This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Jets in a Gamma-Ray Burst During its Prompt Emission: Evolution of Lorentz Factor

Jing Li Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China Da-Bin Lin Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China Rui-Jing Lu Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China Yun Wang Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China Lu-Yao Jiang Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China Shen-Shi Du School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China; Wen-Qiang Liang Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China Xiang-Gao Wang Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China En-Wei Liang Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China
Abstract

Knowledge about the Lorentz factor and its evolution of relativistic jets in gamma-ray bursts (GRBs) is crucial to understand their physics. An exact value of bulk Lorentz factor can be estimated based on a high-energy spectral cutoff, which may appear in GRBs’ prompt emission owing to the absorption of photon-photon pair production. In this work, we focus on the investigation of the bulk Lorentz factor evolution of jets in an individual burst. Based on Fermi observations, we search for the bursts with multiple γ\gamma-ray pulses characterized by a high-energy spectral cutoff, and nine GRBs are obtained. Together with the estimation of the pulse duration and radiation spectrum, the Lorentz factor of jets corresponding to different pulses in an individual GRB are estimated. It is shown that the Lorentz factor of jets in an individual GRB fluctuates within a certain range and without a general trend in these nine GRBs. In addition, the Lorentz factors of the jets in GRBs 130821A, 160509A and 160625B seem to increase with time. We also study the relations among LisoL_{\rm iso}, Ep,zE_{\rm p,z}, and Γ\Gamma for the pulses in our sample, which is found to be consistent with that found in previous works.

Gamma-ray bursts (629)

1 Introduction

Gamma-ray bursts(GRBs) are among the most powerful explosions in the universe (e.g., Piran, 2004; Zhang, 2007). It was early realized on that the phenomena of GRBs are associated with an relativistic jet (Krolik & Pier, 1991; Fenimore et al., 1993; Woods & Loeb, 1995; Baring & Harding, 1997a). However, the physical origin for the prompt emission of GRBs is still controversial. Several scenarios have been proposed, e.g., the internal shock formed in an erratic relativistic fireball (Rees & Meszaros, 1994; Paczynski & Xu, 1994), the photosphere of the fireball (Thompson, 1994; Ghisellini & Celotti, 1999; Pe’er et al., 2006; Thompson et al., 2007; Giannios, 2008; Lazzati & Begelman, 2010; Mizuta et al., 2011; Lazzati et al., 2013; Ruffini et al., 2013), the discharged magnetic energy of a Poynting-flux-dominated jet (e.g., Spruit et al., 2001; Drenkhahn & Spruit, 2002; Giannios, 2008; Zhang & Yan, 2011; McKinney & Uzdensky, 2012; Kumar & Crumley, 2015; Sironi et al., 2016; Beniamini & Granot, 2016; Granot, 2016 ), the external shock formed during the deceleration of the jet (Burgess et al., 2016; Huang et al., 2018), or a hadronic scenario that the synchrotron radiation from a population of relativistic protons gives rise to the observed prompt emission (Oganesyan et al., 2019; Ghisellini et al., 2020; Florou et al., 2021). A GRB jet is either Poynting-flux-dominated or matter-dominated, and suffered from acceleration at the expense of dissipating its magnetic or thermal energy. After the initial acceleration, the jet may enter the coasting phase, maintaining a constant Lorentz factor until it sweeps up a certain mass from the circum-burst medium to reach the deceleration radius. Beyond the deceleration radius, the Lorentz factor of the GRB jet decreases significantly, characterized by a power-law decay with respect to the observation time. Corresponding to different scenario for the prompt emission, the Lorentz factor evolution of a jet or jets in an individual GRB may be very different. In the internal shock scenario for the prompt emission, the Lorentz factor of jets corresponding to different pulse in an individual GRB reveals the fluctuation of the central engine of GRB. Accompanying the discharged of the magnetic energy, different pulses of the prompt emission can be produced and thus the Lorentz factor corresponding to different pulses may reveal the fluctuation in the emission region.

Since Lorentz factor varies depending on the phase of GRBs, the Lorentz factor Γ\Gamma is a critical parameter in understanding the physics of GRBs. Several methods for estimating the Lorentz factor of GRB jets have been proposed in the literatures: (1) The widely used method is to employ the onset bump of the afterglows, which signals the deceleration of the GRB jets. In this scenario, the bulk Lorentz factor Γ0\Gamma_{0} of the jets after producing the prompt emission is related to the peak time of the onset bump (e.g., Meszaros & Rees, 1993; Sari & Piran, 1999; Zhang et al., 2003; Molinari et al., 2007; Lü et al., 2012). It should be noted that the value of Γ0\Gamma_{0} corresponds to the mean value of jets’ Lorentz factor. (2) The “compactness problem” of GRBs is also used to infer the Lorentz factor of jets. It is early expected that the high-energy photons would be absorbed to produce e+ee^{+}e^{-} pairs if the Lorentz factor of GRB jet is not large enough. Then, the observations of higher energy photons would give stringent constraints on the Lorentz factor of jet. In general, a high-energy spectral cutoff would appear in the observed radiation spectrum owing to the abortion of high-energy photons. Then, the high-energy spectral cutoff is also used to estimate the Lorentz factor of the GRB jet (Krolik & Pier, 1991; Fenimore et al., 1993; Woods & Loeb, 1995; Baring & Harding, 1997b; Lithwick & Sari, 2001; Baring, 2006; Ackermann et al., 2011, 2013; Tang et al., 2015; Lin et al., 2019). (3) Theoretically, the photosphere of a GRB jet is related to the Lorentz factor of the jet. Thus, measuring the temperature and flux of the thermal components in the early stages of the fireball (before the break) can limit the outflow bulk Lorentz factor of fireball model parameters (e.g., Pe’er et al., 2007; Zou et al., 2015; Deng et al., 2022; Wang et al., 2022). However, only several bursts are believed to be confidently identified with the thermal emission in the prompt emission. (4) For most of GRBs, the observations reveal that the emission from the external shock is not brighter than the prompt emission. Then, an upper limit of Γ0\Gamma_{\rm 0} for different environment can be derived according to the standard internal-external shock mode (e.g., Zou & Piran, 2010). Of course, some correlations about the Lorentz factor have been studied successively and used to estimate the Lorentz factor of GRB’s jet (e.g., Mu et al., 2016). Liang et al. (2010) have discovered a correlation Γ0Eγ,iso,520.25\Gamma_{\rm 0}\propto E_{\rm\gamma,iso,52}^{0.25}. By including more GRBs with update data, Lü et al. (2012) discovered an even tighter correlation Γ0249Lγ,iso,520.3\Gamma_{\rm 0}\simeq 249L_{\rm\gamma,iso,52}^{0.3}. Moreover, Liang et al. (2015) proposed a tight correlation among LisoL_{\rm iso}, Ep,zE_{\rm p,z}, and Γ0\Gamma_{0} based on a multiple regression analysis, which take the form of LisoEp,z1.34±0.14Γ01.32±0.19L_{\rm iso}\propto E_{\rm p,z}^{1.34\pm 0.14}\Gamma_{0}^{1.32\pm 0.19} or Ep,zLiso0.55±0.06Γ00.5±0.17E_{\rm p,z}\propto L_{\rm iso}^{0.55\pm 0.06}\Gamma_{0}^{-0.5\pm 0.17}. These empirical correlations can provide a rough estimation about the Lorentz factor of GRBs’ Jet.

The above literatures are mainly focused on the Lorentz factor of GRBs’ jet in a certain phase. The evolution of the Lorentz factor in an individual burst has not been studied extensively (e.g., Lin et al., 2019), especially for the prompt emission phase. In this paper, we study the evolution of jets’ Lorentz factor in an individual burst, assuming that the high-energy spectral cutoff is induced by the absorption of two-photon pair production (γγe+e\gamma\gamma\leftrightarrow e^{+}e^{-}). This paper is organized as follows. In Section 2, we present the sample selection and data reduction for bursts with high-energy spectral cutoff. In Section 3, we present the light-curve fitting and spectral analysis about the pulses of GRBs in our sample. In Sections 4, the Lorentz factor of jet corresponding to different pulses is estimated. Correspondingly, the evolution of Lorentz factors in the process of burst appears. With the total of nine GRBs having measurement of the Lorentz factors and of which 34 pulses have the characteristics of high-energy spectral cutoff, we further test the correlations among LisoL_{\rm iso}, Ep,zE_{\rm p,z}, and Γ\Gamma. The value of Γ0,ps\Gamma_{0,\rm ps} is estimated for different GRBs and compare with the initial Lorentz factor Γ0,es\Gamma_{0,\rm es} estimated based on the external-shock afterglow, which are also presented in this section. In Sections 5, we present the conclusions.

2 Sample selection and Data Reduction

The Fermi satellite includes two instruments, Gamma-ray Burst Monitor (GBM, Meegan et al., 2009) and Large Area Telescope (LAT, Atwood et al., 2009) instruments, and provide unprecedented spectral coverage for seven orders of magnitude in photon energy (from 8\sim 8 keV to 300\sim 300 GeV). GBM has 12 sodium iodide (NaI) scintillation detectors covering the 8 keV-1 MeV energy band, and two bismuth germanate (BGO) scintillation detectors that are sensitive to the 200 keV-40 MeV energy band (Meegan et al., 2009). The energy coverage of LAT is 20 MeV-300 GeV. Since the launch of Fermi satellite, more than 2620 GRBs were detected by the GBM. Over one hundred bursts have been co-detected by the GBM and LAT, but only 77 bursts were recorded in Fermi LAT Low-Energy Events catalog (LLE). We search for the bursts with high-energy spectral cutoff due to two-photon pair production, which generally appears in the high-energy range 10\gtrsim 10 MeV. Then, the GRBs simultaneously observed by GBM and LLE would be the candidate in our search. The python source package gtBurst is used to extract the light-curves and source spectra of GBM and LAT from their Time-Tagged Events (TTE) data, respectively. The joint spectral fittings for different pulses are performed. We select the burst of which at least two pulses are presented with a high-energy spectral cutoff in their radiation spectrum. There are nine GRBs (GRBs 090323, 090926A, 100724B, 120226A, 130821A, 160509A, 160625B, 170405A, and 180720B) in our sample, of which six have redshift measurement and three have no redshift measurement. In our analysis, the redshift of z=1.0z=1.0 is set for bursts without redshift measurement. GRB 130427A and GRB 190114C are among most powerful bursts with the highest-energy photons around 94 GeV and 22.9 GeV respectively based on Fermi-LAT detection (e.g., Zhu et al., 2013; Ackermann et al., 2014; Kocevski et al., 2019; MAGIC Collaboration et al., 2019). However, GRB 130427A is very difficult to distinguish pulses due to the multi-peaked structure in the period of [6.0, 11.5] s after the Fermi trigger. More importantly, the time-resolved spectra of this burst could not be fitted with Band+cutoff model (see Equation (3)). The comprehensive spectral analysis about this burst can be found in Ackermann et al. (2014). The comprehensive spectral analysis of GRB 190114C can be found in Ursi et al. (2020) and Ajello et al. (2020). We also performed the spectral analysis of the pulses in this burst. It is found that the radiation spectrum of the pulses could be fitted with Band, Band+PL, or Band+CPL rather than Band+cutoff, where PL and CPL represent the power-law and cutoff power-law spectral models, respectively. In addition, the radiation spectrum in some pulses of this burst seems to be complicated. Therefore, GRB 130427A and GRB 190114C are not discussed in this paper.

We download data from the FSSC (Fermi Science Support Center)111https://fermi.gsfc.nasa.gov/ssc/data/access/. The light-curves are extracted with the standard HEASOFT tools XSPEC command gtbin. For LAT light-curves, we performed a standard photon selections based on energy, Region Of Interest (ROI), time, and zenith, which removing the effects of the earth’s limb. During the spectral analysis, radiation spectra are extracted with the gtBurst222https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html, and TTE data from the brightest NaI and BGO detector and public LLE are used, if the LAT data were available, we also included them in the joint spectral analysis. For the standard LAT data, instrument response function P8R3_\_SOURCE_\_V2 are used. We adopt the photon above 100 MeV in a ROI of 12 degree, and exclude the events with zenith angles >>100 in order to avoid contribution of Earth-limb gamma rays. Then joint spectral fitting of GBM and LAT data is performed with XSPEC, which judges the goodness of fit using the “Poisson-Gauss” fit statistic (i.e., PGSTAT).

3 Light-curve and Radiation Spectrum Fittings for Pulses in our Sample

The light-curves of our selected bursts are shown in Figure 1 with black lines. In this paper, we study the evolution of jets’ Lorentz factor corresponding to different pulses in an individual GRB. Then, we first decompose the light-curves into different pulses. To identify a pulse, we employ an empirical pulse model (Kocevski et al., 2003; Lu et al., 2018), i.e.,

Fn(t)=Fp(tt0tpt0)r[dd+r+rd+r(tt0tpt0)r+1]r+dr+1,F_{n}(t)=F_{\rm p}\left(\frac{t-t_{0}}{t_{\rm p}-t_{0}}\right)^{r}\left[\frac{d}{d+r}+\frac{r}{d+r}\left(\frac{t-t_{0}}{t_{\rm p}-t_{0}}\right)^{r+1}\right]^{-\frac{r+d}{r+1}}, (1)

where t0t_{0} measures the offset of the nnth pulse zero time relative to the GBM trigger time (i.e., Fn(t)=0F_{n}(t)=0 if t<t0t<t_{0}), tpt_{\rm p} is the time of the peak flux (FpF_{\rm p}), and rr and dd are the power-law rising and decaying indices, respectively. The values of t0t_{0}, tpt_{\rm p}, FpF_{\rm p}, rr, and dd are generally different for different pulses. The labels of pulses in a burst are in chronological order for their peak time. If the number of pulses in a burst is NN, the total light-curves of this burst can be described as

Ftot(t)=n=1NFn(t)+F0.{F_{{\rm{tot}}}}(t)=\sum\limits_{n=1}^{N}{{F_{n}}(t)}+{F_{\rm{0}}}. (2)

The light-curve fitting is processed based on the light-curve of counts in the energy channel 8-1000 keV and the results are shown in Figure 1 with red lines. The light-curve fitting result for each single pulse in an individual burst of our sample is also reported in Table 1. With the light-curve fitting results, the full width at the half maximum(FWHM) δt\delta t of a pluse can be estimated and is used as the duration of the corresponding pulse in our estimation of Lorentz factor. The value of δt\delta t for different pulses is our main focus in the light-curve fitting and is reported in the eighth column of Table 1.

After identifying a pulse, we perform the joint spectral analysis in order to estimate the radiation spectrum and the high-energy cutoff energy (or its lower limit). Generally, the radiation spectrum of a GRB can be well fitted with a smoothly connected broken power law, which is known as the Band function (Band et al., 1993). If there is absorption by the two-photon pair production for high-energy photons, a high-energy spectral cutoff would appear in the radiation spectrum. Then, we adopt the Band+cutoff spectral model, i.e.,

NE=N0{(E1keV)αexp(EE0),E<E0EcEcE0(αβ),K2(E1keV)βexp(EEc),E>E0EcEcE0(αβ),{N_{E}}=N_{0}\left\{{\begin{array}[]{*{20}{c}}{\left(\frac{E}{1\rm keV}\right)^{\alpha}\exp\left({-\frac{E}{{{E_{0}}}}}\right),}&{E<\frac{{{E_{0}}{E_{\rm c}}}}{{{E_{\rm c}}-{E_{0}}}}\left({\alpha-\beta}\right),}\\ {{K_{2}}{\left(\frac{E}{1\rm keV}\right)^{\beta}}\exp\left({-\frac{E}{E_{\rm c}}}\right),}&{E>\frac{{{E_{0}}{E_{\rm c}}}}{{{E_{\rm c}}-{E_{0}}}}\left({\alpha-\beta}\right),}\end{array}}\right. (3)

with

K2=[E0EcEcE0(αβ)]αβexp(βα),{K_{2}}={\left[{\frac{{{E_{0}}{E_{\rm c}}}}{{{E_{\rm c}}-{E_{0}}}}\left({\alpha-\beta}\right)}\right]^{\alpha-\beta}}\exp\left({\beta-\alpha}\right),

in our spectral analysis. Equation (3) would be reduced to the Band function if EcE_{\rm c} is significantly high compared with the maximum photon energy observed by the Fermi satellite. For the pulses in our sample, we will use Band or Band+cutoff spectral model to fit the radiation spectrum, where Equation (3) with Ec=1012E_{\rm c}=10^{12} keV is used as the Band spectral model in our fittings. As an example, Figure 2 presents the spectral fitting results of the pulses in GRB 160509A. One can find that the high-energy spectral cutoff is obvious in some pulses of this burst. All of our spectral fitting results are reported in Table 2. It can be found that three GRBs, i.e., GRBs 090926A, 120226A, and 170405A, in our sample have two pulses detected with high-energy spectral cutoff, two GRBs, i.e., GRBs 090323 and 160625B, have three pulses detected with high-energy spectral cutoff, and four GRBs (i.e., GRBs 100724B, 130821A, 160509A and 180720B) have more pulses detected with high-energy spectral cutoff. The high-energy spectral cutoff ranges from 19.21 to 702.56 MeV for the pulses in our sample.

4 Lorentz Factor Estimation and Evolution in a Burst

4.1 Lorentz Factor Estimation and Correlations

Method to estimate Lorentz factor.   In the scenario that two-photon pair production is responsible to the high-energy spectral cutoff, one can estimate the Lorentz Factor of jet for the corresponding pulse by taking τγγ(Ec)=1\tau_{\gamma\gamma}(E_{c})=1. The photoabsorption optical depth τγγ\tau_{\gamma\gamma} of photons with energy EcE_{c} from low-energy photons emitted cospatially in the jet shell is given by (Abdo et al., 2009),

τγγ(Ec)=σT(dLR)2Echf(Ech)(1+z)2β+4(EcEchΓ2me2c4)β1F(β),{\tau_{\gamma\gamma}}({E_{\rm{c}}})={\sigma_{T}}{(\frac{{{d_{L}}}}{R})^{2}}\frac{{{E_{\rm ch}}f({E_{\rm ch}})}}{{{{(1+z)}^{2\beta+4}}}}{(\frac{{{E_{\rm{c}}}{E_{\rm ch}}}}{{{\Gamma^{2}}m_{e}^{2}{c^{4}}}})^{-\beta-1}}F(\beta), (4)

where σT\sigma_{T} is the Thomson scattering cross-section, dLd_{L} is the distance of the burst relative to the observer, RR is the distance of the emission region with respect to the central engine of GRB, Ech=1E_{\rm ch}=1 keV, f(Ech)=N0K2ΔTf({E_{\rm ch}})={N_{0}}{K_{2}}\Delta T, ΔT\Delta T is the duration of a pulse (see the 2nd column in Table 1), Γ\Gamma is the Lorentz factor of the emission region, F(β)0.597(β)2.30F(\beta)\approx 0.597(-\beta)^{-2.30} for 2.90β1.0-2.90\leq\beta\leq-1.0, and cc is the velocity of light. The relation RΓ2cδt/(1+z)R\simeq\Gamma^{2}c\delta t/(1+z) is valid for the internal shock model, where δt\delta t is the full width at half maximum of the pulse in our analysis. Setting τγγ(Ec)=1\tau_{\gamma\gamma}(E_{c})=1, the Lorentz factor Γ\Gamma is given by

Γ=[σT(dLcδt)2Echf(Ech)F(β)(1+z)2(β+1)(EcEchme2c4)β1]1/(22β).\Gamma=[\sigma_{T}(\frac{d_{L}}{c\delta t})^{2}E_{\rm ch}f(E_{\rm ch})F(\beta)(1+z)^{-2(\beta+1)}(\frac{E_{\rm c}E_{\rm ch}}{m_{e}^{2}c^{4}})^{-\beta-1}]^{1/(2-2\beta)}. (5)

One should note that GRB spectrum usually appears to be a steep slope and thus we only expect high-energy photons might be totally attenuated by low-energy ones, rather than the other way around (Li, 2010). Then, one can have Ec(1+z)(Γmec2)2/[Ec(1+z)]{E_{\rm c}}(1+z)\gtrsim(\Gamma{m_{e}}c^{2})^{2}/[E_{\rm c}(1+z)], or,

ΓEcmec2(1+z).\Gamma\gtrsim\frac{E_{\rm c}}{m_{e}c^{2}}(1+z). (6)

In this paper, the Lorentz factor of a jet corresponding to a pulse with Band+cutoff radiation spectrum is estimated with

Γ=min{[σT(dLcδt)2Echf(Ech)F(β)(1+z)2(β+1)(EcEchme2c4)β1]1/(22β),Ecmec2(1+z)}.\Gamma=\min\left\{[\sigma_{T}(\frac{d_{L}}{c\delta t})^{2}E_{\rm ch}f(E_{\rm ch})F(\beta)(1+z)^{-2(\beta+1)}(\frac{E_{\rm c}E_{\rm ch}}{m_{e}^{2}c^{4}})^{-\beta-1}]^{1/(2-2\beta)},\frac{E_{\rm c}}{m_{e}c^{2}}(1+z)\right\}. (7)

We note that the radiation spectrum of some pulses can be well described with Band function rather than Band+cutoff. That is to say that the high-energy spectrum shows no cutoff. It implies that the optical depth of the maximum observed photon EmaxE_{\max} by Fermi satellite is τγγ(Emax)<1\tau_{\gamma\gamma}(E_{\max})<1. This allows the minimum Lorentz factor to be estimated by

Γ>Γ=min{[σT(dLcδt)2Echf(Ech)F(β)(1+z)2(β+1)(EmaxEchme2c4)β1]1/(22β),Emaxmec2(1+z)}.\Gamma>\Gamma_{\uparrow}=\min\left\{[\sigma_{T}(\frac{d_{L}}{c\delta t})^{2}E_{\rm ch}f(E_{\rm ch})F(\beta)(1+z)^{-2(\beta+1)}(\frac{E_{\rm max}E_{\rm ch}}{m_{e}^{2}c^{4}})^{-\beta-1}]^{1/(2-2\beta)},\frac{E_{\rm max}}{m_{e}c^{2}}(1+z)\right\}. (8)

Equation (8) is used to estimate the lower limit of Lorentz factor for pulse with Band radiation spectrum.

Lorentz factor for pulses and Associated Correlations.   Based on our spectral fitting results and Equation (7) or (8), we estimate the Lorentz factor or its lower limit for the jet corresponding to our pulses, which are reported in Table 2. The Lorentz factor Γ\Gamma (blue symbols) or its lower limit Γ\Gamma_{\uparrow} (green symbols) are also plotted in Figure 1. It can be found that the Lorentz factor of pulses with high-energy spectral cutoff in our sample ranges from 60 to 682.

It has been suggested that the Lorentz factor correlates with other quantities of the pulses such as the value of Lγ,isoL_{\rm\gamma,iso} or Ep,zE_{\rm p,z} (e.g., Lü et al., 2012; Liang et al., 2015). Lü et al. (2012) makes a detail analysis of 38 GRBs with the initial bulk Lorentz factor of the jet producing the external-shock afterglow and found a tight relation between Γ0\Gamma_{\rm 0} and Lγ,isoL_{\rm\gamma,iso}, i.e., Γ0249Lγ,iso,520.30\Gamma_{\rm 0}\simeq 249L_{\rm\gamma,iso,52}^{0.30}. In the upper-left panel of Figure 3, we show the relation of Γ\Gamma-Lγ,isoL_{\rm\gamma,iso} for our pulses, where the blue and green symbols represent the quantities of the pulse with the exact or lower limit of Lorentz factor, the black line is the relation of Γ0249Lγ,iso,520.30\Gamma_{\rm 0}\simeq 249L_{\rm\gamma,iso,52}^{0.30}, and the black and red symbols are the same as those in figure 2 of Lü et al. (2012). It is found that the relation of our Γ\Gamma-Lγ,isoL_{\rm\gamma,iso} is consistent with Γ0249Lγ,iso,520.30\Gamma_{\rm 0}\simeq 249L_{\rm\gamma,iso,52}^{0.30} but with slightly high index.

It is found that the Lorentz factor Γ\Gamma of the outflow not only depends on the luminosity Lγ,isoL_{\rm\gamma,iso}, but also depends on Ep,zE_{\rm p,z}. Liang et al. (2015) compiled a sample of 34 long GRBs with known Lγ,isoL_{\rm\gamma,iso}, Ep,zE_{\rm p,z}, and Γ0,es\Gamma_{0,\rm es} and studied the relation among Lγ,isoL_{\rm\gamma,iso}, Ep,zE_{\rm p,z}, and Γ0,es\Gamma_{0,\rm es}. The relations of logLiso,52=(6.38±0.35)+(1.34±0.14)×log(Ep,z/keV)+(1.32±0.19)×logΓ0,es\log L_{\rm iso,52}=-(6.38\pm 0.35)+(1.34\pm 0.14)\times\log(E_{\rm p,z}/{\rm keV})+(1.32\pm 0.19)\times\log\Gamma_{0,\rm es} and log(Ep,z/keV)=(3.71±0.38)+(0.55±0.06)×logLiso,52(0.50±0.17)×logΓ0,es\log(E_{\rm p,z}/{\rm keV})=(3.71\pm 0.38)+(0.55\pm 0.06)\times\log L_{\rm iso,52}-(0.50\pm 0.17)\times\log\Gamma_{0,\rm es} are obtained. In the upper-right and bottom-left panels of Figure 3, we show the relations of LisorL^{\rm r}_{\rm iso}-LisoL_{\rm iso} and Ep,zrE_{\rm p,z}^{\rm r}-Ep,zE_{\rm p,z} for our pulses, where the values of Liso,52rL_{{\rm{iso}},{\rm{52}}}^{\rm{r}} (Ep,zrE^{\rm r}_{\rm p,z}) for our pulses is estimated with the formula Liso,52r=106.38(Ep,z/keV)1.34Γ1.32L_{{\rm{iso}},{\rm{52}}}^{\rm{r}}={10^{-6.38}}{({E_{{\rm{p}},{\rm{z}}}}/{\rm{keV}})^{1.34}}{\Gamma^{1.32}} (Ep,zr=103.71Liso,520.55Γ0.50E^{\rm r}_{\rm p,z}=10^{3.71}L^{0.55}_{\rm iso,52}\Gamma^{-0.50} keV) and the Liso,52L_{\rm iso,52}(Ep,zE_{\rm p,z}) is obtained through observational data. The black symbols, solid lines, and dashed lines are the same as those in the upper-left and upper-right panels of figure 2 in Liang et al. (2015), the blue and green symbols are the same as those in Figure 1. These two panels reveal that our pulses are highly consistent with correlations reported in Liang et al. (2015).

Lorentz factor for External-shock Afterglow.   Central engines of GRBs may be intermittent and launch several episodes of jet shells, which is responsible for different pulses in the prompt emission. In this scenario, the external-shock is formed due to the propagation of the preceding (merged) jet shell into the circum-burst medium. The jet shells launched from the central engine would collide with each other and a single merged jet shell may appear soon afterwards. If the onset bump of the afterglow appears after the prompt emission, the single merged shell is responsible for the onset bump. In this scenario, the initial Lorentz factor Γ0{\Gamma_{0}} of the jet producing the external-shock afterglow can be estimated as Γ0=Γ0,ps{\Gamma_{0}}=\Gamma_{0,\rm ps} with

Γ0,ps=n=1N1ηrad,nηrad,nEγ,iso,nn=1N1ηrad,nηrad,nEγ,iso,nΓn=n=1NEγ,iso,nn=1NEγ,iso,nΓn,\Gamma_{0,\rm ps}=\frac{{\sum\limits_{n=1}^{N}{\frac{{1-{\eta_{{\rm{rad}},n}}}}{{{\eta_{{\rm{rad}},n}}}}{E_{\gamma,{\rm{iso}},n}}}}}{{\sum\limits_{n=1}^{N}{\frac{{1-{\eta_{{\rm{rad}},n}}}}{{{\eta_{{\rm{rad}},n}}}}\frac{{{E_{\gamma,{\rm{iso}},n}}}}{{{\Gamma_{n}}}}}}}=\frac{{\sum\limits_{n=1}^{N}{{E_{\gamma,{\rm{iso}},n}}}}}{{\sum\limits_{n=1}^{N}{\frac{{{E_{\gamma,{\rm{iso}},n}}}}{{{\Gamma_{n}}}}}}}, (9)

where Eγ,iso,n{{E_{\gamma,{\rm{iso}},n}}}, Γn{{\Gamma_{n}}}, and ηrad,n{{\eta_{{\rm{rad}},n}}} are the isotropic energy, Lorentz factor, and the radiation efficiency of the jet corresponding to nnth pulse in a burst. For our bursts, the value of Γ0,ps\Gamma_{0,\rm ps} is estimated and compared with the initial Lorentz factor Γ0,es\Gamma_{0,\rm es} estimated based on the external-shock afterglow, which are shown in the bottom-right panel of Figure 3. The values of Γ0,ps\Gamma_{0,\rm ps} and Γ0,es\Gamma_{0,\rm es} for the burst in our sample are also reported in Table 3. The detailed discussion about the values of Γ0,ps\Gamma_{0,\rm ps} and Γ0,es\Gamma_{0,\rm es} will be made in Section 4.2.

4.2 Lorentz Factor Evolution for an individual Burst in our sample

According to the results showed in Figure 1, one can find that the Lorentz factor of pulses with high-energy spectral cutoff in our sample ranges from 60 to 682. In addition, the Lorentz factor of jets in an individual burst generally fluctuates within a certain range and without a general trend, except GRBs 130821A, 160509A, and 160625B. In GRBs 130821A, 160509A, and 160625B, the Lorentz factor of jets in an individual burst seems to increase with time.

  • The prompt emission of GRB 090323, which is the second most energetic LAT-detected burst after GRB 080916C, consists with multiple distinct pulses over 150\sim 150 s and a main emission episode in the period of [0,70][0,70] s. With the cutoff energy in the radiation spectrum, the Lorentz factor of jet corresponding to different pulses can be found in Figure 1. Based on the assumption that the peak flux time in the LAT light-curve (\sim40 s) represents the fireball deceleration time, Ackermann et al. (2013) obtained Γ0,es350870\Gamma_{0,\rm es}\sim 350-870 in an ISM circum-burst environment and Γ0,es350590\Gamma_{0,\rm es}\sim 350-590 in a wind circum-burst environment. From Figure 1, only one pulse appears at tobs<40t_{\rm obs}<40 s and the corresponding Lorentz factor is estimated to be 186, which is very different from Γ0,es\Gamma_{0,\rm es} estimated in Ackermann et al. (2013). In the scenario that the pulses in this burst formed in the jets launched in different times, the bulk Lorentz factor of the jet producing the external-shock afterglow at tobs70t_{\rm obs}\lesssim 70 s is estimated to be Γ0,ps183.45\Gamma_{0,\rm ps}\gtrsim 183.45 based on Equation (9). Unfortunately, the Lorentz factor of the fireball in the afterglow phase at tobs70t_{\rm obs}\gtrsim 70 s is no estimated.

  • GRB 090926A is a long bright GRB and clearly shows a short spike at 10\sim 10 s in all detectors of Fermi satellite (Ackermann et al., 2011). However, the high-energy spectral cutoff is only found in two pulses of this burst. Then, the evolution of Lorentz factors could not be constrained. Based on the assumption that the peak flux time in the LAT light-curve (10\sim 10 s) represents the fireball deceleration time, Ackermann et al. (2013) estimate the initial Lorentz factor of the jet producing the external-shock afterglow. The value of Γ0,es520700\Gamma_{0,\rm es}\sim 520-700 and 400450\sim 400-450 are obtained for an ISM and a wind circum-burst environment, respectively. For this burst, the initial Lorentz factor of the jet in the afterglow phase is also estimated to be Γ0,ps304\Gamma_{0,\rm ps}\gtrsim 304 based on Equation (9). This value is consistent with the value of Γ0,es\Gamma_{0,\rm es} in a wind environment as shown in the bottom-right panel of Figure 3, which may imply a wind environment for this burst. Similarly, the high-energy spectral cutoffs are also found only in two pulses in GRB 120226A and GRB 170405A. Then, the evolution of Lorentz factor for pulses could not be constrained in these two bursts.

  • GRB 100724B has multiple peaks of varying intensity as shown in Figure 1. Characteristic features of GRB 100724B are the simultaneous emissions at MeV and GeV (Del Monte et al., 2011). This GRB displays a pronounced Lorentz factor evolution pattern, with its evolution beginning slowly and then varying around 100100 within a small fluctuation. For GRB 100724B, the initial Lorentz factor of the jet in the external-shock phase is estimated as Γ0,ps105\Gamma_{0,\rm ps}\gtrsim 105 based on Equation (9). Unfortunately, there is no afterglows used to estimated the initial Lorentz factor of jet producing the external-shock.

  • GRB 130821A can be decomposed into the main emission episode, which is presented as an obvious multi-peak lasting around 40 s and contributes around 82.43%82.43\% of the γ\gamma-rays energy in this burst, and the followed two sporadic short peaks at 55\sim 55 s and 9090 s, respectively. Figure 1 reveals that the Lorentz factor of GRB 130821A in the main emission episode seems to increase with time. With the peak flux time of the LAT light-curve, the initial bulk Lorentz factor of jet is estimated to be Γ0,es440\Gamma_{0,\rm es}\sim 440 (Liang et al., 2014), which is very different from the value estimated based on Equation (9), i.e., Γ0,ps99\Gamma_{0,\rm ps}\gtrsim 99. The deviation between Γ0,ps\Gamma_{0,\rm ps} and Γ0,es\Gamma_{0,\rm es} can be solved if the bulk Lorentz factor of jet producing the main emission episode in GRB 130821A increases with time. Together with the Lorentz factor evolution shown in Figure 1, we would like to believe that the Lorentz factor of the jet or jets in GRB 130821A should increase with time.

  • GRB 160509A consists of multi-pulses with Lorentz factor of jets fluctuating around 180. With Swift X-ray and ground-based radio, near-infrared, and optical data up to 20 days, Laskar et al. (2016) argued that the afterglow emission comprises distinct external-reverse shock and external-forward shock contributions. Based on the joint analysis of these two emission components, they finally derived the initial Lorentz factor Γ0,es330\Gamma_{0,\rm es}\sim 330 based on the deceleration time T90\sim T_{90}. Taking Fermi-LAT observations into account, however, Fraija et al. (2020) obtained an initial Lorentz factors of Γ0,es600\Gamma_{0,\rm es}\sim 600 (corresponding to the deceleration time 88\sim 88 s for a fireball with Ek,iso=6.98×1053E_{\rm k,iso}=6.98\times 10^{53} erg decelerated in an uniform-density circum-burst medium n=4.56×104cm3n=4.56\times 10^{-4}\;\rm cm^{-3}) after modeling the multi-wavelength observations together with a external-forward and external-reverse shock. For this burst, the initial Lorentz factor of the jet is estimated as Γ0,ps186\Gamma_{0,\rm ps}\sim 186 for pulses appearing at tobs20t_{\rm obs}\lesssim 20 s based on Equation (9). The deviation between Γ0,ps\Gamma_{0,\rm ps} and Γ0,es\Gamma_{0,\rm es} can be solved if the bulk Lorentz factor of jet in GRB 160509A increases with time. In Figure 1, the Lorentz factor of jets corresponding to different pulses in GRB 160509A indeed seems to be increase with time.

  • GRB 160625B is one of the brightest bursts in recent years. One distinct feature of this burst is the multi-bursting behavior, which is separated by two quiescent times. Alexander et al. (2017) argued that the radio emission of this burst is dominated by the external-reverse shock and external-forward shock components formed during the jet propagating in an ISM environment, and adopt three external-reverse shock models to decipher the radio data. The corresponding bulk Lorentz factor of the jet producing the external-reverse shock are collected in Table 3. For this burst, the initial Lorentz factor of the jet producing the external-shock afterglow is estimated to be Γ0,ps240\Gamma_{0,\rm ps}\gtrsim 240 based on Equation (9), which is consistent with Γ0,es290\Gamma_{0,\rm es}\sim 290 estimated based on the model 1 in Alexander et al. (2017). However, Fraija et al. (2017) argued that the early afterglow are consistent with the external-shock in a wind-like circum-burst environment and the late afterglow are consistent with the external-shock in an ISM circum-burst environment. They obtained the initial Lorentz factor Γ0,es500\Gamma_{0,\rm es}\sim 500, which is corresponding to the deceleration time 225\sim 225 s based on equation (46) of Fraija (2015). This may reveal that the Lorentz factor of the jet or jets in GRB 160625B may increase with time in the episode of [185,225][185,225] s if this burst is in the wind-to-ISM circum-burst environment.

  • GRB 180720B is a long and powerful burst with observation of sub-TeV gamma-rays in its afterglow. The simultaneous multi-wavelength observations of this burst were presented over multiple periods of time beginning just after the trigger time and extending to more than 30 days (Fraija et al., 2019). The prompt emission of this burst last around 50 s, with main emission episode in the period of [0,20][0,20] s. Figure 1 reveals that the Lorentz factor of GRB 180720B in the main emission episode varies with time and without an increase or a decrease trend. Based on the assumption that the peak flux time in the LAT light-curve represents the fireball deceleration time, Ronchi et al. (2020) estimated the initial Lorentz factor of the jet producing the external-shock afterglow with a wind-like or ISM circum-burst environment. The results are collected in Table 3. Based on Equation (9), the initial Lorentz factor Γ0,ps\Gamma_{0,\rm ps} of the jet is estimated to be 76\gtrsim 76, which is consistent with that estimated in the wind circum-burst environment, i.e., Γ0,es80\Gamma_{0,\rm es}\sim 80 (Ronchi et al., 2020). This result may reveal that the jet launched in different episode is responsible for the different pulse in the main emission episode of this burst.

5 Conclusions

This paper is dedicated to study the Lorentz factor evolution for jets in an individual GRB during the process of the burst. Then, we search for GRBs with spectral cutoff featuring in their high-energy regime during its prompt emission phase. We showed nine GRBs (GRBs 090323, 090926A, 100724B, 120226A, 130821A, 160509A, 160625B, 170405A, and 180720B) that satisfy our sample selection principles. A total of 70 different pulses is obtained, 34 of which are characterized by high-energy spectral cutoff. In the scenario that the two-photon pair production is responsible for high-energy spectral cutoff, we estimated the Lorentz factor of jet corresponding to the studied pulse. It is found that the Lorentz factor of jet corresponding to the pulse with high-energy spectral cutoff in our sample ranges from 60 to 682. In addition, the Lorentz factor of jets in an individual burst generally fluctuates within a certain range and without a general trend, except GRB 130821A, GRB 160509A and GRB 160625B. In GRB 130821A, GRB 160509A and GRB 160625B, the Lorentz factor of jets in an individual burst seems to increase with time. In GRBs 090926A, 120226A and 170405A, the high-energy spectral cutoff is only found in two pulses of these bursts and thus the Lorentz factor evolution in these bursts could not be constrained. The different behavior of the Lorentz factor evolution found in these GRBs may suggest the difference in jet composition in these bursts. Meanwhile, we also examine the relations among LisoL_{\rm iso}, Ep,zE_{\rm p,z}, and Γ\Gamma for pulses in our sample. It is found that the LisoΓL_{\rm iso}-\Gamma relation is consistent with that found in Lü et al. (2012) and the LisoEp,zΓL_{\rm iso}-E_{\rm p,z}-\Gamma relations are consistent with these reported in Liang et al. (2015).

We acknowledge the use of the Fermi archive’s public data. This work is supported by the National Natural Science Foundation of China (grant Nos. 11773007, 11673006, U1938116, U1938201, U1731239, and U1938106), the Guangxi Science Foundation (grant Nos. 2018GXNSFFA281010, 2017AD22006, 2018GXNSFGA281007, and 2018GXNSFDA281033).
Refer to caption Refer to caption
Refer to caption Refer to caption
Refer to caption Refer to caption
Refer to caption Refer to caption
Refer to caption
Figure 1: The light-curves (black lines) and evolution of Lorentz factor Γ\Gamma (blue symbols) or its low limit Γ\Gamma_{\uparrow} (green symbols) of our sample, where the red lines represent the light-curve fitting with Equation (2). Solid and hollow “\bigstar” are those with and without redshift detection, respectively; for bursts without redshift detection, we use redshift z=1.0z=1.0.
Refer to caption Refer to caption
Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 2: Spectrum fitting results for pulses in GRB 160509A.
Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 3: Upper-left panel— ΓLγ,iso\Gamma-L_{\rm\gamma,iso} relation for our pulses, where the black solid line, black and red symbols are the same as those in figure 2 of Lü et al. (2012), and the blue (green) symbols and solid (hollow) “\bigstar” are the same as those in Figure 1. Upper-right and bottom-left panels— The relations of LisorL^{\rm r}_{\rm iso}-LisoL_{\rm iso} and Ep,zrE_{\rm p,z}^{\rm r}-Ep,zE_{\rm p,z} for our pulses, where the black symbols, solid lines, and dashed lines are the same as those in the upper-left and upper-right panels of figure 2 in Liang et al. (2015), and the blue (green) symbols and solid (hollow) “\bigstar” are the same as those in Figure 1. Bottom-right panel— The value Γ0,ps\Gamma_{0,\rm ps} estimated based on Equation (9) vs. Γ0,es\Gamma_{0,\rm es} estimated based on the external-shock afterglow. Dash dot and solid lines represent the wind circum-burst environment and ISM circum-burst environment, respectively. In the panel, we only show the results of 0-150 s for GRB 090323 and 0-18 s for GRB 090926A.
Table 1: Light-curve fitting results for the pulse in our sample
GRB pulse FpF_{\rm p}aaIn units of countss1{\rm counts\cdot s^{-1}}. t0t_{0}bbIn units of seconds. tpt_{\rm p}bbIn units of seconds. rr dd δt\delta tbbIn units of seconds. F0F_{\rm 0}aaIn units of countss1{\rm counts\cdot s^{-1}}.
090323 [0.00,32.86][0.00,32.86] 45.145.1 0.00.0 14.014.0 1.01.0 9.89.8 25.1625.16 65.0
[32.86,47.56][32.86,47.56] 42.742.7 30.430.4 42.042.0 4.24.2 1.31.3 16.8316.83 -
[47.56,55.49][47.56,55.49] 20.020.0 48.048.0 51.051.0 0.50.5 1.31.3 12.0212.02 -
[55.49,61.35][55.49,61.35] 37.237.2 56.056.0 58.058.0 0.60.6 1.21.2 7.727.72 -
[61.35,72.70][61.35,72.70] 42.642.6 61.061.0 66.066.0 1.51.5 9.29.2 6.686.68 -
[137.18,146.66][137.18,146.66] 56.356.3 137.0137.0 140.4140.4 2.72.7 4.44.4 3.403.40 -
090926A [1.40,2.80][1.40,2.80] 262.8262.8 0.10.1 2.52.5 4.84.8 8.98.9 1.431.43 98.0
[2.80,3.69][2.80,3.69] 235.0235.0 2.92.9 3.43.4 0.90.9 7.97.9 0.900.90 -
[3.69,5.60][3.69,5.60] 311.4311.4 3.53.5 4.34.3 1.91.9 6.26.2 1.021.02 -
[5.60,9.38][5.60,9.38] 313.5313.5 0.00.0 7.57.5 1.71.7 10.010.0 8.928.92 -
[9.38,9.82][9.38,9.82] 230.0230.0 9.39.3 9.69.6 5.25.2 2.02.0 0.370.37 -
[9.82,10.34][9.82,10.34] 518.0518.0 9.89.8 10.010.0 1.71.7 4.54.5 0.320.32 -
[10.34,12.70][10.34,12.70] 256.2256.2 10.210.2 11.311.3 1.31.3 10.010.0 1.521.52 -
[12.70,14.29][12.70,14.29] 86.686.6 12.912.9 13.213.2 2.32.3 5.25.2 0.490.49 -
[15.15,16.70][15.15,16.70] 70.870.8 14.914.9 16.016.0 5.35.3 8.78.7 0.640.64 -
100724B [6.00,13.00][6.00,13.00] 55.855.8 5.05.0 11.011.0 1.61.6 7.67.6 7.767.76 80.0
[13.00,21.00][13.00,21.00] 55.055.0 13.113.1 18.018.0 0.90.9 2.32.3 12.0112.01 -
[37.75,42.92][37.75,42.92] 54.854.8 37.037.0 38.738.7 9.09.0 0.90.9 2.782.78 -
[42.92,50.00][42.92,50.00] 26.726.7 44.044.0 46.446.4 2.02.0 2.82.8 3.403.40 -
[53.67,56.31][53.67,56.31] 57.857.8 54.054.0 55.055.0 0.40.4 0.90.9 6.066.06 -
[56.31,57.82][56.31,57.82] 26.626.6 55.855.8 56.956.9 5.85.8 3.93.9 0.800.80 -
[57.82,61.74][57.82,61.74] 77.477.4 55.355.3 60.060.0 5.15.1 2.42.4 4.274.27 -
[61.74,65.60][61.74,65.60] 70.870.8 62.062.0 63.063.0 0.70.7 1.11.1 3.843.84 -
[65.60,72.00][65.60,72.00] 52.052.0 65.565.5 67.567.5 1.41.4 0.80.8 7.367.36 -
[72.00,80.00][72.00,80.00] 76.076.0 73.073.0 75.075.0 1.31.3 5.65.6 3.063.06 -
120226A [0.00,16.00][0.00,16.00] 69.869.8 0.70.7 10.010.0 1.11.1 5.15.1 16.7116.71 80.0
[16.00,24.00][16.00,24.00] 39.439.4 14.614.6 18.018.0 6.86.8 2.22.2 2.822.82 -
[24.00,29.00][24.00,29.00] 24.024.0 24.224.2 24.824.8 0.10.1 6.06.0 7.527.52 -
[29.00,41.50][29.00,41.50] 47.047.0 29.129.1 30.130.1 0.10.1 6.16.1 7.977.97 -
[48.78,53.79][48.78,53.79] 34.034.0 48.648.6 51.451.4 2.02.0 5.05.0 3.343.34 -
[53.79,58.15][53.79,58.15] 25.525.5 53.453.4 55.355.3 3.03.0 1.81.8 2.592.59 -
130821A [23.78,28.80][23.78,28.80] 131.0131.0 23.023.0 27.627.6 2.52.5 8.88.8 4.254.25 89.1
[28.80,29.77][28.80,29.77] 50.050.0 28.728.7 29.429.4 2.92.9 9.39.3 0.560.56 -
[29.77,31.17][29.77,31.17] 140.0140.0 28.228.2 30.630.6 4.14.1 4.94.9 1.861.86 -
[31.17,32.38][31.17,32.38] 129.0129.0 31.231.2 31.731.7 7.07.0 0.90.9 0.980.98 -
[32.38,34.18][32.38,34.18] 198.0198.0 32.432.4 32.932.9 3.03.0 1.41.4 0.820.82 -
[36.09,39.00][36.09,39.00] 120.0120.0 35.935.9 37.337.3 2.32.3 6.96.9 1.411.41 -
[53.75,54.60][53.75,54.60] 90.190.1 53.053.0 54.354.3 9.89.8 6.16.1 0.640.64 -
160509A [7.50,9.50][7.50,9.50] 101.2101.2 6.86.8 8.88.8 2.92.9 8.78.7 1.671.67 100.0
[9.50,12.38][9.50,12.38] 369.0369.0 9.09.0 11.911.9 2.92.9 3.73.7 3.033.03 -
[12.38,13.40][12.38,13.40] 104.0104.0 12.512.5 12.612.6 0.10.1 6.26.2 2.662.66 -
[13.40,14.50][13.40,14.50] 348.8348.8 13.513.5 14.114.1 1.31.3 7.07.0 0.860.86 -
[14.50,16.57][14.50,16.57] 360.1360.1 14.614.6 16.016.0 0.60.6 8.08.0 3.383.38 -
[16.57,20.00][16.57,20.00] 178.2178.2 16.216.2 17.217.2 3.33.3 0.70.7 2.622.62 -
160625B [185.51,191.78][185.51,191.78] 1200.01200.0 186.9186.9 189.1189.1 2.02.0 4.24.2 2.792.79 77.0
[191.78,197.09][191.78,197.09] 671.9671.9 189.6189.6 194.9194.9 4.14.1 2.72.7 5.135.13 -
[197.09,198.56][197.09,198.56] 226.9226.9 195.6195.6 197.9197.9 9.99.9 10.010.0 0.790.79 -
[198.56,210.00][198.56,210.00] 623.6623.6 196.5196.5 200.6200.6 5.45.4 1.81.8 4.274.27 -
170405A [5.00,10.00][5.00,10.00] 22.122.1 5.05.0 6.96.9 1.61.6 1.01.0 5.135.13 97.0
[10.00,25.00][10.00,25.00] 41.741.7 10.010.0 19.419.4 1.51.5 1.51.5 20.5820.58 -
[25.00,35.00][25.00,35.00] 60.460.4 25.025.0 29.329.3 1.81.8 9.39.3 5.075.07 -
[44.90,48.66][44.90,48.66] 62.062.0 44.544.5 46.946.9 3.33.3 2.72.7 2.572.57 -
[48.66,54.70][48.66,54.70] 45.045.0 47.547.5 50.650.6 2.02.0 6.56.5 3.473.47 -
[72.00,77.40][72.00,77.40] 29.029.0 72.072.0 73.773.7 1.61.6 2.62.6 2.762.76 -
[80.21,90.55][80.21,90.55] 21.621.6 77.477.4 85.085.0 2.02.0 8.28.2 8.208.20 -
180720B [0.45,7.49][0.45,7.49] 220.0220.0 0.10.1 4.94.9 1.81.8 1.11.1 11.7811.78 79.3
[7.49,10.05][7.49,10.05] 315.0315.0 6.96.9 8.58.5 6.16.1 2.42.4 1.391.39 -
[10.05,13.12][10.05,13.12] 280.0280.0 8.68.6 11.411.4 3.33.3 2.92.9 2.902.90 -
[13.12,13.88][13.12,13.88] 190.0190.0 13.113.1 13.813.8 0.90.9 2.52.5 1.671.67 -
[13.88,14.62][13.88,14.62] 120.0120.0 13.913.9 14.214.2 2.32.3 4.74.7 0.480.48 -
[14.62,15.35][14.62,15.35] 290.0290.0 14.614.6 14.814.8 2.52.5 3.33.3 0.320.32 -
[15.35,17.06][15.35,17.06] 1012.01012.0 15.415.4 16.416.4 2.42.4 2.22.2 1.531.53 -
[17.06,18.13][17.06,18.13] 420.0420.0 17.117.1 17.517.5 5.65.6 1.81.8 0.610.61 -
[18.13,18.96][18.13,18.96] 184.0184.0 18.318.3 18.618.6 1.21.2 4.34.3 0.580.58 -
[18.96,20.94][18.96,20.94] 405.0405.0 18.918.9 19.519.5 1.81.8 8.98.9 0.630.63 -
[21.63,27.26][21.63,27.26] 119.4119.4 21.621.6 23.423.4 2.12.1 1.91.9 2.852.85 -
[27.26,29.05][27.26,29.05] 300.0300.0 27.327.3 28.528.5 2.02.0 1.81.8 2.192.19 -
[29.05,29.74][29.05,29.74] 312.0312.0 29.029.0 29.529.5 1.41.4 1.51.5 1.151.15 -
[29.74,33.47][29.74,33.47] 430.0430.0 29.829.8 29.929.9 0.80.8 1.61.6 0.370.37 -
[47.87,55.36][47.87,55.36] 190.0190.0 48.048.0 50.550.5 2.52.5 4.14.1 2.692.69 -
Table 2: Joint spectral fitting results of our pulses and the corresponding estimated Γ\Gamma
GRBaaRedshift measurements reference. GRB 090323, zz=3.57, Ackermann et al. (2013). GRB 090926A, zz=2.1062, Ackermann et al. (2013). GRB 160509A, zz=1.17, Tanvir et al. (2016). GRB 160625B, zz=1.406, D’Elia et al. (2016). GRB 170405A, zz=3.51, de Ugarte Postigo et al. (2017). GRB 180720B, zz=0.654, Vreeswijk et al. (2018). Bursts with no redshift measurements are assumed to have z=1.0z=1.0. pulse α\alpha β\beta E0(keV)E_{0}({\rm keV}) EcE_{\rm c} or EmaxE_{\max}bbEcE_{\rm c} and EmaxE_{\max} are in the unit of MeV and N0N_{0} is in unit of photonscm2s1keV1{\rm photons\cdot cm^{-2}\cdot s^{-1}\cdot keV^{-1}}. N0N_{\rm 0} bbEcE_{\rm c} and EmaxE_{\max} are in the unit of MeV and N0N_{0} is in unit of photonscm2s1keV1{\rm photons\cdot cm^{-2}\cdot s^{-1}\cdot keV^{-1}}. χr2\chi^{2}_{\rm r} Γ\Gamma ccThe exact value of Γ\Gamma is derived from Equation (7) and the lower limit of Γ\Gamma is from Γ>Γ\Gamma>\Gamma_{\uparrow} based on Equation (8). Lγ,iso,52L_{\rm\gamma,iso,52} ddLγ,iso,52L_{\rm\gamma,iso,52} is estimated in the 8 keV-100 GeV energy band.
090323 [0.00,32.86][0.00,32.86] 1.19±0.04-1.19\pm 0.04 1.92±0.16-1.92\pm 0.16 1281.13±422.491281.13\pm 422.49 22.27±7.3422.27\pm 7.34 2.69±0.322.69\pm 0.32 1.361.36 185.59±66.07185.59\pm 66.07 7.44±0.957.44\pm 0.95
[32.86,47.56][32.86,47.56] 0.74±0.08-0.74\pm 0.08 2.12±0.31-2.12\pm 0.31 185.00±40.17185.00\pm 40.17 19.21±18.6919.21\pm 18.69 0.75±0.200.75\pm 0.20 1.171.17 142.13±140.10142.13\pm 140.10 4.37±0.824.37\pm 0.82
[47.56,55.49][47.56,55.49] 1.06±0.05-1.06\pm 0.05 3.28±0.55-3.28\pm 0.55 844.73±257.40844.73\pm 257.40 105.27105.27 2.48±0.612.48\pm 0.61 0.860.86 165.80±164.10\gtrsim 165.80\pm 164.10 6.72±1.536.72\pm 1.53
[55.49,61.35][55.49,61.35] 0.93±0.05-0.93\pm 0.05 2.67±0.10-2.67\pm 0.10 710.47±172.87710.47\pm 172.87 319.53319.53 1.90±0.471.90\pm 0.47 1.161.16 273.47±33.97\gtrsim 273.47\pm 33.97 11.16±1.5011.16\pm 1.50
[61.35,72.70][61.35,72.70] 0.97±0.04-0.97\pm 0.04 2.12±0.06-2.12\pm 0.06 454.05±82.64454.05\pm 82.64 64.79±16.4364.79\pm 16.43 2.41±0.352.41\pm 0.35 1.081.08 265.42±30.72265.42\pm 30.72 11.01±1.0211.01\pm 1.02
[137.18,146.66][137.18,146.66] 0.94±0.19-0.94\pm 0.19 1.93±0.13-1.93\pm 0.13 100.13±44.35100.13\pm 44.35 40.0040.00 3.14±3.753.14\pm 3.75 1.161.16 272.18±79.58\gtrsim 272.18\pm 79.58 11.95±10.5811.95\pm 10.58
090926A [1.40,2.80][1.40,2.80] 0.49±0.04-0.49\pm 0.04 2.75±0.07-2.75\pm 0.07 261.24±16.54261.24\pm 16.54 130.56130.56 1.72±0.321.72\pm 0.32 0.940.94 223.16±21.44\gtrsim 223.16\pm 21.44 15.68±0.8315.68\pm 0.83
[2.80,3.69][2.80,3.69] 0.52±0.03-0.52\pm 0.03 3.16±0.17-3.16\pm 0.17 286.94±14.79286.94\pm 14.79 175.46175.46 3.18±0.473.18\pm 0.47 0.980.98 233.04±50.79\gtrsim 233.04\pm 50.79 25.34±1.2725.34\pm 1.27
[3.69,5.60][3.69,5.60] 0.59±0.03-0.59\pm 0.03 2.32±0.03-2.32\pm 0.03 232.59±11.04232.59\pm 11.04 200.31±62.39200.31\pm 62.39 5.06±0.465.06\pm 0.46 1.011.01 379.60±33.24379.60\pm 33.24 32.22±1.2332.22\pm 1.23
[5.60,9.38][5.60,9.38] 0.71±0.02-0.71\pm 0.02 2.31±0.01-2.31\pm 0.01 254.13±11.12254.13\pm 11.12 1216.721216.72 5.89±0.605.89\pm 0.60 1.311.31 294.12±4.72\gtrsim 294.12\pm 4.72 23.92±0.7523.92\pm 0.75
[9.38,9.82][9.38,9.82] 0.51±0.05-0.51\pm 0.05 2.55±0.05-2.55\pm 0.05 215.07±18.93215.07\pm 18.93 3321.623321.62 3.50±0.923.50\pm 0.92 0.940.94 639.87±41.22\gtrsim 639.87\pm 41.22 24.50±13.0424.50\pm 13.04
[9.82,10.34][9.82,10.34] 1.14±0.05-1.14\pm 0.05 1.96±0.02-1.96\pm 0.02 271.16±50.56271.16\pm 50.56 702.56±269.31702.56\pm 269.31 55.76±8.8455.76\pm 8.84 0.960.96 682.42±59.56682.42\pm 59.56 48.01±5.6348.01\pm 5.63
[10.34,12.70][10.34,12.70] 0.86±0.03-0.86\pm 0.03 2.22±0.01-2.22\pm 0.01 197.77±12.59197.77\pm 12.59 2040.682040.68 14.02±1.9714.02\pm 1.97 1.351.35 510.09±9.74\gtrsim 510.09\pm 9.74 22.47±10.8822.47\pm 10.88
[12.70,14.29][12.70,14.29] 1.01±0.06-1.01\pm 0.06 2.15±0.02-2.15\pm 0.02 201.47±34.37201.47\pm 34.37 935.76935.76 11.15±3.6211.15\pm 3.62 1.011.01 524.87±21.14\gtrsim 524.87\pm 21.14 9.92±4.379.92\pm 4.37
[15.15,16.70][15.15,16.70] 1.07±0.10-1.07\pm 0.10 2.11±0.02-2.11\pm 0.02 171.16±47.51171.16\pm 47.51 2662.022662.02 10.44±5.6810.44\pm 5.68 0.960.96 539.92±25.69\gtrsim 539.92\pm 25.69 6.49±5.996.49\pm 5.99
100724B [6.00,13.00][6.00,13.00] 0.69±0.05-0.69\pm 0.05 1.75±0.05-1.75\pm 0.05 410.51±57.30410.51\pm 57.30 20.03±4.8520.03\pm 4.85 0.77±0.130.77\pm 0.13 1.111.11 78.39±18.9978.39\pm 18.99 2.45±0.252.45\pm 0.25
[13.00,21.00][13.00,21.00] 0.75±0.03-0.75\pm 0.03 1.76±0.03-1.76\pm 0.03 440.29±47.42440.29\pm 47.42 27.06±2.6027.06\pm 2.60 1.29±0.161.29\pm 0.16 1.161.16 105.91±10.16105.91\pm 10.16 3.42±0.183.42\pm 0.18
[37.75,42.92][37.75,42.92] 0.87±0.05-0.87\pm 0.05 2.16±0.13-2.16\pm 0.13 343.12±51.44343.12\pm 51.44 42.09±23.7542.09\pm 23.75 1.76±0.321.76\pm 0.32 1.091.09 125.49±34.97125.49\pm 34.97 1.05±0.141.05\pm 0.14
[42.92,50.00][42.92,50.00] 0.85±0.05-0.85\pm 0.05 2.31±0.13-2.31\pm 0.13 272.64±36.59272.64\pm 36.59 69.97±61.0669.97\pm 61.06 1.54±0.271.54\pm 0.27 1.411.41 116.18±32.37116.18\pm 32.37 1.05±0.141.05\pm 0.14
[53.67,56.31][53.67,56.31] 0.83±0.05-0.83\pm 0.05 2.90±0.20-2.90\pm 0.20 426.70±51.85426.70\pm 51.85 70.0070.00 1.95±0.441.95\pm 0.44 0.940.94 75.11±20.53\gtrsim 75.11\pm 20.53 1.14±0.151.14\pm 0.15
[56.31,57.82][56.31,57.82] 0.86±0.05-0.86\pm 0.05 2.99±0.28-2.99\pm 0.28 507.02±75.44507.02\pm 75.44 104.77104.77 2.41±0.612.41\pm 0.61 0.800.80 130.72±58.87\gtrsim 130.72\pm 58.87 1.40±0.201.40\pm 0.20
[57.82,61.74][57.82,61.74] 0.75±0.03-0.75\pm 0.03 2.51±0.11-2.51\pm 0.11 353.25±26.69353.25\pm 26.69 94.98±77.8194.98\pm 77.81 2.16±0.252.16\pm 0.25 0.960.96 114.41±26.65114.41\pm 26.65 1.95±0.131.95\pm 0.13
[61.74,65.60][61.74,65.60] 0.74±0.03-0.74\pm 0.03 2.01±0.06-2.01\pm 0.06 377.22±34.16377.22\pm 34.16 28.44±5.7328.44\pm 5.73 2.27±0.272.27\pm 0.27 1.131.13 111.32±22.44111.32\pm 22.44 3.46±0.223.46\pm 0.22
[65.60,72.00][65.60,72.00] 0.82±0.03-0.82\pm 0.03 2.35±0.10-2.35\pm 0.10 422.82±29.82422.82\pm 29.82 41.19±18.9641.19\pm 18.96 2.58±0.242.58\pm 0.24 1.111.11 96.73±19.6396.73\pm 19.63 2.06±0.132.06\pm 0.13
[72.00,80.00][72.00,80.00] 0.77±0.03-0.77\pm 0.03 2.23±0.06-2.23\pm 0.06 349.92±24.66349.92\pm 24.66 52.16±15.5852.16\pm 15.58 1.96±0.191.96\pm 0.19 1.371.37 142.98±18.25142.98\pm 18.25 1.91±0.101.91\pm 0.10
120226A [0.00,16.00][0.00,16.00] 0.82±0.04-0.82\pm 0.04 2.53±0.03-2.53\pm 0.03 290.64±25.47290.64\pm 25.47 9603.439603.43 1.22±0.221.22\pm 0.22 1.361.36 211.35±7.02\gtrsim 211.35\pm 7.02 0.62±0.040.62\pm 0.04
[16.00,24.00][16.00,24.00] 0.89±0.06-0.89\pm 0.06 2.10±0.17-2.10\pm 0.17 281.99±46.95281.99\pm 46.95 20.22±9.8020.22\pm 9.80 1.82±0.341.82\pm 0.34 1.101.10 79.13±38.3679.13\pm 38.36 0.76±0.150.76\pm 0.15
[24.00,29.00][24.00,29.00] 0.58±0.15-0.58\pm 0.15 2.10±0.17-2.10\pm 0.17 122.68±32.22122.68\pm 32.22 29.76±21.5229.76\pm 21.52 0.52±0.240.52\pm 0.24 1.061.06 75.94±28.1575.94\pm 28.15 0.45±0.140.45\pm 0.14
[29.00,41.50][29.00,41.50] 0.92±0.06-0.92\pm 0.06 2.10±0.12-2.10\pm 0.12 259.07±44.36259.07\pm 44.36 40.0040.00 1.72±0.491.72\pm 0.49 1.141.14 95.37±21.99\gtrsim 95.37\pm 21.99 1.02±0.121.02\pm 0.12
[48.78,53.79][48.78,53.79] 0.78±0.20-0.78\pm 0.20 2.08±0.24-2.08\pm 0.24 163.34±62.49163.34\pm 62.49 40.0040.00 0.97±1.180.97\pm 1.18 0.950.95 98.41±61.70\gtrsim 98.41\pm 61.70 0.52±0.360.52\pm 0.36
[53.79,58.15][53.79,58.15] 1.21±0.15-1.21\pm 0.15 2.21±0.61-2.21\pm 0.61 301.73±191.57301.73\pm 191.57 40.0040.00 3.72±3.173.72\pm 3.17 1.271.27 91.42±9.10\gtrsim 91.42\pm 9.10 0.30±0.260.30\pm 0.26
130821A [23.78,28.80][23.78,28.80] 0.81±0.05-0.81\pm 0.05 2.19±0.14-2.19\pm 0.14 231.00±30.63231.00\pm 30.63 20.00±9.3420.00\pm 9.34 2.20±0.402.20\pm 0.40 1.001.00 78.29±36.5678.29\pm 36.56 1.00±0.131.00\pm 0.13
[28.80,29.77][28.80,29.77] 0.81±0.05-0.81\pm 0.05 2.19±0.14-2.19\pm 0.14 231.00±30.63231.00\pm 30.63 20.00±9.3420.00\pm 9.34 2.20±0.402.20\pm 0.40 1.001.00 78.31±24.7178.31\pm 24.71 1.00±0.131.00\pm 0.13
[29.77,31.17][29.77,31.17] 0.88±0.05-0.88\pm 0.05 2.09±0.11-2.09\pm 0.11 319.77±44.37319.77\pm 44.37 20.01±6.3120.01\pm 6.31 4.54±0.744.54\pm 0.74 0.990.99 78.31±24.7178.31\pm 24.71 2.25±0.272.25\pm 0.27
[31.17,32.38][31.17,32.38] 0.79±0.06-0.79\pm 0.06 2.86±0.26-2.86\pm 0.26 219.54±25.54219.54\pm 25.54 35.0935.09 4.12±1.194.12\pm 1.19 0.900.90 89.13±38.59\gtrsim 89.13\pm 38.59 1.36±0.231.36\pm 0.23
[32.38,34.18][32.38,34.18] 1.00±0.04-1.00\pm 0.04 2.42±0.24-2.42\pm 0.24 356.65±49.06356.65\pm 49.06 29.93±24.1329.93\pm 24.13 7.63±1.187.63\pm 1.18 1.061.06 117.15±94.45117.15\pm 94.45 1.77±0.211.77\pm 0.21
[36.09,39.00][36.09,39.00] 0.99±0.07-0.99\pm 0.07 2.10±0.11-2.10\pm 0.11 229.52±46.97229.52\pm 46.97 40.0040.00 5.51±1.925.51\pm 1.92 1.261.26 145.57±33.29\gtrsim 145.57\pm 33.29 1.94±0.231.94\pm 0.23
[53.75,54.60][53.75,54.60] 1.12±0.22-1.12\pm 0.22 2.09±0.39-2.09\pm 0.39 259.94±184.96259.94\pm 184.96 40.0040.00 7.76±11.767.76\pm 11.76 1.121.12 138.43±130.10\gtrsim 138.43\pm 130.10 0.95±0.590.95\pm 0.59
160509A [7.50,9.50][7.50,9.50] 0.81±0.06-0.81\pm 0.06 2.73±0.09-2.73\pm 0.09 590.75±94.35590.75\pm 94.35 168.35168.35 1.43±0.401.43\pm 0.40 0.850.85 154.16±19.22\gtrsim 154.16\pm 19.22 1.97±0.171.97\pm 0.17
[9.50,12.38][9.50,12.38] 0.72±0.03-0.72\pm 0.03 2.19±0.03-2.19\pm 0.03 432.30±26.93432.30\pm 26.93 65.21±8.8465.21\pm 8.84 3.33±0.323.33\pm 0.32 1.061.06 173.26±10.40173.26\pm 10.40 8.12±0.288.12\pm 0.28
[12.38,13.40][12.38,13.40] 0.72±0.04-0.72\pm 0.04 2.15±0.04-2.15\pm 0.04 343.81±29.63343.81\pm 29.63 76.19±17.5276.19\pm 17.52 5.33±0.715.33\pm 0.71 0.960.96 167.00±14.03167.00\pm 14.03 11.00±0.5711.00\pm 0.57
[13.40,14.50][13.40,14.50] 0.66±0.03-0.66\pm 0.03 2.25±0.05-2.25\pm 0.05 281.84±19.20281.84\pm 19.20 47.58±11.3447.58\pm 11.34 5.71±0.675.71\pm 0.67 0.800.80 202.07±48.14202.07\pm 48.14 10.83±0.5210.83\pm 0.52
[14.50,16.57][14.50,16.57] 0.78±0.02-0.78\pm 0.02 2.35±0.04-2.35\pm 0.04 288.36±14.73288.36\pm 14.73 84.73±22.8484.73\pm 22.84 9.33±0.759.33\pm 0.75 0.990.99 150.96±12.74150.96\pm 12.74 8.79±0.298.79\pm 0.29
[16.57,20.00][16.57,20.00] 0.77±0.02-0.77\pm 0.02 2.00±0.01-2.00\pm 0.01 275.95±15.51275.95\pm 15.51 82.78±6.2282.78\pm 6.22 7.56±0.597.56\pm 0.59 1.091.09 225.32±7.16225.32\pm 7.16 11.52±0.2711.52\pm 0.27
160625B [185.51,191.78][185.51,191.78] 0.66±0.01-0.66\pm 0.01 2.25±0.01-2.25\pm 0.01 682.14±16.09682.14\pm 16.09 43.87±2.0243.87\pm 2.02 4.87±0.184.87\pm 0.18 2.432.43 206.56±9.51206.56\pm 9.51 37.00±0.3737.00\pm 0.37
[191.78,197.09][191.78,197.09] 0.67±0.01-0.67\pm 0.01 2.82±0.01-2.82\pm 0.01 435.58±8.76435.58\pm 8.76 2766.502766.50 6.70±0.306.70\pm 0.30 1.881.88 354.14±5.48\gtrsim 354.14\pm 5.48 21.40±0.2721.40\pm 0.27
[197.09,198.56][197.09,198.56] 0.69±0.02-0.69\pm 0.02 2.74±0.05-2.74\pm 0.05 506.33±21.84506.33\pm 21.84 139.69±72.12139.69\pm 72.12 6.31±0.476.31\pm 0.47 0.880.88 253.08±39.15253.08\pm 39.15 21.58±0.7621.58\pm 0.76
[198.56,210.00][198.56,210.00] 0.71±0.01-0.71\pm 0.01 2.59±0.01-2.59\pm 0.01 487.43±9.34487.43\pm 9.34 213.08±27.42213.08\pm 27.42 5.39±0.175.39\pm 0.17 2.182.18 238.91±8.18238.91\pm 8.18 17.10±0.1717.10\pm 0.17
170405A [5.00,10.00][5.00,10.00] 0.81±0.16-0.81\pm 0.16 2.07±0.25-2.07\pm 0.25 323.74±126.13323.74\pm 126.13 40.0040.00 0.71±0.600.71\pm 0.60 1.121.12 204.86±134.02\gtrsim 204.86\pm 134.02 8.32±2.858.32\pm 2.85
[10.00,25.00][10.00,25.00] 0.61±0.06-0.61\pm 0.06 2.11±0.06-2.11\pm 0.06 222.88±24.96222.88\pm 24.96 44.81±13.7744.81\pm 13.77 0.50±0.110.50\pm 0.11 1.221.22 170.37±20.77170.37\pm 20.77 7.59±0.787.59\pm 0.78
[25.00,35.00][25.00,35.00] 0.74±0.05-0.74\pm 0.05 2.23±0.07-2.23\pm 0.07 257.01±27.19257.01\pm 27.19 58.83±25.4858.83\pm 25.48 1.18±0.211.18\pm 0.21 1.131.13 251.51±38.43251.51\pm 38.43 8.88±0.838.88\pm 0.83
[44.90,48.66][44.90,48.66] 0.86±0.08-0.86\pm 0.08 2.10±0.15-2.10\pm 0.15 295.34±66.05295.34\pm 66.05 40.0040.00 1.89±0.791.89\pm 0.79 1.011.01 269.56±82.11\gtrsim 269.56\pm 82.11 15.93±2.5215.93\pm 2.52
[48.66,54.70][48.66,54.70] 0.93±0.08-0.93\pm 0.08 2.10±0.13-2.10\pm 0.13 255.39±53.20255.39\pm 53.20 40.0040.00 2.37±0.902.37\pm 0.90 1.081.08 251.31±66.73\gtrsim 251.31\pm 66.73 12.12±1.6412.12\pm 1.64
[72.00,77.40][72.00,77.40] 0.85±0.13-0.85\pm 0.13 2.17±0.29-2.17\pm 0.29 266.62±88.83266.62\pm 88.83 40.0040.00 1.04±0.731.04\pm 0.73 1.371.37 232.18±180.10\gtrsim 232.18\pm 180.10 5.61±1.925.61\pm 1.92
[80.21,90.55][80.21,90.55] 1.00±0.09-1.00\pm 0.09 2.34±0.39-2.34\pm 0.39 317.66±84.38317.66\pm 84.38 40.0040.00 1.57±0.691.57\pm 0.69 1.371.37 160.30±150.10\gtrsim 160.30\pm 150.10 3.44±0.943.44\pm 0.94
180720B [0.45,7.49][0.45,7.49] 1.03±0.01-1.03\pm 0.01 2.71±0.29-2.71\pm 0.29 1333.44±96.761333.44\pm 96.76 20.07±12.8620.07\pm 12.86 6.73±0.376.73\pm 0.37 1.041.04 60.49±37.6660.49\pm 37.66 1.74±0.231.74\pm 0.23
[7.49,10.05][7.49,10.05] 1.03±0.02-1.03\pm 0.02 2.35±0.14-2.35\pm 0.14 1070.04±81.101070.04\pm 81.10 20.00±6.9820.00\pm 6.98 14.57±0.8714.57\pm 0.87 1.131.13 64.74±22.6064.74\pm 22.60 3.40±0.783.40\pm 0.78
[10.05,13.12][10.05,13.12] 0.98±0.01-0.98\pm 0.01 2.31±0.07-2.31\pm 0.07 789.44±47.48789.44\pm 47.48 21.26±3.6221.26\pm 3.62 13.57±0.7513.57\pm 0.75 0.980.98 68.80±11.7368.80\pm 11.73 3.38±0.123.38\pm 0.12
[13.12,13.88][13.12,13.88] 0.94±0.04-0.94\pm 0.04 2.76±0.10-2.76\pm 0.10 452.06±47.25452.06\pm 47.25 114.60114.60 11.80±2.0111.80\pm 2.01 0.770.77 99.81±13.72\gtrsim 99.81\pm 13.72 1.92±0.141.92\pm 0.14
[13.88,14.62][13.88,14.62] 1.05±0.03-1.05\pm 0.03 2.94±0.18-2.94\pm 0.18 643.98±68.59643.98\pm 68.59 54.0154.01 20.83±2.8520.83\pm 2.85 1.051.05 112.54±31.82\gtrsim 112.54\pm 31.82 2.36±0.182.36\pm 0.18
[14.62,15.35][14.62,15.35] 0.99±0.03-0.99\pm 0.03 2.71±0.09-2.71\pm 0.09 573.22±57.59573.22\pm 57.59 73.1173.11 17.07±2.4317.07\pm 2.43 0.890.89 150.61±21.95\gtrsim 150.61\pm 21.95 2.64±0.182.64\pm 0.18
[15.35,17.06][15.35,17.06] 0.88±0.01-0.88\pm 0.01 2.00±0.04-2.00\pm 0.04 651.68±36.34651.68\pm 36.34 20.00±4.8820.00\pm 4.88 18.06±1.0118.06\pm 1.01 1.021.02 64.74±15.8164.74\pm 15.81 8.88±0.448.88\pm 0.44
[17.06,18.13][17.06,18.13] 0.98±0.02-0.98\pm 0.02 2.49±0.12-2.49\pm 0.12 563.70±35.96563.70\pm 35.96 20.01±11.1820.01\pm 11.18 26.78±1.8426.78\pm 1.84 1.121.12 64.75±36.1764.75\pm 36.17 4.68±0.254.68\pm 0.25
[18.13,18.96][18.13,18.96] 1.10±0.03-1.10\pm 0.03 2.83±0.15-2.83\pm 0.15 380.05±35.80380.05\pm 35.80 60.7460.74 33.60±4.9533.60\pm 4.95 0.800.80 106.19±24.73\gtrsim 106.19\pm 24.73 1.78±0.141.78\pm 0.14
[18.96,20.94][18.96,20.94] 1.32±0.02-1.32\pm 0.02 2.75±0.08-2.75\pm 0.08 670.60±76.43670.60\pm 76.43 279.93279.93 48.05±5.1848.05\pm 5.18 0.990.99 169.11±18.84\gtrsim 169.11\pm 18.84 1.23±0.061.23\pm 0.06
[21.63,27.26][21.63,27.26] 1.40±0.02-1.40\pm 0.02 2.56±0.06-2.56\pm 0.06 517.68±64.80517.68\pm 64.80 156.22156.22 35.01±4.1435.01\pm 4.14 1.021.02 104.25±8.45\gtrsim 104.25\pm 8.45 0.53±0.030.53\pm 0.03
[27.26,29.05][27.26,29.05] 1.26±0.05-1.26\pm 0.05 2.45±0.19-2.45\pm 0.19 334.43±59.97334.43\pm 59.97 125.89±224.09125.89\pm 224.09 23.44±3.4123.44\pm 3.41 0.740.74 96.05±36.97\gtrsim 96.05\pm 36.97 0.57±0.070.57\pm 0.07
[29.05,29.74][29.05,29.74] 0.98±0.03-0.98\pm 0.03 2.79±0.12-2.79\pm 0.12 493.63±50.78493.63\pm 50.78 84.1684.16 16.36±2.5416.36\pm 2.54 0.900.90 102.41±17.76\gtrsim 102.41\pm 17.76 2.28±0.172.28\pm 0.17
[29.74,33.47][29.74,33.47] 1.23±0.02-1.23\pm 0.02 2.91±0.09-2.91\pm 0.09 795.84±81.94795.84\pm 81.94 398.48398.48 20.48±1.9720.48\pm 1.97 0.880.88 217.42±27.22\gtrsim 217.42\pm 27.22 0.99±0.050.99\pm 0.05
[47.87,55.36][47.87,55.36] 1.23±0.03-1.23\pm 0.03 2.59±0.08-2.59\pm 0.08 564.71±69.22564.71\pm 69.22 398.45398.45 11.15±1.4211.15\pm 1.42 1.071.07 135.43±14.21\gtrsim 135.43\pm 14.21 0.46±0.030.46\pm 0.03
Table 3: Initial Lorentz factor of the jet producing the external-shock afterglow
GRB Γ0,ps\Gamma_{0,\rm ps} Pulses for estimating Γ0,ps\Gamma_{0,\rm ps} Γ0,es\Gamma_{0,\rm es} References for Γ0,es\Gamma_{0,\rm es}
090323 206.92\gtrsim 206.92 0-150 s 350870350-870 (ISM) Ackermann et al. (2013)
183.45\gtrsim 183.45 70\lesssim 70 s 350590350-590 (wind)
090926A 357.24\gtrsim 357.24 0-18 s 750750 for ISM (lower limit) Ackermann et al. (2011)
304.08\gtrsim 304.08 10\lesssim 10 s 290290 for wind (lower limit)
520700520-700 for ISM Ackermann et al. (2013)
400450400-450 for wind
100724B 104.58\gtrsim 104.58 0-80 s
120226A 106.49\gtrsim 106.49 0-60 s
130821A 98.67\gtrsim 98.67 20-60 s 440440 Liang et al. (2014)
160509A 185.67\gtrsim 185.67 5-20 s 600600 Fraija et al. (2020)
160625B 239.92\gtrsim 239.92 185-210 s Reverse Shock (Model 1)(ISM) 290290 Alexander et al. (2017)
Reverse Shock (Model 2)(ISM) 120120
Reverse Shock (Model 3)(ISM) 370370
500500 (wind-to-ISM) Fraija et al. (2017)
170405A 212.04\gtrsim 212.04 0-100 s 420420 (ISM) (upper limit) Arimoto et al. (2020)
or wind medium depend on specific parameters
180720B 75.71\gtrsim 75.71 0-60 s 142(80)142(80) for wind and vw=103(102)v_{\rm w}=10^{3}(10^{2}) km s-1 Ronchi et al. (2020)
294(220)294(220) for ISM and n0=1(10)n_{0}=1(10) cm-3

References

  • Abdo et al. (2009) Abdo, A. A., Ackermann, M., Arimoto, M., et al. 2009, Science, 323, 1688
  • Ackermann et al. (2011) Ackermann, M., Ajello, M., Asano, K., et al. 2011, ApJ, 729, 114
  • Ackermann et al. (2013) —. 2013, ApJS, 209, 11
  • Ackermann et al. (2014) —. 2014, Science, 343, 42
  • Ajello et al. (2020) Ajello, M., Arimoto, M., Axelsson, M., et al. 2020, ApJ, 890, 9
  • Alexander et al. (2017) Alexander, K. D., Laskar, T., Berger, E., et al. 2017, ApJ, 848, 69
  • Arimoto et al. (2020) Arimoto, M., Asano, K., Tachibana, Y., & Axelsson, M. 2020, ApJ, 891, 106
  • Atwood et al. (2009) Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
  • Band et al. (1993) Band, D., Matteson, J., Ford, L., et al. 1993, ApJ, 413, 281
  • Baring (2006) Baring, M. G. 2006, ApJ, 650, 1004
  • Baring & Harding (1997a) Baring, M. G., & Harding, A. K. 1997a, ApJ, 481, L85
  • Baring & Harding (1997b) —. 1997b, ApJ, 491, 663
  • Beniamini & Granot (2016) Beniamini, P., & Granot, J. 2016, MNRAS, 459, 3635
  • Burgess et al. (2016) Burgess, J. M., Bégué, D., Ryde, F., et al. 2016, ApJ, 822, 63
  • de Ugarte Postigo et al. (2017) de Ugarte Postigo, A., Kann, D. A., Thoene, C. C., et al. 2017, GRB Coordinates Network, 20990, 1
  • Del Monte et al. (2011) Del Monte, E., Barbiellini, G., Donnarumma, I., et al. 2011, A&A, 535, A120
  • D’Elia et al. (2016) D’Elia, V., Melandri, A., & Malesani, D. 2016, GRB Coordinates Network, 19601, 1
  • Deng et al. (2022) Deng, L.-T., Lin, D.-B., Zhou, L., et al. 2022, arXiv e-prints, arXiv:2205.08737
  • Drenkhahn & Spruit (2002) Drenkhahn, G., & Spruit, H. C. 2002, A&A, 391, 1141
  • Fenimore et al. (1993) Fenimore, E. E., Epstein, R. I., & Ho, C. 1993, A&AS, 97, 59
  • Florou et al. (2021) Florou, I., Petropoulou, M., & Mastichiadis, A. 2021, MNRAS, 505, 1367
  • Fraija (2015) Fraija, N. 2015, ApJ, 804, 105
  • Fraija et al. (2020) Fraija, N., Laskar, T., Dichiara, S., et al. 2020, ApJ, 905, 112
  • Fraija et al. (2017) Fraija, N., Veres, P., Zhang, B. B., et al. 2017, ApJ, 848, 15
  • Fraija et al. (2019) Fraija, N., Dichiara, S., Pedreira, A. C. C. d. E. S., et al. 2019, ApJ, 885, 29
  • Ghisellini & Celotti (1999) Ghisellini, G., & Celotti, A. 1999, ApJ, 511, L93
  • Ghisellini et al. (2020) Ghisellini, G., Ghirlanda, G., Oganesyan, G., et al. 2020, A&A, 636, A82
  • Giannios (2008) Giannios, D. 2008, A&A, 480, 305
  • Granot (2016) Granot, J. 2016, ApJ, 816, L20
  • Huang et al. (2018) Huang, L.-Y., Wang, X.-G., Zheng, W., et al. 2018, ApJ, 859, 163
  • Kocevski et al. (2019) Kocevski, D., Omodei, N., Axelsson, M., et al. 2019, GRB Coordinates Network, 23709, 1
  • Kocevski et al. (2003) Kocevski, D., Ryde, F., & Liang, E. 2003, ApJ, 596, 389
  • Krolik & Pier (1991) Krolik, J. H., & Pier, E. A. 1991, ApJ, 373, 277
  • Kumar & Crumley (2015) Kumar, P., & Crumley, P. 2015, MNRAS, 453, 1820
  • Laskar et al. (2016) Laskar, T., Alexander, K. D., Berger, E., et al. 2016, ApJ, 833, 88
  • Lazzati & Begelman (2010) Lazzati, D., & Begelman, M. C. 2010, ApJ, 725, 1137
  • Lazzati et al. (2013) Lazzati, D., Morsony, B. J., Margutti, R., & Begelman, M. C. 2013, ApJ, 765, 103
  • Li (2010) Li, Z. 2010, ApJ, 709, 525
  • Liang et al. (2015) Liang, E.-W., Lin, T.-T., Lü, J., et al. 2015, ApJ, 813, 116
  • Liang et al. (2010) Liang, E.-W., Yi, S.-X., Zhang, J., et al. 2010, ApJ, 725, 2209
  • Liang et al. (2014) Liang, Y.-F., Zhou, B., He, H.-N., et al. 2014, ApJ, 781, 74
  • Lin et al. (2019) Lin, D.-B., Lu, R.-J., Du, S.-S., et al. 2019, ApJ, 883, 187
  • Lithwick & Sari (2001) Lithwick, Y., & Sari, R. 2001, ApJ, 555, 540
  • Lü et al. (2012) Lü, J., Zou, Y.-C., Lei, W.-H., et al. 2012, ApJ, 751, 49
  • Lu et al. (2018) Lu, R.-J., Liang, Y.-F., Lin, D.-B., et al. 2018, ApJ, 865, 153
  • MAGIC Collaboration et al. (2019) MAGIC Collaboration, Acciari, V. A., Ansoldi, S., et al. 2019, Nature, 575, 455
  • McKinney & Uzdensky (2012) McKinney, J. C., & Uzdensky, D. A. 2012, MNRAS, 419, 573
  • Meegan et al. (2009) Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791
  • Meszaros & Rees (1993) Meszaros, P., & Rees, M. J. 1993, ApJ, 405, 278
  • Mizuta et al. (2011) Mizuta, A., Nagataki, S., & Aoi, J. 2011, ApJ, 732, 26
  • Molinari et al. (2007) Molinari, E., Vergani, S. D., Malesani, D., et al. 2007, A&A, 469, L13
  • Mu et al. (2016) Mu, H.-J., Lin, D.-B., Xi, S.-Q., et al. 2016, ApJ, 831, 111
  • Oganesyan et al. (2019) Oganesyan, G., Nava, L., Ghirlanda, G., Melandri, A., & Celotti, A. 2019, A&A, 628, A59
  • Paczynski & Xu (1994) Paczynski, B., & Xu, G. 1994, ApJ, 427, 708
  • Pe’er et al. (2006) Pe’er, A., Mészáros, P., & Rees, M. J. 2006, ApJ, 642, 995
  • Pe’er et al. (2007) Pe’er, A., Ryde, F., Wijers, R. A. M. J., Mészáros, P., & Rees, M. J. 2007, ApJ, 664, L1
  • Piran (2004) Piran, T. 2004, Reviews of Modern Physics, 76, 1143
  • Rees & Meszaros (1994) Rees, M. J., & Meszaros, P. 1994, ApJ, 430, L93
  • Ronchi et al. (2020) Ronchi, M., Fumagalli, F., Ravasio, M. E., et al. 2020, A&A, 636, A55
  • Ruffini et al. (2013) Ruffini, R., Siutsou, I. A., & Vereshchagin, G. V. 2013, ApJ, 772, 11
  • Sari & Piran (1999) Sari, R., & Piran, T. 1999, ApJ, 520, 641
  • Sironi et al. (2016) Sironi, L., Giannios, D., & Petropoulou, M. 2016, MNRAS, 462, 48
  • Spruit et al. (2001) Spruit, H. C., Daigne, F., & Drenkhahn, G. 2001, A&A, 369, 694
  • Tang et al. (2015) Tang, Q.-W., Peng, F.-K., Wang, X.-Y., & Tam, P.-H. T. 2015, ApJ, 806, 194
  • Tanvir et al. (2016) Tanvir, N. R., Levan, A. J., Cenko, S. B., et al. 2016, GRB Coordinates Network, 19419, 1
  • Thompson (1994) Thompson, C. 1994, MNRAS, 270, 480
  • Thompson et al. (2007) Thompson, C., Mészáros, P., & Rees, M. J. 2007, ApJ, 666, 1012
  • Ursi et al. (2020) Ursi, A., Tavani, M., Frederiks, D. D., et al. 2020, ApJ, 904, 133
  • Vreeswijk et al. (2018) Vreeswijk, P. M., Kann, D. A., Heintz, K. E., et al. 2018, GRB Coordinates Network, 22996, 1
  • Wang et al. (2022) Wang, Y., Zheng, T.-C., & Jin, Z.-P. 2022, arXiv e-prints, arXiv:2205.08427
  • Woods & Loeb (1995) Woods, E., & Loeb, A. 1995, ApJ, 453, 583
  • Zhang (2007) Zhang, B. 2007, Chinese J. Astron. Astrophys., 7, 1
  • Zhang et al. (2003) Zhang, B., Kobayashi, S., & Mészáros, P. 2003, ApJ, 595, 950
  • Zhang & Yan (2011) Zhang, B., & Yan, H. 2011, ApJ, 726, 90
  • Zhu et al. (2013) Zhu, S., Racusin, J., Kocevski, D., et al. 2013, GRB Coordinates Network, 14471, 1
  • Zou et al. (2015) Zou, Y.-C., Cheng, K. S., & Wang, F. Y. 2015, ApJ, 800, L23
  • Zou & Piran (2010) Zou, Y.-C., & Piran, T. 2010, MNRAS, 402, 1854