then there exists a constant C>0C>0 such that

sup0<t<Tβ€–βˆ«0te(tβˆ’s)​Δ​ℙΡ​divΡ​(fβŠ—g)​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)≀Cmin[sup0<t<Tβˆ₯f(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)(sup0<t<Tt1/2βˆ₯g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2βˆ₯βˆ‡g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)),(sup0<t<Tt12βˆ₯f(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2βˆ₯βˆ‡f(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3))sup0<t<Tβˆ₯g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)]+C​sup0<t<Tβ€–f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)​sup0<t<Tt12β€‹β€–βˆ‡g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\begin{split}&\sup_{0<t<T}\left\|\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f\otimes g\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\\ &\leq C\min\left[\sup_{0<t<T}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left(\sup_{0<t<T}t^{1/2}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right),\right.\\ &\quad\quad\quad\quad\left.\left(\sup_{0<t<T}t^{\frac{1}{2}}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\sup_{0<t<T}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right]\\ &+C\sup_{0<t<T}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\sup_{0<t<T}t^{\frac{1}{2}}\|\nabla g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\end{split} (3.5)

for all t>0t>0, divΞ΅\mathrm{div}_{\varepsilon}-free vector fields f,g∈Ltβˆžβ€‹LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))f,g\in L^{\infty}_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)) satisfying t12β€‹βˆ‡f,t12β€‹βˆ‡g∈Ltβˆžβ€‹LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))t^{\frac{1}{2}}\nabla f,t^{\frac{1}{2}}\nabla g\in L^{\infty}_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)), and 0<Ρ≀10<\varepsilon\leq 1.

Proof.

Taking Lt∞L^{\infty}_{t}-norm to both sides of (3.2), we have (3.5). ∎

We estimate space derivatives to the quadratic terms.

Proposition 3.4.

Let 1≀pβ‰€βˆž1\leq p\leq\infty. Then there exists a constant C>0C>0 such that

β€–βˆ‡et​Δ​ℙΡ​divΡ​(fβŠ—g)β€–LHβˆžβ€‹Lx3p​(𝕋3)≀Ctβˆ’1min[(βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‡fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))βˆ₯gβˆ₯LHβˆžβ€‹Lx3p​(𝕋3),βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)(βˆ₯gβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‡gβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))]+C​tβˆ’1​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)β€‹β€–βˆ‡gβ€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\begin{split}&\|\nabla e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f\otimes g\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\\ &\leq Ct^{-1}\min\left[\left(\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\|g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},\right.\\ &\quad\quad\quad\quad\quad\quad\quad\left.\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left(\|g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\right]\\ &+Ct^{-1}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|\nabla g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},\end{split} (3.6)

and

β€–βˆ‡et​Δ​ℙΡ​divΡ​(fβŠ—g)β€–LHβˆžβ€‹Lx3p​(𝕋3)≀C​tβˆ’1/2β€‹β€–βˆ‡fβ€–LHβˆžβ€‹Lx3p​(𝕋3)​(β€–gβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‡gβ€–LHβˆžβ€‹Lx3p​(𝕋3)),\displaystyle\begin{split}&\|\nabla e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f\otimes g\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\\ &\leq Ct^{-1/2}\|\nabla f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left(\|g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla g\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right),\end{split} (3.7)

for all divΞ΅\mathrm{div}_{\varepsilon}-free vector fields f,g∈LHβˆžβ€‹Lx3p​(𝕋3)f,g\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) satisfying βˆ‡f,βˆ‡g∈LHβˆžβ€‹Lx3p​(𝕋3)\nabla f,\nabla g\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}), and 0<Ρ≀10<\varepsilon\leq 1.

Proof.

We prove the first inequality. By the formula (3.3), we see that

β€–βˆ‡et​Δ​ℙΡ​divΡ​(fβŠ—g)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\|\nabla e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f\otimes g\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
β‰€β€–βˆ‡et​Δ​ℙΡ​divH​(fβŠ—gH)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‡et​Δ​ℙΡ​(fβ€‹βˆ«βˆ’Ο€x3divH​gH​𝑑z)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq\|\nabla e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{H}\left(f\otimes g_{H}\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\left\|\nabla e^{t\Delta}\mathbb{P}_{\varepsilon}\left(f\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,g_{H}dz\right)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
=:I1+I2.\displaystyle=:I_{1}+I_{2}.

Propositions 2.3 and 3.1 imply

I1\displaystyle I_{1} ≀C​tβˆ’1​‖fβŠ—gHβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq Ct^{-1}\|f\otimes g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Ctβˆ’1min[(βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‚3fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))βˆ₯gHβˆ₯LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\leq Ct^{-1}\min\left[\left(\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\|g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},\right.
βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)(βˆ₯gHβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‚3gHβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))],\displaystyle\quad\quad\quad\quad\quad\quad\quad\left.\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\left(\|g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\right],

and

I2≀C​tβˆ’1​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)β€‹β€–βˆ‡HgHβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle I_{2}\leq Ct^{-1}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|\nabla_{H}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

Next, we prove the last inequality. We see from the divΞ΅\mathrm{div}_{\varepsilon}-free condition that

divΡ​(fβŠ—g)=gHβ‹…βˆ‡Hfβˆ’βˆ«βˆ’Ο€x3divH​gH​𝑑zβ€‹βˆ‚3f.\displaystyle\mathrm{div}_{\varepsilon}(f\otimes g)=g_{H}\cdot\nabla_{H}f-\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,g_{H}dz\,\partial_{3}f.

Thus we obtain by the same way as above that

β€–βˆ‡et​Δ​ℙΡ​divΡ​(fβŠ—g)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\|\nabla e^{t\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f\otimes g\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’1/2​‖gHβ‹…βˆ‡Hfβ€–LHβˆžβ€‹Lx3p​(𝕋3)+C​tβˆ’12β€‹β€–βˆ«βˆ’Ο€x3divH​gH​𝑑zβ€‹βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq Ct^{-1/2}\|g_{H}\cdot\nabla_{H}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+Ct^{-\frac{1}{2}}\left\|\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,g_{H}dz\partial_{3}f\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’12​(β€–gHβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3gHβ€–LHβˆžβ€‹Lx3p​(𝕋3))β€‹β€–βˆ‡Hfβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq Ct^{-\frac{1}{2}}\left(\|g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\|\nabla_{H}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
+C​tβˆ’12β€‹β€–βˆ‡HgHβ€–LHβˆžβ€‹Lx3p​(𝕋3)β€‹β€–βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle+Ct^{-\frac{1}{2}}\|\nabla_{H}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

We obtained (3.7). ∎

Corollary 3.5.

Let 1≀pβ‰€βˆž1\leq p\leq\infty, T>0T>0. Then there exists a positive constant CC such that

sup0<t<Tβ€–βˆ«0t/2βˆ‡e(tβˆ’s)​Δ​ℙΡ​divΡ​(f​(s)βŠ—g​(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}\left\|\int_{0}^{t/2}\nabla e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f(s)\otimes g(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Ctβˆ’1/2min[(sup0<t<Tt1/2βˆ₯f(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2βˆ₯βˆ‡f(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3))\displaystyle\leq Ct^{-1/2}\min\left[\left(\sup_{0<t<T}t^{1/2}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\right.
Γ—sup0<t<Tβˆ₯g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\quad\quad\quad\quad\quad\quad\quad\times\sup_{0<t<T}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},
sup0<t<Tβ€–f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\quad\quad\quad\quad\quad\quad\quad\sup_{0<t<T}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
Γ—(sup0<t<Tt1/2βˆ₯g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2βˆ₯βˆ‡g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3))]\displaystyle\quad\quad\quad\quad\quad\quad\quad\left.\times\left(\sup_{0<t<T}t^{1/2}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\right]
+C​tβˆ’1/2​sup0<t<Tβ€–f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)​sup0<t<Tt1/2β€‹β€–βˆ‡g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle+Ct^{-1/2}\sup_{0<t<T}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\sup_{0<t<T}t^{1/2}\|\nabla g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},

and

sup0<t<Tβ€–βˆ«t/2tβˆ‡e(tβˆ’s)​Δ​ℙΡ​divΡ​(f​(s)βŠ—g​(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}\left\|\int_{t/2}^{t}\nabla e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(f(s)\otimes g(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’1/2​sup0<t<Tβ€–βˆ‡f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\leq Ct^{-1/2}\sup_{0<t<T}\|\nabla f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
Γ—(sup0<t<Tt1/2​‖g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2β€‹β€–βˆ‡g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))\displaystyle\times\left(\sup_{0<t<T}t^{1/2}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)

for all divΞ΅\mathrm{div}_{\varepsilon}-free vector fields f,g∈Ltβˆžβ€‹LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))f,g\in L^{\infty}_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)) satisfying t12β€‹βˆ‡f,t12β€‹βˆ‡g∈Ltβˆžβ€‹LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))t^{\frac{1}{2}}\nabla f,t^{\frac{1}{2}}\nabla g\in L^{\infty}_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)), and 0<Ξ΅<10<\varepsilon<1.

Proof.

The first inequality follows from (3.6) by integration over (0,t)(0,t). We apply the same way to (3.7) and the interval (t2,t)(\frac{t}{2},t) to get the second inequality. ∎

3.2 Estimates for F~​(v,w)\tilde{F}(v,w)

In this section, we establish Ξ΅\varepsilon-independent bounds in LHβˆžβ€‹Lx3p​(𝕋3)L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) for

tΞ±/2β€‹βˆ‚xΞ±et​Δ​ℙΡ​F~​(v,w)forΞ±=0,1.\displaystyle t^{\alpha/2}\partial_{x}^{\alpha}e^{t\Delta}\mathbb{P}_{\varepsilon}\tilde{F}(v,w)\quad\text{for}\quad\alpha=0,1.

Note that by the assumption of Theorem 1.1 we see that

tΞ±/2β€‹β€–βˆ‡Hβˆ‡Ξ±β‘vβ€–LHβˆžβ€‹Lx3p​(𝕋3)<∞forΞ±=0,1.\displaystyle t^{\alpha/2}\|\nabla_{H}\nabla^{\alpha}v\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}<\infty\quad\text{for}\quad\alpha=0,1.

for the solution vv to (1.5).

Proposition 3.6.

Let Ξ±=0,1\alpha=0,1 and T>0T>0. Then there exists a constant C>0C>0 such that

sup0<t<TtΞ±/2β€‹β€–βˆ«0tβˆ‡Ξ±e(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​(f​(s)β‹…βˆ‡g​(s)))​𝑑z​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}t^{\alpha/2}\left\|\int_{0}^{t}\nabla^{\alpha}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left(f(s)\cdot\nabla g(s)\right)\end{array}\right)dzds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})} ≀C,\displaystyle\leq C, (3.11)
sup0<t<TtΞ±/2β€‹β€–βˆ«0tβˆ‡Ξ±e(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​((divH​f​(s))​g​(s)))​𝑑z​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}t^{\alpha/2}\left\|\int_{0}^{t}\nabla^{\alpha}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left((\mathrm{div}_{H}f(s))g(s)\right)\end{array}\right)dzds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})} ≀C.\displaystyle\leq C. (3.15)

for all 0<Ρ≀10<\varepsilon\leq 1 and two-dimensional vector fields f,g∈Ct​LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))f,\,g\in C_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)) satisfying

sup0<t<TtΞ±/2β€‹β€–βˆ‡Hβˆ‡Ξ±β‘vj​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)<∞,j=0,1.\displaystyle\sup_{0<t<T}t^{\alpha/2}\|\nabla_{H}\nabla^{\alpha}v_{j}(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}<\infty,\quad j=0,1. (3.16)
Proof.

We first consider the first inequality of the case Ξ±=0\alpha=0. By Propositions 2.3

β€–βˆ«0te(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​(f​(s)β‹…βˆ‡g​(s)))​𝑑z​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left(f(s)\cdot\nabla g(s)\right)\end{array}\right)dzds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’12​‖f​(s)β‹…βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)​𝑑s\displaystyle\leq C\int_{0}^{t}(t-s)^{-\frac{1}{2}}\left\|f(s)\cdot\nabla_{H}g(s)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}ds
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’12​(β€–f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))β€‹β€–βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)​𝑑s\displaystyle\leq C\int_{0}^{t}(t-s)^{-\frac{1}{2}}\left(\|f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\|\nabla_{H}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}ds
≀C​(sup0<t<Tt12​‖f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt12β€‹β€–βˆ‚3f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))​sup0<t<Tβ€–βˆ‡Hg​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\leq C\left(\sup_{0<t<T}t^{\frac{1}{2}}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{\frac{1}{2}}\|\partial_{3}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\sup_{0<t<T}\|\nabla_{H}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

For Ξ±=1\alpha=1 we see from Propositions 2.3 and the interpolation inequality for the horizontal derivative from Lemman 3.2 of Giga et al. [8]

βˆ₯βˆ‡H(βˆ’Ξ”)βˆ’s/2fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)≀Cβˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)s2βˆ₯βˆ‡Hfβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)1βˆ’s2,s∈(0,1),\displaystyle\|\nabla_{H}(-\Delta)^{-s/2}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\leq C\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{\frac{s}{2}}\|\nabla_{H}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{\frac{1-s}{2}},\quad s\in(0,1), (3.17)

that

β€–βˆ‡β€‹βˆ«0te(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​(f​(s)β‹…βˆ‡g​(s)))​𝑑΢​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\nabla\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left(f(s)\cdot\nabla g(s)\right)\end{array}\right)d\zeta ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’12βˆ’13​‖f​(s)β‹…βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)2/3β€‹β€–βˆ‡H(f​(s)β‹…βˆ‡Hg​(s))β€–LHβˆžβ€‹Lx3p​(𝕋3)1/3​𝑑s\displaystyle\leq C\int_{0}^{t}(t-s)^{-\frac{1}{2}-\frac{1}{3}}\|f(s)\cdot\nabla_{H}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{2/3}\|\nabla_{H}\left(f(s)\cdot\nabla_{H}g(s)\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/3}ds
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’56​(β€–f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3β€‹β€–βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)2/3\displaystyle\leq C\int_{0}^{t}(t-s)^{-\frac{5}{6}}\left(\|f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}\|\nabla_{H}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{2/3}
Γ—(β€–βˆ‡Hf​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‡Hβ€‹βˆ‚3f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3β€‹β€–βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)1/3​d​s\displaystyle\quad\times\left(\|\nabla_{H}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla_{H}\partial_{3}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}\|\nabla_{H}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/3}ds
+Cβ€‹βˆ«0t(tβˆ’s)βˆ’56​(β€–f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3β€‹β€–βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)2/3\displaystyle+C\int_{0}^{t}(t-s)^{-\frac{5}{6}}\left(\|f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}\|\nabla_{H}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{2/3}
Γ—(β€–f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3β€‹β€–βˆ‡H2g​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)1/3​d​s\displaystyle\quad\times\left(\|f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}\|\nabla_{H}^{2}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/3}ds
≀C​tβˆ’1/2​(sup0<t<Tt1/2​‖f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2β€‹β€–βˆ‚3f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3\displaystyle\leq Ct^{-1/2}\left(\sup_{0<t<T}t^{1/2}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\partial_{3}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}
Γ—(sup0<t<Tβ€–βˆ‡Hg​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3\displaystyle\times\left(\sup_{0<t<T}\|\nabla_{H}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}
Γ—(sup0<t<Tt1/2β€‹β€–βˆ‡Hf​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2β€‹β€–βˆ‡Hβ€‹βˆ‚3f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3\displaystyle\times\left(\sup_{0<t<T}t^{1/2}\|\nabla_{H}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\nabla_{H}\partial_{3}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}
Γ—(sup0<t<Tt1/2β€‹β€–βˆ‡Hg​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3\displaystyle\times\left(\sup_{0<t<T}t^{1/2}\|\nabla_{H}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}
+C​tβˆ’1/2​(sup0<t<Tt1/2​‖f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2β€‹β€–βˆ‚3f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3\displaystyle+Ct^{-1/2}\left(\sup_{0<t<T}t^{1/2}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\partial_{3}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}
Γ—(sup0<t<Tβ€–βˆ‡Hg​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3\displaystyle\times\left(\sup_{0<t<T}\|\nabla_{H}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}
Γ—(sup0<t<Tt1/2​‖f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<t<Tt1/2β€‹β€–βˆ‚3f​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3\displaystyle\times\left(\sup_{0<t<T}t^{1/2}\|f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<t<T}t^{1/2}\|\partial_{3}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}
Γ—(sup0<t<Tt1/2β€‹β€–βˆ‡H2g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3.\displaystyle\times\left(\sup_{0<t<T}t^{1/2}\|\nabla_{H}^{2}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}.

This estimate implies (3.11). In the estimate (3.15), we change the role of ff and gg and use the same way as above, then we obtain (3.15). ∎

Remark 3.7.

In the proof of Proposition 3.6, we used sup0<t<Tt1/2β€‹β€–βˆ‡H2g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)\sup_{0<t<T}t^{1/2}\|\nabla_{H}^{2}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}. This is the why we imposed the additional regularity condition for v0v_{0} in Theorem 1.1 with respect to the horizontal variable.

Proposition 3.8.

Let Ξ±=0,1\alpha=0,1 and T>0T>0. Then there exists a constant C>0C>0 such that

sup0<t<TtΞ±/2β€‹β€–βˆ«0tβˆ‡Ξ±e(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​(βˆ«βˆ’Ο€zdivH​f​(s)​𝑑΢​g​(s)))​𝑑z​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)≀C,\displaystyle\sup_{0<t<T}t^{\alpha/2}\left\|\int_{0}^{t}\nabla^{\alpha}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left(\int_{-\pi}^{z}\mathrm{div}_{H}f(s)d\zeta g(s)\right)\end{array}\right)dzds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\leq C, (3.21)

for all two-dimensional vector fields f,g∈LHβˆžβ€‹Lx3p​(𝕋3)f,\,g\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) satisfying (3.16) and 0<Ρ≀10<\varepsilon\leq 1.

Proof.

For Ξ±=0\alpha=0 we see from Propositions 2.3 that

sup0<t<Tβ€–βˆ«0te(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​(βˆ«βˆ’Ο€zdivH​f​(s)​𝑑΢​g​(s)))​𝑑z​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}\left\|\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left(\int_{-\pi}^{z}\mathrm{div}_{H}f(s)d\zeta g(s)\right)\end{array}\right)dzds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’1/2β€‹β€–βˆ‡Hf​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)​‖g​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)​𝑑s\displaystyle\leq C\int_{0}^{t}(t-s)^{-1/2}\|\nabla_{H}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}ds
≀C​sup0<t<Tt1/2β€‹β€–βˆ‡Hf​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)​sup0<t<Tβ€–g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\leq C\sup_{0<t<T}t^{1/2}\|\nabla_{H}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\sup_{0<t<T}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

For Ξ±=1\alpha=1 we see from Propositions 2.3 and (3.17) that

sup0<t<Tβ€–βˆ«0tβˆ‡e(tβˆ’s)β€‹Ξ”β€‹β„™Ξ΅β€‹βˆ«βˆ’Ο€x3(00divH​(βˆ«βˆ’Ο€zdivH​f​(s)​𝑑΢​g​(s)))​𝑑z​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\sup_{0<t<T}\left\|\int_{0}^{t}\nabla e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\int_{-\pi}^{x_{3}}\left(\begin{array}[]{c}0\\ 0\\ \mathrm{div}_{H}\left(\int_{-\pi}^{z}\mathrm{div}_{H}f(s)d\zeta g(s)\right)\end{array}\right)dzds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’1/2βˆ’1/3β€‹β€–βˆ«βˆ’Ο€zdivH​f​(s)​𝑑΢​g​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)2/3\displaystyle\leq C\int_{0}^{t}(t-s)^{-1/2-1/3}\left\|\int_{-\pi}^{z}\mathrm{div}_{H}f(s)d\zeta g(s)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{2/3}
Γ—β€–βˆ‡H(βˆ«βˆ’Ο€zdivH​f​(s)​𝑑΢​g​(s))β€–LHβˆžβ€‹Lx3p​(𝕋3)1/3​d​s\displaystyle\quad\times\left\|\nabla_{H}\left(\int_{-\pi}^{z}\mathrm{div}_{H}f(s)d\zeta g(s)\right)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/3}ds
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’1/2βˆ’1/3β€‹β€–βˆ‡Hf​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)2/3​‖g​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)2/3\displaystyle\leq C\int_{0}^{t}(t-s)^{-1/2-1/3}\|\nabla_{H}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{2/3}\|g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{2/3}
Γ—(β€–βˆ‡H2f​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)​‖g​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‡Hf​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)β€‹β€–βˆ‡Hg​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))1/3​d​s\displaystyle\quad\times\left(\|\nabla_{H}^{2}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla_{H}f(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|\nabla_{H}g(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}ds
≀C​tβˆ’1/2​(sup0<t<Tt1/2β€‹β€–βˆ‡Hf​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3​(sup0<t<Tt1/2​‖g​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3))2/3\displaystyle\leq Ct^{-1/2}\left(\sup_{0<t<T}t^{1/2}\|\nabla_{H}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}\left(\sup_{0<t<T}t^{1/2}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{2/3}
Γ—(sup0<t<Tt1/2βˆ₯βˆ‡H2f(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)sup0<t<Tβˆ₯g(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\quad\times\left(\sup_{0<t<T}t^{1/2}\|\nabla_{H}^{2}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\sup_{0<t<T}\|g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right.
+sup0<t<Tt1/2βˆ₯βˆ‡Hf(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3)sup0<t<Tβˆ₯βˆ‡Hg(t)βˆ₯LHβˆžβ€‹Lx3p​(𝕋3))1/3.\displaystyle\quad\quad\quad\quad\left.+\sup_{0<t<T}t^{1/2}\|\nabla_{H}f(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\sup_{0<t<T}\|\nabla_{H}g(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1/3}.

Thus we have the conclusion. ∎

In the next section, we will use Propositions 3.6 and 3.8 to bound F~​(v,w)\tilde{F}(v,w).

4 Estimates for the Solution to the Equation of Difference

By construction of the solution uu to the primitive equations in Ct​LHβˆžβ€‹Lx3p​(𝕋3Γ—(0,T))C_{t}L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times(0,T)), see the proof of Theorem 2.1 of [8], the solution uu can be decomposed into

u=usmooth+usmallusmooth=(vsmooth,wsmooth),usmall=(vsmall,wsmall)\displaystyle\begin{split}&u=u_{\text{smooth}}+u_{\text{small}}\\ &u_{\text{smooth}}=(v_{\text{smooth}},w_{\text{smooth}}),\quad u_{\text{small}}=(v_{\text{small}},w_{\text{small}})\end{split} (4.1)

at least in a short interval (0,T0)(0,T_{0}), where

sup0<t<T0β€–usmooth​(t)β€–C1​(𝕋3)≀C,sup0<t<T0tΞ±/2β€‹β€–βˆ‡Ξ±usmall​(t)β€–LHβˆžβ€‹Lx3p​(𝕋3)≀δ\displaystyle\begin{split}&\sup_{0<t<T_{0}}\|u_{\text{smooth}}(t)\|_{C^{1}(\mathbb{T}^{3})}\leq C,\\ &\sup_{0<t<T_{0}}t^{\alpha/2}\|\nabla^{\alpha}u_{\text{small}}(t)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\leq\delta\end{split} (4.2)

for Ξ±=0,1\alpha=0,1, some constant C>0C>0, and small T0,Ξ΄>0T_{0},\delta>0. Since uu is smooth for tβ‰₯T0t\geq T_{0}, we can assume

suptβ‰₯T0β€–u​(t)β€–C1​(𝕋3)≀C\displaystyle\sup_{t\geq T_{0}}\|u(t)\|_{C^{1}(\mathbb{T}^{3})}\leq C (4.3)

for some constant C>0C>0.

Proof of Theorem 1.1.

We put

U~Ξ΅=(VΡΡ​WΞ΅),u~Ξ΅=(vΡΡ​wΞ΅)\displaystyle\widetilde{U}_{\varepsilon}=\left(\begin{array}[]{c}V_{\varepsilon}\\ \varepsilon W_{\varepsilon}\end{array}\right),\quad\tilde{u}_{\varepsilon}=\left(\begin{array}[]{c}v_{\varepsilon}\\ \varepsilon w_{\varepsilon}\end{array}\right)
u~smooth=(vsmoothΡ​wsmooth),u~small=(vsmallΡ​wsmall)\displaystyle\widetilde{u}_{\text{smooth}}=\left(\begin{array}[]{c}v_{\text{smooth}}\\ \varepsilon w_{\text{smooth}}\end{array}\right),\quad\tilde{u}_{\text{small}}=\left(\begin{array}[]{c}v_{\text{small}}\\ \varepsilon w_{\text{small}}\end{array}\right)

and set

XΞ΅,T​(U~Ξ΅)\displaystyle X_{\varepsilon,T}(\widetilde{U}_{\varepsilon}) =sup0<s<Tβ€–U~Ρ​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<s<Ts1/2β€‹β€–βˆ‡U~Ρ​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle=\sup_{0<s<T}\|\widetilde{U}_{\varepsilon}(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<s<T}s^{1/2}\|\nabla\widetilde{U}_{\varepsilon}(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},
YT\displaystyle Y_{T} =sup0<s<Tβ€–u​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<s<Tβ€–βˆ‡Hu​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle=\sup_{0<s<T}\|u(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<s<T}\|\nabla_{H}u(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
+sup0<s<Ts1/2β€‹β€–βˆ‡βˆ‡H⁑u​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3).\displaystyle\quad+\sup_{0<s<T}s^{1/2}\|\nabla\nabla_{H}u(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}.

Note that these vector fields are divΞ΅\mathrm{div}_{\varepsilon}-free. We use the integral equations of the form

U~Ρ​(t)=∫0te(tβˆ’s)​Δ​ℙΡ​divΡ​(U~Ρ​(s)βŠ—U~Ρ​(s)+U~Ρ​(s)βŠ—u~​(s))​𝑑s=∫0te(tβˆ’s)​Δ​ℙΡ​(U~Ρ​(s)β‹…βˆ‡u~​(s))​𝑑s+Ξ΅β€‹βˆ«0te(tβˆ’s)​Δ​ℙΡ​F~​(s)​𝑑s.\displaystyle\begin{split}&\widetilde{U}_{\varepsilon}(t)\\ &=\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\widetilde{U}_{\varepsilon}(s)\otimes\widetilde{U}_{\varepsilon}(s)+\widetilde{U}_{\varepsilon}(s)\otimes\tilde{u}(s)\right)ds\\ &=\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\left(\widetilde{U}_{\varepsilon}(s)\cdot\nabla\tilde{u}(s)\right)ds\\ &+\varepsilon\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\widetilde{F}(s)ds.\end{split} (4.4)

This integral equations are equivalent to (1.24). In view of (4.1), the right-hand side is decomposed into

∫0te(tβˆ’s)​Δ​ℙΡ​divΡ​(U~Ρ​(s)βŠ—U~Ρ​(s))​𝑑s\displaystyle\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}(\widetilde{U}_{\varepsilon}(s)\otimes\widetilde{U}_{\varepsilon}(s))ds
+∫0te(tβˆ’s)​Δ​ℙΡ​divΡ​(U~Ρ​(s)βŠ—u~smooth​(s)+U~Ρ​(s)βŠ—u~small​(s)+u~small​(s)βŠ—U~Ρ​(s))​𝑑s\displaystyle+\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\widetilde{U}_{\varepsilon}(s)\otimes\tilde{u}_{\text{smooth}}(s)+\widetilde{U}_{\varepsilon}(s)\otimes\tilde{u}_{\text{small}}(s)+\tilde{u}_{\text{small}}(s)\otimes\widetilde{U}_{\varepsilon}(s)\right)ds
+∫0te(tβˆ’s)​Δ​ℙΡ​divΡ​(u~smooth​(s)βŠ—U~Ρ​(s))​𝑑s\displaystyle+\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\tilde{u}_{\text{smooth}}(s)\otimes\widetilde{U}_{\varepsilon}(s)\right)ds
+Ξ΅β€‹βˆ«0te(tβˆ’s)​Δ​ℙΡ​F~​(s)​𝑑s\displaystyle+\varepsilon\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\widetilde{F}(s)ds
=:N(U~Ξ΅(t)).\displaystyle=:N(\widetilde{U}_{\varepsilon}(t)).

Propositions 3.6 and 3.8 imply

β€–Ξ΅β€‹βˆ«0tβˆ‡Ξ±e(tβˆ’s)​Δ​ℙΡ​F~​(s)​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)≀C​Ρ​tΞ±/2​Y​(t)2forΞ±=0,1.\displaystyle\left\|\varepsilon\int_{0}^{t}\nabla^{\alpha}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\widetilde{F}(s)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\leq C\varepsilon t^{\alpha/2}Y(t)^{2}\quad\text{for}\quad\alpha=0,1.

We see from Corollary 3.3 and 3.5 that the first and second terms of N​(U~Ρ​(t))N(\widetilde{U}_{\varepsilon}(t)) is bounded by

βˆ₯∫0tβˆ‡Ξ±e(tβˆ’s)​ΔℙΡdivΞ΅(U~Ξ΅(s)βŠ—U~Ξ΅(s)+U~Ξ΅(s)βŠ—u~smooth(s)\displaystyle\left\|\int_{0}^{t}\nabla^{\alpha}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\widetilde{U}_{\varepsilon}(s)\otimes\widetilde{U}_{\varepsilon}(s)+\widetilde{U}_{\varepsilon}(s)\otimes\tilde{u}_{\text{smooth}}(s)\right.\right.
+U~Ξ΅(s)βŠ—u~small(s)+u~small(s)βŠ—U~Ξ΅(s))dsβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left.\quad\quad\quad\quad\left.+\widetilde{U}_{\varepsilon}(s)\otimes\tilde{u}_{\text{small}}(s)+\tilde{u}_{\text{small}}(s)\otimes\widetilde{U}_{\varepsilon}(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tΞ±/2​XΞ΅,t​(U~Ξ΅)2+C​t1/2+Ξ±/2​XΞ΅,t​(U~Ξ΅)+C​tΞ±/2​δ​XΞ΅,t​(U~Ξ΅).\displaystyle\leq Ct^{\alpha/2}X_{\varepsilon,t}(\widetilde{U}_{\varepsilon})^{2}+Ct^{1/2+\alpha/2}X_{\varepsilon,t}(\widetilde{U}_{\varepsilon})+Ct^{\alpha/2}\delta X_{\varepsilon,t}(\widetilde{U}_{\varepsilon}).

Since

divΡ​(u~smooth​(s)βŠ—U~Ρ​(s))\displaystyle\mathrm{div}_{\varepsilon}\left(\tilde{u}_{\text{smooth}}(s)\otimes\widetilde{U}_{\varepsilon}(s)\right)
=divH​(u~s​m​o​o​t​hβŠ—V~Ξ΅)βˆ’βˆ‚3(u~s​m​o​o​t​hβ€‹βˆ«βˆ’Ο€x3divH​V~Ρ​𝑑z),\displaystyle=\mathrm{div}_{H}\left(\tilde{u}_{smooth}\otimes\widetilde{V}_{\varepsilon}\right)-\partial_{3}\left(\tilde{u}_{smooth}\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\widetilde{V}_{\varepsilon}dz\right), (4.5)

we use interpolation inequalities (3.17) and

β€–βˆ‚3βˆ‚3βˆ’sfβ€–LHβˆžβ€‹Lx3p​(𝕋3)≀C​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)s2β€‹β€–βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3)1βˆ’s2,s∈(0,1),\displaystyle\|\partial_{3}\partial_{3}^{-s}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\leq C\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{\frac{s}{2}}\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{\frac{1-s}{2}},\quad s\in(0,1),

which is a direct consequence of the one-dimensional interpolation inequality in Lp​(𝕋)L^{p}(\mathbb{T}), and Proposition 2.3 to estimate the third term of N​(UΞ΅)N(U_{\varepsilon}) as

β€–βˆ«0te(tβˆ’s)​Δ​ℙΡ​divΡ​(u~smooth​(s)βŠ—U~Ρ​(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\tilde{u}_{\text{smooth}}(s)\otimes\widetilde{U}_{\varepsilon}(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Cβ€‹βˆ«0t(tβˆ’s)βˆ’1/4​‖u~smooth​(s)βŠ—V~Ρ​(s)β€–1/2β€‹β€–βˆ‡H(u~smooth​(s)βŠ—V~Ρ​(s))β€–LHβˆžβ€‹Lx3p​(𝕋3)1/2​𝑑s\displaystyle\leq C\int_{0}^{t}(t-s)^{-1/4}\left\|\tilde{u}_{\text{smooth}}(s)\otimes\widetilde{V}_{\varepsilon}(s)\right\|^{1/2}\left\|\nabla_{H}\left(\tilde{u}_{\text{smooth}}(s)\otimes\widetilde{V}_{\varepsilon}(s)\right)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/2}ds
+Cβ€‹βˆ«0t(tβˆ’s)βˆ’1/4​‖u~smooth​(s)β€‹βˆ«βˆ’Ο€x3divH​V~Ρ​(s)​𝑑zβ€–LHβˆžβ€‹Lx3p​(𝕋3)1/2\displaystyle+C\int_{0}^{t}(t-s)^{-1/4}\left\|\tilde{u}_{\text{smooth}}(s)\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\widetilde{V}_{\varepsilon}(s)dz\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/2}
Γ—β€–βˆ‚3(u~smooth​(s)β€‹βˆ«βˆ’Ο€x3divH​V~Ρ​(s)​𝑑z)β€–LHβˆžβ€‹Lx3p​(𝕋3)1/2​d​s\displaystyle\quad\quad\times\left\|\partial_{3}\left(\tilde{u}_{\text{smooth}}(s)\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\widetilde{V}_{\varepsilon}(s)dz\right)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1/2}ds
≀C​t1/4​XΞ΅,t​(U~Ξ΅)β€‹βˆ«0t(tβˆ’s)βˆ’1/4​sβˆ’1/2​𝑑s\displaystyle\leq Ct^{1/4}X_{\varepsilon,t}(\widetilde{U}_{\varepsilon})\int_{0}^{t}(t-s)^{-1/4}s^{-1/2}ds
≀C​t1/4​XΞ΅,t​(U~Ξ΅),\displaystyle\leq Ct^{1/4}X_{\varepsilon,t}(\widetilde{U}_{\varepsilon}),

and similarly

β€–βˆ‡β€‹βˆ«0te(tβˆ’s)​Δ​ℙΡ​divΡ​(u~smooth​(s)βŠ—U~Ρ​(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\nabla\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\tilde{u}_{\text{smooth}}(s)\otimes\widetilde{U}_{\varepsilon}(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​t1/4​XΞ΅,t​(U~Ξ΅)β€‹βˆ«0t(tβˆ’s)βˆ’3/4​sβˆ’1/2​𝑑s\displaystyle\leq Ct^{1/4}X_{\varepsilon,t}(\widetilde{U}_{\varepsilon})\int_{0}^{t}(t-s)^{-3/4}s^{-1/2}ds
≀C​tβˆ’1/4​XΞ΅,t​(U~Ξ΅),\displaystyle\leq Ct^{-1/4}X_{\varepsilon,t}(\widetilde{U}_{\varepsilon}),

for some constant C3>0C_{3}>0. Summing up these estimates, we see that there exist a small 0<T0<10<T_{0}<1 and constants C0,C1,C2>0C_{0},C_{1},C_{2}>0 such that

XΞ΅,T0​(N​(U~Ξ΅))≀C2​XΞ΅,T0​(U~Ξ΅)2+C1​(T01/4+Ξ΄)​XΞ΅,T0​(U~Ξ΅)+C0​YT02​Ρ.\displaystyle X_{\varepsilon,T_{0}}\left(N(\widetilde{U}_{\varepsilon})\right)\leq C_{2}X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon})^{2}+C_{1}(T_{0}^{1/4}+\delta)X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon})+C_{0}Y_{T_{0}}^{2}\varepsilon. (4.6)

Thus if we take Ξ΅\varepsilon and T0T_{0} so small that

C1​(T01/4+Ξ΄)<1,Ξ΅<(1βˆ’(T01/4+Ξ΄))24​C0​C2​YT02,\displaystyle C_{1}(T_{0}^{1/4}+\delta)<1,\quad\varepsilon<\frac{\left(1-(T_{0}^{1/4}+\delta)\right)^{2}}{4C_{0}C_{2}Y_{T_{0}}^{2}},

we obtain

XΞ΅,T0​(N​(U~Ξ΅))≀2​Ρ​C0​YT02,\displaystyle X_{\varepsilon,T_{0}}\left(N(\widetilde{U}_{\varepsilon})\right)\leq 2\varepsilon C_{0}Y_{T_{0}}^{2},

for XΞ΅,T0​(U~Ξ΅)≀2​Ρ​C0​YT02X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon})\leq 2\varepsilon C_{0}Y_{T_{0}}^{2}. We consider the difference

U~Ρ′​(s)\displaystyle\widetilde{U}_{\varepsilon}^{\prime}(s) :=U~Ξ΅2βˆ’U~Ξ΅1\displaystyle:=\widetilde{U}_{\varepsilon}^{2}-\widetilde{U}_{\varepsilon}^{1}

for U~Ξ΅1,U~Ξ΅2\widetilde{U}_{\varepsilon}^{1},\widetilde{U}_{\varepsilon}^{2} satisfying XΞ΅,t​(U~Ξ΅j)<∞X_{\varepsilon,t}(\widetilde{U}_{\varepsilon}^{j})<\infty for j=1,2j=1,2. By the same way as above, we have

XΞ΅,T0​(N​(U~Ξ΅β€²))\displaystyle X_{\varepsilon,T_{0}}\left(N(\widetilde{U}_{\varepsilon}^{\prime})\right)
≀C2′​XΞ΅,T0​(U~Ξ΅)​(XΞ΅,T0​(U~Ξ΅1)+XΞ΅,T0​(U~Ξ΅2))+C1′​(T01/4+Ξ΄)​XΞ΅,T0​(U~Ξ΅).\displaystyle\leq C_{2}^{\prime}X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon})\left(X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon}^{1})+X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon}^{2})\right)+C_{1}^{\prime}(T_{0}^{1/4}+\delta)X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon}).

Thus, for sufficiently small Ξ΅,T0\varepsilon,T_{0}, and Ξ΄\delta, we see NN is a contraction map. By the contraction mapping principle, we see that there exists a unique solution U~Ρ∈Ct​CH​Lx3p​(𝕋3Γ—[0,T0])\widetilde{U}_{\varepsilon}\in C_{t}C_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times[0,T_{0}]) to (4.4) such that

XΞ΅,T0​(U~Ξ΅)≀2​Ρ​C0​YT02.\displaystyle X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon})\leq 2\varepsilon C_{0}Y_{T_{0}}^{2}.

We next consider the integral equations with initial data U~Ρ​(T0)\widetilde{U}_{\varepsilon}(T_{0}) such as

U~Ρ​(t)=et​Δ​U~Ρ​(T0)+∫0te(tβˆ’s)​Δ​ℙΡ​divΡ​(U~Ρ​(s)βŠ—U~Ρ​(s)+U~Ρ​(s)βŠ—u~​(s+T0))​𝑑s=∫0te(tβˆ’s)​Δ​ℙΡ​(U~Ρ​(s)β‹…βˆ‡u~​(s+T0))​𝑑s+∫0te(tβˆ’s)​Δ​ℙΡ​F~​(s+T0)​𝑑s.\displaystyle\begin{split}&\widetilde{U}_{\varepsilon}(t)\\ &=e^{t\Delta}\widetilde{U}_{\varepsilon}(T_{0})\\ &+\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\mathrm{div}_{\varepsilon}\left(\widetilde{U}_{\varepsilon}(s)\otimes\widetilde{U}_{\varepsilon}(s)+\widetilde{U}_{\varepsilon}(s)\otimes\tilde{u}(s+T_{0})\right)ds\\ &=\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\left(\widetilde{U}_{\varepsilon}(s)\cdot\nabla\tilde{u}(s+T_{0})\right)ds\\ &+\int_{0}^{t}e^{(t-s)\Delta}\mathbb{P}_{\varepsilon}\widetilde{F}(s+T_{0})ds.\end{split} (4.7)

Because of the bound (4.3), things are much easier. We can use the same way as above estimates to see that there exist small 0<T1<10<T_{1}<1 and constant C3,C4,C5>0C_{3},C_{4},C_{5}>0 such that

XΞ΅,T1​(N​(U~Ξ΅))≀C5​XΞ΅,T1​(U~Ξ΅)2+C4​T11/4​XΞ΅,T1​(U~Ξ΅)+C3​(Ρ​YT0+T12+β€–U~Ρ​(T0)β€–LHβˆžβ€‹Lx3p​(𝕋3))≀C5​XΞ΅,T1​(U~Ξ΅)2+C4​T11/4​XΞ΅,T1​(U~Ξ΅)+C3​Ρ​(YT0+T12+2​C0​YT02).\displaystyle\begin{split}&X_{\varepsilon,T_{1}}\left(N(\widetilde{U}_{\varepsilon})\right)\\ &\leq C_{5}X_{\varepsilon,T_{1}}(\widetilde{U}_{\varepsilon})^{2}+C_{4}T_{1}^{1/4}X_{\varepsilon,T_{1}}(\widetilde{U}_{\varepsilon})+C_{3}\left(\varepsilon Y_{T_{0}+T_{1}}^{2}+\|\widetilde{U}_{\varepsilon}(T_{0})\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)\\ &\leq C_{5}X_{\varepsilon,T_{1}}(\widetilde{U}_{\varepsilon})^{2}+C_{4}T_{1}^{1/4}X_{\varepsilon,T_{1}}(\widetilde{U}_{\varepsilon})+C_{3}\varepsilon\left(Y_{T_{0}+T_{1}}^{2}+2C_{0}Y_{T_{0}}^{2}\right).\end{split} (4.8)

Thus if Ξ΅\varepsilon so small that

C4​T11/4<1,Ξ΅<(1βˆ’T11/4)22​C3​(YT0+T12+2​C0​YT02)​C5,\displaystyle C_{4}T_{1}^{1/4}<1,\quad\varepsilon<\frac{\left(1-T_{1}^{1/4}\right)^{2}}{2C_{3}\left(Y_{T_{0}+T_{1}}^{2}+2C_{0}Y_{T_{0}}^{2}\right)C_{5}},

we obtain

XΞ΅,T1​(N​(U~Ξ΅))≀2​Ρ​C3​(YT0+T12+2​C0​YT02)\displaystyle X_{\varepsilon,T_{1}}\left(N(\widetilde{U}_{\varepsilon})\right)\leq 2\varepsilon C_{3}\left(Y_{T_{0}+T_{1}}^{2}+2C_{0}Y_{T_{0}}^{2}\right)

for XΞ΅,T1​(U~Ξ΅)≀2​Ρ​C0​YT1X_{\varepsilon,T_{1}}(\widetilde{U}_{\varepsilon})\leq 2\varepsilon C_{0}Y_{T_{1}}. By the same way as (4.8), we see that NN is a contraction mapping for small T1T_{1} and Ξ΅\varepsilon. Note that the constant T1T_{1} is independent of Ξ΅\varepsilon. We use the contraction mapping principle again to get a unique solution U~Ρ∈Ctβˆžβ€‹CH​Lx3p​(𝕋3Γ—[0,T1])\widetilde{U}_{\varepsilon}\in C^{\infty}_{t}C_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}\times[0,T_{1}]) to (4.7) such that

XΞ΅,T0​(U~Ξ΅)≀2​Ρ​C3​(YT0+T12+2​C0​YT02).\displaystyle X_{\varepsilon,T_{0}}(\widetilde{U}_{\varepsilon})\leq 2\varepsilon C_{3}\left(Y_{T_{0}+T_{1}}^{2}+2C_{0}Y_{T_{0}}^{2}\right).

Since T1T_{1} is independent of Ρ\varepsilon, if we choose Ρ\varepsilon sufficiently small beforehand, we can repeat the above procedures up to TT. We proved Theorem 1.1. ∎

Appendix A Derivation of the equation for ww

Here we derive the equation (1.7). Let

v¯​(xβ€²):=12β€‹βˆ«βˆ’Ο€Ο€f​(xβ€²,z)​𝑑zandv~:=fβˆ’fΒ―\displaystyle\overline{v}(x^{\prime}):=\frac{1}{2}\int_{-\pi}^{\pi}f(x^{\prime},z)dz\quad\text{and}\quad\widetilde{v}:=f-\overline{f}

for any xβ€²βˆˆπ•‹2x^{\prime}\in\mathbb{T}^{2} and integrable function ff. It is clear that

βˆ«βˆ’Ο€1f~​(β‹…,z)​𝑑z=0.\displaystyle\int_{-\pi}^{1}\tilde{f}(\cdot,z)dz=0. (A.1)

We see that

divH​g=divH​g~,\displaystyle\mathrm{div}_{H}g=\mathrm{div}_{H}\,\widetilde{g},

and

w​(β‹…,x3)=βˆ«βˆ’Ο€x3divH​g​𝑑z=βˆ«βˆ’Ο€x3divH​g~​𝑑z,\displaystyle w(\cdot,x_{3})=\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,gdz=\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\,\widetilde{g}dz,

for any βˆ’Ο€β‰€x3≀π-\pi\leq x_{3}\leq\pi and integrable divH\mathrm{div}_{H}-free vector gg. The first equation of (1.5) is equivalent to

βˆ‚tvβˆ’Ξ”β€‹v+v~β‹…βˆ‡Hv~+vΒ―β‹…βˆ‡Hv~+v~β‹…βˆ‡HvΒ―+vΒ―β‹…βˆ‡HvΒ―+wβ€‹βˆ‚3v~+βˆ‡HΟ€=0.\displaystyle\partial_{t}v-\Delta v+\tilde{v}\cdot\nabla_{H}\tilde{v}+\overline{v}\cdot\nabla_{H}\tilde{v}+\tilde{v}\cdot\nabla_{H}\overline{v}+\overline{v}\cdot\nabla_{H}\overline{v}+w\partial_{3}\tilde{v}+\nabla_{H}\pi=0. (A.2)

Applying 12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€β‹…d​z\frac{1}{2\pi}\int_{-\pi}^{\pi}\,\cdot\,dz to the both sides of (A.2), we have

βˆ‚tvΒ―βˆ’Ξ”β€‹vΒ―+12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€v~β‹…βˆ‡Hv~​d​z+vΒ―β‹…βˆ‡HvΒ―+12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€wβ€‹βˆ‚zv~​d​z+βˆ‡HΟ€=0.\displaystyle\partial_{t}\overline{v}-\Delta\overline{v}+\frac{1}{2\pi}\int_{-\pi}^{\pi}\tilde{v}\cdot\nabla_{H}\tilde{v}dz+\overline{v}\cdot\nabla_{H}\overline{v}+\frac{1}{2\pi}\int_{-\pi}^{\pi}w\partial_{z}\tilde{v}dz+\nabla_{H}\pi=0. (A.3)

Note that the boundary traces from βˆ’Ξ”β€‹v-\Delta v vanish since vv is a even vector field with respect to x3x_{3}. Taking the difference between (A.2) and (A.3), we have a nonlinear parabolic equation

βˆ‚tv~βˆ’Ξ”β€‹v~+v~β‹…βˆ‡Hv~+vΒ―β‹…βˆ‡Hv~+v~β‹…βˆ‡HvΒ―βˆ’12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€v~β‹…βˆ‡Hv~​d​z\displaystyle\partial_{t}\tilde{v}-\Delta\tilde{v}+\tilde{v}\cdot\nabla_{H}\tilde{v}+\overline{v}\cdot\nabla_{H}\tilde{v}+\tilde{v}\cdot\nabla_{H}\overline{v}-\frac{1}{2\pi}\int_{-\pi}^{\pi}\tilde{v}\cdot\nabla_{H}\tilde{v}dz
+wβ€‹βˆ‚3v~βˆ’12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€wβ€‹βˆ‚3v~​d​z=0.\displaystyle\quad\quad\quad\quad\quad+w\partial_{3}\tilde{v}-\frac{1}{2\pi}\int_{-\pi}^{\pi}w\partial_{3}\tilde{v}dz=0. (A.4)

Integration by parts and the formula βˆ‚zw=βˆ’divH​v~\partial_{z}w=-\mathrm{div}_{H}\tilde{v} lead to

βˆ‚tv~βˆ’Ξ”β€‹v~+v~β‹…βˆ‡Hv~+vΒ―β‹…βˆ‡Hv~+v~β‹…βˆ‡HvΒ―βˆ’12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€v~β‹…βˆ‡Hv~​d​z+wβ€‹βˆ‚3v~βˆ’12β€‹Ο€β€‹βˆ«βˆ’Ο€Ο€(divH​v~)​v~​𝑑z=0.\displaystyle\begin{split}&\partial_{t}\tilde{v}-\Delta\tilde{v}+\tilde{v}\cdot\nabla_{H}\tilde{v}+\overline{v}\cdot\nabla_{H}\tilde{v}+\tilde{v}\cdot\nabla_{H}\overline{v}-\frac{1}{2\pi}\int_{-\pi}^{\pi}\tilde{v}\cdot\nabla_{H}\tilde{v}dz\\ &\quad\quad\quad\quad\quad+w\partial_{3}\tilde{v}-\frac{1}{2\pi}\int_{-\pi}^{\pi}(\mathrm{div}_{H}\tilde{v})\tilde{v}dz=0.\end{split} (A.5)

Applying βˆ«βˆ’Ο€x3divH⋅𝑑΢\int_{-\pi}^{x_{3}}\mathrm{div_{H}}\,\cdot\,d\zeta to the both sides, we have

βˆ‚twβˆ’Ξ”β€‹w+βˆ«βˆ’Ο€x3divH​(v~β‹…βˆ‡Hv~+vΒ―β‹…βˆ‡Hv~+v~β‹…βˆ‡HvΒ―)​𝑑zβˆ’12​π​(x3βˆ’1)β€‹βˆ«βˆ’Ο€Ο€divH​(v~β‹…βˆ‡Hv~)​𝑑z+βˆ«βˆ’Ο€x3divH​(wβ€‹βˆ‚zv~)​𝑑zβˆ’12​π​(x3βˆ’Ο€)β€‹βˆ«βˆ’Ο€Ο€divH​[(divH​v~)​v~]​𝑑z=0.\displaystyle\begin{split}&\partial_{t}w-\Delta w+\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\left(\tilde{v}\cdot\nabla_{H}\tilde{v}+\overline{v}\cdot\nabla_{H}\tilde{v}+\tilde{v}\cdot\nabla_{H}\overline{v}\right)dz\\ &-\frac{1}{2\pi}(x_{3}-1)\int_{-\pi}^{\pi}\mathrm{div}_{H}\left(\tilde{v}\cdot\nabla_{H}\tilde{v}\right)dz\\ &+\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\left(w\partial_{z}\tilde{v}\right)dz-\frac{1}{2\pi}(x_{3}-\pi)\int_{-\pi}^{\pi}\mathrm{div}_{H}\left[(\mathrm{div}_{H}\tilde{v})\tilde{v}\right]dz=0.\end{split} (A.6)

Integration by parts yields

βˆ«βˆ’Ο€x3wβ€‹βˆ‚zv~​d​z\displaystyle\int_{-\pi}^{x_{3}}w\partial_{z}\tilde{v}dz =w​v~+βˆ«βˆ’Ο€x3(divH​v~)​v~​𝑑z\displaystyle=w\tilde{v}+\int_{-\pi}^{x_{3}}(\mathrm{div}_{H}\tilde{v})\tilde{v}dz
=βˆ’βˆ«βˆ’Ο€x3divH​v~​𝑑z​v~+βˆ«βˆ’Ο€x3(divH​v~)​v~​𝑑z.\displaystyle=-\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\tilde{v}dz\,\tilde{v}+\int_{-\pi}^{x_{3}}(\mathrm{div}_{H}\tilde{v})\tilde{v}dz.

Thus (A.6) is equivalent to

βˆ‚twβˆ’Ξ”β€‹w+βˆ«βˆ’Ο€x3divH​(v~β‹…βˆ‡Hv~+vΒ―β‹…βˆ‡Hv~+v~β‹…βˆ‡HvΒ―)​𝑑zβˆ’12​(x3βˆ’Ο€)β€‹βˆ«βˆ’Ο€1divH​(v~β‹…βˆ‡Hv~)​𝑑z\displaystyle\partial_{t}w-\Delta w+\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\left(\tilde{v}\cdot\nabla_{H}\tilde{v}+\overline{v}\cdot\nabla_{H}\tilde{v}+\tilde{v}\cdot\nabla_{H}\overline{v}\right)dz-\frac{1}{2}(x_{3}-\pi)\int_{-\pi}^{1}\mathrm{div}_{H}\left(\tilde{v}\cdot\nabla_{H}\tilde{v}\right)dz
+βˆ«βˆ’Ο€x3divH​(βˆ’βˆ«βˆ’Ο€zdivH​v~​𝑑΢​v~)​𝑑z+βˆ«βˆ’Ο€x3divH​[(divH​v~)​v~]​𝑑z\displaystyle+\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\left(-\int_{-\pi}^{z}\mathrm{div}_{H}\,\tilde{v}d\zeta\,\tilde{v}\right)dz+\int_{-\pi}^{x_{3}}\mathrm{div}_{H}\left[(\mathrm{div}_{H}\,\tilde{v})\tilde{v}\right]dz
βˆ’12​(x3βˆ’Ο€)β€‹βˆ«βˆ’Ο€1divH​[(divH​v~)​v~]​𝑑z=0,\displaystyle-\frac{1}{2}(x_{3}-\pi)\int_{-\pi}^{1}\mathrm{div}_{H}\left[(\mathrm{div}_{H}\tilde{v})\tilde{v}\right]dz=0,

which is (1.7).

Appendix B Decomposition of the solution around initial time

In this appendix we briefly show that the solution to (1.5) can be decomposed such that (4.1) and (4.2). The proof is quite similar to the proof Theorem 1.1, we do not repeat the things for simplicity. We decomposed the initial data v0v_{0} satisfying the assumptions of Theorem 1.1 such that

v0=v0,s​m​o​o​t​h+v0,s​m​a​l​l\displaystyle v_{0}=v_{0,smooth}+v_{0,small}

satisfying

β€–v0,s​m​o​o​t​hβ€–C2​(𝕋3)≀C,β€–βˆ‡HΞ±v0,s​m​a​l​lβ€–LHβˆžβ€‹Lx31​(𝕋3)β‰€Ξ΄βˆ—,\displaystyle\begin{split}\|v_{0,smooth}\|_{C^{2}(\mathbb{T}^{3})}\leq C,\quad\|\nabla_{H}^{\alpha}v_{0,small}\|_{L^{\infty}_{H}L^{1}_{x_{3}}(\mathbb{T}^{3})}\leq\delta^{\ast},\end{split} (B.1)

for some constant C>0C>0, Ξ±=0,1\alpha=0,1 and small Ξ΄>0\delta>0.

We know that there exist T>0T>0 and a unique solution uβˆ—=(vβˆ—,wβˆ—)∈Ct​Cx1​(𝕋3Γ—(0,T))Γ—Ct​Cx​(𝕋3Γ—(0,T))u^{\ast}=(v^{\ast},w^{\ast})\in C_{t}C^{1}_{x}(\mathbb{T}^{3}\times(0,T))\times C_{t}C_{x}(\mathbb{T}^{3}\times(0,T)) to (1.5) satisfying

β€–vβˆ—β€–Ct​C1​(𝕋3Γ—[0,T])≀Cβˆ—\displaystyle\|v^{\ast}\|_{C_{t}C^{1}(\mathbb{T}^{3}\times[0,T])}\leq C^{\ast} (B.2)

for some constant Cβˆ—>0C^{\ast}>0 and small T>0T>0. The reader refers to [5]. Let PP be the hydrostatic Helmholtz projection on 𝕋3\mathbb{T}^{3}.

Proposition B.1.

Let t>0t>0, 0≀β<10\leq\beta<1, and pβ‰₯1p\geq 1. Then there exits a constant C>0C>0 such that

β€–et​Δ​P​div​(fβŠ—g)β€–LHβˆžβ€‹Lx3p​(𝕋3)≀C​tβˆ’1βˆ’Ξ²2​(β€–βˆ‡Hgβ€–Lβˆžβ€‹(𝕋3)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–gHβ€–Lβˆžβ€‹(𝕋3)β€‹β€–βˆ‡fβ€–LHβˆžβ€‹Lx3p​(𝕋3))Ξ²Γ—(β€–gHβ€–Lβˆžβ€‹(𝕋3)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3))1βˆ’Ξ²+Cmin(tβˆ’1βˆ’Ξ²2βˆ₯βˆ‡HgHβˆ₯Lβˆžβ€‹(𝕋3)Ξ²(βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)+βˆ₯βˆ‚3fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))Ξ²Γ—(βˆ₯βˆ‡HgHβˆ₯Lβˆžβ€‹(𝕋3)βˆ₯fβˆ₯LHβˆžβ€‹Lx3p​(𝕋3))1βˆ’Ξ²,βˆ₯βˆ‡HgHβˆ₯LHβˆžβ€‹Lx3p​(𝕋3)βˆ₯fβˆ₯Lβˆžβ€‹(𝕋3))\displaystyle\begin{split}&\|e^{t\Delta}P\mathrm{div}\left(f\otimes g\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\\ &\leq Ct^{-\frac{1-\beta}{2}}\left(\|\nabla_{H}g\|_{L^{\infty}(\mathbb{T}^{3})}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}\|\nabla f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\beta}\\ &\times\left(\|g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1-\beta}\\ &+C\min\left(t^{-\frac{1-\beta}{2}}\|\nabla_{H}g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}^{\beta}\left(\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\beta}\right.\\ &\left.\quad\quad\quad\quad\quad\times\left(\|\nabla_{H}g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1-\beta},\|\nabla_{H}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|f\|_{L^{\infty}(\mathbb{T}^{3})}\right)\end{split} (B.3)

for all two-dimensional vector fields f∈C1​(𝕋3)f\in C^{1}(\mathbb{T}^{3}) and divergence-free g∈LHβˆžβ€‹Lx3p​(𝕋3)g\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}) satisfying βˆ‡u∈LHβˆžβ€‹Lx3p​(𝕋3)\nabla u\in L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3}).

Proof.

The proof is essentially same as Lemma 6.1 of [8]. We know from the Lemma that

P​div​(fβŠ—u)=P​divH​(gHβŠ—f)+βˆ‚3(g3​f).\displaystyle P\mathrm{div}(f\otimes u)=P\mathrm{div}_{H}(g_{H}\otimes f)+\partial_{3}(g_{3}f). (B.4)

We apply the interpolation inequality to find

β€–et​Δ​P​divH​(gHβŠ—f)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\|e^{t\Delta}P\mathrm{div}_{H}\left(g_{H}\otimes f\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’1βˆ’Ξ²2β€‹β€–βˆ‡H(gHβŠ—f)β€–Lβˆžβ€‹(𝕋3)β​‖gHβŠ—fβ€–LHβˆžβ€‹Lx3p​(𝕋3)1βˆ’Ξ²\displaystyle\leq Ct^{-\frac{1-\beta}{2}}\|\nabla_{H}(g_{H}\otimes f)\|_{L^{\infty}(\mathbb{T}^{3})}^{\beta}\|g_{H}\otimes f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1-\beta}
≀C​tβˆ’1βˆ’Ξ²2​(β€–βˆ‡HgHβ€–Lβˆžβ€‹(𝕋3)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–gHβ€–Lβˆžβ€‹(𝕋3)+β€–βˆ‡Hfβ€–LHβˆžβ€‹Lx3p​(𝕋3))Ξ²\displaystyle\leq Ct^{-\frac{1-\beta}{2}}\left(\|\nabla_{H}g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}+\|\nabla_{H}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\beta}
Γ—(β€–gHβ€–Lβˆžβ€‹(𝕋3)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3))1βˆ’Ξ².\displaystyle\times\left(\|g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1-\beta}.

The seconde term in (B.4) is bounded as

β€–etβ€‹Ξ”β€‹βˆ‚3(g3​f)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\|e^{t\Delta}\partial_{3}\left(g_{3}f\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’1βˆ’Ξ²2β€‹β€–βˆ‚3(g3​f)β€–Lβˆžβ€‹(𝕋3)β​‖g3​fβ€–LHβˆžβ€‹Lx3p​(𝕋3)1βˆ’Ξ²\displaystyle\leq Ct^{-\frac{1-\beta}{2}}\|\partial_{3}(g_{3}f)\|_{L^{\infty}(\mathbb{T}^{3})}^{\beta}\|g_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}^{1-\beta}
≀C​tβˆ’1βˆ’Ξ²2β€‹β€–βˆ‡HgHβ€–Lβˆžβ€‹(𝕋3)β​(β€–fβ€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‚3fβ€–LHβˆžβ€‹Lx3p​(𝕋3))Ξ²\displaystyle\leq Ct^{-\frac{1-\beta}{2}}\|\nabla_{H}g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}^{\beta}\left(\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\partial_{3}f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\beta}
Γ—(β€–βˆ‡HgHβ€–Lβˆžβ€‹(𝕋3)​‖fβ€–LHβˆžβ€‹Lx3p​(𝕋3))1βˆ’Ξ²\displaystyle\times\left(\|\nabla_{H}g_{H}\|_{L^{\infty}(\mathbb{T}^{3})}\|f\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{1-\beta}

and

β€–etβ€‹Ξ”β€‹βˆ‚3(g3​f)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\|e^{t\Delta}\partial_{3}\left(g_{3}f\right)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
=β€–et​Δ​((divH​gH)​f+βˆ«βˆ’Ο€x3divH​gH​𝑑zβ€‹βˆ‚3f)β€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle=\left\|e^{t\Delta}\left((\mathrm{div}_{H}g_{H})f+\int_{-\pi}^{x_{3}}\mathrm{div}_{H}g_{H}dz\partial_{3}f\right)\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀Cβ€‹β€–βˆ‡HgHβ€–LHβˆžβ€‹Lx3p​(𝕋3)​‖fβ€–Lβˆžβ€‹(𝕋3).\displaystyle\leq C\|\nabla_{H}g_{H}\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\|f\|_{L^{\infty}(\mathbb{T}^{3})}.

Thus we have (B.3). Note that the Proposition B.1 also holds if we change the role of gHg_{H} and f~\tilde{f}. ∎

We now show the decomposition (4.1). We only consider the case Ξ±=0\alpha=0 in (4.1) for simplicity. Since v0v_{0} and also v0,s​m​a​l​lv_{0,small} has more regularity for the horizontal direction, it not difficult to improve the regularity to the case Ξ±=1\alpha=1. Put

N​(vβˆ—,v):=et​Δ​v0,s​m​a​l​lβˆ’βˆ«0te(tβˆ’s)​Δ​P​div​(u​(s)βŠ—v​(s)+uβˆ—β€‹(s)βŠ—v​(s)+u​(s)βŠ—vβˆ—β€‹(s))​𝑑s,\displaystyle N(v^{\ast},v):=e^{t\Delta}v_{0,small}-\int_{0}^{t}e^{(t-s)\Delta}P\mathrm{div}\left(u(s)\otimes v(s)+u^{\ast}(s)\otimes v(s)+u(s)\otimes v^{\ast}(s)\right)ds,

where u=(v,w)u=(v,w) and ww is give by (1.6). To show the decomposition, it is enough to show that there exists a solution to the equation v=N​(vβˆ—,v)v=N(v^{\ast},v) satisfying the second estimate of (4.2).

We apply Proposition 6.2 in [8], see also the proof of Theorem 2.1, to get

β€–βˆ«0te(tβˆ’s)​Δ​P​div​(u​(s)βŠ—v​(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{t}e^{(t-s)\Delta}P\mathrm{div}\left(u(s)\otimes v(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​sup0<s<tβ€–v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)​sup0<s<ts12β€‹β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle\leq C\sup_{0<s<t}\|v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\sup_{0<s<t}s^{\frac{1}{2}}\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},

and

β€–βˆ«0tβˆ‡e(tβˆ’s)​Δ​P​div​(u​(s)βŠ—v​(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{t}\nabla e^{(t-s)\Delta}P\mathrm{div}\left(u(s)\otimes v(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​tβˆ’12​sup0<s<ts12​(β€–v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))32​(sup0<s<ts12β€‹β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))12.\displaystyle\leq Ct^{-\frac{1}{2}}\sup_{0<s<t}s^{\frac{1}{2}}\left(\|v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\frac{3}{2}}\left(\sup_{0<s<t}s^{\frac{1}{2}}\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\frac{1}{2}}.

Proposition B.1 and (B.2) imply

β€–βˆ«0te(tβˆ’s)​Δ​P​div​(uβˆ—β€‹(s)βŠ—v​(s)+u​(s)βŠ—vβˆ—β€‹(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{t}e^{(t-s)\Delta}P\mathrm{div}\left(u^{\ast}(s)\otimes v(s)+u(s)\otimes v^{\ast}(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​t12​Cβˆ—β€‹sup0<s<t(β€–v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<s<ts12β€‹β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)),\displaystyle\leq Ct^{\frac{1}{2}}C^{\ast}\sup_{0<s<t}\left(\|v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<s<t}s^{\frac{1}{2}}\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right),

and

β€–βˆ«0tβˆ‡e(tβˆ’s)​Δ​P​div​(uβˆ—β€‹(s)βŠ—v​(s)+u​(s)βŠ—vβˆ—β€‹(s))​𝑑sβ€–LHβˆžβ€‹Lx3p​(𝕋3)\displaystyle\left\|\int_{0}^{t}\nabla e^{(t-s)\Delta}P\mathrm{div}\left(u^{\ast}(s)\otimes v(s)+u(s)\otimes v^{\ast}(s)\right)ds\right\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}
≀C​Cβˆ—β€‹(t14​sup0<s<tβ€–v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+tβˆ’14​sup0<s<ts12β€‹β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))12\displaystyle\leq CC^{\ast}\left(t^{\frac{1}{4}}\sup_{0<s<t}\|v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+t^{-\frac{1}{4}}\sup_{0<s<t}s^{\frac{1}{2}}\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\frac{1}{2}}
Γ—(sup0<s<tβ€–v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3))12\displaystyle\quad\quad\quad\times\left(\sup_{0<s<t}\|v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}\right)^{\frac{1}{2}}
+C​Cβˆ—β€‹sup0<s<ts12β€‹β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle+CC^{\ast}\sup_{0<s<t}s^{\frac{1}{2}}\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},

where we took Ξ²=0,1/2\beta=0,1/2 for the first and second estimates, respectively. If we set

XT​(v)=sup0<s<Tβ€–v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3)+sup0<s<Ts12β€‹β€–βˆ‡v​(s)β€–LHβˆžβ€‹Lx3p​(𝕋3),\displaystyle X_{T}(v)=\sup_{0<s<T}\|v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})}+\sup_{0<s<T}s^{\frac{1}{2}}\|\nabla v(s)\|_{L^{\infty}_{H}L^{p}_{x_{3}}(\mathbb{T}^{3})},

the above estimates lead the quadratic estimate

XT​(N​(vβˆ—,v))≀C2​XT​(v)2+C1​T14​XT​(v)+C0​δ\displaystyle X_{T}(N(v^{\ast},v))\leq C_{2}X_{T}(v)^{2}+C_{1}T^{\frac{1}{4}}X_{T}(v)+C_{0}\delta

for some constants C0,C1,C2C_{0},C_{1},C_{2} and small 0<T<10<T<1. If we take TT and Ξ΄\delta sufficiently small beforehand, XT​(N​(vβˆ—,v))X_{T}(N(v^{\ast},v)) can be bounded small for small vv. Since this argument is same as the proof of Theorem 1.1, we omit details here. By the similar way, we see that NN becomes a contraction mapping for small vv. Thus we can obtain the desired solution by the contraction mapping principle.

References

  • [1] P. AzΓ©rad and F. GuillΓ©n, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., 33, 4, (2001), 847–859.
  • [2] C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166, 1, (2007), 245–267.
  • [3] K. Furukawa, Y. Giga, M. Hieber, A. Hussein, T. Kashiwabara, and M. Wrona, Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations, Nonlinearity 33,, no. 12, 2020, 6502–-6516.
  • [4] K. Furukawa, Y. Giga, and T. Kashiwabara, The hydrostatic approximation for the primitive equations by the scaled Navier–Stokes equations under the no-slip boundary condition. J. Evol. Equ. (2021), https://doi.org/10.1007/s00028-021-00674-6.
  • [5] Y. Giga, M. Gries, M. Hieber, A. Hussein, and T. Kashiwabara, Analyticity of solutions to the primitive equations, Math. Nachr. 293(2), (2020), 284-304.
  • [6] Y. Giga, M. Gries, M. Hieber, A. Hussein, and T. Kashiwabara, Bounded H∞H^{\infty}-calculus for the hydrostatic Stokes operator on LpL^{p}-spaces and applications, Proc. Amer. Math. Soc., 145, 9, (2017), 3865–3876.
  • [7] Y. Giga, M. Gries, M. Hieber, A. Hussein, and T. Kashiwabara, The hydrostatic Stokes semigroup and well-posedness of the primitive equations on spaces of bounded functions, J. Funct. Anal., 279, 3, (2020), 108561, 46.
  • [8] Y. Giga, M. Gries, M. Hieber, A. Hussein, and T. Kashiwabara, The Primitive Equations in the scaling invariant space Lβˆžβ€‹(L1)L^{\infty}(L^{1}), J. Evol. Equ., (2021), https://doi.org/10.1007/s00028-021-00716-z.
  • [9] L. Grafakos, Classical Fourier analysis, Second edition, Graduate Texts in Mathematics, Springer, New York, (2008).
  • [10] F. GuillΓ©n-GonzΓ‘lez, N. Masmoudi, and M. A. RodrΓ­guez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14, 1, (2001), 1381–1408.
  • [11] M. Hieber and T. Kashiwabara, Global strong well-posedness of the three dimensional primitive equations in lpl^{p}-spaces, Archive Rational Mech. Anal., (2016), 1077–1115.
  • [12] J. Li and E. S. Titi, The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl. (9) 124, (2019), 30–58.
  • [13] J. L. Lions, R. Temam, and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5, 2, (1992), 237–288.