This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Josephson Junction of Nodal Superconductors with Rashba and Ising Spin-Orbit coupling

Gal Cohen [email protected] Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel    Ranjani Seshadri [email protected] Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel    Maxim Khodas [email protected] Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel    Dganit Meidan [email protected] Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
Abstract

We study the effect of a Rashba spin-orbit coupling on the nodal superconducting phase of an Ising superconductor. Such nodal phase was predicted to occur when applying an in-plane field beyond the Pauli limit to a superconducting monolayer transition metal dichalcogenides (TMD). Generically, Rashba spin-orbit is known to lift the chiral symmetry that protects the nodal points, resulting in a fully gapped phase. However, when the magnetic field is applied along the ΓK\Gamma-K line, a residual vertical mirror symmetry protects a nodal crystalline phase. We study a single-band tight-binding model that captures the low energy physics around the Γ\Gamma pocket of monolayer TMD. We calculate the topological properties, the edge state structure, and the current phase relation in a Josephson junction geometry of the nodal crystalline phase. We show that while the nodal crystalline phase is characterized by localized edge modes on non-self-reflecting boundaries, the current phase relation exhibits a trivial 2π2\pi periodicity in the presence of Rashba spin-orbit coupling.

I Introduction

Transition metal dichalcogenides (TMDs) such as NbSe2{\rm NbSe_{2}} and MoS2{\rm MoS_{2}} have been proposed and experimentally confirmed to be an ideal platform for in-depth explorations for unconventional superconductivity - both intrinsic and externally induced [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

More recently, cutting-edge advances in fabrication techniques have facilitated the engineering of layered systems from these TMDs where the constituent layers are held together by weak Van der Waals force[15, 16]. Here, some systems are found to retain their superconducting property even down to the monolayer limit [17, 18, 19, 20, 21, 22, 23, 14, 24, 25].

Unlike their bulk counterparts, many monolayer and few-layer TMD’s break inversion symmetry, thereby giving rise to a very strong Ising spin-orbit coupling (SOC) [15, 9, 17, 18, 20, 21, 19, 26, 14] which pins the electron spins perpendicular to the plane. The most remarkable consequence of this strong SOC is that superconductivity survives at high in-plane magnetic fields even beyond the Pauli critical limit [17, 19, 2, 20, 22, 23, 14, 27, 28, 29, 30, 31].

It was proposed that the presence of an in-plane field can induce a topological transition into a nodal superconducting phase [3, 7] protected by a combination of an effective time reversal and particle-hole symmetry. The nodal superconducting phase is expected to be accompanied by Majorana flat bands [32, 33], indication of which have been reported [34, 35], as well as distinct 4π4\pi periodic Josephson current for the transverse momenta in-between the nodal points [36].

In this paper we study the effect of Rashba SOC on the nodal superconducting phase, focusing on the boundary modes and the Josephson current phase relation. Rashba SOC is naturally present due to electronic gates and the presence of a substrate and can be tuned experimentally. The presence of Rashba spin-orbit breaks the chiral symmetry that protects the nodal superconducting phase, and as a result, the nodal points are generally gapped. However, when the in-plane field is aligned along the ΓK\Gamma-K direction, a lower crystalline symmetry protects the nodal phase [37]. We study the boundary states in the crystalline phase as well as the current-phase relation in a Josephson-junction geometry. Our results indicate that while the vertical mirror symmetry protects exponentially localized states at the boundary transformed by the symmetry, the current phase relation exhibits a trivial 2π2\pi periodicity in the presence of Rashba spin-orbit.

The plan of the paper is as follows. We begin in Sec. II with an analysis of the low energy momentum-space Hamiltonian and its related symmetries. In Sec. III we introduce a toy model on a triangular lattice which reduces to the continuum Hamiltonian close to the Γ\Gamma- point. We discuss the topological properties of this model with and without Rashba spin-orbit and study the stability of the boundary modes in a ribbon geometry. The physics of a Josephson junction fabricated out of such a material is discussed in Sec. IV.

II Continuum Model

An Ising superconductor such as monolayer NbSe2 subjected to an in-plane magnetic field of magnitude hh, with a superconducting pairing Δ\Delta is governed by the following Bogoliubov-de-Gennes (BdG) Hamiltonian,

(𝐤)\displaystyle\cal{H}({\bf k}) =\displaystyle= ξ(𝐤)τz+λ(𝐤)σzαR(kxτzσykyσx)\displaystyle\xi({\bf k})\tau^{z}+\lambda({\bf k})\sigma^{z}-\alpha_{R}(k_{x}\tau^{z}\sigma^{y}-k_{y}\sigma^{x}) (1)
+hcosθτzσx+hsinθτ0σy\displaystyle+h\cos\theta\tau^{z}\sigma^{x}+h\sin\theta\tau^{0}\sigma^{y}
+Re(Δ)τyσy+Im(Δ)τxσy,\displaystyle+\real(\Delta)\tau^{y}\sigma^{y}+\imaginary(\Delta)\tau^{x}\sigma^{y},

where ξ(𝐤)=(kx2+ky2)/2mμ\xi({\bf k})=(k_{x}^{2}+k_{y}^{2})/2m-\mu is the kinetic energy term with μ\mu being the chemical potential. The Ising SOC λ(𝐤)=λI(kx33kxky2)\lambda({\bf k})=\lambda_{I}(k_{x}^{3}-3k_{x}k_{y}^{2}) is unique to this class of materials, and pins the electron spins perpendicular to the xyx-y plane. The form of λ(𝐤)\lambda({\bf k}) is constrained by the crystalline symmetry point group D3hD_{3h} which includes a mirror reflection plane MzM_{z} (with normal along the zz-direction), a three-fold rotational symmetry C3C_{3} and a vertical mirror MxM_{x} (with normal along the xx-direction). The strong Ising SOC protects superconductivity in the presence of an in-plane magnetic field hh which can exceed the Pauli limit. The parameter θ\theta denotes the angle the in-plane magnetic field makes with the xx-axis. αR\alpha_{R} determines the strength of Rashba SOC, typically present in experimental setups, and can be tuned by gating or by appropriate choice of substrate.

In the absence of Rashba SOC i.e. when αR=0\alpha_{R}=0, the in-plane direction of hh is immaterial. When |h|>Δ|h|>\Delta the BdG spectrum has twelve nodal points on the high symmetry ΓM\Gamma-M lines kx=0,±3k_{x}=0,\pm\sqrt{3} along which the Ising SOC vanishes. This nodal superconducting phase is accompanied by the presence of Majorana flat bands [3, 7, 32, 33], as well as an energy phase relation that depends on the momentum transverse to the current direction, with a 4π4\pi periodicity for the momenta lying between each pair of nodal points [36].

In this work we analyze the effect of Rashba SOC on the nodal superconducting phase, the fate of its boundary modes, and the Josephson current phase relation. To this end, we work in a parameter regime where h>|Δ|h>|\Delta| and there are twelve nodal points in the absence of Rashba SOC.

II.1 Family of 1D Hamiltonians and symmetries

The origin of the nodal points can be understood by analyzing the family of 1D1D Hamiltonian obtained by setting kyk_{y} as a parameter, ky(1D)(kx)\mathcal{H}^{(1D)}_{k_{y}}(k_{x}). In the absence of Rashba SOC, i.e. when αR=0\alpha_{R}=0, this model has a particle-hole symmetry given by

Cky(1D)(kx)C1=ky(1D)(kx)C\mathcal{H}^{(1D)}_{k_{y}}(k_{x})C^{-1}=-\mathcal{H}^{(1D)}_{k_{y}}(-k_{x}) (2)

with C=τxKC=\tau^{x}K. While the magnetic field explicitly breaks time-reversal symmetry, the model has an emergent modified time-reversal (TR) symmetry,

Tky(1D)(kx)T1=ky(1D)(kx)T\mathcal{H}^{(1D)}_{k_{y}}(k_{x})T^{-1}=\mathcal{H}^{(1D)}_{k_{y}}(-k_{x}) (3)

with T=σxτzK=ΘMzτzT=\sigma^{x}\tau^{z}K=\Theta M_{z}\tau_{z} which is a combination of time-reversal symmetry Θ=iσyK\Theta=i\sigma_{y}K and basal plane mirror symmetry MzM_{z}. The family of 1D1D Hamiltonians therefore lies in class BDI of the Altland-Zirnbauer classification [38]. The presence of the nodal points can therefore be understood as a series of topological phase transitions tuned by the parameter kyk_{y} as explained in Ref. 36. Next, we introduce a Rashba SOC as given in Eq. (1) which consists of two parts. The first term kxσyτzk_{x}\sigma^{y}\tau^{z} breaks the modified time-reversal symmetry TT while the second term kyσxk_{y}\sigma^{x} breaks particle hole symmetry CC of the effective 1D1D model, leaving ky1D\mathcal{H}^{1D}_{k_{y}} in class A. However, when the field is oriented along the xx-axis, i.e. when θ=0\theta=0, the system has a residual vertical mirror symmetry plane, defined by,

Mxky(1D)(kx)Mx1=ky(1D)(kx){M}_{x}\mathcal{H}^{(1D)}_{k_{y}}(k_{x}){M}^{-1}_{x}=\mathcal{H}^{(1D)}_{k_{y}}(-k_{x}) (4)

with Mx=σxτz{M}_{x}=\sigma_{x}\tau_{z}. We will show below that this 1D Hamiltonian realizes a crystalline insulating phase associated with gapless edge states which are localized along the xx-direction and propagate along yy-direction.

III Lattice Model

To gain further insight into the topological phase and the nature of its boundary modes, we study a tight-binding model presented in [39, 40] that captures the key features of the topological superconducting phase and exhibits the same low energy physics in the continuum limit ka0ka\rightarrow 0.

Refer to caption
Figure 1: Schematic diagram of the triangular lattice used for the tight-binding model showing the lattice vectors 𝐚𝟏,𝟐{\bf{a_{1,2}}} and the hopping amplitudes corresponding to the Ising and Rashba SOC. This hopping profile results in the Hamiltonian HIH_{I} and HRH_{R} in Eq.(6) and Eq. (8) respectively.

The lattice model consists of a nearest neighbor hopping:

H0=t<i,j>,sci,scj,sμ~i,sci,sci,s\displaystyle H_{0}=-t\sum_{<i,j>,s}{c^{\dagger}_{i,s}}c_{j,s}-\tilde{\mu}\sum_{i,s}{c^{\dagger}_{i,s}}c_{i,s} (5)

where s=,s=\uparrow,\downarrow denotes the spin, <i,j><i,j> spans all the nearest neighbors and μ~\tilde{\mu} is the on-site chemical potential. In the continuum limit, ka0ka\rightarrow 0, this reduces to the kinetic energy term ξ(𝐤)\xi({\bf k}) of Eq. (1) when we set μ~=μ6t\tilde{\mu}=\mu-6t and t=1/12mt=1/12m. Similarly, Ising SOC is modeled as a nearest-neighbor hopping with alternating signs (shown in Fig. 1), that reflect the C3C_{3} symmetry. Note that the sign is opposite for the two spins.

HI=iλI2<i,j>,s,sνijσsszci,scj,s\displaystyle H_{I}=\frac{i\lambda_{\rm I}}{2}\sum_{<i,j>,s,s^{\prime}}\nu_{ij}\sigma^{z}_{ss^{\prime}}{c^{\dagger}_{i,s}}c_{j,s^{\prime}} (6)

where νij=+1(1)\nu_{ij}=+1(-1) for 𝐫ij=𝐫i𝐫j=𝐚1,𝐚2,𝐚2𝐚1(𝐚1,𝐚2,𝐚2+𝐚1){{\bf r}}_{ij}={\bf r}_{i}-{\bf r}_{j}={{\bf a}}_{1},-{{\bf a}}_{2},{{\bf a}}_{2}-{{\bf a}}_{1}(-{{\bf a}}_{1},{{\bf a}}_{2},-{{\bf a}}_{2}+{{\bf a}}_{1}), respectively, and the lattice vectors are: 𝐚1=(2a,0){{\bf a}}_{1}=(2a,0) and 𝐚2=a(1,3){{\bf a}}_{2}={a}(1,\sqrt{3}).

The in-plane magnetic field (𝐡=hx,hy)({\bf h}=h_{x},h_{y})

HB=i,s,s(𝐡𝝈)ssci,sci,sH_{B}=\sum_{i,s,s^{\prime}}\left(\bf{h}\cdot\bm{\sigma}\right)_{ss^{\prime}}{c^{\dagger}_{i,s}}{c_{i,s^{\prime}}} (7)

Lastly, the Rashba term can be written as follows

HR=iαR6<i,j>,s,s𝐳(𝐫ij×𝝈)ssci,scj,sH_{R}=-\frac{i\alpha_{R}}{6}\sum_{<i,j>,s,s^{\prime}}{\bf z}\cdot\left({\bf r}_{ij}\times{\bm{\sigma}}\right)_{ss^{\prime}}{c^{\dagger}_{i,s}}{c_{j,s^{\prime}}} (8)

In momentum space the lattice Hamiltonian, eq. (5)-(8) take the following form

H\displaystyle H =\displaystyle= 𝐤,sξ~(𝐤)c𝐤c𝐤𝐤,ssλ~I(𝐤)𝝈ssc𝐤sc𝐤s\displaystyle\sum_{{\bf k},s}\tilde{\xi}({\bf k})c_{{\bf k}}^{\dagger}c_{{\bf k}}-\sum_{{\bf k},ss^{\prime}}\tilde{\lambda}_{I}({\bf k})\cdot{\bm{\sigma}}_{ss^{\prime}}c_{{\bf k}s}^{\dagger}c_{{\bf k}s^{\prime}}
+\displaystyle+ 𝐤,ssα~R(𝐤)𝝈ssc𝐤sc𝐤s+𝐤,ss𝐡𝝈ssc𝐤,sc𝐤,s,\displaystyle\sum_{{\bf k},ss^{\prime}}\tilde{\alpha}_{R}({\bf k})\cdot{\bm{\sigma}}_{ss^{\prime}}c_{{\bf k}s}^{\dagger}c_{{\bf k}s^{\prime}}+\sum_{{\bf k},ss^{\prime}}{\bf h}\cdot{\bm{\sigma}}_{ss^{\prime}}c_{{\bf k},s}^{\dagger}c_{{\bf k},s^{\prime}},

where the kinetic energy term is

ξ~(𝐤)=4tcos(kx)cos(3ky)2tcos(2kx)μ~.\tilde{\xi}({\bf k})=-4t\cos(k_{x})\cos(\sqrt{3}k_{y})-2t\cos(2k_{x})-\tilde{\mu}. (10)

Here λ~I(𝐤)\tilde{\lambda}_{I}({\bf k}) and α~R(𝐤)\tilde{\alpha}_{R}({\bf k}) correspond to the Ising and Rasbha SOCs respectively and have the following form in the lattice model,

λ~I(𝐤)=λIz^[sin(𝐤𝐚1)+sin(𝐤(𝐚2𝐚1))sin(𝐤𝐚2)],\displaystyle\tilde{\lambda}_{I}({\bf k})=\lambda_{I}\hat{z}[\sin({\bf k}\cdot{{\bf a}}_{1})+\sin({\bf k}\cdot({{\bf a}}_{2}-{{\bf a}_{1}}))-\sin({\bf k}\cdot{{\bf a}}_{2})],

and

α~R(𝐤)\displaystyle\tilde{\alpha}_{R}({\bf k}) =\displaystyle= 3αR2x^[sin(𝐤(𝐚2𝐚1))+sin(𝐤𝐚2)]\displaystyle-\frac{\sqrt{3}\alpha_{R}}{2}\hat{x}[\sin({\bf k}\cdot({{\bf a}}_{2}-{{\bf a}_{1}}))+\sin({\bf k}\cdot{{\bf a}}_{2})]
\displaystyle- αR2y^[sin(𝐤(𝐚2𝐚1))sin(𝐤𝐚2)2sin(𝐤𝐚1)]\displaystyle\frac{\alpha_{R}}{2}\hat{y}[\sin({\bf k}\cdot({{\bf a}}_{2}-{{\bf a}_{1}}))-\sin({\bf k}\cdot{{\bf a}}_{2})-2\sin({\bf k}\cdot{{\bf a}}_{1})]

The strength of each term is suitably chosen to give the same low energy Hamiltonian as Eq. (1).

Figure 2 shows the dispersion of the two lower energy bands of the lattice model given by Eq. (III), in the vicinity of the Γ\Gamma point. The Rashba SOC breaks the chiral symmetry thus generically lifting the nodal points resulting in a fully gapped phase. However, when the magnetic field is aligned along the ΓK\Gamma-K direction, the system has a residual vertical mirror symmetry MxM_{x}, which protects the nodal points along the kx=0k_{x}=0 symmetry line. The system therefore realizes a nodal crystalline phase, as we show below. Due to the breaking of chiral symmetry, the nodes are shifted away from zero energy.

Refer to caption
Figure 2: Energy dispersion of the two low energy bands of eq. (III) in the vicinity of the Γ\Gamma point. The parameters used are m=1m=1, μ~=0.3\tilde{\mu}=-0.3, λSO=0.15\lambda_{SO}=0.15, h=0.1h=0.1, Δ=0.06\Delta=0.06 and αR=0.02\alpha_{R}=0.02. The white line marks the zero-energy contour. The four gap-closing points are shifted away from the E=0E=0 plane and lie on the kx=0k_{x}=0 line.
Refer to caption
Figure 3: The evolution of the Mirror eigenvalues at the reflection symmetric momenta kx=0,πk_{x}=0,\pi of the two lowest energy levels for the lattice toy model (The lines are shifted vertically for clarity). The dispersion of the two low energy bands at kx=0k_{x}=0 (kx=πk_{x}=\pi) is shown in solid (Dashed) gray lines, indicating the location of the nodal points. The parameters used are m=1m=1, μ~=0.3\tilde{\mu}=-0.3, λSO=0.15\lambda_{SO}=0.15, h=0.1h=0.1, Δ=0.06\Delta=0.06 and αR=0.02\alpha_{R}=0.02.

III.1 Symmetries and topological classification

To gain further insight into the topological aspects of the lattice model and the origin of the nodal points in the spectrum we consider the family of lattice 1D1D Hamiltonians obtained by treating kyk_{y} in eq. (III) as a parameter.

As discussed in Sec. II, Rashba SOC lifts the chiral symmetry thus leaving the family of 1D1D lattice Hamiltonians in class A. However, when the magnetic field is aligned along the ΓK\Gamma-K the resulting 1D1D hamiltonian is symmetric under vertical mirror, Mx{M}_{x}, and is gapped except for 4 discrete values of kyk_{y}. For values of kyk_{y} between these nodal points the system realizes a one-dimensional topological crystalline phase [41, 42].

At kx(inv)=0,πk_{x}^{(\rm inv)}=0,\pi, the 1D1D Hamiltonian is mapped onto itself under reflection. In these reflection symmetric momenta, the energy levels have a well-defined reflection eigenvalue. The reflection eigenvalues of the two occupied levels, labeled as 1,21,2 are ζ1,2(kx=0)\zeta_{1,2}(k_{x}=0) and ζ1,2(kx=π)\zeta_{1,2}(k_{x}=\pi) corresponding to Πkx=0MxΠkx=0\Pi_{k_{x}=0}{M}_{x}\Pi_{k_{x}=0} and Πkx=πMxΠkx=π\Pi_{k_{x}=\pi}{M}_{x}\Pi_{k_{x}=\pi}, respectively, where Πk\Pi_{k} is the projector onto the two lowest energy levels at a given momentum kk. These are continuously connected to the negative energy states in the absence of Rashba SOC. The reflection eigenvalues define a 2\mathbb{Z}_{2} index given by:

ν=iocc,kxinvζi(kxinv).\displaystyle\nu_{{\cal M}}=\prod_{i\in{\rm occ},k_{x}^{\rm inv}}\zeta_{i}(k_{x}^{\rm inv}). (13)

Figure 3 shows the value of the reflection eigenvalues of the two occupied bands 1,21,2 at the two reflection symmetric momenta, kx(inv)=0,πk_{x}^{(\rm inv)}=0,\pi, as a function of parameter kyk_{y}. Solid and dashed gray lines indicate the spectra along the kx=0k_{x}=0 and kx=πk_{x}=\pi lines, respectively. The closing and reopening of the band gap is accompanied by a topological phase transition; i.e. a change in sign of ζ1(π)\zeta_{1}(\pi) (for the gap closing at kx=0k_{x}=0) and ζ2(0)\zeta_{2}(0) (for the gap closing at kx=πk_{x}=\pi).

III.2 Bulk boundary correspondence

To examine the bulk boundary correspondence for the nodal crystalline phase, we study the tight-binding lattice Hamiltonian on a ribbon-like geometry with open boundary conditions in the (non self reflecting) xx-direction, and periodic boundary conditions in the yy-direction. This makes kyk_{y} a good quantum number and allows us to write the Hamiltonian in the ribbon geometry as an effective 1D1D chain for a given kyk_{y}:

HRib(ky)=H0(ky)+HI(ky)+HR(ky)+HB+HSC.H_{\rm Rib}(k_{y})=H_{0}(k_{y})+H_{I}(k_{y})+H_{R}(k_{y})+H_{B}+H_{SC}. (14)

These terms correspond to kinetic energy, Ising SOC, Rashba SOC, in-plane field and superconductivity respectively, a detailed expression is given in Appendix A.

Diagonalizing the Hamiltonian in Eq. (14), we obtain the eigenvalues and the corresponding wavefunctions for the bulk and edge states. Figure 4 (a) shows the BdG spectrum in the Ribbon geometry for αR=0\alpha_{R}=0. Eigenvalues corresponding to states localized on the open xx-direction boundary are shown in red. The two pairs of nodal points at ky0.25,0.4k_{y}\approx 0.25,0.4 and ky0.5,0.8k_{y}\approx 0.5,0.8 are accompanied by the appearance of zero energy states which are localized on the open xx-direction boundary (marked in red).

Figure 4(b) shows the BdG spectra for αR=0.01\alpha_{R}=0.01. When the Rashba term is switched on, only one pair of nodal points survive, which are shifted away from zero energy. In Fig. 4(b) these are located at ky0.5k_{y}\approx 0.5 and 0.80.8. The two degenerate midgap states connecting this pair of nodes (shown in red) live on the (non-self-reflecting) x-boundary and have a non-zero dispersion as a function of kyk_{y} (the conjugate momenta for the direction parallel to the boundary). The degeneracy between the boundary mode is protected by the mirror symmetry MxM_{x}. In Appendix C we show that any perturbation breaking this reflection symmetry splits these edge states, see Fig. 3.

Figure 5 shows the spatial profile of the degenerate midgap states for a fixed ky=0.75k_{y}=0.75 between the pairs of nodes, for different values of Rashba spin-orbit (indicated by the markers). Here nxn_{x} indicates the position along the chain. Solid lines indicate a best fit to an exponential law ψ(x)exp(x/ξ)\psi(x)\approx\exp(-x/\xi), showing that the states remain exponentially localized even for finite αR\alpha_{R}. Importantly, unlike the αR=0\alpha_{R}=0 case, for finite αR0\alpha_{R}\neq 0 the edge states do not satisfy the Majorana condition ψb(u,u,u,u)T\psi_{b}\neq(u_{\uparrow},u_{\downarrow},u_{\uparrow}^{*},u_{\downarrow}^{*})^{T}. This observation is also consistent with the analytic derivation of the boundary mode in the continuum limit, see Appendix B. The inset in Fig. 5 shows the best fit of the decay length with increasing Rashba SOC.

Refer to caption
Figure 4: Energy spectrum for a nano-ribbon with open boundary conditions for (a) αR=0\alpha_{R}=0 and (b) αR=0.01\alpha_{R}=0.01 obtained by diagonalizing Eq. (14). The Rashba SOC breaks Chiral symmetry and moves the nodal points away from zero energy. Midgap states localized at the open boundaries of the ribbon are marked in red. These states decay exponentially into the bulk for momenta kyk_{y} between pairs of nodal points.
Refer to caption
Figure 5: Semi-log plot of the decay length of the ”particle up” component |u|2|u_{\uparrow}|^{2} of the edge-state spinor as a function of position at momentum ky0.75k_{y}\approx 0.75 for different values of Rashba SOC strength αR\alpha_{R}, while keeping all the other parameters unchanged. Here the parameters are m=1m=1, μ~=0.3\tilde{\mu}=-0.3, λI=0.15\lambda_{I}=0.15, h=0.1h=0.1 and Δ=0.06\Delta=0.06.

IV Josephson Junction

To study the Josephson energy-phase relation we close the finite ribbon into a torus-like geometry by adding a weak link between the first and last sites of the effective 1D chain, see Fig. 6. All hopping terms across the weak link acquire a phase ϕ\phi and are also attenuated by a factor proportional to the strength of the insulating barrier. Varying the phase difference ϕ\phi across the junction for a given kyk_{y} allows to obtain the energy phase relation.

Refer to caption
Figure 6: Schematic showing the torus-geometry used to study the Josephson junction. The y-direction has periodic boundary conditions, making kyk_{y} a good quantum number. The change in the phase of the superconducting pairing corresponds to a flux Φ\Phi through this torus. The 1D1D chain along the xx-direction has twisted boundary conditions, i.e. all hopping parameters across the insulating weak link shown in white, acquire a phase ϕ=Φ/Φ0\phi=\Phi/\Phi_{0}, Φ0\Phi_{0} being the flux quantum, and are attenuated by a factor proportional to the strength of the insulating barrier

Fig. 7 shows E(ϕ)E(\phi) for the mid-gap states at a fixed ky=0.76k_{y}=0.76 that lie between pair of nodal points. For αR=0\alpha_{R}=0 this value of ky=0.76k_{y}=0.76 corresponds to a topological non-trivial phase of class BDI with winding W=1W=1. Conversely, with αR0\alpha_{R}\neq 0 this kyk_{y} value corresponds to a crystalline topological phase with ν=1\nu_{\cal M}=-1, see Fig. 3. In the absence of Rashba SOC, shown in Fig. 7 (a), the Josephson energy exhibits a 4π4\pi periodicity similar to the continuous model studied in Ref. 36, with the energy levels crossing zero at ϕ=π\phi=\pi and 3π3\pi. This indicates the presence of Majorana edge states localized in the vicinity of the weak link which decay exponentially into the bulk.

When the Rashba SOC is finite, shown in Fig. 7 (b), we find that E(ϕ)E(\phi) is no longer symmetric about the E=0E=0 line i.e. it is shifted away from zero. Moreover, an energy gap opens at ϕ=π,3π\phi=\pi,~{}3\pi in the presence of a Rashba SOC as is clear from the inset in Fig. 7 (b). Hence, in the presence of Rashba SOC the Josephson energy-phase relation has a 2π2\pi periodicity for all kyk_{y} values. This is consistent with the observation that the exponentially localized boundary states are not Majorana modes.

Refer to caption
Figure 7: Energy-phase relation of a Josephson junction obtained by solving the lattice model on a torus geometry of Fig. 6. The Rashba SOC is (a) αR=0\alpha_{R}=0 and (b) αR=0.01\alpha_{R}=0.01. We have chosen the momentum ky=0.75k_{y}=0.75 which lies between two nodal points. In (a) we find that there are zero-crossings at ϕ=π,3π\phi=\pi,3\pi as is clear from the inset. This means EJ(ϕ)E_{J}(\phi) has a 4π4\pi periodicity. However in (b) the Josephson energy-phase relation is no longer symmetric about E=0E=0. Additionally, there is no crossing at ϕ=π,3π\phi=\pi,3\pi and therefore only a 2π2\pi periodicity in E(ϕ)E(\phi), the parameters are m=1m=1, μ~=0.3\tilde{\mu}=-0.3, λI=0.15\lambda_{I}=0.15, h=0.1h=0.1 and Δ=0.06\Delta=0.06

V Conclusion

We have studied the effect of Rashba spin-orbit coupling on the nodal superconducting phase of an Ising superconductor. This nodal phase was predicted in monolayer TMD’s such as NbSe2 in the presence of an in-plane field which exceeds the Pauli limit |h|>Δ|h|>\Delta [3, 7]. The presence of Rashba SOC breaks the chiral symmetry and generally lifts the nodal points, resulting in a fully gapped state. However, when the magnetic field is aligned along the ΓK\Gamma-K line the system has a residual mirror symmetry MxM_{x} which protects the nodal points at kx=0k_{x}=0. The system therefore realizes a nodal crystalline phase, characterized by states exponentially localized at the (non-self-reflecting) x-boundary, which disperse parallel to the boundary, provided that the x-boundary preserves the crystalline symmetry. However, we find that even in the presence of exponentially localized boundary states, the current phase relation in a Josephson junction becomes trivial and follows a 2π2\pi periodicity.

We note that Rashba spin-orbit coupling is typically present in experimental setups and can be controlled using gates and by changing substrates. This gives an experimental knob to tune in and out of the topological phase, thus changing the 4π4\pi periodic current phase relation to the trivial 2π2\pi.

VI Acknowledgements

The authors would like to thank Hadar Steinberg and Ganapathy Murthy for fruitful discussions. D.M. acknowledges support from the Israel Science Foundation (ISF) (grant No. 1884/18). M.K. and D.M. acknowledge support from the ISF, (grant No. 1251/19).

Appendix A Effective Hamiltonian for a 1D1D chain

We study the tight binding lattice hamiltonian in a ribbon-like geometry with open boundary conditions in the xx direction and periodic boundary conditions in the yy-direction. Treating kyk_{y} as a parameter, the resulting model describes a family of 1D1D chains along the xx direction. Below we setting the lattice parameter a=1a=1. The resulting family of 1D chains is described by (14) with the terms corresponding to kinetic energy 0\mathcal{H}_{0}, Ising SOC I\mathcal{H}_{I} and Rashba SOC R\mathcal{H}_{R} are all dependent on kyk_{y}, and involve terms which couple nearest as well as next nearest-neighbors:

H0(ky)\displaystyle H_{0}(k_{y}) =\displaystyle= 2tcos(3ky)i,σci+1,σci,σ+h.c.\displaystyle 2t\cos(\sqrt{3}k_{y})\sum_{i,\sigma}c^{\dagger}_{i+1,\sigma}c_{i,\sigma}+{\rm h.c.} (15)
+\displaystyle+ ti,σci+2,σci,σ+h.c.μ~i,σci,σci,σ\displaystyle t\sum_{i,\sigma}c^{\dagger}_{i+2,\sigma}c_{i,\sigma}+{\rm h.c.}-\tilde{\mu}\sum_{i,\sigma}c^{\dagger}_{i,\sigma}c_{i,\sigma}
HI(ky)\displaystyle H_{I}(k_{y}) =\displaystyle= 2iλIcos(3ky)i,α,βci+1,ασαβzci,β+h.c.\displaystyle-2i\lambda_{I}\cos(\sqrt{3}k_{y})\sum_{i,\alpha,\beta}c^{\dagger}_{i+1,\alpha}\sigma^{z}_{\alpha\beta}c_{i,\beta}+{\rm h.c.} (16)
+\displaystyle+ iλIi,α,βci+2,ασαβzci,β+h.c.\displaystyle i\lambda_{I}\sum_{i,\alpha,\beta}c^{\dagger}_{i+2,\alpha}\sigma^{z}_{\alpha\beta}c_{i,\beta}+{\rm h.c.}
HR(ky)\displaystyle H_{R}(k_{y}) =\displaystyle= αR23sin(3ky)i,α,βci+1,ασαβxci,β+h.c.\displaystyle-\frac{\alpha_{R}}{2\sqrt{3}}\sin(\sqrt{3}k_{y})\sum_{i,\alpha,\beta}c^{\dagger}_{i+1,\alpha}\sigma^{x}_{\alpha\beta}c_{i,\beta}+{\rm h.c.} (17)
+iαR6cos(3ky)i,α,β[ci+1,ασαβyci,β\displaystyle+i\frac{\alpha_{R}}{6}\cos(\sqrt{3}k_{y})\sum_{i,\alpha,\beta}\Big{[}c^{\dagger}_{i+1,\alpha}\sigma^{y}_{\alpha\beta}c_{i,\beta}
+ci+2,ασαβyci,β+h.c.].\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+c^{\dagger}_{i+2,\alpha}\sigma^{y}_{\alpha\beta}c_{i,\beta}+{\rm h.c.}\Big{]}.

The in-plane magnetic field arises from on-site terms,

HB=i,α,β(𝐡𝝈)α,βci,αci,β\displaystyle H_{B}=\sum_{i,\alpha,\beta}\left(\bf{h}\cdot\bm{\sigma}\right)_{\alpha,\beta}c^{\dagger}_{i,\alpha}c_{i,\beta} (18)

Note that in all the terms above, we have suppressed the index kyk_{y} for the creation (annihilation) operators. However, since the superconducting term couples particle and hole components, it is written as

HSC=iΔci,kyci,ky,+h.c..H_{SC}=\sum_{i}\Delta c^{\dagger}_{i,k_{y}\uparrow}c^{\dagger}_{i,-k_{y},\downarrow}+{\rm h.c.}. (19)

The Hamiltonian in Eq. (14) is used to obtain the excitation spectrum in Fig. 5 and 9, as well as the Josephson current phase relation Fig. 7.

Appendix B Derivation of boundary modes in the continuum limit of the effective 1D model

We consider the continuum limit of the effective 1D Hamiltonian obtained from (1) by treating kyk_{y} as a parameter. Following a similar analysis as in Ref. 43, we focus on the regime of strong Ising spin-orbit coupling λIh,Δ,αR,μky\lambda_{I}\gg h,\Delta,\alpha_{R},\mu_{k_{y}} where the magnetic field, superconductivity, and Rashba SOC can be treated as weak perturbations. We, therefore, consider initially the following bare Hamiltonian:

01D(k)=k22mμky+λIk(k23ky2)σz+αR(kσy)\mathcal{H}_{0}^{1D}(k)=\frac{k^{2}}{2m}-\mu_{k_{y}}+\lambda_{I}k(k^{2}-3k_{y}^{2})\sigma^{z}+\alpha_{R}(k\sigma^{y}) (20)

setting aside the gap-opening terms such as magnetic field, SC, and the transverse Rashba term. Here kkxk\equiv k_{x} is the momentum of the 1D system and the Pauli matrices σ\sigma operate on the spin basis. For simplicity we consider the kyk_{y} for which μky=0\mu_{k_{y}}=0.

The eigenvalues of the bare 1D Hamiltonian (20) are given by:

E(k)=k22m±kαR2+λ2(k23ky2)2\displaystyle E(k)=\frac{k^{2}}{2m}\pm k\sqrt{\alpha_{R}^{2}+\lambda^{2}\left(k^{2}-3k_{y}^{2}\right)^{2}} (21)

and the Fermi points that satisfy ka1ka\ll 1 are located at k=0k=0 and kso=±3ky216λ2m2(3ky24αR2m2)+118λ2m2k_{so}~{}=\pm\sqrt{3k_{y}^{2}-\frac{\sqrt{16\lambda^{2}m^{2}\left(3k_{y}^{2}-4\alpha_{R}^{2}m^{2}\right)+1}-1}{8\lambda^{2}m^{2}}}. Fig. 8 shows the spectrum of the bare Hamiltonian in the limit ka1ka\ll 1. In addition, we have 3 gap-opening perturbations:

z\displaystyle\mathcal{H}_{z} =\displaystyle= hxΨky(x)σxΨky\displaystyle h\int_{x}\Psi_{k_{y}}(x)^{\dagger}\sigma^{x}\Psi_{k_{y}} (22)
Δ\displaystyle\mathcal{H}_{\Delta} =\displaystyle= ΔxΨky(x)iσyΨky(x)\displaystyle\Delta\int_{x}\Psi_{k_{y}}(x)i\sigma^{y}\Psi_{-k_{y}}(x) (23)
r\displaystyle\mathcal{H}_{r} =\displaystyle= αRkyxΨkyσxΨky\displaystyle-\alpha_{R}k_{y}\int_{x}\Psi_{k_{y}}^{\dagger}\sigma^{x}\Psi_{k_{y}} (24)
Refer to caption
Figure 8: Spectrum of the bare 1D effective Hamiltonian Eq. (20) consists of two spin-orbit bands (marked by ±\pm) that cross the Fermi level μky=0\mu_{k_{y}}=0 at the Fermi momenta kF=0,±ksok_{F}=0,\pm k_{so}.

where we have introduced the spinor notation Ψky=(ψky,,ψky,)T\Psi_{k_{y}}=(\psi_{k_{y},\uparrow},\psi_{k_{y},\downarrow})^{T}. Next, we linearize the spectrum close to the Fermi points, see Fig. 8. The fields then take the form,

Ψky+(x)=eiksoxLky+(x)+Rky+(x)\displaystyle\Psi_{k_{y}+}(x)=e^{-ik_{so}x}L_{k_{y}+}(x)+R_{k_{y}+}(x) (25)
Ψky(x)=eiksoxRky(x)+Lky(x)\displaystyle\Psi_{k_{y}-}(x)=e^{ik_{so}x}R_{k_{y}-}(x)+L_{k_{y}-}(x) (26)

where Rkyσ(x)R_{k_{y}\sigma}(x) and Lkyσ(x)L_{k_{y}\sigma}(x) are slowly varying, and the spin-orbit eigenvectors of the bare Hamiltonian (20) are given by Ψky=(isinχk/2,cosχk/2)T\Psi_{k_{y}-}=(i\sin\chi_{k}/2,\cos\chi_{k}/2)^{T}, Ψky+=(cosχk/2,isinχk/2)T\Psi_{k_{y}+}=(\cos\chi_{k}/2,i\sin\chi_{k}/2)^{T}, with bkcosχk=λIk(k23ky2)b_{k}\cos\chi_{k}=\lambda_{I}k(k^{2}-3k_{y}^{2}) and bksinχk=αRkb_{k}\sin\chi_{k}=\alpha_{R}k. Note that for strong Ising SOC the spins are aligned along the zz direction tanχk0\tan\chi_{k}\rightarrow 0.

Ignoring strongly oscillatory terms, the kinetic energy can be written as

0\displaystyle\mathcal{H}_{0} =\displaystyle= ivixRky+(x)xRky+Lky(x)xLky\displaystyle-iv_{i}\!\int_{x}\!R_{k_{y}+}^{\dagger}(x)\partial_{x}R_{k_{y}+}-L_{k_{y}-}^{\dagger}(x)\partial_{x}L_{k_{y}-} (28)
ivexRky(x)xRkyLky+(x)xLky+\displaystyle-iv_{e}\!\int_{x}\!R_{k_{y}-}^{\dagger}(x)\partial_{x}R_{k_{y}-}-L_{k_{y}+}^{\dagger}(x)\partial_{x}L_{k_{y}+}

and the gap-opening terms then become,

z\displaystyle\mathcal{H}_{z} =\displaystyle= hxRky+(x)Lky(x)+h.c.\displaystyle h\int_{x}R_{k_{y}+}^{\dagger}(x)L_{k_{y}-}(x)+{\rm h.c.} (29)
Δ\displaystyle\mathcal{H}_{\Delta} =\displaystyle= Δx[Rky+(x)Lky(x)\displaystyle\Delta\int_{x}\left[R_{k_{y}+}(x)L_{-k_{y}-}(x)\right. (30)
+Lky+(x)Rky(x)]\displaystyle+\left.L_{k_{y}+}(x)R_{-k_{y}-}(x)\right]
r\displaystyle\mathcal{H}_{r} =\displaystyle= αRkyxRky+(x)Lky(x)+h.c..\displaystyle-\alpha_{R}k_{y}\int_{x}R_{k_{y}+}^{\dagger}(x)L_{k_{y}-}(x)+{\rm h.c.}. (31)

The Hamiltonian separates into two decoupled subsystems which we label the “external” (e) and “internal” (i) branches Φe=(Lky+,Rky,Lky+,Rky)T\Phi_{e}=~{}(L_{k_{y}+},R_{k_{y}-},L_{-k_{y}+}^{\dagger},R_{-k_{y}-}^{\dagger})^{T} and Φi=(Rky+,Lky,Rky+,Lky)T\Phi_{i}=~{}(R_{k_{y}+},L_{k_{y}-},R_{-k_{y}+}^{\dagger},L_{-k_{y}-}^{\dagger})^{T} with the respective Hamiltonians:

i\displaystyle\mathcal{H}_{i} =\displaystyle= ivixσz+hτzσxαRkyσx+Δτyσy\displaystyle-iv_{i}\partial_{x}\sigma^{z}+h\tau^{z}\sigma^{x}-\alpha_{R}k_{y}\sigma^{x}+\Delta\tau^{y}\sigma^{y} (32)
e\displaystyle\mathcal{H}_{e} =\displaystyle= ivexσz+Δτyσy\displaystyle iv_{e}\partial_{x}\sigma^{z}+\Delta\tau^{y}\sigma^{y} (33)

In what follows we will drop the subscript kyk_{y} for brevity.

We solve for a semi-infinite wire with a boundary at x=0x=0. We make the following ansatz for the zero mode, lϕl(x)=0\mathcal{H}_{l}\phi_{l}(x)=0 with ϕl(x)=ex/ξlϕl(0)\phi_{l}(x)=e^{-x/\xi_{l}}\phi_{l}(0) where l=e/il=e/i with ξe=ve/Δ\xi_{e}=v_{e}/\Delta and two possible values ξi\xi_{i} for the inner branch ξi1=vih+Δ2+αR2ky2\xi_{i1}=\frac{v_{i}}{h+\sqrt{\Delta^{2}+\alpha_{R}^{2}k_{y}^{2}}} and ξi2=vihΔ2+αR2ky2\xi_{i2}=\frac{v_{i}}{h-\sqrt{\Delta^{2}+\alpha_{R}^{2}k_{y}^{2}}}. Reincorporating the oscillatory phases and expressing the zero mode solutions in terms of the original basis 𝚿=(Ψky+,Ψky,Ψky+,Ψky)T{\bf\Psi}=(\Psi_{k_{y}+},\Psi_{k_{y}-},\Psi_{-k_{y}+}^{\dagger},\Psi_{-k_{y}-}^{\dagger})^{T} we find,

ψi1=ϕi1=ex/ξi1(i1iβ1β)\displaystyle\psi_{i1}=\phi_{i1}=e^{-x/\xi_{i1}}\left(\begin{array}[]{c}-i\\ -1\\ \frac{i}{\beta}\\ -\frac{1}{\beta}\end{array}\right) (38)
ψi2=ϕi2=ex/ξi2(i1+iββ)\displaystyle\psi_{i2}=\phi_{i2}=e^{-x/\xi_{i2}}\left(\begin{array}[]{c}i\\ 1\\ +i\beta\\ -\beta\end{array}\right) (43)

with β=αRkyΔ2+αR2ky2Δ\beta=\frac{\alpha_{R}k_{y}-\sqrt{\Delta^{2}+\alpha_{R}^{2}k_{y}^{2}}}{\Delta} and

ψe1=ex/ξe(ieiksoxeiksoxieiksoxeiksox)\displaystyle\psi_{e1}=e^{-x/\xi_{e}}\left(\begin{array}[]{c}ie^{-ik_{so}x}\\ e^{ik_{so}x}\\ -ie^{ik_{so}x}\\ e^{-ik_{so}x}\end{array}\right) (48)
ψe2=ex/ξe(ieiksoxeiksoxieiksoxeiksox)\displaystyle\psi_{e2}=e^{-x/\xi_{e}}\left(\begin{array}[]{c}ie^{-ik_{so}x}\\ -e^{ik_{so}x}\\ ie^{ik_{so}x}\\ e^{-ik_{so}x}\end{array}\right) (53)

This allows us to construct a zero mode that satisfies the boundary conditions at x=0x=0 namely ψM(x=0)=0\psi_{M}(x=0)=0 which is:

ψM(x)\displaystyle\psi_{M}(x) =\displaystyle= β(β+1)β1ψi1+ψi2+(β2+1)β1ψe1\displaystyle\frac{\beta(\beta+1)}{\beta-1}\psi_{i1}+\psi_{i2}+\frac{(\beta^{2}+1)}{\beta-1}\psi_{e1} (62)
=\displaystyle= β(β+1)β1ex/ξi1(i1iβ1β)+ex/ξi2(i1+iββ)\displaystyle\frac{\beta(\beta+1)}{\beta-1}e^{-x/\xi_{i1}}\left(\begin{array}[]{c}-i\\ -1\\ \frac{i}{\beta}\\ -\frac{1}{\beta}\end{array}\right)+e^{-x/\xi_{i2}}\left(\begin{array}[]{c}i\\ 1\\ +i\beta\\ -\beta\end{array}\right)
+\displaystyle+ (β2+1)β1ex/ξe(ieiksoxeiksoxieiksoxeiksox)\displaystyle\frac{(\beta^{2}+1)}{\beta-1}e^{-x/\xi_{e}}\left(\begin{array}[]{c}ie^{-ik_{so}x}\\ e^{ik_{so}x}\\ -ie^{ik_{so}x}\\ e^{-ik_{so}x}\end{array}\right) (67)

We note that in the absence of Rashba SOC, β=1\beta=-1, and the boundary mode indeed satisfies the Majorana condition namely ψM|αR=0=(u+(x),u(x),u+(x),u(x))T\psi_{M}|_{\alpha_{R}=0}=(u_{+}(x),u_{-}(x),u_{+}^{*}(x),u_{-}^{*}(x))^{T}. However, at finite αR0\alpha_{R}\neq 0 this condition is no longer met and the boundary state is no longer a Majorana mode.

Appendix C Breaking of reflection symmetry

In the family of 1D chains with open boundary conditions (14), the degeneracy of the mid-gap states is protected by Mirror symmetry MxM_{x}, i.e. the edge states are reflected onto each other under this symmetry. Breaking the symmetry by adding a local potential on one of the two edges μlμ~\mu_{l}\neq\tilde{\mu} will lift the degeneracy. This situation is shown in Fig. 9.

Refer to caption
Figure 9: Bulk and edge state spectrum for α=0.01\alpha=-0.01, μ~=0.25\tilde{\mu}=-0.25 μl=0.175\mu_{l}=-0.175, m=1m=1, λSO=0.15\lambda_{SO}=0.15, h=0.1h=0.1and Δ=0.06\Delta=0.06. μl0\mu_{l}\neq 0 on either of the two edges, breaks the reflection symmetry and lifts the degeneracy of the edge states (shown as solid red lines).

Conversely, in the absence of Rashba SOC, i.e. when αR=0\alpha_{R}=0 the degeneracy is protected by the Chiral symmetry of the 1D chain for fixed kyk_{y}. Consequently, the degeneracy is not lifted even in the presence of a local chemical potential.

References

  • Zhou et al. [2016] B. T. Zhou, N. F. Q. Yuan, H.-L. Jiang, and K. T. Law, Ising superconductivity and majorana fermions in transition-metal dichalcogenides, Physical Review B 93, 180501(R) (2016).
  • Ilić et al. [2017] S. Ilić, J. S. Meyer, and M. Houzet, Enhancement of the Upper Critical Field in Disordered Transition Metal Dichalcogenide Monolayers, Physical Review Letters 119, 117001 (2017).
  • He et al. [2018] W.-Y. He, B. T. Zhou, J. J. He, N. i. Q. Yuan, T. Zhang, and K. T. Law, Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides, Communications Physics 1, 40 (2018).
  • Sosenko et al. [2017] E. Sosenko, J. Zhang, and V. Aji, Unconventional superconductivity and anomalous response in hole-doped transition metal dichalcogenides, Phys. Rev. B 95, 144508 (2017).
  • Nakamura and Yanase [2017] Y. Nakamura and Y. Yanase, Odd-parity superconductivity in bilayer transition metal dichalcogenides, Phys. Rev. B 96, 054501 (2017).
  • Möckli and Khodas [2018] D. Möckli and M. Khodas, Robust parity-mixed superconductivity in disordered monolayer transition metal dichalcogenides, Physical Review B 98, 144518 (2018).
  • Fischer et al. [2018] M. H. Fischer, M. Sigrist, and D. F. Agterberg, Superconductivity without inversion and time-reversal symmetries, Phys. Rev. Lett. 121, 157003 (2018).
  • Smidman et al. [2017a] M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review, Reports on Progress in Physics 80, 036501 (2017a).
  • Yuan et al. [2014] N. F. Q. Yuan, K. F. Mak, and K. T. Law, Possible topological superconducting phases of mos2{\mathrm{mos}}_{2}Phys. Rev. Lett. 113, 097001 (2014).
  • Oiwa et al. [2018] R. Oiwa, Y. Yanagi, and H. Kusunose, Theory of superconductivity in hole-doped monolayer mos2{\mathrm{mos}}_{2}Phys. Rev. B 98, 064509 (2018).
  • Hsu et al. [2017] Y.-T. Hsu, A. Vaezi, M. H. Fischer, and E.-A. Kim, Topological superconductivity in monolayer transition metal dichalcogenides, Nature Communications 8, 14985 (2017).
  • Wang et al. [2018] L. Wang, T. O. Rosdahl, and D. Sticlet, Platform for nodal topological superconductors in monolayer molybdenum dichalcogenides, Phys. Rev. B 98, 205411 (2018).
  • Oiwa et al. [2019] R. Oiwa, Y. Yanagi, and H. Kusunose, Time-reversal symmetry breaking superconductivity in hole-doped monolayer mos2, Journal of the Physical Society of Japan 88, 063703 (2019)https://doi.org/10.7566/JPSJ.88.063703 .
  • Sohn et al. [2018] E. Sohn, X. Xi, W.-Y. He, S. Jiang, Z. Wang, K. Kang, J.-H. Park, H. Berger, L. Forró, K. T. Law, J. Shan, and K. F. Mak, An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2, Nature Materials 17, 504 (2018).
  • Wang et al. [2012] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7, 699 (2012).
  • Geim and Grigorieva [2013] A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499, 419 (2013).
  • Lu et al. [2015] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler, K. T. Law, and J. T. Ye, Evidence for two-dimensional Ising superconductivity in gated MoS2, Science 350, 1353 (2015).
  • Ugeda et al. [2016] M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H.-Z. Tsai, A. Riss, S.-K. Mo, D. Lee, A. Zettl, Z. Hussain, Z.-X. Shen, and M. F. Crommie, Characterization of collective ground states in single-layer NbSe2, Nature Physics 12, 92 (2016).
  • Saito et al. [2016] Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, and Y. Iwasa, Superconductivity protected by spin-valley locking in ion-gated mos2, Nature Physics 12, 144 (2016).
  • Xi et al. [2016] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F. Mak, Ising pairing in superconducting nbse2 atomic layers, Nature Physics 12, 139 (2016).
  • Costanzo et al. [2016] D. Costanzo, S. Jo, H. Berger, and A. F. Morpurgo, Gate-induced superconductivity in atomically thin mos2 crystals, Nature Nanotechnology 11, 339 (2016).
  • Dvir et al. [2018] T. Dvir, F. Massee, L. Attias, M. Khodas, M. Aprili, C. H. L. Quay, and H. Steinberg, Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions, Nature Communications 9, 598 (2018).
  • de la Barrera et al. [2018] S. C. de la Barrera, M. R. Sinko, D. P. Gopalan, N. Sivadas, K. L. Seyler, K. Watanabe, T. Taniguchi, A. W. Tsen, X. Xu, D. Xiao, and B. M. Hunt, Tuning ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides, Nature Communications 9, 1427 (2018).
  • Xing et al. [2017] Y. Xing, K. Zhao, P. Shan, F. Zheng, Y. Zhang, H. Fu, Y. Liu, M. Tian, C. Xi, H. Liu, J. Feng, X. Lin, S. Ji, X. Chen, Q.-K. Xue, and J. Wang, Ising superconductivity and quantum phase transition in macro-size monolayer nbse2, Nano Letters 17, 6802 (2017).
  • Hamill et al. [2021] A. Hamill, B. Heischmidt, E. Sohn, D. Shaffer, K.-T. Tsai, X. Zhang, X. Xi, A. Suslov, H. Berger, L. Forró, F. J. Burnell, J. Shan, K. F. Mak, R. M. Fernandes, K. Wang, and V. S. Pribiag, Two-fold symmetric superconductivity in few-layer nbse2, Nature Physics 10.1038/s41567-021-01219-x (2021).
  • Yuan et al. [2016] N. F. Q. Yuan, B. T. Zhou, W.-Y. He, and K. T. Law, Ising superconductivity in transition metal dichalcogenides (2016), arXiv:1605.01847 [cond-mat.supr-con] .
  • Liu et al. [2018] Y. Liu, Z. Wang, X. Zhang, C. Liu, Y. Liu, Z. Zhou, J. Wang, Q. Wang, Y. Liu, C. Xi, M. Tian, H. Liu, J. Feng, X. C. Xie, and J. Wang, Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films, Physical Review X 8, 021002 (2018).
  • woo Cho et al. [2020] C. woo Cho, J. Lyu, T. Han, C. Y. Ng, Y. Gao, G. Li, M. Huang, N. Wang, J. Schmalian, and R. Lortz, Distinct nodal and nematic superconducting phases in the 2d ising superconductor nbse2 (2020), arXiv:2003.12467 [cond-mat.supr-con] .
  • Cho et al. [2022] C.-w. Cho, J. Lyu, L. An, T. Han, K. T. Lo, C. Y. Ng, J. Hu, Y. Gao, G. Li, M. Huang, N. Wang, J. Schmalian, and R. Lortz, Nodal and nematic superconducting phases in nbse2{\mathrm{nbse}}_{2} monolayers from competing superconducting channels, Phys. Rev. Lett. 129, 087002 (2022).
  • Frigeri et al. [2006] P. A. Frigeri, D. F. Agterberg, I. Milat, and M. Sigrist, Phenomenological theory of the s-wave state in superconductors without an inversion center, The European Physical Journal B 54, 435 (2006).
  • Kuzmanović et al. [2022] M. Kuzmanović, T. Dvir, D. LeBoeuf, S. Ilić, M. Haim, D. Möckli, S. Kramer, M. Khodas, M. Houzet, J. S. Meyer, M. Aprili, H. Steinberg, and C. H. L. Quay, Tunneling spectroscopy of few-monolayer nbse2{\mathrm{nbse}}_{2} in high magnetic fields: Triplet superconductivity and ising protection, Phys. Rev. B 106, 184514 (2022).
  • Zhao and Wang [2013] Y. X. Zhao and Z. D. Wang, Topological classification and stability of fermi surfaces, Phys. Rev. Lett. 110, 240404 (2013).
  • Matsuura et al. [2013] S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, Protected boundary states in gapless topological phases, New Journal of Physics 15, 065001 (2013).
  • Galvis et al. [2014] J. A. Galvis, L. Chirolli, I. Guillamón, S. Vieira, E. Navarro-Moratalla, E. Coronado, H. Suderow, and F. Guinea, Zero-bias conductance peak in detached flakes of superconducting 2hh-tas2{\mathrm{tas}}_{2} probed by scanning tunneling spectroscopy, Phys. Rev. B 89, 224512 (2014).
  • Nayak et al. [2021] A. K. Nayak, A. Steinbok, Y. Roet, J. Koo, G. Margalit, I. Feldman, A. Almoalem, A. Kanigel, G. A. Fiete, B. Yan, Y. Oreg, N. Avraham, and H. Beidenkopf, Evidence of topological boundary modes with topological nodal-point superconductivity, Nature Physics 17, 1413 (2021).
  • Seshadri et al. [2022] R. Seshadri, M. Khodas, and D. Meidan, Josephson junctions of topological nodal superconductors, SciPost Phys. 12, 197 (2022).
  • Shaffer et al. [2020] D. Shaffer, J. Kang, F. J. Burnell, and R. M. Fernandes, Crystalline nodal topological superconductivity and bogolyubov fermi surfaces in monolayer nbse2{\mathrm{nbse}}_{2}Phys. Rev. B 101, 224503 (2020).
  • Altland and Zirnbauer [1997] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
  • Haim et al. [2022] M. Haim, A. Levchenko, and M. Khodas, Mechanisms of in-plane magnetic anisotropy in superconducting nbse2{\mathrm{nbse}}_{2}Phys. Rev. B 105, 024515 (2022).
  • Smidman et al. [2017b] M. Smidman, M. Salamon, H. Yuan, and D. Agterberg, Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review, Reports on Progress in Physics 80, 036501 (2017b).
  • Hughes et al. [2011] T. L. Hughes, E. Prodan, and B. A. Bernevig, Inversion-symmetric topological insulators, Phys. Rev. B 83, 245132 (2011).
  • Chiu et al. [2013] C.-K. Chiu, H. Yao, and S. Ryu, Classification of topological insulators and superconductors in the presence of reflection symmetry, Phys. Rev. B 88, 075142 (2013).
  • Laubscher and Klinovaja [2021] K. Laubscher and J. Klinovaja, Majorana bound states in semiconducting nanostructures, Journal of Applied Physics 130, 081101 (2021)https://doi.org/10.1063/5.0055997 .