This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Joint Training and Reflection Pattern Optimization for Non-Ideal RIS-Aided Multiuser Systems

Zhenyao He,  Jindan Xu,  Hong Shen, 
Wei Xu,  Chau Yuen,  and Marco Di Renzo
Zhenyao He, Hong Shen, and Wei Xu are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China (e-mail: {hezhenyao, shhseu, wxu}@seu.edu.cn). Jindan Xu and Chau Yuen are with the School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore (e-mail: [email protected], [email protected]). Marco Di Renzo is with Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, 3 Rue Joliot-Curie, 91192 Gif-sur-Yvette, France (e-mail: [email protected]).
Abstract

Reconfigurable intelligent surface (RIS) is a promising technique to improve the performance of future wireless communication systems at low energy consumption. To reap the potential benefits of RIS-aided beamforming, it is vital to enhance the accuracy of channel estimation. In this paper, we consider an RIS-aided multiuser system with non-ideal reflecting elements, each of which has a phase-dependent reflecting amplitude, and we aim to minimize the mean-squared error (MSE) of the channel estimation by jointly optimizing the training signals at the user equipments (UEs) and the reflection pattern at the RIS. As examples the least squares (LS) and linear minimum MSE (LMMSE) estimators are considered. The considered problems do not admit simple solution mainly due to the complicated constraints pertaining to the non-ideal RIS reflecting elements. As far as the LS criterion is concerned, we tackle this difficulty by first proving the optimality of orthogonal training symbols and then propose a majorization-minimization (MM)-based iterative method to design the reflection pattern, where a semi-closed form solution is obtained in each iteration. As for the LMMSE criterion, we address the joint training and reflection pattern optimization problem with an MM-based alternating algorithm, where a closed-form solution to the training symbols and a semi-closed form solution to the RIS reflecting coefficients are derived, respectively. Furthermore, an acceleration scheme is proposed to improve the convergence rate of the proposed MM algorithms. Finally, simulation results demonstrate the performance advantages of our proposed joint training and reflection pattern designs.

Index Terms:
Reconfigurable intelligent surface (RIS), channel estimation, least squares (LS), linear minimum mean-squared error (LMMSE), reflection pattern, majorization-minimization (MM).

I Introduction

The deployment of reconfigurable intelligent surfaces (RISs) has drawn a lot of attention as a cost-effective promising solution for wireless communication networks [1, 2, 3, 4, 5, 6, 7, 8]. An RIS usually consists of a large number of low-cost passive adjustable reflecting elements, each of which can be independently controlled to adjust the amplitude and/or the phase of the reflected signals such that the wireless transmission channels are sculpted to fulfill various design goals.

Recently, considerable innovative contributions have been devoted to optimize RIS-aided wireless communications. The joint optimization of the transmit beamforming at the transmitter and the reflection beamforming at the RIS has been studied to maximize the received signal-to-noise ratio (SNR) [9] and to minimize the total transmit power [10] for a single-user RIS-assisted multiple-input single-output (MISO) system. In [11] and [12], the authors considered maximizing the sum rate and the energy efficiency for a downlink RIS-aided multiuser MISO system, respectively. The secrecy rate maximization problem for RIS-assisted multi-antenna communications has been studied in [13, 14] from the physical-layer security perspective. In [15], the authors studied the sum rate maximization problem for RIS-aided full-duplex communications [16, 17]. Moreover, practical low-resolution RIS phase shifts were further considered in single-user [18] and multiuser [19] systems. In [20], the received SNR was maximized for an RIS-aided single-user system by considering the impact of practical transceiver hardware impairments. Different from the above works focusing on flat-fading channels, an RIS-aided orthogonal frequency division multiplexing (OFDM) system over frequency-selective channels was studied in [21, 22, 23, 24]. As revealed in these works, an RIS is proved beneficial for improving the performance of wireless communications.

To fully achieve the benefits of RIS-aided communications, it is necessary to obtain accurate channel state information (CSI), which, however, turns out to be technically challenging [25], since an RIS cannot transmit or receive pilots to assist the channel estimation. To overcome this difficulty, a cascaded channel estimation method was investigated in [26, 27, 28, 30, 29, 31, 32], which only requires pilot signals at the transmitter. Concretely, an “on-off” reflection pattern design, which turns on one RIS element at a time, was first developed in [26] for the cascaded channel estimation. Subsequently, it is found that the channel estimation performance of RIS-aided systems can be enhanced by turning on all the RIS elements during the training phase and configuring the reflection pattern appropriately. In this regard, the authors of [27, 28] optimized the RIS reflection pattern to minimize the mean-squared error (MSE) of the least squares (LS) channel estimator. By exploiting the channel statistics knowledge in RIS-aided systems, the authors of [29] demonstrated that the linear minimum MSE (LMMSE) channel estimator can achieve a better MSE performance. Then, in [30], the joint optimization of the training sequence at the transmitter and the reflection pattern at the RIS was analyzed for the LMMSE estimator. In addition, the channel sparsity was exploited in [31] to assist the cascaded channel estimation. In [32], a more complex RIS-aided multi-cell system was considered and the corresponding CSI acquisition method was investigated. On the other hand, the dimension of the cascaded channel in RIS-aided systems could be quite high due to the large number of RIS reflecting elements, thus leading to excessive training overhead. Several efforts have been made to address this issue [24, 32, 33, 34, 35]. For example, the authors of [24] proposed a group-wise channel estimation method, by partitioning all the RIS elements into several groups, where each group consists of a set of neighboring RIS elements sharing a common reflection coefficient, thus reducing the effective number of RIS elements and the training overhead. A novel two-timescale CSI-based protocol was recently proposed [34, 35], where the beamforming at the base station (BS) was designed based on the instantaneous CSI while the reflection coefficients at the RIS were optimized based on the slow time-varying long-term CSI. As a result, given a fixed RIS reflection pattern that remains unchanged within several coherence blocks, the dimension of the instantaneous channel that needs to be estimated in each block is independent of the number of RIS elements, so that the training overhead can be significantly reduced.

Most of the existing works on the channel estimation for RIS-assisted systems assume unit amplitude signal reflection, i.e., the magnitude of the reflection coefficient of each RIS element is always one, regardless of the phase shift, so as to maximize the reflected signal power. However, it was revealed in [36, 37, 38, 39] that such assumption is actually ideal and the magnitude of the reflection coefficient of a practical RIS element is dependent on the reflection phase [40]. In other words, one cannot adjust the reflection phase while maintaining the unit reflection magnitude at the same time.

Motivated by the above facts, we investigate the joint training and reflection pattern design for channel estimation in an RIS-aided multiuser system considering the LS and LMMSE channel estimators, by explicitly taking into account the characteristics of non-ideal RIS elements. In such cases, most methods developed in prior related works, e.g., in [27, 28, 30], that rely on an ideal RIS with unit-modulus reflection coefficient cannot be applied to the considered problems. In fact, the considered phase-dependent amplitude configuration makes the corresponding optimization nontrivial and challenging. To tackle these challenges, our main contributions are summarized as follows:

  • As for the LS channel estimator, we reveal that the optimal training sequences at the user equipments (UEs) are independent of the reflection pattern at the RIS and are orthogonal to each other. Then, we develop a majorization-minimization (MM)-based iterative algorithm to address the reflection pattern design, where a semi-closed form solution is obtained in each iteration.

  • As for the LMMSE channel estimator, the corresponding optimization problem turns out to be more difficult to solve. To obtain a tractable and also high-quality solution, we optimize the pilots and the reflection pattern in an alternating way. In particular, by invoking the MM technique, we obtain a closed-form solution and a semi-closed form solution for the pilot sequence and the reflection pattern, respectively.

  • The convergence of the two proposed joint training and reflection pattern optimization designs is theoretically proved. Furthermore, we propose an accelerated strategy for the developed algorithms in order to significantly reduce the number of iterations required for reaching the convergence and reduce the overall computational complexity.

The rest of this paper is organized as follows. In Section II, the RIS-aided multiuser communication system and the corresponding LS and LMMSE channel estimation methods are introduced. Section III and Section IV present the proposed MM-based joint training and reflection pattern designs for the LS and LMMSE channel estimators, respectively. In Section V, we propose an acceleration scheme to improve the convergence rate of the proposed MM algorithms. Simulation results are shown in Section VI. Finally, conclusions are provided in Section VII.

Notations: Vectors and matrices are denoted by boldface lower-case and boldface upper-case letters, respectively. \mathbb{R} and \mathbb{C} denote the sets of real and complex numbers, respectively. The superscripts ()T(\cdot)^{T}, ()(\cdot)^{*}, and ()H(\cdot)^{H} denote the transpose, the conjugate, and the conjugate transpose operations, respectively. F\|\cdot\|_{F} and Tr[]\text{Tr}[\cdot] denote the Frobenius norm and the trace of a matrix, respectively. \|\cdot\| denotes the 2\ell_{2} norm of a vector. |||\cdot|, arg()\arg(\cdot), and {}\mathcal{R}\{\cdot\} return the modulus, the phase, and the real part of the input complex number, respectively. \otimes and \odot stand for the Kronecker product and the Hadamard product, respectively. []i:j,p:q[\cdot]_{i:j,p:q} returns the submatrix formed by the elements from the ii-th to the jj-th rows and from the pp-th to the qq-th columns of the input matrix. vec()\text{vec}(\cdot) is the vectorization operation. 𝔼{}\mathbb{E}\{\cdot\} represents the expectation operation. 𝐚𝒞𝒩(𝐚¯,𝚺)\mathbf{a}\thicksim\mathcal{CN}(\mathbf{\bar{a}},\mathbf{\Sigma}) means that the vector 𝐚\mathbf{a} follows a circularly symmetric complex Gaussian distribution with mean 𝐚¯\mathbf{\bar{a}} and covariance matrix 𝚺\mathbf{\Sigma}. diag{}\text{diag}\{\cdot\} returns a diagonal matrix with diagonal elements being the entries of the input vector. 𝐈N\mathbf{I}_{N} denotes the identity matrix of size N×NN\times N. λmax(𝐀)\lambda_{\text{max}}(\mathbf{A}) returns the largest eigenvalue of matrix 𝐀\mathbf{A}. 𝒪()\mathcal{O}(\cdot) denotes the big-O computational complexity notation.

II System Model and Problem Formulation

In this section, we first describe the model and the channel estimation criteria of the considered RIS-assisted multiuser MISO system, and then introduce the problem formulation for the joint design of the uplink training symbols and the RIS reflection coefficients.

II-A System Model

Refer to caption
Figure 1: The considered RIS-aided uplink multiuser communication system.

We consider the RIS-assisted uplink multiuser wireless communication system in Fig. 1, which consists of a BS with LL receive antennas, an RIS with MM reflecting elements, and KK single-antenna UEs. Let 𝐆L×M\mathbf{G}\in\mathbb{C}^{L\times M}, 𝐡r,kM×1\mathbf{h}_{r,k}\in\mathbb{C}^{M\times 1}, 𝐡d,kL×1\mathbf{h}_{d,k}\in\mathbb{C}^{L\times 1} denote the channel between the RIS and the BS, the channel between the kk-th UE and the RIS, and the channel between the kk-th UE and the BS, respectively, which are assumed to follow the Rayleigh fading model. Denote the stacked channels of the UEs-RIS link and the UEs-BS link by 𝐇r[𝐡r,1,,𝐡r,K]M×K\mathbf{H}_{r}\triangleq[\mathbf{h}_{r,1},\cdots,\mathbf{h}_{r,K}]\in\mathbb{C}^{M\times K} and 𝐇d[𝐡d,1,,𝐡d,K]L×K\mathbf{H}_{d}\triangleq[\mathbf{h}_{d,1},\cdots,\mathbf{h}_{d,K}]\in\mathbb{C}^{L\times K}, respectively. Moreover, the reflection coefficient matrix at the non-ideal RIS is denoted by 𝚽=diag{[ϕ1,,ϕM]T}\mathbf{\Phi}=\text{diag}\left\{[\phi_{1},\cdots,\phi_{M}]^{T}\right\}, with ϕm\phi_{m} denoting the reflection coefficient of the mm-th element at the RIS.

Refer to caption
Figure 2: The considered practical phase shift model [40].
Refer to caption
Figure 3: The considered channel estimation protocol.

To characterize the RIS phase shifts, we utilize the parallel resonant circuit-based model considered in [40]. More specifically, the equivalent impedance of the mm-th reflecting element, m{1,,M}m\in\mathcal{M}\triangleq\{1,\cdots,M\}, is expressed as

Zm(Cm,Rm)=\displaystyle Z_{m}(C_{m},R_{m})= jωL1(jωL2+1jωCm+Rm)jωL1+(jωL2+1jωCm+Rm),\displaystyle\frac{j\omega L_{1}(j\omega L_{2}+\frac{1}{j\omega C_{m}}+R_{m})}{j\omega L_{1}+(j\omega L_{2}+\frac{1}{j\omega C_{m}}+R_{m})}, (1)

where CmC_{m}, RmR_{m}, L1L_{1}, and L2L_{2} stand for the effective capacitance, the effective resistance, the bottom layer inductance, and the top layer inductance of the parallel resonant circuit, respectively, and ω\omega represents the angular frequency of the incident signal. Then, the reflection coefficient of the mm-th element of the RIS is given by

ϕm=βmejθm=Zm(Cm,Rm)Z0Zm(Cm,Rm)+Z0,\displaystyle\phi_{m}=\beta_{m}e^{j\theta_{m}}=\frac{Z_{m}(C_{m},R_{m})-Z_{0}}{Z_{m}(C_{m},R_{m})+Z_{0}}, (2)

where βm[0,1]\beta_{m}\in[0,1] and θm[0,2π]\theta_{m}\in[0,2\pi] stand for the reflection amplitude and the phase shift, respectively, and Z0Z_{0} denotes the free space impedance. Different from the commonly used unit modulus phase shift model, the amplitude and the phase of ϕm\phi_{m} in (2) are coupled. Specifically, according to [40], the reflection amplitude βm\beta_{m} of the mm-th element can be expressed as the following function of the corresponding phase shift θm\theta_{m}:

βm(θm)=(1βmin)(sin(θmδ)+12)α+βmin,\displaystyle\beta_{m}(\theta_{m})=(1-\beta_{\text{min}})\left(\frac{\sin(\theta_{m}-\delta)+1}{2}\right)^{\alpha}+\beta_{\text{min}}, (3)

where the values of the constants βmin0\beta_{\text{min}}\geq 0, δ0\delta\geq 0, and α0\alpha\geq 0 depend on the specific circuit parameters in (1). Fig. 2 illustrates an exemplified behaviour of the model in (3), where α=1.6\alpha=1.6 and δ=0.43π\delta=0.43\pi.

II-B Cascaded Channel Estimation

Let us focus on the channel estimation for the considered system. An RIS cannot transmit training signals or perform channel estimation. Therefore, we cannot estimate 𝐇r\mathbf{H}_{r} or 𝐆\mathbf{G} directly. Nevertheless, it is possible to estimate the cascaded channel of the reflected link at the BS.

We consider a block fading channel model where each block is divided into training-based channel estimation and data transmission stages. By adopting the channel estimation protocol in [28, 31], as shown in Fig. 3 at the top of the next page, we further divide the training stage into BB subframes, each of which consists of τ\tau symbols, where τK\tau\geq K and BM+1B\geq M+1. The RIS coefficients are kept fixed within each subframe and vary for different subframes. The users transmit the same training signals periodically in different subframes. Mathematically, in the bb-th subframe, b{1,,B}b\in\mathcal{B}\triangleq\{1,\cdots,B\}, the received signals of τ\tau consecutive symbols at the BS, denoted by 𝐘(b)L×τ\mathbf{Y}(b)\in\mathbb{C}^{L\times\tau}, is given by

𝐘(b)=\displaystyle\mathbf{Y}(b)= (𝐆𝚽(b)𝐇r+𝐇d)𝐗+𝐙(b)\displaystyle\left(\mathbf{G}\mathbf{\Phi}(b)\mathbf{H}_{r}+\mathbf{H}_{d}\right)\mathbf{X}+\mathbf{Z}(b)
=\displaystyle= (m=1Mϕm(b)𝐠m𝐡r,mH+𝐇d)𝐗+𝐙(b),\displaystyle\left(\sum_{m=1}^{M}\phi_{m}(b)\mathbf{g}_{m}\mathbf{h}_{r,m}^{H}+\mathbf{H}_{d}\right)\mathbf{X}+\mathbf{Z}(b), (4)

where 𝚽(b)=diag{[ϕ1(b),,ϕM(b)]T}\mathbf{\Phi}(b)=\text{diag}\left\{[\phi_{1}(b),\cdots,\phi_{M}(b)]^{T}\right\} represents the fixed RIS reflection coefficients in subframe bb and 𝐗\mathbf{X} denotes the stacked training symbols of KK UEs, which is expressed as

𝐗\displaystyle\mathbf{X}\triangleq [𝐱1,,𝐱K]TK×τ.\displaystyle\left[\mathbf{x}_{1},\cdots,\mathbf{x}_{K}\right]^{T}\in\mathbb{C}^{K\times\tau}. (5)

Here, 𝐱k[xk(1),,xk(τ)]Tτ×1\mathbf{x}_{k}\triangleq[x_{k}(1),\cdots,x_{k}(\tau)]^{T}\in\mathbb{C}^{\tau\times 1} stands for the τ\tau training symbols of the kk-th UE, k𝒦{1,,K}k\in\mathcal{K}\triangleq\{1,\cdots,K\}. In addition, 𝐙(b)L×τ\mathbf{Z}(b)\in\mathbb{C}^{L\times\tau} is the additive Gaussian white noise matrix in the bb-th subframe, and 𝐠mL×1\mathbf{g}_{m}\in\mathbb{C}^{L\times 1} and 𝐡r,mK×1\mathbf{h}_{r,m}\in\mathbb{C}^{K\times 1} stand for the mm-th column of 𝐆\mathbf{G} and 𝐇rH\mathbf{H}_{r}^{H}, respectively. To proceed, by setting ϕM+1(b)=1\phi_{M+1}(b)=1 and defining

𝚪m\displaystyle\mathbf{\Gamma}_{m}\triangleq {𝐠m𝐡r,mHm𝐇dm=M+1,\displaystyle\begin{cases}\mathbf{g}_{m}\mathbf{h}_{r,m}^{H}&m\in\mathcal{M}\\ \mathbf{H}_{d}&m=M+1,\end{cases} (6)

the received signal 𝐘(b)\mathbf{Y}(b) in (II-B) becomes

𝐘(b)=\displaystyle\mathbf{Y}(b)= (m=1M+1ϕm(b)𝚪m)𝐗+𝐙(b)\displaystyle\ \left(\sum_{m=1}^{M+1}\phi_{m}(b)\mathbf{\Gamma}_{m}\right)\mathbf{X}+\mathbf{Z}(b)
\displaystyle\triangleq [𝚪1,,𝚪M+1](ϕ(b)𝐈K)𝐗+𝐙(b)\displaystyle\ [\mathbf{\Gamma}_{1},\cdots,\mathbf{\Gamma}_{M+1}](\bm{\phi}(b)\otimes\mathbf{I}_{K})\mathbf{X}+\mathbf{Z}(b)
\displaystyle\triangleq 𝚪(ϕ(b)𝐈K)𝐗+𝐙(b),\displaystyle\ \mathbf{\Gamma}(\bm{\phi}(b)\otimes\mathbf{I}_{K})\mathbf{X}+\mathbf{Z}(b), (7)

where ϕ(b)[ϕ1(b),,ϕM+1(b)]T\bm{\phi}(b)\triangleq[\phi_{1}(b),\cdots,\phi_{M+1}(b)]^{T} and 𝚪[𝚪1,,𝚪M+1]\mathbf{\Gamma}\triangleq[\mathbf{\Gamma}_{1},\cdots,\mathbf{\Gamma}_{M+1}] is the equivalent channel to be estimated in this work, which consists of the direct and cascaded reflected channels. Furthermore, by gathering the received signal 𝐘(b)\mathbf{Y}(b) of all the BB subframes, we obtain

𝐘=𝚪𝐒+𝐙,\displaystyle\mathbf{Y}=\mathbf{\Gamma}\mathbf{S}+\mathbf{Z}, (8)

where 𝐘[𝐘(1),,𝐘(B)]L×τB\mathbf{Y}\triangleq\left[\mathbf{Y}(1),\cdots,\mathbf{Y}(B)\right]\in\mathbb{C}^{L\times\tau B} and 𝐙[𝐙(1),,𝐙(B)]L×τB\mathbf{Z}\triangleq\left[\mathbf{Z}(1),\cdots,\mathbf{Z}(B)\right]\in\mathbb{C}^{L\times\tau B} denote the received signals and the noises of the whole training phase, respectively, and 𝐒\mathbf{S} is relevant to both the training sequence and the reflection pattern, which is expressed as

𝐒\displaystyle\mathbf{S} [(ϕ(1)𝐈K)𝐗,,(ϕ(B)𝐈K)𝐗][(M+1)K]×τB.\displaystyle\triangleq[(\bm{\phi}(1)\otimes\mathbf{I}_{K})\mathbf{X},\cdots,(\bm{\phi}(B)\otimes\mathbf{I}_{K})\mathbf{X}]\in\mathbb{C}^{[(M+1)K]\times\tau B}. (9)

Define the reflection pattern of BB subframes at the RIS by

𝐕\displaystyle\mathbf{V}\triangleq [ϕ(1),,ϕ(B)](M+1)×B,\displaystyle\left[\bm{\phi}(1),\cdots,\bm{\phi}(B)\right]\in\mathbb{C}^{(M+1)\times B}, (10)

each column of which represents the reflection pattern of the corresponding subframe. Then, based on the definitions in (9) and (10), we obtain the following expression for 𝐒\mathbf{S}

𝐒=(𝐕𝐈K)(𝐈B𝐗)𝐕~𝐗~,\displaystyle\mathbf{S}=(\mathbf{V}\otimes\mathbf{I}_{K})(\mathbf{I}_{B}\otimes\mathbf{X})\triangleq\mathbf{\widetilde{V}}\mathbf{\widetilde{X}}, (11)

where 𝐕~𝐕𝐈K\mathbf{\widetilde{V}}\triangleq\mathbf{V}\otimes\mathbf{I}_{K} and 𝐗~𝐈B𝐗\mathbf{\widetilde{X}}\triangleq\mathbf{I}_{B}\otimes\mathbf{X} are of size [(M+1)K]×BK[(M+1)K]\times BK and KB×τBKB\times\tau B, respectively.

The goal of channel estimation for the considered RIS-aided multiuser system is to recover the channel matrix 𝚪\mathbf{\Gamma} based on the knowledge of the received signal matrix 𝐘\mathbf{Y} and a properly designed matrix 𝐒\mathbf{S}. From (8), we obtain the LS and the LMMSE estimates of 𝚪\mathbf{\Gamma} as follows [41]:

𝚪^LS\displaystyle\mathbf{\hat{\Gamma}}_{\text{LS}} =𝐘𝐒,\displaystyle=\mathbf{Y}\mathbf{S}^{\dagger}, (12)
𝚪^LMMSE\displaystyle\mathbf{\hat{\Gamma}}_{\text{LMMSE}} =𝐘(𝐒H𝐑𝚪𝐒+σ2L𝐈τB)1𝐒H𝐑𝚪,\displaystyle=\mathbf{Y}\left(\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}+\sigma^{2}L\mathbf{I}_{\tau B}\right)^{-1}\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}, (13)

where 𝐒=𝐒H(𝐒𝐒H)1\mathbf{S}^{\dagger}=\mathbf{S}^{H}(\mathbf{S}\mathbf{S}^{H})^{-1} denotes the pseudoinverse of 𝐒\mathbf{S}, 𝐑𝚪=𝔼{𝚪H𝚪}\mathbf{R}_{\mathbf{\Gamma}}=\mathbb{E}\{\mathbf{\Gamma}^{H}\mathbf{\Gamma}\} is the correlation matrix of 𝚪\mathbf{\Gamma}, and σ2\sigma^{2} denotes the noise variance. The estimation errors corresponding to (12) and (13) are given by

JLS=\displaystyle J_{\text{LS}}= 𝔼{𝚪^LS𝚪F2}=σ2LTr[(𝐒𝐒H)1],\displaystyle\ \mathbb{E}\left\{\|\mathbf{\hat{\Gamma}}_{\text{LS}}-\mathbf{\Gamma}\|_{F}^{2}\right\}=\sigma^{2}L\text{Tr}\left[\left(\mathbf{S}\mathbf{S}^{H}\right)^{-1}\right], (14)
JLMMSE=\displaystyle J_{\text{LMMSE}}= 𝔼{𝚪^LMMSE𝚪F2}\displaystyle\ \mathbb{E}\left\{\|\mathbf{\hat{\Gamma}}_{\text{LMMSE}}-\mathbf{\Gamma}\|_{F}^{2}\right\}
=\displaystyle= Tr[(𝐑𝚪1+1σ2L𝐒𝐒H)1].\displaystyle\ \text{Tr}\left[\left(\mathbf{R}_{\mathbf{\Gamma}}^{-1}+\frac{1}{\sigma^{2}L}\mathbf{S}\mathbf{S}^{H}\right)^{-1}\right]. (15)

In addition, the training overhead of the considered estimation scheme is (M+1)K(M+1)K. There exist some possible approaches to alleviate this overhead, e.g., by grouping the RIS elements [24] and by adopting the two-timescale protocol [34, 35], which will be discussed in Section VI-C.

II-C Problem Formulation

In this paper, we aim to design the matrix 𝐒\mathbf{S}, i.e., the training sequence 𝐗\mathbf{X} at the UE side and the reflection coefficient 𝐕\mathbf{V} at the non-ideal RIS, such that the channel estimation MSEs JLSJ_{\text{LS}} or JLMMSEJ_{\text{LMMSE}} are minimized. The considered joint optimization problem is formulated as

missingminimize𝐗,𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{X},\mathbf{V}}\quad J(𝐗,𝐕)\displaystyle J(\mathbf{X},\mathbf{V})
subject to 𝐱k2Pk,k𝒦\displaystyle\|\mathbf{x}_{k}\|^{2}\leq P_{k},\ k\in\mathcal{K}
[𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n,\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}, (16)

where J(𝐗,𝐕)J(\mathbf{X},\mathbf{V}) is given by (14) for the LS estimator and by (15) for the LMMSE estimator. 𝐱k2Pk\|\mathbf{x}_{k}\|^{2}\leq P_{k} stands for the transmit power constraint of UE kk and PkP_{k} is the corresponding power budget. [𝐕]m,n[\mathbf{V}]_{m,n}\in\mathcal{F} means that the entry [𝐕]m,n[\mathbf{V}]_{m,n} satisfies the phase shift constraint given in (3). [𝐕]M+1,n=1[\mathbf{V}]_{M+1,n}=1 follows from the definition ϕM+1(b)=1\phi_{M+1}(b)=1.

Solving the problem in (II-C) is difficult due to the coupled variables 𝐗\mathbf{X} and 𝐕\mathbf{V} in the objective function and the realistic constraint for the reflection coefficient. We develop efficient algorithms to tackle the problems for the LS and LMMSE channel estimators in the following two sections, respectively.

Remark 1

When considering multi-antenna UEs, we define 𝐗\mathbf{X} as [𝐗1T,,𝐗KT]TN×τ[\mathbf{X}_{1}^{T},\cdots,\mathbf{X}_{K}^{T}]^{T}\in\mathbb{C}^{N\times\tau}, where 𝐗kNk×τ\mathbf{X}_{k}\in\mathbb{C}^{N_{k}\times\tau} denotes the pilot matrix sent by the kk-th UE equipped with NkN_{k} antennas and τNk=1KNk\tau\geq N\triangleq\sum_{k=1}^{K}N_{k}. The optimization problem can be formulated similarly, where the dimensions of 𝐇r\mathbf{H}_{r}, 𝐇d\mathbf{H}_{d}, 𝚪\mathbf{\Gamma}, and 𝐒\mathbf{S} need to be adjusted, and the methods proposed in the following sections can be modified and applied accordingly.

III LS Channel Estimation

In this section, we focus on the optimization problem in (II-C) for the LS channel estimator. Firstly, we prove that the optimal training matrix is independent of the reflection pattern and has an interesting orthogonal property. Then, we propose an efficient MM-based algorithm to optimize the RIS reflection pattern under the considered circuit model for the RIS element, where a semi-closed form solution is derived in each iteration.

III-A Closed-Form Optimal Training Matrix

Although the training matrix and the reflection pattern are coupled in the objective function JLSJ_{\text{LS}} in problem (II-C), as stated in the following theorem, we can determine the optimal training matrix in a closed form for the LS channel estimator.

Theorem 1

The optimal training matrix for the LS channel estimator of the considered non-ideal RIS-assisted system satisfies the condition:

𝐗𝐗H=diag{P1,,PK}.\displaystyle\mathbf{X}\mathbf{X}^{H}=\text{diag}\{P_{1},\cdots,P_{K}\}. (17)
Proof:

See Appendix A. ∎

It follows from Theorem 1 that any orthogonal training matrix is optimal for the LS channel estimator, which conforms to the results in MIMO communications[41] and ideal RIS-assisted communication systems[27]. Herein, we adopt a simple discrete Fourier transform (DFT)-based training matrix for estimating the uplink multiuser channel. Specifically, the training sequence of each UE is expressed as

𝐱k=Pk𝐝k𝐝k,k𝒦,\displaystyle\mathbf{x}_{k}=\frac{\sqrt{P_{k}}}{\|\mathbf{d}_{k}\|}\mathbf{d}_{k},\ k\in\mathcal{K}, (18)

where 𝐝k\mathbf{d}_{k} denotes the kk-th column of the τ×τ\tau\times\tau DFT matrix.

III-B Optimization of RIS Reflection Pattern

In this subsection, we consider the optimization with respect to the RIS reflection pattern under the considered non-ideal phase shift constraint, which, according to the proof of Theorem 1, takes the form:

missingminimize𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{V}}\quad Tr[(𝐕𝐕H)1]\displaystyle\text{Tr}\left[\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\right]
subject to [𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n.\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}. (19)

Although the variable 𝐗\mathbf{X} has been eliminated, it is still nontrivial to find the optimal solution of problem (III-B) mainly due to the intricate phase shift constraint. In fact, although it has been proved in [27] that the optimal reflection pattern minimizing the MSE of the LS channel estimator is an orthogonal matrix, e.g., the DFT matrix or the Hadamard matrix, for ideal unit-modulus RIS phase shifts, this conclusion does not necessarily hold for the non-ideal phase shift constraints considered in this work. Hence, to design the non-ideal RIS reflection pattern for the LS channel estimator, we develop an MM-based algorithm.

The basic idea of the MM algorithm is to find a series of simple surrogate problems whose objective functions are locally approximated to the original objective function in each iteration, and then iteratively solve the surrogate problems until convergence [42]. To do this, we first derive an appropriate surrogate function with a more tractable form to locally approximate the objective function of problem (III-B), as given in the following proposition.

Proposition 1

For the objective function Tr[(𝐕𝐕H)1]\text{Tr}[(\mathbf{V}\mathbf{V}^{H})^{-1}], a surrogate upper bound for the ii-th iteration is

f(𝐕;𝐕0)=λ1Tr[𝐕𝐕H]+2{Tr[𝐀0𝐕]}+Const(𝐕0),\displaystyle f\left(\mathbf{V};\mathbf{V}_{0}\right)=\lambda_{1}\text{Tr}\left[\mathbf{V}\mathbf{V}^{H}\right]+2\mathcal{R}\left\{\text{Tr}\left[\mathbf{A}_{0}\mathbf{V}\right]\right\}+\text{Const}(\mathbf{V}_{0}), (20)

where 𝐕0\mathbf{V}_{0} denotes the solution to 𝐕\mathbf{V} in the (i1)(i-1)-th iteration of the MM algorithm, and λ1\lambda_{1}, 𝐀0\mathbf{A}_{0}, and Const(𝐕0)\text{Const}(\mathbf{V}_{0}) are defined as follows:

λ1\displaystyle\lambda_{1}\triangleq 3Tr[(𝐕0𝐕0H)1]2,\displaystyle\ 3\text{Tr}\left[\left(\mathbf{V}_{0}\mathbf{V}_{0}^{H}\right)^{-1}\right]^{2},
𝐀0\displaystyle\mathbf{A}_{0}\triangleq 𝐕0H(𝐕0𝐕0H)2λ1𝐕0H,\displaystyle\ -\mathbf{V}_{0}^{H}\left(\mathbf{V}_{0}\mathbf{V}_{0}^{H}\right)^{-2}-\lambda_{1}\mathbf{V}_{0}^{H},
Const(𝐕0)=\displaystyle\text{Const}(\mathbf{V}_{0})= Tr[(𝐕0𝐕0H)1]+λ1Tr[𝐕0𝐕0H]\displaystyle\ \text{Tr}\left[\left(\mathbf{V}_{0}\mathbf{V}_{0}^{H}\right)^{-1}\right]+\lambda_{1}\text{Tr}\left[\mathbf{V}_{0}\mathbf{V}_{0}^{H}\right]
+2Tr[𝐕0H(𝐕0𝐕0H)2𝐕0].\displaystyle\ +2\text{Tr}\left[\mathbf{V}_{0}^{H}\left(\mathbf{V}_{0}\mathbf{V}_{0}^{H}\right)^{-2}\mathbf{V}_{0}\right]. (21)
Proof:

See Appendix B. ∎

The major advantage of constructing the surrogate function in (20) is that the intractable inversion operation in the objective function of (III-B) is removed and we can perform the minimization of (20) by optimizing each entry of 𝐕\mathbf{V} simultaneously. Specifically, replacing the objective function in (III-B) with f(𝐕;𝐕0)f\left(\mathbf{V};\mathbf{V}_{0}\right), we obtain the following problem

missingminimize𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{V}}\quad λ1Tr[𝐕𝐕H]+2{Tr[𝐀0𝐕]}\displaystyle\lambda_{1}\text{Tr}\left[\mathbf{V}\mathbf{V}^{H}\right]+2\mathcal{R}\left\{\text{Tr}\left[\mathbf{A}_{0}\mathbf{V}\right]\right\}
subject to [𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n.\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}. (22)

In particular, we show that the optimal solution to problem (III-B) can be determined in an element-wise manner.

Proposition 2

The element-wise optimal solution of problem (III-B) in the ii-th iteration is obtained by

[𝐕]m,n={β(θ¯m,n)ejθ¯m,nm,n1m=M+1,\displaystyle\left[\mathbf{V}\right]_{m,n}=\begin{cases}\beta(\bar{\theta}_{m,n})e^{j\bar{\theta}_{m,n}}\ &m\in\mathcal{M},\ n\in\mathcal{B}\\ \quad 1&m=M+1,\end{cases} (23)

where θ¯m,n=argminθ[0,2π]f¯m,n(θ)\bar{\theta}_{m,n}=\mathop{\arg\min}\limits_{\theta\in[0,2\pi]}\bar{f}_{m,n}(\theta) and f¯m,n(θ)\bar{f}_{m,n}(\theta) is given by

f¯m,n(θ)\displaystyle\ \bar{f}_{m,n}(\theta)
=\displaystyle\!= λ1(ξ2(sin(θδ)+1)2α+βmin2+2ξβmin(sin(θδ)+1)α)\displaystyle\ \lambda_{1}\!\left(\xi^{2}(\sin(\theta\!-\!\delta)\!+\!1)^{2\alpha}\!+\!\beta_{\text{min}}^{2}\!+\!2\xi\beta_{\text{min}}(\sin(\theta\!-\!\delta)\!+\!1)^{\alpha}\right)
+2|[𝐀0]n,m|(ξ(sin(θδ)+1)α+βmin)cos(arg([𝐀0]n,m)+θ)\displaystyle\!+\!\!2|[\mathbf{A}_{0}]_{n,m}|\!(\xi(\sin(\theta\!-\!\delta)\!+\!1)^{\alpha}\!\!+\!\beta_{\text{min}})\cos(\arg([\mathbf{A}_{0}]_{n,m})\!+\!\theta) (24)

with ξ(1βmin)(12)α\xi\triangleq(1-\beta_{\text{min}})\left(\frac{1}{2}\right)^{\alpha}. The minimization of f¯m,n(θ)\bar{f}_{m,n}(\theta) can be obtained by performing a one-dimensional search over θ[0,2π]\theta\in[0,2\pi].

Proof:

See Appendix C. ∎

With the solution of the RIS reflection pattern given in (23), the proposed MM-based algorithm for the LS channel estimator is summarized in Algorithm 1. Moreover, we show the convergence of the MM algorithm in the following theorem.

Theorem 2

The proposed MM algorithm always converges to a stationary point of the problem in (III-B).

Proof:

See Appendix D. ∎

Remark 2

In Proposition 2, we address the element-wise optimization of [𝐕]m,n[\mathbf{V}]_{m,n} by performing the one-dimensional search over θ[0,2π]\theta\in[0,2\pi] based on the equivalent model in (3). In fact, the reflection coefficient can be modeled by the formulation in (2) directly, and the optimization of [𝐕]m,n[\mathbf{V}]_{m,n} can also be obtained by searching for the effective capacitance CmC_{m}.

Algorithm 1 Proposed Algorithm for LS Channel Estimator
1:  Initialization: Set the initial point 𝐕(0)\mathbf{V}^{(0)}, iteration index i=0i=0, and convergence accuracy ϵ\epsilon.
2:  Obtain the optimal 𝐗\mathbf{X} according to (18).
3:  repeat
4:     Set i=i+1i=i+1.
5:     Calculate 𝐕(i)\mathbf{V}^{(i)} according to (23);
6:  until convergence.
7:  Output the optimal 𝐕(i)\mathbf{V}^{(i)}.

IV LMMSE Channel Estimation

In this section, we address the optimization problem in (II-C) for the LMMSE channel estimator, which can be applied if the channel correlation matrix is known. To begin with, we utilize the matrix inversion lemma [43] and transform JLMMSEJ_{\text{LMMSE}} as follows:

JLMMSE=\displaystyle J_{\text{LMMSE}}= Tr[(𝐑𝚪1+1σ2L𝐒𝐒H)1]\displaystyle\ \text{Tr}\left[\left(\mathbf{R}_{\mathbf{\Gamma}}^{-1}+\frac{1}{\sigma^{2}L}\mathbf{S}\mathbf{S}^{H}\right)^{-1}\right]
=\displaystyle= Tr[𝐑𝚪𝐑𝚪𝐒(𝐒H𝐑𝚪𝐒+σ2L𝐈τB)1𝐒H𝐑𝚪].\displaystyle\ \text{Tr}\left[\mathbf{R}_{\mathbf{\Gamma}}-\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\left(\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}+\sigma^{2}L\mathbf{I}_{\tau B}\right)^{-1}\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\right]. (25)

As a result, the corresponding MSE minimization problem is equivalently reformulated as

missingminimize𝐗,𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{X},\mathbf{V}}\quad Tr[𝐑𝚪𝐒(𝐒H𝐑𝚪𝐒+σ2L𝐈τB)1𝐒H𝐑𝚪]\displaystyle-\text{Tr}\left[\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\left(\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}+\sigma^{2}L\mathbf{I}_{\tau B}\right)^{-1}\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\right]
subject to 𝐱k2Pk,k𝒦\displaystyle\|\mathbf{x}_{k}\|^{2}\leq P_{k},\ k\in\mathcal{K}
[𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n.\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}. (26)

Compared to the LS channel estimator, the objective function of problem (IV), denoted as g(𝐒)g(\mathbf{S}), is more complex, thus making it harder to optimize 𝐗\mathbf{X} and 𝐕\mathbf{V} separately. Hence, in order to address the considered problem, we propose an MM-based alternating algorithm.

We first construct a tractable surrogate function, as shown in the subsequent lemma, to iteratively upper bound g(𝐒)g(\mathbf{S}).

Lemma 1

For problem (IV), g(𝐒)g(\mathbf{S}) is upper bounded by g(𝐒;𝐒0)g(\mathbf{S};\mathbf{S}_{0}) given as follows:

g(𝐒;𝐒0)\displaystyle\ g(\mathbf{S};\mathbf{S}_{0})\triangleq Tr[𝚵0H𝐒H𝐑𝚪𝐒𝚵0]2{Tr[𝚵0𝐑𝚪𝐒]}\displaystyle\ \text{Tr}\left[\mathbf{\Xi}_{0}^{H}\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\mathbf{\Xi}_{0}\right]-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{\Xi}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\right]\right\}
+σ2LTr[𝚵0𝚵0H],\displaystyle\ +\sigma^{2}L\text{Tr}\left[\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\right], (27)

where 𝚵0=(𝐒0H𝐑𝚪𝐒0+σ2L𝐈τB)1𝐒0H𝐑𝚪\mathbf{\Xi}_{0}=\left(\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}_{0}+\sigma^{2}L\mathbf{I}_{\tau B}\right)^{-1}\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}} and 𝐒0\mathbf{S}_{0} is an arbitrary feasible solution to 𝐒\mathbf{S}.

Proof:

See Appendix E. ∎

We observe that g(𝐒;𝐒0)g(\mathbf{S};\mathbf{S}_{0}) in (1) only consists of a quadratic term and a linear term with respect to 𝐒\mathbf{S}, which makes it much easier to be handled than the original g(𝐒)g(\mathbf{S}). Based on Lemma 1, we address the minimization of g(𝐒)g(\mathbf{S}) by iteratively minimizing g(𝐒;𝐒0)g(\mathbf{S};\mathbf{S}_{0}), where the variables 𝐗\mathbf{X} and 𝐕\mathbf{V} are optimized in an alternating manner.

IV-A Optimization of the Training Matrix

We first perform the optimization of 𝐗\mathbf{X} with a fixed 𝐕\mathbf{V}. Substituting 𝐒=𝐕~𝐗~\mathbf{S}=\mathbf{\widetilde{V}}\mathbf{\widetilde{X}} into g(𝐒;𝐒0)g(\mathbf{S};\mathbf{S}_{0}) and omitting the constant terms, the training sequence design under the per-UE transmitter power constraints is formulated as

missingminimize𝐗\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{X}}\quad Tr[𝚵0H𝐗~H𝐕~0H𝐑𝚪𝐕~0𝐗~𝚵0]\displaystyle\text{Tr}\left[\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\mathbf{\widetilde{X}}\mathbf{\Xi}_{0}\right]
2{Tr[𝚵0𝐑𝚪𝐕~0𝐗~]}\displaystyle-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{\Xi}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\mathbf{\widetilde{X}}\right]\right\}
subject to 𝐱k2Pk,k𝒦,\displaystyle\|\mathbf{x}_{k}\|^{2}\leq P_{k},\ k\in\mathcal{K}, (28)

where 𝐕~0=𝐕0𝐈K\mathbf{\widetilde{V}}_{0}=\mathbf{V}_{0}\otimes\mathbf{I}_{K} and 𝐕0\mathbf{V}_{0} represents the fixed reflection pattern. Problem (IV-A) can be formulated into a convex problem with respect to the block-diagonal matrix 𝐗~\mathbf{\widetilde{X}}, as follows:

missingminimize𝐗~\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{\widetilde{X}}}\quad Tr[𝚵0H𝐗~H𝐕~0H𝐑𝚪𝐕~0𝐗~𝚵0]\displaystyle\text{Tr}\left[\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\mathbf{\widetilde{X}}\mathbf{\Xi}_{0}\right]
2{Tr[𝚵0𝐑𝚪𝐕~0𝐗~]}\displaystyle-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{\Xi}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\mathbf{\widetilde{X}}\right]\right\}
subject to 𝐗~=𝐈B𝐗,\displaystyle\mathbf{\widetilde{X}}=\mathbf{I}_{B}\otimes\mathbf{X},
[𝐗]k,1:τT2Pk,k𝒦,\displaystyle\|[\mathbf{X}]_{k,1:\tau}^{T}\|^{2}\leq P_{k},\ k\in\mathcal{K}, (29)

and then solved. However, directly solving (IV-A) can be computationally inefficient due to the large dimension of 𝐗~\mathbf{\widetilde{X}}. Therefore, we propose an MM-based solution for problem (IV-A), which only requires calculating closed-form expressions iteratively and results in a lower computational complexity.

Specifically, we employ the following upper bound to the first term in the objective function, according to [42, eq. (26)]:

Tr[𝚵0H𝐗~H𝐕~0H𝐑𝚪𝐕~0𝐗~𝚵0]\displaystyle\text{Tr}\left[\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\mathbf{\widetilde{X}}\mathbf{\Xi}_{0}\right]
=\displaystyle= vecH(𝐗~)((𝚵0𝚵0H)T𝐕~0H𝐑𝚪𝐕~0)vec(𝐗~)\displaystyle\ \text{vec}^{H}(\mathbf{\widetilde{X}})\left(\left(\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\right)^{T}\otimes\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\right)\text{vec}(\mathbf{\widetilde{X}})
\displaystyle\leq λ2𝐗~F22{Tr[λ2𝐗~0H𝐗~𝚵0𝚵0H𝐗~0H𝐕~0H𝐑𝚪𝐕~0𝐗~]}\displaystyle\ \lambda_{2}\|\mathbf{\widetilde{X}}\|_{F}^{2}-2\mathcal{R}\left\{\text{Tr}\left[\lambda_{2}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{X}}-\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\mathbf{\widetilde{X}}\right]\right\}
+vecH(𝐗~0)(λ2𝐈(𝚵0𝚵0H)T𝐕~0H𝐑𝚪𝐕~0)vec(𝐗~0),\displaystyle\ +\text{vec}^{H}(\mathbf{\widetilde{X}}_{0})\left(\lambda_{2}\mathbf{I}-\left(\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\right)^{T}\otimes\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}\right)\text{vec}(\mathbf{\widetilde{X}}_{0}), (30)

where λ2𝐈(𝚵0𝚵0H)T𝐕~0H𝐑𝚪𝐕~0\lambda_{2}\mathbf{I}\succeq(\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H})^{T}\otimes\mathbf{\widetilde{V}}^{H}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0} and 𝐗~0\mathbf{\widetilde{X}}_{0} is the solution of 𝐗~\mathbf{\widetilde{X}} in the previous iteration. For simplicity, the value of λ2\lambda_{2} can be set to λ2=λmax((𝚵0𝚵0H)T𝐕~0H𝐑𝚪𝐕~0)=λmax(𝚵0𝚵0H)λmax(𝐕~0H𝐑𝚪𝐕~0)\lambda_{2}=\lambda_{\text{max}}((\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H})^{T}\otimes\mathbf{\widetilde{V}}^{H}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0})=\lambda_{\text{max}}(\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H})\lambda_{\text{max}}(\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}).

By substituting (IV-A) and removing the constant terms, we transform problem (IV-A) into

missingminimize𝐗\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{X}}\quad λ2Tr[𝐗~𝐗~H]2{Tr[𝐁0𝐗~]}\displaystyle\lambda_{2}\text{Tr}\left[\mathbf{\widetilde{X}}\mathbf{\widetilde{X}}^{H}\right]-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{B}_{0}\mathbf{\widetilde{X}}\right]\right\}
subject to 𝐱k2Pk,k𝒦,\displaystyle\|\mathbf{x}_{k}\|^{2}\leq P_{k},\ k\in\mathcal{K}, (31)

where 𝐁0=λ2𝐗~0H𝚵0𝚵0H𝐗~0H𝐕~0H𝐑𝚪𝐕~0+𝚵0𝐑𝚪𝐕~0\mathbf{B}_{0}=\lambda_{2}\mathbf{\widetilde{X}}_{0}^{H}-\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}+\mathbf{\Xi}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}_{0}. By invoking the definition 𝐗~=𝐈B𝐗\mathbf{\widetilde{X}}=\mathbf{I}_{B}\otimes\mathbf{X} in (5), we can readily decompose the problem in (IV-A) into KK subproblems, with respect to the training sequence design at each UE. Concretely, each subproblem is given by

missingminimize𝐱k\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{x}_{k}}\quad λ2B𝐱k22{Tr[𝐛kH𝐱k]}\displaystyle\lambda_{2}B\|\mathbf{x}_{k}\|^{2}-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{b}^{H}_{k}\mathbf{x}_{k}\right]\right\}
subject to 𝐱k2Pk,\displaystyle\|\mathbf{x}_{k}\|^{2}\leq P_{k}, (32)

where 𝐛kb=1B[𝐁0](b1)τ+1:bτ,(b1)K+k\mathbf{b}_{k}\triangleq\sum_{b=1}^{B}\left[\mathbf{B}_{0}\right]^{*}_{(b-1)\tau+1:b\tau,(b-1)K+k}. Note that (IV-A) is a convex quadratic optimization problem which can be readily tackled. In fact, there exists a closed-form optimal solution as shown in the following proposition.

Proposition 3

The optimal solution to problem (IV-A) can be expressed in a closed form as follows:

𝐱k={Pk𝐛k𝐛kif𝐛k>Pkλ2B,𝐛kλ2Bif𝐛kPkλ2B.\displaystyle\mathbf{x}_{k}=\begin{cases}\frac{\sqrt{P_{k}}}{\|\mathbf{b}_{k}\|}\mathbf{b}_{k}\quad&\text{if}\quad\|\mathbf{b}_{k}\|>\sqrt{P_{k}}\lambda_{2}B,\\ \quad\frac{\mathbf{b}_{k}}{\lambda_{2}B}\quad&\text{if}\quad\|\mathbf{b}_{k}\|\leq\sqrt{P_{k}}\lambda_{2}B.\end{cases} (33)
Proof:

See Appendix F. ∎

By invoking (33) for all the KK UEs, we accomplish the optimization of 𝐗\mathbf{X} with a low computational cost.

IV-B Optimization of the RIS Reflection Pattern

Now we fix 𝐗\mathbf{X} and focus on the optimization of the RIS reflection pattern. According to the upper bound g(𝐒;𝐒0)g(\mathbf{S};\mathbf{S}_{0}) in (1), we formulate the subproblem with respect to 𝐕\mathbf{V} as

missingminimize𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{V}}\quad Tr[𝚵0H𝐗~0H𝐕~H𝐑𝚪𝐕~𝐗~0𝚵0]\displaystyle\text{Tr}\left[\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{V}}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\right]
2{Tr[𝐗~0𝚵0𝐑𝚪𝐕~]}\displaystyle-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}\right]\right\}
subject to [𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n.\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}. (34)

Similar to the optimization of the training matrix tackled in the previous subsection, by employing the upper bound given in [42, eq. (26)], we obtain

Tr[𝚵0H𝐗~0H𝐕~H𝐑𝚪𝐕~𝐗~0𝚵0]\displaystyle\text{Tr}\left[\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{V}}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\right]
\displaystyle\leq λ3𝐕~F22{Tr[λ3𝐕~0H𝐕~𝐗~0𝚵0𝚵0H𝐗~0H𝐕~0H𝐑𝚪𝐕~]}\displaystyle\lambda_{3}\|\mathbf{\widetilde{V}}\|_{F}^{2}-2\mathcal{R}\left\{\text{Tr}\left[\lambda_{3}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{\widetilde{V}}-\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{\widetilde{V}}\right]\right\}
+vecH(𝐕~0)(λ3𝐈(𝐗~0𝚵0𝚵0H𝐗~0H)T𝐑𝚪)vec(𝐕~0),\displaystyle+\text{vec}^{H}(\mathbf{\widetilde{V}}_{0})\left(\lambda_{3}\mathbf{I}-\left(\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\right)^{T}\otimes\mathbf{R}_{\mathbf{\Gamma}}\right)\text{vec}(\mathbf{\widetilde{V}}_{0}), (35)

and transform problem (IV-B) into

missingminimize𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{V}}\quad λ3Tr[𝐕~𝐕~H]2{Tr[𝐂0𝐕~]}\displaystyle\lambda_{3}\text{Tr}\left[\mathbf{\widetilde{V}}\mathbf{\widetilde{V}}^{H}\right]-2\mathcal{R}\left\{\text{Tr}\left[\mathbf{C}_{0}\mathbf{\widetilde{V}}\right]\right\}
subject to [𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n,\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}, (36)

where 𝐂0=λ3𝐕~0H𝐗~0𝚵0𝚵0H𝐗~0H𝐕~0H𝐑𝚪+𝐗~0𝚵0𝐑𝚪\mathbf{C}_{0}=\lambda_{3}\mathbf{\widetilde{V}}_{0}^{H}-\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H}\mathbf{\widetilde{V}}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}+\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\mathbf{R}_{\mathbf{\Gamma}}, 𝐕~0\mathbf{\widetilde{V}}_{0} is the solution of 𝐕~\mathbf{\widetilde{V}} in the previous iteration, and λ3\lambda_{3} is calculated as λmax(𝐗~0𝚵0𝚵0H𝐗~0H)λmax(𝐑𝚪)\lambda_{\text{max}}(\mathbf{\widetilde{X}}_{0}\mathbf{\Xi}_{0}\mathbf{\Xi}_{0}^{H}\mathbf{\widetilde{X}}_{0}^{H})\lambda_{\text{max}}\left(\mathbf{R}_{\mathbf{\Gamma}}\right).

By substituting 𝐕~𝐕𝐈K\mathbf{\widetilde{V}}\triangleq\mathbf{V}\otimes\mathbf{I}_{K} into the objective function of the problem in (IV-B), we obtain mn(λ3K|[𝐕]m,n|22{cm,n[𝐕]m,n})\sum_{m}\sum_{n}(\lambda_{3}K|[\mathbf{V}]_{m,n}|^{2}-2\mathcal{R}\left\{c_{m,n}[\mathbf{V}]_{m,n}\right\}), where cm,n=k=1K[𝐂0](n1)K+k,(m1)K+kc_{m,n}=\sum_{k=1}^{K}\left[\mathbf{C}_{0}\right]_{(n-1)K+k,(m-1)K+k}. Hence, we can solve problem (IV-B) in an element-wise manner. In particular, the solution to each entry of 𝐕\mathbf{V} in the ii-th iteration can be obtained according to

[𝐕]m,n={β(θ¯m,n)ejθ¯m,nm,n1m=M+1,\displaystyle\left[\mathbf{V}\right]_{m,n}=\begin{cases}\beta(\bar{\theta}_{m,n})e^{j\bar{\theta}_{m,n}}\ &m\in\mathcal{M},\ n\in\mathcal{B}\\ \quad 1&m=M+1,\end{cases} (37)

where θ¯m,n=argminθ[0,2π]gm,n(θ)\bar{\theta}_{m,n}=\mathop{\arg\min}\limits_{\theta\in[0,2\pi]}g_{m,n}(\theta) is derived by performing a one-dimensional search and gm,n(θ)g_{m,n}(\theta) is calculated by substituting the equivalent phase shift model in (3) into λ3K|β(θ)|22{cm,nβ(θ)ejθ}\lambda_{3}K|\beta(\theta)|^{2}-2\mathcal{R}\{c_{m,n}\beta(\theta)e^{j\theta}\}, whose expression is given by

gm,n(θ)\displaystyle\ g_{m,n}(\theta)
=\displaystyle\!= λ3K(ξ2(sin(θδ)+1)2α+βmin2+2ξβmin(sin(θδ)+1)α)\displaystyle\ \lambda_{3}K\!\left(\xi^{2}(\sin(\theta\!-\!\delta)\!+\!1)^{2\alpha}\!+\!\beta_{\text{min}}^{2}\!+\!2\xi\beta_{\text{min}}(\sin(\theta\!-\!\delta)\!+\!1)^{\alpha}\right)
2|cm,n|(ξ(sin(θδ)+1)α+βmin)cos(arg(cm,n)+θ).\displaystyle\!-\!\!2|c_{m,n}|\!(\xi(\sin(\theta\!-\!\delta)\!+\!1)^{\alpha}\!\!+\!\beta_{\text{min}})\cos(\arg(c_{m,n})\!+\!\theta). (38)

Based on the two proposed solutions, the LMMSE channel estimation algorithm is summarized in Algorithm 2. Regarding the convergence, it can be verified that the algorithm generates a non-increasing sequence based on the alternating optimization method that is utilized. Moreover, the objective value of the problem in (IV) has a finite lower bound. Therefore, Algorithm 2 always converges.

Algorithm 2 Proposed MM-Based Alternating Algorithm for LMMSE Channel Estimator
1:  Initialization: Set the initial point 𝐕(0)\mathbf{V}^{(0)}, 𝐗(0)\mathbf{X}^{(0)}, iteration index i=0i=0, and convergence accuracy ϵ\epsilon.
2:  repeat
3:     Set i=i+1i=i+1.
4:     Obtain 𝐗(i)\mathbf{X}^{(i)} according to (33);
5:     Obtain 𝐕(i)\mathbf{V}^{(i)} according to (37);
6:  until convergence.
7:  Output the optimal 𝐕(i)\mathbf{V}^{(i)} and 𝐗(i)\mathbf{X}^{(i)}.

V Accelerated MM Algorithm

When utilizing MM algorithms, the convergence speed usually depends on the tightness of the majorization functions. In the previous sections, in order to solve the channel estimation problems and reduce the computational complexity, the coefficients of the quadratic term, e.g., λ1\lambda_{1}, in the proposed majorization functions were relaxed and the original objective function was majorized twice successively for the LMMSE estimation. These operations result in a slow convergence speed of the MM method due to the loose surrogate function.

In this section, we employ the squared iterative method (SQUAREM) [44] to accelerate the convergence of the proposed MM-based algorithms. SQUAREM was originally proposed in [44] to accelerate the convergence speed of the expectation-maximization (EM) algorithms. Since MM is a generalization of EM [42], SQUAREM can also be easily applied to MM algorithms [45, 46].

Without loss of generality, we focus on the acceleration of Algorithm 1 for the LS channel estimation problem. The acceleration schemes of Algorithm 2 for the LMMSE channel estimator can be obtained in a similar way. Specifically, given 𝐕0\mathbf{V}_{0} denoting the solution obtained in the (i1)(i-1)-th iteration, we denote the update of 𝐕\mathbf{V} in step 5 of Algorithm 1 by 𝐕(i)=MMupdate(𝐕0).\mathbf{V}^{(i)}=\text{MMupdate}(\mathbf{V}_{0}). Then, the proposed SQUAREM-based accelerated MM scheme is given in Algorithm 3. Note that the updated variable 𝐕02l𝐋1+l2𝐋2\mathbf{V}_{0}-2l\mathbf{L}_{1}+l^{2}\mathbf{L}_{2} in step 9 may violate the constraints, i.e., [𝐕02l𝐋1+l2𝐋2]m,n[\mathbf{V}_{0}-2l\mathbf{L}_{1}+l^{2}\mathbf{L}_{2}]_{m,n}\notin\mathcal{F}, which needs to be projected back to the feasible region (denoted by 𝒫()\mathcal{P}(\cdot)). For the element-wise practical circuit model constraint of 𝐕\mathbf{V}, the projection can be readily addressed by adjusting the reflection amplitude of each element according to its phase shift based on the equivalent relationship in (3). Moreover, the step length ll is chosen based on the Cauchy-Barzilai-Borwein (CBB) method, and a back-tracking based strategy is adopted to guarantee the monotonicity of the algorithm.

Algorithm 3 Accelerated MM Algorithm to Optimize 𝐕\mathbf{V} for the LS Channel Estimator
1:  Initialization: set the initial point 𝐕(0)\mathbf{V}^{(0)}, iteration index i=0i=0, and convergence accuracy ϵ\epsilon.
2:  repeat
3:     Set i=i+1i=i+1;
4:     𝐕1=MMupdate(𝐕0)\mathbf{V}_{1}=\text{MMupdate}\left(\mathbf{V}_{0}\right);
5:     𝐕2=MMupdate(𝐕1)\mathbf{V}_{2}=\text{MMupdate}\left(\mathbf{V}_{1}\right);
6:     𝐋1=𝐕1𝐕0\mathbf{L}_{1}=\mathbf{V}_{1}-\mathbf{V}_{0};
7:     𝐋2=𝐕2𝐕1𝐋1\mathbf{L}_{2}=\mathbf{V}_{2}-\mathbf{V}_{1}-\mathbf{L}_{1};
8:     Compute the step-length l=𝐋1F𝐋2Fl=-\frac{\|\mathbf{L}_{1}\|_{F}}{\|\mathbf{L}_{2}\|_{F}};
9:     𝐕temp=𝒫(𝐕02l𝐋1+l2𝐋2)\mathbf{V}_{\text{temp}}=\mathcal{P}\left(\mathbf{V}_{0}-2l\mathbf{L}_{1}+l^{2}\mathbf{L}_{2}\right);
10:     while MSE(𝐕temp)>MSE(𝐕0)\text{MSE}(\mathbf{V}_{\text{temp}})>\text{MSE}(\mathbf{V}_{0}) do l(l1)/2\quad\quad l\leftarrow(l-1)/2 𝐕temp=𝒫(𝐕02l𝐋1+l2𝐋2)\quad\quad\mathbf{V}_{\text{temp}}=\mathcal{P}\left(\mathbf{V}_{0}-2l\mathbf{L}_{1}+l^{2}\mathbf{L}_{2}\right) end while
11:     𝐕(i)=𝐕temp\mathbf{V}^{(i)}=\mathbf{V}_{\text{temp}};
12:  until convergence.
13:  Output the optimal 𝐕(i)\mathbf{V}^{(i)}.

For the optimization of 𝐗\mathbf{X}, a similar approach as Algorithm 3 can be applied, while only changing the projection function 𝒫()\mathcal{P}(\cdot) in step 9. Specifically, the projection of 𝐗02l𝐋1+l2𝐋2\mathbf{X}_{0}-2l\mathbf{L}_{1}+l^{2}\mathbf{L}_{2} onto the per-UE transmit power constraint set can be expressed as [𝐗temp]k,1:τ=Pk𝐱k𝐱k,k𝒦,[\mathbf{X}_{\text{temp}}]_{k,1:\tau}=\frac{\sqrt{P_{k}}}{\|\mathbf{x}^{\prime}_{k}\|}\mathbf{x}^{\prime}_{k},\ \forall k\in\mathcal{K}, where 𝐱k[𝐗02l𝐋1+l2𝐋2]k,1:τ\mathbf{x}^{\prime}_{k}\triangleq[\mathbf{X}_{0}-2l\mathbf{L}_{1}+l^{2}\mathbf{L}_{2}]_{k,1:\tau}.

VI Simulation Results and Complexity Analysis

VI-A Simulation Setup

In this section, the performance of the proposed channel estimation algorithms is evaluated via numerical simulations. Under practical size limitations, the distance between adjacent elements at the RIS cannot be excessively large. Hence, the channels of the RIS elements are also usually spatially correlated [47]. We denote the spatial correlation matrices at the UEs, RIS, and BS by [𝚿]i,j=ψ|ij|,i,j,[\mathbf{\Psi}]_{i,j}=\psi^{|i-j|},\ \forall i,j, where 0ψ<10\leq\psi<1 stands for the spatial correlation coefficient. The correlation coefficients at the UEs, RIS, and BS are denoted as ψUE\psi_{\text{UE}}, ψRIS\psi_{\text{RIS}}, and ψBS\psi_{\text{BS}}, respectively. The expression of the cascaded channel correlation matrix 𝐑𝚪\mathbf{R}_{\mathbf{\Gamma}} for the LMMSE estimator is given in Appendix G. The number of training subframes BB and the number of training symbols in each subframe τ\tau are set to M+1M+1 and KK, respectively. The noise variance σ2\sigma^{2} is normalized and the system SNR is defined as Pkσ2=Pk\frac{P_{k}}{\sigma^{2}}=P_{k}, where PkP_{k} is identical for all the KK UEs for simplicity. The parameters in (3) for modeling the practical phase shift constraints are set according to [40]. The simulation parameters are given in Table I unless otherwise specified.

TABLE I: SIMULATION PARAMETERS
Notation Parameter Value
KK Number of UEs 4
MM Number of RIS reflecting elements 20
LL Number of BS antennas 16
ψUE\psi_{\text{UE}} Correlation coefficient at the UEs 0.2
ψRIS\psi_{\text{RIS}} Correlation coefficient at the RIS 0.4
ψBS\psi_{\text{BS}} Correlation coefficient at the BS 0.6
βmin\beta_{\text{min}} Minimum reflection amplitude in (3) 0.2
α\alpha Steepness of the function curve in (3) 2.0
δ\delta Horizontal distance between π/2-\pi/2 and βmin\beta_{\text{min}} in (3) 0.43π0.43\pi
ϵ\epsilon Algorithm convergence accuracy 10310^{-3}
Refer to caption
Figure 4: Normalized MSE of the LS channel estimator with respect to the number of iterations and the running time in each iteration.

VI-B Normalized MSE Performance Comparisons

We first validate the effectiveness of the utilized MM-based algorithms. We show the normalized MSE, i.e., JLS/[LK(M+1)]J_{\text{LS}}/[LK(M+1)], of the LS channel estimation algorithm with respect to the number of iterations in the first subfigure of Fig. 4. The alternating optimization method proposed in [48] is also used to solve problem (III-B) for comparison, which optimizes each element of 𝐕\mathbf{V} in an alternating manner, by performing a one-dimensional search with the other B(M+1)1B(M+1)-1 variables being fixed. It is found that the convergence speed of the MM algorithm is significantly enhanced by utilizing the proposed acceleration scheme, and the accelerated MM algorithm achieves almost the same MSE performance as the alternating scheme with a similar convergence speed. Moreover, as shown in the second subfigure, the MM-based algorithm has a much shorter running time than the alternating scheme.

For performance comparisons, we consider the following baseline schemes:

VI-B1 Ideal RIS

This corresponds to an ideal RIS, where the amplitude of the reflection coefficient of each element is fixed to 11 while the phase shift can take any values from 0 to 2π2\pi. In this case, the solution to 𝐕\mathbf{V} in each iteration becomes

[𝐕]m,n=ejarg([𝐀0]n,m)m,n,\displaystyle\left[\mathbf{V}\right]_{m,n}=e^{-j\arg(-[\mathbf{A}_{0}]_{n,m})}\ m\in\mathcal{M},\ n\in\mathcal{B}, (39)

for the LS channel estimator, and becomes

[𝐕]m,n=ejarg(cm,n)m,n,\displaystyle\left[\mathbf{V}\right]_{m,n}=e^{-j\arg(c_{m,n})}\ m\in\mathcal{M},\ n\in\mathcal{B}, (40)

for the LMMSE channel estimator. The training matrix 𝐗\mathbf{X} is determined via the proposed solutions, i.e., an orthogonal 𝐗\mathbf{X} is used for the LS channel estimator and an alternating optimization algorithm based on (40) and Algorithm 2 is utilized for the LMMSE channel estimator.

VI-B2 Ideal RIS projection

This corresponds to projecting the reflection coefficients obtained by the “Ideal RIS” strategy onto the practical constraints in (3), i.e., 𝐕^m,n=β(θm,n)ejθm,n,m,n,\mathbf{\hat{V}}_{m,n}=\beta(\theta^{\star}_{m,n})e^{j\theta^{\star}_{m,n}},\ m\in\mathcal{M},\ n\in\mathcal{B}, where 𝐕^m,n\mathbf{\hat{V}}_{m,n} is the projected reflection coefficient and θm,n\theta^{\star}_{m,n} denotes the phase shift of the “Ideal RIS” scheme. The training symbols are also obtained utilizing the proposed algorithms.

VI-B3 Naive scheme

This corresponds to computing an orthogonal training matrix according to (18), and to deriving a reflection pattern 𝐕¯\mathbf{\bar{V}} by projecting each entry of a B×BB\times B DFT matrix onto the practical constraints in (3), i.e., 𝐕¯m,n=β(dm,n)ejdm,n,m,n,\mathbf{\bar{V}}_{m,n}=\beta(d_{m,n})e^{jd_{m,n}},\ m\in\mathcal{M},\ n\in\mathcal{B}, where dm,nd_{m,n} denotes the phase shift of the (m,n)(m,n)-th entry of the considered DFT matrix. This naive scheme avoids the optimization process, and it is also utilized as the initial point for the proposed iterative algorithms.

VI-B4 On-off scheme

This corresponds to turning one RIS element with unit amplitude reflection coefficient and to estimating the associated effective channel at a time [26].

Refer to caption
Figure 5: Normalized MSE of the LS channel estimator versus the SNR.
Refer to caption
Figure 6: Normalized MSE of the LS channel estimator under different βmin\beta_{\text{min}}.

Fig. 5 shows the channel estimation error of the LS estimator versus the SNR. It is seen that the normalized MSEs of all the schemes decrease when increasing the SNR. Compared to the “On-off scheme”, the other schemes, where all the RIS elements are turned on during the training phase and the reflection pattern is appropriately configured, achieve much better channel estimation performances. Moreover, the proposed scheme outperforms the “Ideal RIS projection” scheme, since the proposed scheme optimizes the reflection coefficients of the RIS by incorporating the practical phase shift model directly, while the “Ideal RIS projection” scheme cannot guarantee any optimality when the practical phase shift model is considered. On the other hand, we observe that the performance achieved by “Ideal RIS projection” and “Naive scheme” is similar at various SNRs. This is because a DFT-based reflection pattern is already optimal for the LS channel estimator under the ideal unit-modulus coefficient constraints [27]. Fig. 6 illustrates the impact of βmin\beta_{\text{min}} for the practical phase shift model. As βmin\beta_{\text{min}} decreases, the phase shift model in (3) deviates from the ideal one, so that the channel estimation performance degrades. Additionally, when βmin\beta_{\text{min}} increases, the performance gap between the “Ideal RIS projection” and “Proposed scheme” becomes smaller, since the considered phase shift model approaches the ideal one for large βmin\beta_{\text{min}}.

Refer to caption
Figure 7: Normalized MSE of the LMMSE channel estimator versus the SNR.
Refer to caption
Figure 8: Normalized MSEs of the LS and LMMSE channel estimators versus the SNR.

Fig. 7 evaluates the estimation error of the LMMSE channel estimator, from which similar conclusions can be drawn as in Fig. 5, except that there exists a performance gap between the “Ideal RIS projection” and “Naive scheme” in Fig. 7. This is due to the fact that, in contrast to the LS criterion, a DFT-based orthogonal reflection pattern is no longer optimal for the LMMSE channel estimator even under the ideal unit-modulus coefficient constraint.

Finally, we compare the normalized MSE performance of the LS and LMMSE channel estimators for the considered RIS-aided multiuser system, as illustrated in Fig. 8 and Fig. 9. We observe that, by using some prior knowledge of the channel correlation, the LMMSE channel estimator is capable of achieving a lower MSE than the LS estimator. In particular, compared to the ideal phase shift model, the performance gap between the LS and LMMSE channel estimators becomes larger when considering the non-ideal phase shift model (see Appendix H for a more detailed explanation). In addition, we find from Fig. 9 that the normalized MSE of the considered system decreases when increasing the number of RIS reflecting elements. This is because the reflection pattern is well designed and the RIS can be fully exploited, which, however, requires a longer pilot sequence and leads to a higher training overhead. Finally, a more notable performance gap between the LMMSE and LS channel estimators can be observed when the number of RIS reflecting elements is relatively small.

Refer to caption
Figure 9: Normalized MSEs of the LS and LMMSE channel estimators versus the number of reflecting elements at the RIS (SNR = 0 dB).

VI-C Impact of Channel Estimation Training Overhead

In this subsection, we evaluate the impact of the channel estimation training overhead. Without loss of generality, we consider a block fading channel model where the instantaneous CSI remains static within each coherence block of TT slots and the long-term CSI, i.e., the channel correlation, remains unchanged during UU coherence blocks. For comparisons, we consider two low-overhead schemes: the grouping scheme [24] and the two-timescale scheme [34, 35]. In the former scheme, ρ1\rho\geq 1 neighboring RIS elements are grouped, and they share a common reflection coefficient. Accordingly, the channel estimator provides estimates for the combined channel of each group. In this way, the effective dimension of the RIS is reduced to M/ρM/\rho. In the latter scheme, the reflection pattern at the RIS is designed and fixed within UU coherence blocks and the effective instantaneous BS-UE channel is estimated in each coherence block, with training overhead KK, and then used for BS beamforming. We summarize and compare the training overhead and the implementation cost of these schemes in Table II. It can be seen that the training overhead of the proposed method can be reduced via the RIS element grouping and the two-timescale scheme has the lowest training overhead and implementation cost.

TABLE II: Training Overhead and Implementation Cost Comparison Among Different Schemes
Scheme Estimated channel Training overhead Implementation cost of configuring the reflection pattern
Proposed w/o grouping [𝚪1,,𝚪M+1][\mathbf{\Gamma}_{1},\cdots,\mathbf{\Gamma}_{M+1}] K(M+1)K(M+1) Training: Calculated once every UU blocks; Adjusted once every KK slots
Proposed w/ grouping [𝚪¯1,,𝚪¯M/ρ+1][\mathbf{\bar{\Gamma}}_{1},\cdots,\mathbf{\bar{\Gamma}}_{M/\rho+1}] K(M/ρ+1)K(M/\rho+1) Transmission: Calculated once and kept fixed within each coherence block
Two-timescale 𝐆𝚽𝐇r+𝐇d\mathbf{G}\mathbf{\Phi}\mathbf{H}_{r}+\mathbf{H}_{d} KK Calculated once and kept fixed within UU coherence blocks

Next, we compare the average transmission rate of the schemes in Table II. Note that the two-timescale design for a multiuser system in the presence of spatially correlated channels and a non-ideal phase-shift response is very challenging to analyze and, to the best of the authors’ knowledge, it has not been studied in the existing literature. Hence, we focus on a single-UE scenario for this performance comparison. Specifically, we denote the BS-RIS channel, the RIS-UE channel, and the BS-UE channel in the uu-th coherence block by 𝐆(u)\mathbf{G}(u), 𝐡r(u)\mathbf{h}_{r}(u), and 𝐡d(u)\mathbf{h}_{d}(u), respectively. According to [34, Section III], the optimization of the phase shift matrix 𝚽\mathbf{\Phi} based on long-term statistics is formulated by

missingmaximize𝚽\displaystyle\mathop{\text{missing}}{maximize}\limits_{\mathbf{\Phi}}\quad 𝔼{𝐆(u)𝚽𝐡r(u)+𝐡d(u)2}\displaystyle\mathbb{E}\left\{\|\mathbf{G}(u)\mathbf{\Phi}\mathbf{h}_{r}(u)+\mathbf{h}_{d}(u)\|^{2}\right\}
subject to ϕm,m,\displaystyle\phi_{m}\in\mathcal{F},\ m\in\mathcal{M}, (41)

where the expectation is taken over the instantaneous CSI {𝐆(u),𝐡r(u),𝐡d(u)}\{\mathbf{G}(u),\mathbf{h}_{r}(u),\mathbf{h}_{d}(u)\}. By noting 𝔼{𝐆(u)𝚽𝐡r(u)+𝐡d(u)2}=LTr[𝚽H𝚿RIS𝚽𝚿RIS]+L\mathbb{E}\left\{\|\mathbf{G}(u)\mathbf{\Phi}\mathbf{h}_{r}(u)+\mathbf{h}_{d}(u)\|^{2}\right\}=L\text{Tr}[\mathbf{\Phi}^{H}\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}\mathbf{\Psi}_{\text{RIS}}]+L and exploiting the first-order Taylor expansion: Tr[𝚽H𝚿RIS𝚽𝚿RIS]2{Tr[𝚿RIS𝚽0H𝚿RIS𝚽]}Tr[𝚽0H𝚿RIS𝚽0𝚿RIS],\text{Tr}[\mathbf{\Phi}^{H}\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}\mathbf{\Psi}_{\text{RIS}}]\geq 2\mathcal{R}\left\{\text{Tr}\left[\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}_{0}^{H}\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}\right]\right\}-\text{Tr}[\mathbf{\Phi}_{0}^{H}\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}_{0}\mathbf{\Psi}_{\text{RIS}}], we address problem (VI-C) by iteratively maximizing {Tr[𝚿RIS𝚽0H𝚿RIS𝚽]}\mathcal{R}\left\{\text{Tr}\left[\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}_{0}^{H}\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}\right]\right\} under the phase-shift constraint in (3), where 𝚽0\mathbf{\Phi}_{0} denotes the solution obtained in the previous iteration. In each iteration, the problem has an element-wise optimal solution ϕm=β(θm)ejθm,m\phi_{m}=\beta(\theta_{m})e^{j\theta_{m}},\ m\in\mathcal{M}, where θm\theta_{m} is obtained by performing a one-dimensional search over θ[0,2π]\theta\in[0,2\pi] to maximize |[𝚿RIS𝚽0H𝚿RIS]m,m|(ξ(sin(θδ)+1)α+βmin)cos(arg([𝚿RIS𝚽0H𝚿RIS]m,m)+θ)|[\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}_{0}^{H}\mathbf{\Psi}_{\text{RIS}}]_{m,m}|(\xi(\sin(\theta-\delta)+1)^{\alpha}+\beta_{\text{min}})\cos(\arg([\mathbf{\Psi}_{\text{RIS}}\mathbf{\Phi}_{0}^{H}\mathbf{\Psi}_{\text{RIS}}]_{m,m})+\theta). After determining the optimal 𝚽\mathbf{\Phi}, which is kept fixed within UU coherence blocks, a pilot symbol is transmitted from the UE to estimate the instantaneous effective BS-UE channel in each coherence block, and, subsequently, the maximum ratio transmission strategy is utilized at the BS for data transmission. As a result, the average transmission rate during UU coherence blocks is given by (11T)1Uu=1URtts(u)\left(1-\frac{1}{T}\right)\frac{1}{U}\sum_{u=1}^{U}R_{\text{tts}}(u), where Rtts(u)R_{\text{tts}}(u) denotes the transmission rate in the uu-th coherence block. As for the proposed scheme, in each coherence block a pilot sequence of length M+1M+1 is transmitted from the UE to estimate the cascaded channel, by using the proposed channel estimation method, based on which the reflection coefficient matrix at the RIS and the beamforming at the BS are optimized using the method proposed in [40] for data transmission. Denoting the resulting transmission rate in the uu-th coherence block by Rprop(u)R_{\text{prop}}(u), the average rate of the proposed scheme is given by (1M+1T)1Uu=1URprop(u)\left(1-\frac{M+1}{T}\right)\frac{1}{U}\sum_{u=1}^{U}R_{\text{prop}}(u).

The average transmission rates of the schemes in Table II are compared in Fig. 10, where U=50U=50, T=196T=196, and the SNRs for channel estimation and data transmission are both set to 5 dB. It is seen that, compared to the two-timescale scheme, the proposed scheme achieves a higher rate when MM is relatively small, since the RIS reflection matrix in the two-timescale scheme is predetermined and fixed within UU blocks while the proposed scheme adjusts the RIS reflection matrix based on the instantaneous CSI. By increasing MM, the rate of the proposed scheme without grouping first increases and then decreases, and finally becomes worse than that of the two-timescale scheme, which is due to the larger training overhead. Nevertheless, the training overhead of the proposed scheme can be reduced by utilizing the grouping scheme. In particular, the larger MM, the better the grouping scheme.

Refer to caption
Figure 10: Average transmission rate of different schemes.

VI-D Complexity Analysis

As for the LS channel estimator, 𝐕\mathbf{V} is iteratively updated by employing Algorithm 1. In each iteration, the main computational complexity lies in calculating the surrogate function f(𝐕;𝐕0)f(\mathbf{V};\mathbf{V}_{0}) in (20). The associated complexity is 𝒪(M2B)\mathcal{O}(M^{2}B) and 𝒪(M3)\mathcal{O}(M^{3}) in terms of matrix multiplications and matrix inversions, respectively, and 𝒪(MB𝒟)\mathcal{O}(MB\mathcal{D}) in terms of performing the element-wise one-dimensional search for MBMB elements according to (23), where 𝒟\mathcal{D} denotes the complexity of the one-dimensional search. Hence, the overall complexity of the LS channel estimator is 𝒪(LS(M3+M2B+MB𝒟))\mathcal{O}(\mathcal{I}_{\text{LS}}(M^{3}+M^{2}B+MB\mathcal{D})), where LS\mathcal{I}_{\text{LS}} denotes the number of iterations required for convergence. As for the LMMSE channel estimator, the matrices 𝐗\mathbf{X} and 𝐕\mathbf{V} need to be updated in each iteration of Algorithm 2. The process of updating 𝐗\mathbf{X} involves the calculation of matrix multiplications, with complexity 𝒪(B2τ2MK+M2K2Bτ)\mathcal{O}(B^{2}\tau^{2}MK+M^{2}K^{2}B\tau), and matrix inversions, with complexity 𝒪(B3τ3)\mathcal{O}(B^{3}\tau^{3}), as well as the largest eigenvalue of a BK×BKBK\times BK matrix, which can be handled via the efficient power iteration method [49] with complexity 𝒪(B2K2)\mathcal{O}(B^{2}K^{2}). Hence, the total complexity of updating 𝐗\mathbf{X} is 𝒪(B3τ3+B2K2+B2τ2MK+M2K2Bτ)\mathcal{O}(B^{3}\tau^{3}+B^{2}K^{2}+B^{2}\tau^{2}MK+M^{2}K^{2}B\tau). The update of 𝐕\mathbf{V} has an additional computational cost of 𝒪(MB𝒟)\mathcal{O}(MB\mathcal{D}) because of the element-wise phase search. Hence, the overall complexity of the LMMSE channel estimator is given by 𝒪(LMMSE(B3τ3+B2K2+B2τ2MK+M2K2Bτ+MB𝒟))\mathcal{O}(\mathcal{I}_{\text{LMMSE}}(B^{3}\tau^{3}+B^{2}K^{2}+B^{2}\tau^{2}MK+M^{2}K^{2}B\tau+MB\mathcal{D})), where LMMSE\mathcal{I}_{\text{LMMSE}} denotes the number of iterations required for convergence. Considering a typical setup, where B=M+1B=M+1 and τ=K\tau=K, the total complexities of the LS and the LMMSE channel estimation schemes are 𝒪(LS(M3+M2𝒟))\mathcal{O}(\mathcal{I}_{\text{LS}}(M^{3}+M^{2}\mathcal{D})) and 𝒪(LMMSE(M3K3+M2𝒟))\mathcal{O}(\mathcal{I}_{\text{LMMSE}}(M^{3}K^{3}+M^{2}\mathcal{D})), respectively. Hence, the LMMSE channel estimator has a higher computational complexity than the LS channel estimator.

VII Conclusion

A joint design for training symbols and reflection pattern for RIS-assisted multiuser communication systems with a realistic phase-amplitude reflection model was investigated in this paper. We considered the MSE minimization problem for both LS and MMSE channel estimators, subject to the transmit power constraint at the UEs and a practical phase shift model at the RIS. For the LS criterion, we proved the optimality of the orthogonal training signals and developed an MM-based algorithm to address the reflection pattern design with a semi-closed form solution in each iteration. As for the LMMSE criterion, we proposed to iteratively optimize the training symbols and the reflection pattern, whose optimal solutions in each iteration were obtained in a closed form and a semi-closed form, respectively. The SQUAREM method was further utilized to accelerate the convergence speed of the proposed MM algorithms. Simulation results confirmed that the proposed design can effectively improve the channel estimation performance of RIS-aided channel in the presence of practical phase-amplitude reflection models. In addition, compared to the two-timescale design scheme, the proposed instantaneous channel estimation-based scheme demonstrates superior transmission rates for a low-to-medium size of the RIS, while a grouping strategy is needed when considering a large-size RIS.

Appendix A Proof of Theorem  1

Based on the expression of 𝐒\mathbf{S} in (11), we have

𝐒𝐒H=\displaystyle\mathbf{S}\mathbf{S}^{H}= [(𝐕𝐈K)(𝐈B𝐗)][(𝐈B𝐗H)(𝐕H𝐈K)]\displaystyle\ [(\mathbf{V}\otimes\mathbf{I}_{K})(\mathbf{I}_{B}\otimes\mathbf{X})][(\mathbf{I}_{B}\otimes\mathbf{X}^{H})(\mathbf{V}^{H}\otimes\mathbf{I}_{K})]
=\displaystyle= (𝐕𝐗)(𝐕H𝐗H)\displaystyle\ (\mathbf{V}\otimes\mathbf{X})(\mathbf{V}^{H}\otimes\mathbf{X}^{H})
=\displaystyle= (𝐕𝐕H)(𝐗𝐗H).\displaystyle\ \left(\mathbf{V}\mathbf{V}^{H}\right)\otimes\left(\mathbf{X}\mathbf{X}^{H}\right). (42)

Substituting (42) into JLSJ_{\text{LS}}, we have

Tr[(𝐒𝐒H)1]=\displaystyle\text{Tr}\left[\left(\mathbf{S}\mathbf{S}^{H}\right)^{-1}\right]= Tr[((𝐕𝐕H)(𝐗𝐗H))1]\displaystyle\ \text{Tr}\left[\left(\left(\mathbf{V}\mathbf{V}^{H}\right)\otimes\left(\mathbf{X}\mathbf{X}^{H}\right)\right)^{-1}\right]
=\displaystyle= Tr[(𝐕𝐕H)1(𝐗𝐗H)1]\displaystyle\ \text{Tr}\left[\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\otimes\left(\mathbf{X}\mathbf{X}^{H}\right)^{-1}\right]
=\displaystyle= Tr[(𝐕𝐕H)1]Tr[(𝐗𝐗H)1].\displaystyle\ \text{Tr}\left[\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\right]\text{Tr}\left[\left(\mathbf{X}\mathbf{X}^{H}\right)^{-1}\right]. (43)

Therefore, given an arbitrary reflection pattern 𝐕\mathbf{V}, the optimization of 𝐗\mathbf{X} amounts to

missingminimize𝐗\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{X}}\quad κTr[(𝐗𝐗H)1]\displaystyle\kappa\text{Tr}\left[\left(\mathbf{X}\mathbf{X}^{H}\right)^{-1}\right]
subject to 𝐱k2Pk,k𝒦,\displaystyle\|\mathbf{x}_{k}\|^{2}\leq P_{k},\ k\in\mathcal{K}, (44)

where κ=σ2LTr[(𝐕𝐕H)1]\kappa=\sigma^{2}L\text{Tr}[(\mathbf{V}\mathbf{V}^{H})^{-1}] is independent of 𝐗\mathbf{X}. It can be readily shown by contradiction that the inequality constraints in (A) must be active at the optimality. Moreover, the optimal solution must have orthogonal rows. Hence, we obtain (17) and the proof is completed.

Appendix B Proof of Proposition 1

Denote the objective function of problem (III-B) by f(𝐕)Tr[(𝐕𝐕H)1]f(\mathbf{V})\triangleq\text{Tr}[(\mathbf{V}\mathbf{V}^{H})^{-1}]. To find a proper surrogate function of f(𝐕)f(\mathbf{V}), we utilize the following upper bound [42, Eq. (25)]

f(𝐱)f(𝐲)+f(𝐲)T(𝐱𝐲)+12(𝐱𝐲)T𝐌(𝐱𝐲),\displaystyle f(\mathbf{x})\leq f(\mathbf{y})+\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})+\frac{1}{2}(\mathbf{x}-\mathbf{y})^{T}\mathbf{M}(\mathbf{x}-\mathbf{y}), (45)

where the matrix 𝐌\mathbf{M} must satisfy 𝐌2f(𝐱)\mathbf{M}\succeq\bigtriangledown^{2}f(\mathbf{x}) for all 𝐱\mathbf{x}. According to (45), we are ready to calculate the first-order and the second-order differentials of f(𝐕)f(\mathbf{V}). By applying d𝐀1=𝐀1(d𝐀)𝐀1d\mathbf{A}^{-1}=-\mathbf{A}^{-1}(d\mathbf{A})\mathbf{A}^{-1} [50], we first compute the first-order differential of f(𝐕)f(\mathbf{V}) as

df(𝐕)=\displaystyle df(\mathbf{V})= Tr[(𝐕𝐕H)2d(𝐕𝐕H)]\displaystyle-\text{Tr}\left[\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}d\left(\mathbf{V}\mathbf{V}^{H}\right)\right]
=\displaystyle= Tr[𝐕H(𝐕𝐕H)2d𝐕+(𝐕𝐕H)2𝐕d𝐕H].\displaystyle-\text{Tr}\left[\mathbf{V}^{H}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}d\mathbf{{V}}+\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}\mathbf{V}d\mathbf{{V}}^{H}\right]. (46)

Then, according to [50] and Tr(𝐀𝐁)=vecT(𝐀T)vec(𝐁)\text{Tr}(\mathbf{A}\mathbf{B})=\text{vec}^{T}(\mathbf{A}^{T})\text{vec}(\mathbf{B}), we obtain the second-order differential of f(𝐕)f(\mathbf{V}) by

d2f(𝐕)=\displaystyle d^{2}f(\mathbf{V})= dvecT((𝐕𝐕H)2T𝐕)dvec(𝐕)\displaystyle\ -d\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\mathbf{{V}}^{*}\right)d\text{vec}\left(\mathbf{{V}}\right)
dvecT((𝐕𝐕H)2𝐕)dvec(𝐕).\displaystyle\ -d\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}\mathbf{V}\right)d\text{vec}\left(\mathbf{{V}}^{*}\right). (47)

Subsequently, we manipulate the first term of (B) as follows:

dvecT((𝐕𝐕H)2T𝐕)dvec(𝐕)\displaystyle\ -d\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\mathbf{{V}}^{*}\right)d\text{vec}\left(\mathbf{{V}}\right)
=\displaystyle= [vecT(d(𝐕𝐕H)T(𝐕𝐕H)T𝐕)\displaystyle\ -\left[\text{vec}^{T}\left(d\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\mathbf{{V}}^{*}\right)\right.
+vecT((𝐕𝐕H)Td(𝐕𝐕H)T𝐕)\displaystyle\ \quad\left.+\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}d\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\mathbf{{V}}^{*}\right)\right.
+vecT((𝐕𝐕H)2Td𝐕)]dvec(𝐕)\displaystyle\ \quad\left.+\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}d\mathbf{{V}}^{*}\right)\right]d\text{vec}\left(\mathbf{{V}}\right)
=\displaystyle= [vecT((𝐕𝐕H)T(𝐕d𝐕T+d𝐕𝐕T)(𝐕𝐕H)2T𝐕)\displaystyle\ \left[\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}(\mathbf{V}^{*}d\mathbf{V}^{T}\!\!+\!d\mathbf{V}^{*}\mathbf{V}^{T})\!\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\mathbf{{V}}^{*}\right)\right.
+vecT((𝐕𝐕H)2T(𝐕d𝐕T+d𝐕𝐕T)(𝐕𝐕H)T𝐕)\displaystyle\ \left.+\text{vec}^{T}\!\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\!(\mathbf{V}^{*}d\mathbf{V}^{T}\!\!+\!d\mathbf{V}^{*}\mathbf{V}^{T})\!\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\mathbf{{V}}^{*}\right)\right.
vecT((𝐕𝐕H)2Td𝐕)]dvec(𝐕)\displaystyle\ \left.-\text{vec}^{T}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}d\mathbf{{V}}^{*}\right)\right]d\text{vec}\left(\mathbf{{V}}\right)
\displaystyle\triangleq dvecT(𝐕)𝐏dvec(𝐕)+dvecT(𝐕)𝐊T𝐐dvec(𝐕),\displaystyle\ d\text{vec}^{T}\!\left(\mathbf{{V}}^{*}\right)\mathbf{P}d\text{vec}\left(\mathbf{{V}}\right)\!+\!d\text{vec}^{T}\!\left(\mathbf{{V}}\right)\mathbf{K}^{T}\mathbf{Q}d\text{vec}\left(\mathbf{{V}}\right), (48)

where the last equality holds based on the relationship vec(𝐀𝐁𝐂)=(𝐂T𝐀)vec(𝐁)\text{vec}\left(\mathbf{A}\mathbf{B}\mathbf{C}\right)=(\mathbf{C}^{T}\otimes\mathbf{A})\text{vec}\left(\mathbf{B}\right), 𝐊\mathbf{K} is the unique [(M+1)B]×[(M+1)B][(M+1)B]\times[(M+1)B] permutation matrix satisfying 𝐊vec(𝐀)=vec(𝐀T)\mathbf{K}\text{vec}\left(\mathbf{A}\right)=\text{vec}\left(\mathbf{A}^{T}\right) for an arbitrary matrix 𝐀(M+1)×B\mathbf{A}\in\mathbb{C}^{(M+1)\times B}, and 𝐏\mathbf{P} and 𝐐\mathbf{Q} are defined as follows:

𝐏\displaystyle\mathbf{P}\triangleq 𝐕T(𝐕𝐕H)2T𝐕(𝐕𝐕H)1\displaystyle\ \mathbf{V}^{T}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\mathbf{V}^{*}\otimes\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}
+𝐕T(𝐕𝐕H)T𝐕(𝐕𝐕H)2𝐈B(𝐕𝐕H)2\displaystyle\ +\mathbf{V}^{T}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\mathbf{V}^{*}\otimes\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}-\mathbf{I}_{B}\otimes\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}
𝐐\displaystyle\mathbf{Q}\triangleq (𝐕𝐕H)2T𝐕𝐕H(𝐕𝐕H)1\displaystyle\ \left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\mathbf{{V}}^{*}\otimes\mathbf{V}^{H}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}
+(𝐕𝐕H)T𝐕𝐕H(𝐕𝐕H)2.\displaystyle\ +\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\mathbf{{V}}^{*}\otimes\mathbf{V}^{H}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}. (49)

Similar to (B), the second term of (B) can be written as

dvecT(𝐕)𝐏Tdvec(𝐕)+dvecT(𝐕)𝐐H𝐊dvec(𝐕).\displaystyle\!\!\!d\text{vec}^{T}\!\left(\mathbf{{V}}\right)\mathbf{P}^{T}d\text{vec}\!\left(\mathbf{{V}}^{*}\right)\!+\!d\text{vec}^{T}\!\left(\mathbf{{V}}^{*}\right)\mathbf{Q}^{H}\mathbf{K}d\text{vec}\!\left(\mathbf{{V}}^{*}\right). (50)

Combining the results in (B) and (50), we reexpress the second-order differential of f(𝐕)f(\mathbf{V}) as

d2f(𝐕)=\displaystyle\!\!\!\!d^{2}f(\mathbf{V})= [dvecT(𝐕)dvecT(𝐕)]𝐕[dvec(𝐕)dvec(𝐕)],\displaystyle\begin{bmatrix}d\text{vec}^{T}\left(\mathbf{{V}}^{*}\right)&d\text{vec}^{T}\left(\mathbf{{V}}\right)\end{bmatrix}\mathcal{H}_{\mathbf{V}}\begin{bmatrix}d\text{vec}\left(\mathbf{{V}}\right)\\ d\text{vec}\left(\mathbf{{V}}^{*}\right)\end{bmatrix}, (51)

where 𝐕[𝐏𝐐H𝐊𝐊T𝐐𝐏T].\mathcal{H}_{\mathbf{V}}\triangleq\begin{bmatrix}\mathbf{P}&\mathbf{Q}^{H}\mathbf{K}\\ \mathbf{K}^{T}\mathbf{Q}&\mathbf{P}^{T}\end{bmatrix}. The remaining step is to find a matrix 𝐌\mathbf{M} such that 𝐌𝐕\mathbf{M}\succeq\mathcal{H}_{\mathbf{V}} holds for all feasible 𝐕\mathbf{V}. For convenience, we simply choose 𝐌=η𝐈2(M+1)B\mathbf{M}=\eta\mathbf{I}_{2(M+1)B} with ηλmax(𝐕)\eta\geq\lambda_{\text{max}}(\mathcal{H}_{\mathbf{V}}). To determine η\eta, we first obtain the following upper bound to λmax(𝐕)\lambda_{\text{max}}(\mathcal{H}_{\mathbf{V}}):

λmax(𝐕)(a)\displaystyle\lambda_{\text{max}}(\mathcal{H}_{\mathbf{V}})\overset{(\rm a)}{\leq} λmax([𝐏𝟎𝟎𝐏T])+λmax([𝟎𝐐H𝐊𝐊T𝐐𝟎])\displaystyle\ \lambda_{\text{max}}\left(\begin{bmatrix}\mathbf{P}&\mathbf{0}\\ \mathbf{0}&\mathbf{P}^{T}\end{bmatrix}\right)+\lambda_{\text{max}}\left(\begin{bmatrix}\mathbf{0}&\mathbf{Q}^{H}\mathbf{K}\\ \mathbf{K}^{T}\mathbf{Q}&\mathbf{0}\end{bmatrix}\right)
=(b)\displaystyle\overset{(\rm b)}{=} λmax(𝐏)+λmax0.5(𝐐𝐐H),\displaystyle\ \lambda_{\text{max}}(\mathbf{P})+\lambda_{\text{max}}^{0.5}(\mathbf{Q}\mathbf{Q}^{H}), (52)

where the inequality (a) follows from λmax(𝐀+𝐁)λmax(𝐀)+λmax(𝐁)\lambda_{\text{max}}(\mathbf{A}+\mathbf{B})\leq\lambda_{\text{max}}(\mathbf{A})+\lambda_{\text{max}}(\mathbf{B}) with 𝐀\mathbf{A} and 𝐁\mathbf{B} being Hermitian matrices and the equality (b) follows from λmax([𝟎𝐀H;𝐀 0])=λmax0.5(𝐀𝐀H)\lambda_{\text{max}}([\mathbf{0}\ \mathbf{A}^{H};\mathbf{A}\ \mathbf{0}])=\lambda_{\text{max}}^{0.5}(\mathbf{A}\mathbf{A}^{H}) [51]. Since the three terms in 𝐏\mathbf{P} are Hermitian matrices, we can further upper bound λmax(𝐏)\lambda_{\text{max}}(\mathbf{P}) as

λmax(𝐏)\displaystyle\lambda_{\text{max}}(\mathbf{P})\leq λmax(𝐕T(𝐕𝐕H)2T𝐕(𝐕𝐕H)1)\displaystyle\ \lambda_{\text{max}}\left(\mathbf{V}^{T}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2T}\mathbf{V}^{*}\otimes\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\right)
+λmax((𝐕T(𝐕𝐕H)T𝐕𝐈B)(𝐕𝐕H)2)\displaystyle+\!\lambda_{\text{max}}\left(\left(\mathbf{V}^{T}\left(\mathbf{V}\mathbf{V}^{H}\right)^{-T}\mathbf{V}^{*}\!-\!\mathbf{I}_{B}\right)\otimes\left(\mathbf{V}\mathbf{V}^{H}\right)^{-2}\right)
=\displaystyle= λmax2((𝐕𝐕H)1),\displaystyle\ \lambda_{\text{max}}^{2}\left(\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\right), (53)

where the equality follows from λmax(𝐀𝐁)=λmax(𝐀)λmax(𝐁)\lambda_{\text{max}}(\mathbf{A}\otimes\mathbf{B})=\lambda_{\text{max}}(\mathbf{A})\lambda_{\text{max}}(\mathbf{B}), λmax(𝐀𝐁)=λmax(𝐁𝐀)\lambda_{\text{max}}(\mathbf{A}\mathbf{B})=\lambda_{\text{max}}(\mathbf{B}\mathbf{A}), and λmax(𝐀)=λmax(𝐀T)\lambda_{\text{max}}(\mathbf{A})=\lambda_{\text{max}}(\mathbf{A}^{T}). With similar procedures, λmax0.5(𝐐𝐐H)\lambda_{\text{max}}^{0.5}(\mathbf{Q}\mathbf{Q}^{H}) can be upper bounded by 2λmax2((𝐕𝐕H)1)2\lambda_{\text{max}}^{2}((\mathbf{V}\mathbf{V}^{H})^{-1}). Thus, we conclude that λmax(𝐕)3λmax2((𝐕𝐕H)1)\lambda_{\text{max}}(\mathcal{H}_{\mathbf{V}})\leq 3\lambda_{\text{max}}^{2}((\mathbf{V}\mathbf{V}^{H})^{-1}).

However, it is still hard to determine the largest eigenvalue of (𝐕𝐕H)1(\mathbf{V}\mathbf{V}^{H})^{-1} for every feasible solution 𝐕\mathbf{V}, since there exist cases where 𝐕𝐕H\mathbf{V}\mathbf{V}^{H} tends to be a singular matrix and thus the largest eigenvalue of (𝐕𝐕H)1(\mathbf{V}\mathbf{V}^{H})^{-1} tends to be infinite. Fortunately, we can handle this difficulty by fully exploiting the specific form of the considered problem. Specifically, we impose an additional constraint Tr[(𝐕𝐕H)1]Tr[(𝐕^𝐕^H)1]\text{Tr}[(\mathbf{V}\mathbf{V}^{H})^{-1}]\leq\text{Tr}[(\mathbf{\hat{V}}\mathbf{\hat{V}}^{H})^{-1}] to problem (III-B) with 𝐕^\mathbf{\hat{V}} denoting an arbitrary feasible solution, which yields

missingminimize𝐕\displaystyle\mathop{\text{missing}}{minimize}\limits_{\mathbf{V}}\quad Tr[(𝐕𝐕H)1]\displaystyle\text{Tr}\left[\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\right]
subject to [𝐕]m,n,m,n\displaystyle[\mathbf{V}]_{m,n}\in\mathcal{F},\ m\in\mathcal{M},\ n\in\mathcal{B}
[𝐕]M+1,n=1,n\displaystyle[\mathbf{V}]_{M+1,n}=1,\ n\in\mathcal{B}
Tr[(𝐕𝐕H)1]Tr[(𝐕^𝐕^H)1].\displaystyle\text{Tr}\left[\left(\mathbf{V}\mathbf{V}^{H}\right)^{-1}\right]\leq\text{Tr}\left[\left(\mathbf{\hat{V}}\mathbf{\hat{V}}^{H}\right)^{-1}\right]. (54)

It can be readily shown that problems (III-B) and (B) have the same global optimal solution. Based on the additional imposed constraint, we can relax the largest eigenvalue of (𝐕𝐕H)1(\mathbf{V}\mathbf{V}^{H})^{-1} as Tr[(𝐕^𝐕^H)1]\text{Tr}[(\mathbf{\hat{V}}\mathbf{\hat{V}}^{H})^{-1}] and accordingly set η\eta to 3Tr[(𝐕^𝐕^H)1]23\text{Tr}[(\mathbf{\hat{V}}\mathbf{\hat{V}}^{H})^{-1}]^{2}. Moreover, we judiciously update η=3Tr[(𝐕0𝐕0H)1]2\eta=3\text{Tr}[(\mathbf{V}_{0}\mathbf{V}_{0}^{H})^{-1}]^{2} in each iteration with 𝐕0\mathbf{V}_{0} being the obtained solution in the previous iteration for facilitating a tighter bound. Note that the above operations will not affect the convergence of the MM algorithm [46].

By substituting the first-order differential in (B) and 𝐌=3Tr[(𝐕0𝐕0H)1]2𝐈\mathbf{M}=3\text{Tr}[(\mathbf{V}_{0}\mathbf{V}_{0}^{H})^{-1}]^{2}\mathbf{I} into (45), we finally obtain the surrogate function of f(𝐕)f(\mathbf{V}) by (20) in Lemma 1.

Appendix C Proof of Proposition  2

Note that the objective function of problem (III-B) can be rewritten as m=1M+1n=1Bfm,n([𝐕]m,n)\sum_{m=1}^{M+1}\sum_{n=1}^{B}f_{m,n}([\mathbf{V}]_{m,n}), where fm,n([𝐕]m,n)λ1|[𝐕]m,n|2+2{[𝐀0]n,m[𝐕]m,n}f_{m,n}([\mathbf{V}]_{m,n})\triangleq\lambda_{1}|[\mathbf{V}]_{m,n}|^{2}+2\mathcal{R}\{[\mathbf{A}_{0}]_{n,m}[\mathbf{V}]_{m,n}\}. For a fixed (m,n)(m,n), the value of fm,n([𝐕]m,n)f_{m,n}([\mathbf{V}]_{m,n}) depends on [𝐕]m,n[\mathbf{V}]_{m,n} and is independent of the other elements in 𝐕\mathbf{V}. Together with the fact that the constraints in problem (III-B) are imposed on each element of 𝐕\mathbf{V} independently, we conclude that problem (III-B) can be solved for each element of 𝐕\mathbf{V} independently, i.e., in an element-wise manner. Without loss of generality, replacing [𝐕]m,n[\mathbf{V}]_{m,n} with ϕ=β(θ)ejθ\phi=\beta(\theta)e^{j\theta} and plugging the equivalent phase shift model in (3), fm,n([𝐕]m,n)f_{m,n}([\mathbf{V}]_{m,n}) is equal to

λ1|ϕ|2+2{[𝐀0]n,mϕ}\displaystyle\ \lambda_{1}|\phi|^{2}+2\mathcal{R}\left\{[\mathbf{A}_{0}]_{n,m}\phi\right\}
=\displaystyle= λ1β(θ)2+2{|[𝐀0]n,m|β(θ)ej(arg([𝐀0]n,m)+θ)}\displaystyle\ \lambda_{1}\beta(\theta)^{2}+2\mathcal{R}\left\{|[\mathbf{A}_{0}]_{n,m}|\beta(\theta)e^{j(\arg([\mathbf{A}_{0}]_{n,m})+\theta)}\right\}
=\displaystyle= λ1[ξ2(sin(θδ)+1)2α+βmin2+2ξβmin(sin(θδ)+1)α]\displaystyle\ \lambda_{1}\!\left[\xi^{2}(\sin(\theta\!-\!\delta)\!+\!1)^{2\alpha}\!+\!\beta_{\text{min}}^{2}\!+\!2\xi\beta_{\text{min}}(\sin(\theta\!-\!\delta)\!+\!1)^{\alpha}\right]
+2|[𝐀0]n,m|(ξ(sin(θδ)+1)α+βmin)cos(arg([𝐀0]n,m)+θ)\displaystyle+\!\!2|[\mathbf{A}_{0}]_{n,m}|\!(\xi(\sin(\theta\!-\!\delta)\!+\!1)^{\alpha}\!\!+\!\beta_{\text{min}})\!\cos(\arg([\mathbf{A}_{0}]_{n,m})\!+\!\theta)
=\displaystyle= f¯m,n(θ),\displaystyle\ \bar{f}_{m,n}(\theta), (55)

where the second equality follows from Euler’s formula. This implies that the minimization of fm,n([𝐕]m,n)f_{m,n}([\mathbf{V}]_{m,n}) can be addressed by performing a one-dimensional search over the phase shift θ[0,2π]\theta\in[0,2\pi].

Appendix D Proof of Theorem  2

Denote the constraint set of problem (III-B) by 𝒮\mathcal{S}. We prove the convergence of Algorithm 1 by verifying the following four conditions according to [52, Sec. III]:

  1. 1.

    f(𝐕)f(𝐕;𝐕0),𝐕𝒮f\left(\mathbf{V}\right)\leq f\left(\mathbf{V};\mathbf{V}_{0}\right),\ \forall\mathbf{V}\in\mathcal{S};

  2. 2.

    f(𝐕0)=f(𝐕0;𝐕0)f\left(\mathbf{V}_{0}\right)=f\left(\mathbf{V}_{0};\mathbf{V}_{0}\right);

  3. 3.

    f(𝐕0)=f(𝐕0;𝐕0)\nabla f\left(\mathbf{V}_{0}\right)=\nabla f\left(\mathbf{V}_{0};\mathbf{V}_{0}\right);

  4. 4.

    f(𝐕;𝐕0)f\left(\mathbf{V};\mathbf{V}_{0}\right) is continuous in both 𝐕\mathbf{V} and 𝐕0\mathbf{V}_{0}.

In particular, the first two conditions guarantee the convergence of the proposed MM algorithm while conditions 3) and 4) guarantee that the algorithm converges to a stationary point.

Clearly, the considered f(𝐕;𝐕0)f\left(\mathbf{V};\mathbf{V}_{0}\right) in (20) is a continuous function and thus condition 4) holds. Next, the utilized bound f(𝐕;𝐕0)f\left(\mathbf{V};\mathbf{V}_{0}\right) is obtained according to (45) as shown in Appendix B, where the original function f(𝐱)f(\mathbf{x}) is upper bounded by its second-order Taylor expansion, which is in the right-hand side of (45) and denoted as f(𝐱;𝐲)f(\mathbf{x};\mathbf{y}). It is readily verified from (45) that f(𝐲)=f(𝐲;𝐲)f(\mathbf{y})=f(\mathbf{y};\mathbf{y}) and f(𝐲)=f(𝐲;𝐲)\nabla f(\mathbf{y})=\nabla f(\mathbf{y};\mathbf{y}) and thus we conclude that the conditions 1), 2), and 3) hold for f(𝐕)f\left(\mathbf{V}\right) and f(𝐕;𝐕0)f\left(\mathbf{V};\mathbf{V}_{0}\right). Therefore, the four conditions hold and the proof is completed.

Appendix E Proof of Lemma  1

Let us introduce 𝐔𝐒H𝐑𝚪𝐒+σ2L𝐈τB\mathbf{U}\triangleq\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}+\sigma^{2}L\mathbf{I}_{\tau B} and rewrite the objective function g(𝐒)g(\mathbf{S}) in problem (IV) as g(𝐔,𝐒)Tr[𝐑𝚪𝐒𝐔1𝐒H𝐑𝚪]g(\mathbf{U},\mathbf{S})\triangleq-\text{Tr}\left[\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\mathbf{U}^{-1}\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\right]. Then, based on the fact that the matrix function h(𝐀,𝐁)=Tr[𝐁𝐀1𝐁H]h(\mathbf{A},\mathbf{B})=\text{Tr}\left[\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{H}\right] is jointly convex in {𝐀,𝐁}\{\mathbf{A},\mathbf{B}\} [53], we can lower bound h(𝐀,𝐁)h(\mathbf{A},\mathbf{B}) by its first-order Taylor expansion as

Tr[𝐁𝐀1𝐁H]\displaystyle\ \text{Tr}\left[\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{H}\right]
\displaystyle\geq 2{Tr[𝐀01𝐁0H𝐁]}Tr[𝐀01𝐁0H𝐁0𝐀01𝐀],\displaystyle\ 2\mathcal{R}\left\{\text{Tr}\left[\mathbf{A}_{0}^{-1}\mathbf{B}_{0}^{H}\mathbf{B}\right]\right\}-\text{Tr}\left[\mathbf{A}_{0}^{-1}\mathbf{B}_{0}^{H}\mathbf{B}_{0}\mathbf{A}_{0}^{-1}\mathbf{A}\right], (56)

where 𝐀0\mathbf{A}_{0} and 𝐁0\mathbf{B}_{0} denote arbitrary feasible points. By substituting {𝐀,𝐁}\{\mathbf{A},\mathbf{B}\} with {𝐔,𝐑𝚪𝐒}\{\mathbf{U},\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\}, we obtain an upper bound for g(𝐒)g(\mathbf{S}) by

Tr[𝐑𝚪𝐒(𝐒H𝐑𝚪𝐒+σ2L𝐈τB)1𝐒H𝐑𝚪]\displaystyle-\text{Tr}\left[\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\left(\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}+\sigma^{2}L\mathbf{I}_{\tau B}\right)^{-1}\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\right]
\displaystyle\leq 2{Tr[(𝐒0H𝐑𝚪𝐒0+σ2L𝐈τB)1𝐒0H𝐑𝚪𝐑𝚪𝐒]}\displaystyle-2\mathcal{R}\left\{\text{Tr}\left[(\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}_{0}+\sigma^{2}L\mathbf{I}_{\tau B})^{-1}\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}\right]\right\}
+Tr[(𝐒0H𝐑𝚪𝐒0+σ2L𝐈τB)1𝐒0H𝐑𝚪𝐑𝚪𝐒0\displaystyle+\text{Tr}\left[(\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}_{0}+\sigma^{2}L\mathbf{I}_{\tau B})^{-1}\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}_{0}\right.
×(𝐒0H𝐑𝚪𝐒0+σ2L𝐈τB)1(𝐒H𝐑𝚪𝐒+σ2L𝐈τB)],\displaystyle\quad\quad\ \left.\times(\mathbf{S}_{0}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}_{0}+\sigma^{2}L\mathbf{I}_{\tau B})^{-1}(\mathbf{S}^{H}\mathbf{R}_{\mathbf{\Gamma}}\mathbf{S}+\sigma^{2}L\mathbf{I}_{\tau B})\right], (57)

which is equal to g(𝐒;𝐒0)g(\mathbf{S};\mathbf{S}_{0}) given in Lemma 1.

Appendix F Proof of Proposition  3

The Karush-Kuhn-Tucker (KKT) conditions of problem (IV-A) are given as follows:

𝐱k2Pk\displaystyle\|\mathbf{x}_{k}^{\star}\|^{2}-P_{k}\leq 0,\displaystyle\ 0, (58)
μ\displaystyle\mu^{\star}\geq 0,\displaystyle\ 0, (59)
μ(𝐱k2Pk)=\displaystyle\mu^{\star}(\|\mathbf{x}_{k}^{\star}\|^{2}-P_{k})= 0,\displaystyle\ 0, (60)
2λ2B𝐱k2𝐛k+2μ𝐱k=\displaystyle 2\lambda_{2}B\mathbf{x}_{k}^{\star}-2\mathbf{b}_{k}+2\mu^{\star}\mathbf{x}_{k}^{\star}= 𝟎,\displaystyle\ \mathbf{0}, (61)

where 𝐱k\mathbf{x}_{k}^{\star} is the optimal solution to 𝐱k\mathbf{x}_{k} and μ\mu^{\star} is the optimal dual variable associated with the constraint 𝐱k2Pk\|\mathbf{x}_{k}\|^{2}\leq P_{k}. We now analyze the KKT conditions to find 𝐱k\mathbf{x}_{k}^{\star} and μ\mu^{\star}.

F-1 Case 1

If μ>0\mu^{\star}>0, we obtain 𝐱k2=Pk\|\mathbf{x}_{k}^{\star}\|^{2}=P_{k} from (60). Substituting this into (61), we have 𝐱k2=𝐛k2(λ2B+μ)2=Pk\|\mathbf{x}_{k}^{\star}\|^{2}=\frac{\|\mathbf{b}_{k}\|^{2}}{(\lambda_{2}B+\mu^{\star})^{2}}=P_{k}, which yields μ+λ2B=𝐛kPk\mu^{\star}+\lambda_{2}B=\frac{\|\mathbf{b}_{k}\|}{\sqrt{P_{k}}}. Then, the optimal 𝐱k\mathbf{x}_{k}^{\star} is

𝐱k=𝐛kλ2B+μ=Pk𝐛k𝐛k.\displaystyle\mathbf{x}_{k}^{\star}=\frac{\mathbf{b}_{k}}{\lambda_{2}B+\mu^{\star}}=\frac{\sqrt{P_{k}}}{\|\mathbf{b}_{k}\|}\mathbf{b}_{k}. (62)

To guarantee a positive μ\mu^{\star}, we must have 𝐛k>Pkλ2B\|\mathbf{b}_{k}\|>\sqrt{P_{k}}\lambda_{2}B.

F-2 Case 2

If μ=0\mu^{\star}=0, it follows from (61) that

𝐱k=𝐛kλ2B.\displaystyle\mathbf{x}_{k}^{\star}=\frac{\mathbf{b}_{k}}{\lambda_{2}B}. (63)

By substituting this equality into (58), we have 𝐱k2=𝐛k2(λ2B)2Pk\|\mathbf{x}_{k}^{\star}\|^{2}=\frac{\|\mathbf{b}_{k}\|^{2}}{(\lambda_{2}B)^{2}}\leq P_{k}. Combining these two cases, we derive the optimal solution in (33).

Appendix G Expression of the Cascaded Channel Correlation

For the purpose of modeling the cascaded channel correlation matrix 𝐑𝚪\mathbf{R}_{\mathbf{\Gamma}}, we consider the Kronecker channel model [54]: 𝐇r=𝚿RIS,𝐇r12𝐇¯r𝚿UE,𝐇rT2,\mathbf{H}_{r}=\mathbf{\Psi}^{\frac{1}{2}}_{\text{RIS},\mathbf{H}_{r}}\mathbf{\bar{H}}_{r}\mathbf{\Psi}^{\frac{T}{2}}_{\text{UE},\mathbf{H}_{r}}, 𝐆=𝚿BS,𝐆12𝐆¯𝚿RIS,𝐆T2,\mathbf{G}=\mathbf{\Psi}^{\frac{1}{2}}_{\text{BS},\mathbf{G}}\mathbf{\bar{G}}\mathbf{\Psi}^{\frac{T}{2}}_{\text{RIS},\mathbf{G}}, and 𝐇d=𝚿BS,𝐇d12𝐇¯d𝚿UE,𝐇dT2.\mathbf{H}_{d}=\mathbf{\Psi}^{\frac{1}{2}}_{\text{BS},\mathbf{H}_{d}}\mathbf{\bar{H}}_{d}\mathbf{\Psi}^{\frac{T}{2}}_{\text{UE},\mathbf{H}_{d}}. The elements of the matrices 𝐇¯r\mathbf{\bar{H}}_{r}, 𝐆¯\mathbf{\bar{G}}, and 𝐇¯d\mathbf{\bar{H}}_{d} are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit variance. The positive definite matrices 𝚿BS,𝐆L×L\mathbf{\Psi}_{\text{BS},\mathbf{G}}\in\mathbb{C}^{L\times L} and 𝚿BS,𝐇dL×L\mathbf{\Psi}_{\text{BS},\mathbf{H}_{d}}\in\mathbb{C}^{L\times L} with unit diagonal entries denote the spatial correlation matrices at the BS seen from the reflected link 𝐆\mathbf{G} and the direct link 𝐇d\mathbf{H}_{d}, respectively. Similar definitions are employed for the correlation matrices at the UEs, i.e., 𝚿UE,𝐇rK×K\mathbf{\Psi}_{\text{UE},\mathbf{H}_{r}}\in\mathbb{C}^{K\times K} and 𝚿UE,𝐇dK×K\mathbf{\Psi}_{\text{UE},\mathbf{H}_{d}}\in\mathbb{C}^{K\times K}, and the correlation matrices at the RIS, i.e., 𝚿RIS,𝐇rM×M\mathbf{\Psi}_{\text{RIS},\mathbf{H}_{r}}\in\mathbb{C}^{M\times M} and 𝚿RIS,𝐆M×M\mathbf{\Psi}_{\text{RIS},\mathbf{G}}\in\mathbb{C}^{M\times M}. For simplicity, we set 𝚿BS,𝐆=𝚿BS,𝐇d=𝚿BS\mathbf{\Psi}_{\text{BS},\mathbf{G}}=\mathbf{\Psi}_{\text{BS},\mathbf{H}_{d}}=\mathbf{\Psi}_{\text{BS}}, 𝚿UE,𝐇r=𝚿UE,𝐇d=𝚿UE\mathbf{\Psi}_{\text{UE},\mathbf{H}_{r}}=\mathbf{\Psi}_{\text{UE},\mathbf{H}_{d}}=\mathbf{\Psi}_{\text{UE}}, and 𝚿RIS,𝐇r=𝚿RIS,𝐆=𝚿RIS\mathbf{\Psi}_{\text{RIS},\mathbf{H}_{r}}=\mathbf{\Psi}_{\text{RIS},\mathbf{G}}=\mathbf{\Psi}_{\text{RIS}}. Then, we have vec(𝐇r)𝒞𝒩(𝟎MK,𝚿UE𝚿RIS)\text{vec}\left(\mathbf{H}_{r}\right)\thicksim\mathcal{CN}(\mathbf{0}_{MK},\mathbf{\Psi}_{\text{UE}}\otimes\mathbf{\Psi}_{\text{RIS}}), vec(𝐆)𝒞𝒩(𝟎LM,𝚿RIS𝚿BS)\text{vec}\left(\mathbf{G}\right)\thicksim\mathcal{CN}(\mathbf{0}_{LM},\mathbf{\Psi}_{\text{RIS}}\otimes\mathbf{\Psi}_{\text{BS}}), and vec(𝐇d)𝒞𝒩(𝟎LK,𝚿UE𝚿BS)\text{vec}\left(\mathbf{H}_{d}\right)\thicksim\mathcal{CN}(\mathbf{0}_{LK},\mathbf{\Psi}_{\text{UE}}\otimes\mathbf{\Psi}_{\text{BS}}) [55]. To proceed, based on the definition in (6), we have

𝔼{𝚪iH𝚪j}\displaystyle\mathbb{E}\left\{\mathbf{\Gamma}_{i}^{H}\mathbf{\Gamma}_{j}\right\} =𝔼{𝐡r,i𝐠iH𝐠j𝐡r,jH}\displaystyle=\mathbb{E}\left\{\mathbf{h}_{r,i}\mathbf{g}_{i}^{H}\mathbf{g}_{j}\mathbf{h}_{r,j}^{H}\right\}
=𝔼{𝐠iH𝐠j}𝔼{𝐡r,i𝐡r,jH}\displaystyle=\mathbb{E}\left\{\mathbf{g}_{i}^{H}\mathbf{g}_{j}\right\}\mathbb{E}\left\{\mathbf{h}_{r,i}\mathbf{h}_{r,j}^{H}\right\}
=L[𝚿RIS]i,j[𝚿RIS]i,j𝚿UE\displaystyle=L[\mathbf{\Psi}_{\text{RIS}}]_{i,j}[\mathbf{\Psi}_{\text{RIS}}]_{i,j}\mathbf{\Psi}_{\text{UE}}
=L[𝚿RIS𝚿RIS]i,j𝚿UE,iM,jM.\displaystyle=L[\mathbf{\Psi}_{\text{RIS}}\odot\mathbf{\Psi}_{\text{RIS}}]_{i,j}\mathbf{\Psi}_{\text{UE}},\ i\leq M,j\leq M. (64)

On the other hand, it is easily seen that 𝔼{𝚪M+1H𝚪M+1}=𝔼{𝐇dH𝐇d}=L𝚿UE\mathbb{E}\left\{\mathbf{\Gamma}_{M+1}^{H}\mathbf{\Gamma}_{M+1}\right\}=\mathbb{E}\left\{\mathbf{H}_{d}^{H}\mathbf{H}_{d}\right\}=L\mathbf{\Psi}_{\text{UE}} and 𝔼{𝚪iH𝚪j}=𝟎K×K\mathbb{E}\left\{\mathbf{\Gamma}_{i}^{H}\mathbf{\Gamma}_{j}\right\}=\mathbf{0}_{K\times K} when only one of ii and jj is equal to M+1M+1 since 𝐇¯d\mathbf{\bar{H}}_{d} is independent of 𝐇¯r\mathbf{\bar{H}}_{r} and 𝐆¯\mathbf{\bar{G}}. Therefore, the correlation matrix of the cascaded channel 𝚪\mathbf{\Gamma} is calculated as

𝐑𝚪=\displaystyle\mathbf{R}_{\mathbf{\Gamma}}= 𝔼{[𝚪1H𝚪M+1H][𝚪1,,𝚪M+1]}\displaystyle\ \mathbb{E}\left\{\begin{bmatrix}\mathbf{\Gamma}_{1}^{H}\\ \vdots\\ \mathbf{\Gamma}_{M+1}^{H}\end{bmatrix}[\mathbf{\Gamma}_{1},\cdots,\mathbf{\Gamma}_{M+1}]\right\}
=\displaystyle= [L(𝚿RIS𝚿RIS)𝚿UE𝟎KM×K𝟎K×KML𝚿UE].\displaystyle\ \begin{bmatrix}L\left(\mathbf{\Psi}_{\text{RIS}}\odot\mathbf{\Psi}_{\text{RIS}}\right)\otimes\mathbf{\Psi}_{\text{UE}}&\mathbf{0}_{KM\times K}\\ \mathbf{0}_{K\times KM}&L\mathbf{\Psi}_{\text{UE}}\end{bmatrix}. (65)

Appendix H Explanation on the MSE Performance Gap between LS and LMMSE Channel Estimators

To explain the MSE performance gap in Figs. 8 and 9 in mathematical terms, we focus on a scenario with a single UE and assume an uncorrelated channel model, i.e., 𝐑𝚪=L𝐈M+1\mathbf{R}_{\mathbf{\Gamma}}=L\mathbf{I}_{M+1}. In this case, considering an RIS with a unit amplitude response, it can be readily found that an orthogonal reflection pattern, i.e., 𝐕𝐕H=(M+1)𝐈M+1\mathbf{V}\mathbf{V}^{H}=(M+1)\mathbf{I}_{M+1}, is optimal for both the LS and LMMSE channel estimators. The corresponding MSEs are given by

JLS=\displaystyle J_{\text{LS}}= LTr[(γ(M+1)𝐈M+1)1],\displaystyle\ L\text{Tr}\left[\left(\gamma(M+1)\mathbf{I}_{M+1}\right)^{-1}\right],
JLMMSE=\displaystyle J_{\text{LMMSE}}= LTr[(𝐈M+1+γ(M+1)𝐈M+1)1],\displaystyle\ L\text{Tr}\left[\left(\mathbf{I}_{M+1}+\gamma(M+1)\mathbf{I}_{M+1}\right)^{-1}\right], (66)

respectively, where γPσ2\gamma\triangleq\frac{P}{\sigma^{2}} denotes the SNR. As for the case with the phase reflection model in (3), on the other hand, analytical solutions for 𝐕\mathbf{V} become elusive due to the intricate constraints imposed by the realistic model for the reflection coefficient. In this case, we denote the optimized 𝐕\mathbf{V} obtained through the proposed iterative algorithms using the LS and LMMSE channel estimation criteria, by 𝐕LS\mathbf{V}_{\text{LS}}^{\star} and 𝐕LMMSE\mathbf{V}_{\text{LMMSE}}^{\star}, respectively. Accordingly, the MSEs are given by

JLS=\displaystyle J^{\prime}_{\text{LS}}= LTr[(γ𝐕LS(𝐕LS)H)1],\displaystyle\ L\text{Tr}\left[\left(\gamma\mathbf{V}_{\text{LS}}^{\star}(\mathbf{V}_{\text{LS}}^{\star})^{H}\right)^{-1}\right],
JLMMSE=\displaystyle J^{\prime}_{\text{LMMSE}}= LTr[(𝐈M+1+γ𝐕LMMSE(𝐕LMMSE)H)1].\displaystyle\ L\text{Tr}\left[\left(\mathbf{I}_{M+1}+\gamma\mathbf{V}_{\text{LMMSE}}^{\star}(\mathbf{V}_{\text{LMMSE}}^{\star})^{H}\right)^{-1}\right]. (67)

In the sequel, we prove JLSJLMMSE>JLSJLMMSE\frac{J^{\prime}_{\text{LS}}}{J^{\prime}_{\text{LMMSE}}}>\frac{J_{\text{LS}}}{J_{\text{LMMSE}}} mathematically.

To begin with, we consider the following relationship:

JLSJLMMSE\displaystyle\frac{J^{\prime}_{\text{LS}}}{J^{\prime}_{\text{LMMSE}}} =Tr[(γ𝐕LS(𝐕LS)H)1]Tr[(𝐈M+1+γ𝐕LMMSE(𝐕LMMSE)H)1]\displaystyle=\frac{\text{Tr}\left[\left(\gamma\mathbf{V}_{\text{LS}}^{\star}(\mathbf{V}_{\text{LS}}^{\star})^{H}\right)^{-1}\right]}{\text{Tr}\left[\left(\mathbf{I}_{M+1}+\gamma\mathbf{V}_{\text{LMMSE}}^{\star}(\mathbf{V}_{\text{LMMSE}}^{\star})^{H}\right)^{-1}\right]}
>Tr[(γ𝐕LS(𝐕LS)H)1]Tr[(𝐈M+1+γ𝐕LS(𝐕LS)H)1]\displaystyle>\frac{\text{Tr}\left[\left(\gamma\mathbf{V}_{\text{LS}}^{\star}(\mathbf{V}_{\text{LS}}^{\star})^{H}\right)^{-1}\right]}{\text{Tr}\left[\left(\mathbf{I}_{M+1}+\gamma\mathbf{V}_{\text{LS}}^{\star}(\mathbf{V}_{\text{LS}}^{\star})^{H}\right)^{-1}\right]}
Tr[𝛀1]Tr[(𝐈M+1+𝛀)1],\displaystyle\triangleq\frac{\text{Tr}\left[\mathbf{\Omega}^{-1}\right]}{\text{Tr}\left[\left(\mathbf{I}_{M+1}+\mathbf{\Omega}\right)^{-1}\right]}, (68)

where 𝛀γ𝐕LS(𝐕LS)H\mathbf{\Omega}\triangleq\gamma\mathbf{V}_{\text{LS}}^{\star}(\mathbf{V}_{\text{LS}}^{\star})^{H}. The inequality is established since 𝐕LMMSE\mathbf{V}_{\text{LMMSE}}^{\star} is the optimized solution for the LMMSE estimation and 𝐕LS\mathbf{V}_{\text{LS}}^{\star} lacks optimality under the LMMSE criterion. Next, we recall that better channel estimation performance is obtained if the RIS has a unit-amplitude response, i.e., JLS>JLSJ^{\prime}_{\text{LS}}>J_{\text{LS}}. Without loss of generality, we define tJLSJLS>1t\triangleq\frac{J^{\prime}_{\text{LS}}}{J_{\text{LS}}}>1 and re-express JLS=Tr[𝛀1]J^{\prime}_{\text{LS}}=\text{Tr}\left[\mathbf{\Omega}^{-1}\right] as

Tr[𝛀1]=tJLS\displaystyle\text{Tr}\left[\mathbf{\Omega}^{-1}\right]=tJ_{\text{LS}} =tTr[(γ(M+1)𝐈M+1)1]\displaystyle=t\text{Tr}\left[\left(\gamma(M+1)\mathbf{I}_{M+1}\right)^{-1}\right]
=Tr[(γ/t(M+1)𝐈M+1)1].\displaystyle=\text{Tr}\left[\left(\gamma/t(M+1)\mathbf{I}_{M+1}\right)^{-1}\right]. (69)

To proceed, we need the following lemma.

Lemma 2

For an arbitrary N×NN\times N positive definite matrix 𝐀𝟎\mathbf{A}\succ\mathbf{0} where Tr[𝐀1]=a=Tr[(Na𝐈N)1]\text{Tr}[\mathbf{A}^{-1}]=a=\text{Tr}[(\frac{N}{a}\mathbf{I}_{N})^{-1}], it holds that

Tr[(𝐈N+𝐀)1]Tr[(𝐈N+Na𝐈N)1]=NaN+a.\displaystyle\text{Tr}[(\mathbf{I}_{N}+\mathbf{A})^{-1}]\leq\text{Tr}\left[\left(\mathbf{I}_{N}+\frac{N}{a}\mathbf{I}_{N}\right)^{-1}\right]=\frac{Na}{N+a}. (70)

The equality holds if 𝐀=Na𝐈N\mathbf{A}=\frac{N}{a}\mathbf{I}_{N}.

Proof:

Denote the eigenvalues of 𝐀1\mathbf{A}^{-1} by {tn>0}n=1N\{t_{n}>0\}_{n=1}^{N}, which satisfy n=1Ntn=Tr[𝐀1]=a\sum_{n=1}^{N}t_{n}=\text{Tr}[\mathbf{A}^{-1}]=a. Then, we have

Tr[(𝐈N+𝐀)1]=n=1N11+1tn=Nn=1N11+tn.\displaystyle\text{Tr}[(\mathbf{I}_{N}+\mathbf{A})^{-1}]=\sum_{n=1}^{N}\frac{1}{1+\frac{1}{t_{n}}}=N-\sum_{n=1}^{N}\frac{1}{1+t_{n}}. (71)

By employing the Jensen’s inequality to the convex function f(x)=11+xf(x)=\frac{1}{1+x}, we further have

1Nn=1N11+tn11+n=1NtnN=NN+a.\displaystyle\frac{1}{N}\sum_{n=1}^{N}\frac{1}{1+t_{n}}\geq\frac{1}{1+\frac{\sum_{n=1}^{N}t_{n}}{N}}=\frac{N}{N+a}. (72)

Substituting (72) into (71) yields the following relationship:

Tr[(𝐈N+𝐀)1]NN2N+a=NaN+a.\displaystyle\text{Tr}[(\mathbf{I}_{N}+\mathbf{A})^{-1}]\leq N-\frac{N^{2}}{N+a}=\frac{Na}{N+a}. (73)

The proof is completed. ∎

By applying the Lemma 2 to (H), we obtain

Tr[(𝐈M+1+𝛀)1]\displaystyle\text{Tr}\left[(\mathbf{I}_{M+1}+\mathbf{\Omega})^{-1}\right] <Tr[(𝐈M+1+γ/t(M+1)𝐈M+1)1]\displaystyle<\text{Tr}\left[(\mathbf{I}_{M+1}+\gamma/t(M+1)\mathbf{I}_{M+1})^{-1}\right]
=tTr[(t𝐈M+1+γ(M+1)𝐈M+1)1].\displaystyle=t\text{Tr}\left[(t\mathbf{I}_{M+1}+\gamma(M+1)\mathbf{I}_{M+1})^{-1}\right]. (74)

Accordingly, Tr[𝛀1]Tr[(𝐈M+1+𝛀)1]\frac{\text{Tr}\left[\mathbf{\Omega}^{-1}\right]}{\text{Tr}\left[\left(\mathbf{I}_{M+1}+\mathbf{\Omega}\right)^{-1}\right]} fulfills the following properties:

Tr[𝛀1]Tr[(𝐈M+1+𝛀)1]\displaystyle\frac{\text{Tr}\left[\mathbf{\Omega}^{-1}\right]}{\text{Tr}\left[\left(\mathbf{I}_{M+1}+\mathbf{\Omega}\right)^{-1}\right]} =tTr[(γ(M+1)𝐈M+1)1]Tr[(𝐈M+1+𝛀)1]\displaystyle=\frac{t\text{Tr}\left[\left(\gamma(M+1)\mathbf{I}_{M+1}\right)^{-1}\right]}{\text{Tr}\left[\left(\mathbf{I}_{M+1}+\mathbf{\Omega}\right)^{-1}\right]}
>tTr[(γ(M+1)𝐈M+1)1]tTr[(t𝐈M+1+γ(M+1)𝐈M+1)1]\displaystyle>\frac{t\text{Tr}\left[\left(\gamma(M+1)\mathbf{I}_{M+1}\right)^{-1}\right]}{t\text{Tr}\left[(t\mathbf{I}_{M+1}+\gamma(M+1)\mathbf{I}_{M+1})^{-1}\right]}
>Tr[(γ(M+1)𝐈M+1)1]Tr[(𝐈M+1+γ(M+1)𝐈M+1)1]\displaystyle>\frac{\text{Tr}\left[\left(\gamma(M+1)\mathbf{I}_{M+1}\right)^{-1}\right]}{\text{Tr}\left[(\mathbf{I}_{M+1}+\gamma(M+1)\mathbf{I}_{M+1})^{-1}\right]}
=JLSJLMMSE,\displaystyle=\frac{J_{\text{LS}}}{J_{\text{LMMSE}}}, (75)

where the first equality is obtained by substituting (H), the second inequality follows from (H), and the third inequality holds since t>1t>1. Finally, by combining (H) and (H), we obtain JLSJLMMSE>JLSJLMMSE\frac{J^{\prime}_{\text{LS}}}{J^{\prime}_{\text{LMMSE}}}>\frac{J_{\text{LS}}}{J_{\text{LMMSE}}}. Together with the fact JLMMSE>JLMMSEJ^{\prime}_{\text{LMMSE}}>J_{\text{LMMSE}}, we conclude that, compared to the case study with an ideal unit amplitude reflection coefficient, the performance gap between the LS and LMMSE channel estimators becomes larger in the presence of a realistic model for the RIS reflection coefficient.

References

  • [1] C. Liaskos et al., “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, Sep. 2018.
  • [2] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  • [3] M. Di Renzo et al., “Smart radio environments empowered by AI reconfigurable meta-surfaces: An idea whose time has come,” EURASIP J. Wireless Commun. Netw., vol. 2019, May 2019, Art. no. 129.
  • [4] E. Basar, M. Di Renzo, J. de Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116753–116773, 2019.
  • [5] W. Shi et al., “On secrecy performance of RIS-assisted MISO systems over Rician channels with spatially random eavesdroppers,” IEEE Trans. Wireless Commun., early access. doi: 10.1109/TWC.2023.3348591.
  • [6] M. Di Renzo et al., “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  • [7] W. Xu et al., “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  • [8] W. Shi, W. Xu, X. You, C. Zhao, and K. Wei, “Intelligent reflection enabling technologies for integrated and green Internet-of-Everything beyond 5G: Communication, sensing, and security,” IEEE Wireless Commun., vol. 30, no. 2, pp. 147–154, Apr. 2023.
  • [9] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design,” in Proc. IEEE Global Commun. Conf., Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.
  • [10] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
  • [11] C. Huang, A. Zappone, M. Debbah, and C. Yuen, “Achievable rate maximization by passive intelligent mirrors,” in IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), Calgary, AB, Canada, Apr. 2018, pp. 1–5.
  • [12] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
  • [13] H. Shen, W. Xu, S. Gong, Z. He, and C. Zhao, “Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications,” IEEE Commun. Lett., vol. 23, no. 9, pp. 1488–1492, Sep. 2019.
  • [14] X. Yu, D. Xu, and R. Schober, “Enabling secure wireless communications via intelligent reflecting surfaces,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1–6.
  • [15] H. Shen, T. Ding, W. Xu, and C. Zhao, “Beamformig design with fast convergence for IRS-aided full-duplex communication,” IEEE Commun. Lett., vol. 24, no. 12, pp. 2849–2853, Dec. 2020.
  • [16] B. Smida et al., “Full-duplex wireless for 6G: Progress brings new opportunities and challenges,” IEEE J. Sel. Areas Commun., vol. 41, no. 9, pp. 2729–2750, Sep. 2023.
  • [17] Z. He et al., “Full-duplex communication for ISAC: Joint beamforming and power optimization,” IEEE J. Sel. Areas Commun., vol. 41, no. 9, pp. 2920–2936, Sep. 2023.
  • [18] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflecting surface with discrete phase shifts,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Brighton, U.K., May 2019, pp. 7830–7833.
  • [19] C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, and C. Yuen, “Energy efficient multi-user MISO communication using low resolution large intelligent surfaces,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.
  • [20] H. Shen, W. Xu, S. Gong, C. Zhao, and D. W. K. Ng, “Beamforming optimization for IRS-aided communications with transceiver hardware impairments,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1214–1227, Feb. 2021.
  • [21] B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522, Apr. 2020.
  • [22] S. Lin, B. Zheng, G. C. Alexandropoulos, M. Wen, F. Chen, and S. Mumtaz, “Adaptive transmission for reconfigurable intelligent surface-assisted OFDM wireless communications,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2653–2665, Nov. 2020.
  • [23] Z. He, H. Shen, W. Xu, and C. Zhao, “Low-cost passive beamforming for RIS-aided wideband OFDM systems,” IEEE Wireless Commun. Lett., vol. 11, no. 2, pp. 318–322, Feb. 2022.
  • [24] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets OFDM: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
  • [25] L. Wei et al., “Channel estimation for RIS-empowered multi-user MISO wireless communications,” IEEE Trans. Commun., vol. 69, no. 6, pp. 4144–4157, Jun. 2021.
  • [26] Q.-U.-A. Nadeem et al., “Intelligent reflecting surface assisted wireless communication: Modeling and channel estimation,” Dec. 2019, [Online] Available: https://arxiv.org/abs/1906.02360v2.
  • [27] C. You, B. Zheng, and R. Zhang, “Intelligent reflecting surface with discrete phase shifts: Channel estimation and passive beamforming,” in Proc. IEEE Int. Commun. Conf. Workshops (ICC Wkshps), Dublin, Ireland, Jun. 2020, pp. 1–6.
  • [28] Z. Zhou, N. Ge, Z. Wang, and L. Hanzo, “Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1228–1243, Feb. 2021.
  • [29] Q.-U.-A. Nadeem et al., “Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design,” IEEE Open J. Commun. Soc., vol. 1, pp. 661–680, 2020.
  • [30] J.-M. Kang, “Intelligent reflecting surface: Joint optimal training sequence and reflection pattern,” IEEE Commun. Lett., vol. 24, no. 8, pp. 1784–1788, Aug. 2020.
  • [31] J. Chen, Y.-C. Liang, H. V. Cheng, and W. Yu, “Channel estimation for reconfigurable intelligent surface aided multi-user mmWave MIMO systems,” IEEE Wireless Trans. Commun., vol. 22, no. 10, pp. 6853–6869, Oct. 2023.
  • [32] Q. Li, M. El-Hajjar, I. Hemadeh, A. Shojaeifard, and L. Hanzo, “Low-overhead channel estimation for RIS-aided multi-cell networks in the presence of phase quantization errors,” IEEE Trans. Veh. Technol., early access, Dec. 06, 2023, doi: 10.1109/TVT.2023.3339968.
  • [33] Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6607–6620, Oct. 2020.
  • [34] M.-M. Zhao, Q. Wu, M.-J. Zhao, and R. Zhang, “Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 2–17, Jan. 2021.
  • [35] Q. Li et al., “Achievable rate analysis of the STAR-RIS-aided NOMA uplink in the face of imperfect CSI and hardware impairments,” IEEE Trans. Commun., vol. 71, no. 10, pp. 6100–6114, Oct. 2023.
  • [36] A. Rafique et al., “Reconfigurable intelligent surfaces: Interplay of unit cell and surface-level design and performance under quantifiable benchmarks,” IEEE Open J. Commun. Soc., vol. 4, pp. 1583–1599, 2023.
  • [37] M. Di Renzo, F. H. Danufane, and S. Tretyakov, “Communication models for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization,” Proc. IEEE, vol. 110, no. 9, pp. 1164–1209, Sep. 2022.
  • [38] S. Zeng et al., “Intelligent omni-surfaces: Reflection-refraction circuit model, full-dimensional beamforming, and system implementation,” IEEE Trans. Commun., vol. 70, no. 11, pp. 7711–7727, Nov. 2022.
  • [39] M. Di Renzo et al., “Digital reconfigurable intelligent surfaces: On the impact of realistic reradiation models,” 2022. Available: https://arxiv.org/abs/2205.09799.pdf
  • [40] S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflecting surface: Practical phase shift model and beamforming optimization,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, Sep. 2020.
  • [41] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884–893, Mar. 2006.
  • [42] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.
  • [43] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381–2401, Sep. 2003.
  • [44] R. Varadhan and C. Roland, “Simple and globally convergent methods for accelerating the convergence of any EM algorithm,” Scand. J. Statist, vol. 35, no. 2, pp. 335–353, Feb. 2008.
  • [45] Z. Wang, P. Babu, and D. P. Palomar, “Design of PAR-constrained sequences for MIMO channel estimation via majorization-minimization,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6132–6144, Dec. 2016.
  • [46] J. Song, P. Babu, and D. P. Palomar, “Sequence design to minimize the weighted integrated and peak sidelobe levels,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2051–2064, Apr. 2016.
  • [47] Q. Li et al., “The reconfigurable intelligent surface-aided multi-node IoT downlink: Beamforming design and performance analysis,” IEEE Internet Things J., vol. 10, no. 7, pp. 6400–6414, Apr. 2023.
  • [48] S. Zhang and R. Zhang, “Capacity characterization for intelligent reflecting surface aided MIMO communication,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1823–1838, Aug. 2020.
  • [49] J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford, U.K.: Clarendon Press, 1965.
  • [50] A. Hjoungnes, Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications. Cambridge, U.K.: Cambridge Univ. Press, 2011.
  • [51] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge Univ. Press, 2012.
  • [52] L. Zhao, J. Song, P. Babu, and D. P. Palomar, “A unified framework for low autocorrelation sequence design via majorization–minimization,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 438–453, Jan. 2017.
  • [53] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
  • [54] D.-S. Shiu, G. Foschini, M. Gans, and J. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 503–513, Mar. 2000.
  • [55] A. Gupta and D. Nagar, Matrix Variate Distributions. London, U.K.: Chapman Hall/CRC, 2000.