This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Iterative projection method for unsteady Navier-Stokes equations with high Reynolds numbers

Xiaoming Zheng, Kun Zhao, Jiahong Wu, Weiwei Hu, Dapeng Du    Xiaoming Zheng111Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48858. Email: [email protected], Kun Zhao222Department of Mathematics, Tulane University, New Orleans, LA 70118. Email: [email protected], Jiahong Wu333Department of Mathematics, Oklahoma State University, Stillwater, OK 74078. Email: [email protected], Weiwei Hu444Department of Mathematics, University of Georgia, Athens, GA 30602. Email: [email protected], Dapeng Du555School of mathematics and statistics, Northeast Normal University, Changchun, Jilin Province, 130024, China P.R.. Email: [email protected]
Abstract

A new approach, iteration projection method, is proposed to solve the saddle point problem obtained after the full discretization of the unsteady Navier-Stokes equations. It is motivated by the Uzawa method, an iterative method for saddle point problems, and the convectional projection method for the Navier-Stokes equations that projects the intermediate velocity to the divergence free space only once per time step. The proposed method iterates projections in each time step with a proper convection form. We prove that the projection iterations converge with a certain parameter regime. Optimal iteration convergence can be achieved with the modulation of parameter values.

This new method has several significant improvements over the Uzawa method and the projection method both theoretically and practically. First, when the iterative projections are fully convergent in each time step, the numerical velocity is weakly divergence free (pointwise divergence free in divergence free finite element methods), and the stability and error estimate are rigorously proven. With proper parameters, this method converges much faster than the Uzawa method. Second, numerical simulations show that with rather relaxed stopping criteria which require only a few iterations each time step, the numerical solution preserves stability and accuracy for high Reynolds numbers, where the convectional projection method would fail. Furthermore, this method retains the efficiency of the traditional projection method by decoupling the velocity and pressure fields, which splits the saddle point system into small elliptic problems. Three dimensional simulations with Taylor-Hood P2/P1 finite elements are presented to demonstrate the performance and efficiency of this method.

More importantly, this method is a generic approach and thus there are many potential improvements and extensions of the iterative projection method, including utilization of various convection forms, association with stabilization techniques for high Reynolds numbers, applications to other saddle point problems.

Keywords. Navier-Stokes equations, iterative projection method, saddle-point problems, divergence free velocity, skew-symmetric convection, fully implicit scheme

1 Introduction

1.1 Problem and motivation

The incompressible Navier-Stokes equations are predominant in viscous fluid dynamics, including problems with high Reynolds numbers such as turbulence flows. However, it is extremely challenging to design efficient and robust numerical schemes for these problems. A major difficulty is the treatment of the incompressibility constraint, or the divergence free condition, which couples the velocity and pressure. Consider a bounded three-dimensional domain Ω\Omega and the Navier-Stokes equations

utνΔu+NL(u,u)+p\displaystyle{u}_{t}-\nu\Delta u+\text{NL}(u,u)+\nabla p =f,\displaystyle=f, (1)
u\displaystyle\nabla\cdot{u} =0,\displaystyle=0, (2)

with the nonlinear convection NL(u,u)=(u)u\text{NL}(u,u)=(u\cdot\nabla)u, the Dirichlet boundary condition u|Ω=0u|_{\partial\Omega}=0, where u=(u1,u2,u3)u=(u_{1},u_{2},u_{3}) is the velocity, pp is the kinematic pressure, ν\nu is the kinematic viscosity, and ff is the force. There are various equivalent forms of the convection term (e.g., see [9]), and this work focuses on the skew-symmetric form

NL(u,v)=(u)v+12(u)v.\displaystyle\text{NL}(u,v)=(u\cdot\nabla)v+\frac{1}{2}(\nabla\cdot u)v. (3)

It is well-known that this form can be used to prove the stability of finite element methods for Navier-Stokes equations (see e.g., [14, Theorem 4.3]). This work adopts the popular BDF2 (Backward Differentiation Formula 2) time integration for Navier-Stokes equations. Let k>0k>0 be the uniform time step size. Denote the numerical solutions of velocity and pressure at time step tn=nkt_{n}=nk as un{u}^{n} and pnp^{n}, respectively. One obtains the following scheme,

(1.5kνΔ)un+1+kNL(w~,un+1)+kpn+1\displaystyle(1.5-k\nu\Delta)u^{n+1}+k\text{NL}(\tilde{w},u^{n+1})+k\nabla p^{n+1} =Fn+1,\displaystyle=F^{n+1}, (4)
un+1\displaystyle\nabla\cdot u^{n+1} =0,\displaystyle=0, (5)

where Fn+1=2un0.5un1+kfn+1F^{n+1}=2{u}^{n}-0.5{u}^{n-1}+kf^{n+1}. The choice of w~\tilde{w} leads to two different problems.

  • (1)

    When w~=wn+12unun1\tilde{w}=w^{n+1}\triangleq 2{u}^{n}-{u}^{n-1}, a second order extrapolation of un+1u^{n+1}, the convection term is semi-implicit. Then, a spatial discretization of this scheme using, e.g., the mixed finite elements methods yields a generalized saddle point problem (see Remark 1). Some extensive studies of the solvers of the saddle point problems can be found in [5, 1].

  • (2)

    When w~=un+1\tilde{w}=u^{n+1}, the convection term is fully implicit and this scheme is nonlinear. Typically, a nonlinear solver such as the Picard or Newton method is employed to linearize it to a series of saddle point problems, which are then computed by saddle point solvers as mentioned above.

One oldest but still popular method for the saddle-point problem is the Uzawa method [4] (see also [13, 29]) published in 1958. For the problem (4),(5), the Uzawa method can be written as, for s=0,1,s=0,1,\cdots,

(1.5kν)un+1,s+kNL(w~s,un+1,s)\displaystyle(1.5-k\nu)u^{n+1,s}+k\text{NL}(\tilde{w}^{s},u^{n+1,s}) =kpn+1,s+Fn+1,\displaystyle=-k\nabla p^{n+1,s}+F^{n+1}, (6)
pn+1,s+1\displaystyle p^{n+1,s+1} =pn+1,sρun+1,s,\displaystyle=p^{n+1,s}-\rho\nabla\cdot u^{n+1,s}, (7)

with the initial guess pn+1,0=2pnpn1p^{n+1,0}=2p^{n}-p^{n-1}and the boundary condition un+1,s|Ω=0u^{n+1,s}|_{\partial\Omega}=0. When w~s=wn+1\tilde{w}^{s}=w^{n+1}, this scheme corresponds to the semi-implicit convection term. When w~s=un+1,s1\tilde{w}^{s}=u^{n+1,s-1} with un+1,1=wn+1u^{n+1,-1}=w^{n+1}, this scheme relates to the fully implicit convection. Here, the parameter ρ\rho is chosen in the range of 0<ρ<2ν0<\rho<2\nu in order to make the iterations convergent, as discussed in [13, Chapter 2].

The projection method is a classic and popular method to solve the Navier-Stokes equations first developed in [10, 28] in 1968, where a systematic review can be found in [17]. Although it is not particularly targeting the saddle point problem (4) and (5), it can be regarded as a one-step approximation of it. The crucial operation of this method is projecting the intermediate velocity, which is not divergence free, to the divergence free space in a certain sense. One of the most recommended projection scheme in [17], rotational incremental pressure-correction method, can be put as follows,

(1.5kν)un+1,+kNL(wn+1,un+1,)\displaystyle(1.5-k\nu)u^{n+1,*}+k\text{NL}(w^{n+1},u^{n+1,*}) =kp~n+1+Fn+1,\displaystyle=-k\nabla\tilde{p}^{n+1}+F^{n+1}, (8)
Δϕn+1\displaystyle-\Delta\phi^{n+1} =1kun+1,,\displaystyle=-\frac{1}{k}\nabla\cdot u^{n+1,*}, (9)
pn+1\displaystyle p^{n+1} =p~n+1+1.5ϕn+1νun+1,,\displaystyle=\tilde{p}^{n+1}+1.5\phi^{n+1}-\nu\nabla\cdot{u}^{n+1,*}, (10)
un+1\displaystyle u^{n+1} =un+1,kϕn+1,\displaystyle=u^{n+1,*}-k\nabla\phi^{n+1}, (11)

where p~n+1=2pnpn1\tilde{p}^{n+1}=2p^{n}-p^{n-1}, un+1,|Ω=0u^{n+1,*}|_{\partial\Omega}=0, ϕn+1n|Ω=0\frac{\partial\phi^{n+1}}{\partial{n}}\Big{|}_{\partial\Omega}=0. The variable ϕn+1\phi^{n+1} is from the Hodge decomposition un+1,=un+1+kϕn+1u^{n+1,*}=u^{n+1}+k\nabla\phi^{n+1}, where un+1u^{n+1} is supposed to be divergence free. This method was first proposed in [30] in 1996 and a similar one was introduced in [7]. It was proven in [19] that the velocity in H1H^{1} norm and pressure in L2L^{2} norm have convergence order 3/23/2 in time. For simplicity, we call this method “rotational projection method” in this paper. Another popular projection scheme replaces the pressure update (10) with

pn+1=p~n+1+1.5ϕn+1p^{n+1}=\tilde{p}^{n+1}+1.5\phi^{n+1} (12)

and is called the standard incremental pressure-correction method in [17]. We simply call it “standard projection method” in this work. This one is also widely used in literature, such as [16] and [2]. As shown in [17], this scheme produces first order convergence in time of the velocity in H1H^{1} norm and the pressure in L2L^{2} norm.

The main strength of the projection method lies in its simplicity and efficiency. It decouples the velocity and pressure fields in the Navier-Stokes equations and splits the original system into two smaller standard problems: one advection-diffusion equation for un+1,u^{n+1,*} and one Poisson equation for ϕn+1\phi^{n+1}, followed by two updates to get the end-of-step velocity and pressure. Therefore, its computational cost is far less than that of any iterative methods including the Uzawa and Newton methods. However, it has some serious defects. First, the velocity field obtained is not divergence free even in the weak sense in the mixed finite element implementations (see [18] and Appendix A), and even when the finite element method admits divergence free velocity field (see Definition 1 and [26]). This would induce mass loss when the velocity is used to transport a density function. Second, the stability proof for the BDF2 schemes is not available, largely because of the complexity of this multi-step approach. Third, this scheme is unable to treat high Reynolds numbers due to the violation of the divergence free condition (see Section 4.4.2 and 4.4.3). In contrast, the Uzawa method can achieve weakly divergence free velocity solution in the mixed finite element implementations (see e.g. [13, 29] and Section 2.2).

1.2 New approach: iterative projection method

Motivated by the Uzawa iterations, we are interested in whether the iterative projections could efficiently solve the Navier-Stokes equations and its impact on the incompressibility, stability, and error estimate of the Navier-Stokes solutions, especially when the Reynolds number is high. As for the saddle point problem (4) and (5), we propose the following iterative projection method, with the iteration index s=0,1,s=0,1,\cdots,

(1.5kνΔ)un+1,s+kNL(w~s,un+1,s)\displaystyle(1.5-k\nu\Delta)u^{n+1,s}+k\text{NL}(\tilde{w}^{s},u^{n+1,s}) =kpn+1,s+Fn+1,\displaystyle=-k\nabla p^{n+1,s}+F^{n+1}, (13)
Δϕn+1,s\displaystyle-\Delta\phi^{n+1,s} =1kun+1,s,\displaystyle=-\frac{1}{k}\nabla\cdot u^{n+1,s}, (14)
pn+1,s+1\displaystyle p^{n+1,s+1} =pn+1,s+αϕn+1,sρun+1,s,\displaystyle={p}^{n+1,s}+\alpha\phi^{n+1,s}-\rho\nabla\cdot u^{n+1,s}, (15)

with boundary conditions un+1,s|Ω=0u^{n+1,s}|_{\partial\Omega}=0 and ϕn+1,sn|Ω=0\frac{\partial\phi^{n+1,s}}{\partial{n}}\Big{|}_{\partial\Omega}=0. When the iterations converge, the numerical solution of the Navier-Stokes equations at time step n+1n+1 is defined as (un+1,pn+1)=lims(un+1,s,pn+1,s)(u^{n+1},p^{n+1})=\lim_{s\to\infty}(u^{n+1,s},p^{n+1,s}). The choice of w~s\tilde{w}^{s} results in different schemes.

  • (1)

    When w~n=wn+1\tilde{w}^{n}=w^{n+1}, this scheme is called Semi-Implicit Skew-Symmetric (SI-SKEW) Iterative Projection Method, because it converges to the semi-implicit version of (4) and (5).

  • (2)

    When w~s=un+1,s1\tilde{w}^{s}=u^{n+1,s-1}, it is named Fully Implicit Skew-Symmetric (FI-SKEW) Iterative Projection Method, because it is derived from the fully implicit version of (4) and (5).

The control parameters α\alpha and ρ\rho are used to optimize the convergence speed. All the schemes in Section 1.1 are special cases indicated as below.

  1. (1)

    When α=1.5\alpha=1.5 and ρ=ν\rho=\nu, it is the iteration of the rotational projection scheme.

  2. (2)

    When α=1.5\alpha=1.5 and ρ=0\rho=0, it is the iteration of the standard projection scheme.

  3. (3)

    When α=0\alpha=0, it is the Uzawa iteration.

It is important to point out that the proposed iterative projection method is a new solver of the saddle point problem (4) and (5), different than any existing approaches (e.g, [5, 1]). Indeed, this strategy, the iterative projections to the divergence free space, has been utilized to solve the Navier-Stokes equations in some previous work including [31, 12, 3]. In [31], it was found that the repeated projections can reduce the spurious errors generated from the singular surface tension forces in the free boundary problems. In [12], the iterative projections provide accurate velocity fields in the stratification of temperature in the Boussinesq flows [12]. In [3], the projection is iterated along with implicit-explicit (IMEX) time-integration solvers, where it is found that iterations could improve splitting errors of projection method. All these three papers use the fully explicit form of the convection. In [3], the authors proved the iterative convergence at each time step when the parameter α\alpha is fixed according to the time discretization schemes and ρ\rho is fixed as ν\nu. So far, there have been no study on the iterative projection schemes with semi-implicit or fully implicit convection terms, nor the theoretical results on the stability and error estimates of this strategy, which are the targets of this work.

A closely related fact is that the conventional projection method has been used as preconditioners for Krylov subspace methods, such as the GMRES (generalized minimal residual) algorithms. For example, this approach is used in [15, 8] to solve velocity and pressure simultaneously in a system similar to (4) and (5). In contrast, this work uses the iterative projection as a standalone solver.

In Section 2, we analyze the convergence of the proposed iterative projection methods for the saddle point problem (4) and (5), using normal modes and mixed finite element methods. In Section,3, we prove the stability and provide the error estimates of the proposed methods in the full temporal and spatial discretizations under the condition that the iterative projections are convergent in each time step. In Section 4, we present the numerical simulations based on the Taylor-Hood P2/P1 finite elements to test the iterative projection method with high Reynolds numbers. In particular, Section 4.1 introduces two incompressibilfity measures to evaluate the divergence free condition, Section 4.2 tests the iterative projection convergence at one single time step, Section 4.3 discusses the optimal parameters values for iteration convergence, Section 4.4 examines the performance of the proposed method of treating high Reynolds number in Problem 1 with the prescribed solution, and Section 4.5 investigates the method on a classic lid driven cavity flow problem. The conclusions and discussions are given in Section 5.

2 Convergence of iterative projection method for the saddle point problem

This section is devoted to the iteration analysis of the proposed iterative projection method (13), (14), (15) for the saddle point problem (4) and (5), including both the semi-implicit and fully implicit convection forms. To simplify notations, we delete the time step superscript (n+1)(n+1) in this section.

2.1 Normal mode analysis without convection

In order to perform the normal mode analysis, we neglect the convection term and assume the solution is smooth and periodic in the region Ω=[0,2π]3\Omega=[0,2\pi]^{3}. Note that the intermediate value ϕs\phi^{s} in (14) can be written as ϕs=1k(Δ)1(us),\phi^{s}=-\frac{1}{k}(-\Delta)^{-1}(\nabla\cdot{u}^{s}), where (Δ)1(-\Delta)^{-1} refers to the inverse operator of the Neumann problem (14). So the iterative scheme (13), (14), (15) when the convection is removed can be simplified to, for s=0,1,s=0,1,\cdots,

1.5uskνΔus+kps\displaystyle 1.5{u}^{s}-k\nu\Delta{u}^{s}+k\nabla p^{s} =F,us|Ω=0,\displaystyle=F,\hskip 21.68121pt{u}^{s}|_{\partial\Omega}=0, (16)
ps+1\displaystyle p^{s+1} =ps(ρ+αk(Δ)1)(us).\displaystyle={p}^{s}-\big{(}\rho+\frac{\alpha}{k}(-\Delta)^{-1}\big{)}(\nabla\cdot{u}^{s}). (17)

Consider the solution (u,p)({u},p) satisfying (4) and (5) without the convection, and the sequence (us,ps)({u}^{s},p^{s}) of (16) and (17). Let u¯s=usu\bar{u}^{s}={u}^{s}-{u} and p¯s=psp\bar{p}^{s}=p^{s}-p. Then

1.5u¯skνΔu¯s+kp¯s\displaystyle 1.5\bar{{u}}^{s}-k\nu\Delta\bar{u}^{s}+k\nabla\bar{p}^{s} =0,\displaystyle=0, (18)
p¯s+1\displaystyle\bar{p}^{s+1} =p¯s(ρ+αk(Δ)1)(u¯s).\displaystyle=\bar{p}^{s}-\big{(}\rho+\frac{\alpha}{k}(-\Delta)^{-1}\big{)}(\nabla\cdot\bar{u}^{s}). (19)

Denote u¯s=(u¯1s,u¯2s,u¯3s)\bar{u}^{s}=(\bar{u}^{s}_{1},\bar{u}^{s}_{2},\bar{u}^{s}_{3}), the multi-wavenumber ξ=(ξ1,ξ2,ξ3)3\xi=(\xi_{1},\xi_{2},\xi_{3})\in\mathbb{Z}^{3}, ξx=ξ1x1+ξ2x2+ξ3x3\xi\cdot x=\xi_{1}x_{1}+\xi_{2}x_{2}+\xi_{3}x_{3}. Denote the Fourier series of u¯js\bar{u}^{s}_{j} and p¯s\bar{p}^{s} as u¯js(x)=ξ3u¯js^(ξ)eiξx\bar{u}_{j}^{s}(x)=\sum_{\xi\in\mathbb{Z}^{3}}\widehat{\bar{u}_{j}^{s}}(\xi)e^{i\xi\cdot x}, j=1,2,3j=1,2,3, p¯s(x)=ξ3p¯s^(ξ)eiξx\bar{p}^{s}(x)=\sum_{\xi\in\mathbb{Z}^{3}}\widehat{\bar{p}^{s}}(\xi)e^{i\xi\cdot x}, where i=1i=\sqrt{-1}. Then (18) and (19) become

1.5u¯js^(ξ)+kν|ξ|2u¯js^(ξ)+kiξjp¯s^(ξ)\displaystyle 1.5\widehat{\bar{u}_{j}^{s}}(\xi)+k\nu|\xi|^{2}\widehat{\bar{u}_{j}^{s}}(\xi)+ki\xi_{j}\widehat{\bar{p}^{s}}(\xi) =0,j=1,2,3;\displaystyle=0,\hskip 21.68121ptj=1,2,3; (20)
p¯s+1^(ξ)\displaystyle\widehat{\bar{p}^{s+1}}(\xi) =p¯s^(ξ)(ρ+αk|ξ|2)j=13iξju¯js^(ξ).\displaystyle=\widehat{\bar{p}^{s}}(\xi)-\Big{(}\rho+\frac{\alpha}{k|\xi|^{2}}\Big{)}\sum_{j=1}^{3}i\xi_{j}\widehat{\bar{u}^{s}_{j}}(\xi). (21)

It can be calculated from (20) that u¯js^(ξ)=kiξjp¯s^1.5+kν|ξ|2\widehat{\bar{u}^{s}_{j}}(\xi)=\frac{-ki\xi_{j}\widehat{\bar{p}^{s}}}{1.5+k\nu|\xi|^{2}}, which is substituted into (21) to achieve

p¯s+1^(ξ)=(1.5α)+k(νρ)|ξ|21.5+kν|ξ|2p¯s^(ξ)C(α,ρ)p¯s^(ξ).\widehat{\bar{p}^{s+1}}(\xi)=\frac{(1.5-\alpha)+k(\nu-\rho)|\xi|^{2}}{1.5+k\nu|\xi|^{2}}\cdot\widehat{\bar{p}^{s}}(\xi)\triangleq C(\alpha,\rho)\cdot\widehat{\bar{p}^{s}}(\xi). (22)

For the sequence p¯s^\widehat{\bar{p}^{s}} to converge to zero, it is equivalent to set |C(α,ρ)|<1|C(\alpha,\rho)|<1. Note the optimal convergence occurs when the constant C=0C=0, that is, α=1.5\alpha=1.5 and ρ=ν\rho=\nu, which corresponds to the iterative rotational projection method. Therefore, this method obtains the exact solution in just one iteration. However, this analysis is based on the smooth solutions and is without convection, which is not true in the full Navier-Stokes equations with the convection term and spatial discretizations of limited solution regularity.

If α=1.5\alpha=1.5, then |C(α,ρ)|<1|C(\alpha,\rho)|<1 leads to

1.5k|ξ|2<ρ<2ν+1.5k|ξ|2.-\frac{1.5}{k|\xi|^{2}}<\rho<2\nu+\frac{1.5}{k|\xi|^{2}}. (23)

For these inequalities to hold for all ξ3\xi\in\mathbb{Z}^{3}, it is equivalent to have 0ρ2ν0\leq\rho\leq 2\nu.

If α=1.5\alpha=1.5 and ρ=0\rho=0, that is, when the iterative standard projection method is used, then

C(1.5,0)=kν|ξ|21.5+kν|ξ|2.C(1.5,0)=\frac{k\nu|\xi|^{2}}{1.5+k\nu|\xi|^{2}}. (24)

In this case, the iteration always converges but the convergent constant CC is close to 0 when kν|ξ|2k\nu|\xi|^{2} is small, and approaching 1 when kν|ξ|2k\nu|\xi|^{2} is large. Thus, this iterative scheme is preferred only when ν\nu is sufficiently small when the time step kk and largest wavenumber magnitude |ξ||\xi| are fixed.

If α=0\alpha=0, then this scheme reduces to the Uzawa scheme and the convergence constant is

Cu=1.5+k(νρ)|ξ|21.5+kν|ξ|2.C_{u}=\frac{1.5+k(\nu-\rho)|\xi|^{2}}{1.5+k\nu|\xi|^{2}}. (25)

The convergence requires 0<ρ2ν0<\rho\leq 2\nu. Let z=kν|ξ|2z=k\nu|\xi|^{2}, then

Cu(z;ρ)=1.5+z(1ρν)1.5+z.C_{u}(z;\rho)=\frac{1.5+z(1-\frac{\rho}{\nu})}{1.5+z}. (26)

Its graph is shown in Figure 1. When zz is large, the best choice to obtain fast convergence is ρ=ν\rho=\nu. When zz is small, the best choice of ρ\rho should be closer to 2ν2\nu. But when z1.5z\ll 1.5, |Cu||Cu| is very close to 1 regardless the choice of ρ\rho in the range (0,2ν](0,2\nu]. Thus, the Uzawa iterations would be applicable only when ν\nu is sufficiently large. This is consistent with the fact that the Uzawa method is mainly used for the Stokes equations whose viscosity is considerably large.

Refer to caption
Figure 1: Uzawa method: the convergence constant Cu(z;ρ)C_{u}(z;\rho) as a function of z=kν|ξ|2z=k\nu|\xi|^{2} with parameter ρ(0,2ν]\rho\in(0,2\nu].

The above analysis is summarized in Table 1. The rotational projection iteration method takes the advantages of the other two methods: the fast convergence of standard projection for small viscosity values and the Uzawa method for large viscosity values. Therefore, the rotational projection iteration is comparatively indifferent to viscosity variations.

Table 1: Normal mode analysis when the convection is neglected. The pressure update is ps+1=ps(ρ+αk(Δ)1)(us)p^{s+1}={p}^{s}-(\rho+\frac{\alpha}{k}(-\Delta)^{-1})(\nabla\cdot{u}^{s}).
method pressure iteration Convergence constant parameter range notes
rotational projection α=1.5\alpha=1.5, ρ=ν\rho=\nu 0
standard projection α=1.5\alpha=1.5, ρ=0\rho=0 kν|ξ|21.5+kν|ξ|2\frac{k\nu|\xi|^{2}}{1.5+k\nu|\xi|^{2}} Convergence is fast when kν|ξ|2k\nu|\xi|^{2} is small
Uzawa α=0\alpha=0 1.5+k(νρ)|ξ|21.5+kν|ξ|2\frac{1.5+k(\nu-\rho)|\xi|^{2}}{1.5+k\nu|\xi|^{2}} 0<ρ2ν0<\rho\leq 2\nu Convergence is fast when ρ=ν\rho=\nu and kν|ξ|2k\nu|\xi|^{2} is large.

2.2 Iteration analysis with mixed finite element method

If there is no convection or the convection term is treated utterly explicitly, the iteration convergence for a special case when ρ=ν\rho=\nu has been proven in [3], whose proof utilizes the eigenvalue analysis in [8]. Here, we present a self-contained convergence study for the general case with parameters α\alpha and ρ\rho in Section 2.2.1. More efforts are spent on the semi-implicit and fully implicit convection cases, as shown in Section 2.2.2 and Section 2.2.3, respectively.

We denote L2(Ω)L^{2}(\Omega) as the Lebesgue space of square integrable functions with inner product (u,v)=Ωu(x)v(x)dx(u,v)=\int_{\Omega}u(x)v(x)\mathrm{d}x, and the L2L^{2} norm as uL2(Ω)=(u,u)\|u\|_{L^{2}(\Omega)}=\sqrt{(u,u)}. Denote H01(Ω)={f:f,fxiL2(Ω),i=1,2,3,f|Ω=0}H^{1}_{0}(\Omega)=\{f:f,\frac{\partial f}{\partial x_{i}}\in L^{2}(\Omega),i=1,2,3,f|_{\partial\Omega}=0\}. We introduce

V\displaystyle V ={u=(u1,u2,u3):uiH01(Ω),i=1,2,3},\displaystyle=\{u=(u_{1},u_{2},u_{3}):u_{i}\in H^{1}_{0}(\Omega),i=1,2,3\}, (27)
Q\displaystyle Q =L2(Ω)/={qL2(Ω):1|Ω|Ωq(x)dx=0},\displaystyle=L^{2}(\Omega)/\mathbb{R}=\{q\in L^{2}(\Omega):\frac{1}{|\Omega|}\int_{\Omega}q(x)\mathrm{d}x=0\}, (28)

with the norm |u|1=(Ω|u(x)|2dx)1/2|u|_{1}=(\int_{\Omega}|\nabla u(x)|^{2}\mathrm{d}x)^{1/2}, where |u|2=i,j=13|uixj|2|\nabla u|^{2}=\sum_{i,j=1}^{3}|\frac{\partial u_{i}}{\partial x_{j}}|^{2} and 1|Ω|Ωq(x)dx\frac{1}{|\Omega|}\int_{\Omega}q(x)\mathrm{d}x is the average of qq over Ω\Omega. Let VhVV_{h}\subset V and QhQQ_{h}\subset Q be a pair of conforming mixed finite element spaces approximating the velocity and pressure, respectively, which satisfies the inf-sup condition (a.k.a. the Ladyzhenskaya-Babuka-Brezzi (LBB) condition, see e.g. [13]), i.e.,

infqQhsupvVh(v,q)qL2(Ω)/|v|1>0.\inf_{q\in Q_{h}}\sup_{v\in V_{h}}\frac{(\nabla\cdot v,q)}{\|q\|_{L^{2}(\Omega)/\mathbb{R}}|v|_{1}}>0. (29)

Denote the basis of VhV_{h} as wi,i=1,,lw_{i},i=1,\cdots,l, and the basis of QhQ_{h} as qj,j=1,,mq_{j},j=1,\cdots,m.

Definition 1.

A velocity field uhVhu_{h}\in V_{h} is weakly divergence free if (uh,qh)=0(\nabla\cdot u_{h},q_{h})=0 for all qhQhq_{h}\in Q_{h} and strongly divergence free if uh\nabla\cdot u_{h} is almost everywhere zero in Ω\Omega. A pair of mixed finite element spaces VhV_{h} and QhQ_{h} is called divergence free if VhQh\nabla\cdot V_{h}\subset Q_{h}, where Vh\nabla\cdot V_{h} is the range of the divergence of VhV_{h}. Furthermore, a finite element method with a pair of divergence free finite element spaces is called a div-free FEM, and otherwise a non-div-free FEM.

In this work, we use a weak incompressibility measure (267) (a strong incompressiblity measure (269)) to check whether a velocity is weakly (strongly) divergence free. A weakly divergence free velocity may be not pointwise divergence free, as seen in Section 4.2. However, under a pair of divergence free FEM spaces, a weakly divergence free velocity is also strongly divergence free. Indeed, if uhu_{h} satisfies (uh,qh)=0(\nabla\cdot u_{h},q_{h})=0 for all qhQhq_{h}\in Q_{h} and VhQh\nabla\cdot V_{h}\subset Q_{h}, then uhL2(Ω)=0\|\nabla\cdot u_{h}\|_{L^{2}(\Omega)}=0 by choosing qh=uhq_{h}=\nabla\cdot u_{h}, which suggests uh\nabla\cdot u_{h} is zero almost everywhere in Ω\Omega. One popular example of divergence free elements is Scott–Vogelius pair [27]. However, many H1H^{1}-conforming, inf-sup stable mixed finite elements pairs are not divergence free, including the very popular Tayor-Hood elements.

2.2.1 Iteration analysis without convection

Without the convection term, the weak form of the problem (13), (14) and (15) in the mixed finite element method is finding usVh{u}^{s}\in V_{h}, ϕsQh\phi^{s}\in Q_{h}, psL2(Ω)p^{s}\in L^{2}(\Omega), such that

1.5(us,wi)+kν(us,wi)k(wi,ps)=(F,wi),\displaystyle 1.5({u^{s}},{w_{i}})+k\nu(\nabla{u^{s}},\nabla{w_{i}})-k(\nabla\cdot{w_{i}},p^{s})=(F,{w_{i}}), i=1,,l,\displaystyle\qquad\forall\,i=1,\cdots,l, (30)
(ϕs,qi)=1k(us,qi),\displaystyle(\nabla\phi^{s},\nabla q_{i})=-\frac{1}{k}(\nabla\cdot u^{s},q_{i}), i=1,,m,\displaystyle\qquad\forall\,i=1,\cdots,m, (31)
(ps+1,qi)=(ps,qi)+α(ϕs,qi)ρ(us,qi),\displaystyle(p^{s+1},q_{i})=(p^{s},q_{i})+\alpha(\phi^{s},q_{i})-\rho(\nabla\cdot{u}^{s},q_{i}), i=1,,m.\displaystyle\qquad\forall\,i=1,\cdots,m. (32)

The matrices Al×lA_{l\times l}, Bm×lB_{m\times l}, Gm×mG_{m\times m}, and Mm×mM_{m\times m} are introduced as follows,

Aij\displaystyle A_{ij} =1.5(wi,wj)+kν(wi,wj),i,j=1,,l;\displaystyle=1.5(w_{i},w_{j})+k\nu(\nabla w_{i},\nabla w_{j}),\qquad\forall\,i,j=1,\cdots,l; (33)
Bij\displaystyle B_{ij} =(qi,wj),i=1,,m,j=1,,l;\displaystyle=-(q_{i},\nabla\cdot w_{j}),\qquad\forall\,i=1,\cdots,m,\ \forall\,j=1,\cdots,l; (34)
Gij\displaystyle{G}_{ij} =(qi,qj),i,j=1,,m;\displaystyle=(\nabla q_{i},\nabla q_{j}),\qquad\forall\,i,j=1,\cdots,m; (35)
Mij\displaystyle M_{ij} =(qj,qj),i,j=1,,m.\displaystyle=(q_{j},q_{j}),\qquad\forall\,i,j=1,\cdots,m. (36)

The transpose of BB is written as BtB^{t}. Denote the vector f\vec{f} as f=((F,w1)(F,wl))t\vec{f}=((F,w_{1})\cdots(F,w_{l}))^{t}. We express the following functions as the linear combinations of basis functions, i.e., us=i=1luiswiu^{s}=\sum_{i=1}^{l}u^{s}_{i}w_{i}, ϕs=i=1mϕisqi\phi^{s}=\sum_{i=1}^{m}\phi^{s}_{i}q_{i}, ps=i=1mpisqip^{s}=\sum_{i=1}^{m}p^{s}_{i}q_{i} and denote the corresponding vector forms as

us=(u1suls),ϕs=(ϕ1sϕms),ps=(p1spms).\displaystyle\vec{u}^{s}=\left(\begin{array}[]{c}u^{s}_{1}\\ \vdots\\ u^{s}_{l}\end{array}\right),\quad\vec{\phi}^{s}=\left(\begin{array}[]{c}\phi^{s}_{1}\\ \vdots\\ \phi^{s}_{m}\end{array}\right),\quad\vec{p}^{\,s}=\left(\begin{array}[]{c}p^{s}_{1}\\ \vdots\\ p^{s}_{m}\end{array}\right). (46)

Thereafter, the transformation between the function form and the vector form of a quantity will be used in this way. Thus, the numerical scheme, (30), (31), and (32), is turned into the following matrix-vector form,

Aus+kBtps\displaystyle A\vec{u}^{s}+kB^{t}\vec{p}^{\,s} =f,\displaystyle=\vec{f}, (47)
Gϕs\displaystyle G\vec{\phi}^{s} =1kBus,\displaystyle=\frac{1}{k}B\vec{u^{s}}, (48)
Mps+1\displaystyle M\vec{p}^{\,s+1} =Mps+αMϕs+ρBus.\displaystyle=M\vec{p}^{\,s}+\alpha M\vec{\phi}^{s}+\rho B\vec{u}^{s}. (49)

Without the convection, the weak solution of (4) and (5) is (u,p)Vh×Qh(u,p)\in V_{h}\times Q_{h} satisfying

1.5(u,wi)+kν(u,wi)k(wi,p)=(F,wi),\displaystyle 1.5(u,{w_{i}})+k\nu(\nabla u,\nabla{w_{i}})-k(\nabla\cdot{w_{i}},p)=(F,{w_{i}}), i=1,,l,\displaystyle\qquad\forall\,i=1,\cdots,l, (50)
(u,qi)=0,\displaystyle(\nabla\cdot u,q_{i})=0, i=1,,m.\displaystyle\qquad\forall\,i=1,\cdots,m. (51)

The corresponding vector form is

Au+kBtp\displaystyle A\vec{u}+kB^{t}\vec{p} =f,\displaystyle=\vec{f}, (52)
Gϕ\displaystyle G\vec{\phi} =1kBu,\displaystyle=\frac{1}{k}B\vec{u}, (53)
Mp\displaystyle M\vec{p} =Mp+αMϕ+ρBu.\displaystyle=M\vec{p}+\alpha M\vec{\phi}+\rho B\vec{u}. (54)

The last two equations (52) and (53) can be reduced to (G+αkρM)ϕ=0\left(G+\frac{\alpha}{k\rho}M\right)\vec{\phi}=0, whose solution is ϕ=0\vec{\phi}=0 since both GG and MM are symmetric and positive definite. Thus, (53) and (54) are equivalent to

Bu=0.\displaystyle B\vec{u}=\vec{0}. (55)

But we keep the current form to compare with (48) and (49).

Denote the errors in the function form as

u¯s=usu,ϕ¯s=ϕsϕ,p¯s=psp,{\bar{u}}^{s}={u}^{s}-{u},\qquad{\bar{\phi}}^{s}={\phi}^{s}-{\phi},\qquad{\bar{p}}^{s}={p}^{s}-{p}, (56)

and the corresponding errors in the vector form as

u¯s=usu,ϕ¯s=ϕsϕ,p¯s=psp.\vec{\bar{u}}^{s}=\vec{u}^{s}-\vec{u},\qquad\vec{\bar{\phi}}^{s}=\vec{\phi}^{s}-\vec{\phi},\qquad\vec{\bar{p}}^{\,s}=\vec{p}^{\,s}-\vec{p}. (57)

The subtractions of these equations, (47)-(52), (48)-(53), (49)-(54), give rise to

Au¯s+kBtp¯s\displaystyle A\vec{\bar{u}}^{s}+kB^{t}\vec{\bar{p}}^{\,s} =0,\displaystyle=0, (58)
Gϕ¯s\displaystyle G\vec{\bar{\phi}}^{s} =1kBu¯s,\displaystyle=\frac{1}{k}B\vec{\bar{u}}^{s}, (59)
p¯s+1\displaystyle\vec{\bar{p}}^{\,s+1} =p¯s+αϕ¯s+ρM1Bu¯s.\displaystyle=\vec{\bar{p}}^{\,s}+\alpha\vec{\bar{\phi}}^{s}+\rho M^{-1}B\vec{\bar{u}}^{s}. (60)

From (58) and (59) we get

u¯s\displaystyle\vec{\bar{u}}^{s} =kA1Btp¯s,\displaystyle=-kA^{-1}B^{t}\vec{\bar{p}}^{\,s}, (61)
ϕ¯s\displaystyle\vec{\bar{\phi}}^{s} =G1BA1Btp¯s.\displaystyle=-G^{-1}BA^{-1}B^{t}\vec{\bar{p}}^{\,s}. (62)

Let

D=BA1Bt,D=BA^{-1}B^{t}, (63)

which is the negative Schur complement of AA (e.g., see [5]), then

p¯s+1=(I(αG1+ρkM1)D)p¯s(IK)p¯s,\vec{\bar{p}}^{\,s+1}=(I-(\alpha G^{-1}+\rho kM^{-1})D)\vec{\bar{p}}^{\,s}\triangleq(I-K)\vec{\bar{p}}^{\,s}, (64)

where

Km×m=(αG1+ρkM1)D.K_{m\times m}=(\alpha G^{-1}+\rho kM^{-1})D. (65)

To study the convergence, we will analyze the eigenvalues of the matrix KK. First, we introduce the following lemmas.

Lemma 1.

Let SS, TT be symmetric matrices. If SS is positive definite, then S1TS^{-1}T is diagonalizable.

Proof.
Since SS is symmetric and positive definite (SPD), its inverse S1S^{-1} is also SPD. Denote its square root as S1/2S^{-1/2}. Then S1/2S1TS1/2=S1/2TS1/2S^{1/2}S^{-1}TS^{-1/2}=S^{-1/2}TS^{-1/2}, where the latter is symmetric because TT and S1/2S^{-1/2} are both symmetric. Therefore, S1TS^{-1}T is similar to a symmetric matrix and hence diagonalizable.

\Box

Lemma 2.

All the eigenvalues of KK are positive and KK has a set of linearly independent eigenvectors that span m\mathbb{R}^{m}, which is called an eigenbasis of KK.

Proof.
First, note that without the convection term the matrix AA is SPD. The inf-sup condition guarantees BB has the full row rank and then the matrix DD is also SPD. In addition, the matrices GG and MM are also SPD.

Suppose λ\lambda is an eigenvalue of KK and ξm\vec{\xi}\in\mathbb{R}^{m} is an associated eigenvector, i.e., Kξ=λξK\vec{\xi}=\lambda\vec{\xi}. Left-multiplying both sides by ξtD\vec{\xi}^{\,t}D leads to

αξtDG1Dξ+ρkξtDM1Dξ=λξtDξ.\alpha\vec{\xi}^{\,t}DG^{-1}D\vec{\xi}+\rho k\vec{\xi}^{\,t}DM^{-1}D\vec{\xi}=\lambda\vec{\xi}^{\,t}D\vec{\xi}. (66)

Since the quantities α\alpha, ρ\rho, kk, ξtDG1Dξ\vec{\xi}^{\,t}DG^{-1}D\vec{\xi}, ξtDM1Dξ\vec{\xi}^{\,t}DM^{-1}D\vec{\xi}, ξtDξ\vec{\xi}^{\,t}D\vec{\xi} are all positive, the value of λ\lambda must be positive.

Furthermore, a matrix is diagonalizable if and only if there is a set of eigenbasis of this matrix (e.g., [20] Theorem 1.3.7, p. 59). In the matrix KK, the left factor (αG1+ρkM1)(\alpha G^{-1}+\rho kM^{-1}) is SPD and the right factor DD is symmetric. According to Lemma 1, KK has an eigenbasis.

\Box

Denote an eigenbasis of KK as {ξ1,,ξm}\{\vec{\xi}_{1},\cdots,\vec{\xi}_{m}\} and the corresponding eigenvalues as λj,j=1,,m\lambda_{j},j=1,\cdots,m. Let ρ(IK)\rho(I-K) be the spetral radius of IKI-K, that is,

ρ(IK)=maxj=1,,m|1λj|.\rho(I-K)=\max_{j=1,\cdots,m}|1-\lambda_{j}|. (67)

Because all eigenvalues are positive according to Lemma 2, it is easy to deduce from (67) that

Lemma 3.

ρ(IK)<1\rho(I-K)<1 if and only if λmax<2\lambda_{\max}<2.

The next lemma gives an upper bound of the largest eigenvalue KK dependent on the parameters in the numerical scheme.

Lemma 4.

Let λmax\lambda_{\max} be the largest eigenvalue of KK, then

λmaxmax(α1.5,ρν).\lambda_{\max}\leq\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right). (68)

Proof.
Let λ\lambda be an eigenvalue of KK and ξ\vec{\xi} be an associated eigenvector. According to (66),

λ=αG1Dξ,Dξ+ρkM1Dξ,DξDξ,ξ,\lambda=\frac{\alpha\langle G^{-1}D\vec{\xi},D\vec{\xi}\rangle+\rho k\langle M^{-1}D\vec{\xi},D\vec{\xi}\rangle}{\langle D\vec{\xi},\vec{\xi}\rangle}, (69)

where the notation ξ,qξtq\langle\vec{\xi},\vec{q}\rangle\triangleq\vec{\xi}^{\,t}\vec{q} for any two vectors in the same Euclidean space m\mathbb{R}^{m} or l\mathbb{R}^{l}. Denote v=A1Btξ\vec{v}=A^{-1}B^{t}\vec{\xi}, i.e., Av=BtξA\vec{v}=B^{t}\vec{\xi} or Dξ=BvD\vec{\xi}=B\vec{v}. Then (69) becomes

λ=αG1Bv,Bv+ρkM1Bv,Bvv,Av=αG1Bv,Bv+ρkM1Bv,Bv1.5vL2(Ω)2+νkvL2(Ω)2R(v).\lambda=\frac{\alpha\langle G^{-1}B\vec{v},B\vec{v}\rangle+\rho k\langle M^{-1}B\vec{v},B\vec{v}\rangle}{\langle\vec{v},A\vec{v}\rangle}=\frac{\alpha\langle G^{-1}B\vec{v},B\vec{v}\rangle+\rho k\langle M^{-1}B\vec{v},B\vec{v}\rangle}{1.5\|v\|^{2}_{L^{2}(\Omega)}+\nu k\|\nabla v\|^{2}_{L^{2}(\Omega)}}\triangleq R(\vec{v}). (70)

This equates the eigenvalues to the stationary values of the Rayleigh quotient R(v)R(\vec{v}) defined in (70). To estimate the two numerator terms in (70), let ϕ=G1Bv\vec{\phi}=G^{-1}B\vec{v}, then Gϕ=BvG\vec{\phi}=B\vec{v}. Using the connection between the vector and function forms: ϕ=(ϕ1ϕm)t\vec{\phi}=(\phi_{1}\cdots\phi_{m})^{t} and ϕ=i=1mϕiqi\phi=\sum_{i=1}^{m}\phi_{i}q_{i}, v=(v1vl)t\vec{v}=(v_{1}\cdots v_{l})^{t} and v=i=1lviwiv=\sum_{i=1}^{l}v_{i}w_{i}, we see that Gϕ=BvG\vec{\phi}=B\vec{v} is equivalent to

Ωϕηdx=Ω(v)ηdx,ηQh.\int_{\Omega}\nabla\phi\cdot\nabla\eta\mathrm{d}x=-\int_{\Omega}(\nabla\cdot v)\eta\mathrm{d}x,\quad\forall\eta\in Q_{h}. (71)

Afterwards,

G1Bv,Bv=ϕ,Bv=Ωϕ(v)dx.\langle G^{-1}B\vec{v},B\vec{v}\rangle=\langle\vec{\phi},B\vec{v}\rangle=-\int_{\Omega}\phi(\nabla\cdot v)\mathrm{d}x. (72)

Using η=ϕ\eta=\phi in (71), integration by parts, and Young’s inequality, we get

ϕL2(Ω)2=Ωϕ(v)dx=Ωvϕdx12(vL2(Ω)2+ϕL2(Ω)2),\|\nabla\phi\|_{L^{2}(\Omega)}^{2}=-\int_{\Omega}\phi(\nabla\cdot v)\mathrm{d}x=\int_{\Omega}v\cdot\nabla\phi\mathrm{d}x\leq\frac{1}{2}\big{(}\|v\|^{2}_{L^{2}(\Omega)}+\|\nabla\phi\|^{2}_{L^{2}(\Omega)}\big{)}, (73)

which further gives ϕL2(Ω)2vL2(Ω)2\|\nabla\phi\|_{L^{2}(\Omega)}^{2}\leq\|v\|^{2}_{L^{2}(\Omega)}. Thus,

G1Bv,Bv=ϕL2(Ω)2vL2(Ω)2.\langle G^{-1}B\vec{v},B\vec{v}\rangle=\|\nabla\phi\|^{2}_{L^{2}(\Omega)}\leq\|v\|^{2}_{L^{2}(\Omega)}. (74)

To study M1Bv,Bv\langle M^{-1}B\vec{v},B\vec{v}\rangle, we let y=M1Bv\vec{y}=M^{-1}B\vec{v}, i.e., My=BvM\vec{y}=B\vec{v}. Suppose the vector y=(y1ym)t\vec{y}=(y_{1}\cdots y_{m})^{t} and the corresponding function y=i=1myiqiy=\sum_{i=1}^{m}y_{i}q_{i}. Then My=BvM\vec{y}=B\vec{v} can be rewritten as

Ωyηdx=Ω(v)ηdx,ηQh.\int_{\Omega}y\eta\mathrm{d}x=-\int_{\Omega}(\nabla\cdot v)\eta\mathrm{d}x,\quad\forall\eta\in Q_{h}. (75)

Letting η=y\eta=y, then

yL2(Ω)2=Ω(v)ydx12(vL2(Ω)2+yL2(Ω)2).\|y\|^{2}_{L^{2}(\Omega)}=-\int_{\Omega}(\nabla\cdot v)y\mathrm{d}x\leq\frac{1}{2}\big{(}\|\nabla\cdot v\|^{2}_{L^{2}(\Omega)}+\|y\|^{2}_{L^{2}(\Omega)}\big{)}. (76)

This results in yL2(Ω)vL2(Ω)\|y\|_{L^{2}(\Omega)}\leq\|\nabla\cdot v\|_{L^{2}(\Omega)}. It is also known that for any v[H01(Ω)]3v\in[H_{0}^{1}(\Omega)]^{3}, for example, [29] p. 93,

vL2(Ω)vL2(Ω).\|\nabla\cdot v\|_{L^{2}(\Omega)}\leq\|\nabla v\|_{L^{2}(\Omega)}. (77)

Afterwards,

M1Bv,Bv=y,Bv=Ω(v)ydx=yL2(Ω)2vL2(Ω)2vL2(Ω)2.\langle M^{-1}B\vec{v},B\vec{v}\rangle=\langle\vec{y},B\vec{v}\rangle=-\int_{\Omega}(\nabla\cdot v)y\mathrm{d}x=\|y\|^{2}_{L^{2}(\Omega)}\leq\|\nabla\cdot v\|_{L^{2}(\Omega)}^{2}\leq\|\nabla v\|_{L^{2}(\Omega)}^{2}. (78)

Collecting (70), (74), (78), we obtain

λmaxαvL2(Ω)2+ρkvL2(Ω)21.5vL2(Ω)2+νkvL2(Ω)2max(α1.5,ρν).\lambda_{\max}\leq\frac{\alpha\|v\|^{2}_{L^{2}(\Omega)}+\rho k\|\nabla v\|^{2}_{L^{2}(\Omega)}}{1.5\|v\|^{2}_{L^{2}(\Omega)}+\nu k\|\nabla v\|^{2}_{L^{2}(\Omega)}}\leq\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right). (79)

\Box

We introduce the maximum vector norm with respect to the eigenbasis {ξi}i=1m\{\vec{\xi}_{i}\}_{i=1}^{m} of KK, that is,

qK,=max1jm|qK,j| when q=j=1mqK,jξj.\displaystyle\|\vec{q}\|_{K,\infty}=\max_{1\leq j\leq m}|q_{K,j}|\text{ when }\vec{q}=\sum_{j=1}^{m}q_{K,j}\vec{\xi}_{j}. (80)
Theorem 1 (Iteration convergence without convection).

The pressure solution error p¯s\vec{\bar{p}}^{\,s} between the scheme (47), (48), (49) and the system (52), (53), (54) satisfies

p¯s+1K,ρ(IK)p¯sK,.\|\vec{\bar{p}}^{\,s+1}\|_{K,\infty}\leq\rho(I-K)\|\vec{\bar{p}}^{\,s}\|_{K,\infty}. (81)

Thus, if ρ(IK)<1\rho(I-K)<1, then the iterative solution (us{u}^{s}, ps{p}^{\,s}) of (30), (31), (32) converges linearly to (u{u}, p{p}) of (50), (51). In particular, if max(α1.5,ρν)<2\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right)<2, then ρ(IK)<1\rho(I-K)<1. Furthermore, the convergence of iteration is independent of the time step size kk.

Proof.
Express the error p¯s=j=1mp¯K,jsξj\vec{\bar{p}}^{\,s}=\sum_{j=1}^{m}\bar{p}^{s}_{K,j}\vec{\xi}_{j}. Then (64) becomes

j=1mp¯K,js+1ξj=j=1m(1λj)p¯K,jsξj.\displaystyle\sum_{j=1}^{m}\bar{p}^{s+1}_{K,j}\vec{\xi}_{j}=\sum_{j=1}^{m}(1-\lambda_{j})\bar{p}^{s}_{K,j}\vec{\xi}_{j}. (82)

Due to the linear independency of {ξj}j=1m\{\vec{\xi}_{j}\}_{j=1}^{m}, we arrive at

p¯K,js+1=(1λj)p¯K,js,j=1,,m.\bar{p}^{s+1}_{K,j}=(1-\lambda_{j})\bar{p}^{s}_{K,j},\quad j=1,\cdots,m. (83)

Taking maximum values on both sides yields (81). By Lemma 3 and Lemma 4, if max(α1.5,ρν)<2\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right)<2, then ρ(IK)<1\rho(I-K)<1.

\Box

2.2.2 Iteration analysis with semi-implicit convection

When the semi-implicit convection form NL(w,u)\text{NL}(w,u) is used, the weak form of the saddle point problem (4) and (5) is composed by (51) and

1.5(u,wi)+kν(u,wi)+k(NL(w,u),wi)k(wi,p)=(F,wi),i=1,,l.\displaystyle 1.5({u},{w_{i}})+k\nu(\nabla u,\nabla{w_{i}})+k(\text{NL}(w,u),w_{i})-k(\nabla\cdot{w_{i}},p)=(F,{w_{i}}),\quad\forall\,i=1,\cdots,l. (84)

Accordingly, the weak form of (13) turns to

1.5(us,wi)+kν(us,wi)+k(NL(w,us),wi)k(wi,ps)=(F,wi),i=1,,l.\displaystyle 1.5({u^{s}},{w_{i}})+k\nu(\nabla{u^{s}},\nabla{w_{i}})+k(\text{NL}(w,u^{s}),w_{i})-k(\nabla\cdot{w_{i}},p^{s})=(F,{w_{i}}),\quad\forall\,i=1,\cdots,l. (85)

The entire semi-implicit iterative projection scheme includes (85), (31), (32). Define the matrices N(w)N(w) and AN(w)A_{N}(w) as, respectively,

N(w)ij\displaystyle N(w)_{ij} =(NL(w,wj),wi),i,j=1,,l,\displaystyle=(\text{NL}(w,w_{j}),w_{i}),\quad\forall\,i,j=1,\cdots,l, (86)
AN(w)\displaystyle A_{N}(w) =A+kN(w).\displaystyle=A+kN(w). (87)

Then (84) and (85) can be written as

AN(w)u+kBtp\displaystyle A_{N}(w)\vec{u}+kB^{t}\vec{p} =f,\displaystyle=\vec{f}, (88)
AN(w)us+kBtps\displaystyle A_{N}(w)\vec{u}^{s}+kB^{t}\vec{p}^{\,s} =f.\displaystyle=\vec{f}. (89)

The proofs of iteration convergence with both SI and FI convection forms are by writing the system as a perturbation with the coefficient kk of the non-convection system, (64). This is done for SI schemes in (100), (103), and for FI schemes in (141). The perturbation terms with the coefficient kk depend on the convection matrix N(w)N(w), which has an upper bound given in Lemma 5. Then, a sufficiently small kk keeps the system as a contraction. To earn this upper bound, we adopt the spectral matrix norm ||||||2{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} for square matrices, which is induced by the Euclidean metric in l\mathbb{R}^{l}. For more details of this norm, see, e.g., [20, Section 5.6]. As for the spectral norm of N(w)N(w), the following upper bound on wL2(Ω)\|w\|_{L^{2}(\Omega)} when wVhw\in V_{h} is provided.

Lemma 5.

There exists a constant CC only dependent on hh and the basis of VhV_{h} such that

|(NL(u,v),w)|\displaystyle|(\text{NL}(u,v),w)| CuL2(Ω)vL2(Ω)wL2(Ω),u,v,wVh,\displaystyle\leq C\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}\|w\|_{L^{2}(\Omega)},\quad\forall u,v,w\in V_{h}, (90)
|N(w)|2\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} CwL2(Ω),wVh.\displaystyle\leq C\|w\|_{L^{2}(\Omega)},\quad\forall w\in V_{h}. (91)

Proof.
Using [20, Theorem 5.4.17 and 5.6.2(d)], |N(w)|2=maxξ2=η2=1ξtN(w)η{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}=\max_{\|\vec{\xi}\|_{2}=\|\vec{\eta}\|_{2}=1}{\vec{\xi}}^{t}N(w)\vec{\eta}, where ξ,ηl\vec{\xi},\vec{\eta}\in\mathbb{R}^{l}. Using the connection between the vector and function forms: ξ=(ξ1ξl)t\vec{\xi}=(\xi_{1}\cdots\xi_{l})^{t}, ξ=i=1lξiwi\xi=\sum_{i=1}^{l}\xi_{i}w_{i}, η=(η1ηl)t\vec{\eta}=(\eta_{1}\cdots\eta_{l})^{t}, η=i=1lηiwi\eta=\sum_{i=1}^{l}\eta_{i}w_{i}, we obtain ξtN(w)η=i,j=1lξi((w)wi,wi)ηj=((w)ξ,η)\vec{\xi}^{t}N(w)\vec{\eta}=\sum_{i,j=1}^{l}\xi_{i}((w\cdot\nabla)w_{i},w_{i})\eta_{j}=((w\cdot\nabla)\xi,\eta). Hence,

|N(w)|2=maxξ2=η2=1((w)ξ,η).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}=\max_{\|\vec{\xi}\|_{2}=\|\vec{\eta}\|_{2}=1}((w\cdot\nabla)\xi,\eta). (92)

Note that

|((w)ξ,η)|\displaystyle|((w\cdot\nabla)\xi,\eta)| =|Ω((w)ξ)ηdx|,\displaystyle=\bigg{|}\int_{\Omega}((w\cdot\nabla)\xi)\cdot\eta\mathrm{d}x\bigg{|}, (93)
wL4(Ω)ηL4(Ω)ξL2(Ω)\displaystyle\leq\|w\|_{L^{4}(\Omega)}\|\eta\|_{L^{4}(\Omega)}\|\nabla\xi\|_{L^{2}(\Omega)} (94)
2wL2(Ω)14wL2(Ω)34ηL2(Ω)14ηL2(Ω)34ξL2(Ω),\displaystyle\leq 2\|w\|^{\frac{1}{4}}_{L^{2}(\Omega)}\|\nabla w\|^{\frac{3}{4}}_{L^{2}(\Omega)}\|\eta\|^{\frac{1}{4}}_{L^{2}(\Omega)}\|\nabla\eta\|^{\frac{3}{4}}_{L^{2}(\Omega)}\|\nabla\xi\|_{L^{2}(\Omega)}, (95)

where (94) is obtained by Hölder’s inequality and (95) by Ladyzhenskaya’s inequality in three-dimensional case, vL4(Ω)2vL2(Ω)1/4vL2(Ω)3/4\|v\|_{L^{4}(\Omega)}\leq\sqrt{2}\|v\|^{1/4}_{L^{2}(\Omega)}\|\nabla v\|^{3/4}_{L^{2}(\Omega)}, vV\forall v\in V (see, e.g., [29, Lemma 3.5, p. 200]). Next, by applying the inverse inequality vL2(Ω)Ch1vL2(Ω)\|\nabla v\|_{L^{2}(\Omega)}\leq Ch^{-1}\|v\|_{L^{2}(\Omega)} for any vVhv\in V_{h} (e.g., [6, Theorem 4.5.11, p. 112]), where CC only depends on Ω\Omega, the above estimates continue as

|((w)ξ,η)|\displaystyle|((w\cdot\nabla)\xi,\eta)| 2wL2(Ω)14(Ch1)34wL2(Ω)34ηL2(Ω)14(Ch1)34ηL2(Ω)34Ch1ξL2(Ω)\displaystyle\leq 2\|w\|^{\frac{1}{4}}_{L^{2}(\Omega)}(Ch^{-1})^{\frac{3}{4}}\|w\|^{\frac{3}{4}}_{L^{2}(\Omega)}\|\eta\|^{\frac{1}{4}}_{L^{2}(\Omega)}(Ch^{-1})^{\frac{3}{4}}\|\eta\|^{\frac{3}{4}}_{L^{2}(\Omega)}Ch^{-1}\|\xi\|_{L^{2}(\Omega)} (96)
Ch52wL2(Ω)ξL2(Ω)ηL2(Ω)\displaystyle\leq Ch^{-\frac{5}{2}}\|w\|_{L^{2}(\Omega)}\|\xi\|_{L^{2}(\Omega)}\|\eta\|_{L^{2}(\Omega)} (97)
=CwL2(Ω)ξL2(Ω)ηL2(Ω),\displaystyle=C\|w\|_{L^{2}(\Omega)}\|\xi\|_{L^{2}(\Omega)}\|\eta\|_{L^{2}(\Omega)}, (98)

where the last CC absorbs h2.5h^{-2.5} in the previous step. Note the inequality (98) holds for any ξ,ηVh\xi,\eta\in V_{h}, which leads to (90).

But ξL2(Ω)2=(i=1lξiwi,j=1lξjwj)=i,j=1lξiξj(wi,wj)=ξtA0ξ\|\xi\|^{2}_{L^{2}(\Omega)}=(\sum_{i=1}^{l}\xi_{i}w_{i},\sum_{j=1}^{l}\xi_{j}w_{j})=\sum_{i,j=1}^{l}\xi_{i}\xi_{j}(w_{i},w_{j})=\vec{\xi}^{t}A_{0}\vec{\xi}, where A0A_{0} is the mass matrix of VhV_{h} with (A0)ij=(wi,wj)(A_{0})_{ij}=(w_{i},w_{j}). Clearly, A0A_{0} is symmetric and positive definite. Since ξ2=1\|\vec{\xi}\|_{2}=1, ξtA0ξρ(A0)\vec{\xi}^{t}A_{0}\vec{\xi}\leq\rho(A_{0}), the spectral radius of A0A_{0}. Thus, ξL2(Ω)ρ(A0)\|\xi\|_{L^{2}(\Omega)}\leq\sqrt{\rho(A_{0})} and similarly ηL2(Ω)ρ(A0)\|\eta\|_{L^{2}(\Omega)}\leq\sqrt{\rho(A_{0})}. Therefore,

|((w)ξ,η)|Cρ(A0)wL2(Ω)CwL2(Ω),\displaystyle|((w\cdot\nabla)\xi,\eta)|\leq C\rho(A_{0})\|w\|_{L^{2}(\Omega)}\leq C\|w\|_{L^{2}(\Omega)}, (99)

where Cρ(A0)C\rho(A_{0}) is denoted as a new CC in the final step, which only depends on hh and the basis of VhV_{h}. Finally, (91) is achieved from (92) and (99).

\Box

Lemma 6.

If the time step size kk is sufficiently small, then the symmetric part of AN(w)A_{N}(w), H12(AN(w)+ANt(w))H\triangleq\frac{1}{2}(A_{N}(w)+A_{N}^{t}(w)), is positive definite.

Remark 1.

This implies the system of (88) and (55) is a generalized saddle point problem according to [5].

Proof.
Let v=(v1vl)tl\vec{v}=(v_{1}\cdots v_{l})^{t}\in\mathbb{R}^{l} and v=i=1lviwiv=\sum_{i=1}^{l}v_{i}w_{i}, then

vtHv\displaystyle\vec{v}^{t}H\vec{v} =vtAv+k2vt(N(w)+Nt(w))v\displaystyle=\vec{v}^{t}A\vec{v}+\frac{k}{2}\vec{v}^{t}(N(w)+N^{t}(w))\vec{v}
=vL2(Ω)2+kvL2(Ω)2+k2((NL(w),v),v)+NL(v,w),w))\displaystyle=\|v\|^{2}_{L^{2}(\Omega)}+k\|\nabla v\|^{2}_{L^{2}(\Omega)}+\frac{k}{2}((\text{NL}(w),v),v)+\text{NL}(v,w),w))
vL2(Ω)2kCwL2(Ω)vL2(Ω)2=(1kCwL2(Ω))vL2(Ω)2,\displaystyle\geq\|v\|^{2}_{L^{2}(\Omega)}-kC\|w\|_{L^{2}(\Omega)}\|v\|^{2}_{L^{2}(\Omega)}=(1-kC\|w\|_{L^{2}(\Omega)})\|v\|^{2}_{L^{2}(\Omega)},

where (NL(w),v),v),(NL(v),w),v)CwL2(Ω)v2L2(Ω)(\text{NL}(w),v),v),(\text{NL}(v),w),v)\geq-C\|w\|_{L^{2}(\Omega)}\|v\|^{2}_{L^{2}(\Omega)} from Lemma 5 is used in the last step. If k<1/(CwL2(Ω))k<1/(C\|w\|_{L^{2}(\Omega)}), then HH is positive definite.

\Box

Using the same process of obtaining (64) in the case without convection, we obtain that the pressure solution error between the scheme (89), (48), (49) and the system (88), (53), (54) satisfies

p¯s+1=(IKN(w))p¯s,\vec{\bar{p}}^{\,s+1}=(I-K_{N}(w))\vec{\bar{p}}^{\,s}, (100)

where

KN(w)(αG1+ρkM1)BAN1(w)Bt.K_{N}(w)\triangleq(\alpha G^{-1}+\rho kM^{-1})BA^{-1}_{N}(w)B^{t}. (101)

The equation (85) can be regarded as a first order perturbation in time step size kk of (30). The following lemma indicates that IKN(w)I-K_{N}(w) is also a first order perturbation of IKI-K.

Lemma 7.

For each wVhw\in V_{h}, there exists kw>0k_{w}>0, such that when 0<k<min(kw,1)0<k<\min(k_{w},1), the matrix AN(w)A_{N}(w) is invertible,

|AN1(w)|2C(1+kwL2(Ω)),{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}_{N}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq C(1+k\|w\|_{L^{2}(\Omega)}), (102)

and

IKN(w)=IKkAN2(w),I-K_{N}(w)=I-K-kA_{N2}(w), (103)

where

|AN2(w)|2CwL2(Ω).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N2}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq C\|w\|_{L^{2}(\Omega)}. (104)

Here, the constants CC are independent of ww, but depend on hh and bases of VhV_{h} and QhQ_{h}.

Proof.
Note AN(w)=A+kN(w)=A(I+kA1N(w))A_{N}(w)=A+kN(w)=A(I+kA^{-1}N(w)). When ww and the basis of VhV_{h} are fixed, the matrices AA and N(w)N(w) are also fixed. Note ANA_{N} is invertible if and only if (I+kA1N(w))(I+kA^{-1}N(w)) is invertible. According to [20, Corollary 5.6.16], (I+kA1N(w))(I+kA^{-1}N(w)) being invertible is equivalent to k|A1N(w)|2<1k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}<1.

Let

kw=0.5C|A1|2wL2(Ω),k_{w}=\frac{0.5}{C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|w\|_{L^{2}(\Omega)}}, (105)

where the value of CC is the one in (91). If 0<k<kw0<k<k_{w}, then k|A1N(w)|2k|A1|2|N(w)|2kC|A1|2wL2(Ω)<0.5k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq kC{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|w\|_{L^{2}(\Omega)}<0.5. Thus, the matrix (I+kA1N(w))(I+kA^{-1}N(w)) is invertible and (I+kA1N(w))1=I+kAN1(w)(I+kA^{-1}N(w))^{-1}=I+kA_{N1}(w), where

AN1(w)j=1(1)jkj1(A1N(w))j\displaystyle A_{N1}(w)\triangleq\sum_{j=1}^{\infty}(-1)^{j}k^{j-1}(A^{-1}N(w))^{j} (106)

and

|AN1(w)|2|A1N(w)|21k|A1N(w)|22|A1|2|N(w)|2.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N1}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq\frac{{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}}{1-k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}}\leq 2{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}. (107)

Thus, when 0<k<kw0<k<k_{w}, AN(w)A_{N}(w) is invertible and

AN1(w)=(I+kAN1(w))A1=A1+kAN1(w)A1.\displaystyle A^{-1}_{N}(w)=(I+kA_{N1}(w))A^{-1}=A^{-1}+kA_{N1}(w)A^{-1}. (108)

Furthermore,

|AN1(w)|2\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}_{N}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} =|(I+kAN1(w))A1|2|A1|2(1+k|AN1(w)|2)\displaystyle={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|(I+kA_{N1}(w))A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}(1+k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N1}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}) (109)
|A1|2(1+2k|A1|2|N(w)|2)\displaystyle\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}(1+2k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}) (110)
|A1|2(1+2Ck|A1|2wL2(Ω))\displaystyle\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}(1+2Ck{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|w\|_{L^{2}(\Omega)}) (111)
C(1+kwL2(Ω)),\displaystyle\leq C^{\prime}(1+k\|w\|_{L^{2}(\Omega)}), (112)

where (107) is used in (109) to get (110), and (91) is applied in (110) to get (111). The CC^{\prime} in (112) is C=max(|A1|2,2C|A1|22)C^{\prime}=\max({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2},2C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2}) from (111). Changing CC^{\prime} to a new CC results in (102).

Then (101) and (108) lead to

IKN(w)\displaystyle I-K_{N}(w) =I(αG1+ρkM1)BA1Btk(αG1+ρkM1)BAN1(w)A1Bt\displaystyle=I-(\alpha G^{-1}+\rho kM^{-1})BA^{-1}B^{t}-k(\alpha G^{-1}+\rho kM^{-1})BA_{N1}(w)A^{-1}B^{t} (113)
IKkAN2(w),\displaystyle\triangleq I-K-kA_{N2}(w), (114)

where KK is defined in (65) and

AN2(w)(αG1+ρkM1)BAN1(w)A1Bt.\displaystyle A_{N2}(w)\triangleq(\alpha G^{-1}+\rho kM^{-1})BA_{N1}(w)A^{-1}B^{t}. (115)

Then

|AN2(w)|2\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N2}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} (α|G1|2+ρk|M1|2)|B|2|Bt|2|A1|2|AN1(w)|2\displaystyle\leq(\alpha{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|G^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+\rho k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B^{t}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N1}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} (116)
(α|G1|2+ρ|M1|2)|B|2|Bt|22|A1|22|N(w)|2\displaystyle\leq(\alpha{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|G^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+\rho{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B^{t}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\cdot 2{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} (117)
=C1|N(w)|2CwL2(Ω),\displaystyle=C_{1}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq C\|w\|_{L^{2}(\Omega)}, (118)

where we have used 0<k<10<k<1 and (107) to get (117) and Lemma 5 to obtain (118). The constant C1C_{1} in (118) denotes the product of all terms in front of |N(w)|2{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} in (117), which only depends on the bases of VhV_{h} and QhQ_{h}. The identity (114) and estimate (118) conclude this lemma.

\Box

The next result presents the recursive relation of the pressure error and the iteration convergence conditions.

Theorem 2 (Iteration Convergence with SI-Iterative Projection Method).

If kk is sufficiently small, then the pressure error between (89), (48), (49) and the system (88), (53), (54), where ww is explicit, satisfies

p¯s+1K,(ρ(IK)+kCwL2(Ω))p¯sK,,\|\vec{\bar{p}}^{\,s+1}\|_{K,\infty}\leq\big{(}\rho(I-K)+kC\|w\|_{L^{2}(\Omega)}\big{)}\cdot\|\vec{\bar{p}}^{\,s}\|_{K,\infty}, (119)

where CC is a constant that only depends on hh and the bases of VhV_{h} and QhQ_{h}. If ρ(IK)<1\rho(I-K)<1, which can be guaranteed by enforcing max(α1.5,ρν)<2\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right)<2, and kk is such that ρ(IK)+kCwL2(Ω)<1\rho(I-K)+kC\|w\|_{L^{2}(\Omega)}<1, then the iteration converges. In this case, the solution (us,ps)(u^{s},p^{s}) of (85), (31), (32) converges linearly to (u,p)(u,p) of (84), (51).

Proof.
According to (100) and Lemma 7,

p¯s+1=(IK)p¯skAN2(w)p¯s.\vec{\bar{p}}^{\,s+1}=(I-K)\vec{\bar{p}}^{\,s}-kA_{N2}(w)\vec{\bar{p}}^{\,s}. (120)

We express AN2(w)p¯sA_{N2}(w)\vec{\bar{p}}^{\,s} as a linear combination of the eigenbasis {ξj}j=1m\{\vec{\xi}_{j}\}_{j=1}^{m}, i.e.,

AN2(w)p¯s=j=1mηK,jξj=η,A_{N2}(w)\vec{\bar{p}}^{\,s}=\sum_{j=1}^{m}\eta_{K,j}\vec{\xi}_{j}=\vec{\eta}, (121)

for some real numbers ηK,j\eta_{K,j}\in\mathbb{R}, j=1,,mj=1,\cdots,m. Then there exists a constant CC merely dependent on the bases of VhV_{h} and QhQ_{h} such that

ηK,\displaystyle\|\vec{\eta}\|_{K,\infty} =max1jm|ηK,j|CAN2(w)p¯s2C|AN2(w)|2p¯s2\displaystyle=\max_{1\leq j\leq m}|\eta_{K,j}|\leq C\|A_{N2}(w)\vec{\bar{p}}^{\,s}\|_{2}\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N2}(w)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|\vec{\bar{p}}^{\,s}\|_{2} (122)
CwL2(Ω)p¯sK,,\displaystyle\leq C\|w\|_{L^{2}(\Omega)}\|\vec{\bar{p}}^{\,s}\|_{K,\infty}, (123)

where (104) is used in the last step and the equivalence of norms in m\mathbb{R}^{m} is repeatedly used.

Using the expressions p¯s+1=j=1mp¯K,js+1ξj\vec{\bar{p}}^{\,s+1}=\sum_{j=1}^{m}\bar{p}^{s+1}_{K,j}\vec{\xi}_{j} and p¯s=j=1mp¯K,jsξj\vec{\bar{p}}^{\,s}=\sum_{j=1}^{m}\bar{p}^{s}_{K,j}\vec{\xi}_{j}, (120) and (121) yield j=1mp¯K,js+1ξj=j=1m((1λj)p¯K,jskηK,j)ξj\sum_{j=1}^{m}\bar{p}^{s+1}_{K,j}\vec{\xi}_{j}=\sum_{j=1}^{m}((1-\lambda_{j})\bar{p}^{s}_{K,j}-k\eta_{K,j})\vec{\xi}_{j}. The linear independency of the eigenbasis {ξ}j=1m\{\vec{\xi}\}_{j=1}^{m} implies

p¯K,js+1=(1λj)p¯K,jskηK,j,j=1,,m.\bar{p}^{s+1}_{K,j}=(1-\lambda_{j})\bar{p}^{s}_{K,j}-k\eta_{K,j},\quad j=1,\cdots,m. (124)

This suggests

p¯s+1K,\displaystyle\|\vec{\bar{p}}^{\,s+1}\|_{K,\infty} \displaystyle\leq max1jm|1λj|p¯sK,+kη¯K,\displaystyle\max_{1\leq j\leq m}|1-\lambda_{j}|\cdot\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+k\|\vec{\bar{\eta}}\|_{K,\infty} (125)
\displaystyle\leq ρ(IK)p¯sK,+kCwL2(Ω)p¯sK,,\displaystyle\rho(I-K)\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+kC\|w\|_{L^{2}(\Omega)}\|\vec{\bar{p}}^{\,s}\|_{K,\infty},

where (123) is used in the last step.

When max(α1.5,ρν)<2\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right)<2, Lemma 3 and Lemma 4 imply ρ(IK)<1\rho(I-K)<1. In the recursive relation (119), if kk is sufficiently small, the iteration ratio satisfies 0<ρ(IK)+kCwL2(Ω)<10<\rho(I-K)+kC\|w\|_{L^{2}(\Omega)}<1. In this case, the iteration converges linearly.

\Box

2.2.3 Iteration analysis with fully implicit convection

The fully implicit and nonlinear system of (4) and (5) in the weak form is, after deleting the time step index (n+1)(n+1),

1.5(u,v)+kν(u,v)+k(NL(u,u),v)k(p,v)\displaystyle 1.5(u,v)+k\nu(\nabla u,\nabla v)+k(\text{NL}(u,u),v)-k(p,\nabla\cdot v) =(F,v),vVh,\displaystyle=(F,v),\quad\forall v\in V_{h}, (126)
(u,q)\displaystyle(\nabla\cdot u,q) =0,qQh.\displaystyle=0,\quad\forall q\in Q_{h}. (127)

The corresponding FI-Iterative Projection Method is, for s=0,1,s=0,1,\cdots,

1.5(us,v)+kν(us,v)+k(NL(us1,us),v)k(ps,v)\displaystyle 1.5(u^{s},v)+k\nu(\nabla u^{s},\nabla v)+k(\text{NL}(u^{s-1},u^{s}),v)-k(p^{s},\nabla\cdot v) =(F,v),vVh,\displaystyle=(F,v),\quad\forall v\in V_{h}, (128)

along with (31) and (32). Here, (u1,p0)(u^{-1},p^{0}) is the initial guess of the solution. The matrix form of (126) is

AN(u)u+kBtp=f,\displaystyle A_{N}(u)\vec{u}+kB^{t}\vec{p}=\vec{f}, (129)

and that of (128) is

AN(us1)us+kBtps=f,\displaystyle A_{N}(u^{s-1})\vec{u}^{s}+kB^{t}{\vec{p}}^{\,s}=\vec{f}, (130)

where the matrix ANA_{N} is defined in (87) and (86). The convergence of this scheme is given below.

Theorem 3 (Iteration Convergence of FI-Iterative Projection Method).

If ρ(IK)<1\rho(I-K)<1 and the time step size kk is sufficient small, then there exists a constant 0<γ<10<\gamma<1 such that for any s0s\geq 0, the pressure and velocity errors between (130), (48), (49) and the system (129), (53), (54) satisfy

p¯sK,(p¯ 0K,+u¯12)γs,u¯s2k(p¯ 0K,+u¯12)γs+1.\displaystyle\|\vec{\bar{p}}^{\,s}\|_{K,\infty}\leq(\|\vec{\bar{p}}^{\,0}\|_{K,\infty}+\|\vec{\bar{u}}^{-1}\|_{2})\gamma^{s},\quad\|\vec{\bar{u}}^{\,s}\|_{2}\leq\sqrt{k}(\|\vec{\bar{p}}^{\,0}\|_{K,\infty}+\|\vec{\bar{u}}^{-1}\|_{2})\gamma^{s+1}. (131)

Thus, the solution (us,ps)Vh×Qh(u^{s},p^{s})\in V_{h}\times Q_{h} of (128), (31) and (32) converges linearly to the solution (u,p)Vh×Qh(u,p)\in V_{h}\times Q_{h} of (126) and (127), as ss\to\infty. In particular, if max(α1.5,ρν)<2\max\left(\frac{\alpha}{1.5},\frac{\rho}{\nu}\right)<2, then ρ(IK)<1\rho(I-K)<1.

Proof.
Step 1. Derive the relations (152) and (153).
Subtracting (126) from (128) gives, for any vVhv\in V_{h},

1.5(u¯s,v)+kν(u¯s,v)+k(NL(us1,u¯s),v)+kb(NL(u¯s1,u),v)k(p¯s,v)=0.\displaystyle 1.5(\bar{u}^{s},v)+k\nu(\nabla\bar{u}^{s},\nabla v)+k(\text{NL}(u^{s-1},\bar{u}^{s}),v)+kb(\text{NL}(\bar{u}^{s-1},u),v)-k(\bar{p}^{s},\nabla\cdot v)=0. (132)

This results in, by using the notations of vectors us\vec{u}^{s}, ϕs\vec{\phi}^{s}, ps\vec{p}^{\,s} and errors u¯s\vec{\bar{u}}^{s}, ϕ¯s\vec{\bar{\phi}}^{s}, p¯s\vec{\bar{p}}^{\,s} in Section 2.2.1,

Au¯s+kN(us1)u¯s+kBtp¯s=kAd(u)u¯s1,\displaystyle A\vec{\bar{u}}^{s}+kN(u^{s-1})\vec{\bar{u}}^{s}+kB^{t}\vec{\bar{p}}^{\,s}=-kA_{d}(u)\vec{\bar{u}}^{s-1}, (133)

where A+kN(us1)=AN(us1)A+kN(u^{s-1})=A_{N}(u^{s-1}) and the new matrix Ad(u)A_{d}(u) is defined as

(Ad(u))ij\displaystyle(A_{d}(u))_{ij} \displaystyle\triangleq (NL(wj,u),wi),i,j=1,,l.\displaystyle(\text{NL}(w_{j},u),w_{i}),\quad i,j=1,\cdots,l. (134)

According to Lemma 5, |N(us1)|2Cus1L2(Ω){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N(u^{s-1})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq C\|u^{s-1}\|_{L^{2}(\Omega)}. According to Lemma 7, for each us1u^{s-1}, there exists kus1>0k_{u^{s-1}}>0 that depends on the norm us1L2(Ω)\|u^{s-1}\|_{L^{2}(\Omega)} (see (105)) such that when 0<k<min(kus1,1)0<k<\min(k_{u^{s-1}},1), AN(us1)A_{N}(u^{s-1}) is invertible. In Step 2 of this proof, a non-zero lower bound of kusk_{u^{s}} with respective to s=1,0,s=-1,0,\cdots is found in (159), 0.5CC2|A1|2\frac{0.5}{CC_{2}{\left|\kern-0.75346pt\left|\kern-0.75346pt\left|A^{-1}\right|\kern-0.75346pt\right|\kern-0.75346pt\right|}_{2}}, such that AN(us)A_{N}(u^{s}) is invertible for all s=1,0,s=-1,0,\cdots when (159) is satisfied. According to Lemma 5 and (90), |Ad(u)|2CuL2(Ω){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{d}(u)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq C\|u\|_{L^{2}(\Omega)}. In this problem, uu is the solution of (126) and (127), therefore it is a fixed quantity and thus in the following we denote it as AdA_{d} and

|Ad|2C.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq C. (135)

Thus,

u¯s=kAN1(us1)(Btp¯s+Adu¯s1),\displaystyle\vec{\bar{u}}^{s}=-kA^{-1}_{N}(u^{s-1})(B^{t}\vec{\bar{p}}^{\,s}+A_{d}\vec{\bar{u}}^{s-1}), (136)

and

u¯s2\displaystyle\|\vec{\bar{u}}^{s}\|_{2} k|AN1(us1)|2(|Bt|2p¯s2+|Ad|2u¯s12)\displaystyle\leq k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}_{N}(u^{s-1})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B^{t}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|\vec{\bar{p}}^{\,s}\|_{2}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|\vec{\bar{u}}^{s-1}\|_{2})
kC(1+kus1L2(Ω))(p¯sK,+u¯s12),\displaystyle\leq kC(1+k\|u^{s-1}\|_{L^{2}(\Omega)})(\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+\|\vec{\bar{u}}^{s-1}\|_{2}), (137)

where (102) and (135) are used in the last step.

Similar to the derivation of (100) and (114) in Section 2.2.1, we obtain

p¯s+1\displaystyle\vec{\bar{p}}^{\,s+1} =p¯s+(αkG1+ρM1)Bu¯s\displaystyle=\vec{\bar{p}}^{\,s}+\bigg{(}\frac{\alpha}{k}G^{-1}+\rho M^{-1}\bigg{)}B\vec{\bar{u}}^{\,s} (138)
=p¯s(αG1+ρkM1)BAN1(us1)(Btp¯s+Adu¯s1)\displaystyle=\vec{\bar{p}}^{\,s}-\big{(}\alpha G^{-1}+\rho kM^{-1}\big{)}BA^{-1}_{N}(u^{s-1})(B^{t}\vec{\bar{p}}^{\,s}+A_{d}\vec{\bar{u}}^{s-1}) (139)
=p¯sKN(us1)p¯s(αG1+ρkM1)AN1(us1)Adu¯s1\displaystyle=\vec{\bar{p}}^{\,s}-K_{N}(u^{s-1})\vec{\bar{p}}^{\,s}-(\alpha G^{-1}+\rho kM^{-1})A^{-1}_{N}(u^{s-1})A_{d}\vec{\bar{u}}^{s-1} (140)
=(IKkAN2(us1))p¯sB1(us1)u¯s1,\displaystyle=(I-K-kA_{N2}(u^{s-1}))\vec{\bar{p}}^{\,s}-B_{1}(u^{s-1})\vec{\bar{u}}^{s-1}, (141)

where the definition KN(us1)K_{N}(u^{s-1}) in (101) is used in (139) to obtain (140), the formula (103) is employed to go from (140) to (141), and B1(us1)B_{1}(u^{s-1}) is defined as

B1(us1)(αG1+ρkM1)AN1(us1)Ad.B_{1}(u^{s-1})\triangleq(\alpha G^{-1}+\rho kM^{-1})A^{-1}_{N}(u^{s-1})A_{d}. (142)

Then,

|B1(us1)|2\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B_{1}(u^{s-1})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2} (α|||G1|||2+ρk|||M1|||2)|||(AN1(us1)|||2|||Ad|||2\displaystyle\leq(\alpha{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|G^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+\rho k{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|(A^{-1}_{N}(u^{s-1})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}
C(1+kus1L2(Ω)),\displaystyle\leq C(1+k\|u^{s-1}\|_{L^{2}(\Omega)}), (143)

where (102) and (135) are used in the last step.

Expressing AN2(us1)p¯sA_{N2}(u^{s-1})\vec{\bar{p}}^{\,s} and B1(us1)u¯s1B_{1}(u^{s-1})\vec{\bar{u}}^{s-1} in (141) with the eigenbasis {ξj}j=1m\{\vec{\xi}_{j}\}_{j=1}^{m} of the matrix KK:

AN2(us1)p¯s=j=1mηK,jξj=η,B1(us1)u¯s1=j=1mθK,jξj=θ.\displaystyle A_{N2}(u^{s-1})\vec{\bar{p}}^{\,s}=\sum_{j=1}^{m}\eta_{K,j}\vec{\xi}_{j}=\vec{\eta},\quad B_{1}(u^{s-1})\vec{\bar{u}}^{s-1}=\sum_{j=1}^{m}\theta_{K,j}\vec{\xi}_{j}=\vec{\theta}. (144)

Then it is easy to tell that

ηK,\displaystyle\|\vec{\eta}\|_{K,\infty} CAN2(us1)p¯s2C|AN2(us1)|2p¯sK,\displaystyle\leq C\|A_{N2}(u^{s-1})\vec{\bar{p}}^{\,s}\|_{2}\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A_{N2}(u^{s-1})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|\vec{\bar{p}}^{\,s}\|_{K,\infty}
Cus1L2(Ω)p¯sK,,\displaystyle\leq C\|u^{s-1}\|_{L^{2}(\Omega)}\|\vec{\bar{p}}^{\,s}\|_{K,\infty}, (145)

where (104) is used in the last step. Similarly,

θK,\displaystyle\|\vec{\theta}\|_{K,\infty} CB1(us1)u¯s12C|B1(us1)|2u¯s12\displaystyle\leq C\|B_{1}(u^{s-1})\vec{\bar{u}}^{s-1}\|_{2}\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|B_{1}(u^{s-1})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|\vec{\bar{u}}^{s-1}\|_{2}
C(1+kus1L2(Ω))u¯s12.\displaystyle\leq C(1+k\|u^{s-1}\|_{L^{2}(\Omega)})\|\vec{\bar{u}}^{s-1}\|_{2}. (146)

From (141) and (144), we obtain, for j=1,,mj=1,\cdots,m,

p¯K,js+1=(1λjkηK,j)p¯K,jsθK,j.\displaystyle\vec{\bar{p}}^{\,s+1}_{K,j}=(1-\lambda_{j}-k\eta_{K,j})\vec{\bar{p}}^{\,s}_{K,j}-\theta_{K,j}. (147)

This implies

p¯s+1K,\displaystyle\|\vec{\bar{p}}^{\,s+1}\|_{K,\infty} (ρ(IK)+kηK,)p¯sK,+θK,\displaystyle\leq(\rho(I-K)+k\|\vec{\eta}\|_{K,\infty})\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+\|\vec{\theta}\|_{K,\infty}
(ρ(IK)+kCus1L2(Ω))p¯sK,+C(1+kus1L2(Ω))u¯s12\displaystyle\leq(\rho(I-K)+kC\|u^{s-1}\|_{L^{2}(\Omega)})\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+C(1+k\|u^{s-1}\|_{L^{2}(\Omega)})\|\vec{\bar{u}}^{s-1}\|_{2} (148)
=as1p¯sK,+bs1u¯s12,\displaystyle=a_{s-1}\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+b_{s-1}\|\vec{\bar{u}}^{s-1}\|_{2}, (149)

where for s=1,0,s=-1,0,\cdots,

as\displaystyle a_{s} =ρ(IK)+kCusL2(Ω)ρ(IK)+kC(u¯s2+uL2(Ω)),\displaystyle=\rho(I-K)+kC\|u^{s}\|_{L^{2}(\Omega)}\leq\rho(I-K)+kC(\|\vec{\bar{u}}^{s}\|_{2}+\|u\|_{L^{2}(\Omega)}), (150)
bs\displaystyle b_{s} =C(1+kusL2(Ω))C(1+k(u¯s2+uL2(Ω))).\displaystyle=C(1+k\|u^{s}\|_{L^{2}(\Omega)})\leq C(1+k(\|\vec{\bar{u}}^{s}\|_{2}+\|u\|_{L^{2}(\Omega)})). (151)

Therefore, using these two quantities, (137) and (149) become, for s=0,1,s=0,1,\cdots,

p¯s+1K,\displaystyle\|\vec{\bar{p}}^{\,s+1}\|_{K,\infty} as1p¯sK,+bs1u¯s12,\displaystyle\leq a_{s-1}\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+b_{s-1}\|\vec{\bar{u}}^{s-1}\|_{2}, (152)
u¯s2\displaystyle\|\vec{\bar{u}}^{s}\|_{2} kbs1(p¯sK,+u¯s12).\displaystyle\leq kb_{s-1}(\|\vec{\bar{p}}^{\,s}\|_{K,\infty}+\|\vec{\bar{u}}^{s-1}\|_{2}). (153)

Step 2. prove (131) by induction. Fix CC as the maximum of one and all CC’s that appear above (this enforces C1C\geq 1), which only depends on hh and bases of VhV_{h} and QhQ_{h}. Let

C1\displaystyle C_{1} =p¯ 0K,+u¯12,\displaystyle=\|\vec{\bar{p}}^{\,0}\|_{K,\infty}+\|\vec{\bar{u}}^{-1}\|_{2}, (154)
C2\displaystyle C_{2} =max(u1L2(Ω),CC1+uL2(Ω),\displaystyle=\max(\|u^{-1}\|_{L^{2}(\Omega)},CC_{1}+\|u\|_{L^{2}(\Omega}), (155)
P1\displaystyle P_{1} =ρ(IK)+Ck+kC(1+k)(kC1+uL2(Ω)),\displaystyle=\rho(I-K)+C\sqrt{k}+kC(1+\sqrt{k})(\sqrt{k}C_{1}+\|u\|_{L^{2}(\Omega)}), (156)
P2\displaystyle P_{2} =k(1+k)C(1+kk)(kC1+uL2(Ω)),\displaystyle=\sqrt{k}(1+\sqrt{k})C(1+k\sqrt{k})(\sqrt{k}C_{1}+\|u\|_{L^{2}(\Omega)}), (157)
P3\displaystyle P_{3} =kC(1+ku1L2(Ω)).\displaystyle=\sqrt{k}C(1+k\|u^{-1}\|_{L^{2}(\Omega)}). (158)

If ρ(IK)<1\rho(I-K)<1, then there exists k0>0k_{0}>0 such that when 0<k<k00<k<k_{0}, max(P1,P2,P3)<1\max(P_{1},P_{2},P_{3})<1 because C,C1,u,u1C,C_{1},u,u^{-1} are fixed. We fix a value kk such that

0<k<min(1,k0,0.5CC2|A1|2).\displaystyle 0<k<\min\left(1,k_{0},\frac{0.5}{CC_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}}\right). (159)

The value of γ\gamma is chosen satisfying

max(P1,P2,P3)<γ<1.\max(P_{1},P_{2},P_{3})<\gamma<1. (160)

In the induction, we not only need to prove (131), but also need to show AN(us)A_{N}(u^{s}) is invertible for s=1,0,s=-1,0,\cdots.

In the initial step of induction, we show AN(u1)A_{N}(u^{-1}) is invertible, p¯ 0K,C1\|\vec{\bar{p}}^{\,0}\|_{K,\infty}\leq C_{1}, u¯ 02kC1γ\|\vec{\bar{u}}^{\,0}\|_{2}\leq\sqrt{k}C_{1}\gamma, and AN(u0)A_{N}(u^{0}) is invertible. First, (159) implies k<0.5CC2|A1|2k<\frac{0.5}{CC_{2}{\left|\kern-0.75346pt\left|\kern-0.75346pt\left|A^{-1}\right|\kern-0.75346pt\right|\kern-0.75346pt\right|}_{2}}, which in turn suggests k<0.5C|A1|2u1L2(Ω)k<\frac{0.5}{C{\left|\kern-0.75346pt\left|\kern-0.75346pt\left|A^{-1}\right|\kern-0.75346pt\right|\kern-0.75346pt\right|}_{2}\|u^{-1}\|_{L^{2}(\Omega)}} due to (155). According to Lemma 5 and (105), AN(u1)A_{N}(u^{-1}) is invertible.

When s=0s=0, the inequality for p¯ 0K,\|\vec{\bar{p}}^{\,0}\|_{K,\infty} in (131) is trivially true due to the definition of C1C_{1} in (154). From (153),

u¯ 02\displaystyle\|\vec{\bar{u}}^{\,0}\|_{2} kb1(p¯ 0K,+u¯12)\displaystyle\leq kb_{-1}(\|\vec{\bar{p}}^{\,0}\|_{K,\infty}+\|\vec{\bar{u}}^{-1}\|_{2})
=kC(1+ku1L2(Ω))(p¯ 0K,+u¯12)=kC1P3kC1γ.\displaystyle=kC(1+k\|u^{-1}\|_{L^{2}(\Omega)})(\|\vec{\bar{p}}^{\,0}\|_{K,\infty}+\|\vec{\bar{u}}^{-1}\|_{2})=\sqrt{k}C_{1}P_{3}\leq\sqrt{k}C_{1}\gamma. (161)

Next, we show AN(u0)A_{N}(u^{0}) is invertible. Note

u0L2(Ω)\displaystyle\|u^{0}\|_{L^{2}(\Omega)} u¯0L2(Ω)+uL2(Ω)Cu¯02+uL2(Ω)\displaystyle\leq\|\bar{u}^{0}\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\leq C\|\vec{\bar{u}}^{0}\|_{2}+\|u\|_{L^{2}(\Omega)}
CkC1γ+uL2(Ω)CC1+uL2(Ω),\displaystyle\leq C\sqrt{k}C_{1}\gamma+\|u\|_{L^{2}(\Omega)}\leq CC_{1}+\|u\|_{L^{2}(\Omega)}, (162)

where 0<k<10<k<1 and 0<γ<10<\gamma<1 are used in the last step. According to (159), (155), (162),

k<0.5CC2|A1|20.5C|A1|2(CC1+uL2(Ω))0.5C|A1|2u0L2(Ω)=ku0.\displaystyle k<\frac{0.5}{CC_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}}\leq\frac{0.5}{C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}(CC_{1}+\|u\|_{L^{2}(\Omega)})}\leq\frac{0.5}{C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{-1}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\|u^{0}\|_{L^{2}(\Omega)}}=k_{u^{0}}. (163)

Due to Lemma 7 and (105), AN(u0)A_{N}(u^{0}) is invertible.

Second, assume the inequalities in (131) hold and AN(us)A_{N}(u^{s}) is invertible for ss0s\leq s_{0} where s00s_{0}\geq 0. Then, (152) implies

p¯s0+1K,\displaystyle\|\vec{\bar{p}}^{\,s_{0}+1}\|_{K,\infty} as01p¯s0K,+bs01u¯s012\displaystyle\leq a_{s_{0}-1}\|\vec{\bar{p}}^{\,s_{0}}\|_{K,\infty}+b_{s_{0}-1}\|\vec{\bar{u}}^{s_{0}-1}\|_{2}
[ρ(IK)+kC(u¯s02+uL2(Ω))]p¯s0K,\displaystyle\leq[\rho(I-K)+kC(\|\vec{\bar{u}}^{s_{0}}\|_{2}+\|u\|_{L^{2}(\Omega)})]\|\vec{\bar{p}}^{\,s_{0}}\|_{K,\infty} (164)
+C[1+k(u¯s02+uL2(Ω))]u¯s012\displaystyle\quad+C[1+k(\|\vec{\bar{u}}^{s_{0}}\|_{2}+\|u\|_{L^{2}(\Omega)})]\|\vec{\bar{u}}^{s_{0}-1}\|_{2} (165)
[ρ(IK)+kC(kC1γs0+uL2(Ω))]C1γs0\displaystyle\leq[\rho(I-K)+kC(\sqrt{k}C_{1}\gamma^{s_{0}}+\|u\|_{L^{2}(\Omega)})]C_{1}\gamma^{s_{0}} (166)
+C[1+k(kC1γs0+uL2(Ω))]kC1γs0\displaystyle\quad+C[1+k(\sqrt{k}C_{1}\gamma^{s_{0}}+\|u\|_{L^{2}(\Omega)})]\sqrt{k}C_{1}\gamma^{s_{0}} (167)
=C1γs0[ρ(Ik)+kC+kC(1+k)(kC1γs0+uL2(Ω))]\displaystyle=C_{1}\gamma^{s_{0}}\bigg{[}\rho(I-k)+\sqrt{k}C+kC(1+\sqrt{k})(\sqrt{k}C_{1}\gamma^{s_{0}}+\|u\|_{L^{2}(\Omega)})\bigg{]} (168)
<C1γs0[ρ(Ik)+kC+kC(1+k)(kC1+uL2(Ω))]\displaystyle<C_{1}\gamma^{s_{0}}\bigg{[}\rho(I-k)+\sqrt{k}C+kC(1+\sqrt{k})(\sqrt{k}C_{1}+\|u\|_{L^{2}(\Omega)})\bigg{]} (169)
=C1γs0P1C1γs0+1,\displaystyle=C_{1}\gamma^{s_{0}}P_{1}\leq C_{1}\gamma^{s_{0}+1}, (170)

where the inequality (150) and (151) are used in attaining (164), 0<γ<10<\gamma<1 is applied from(168) to (169), the definition P1P_{1} in (156) is employed to go from (169) to (170), and the relation (160) is utilized in (170).

Furthermore, (153) implies

u¯s0+12\displaystyle\|\vec{\bar{u}}^{s_{0}+1}\|_{2} kbs0(p¯s0+1K,+u¯s02)\displaystyle\leq kb_{s_{0}}(\|\vec{\bar{p}}^{s_{0}+1}\|_{K,\infty}+\|\vec{\bar{u}}^{s_{0}}\|_{2})
kC[1+k(u¯s02+uL2(Ω))](p¯s0+1K,+u¯s02)\displaystyle\leq kC[1+k(\|\vec{\bar{u}}^{s_{0}}\|_{2}+\|u\|_{L^{2}(\Omega)})]\cdot(\|\vec{\bar{p}}^{s_{0}+1}\|_{K,\infty}+\|\vec{\bar{u}}^{s_{0}}\|_{2}) (171)
kC[1+k(kC1γs0+1+uL2(Ω))](C1γs0+1+kC1γs0+1)\displaystyle\leq kC[1+k(\sqrt{k}C_{1}\gamma^{s_{0}+1}+\|u\|_{L^{2}(\Omega)})]\cdot(C_{1}\gamma^{s_{0}+1}+\sqrt{k}C_{1}\gamma^{s_{0}+1}) (172)
=kC1γs0+1[k(1+k)C(1+k(kC1γs0+1+uL2(Ω))]\displaystyle=\sqrt{k}C_{1}\gamma^{s_{0}+1}\bigg{[}\sqrt{k}(1+\sqrt{k})C(1+k(\sqrt{k}C_{1}\gamma^{s_{0}+1}+\|u\|_{L^{2}(\Omega)})\bigg{]} (173)
<kC1γs0+1[k(1+k)C(1+k(kC1+uL2(Ω))]\displaystyle<\sqrt{k}C_{1}\gamma^{s_{0}+1}\bigg{[}\sqrt{k}(1+\sqrt{k})C(1+k(\sqrt{k}C_{1}+\|u\|_{L^{2}(\Omega)})\bigg{]} (174)
=kC1γs0+1P2kC1γs0+2,\displaystyle=\sqrt{k}C_{1}\gamma^{s_{0}+1}P_{2}\leq\sqrt{k}C_{1}\gamma^{s_{0}+2}, (175)

where the inequality (151) is used in achieving (171), 0<γ<10<\gamma<1 is used in obtaining (174), the definition P2P_{2} in (157) is applied from (174) to (175), and the relation (160) is used in (175).

Finally, following the same process as we prove that AN(u0)A_{N}(u^{0}) is invertible, we can prove AN(us0+1)A_{N}(u^{s_{0}+1}) is invertible. The induction proof is completed.

\Box

3 Stability and error analysis of convergent iterative projection method

From here, we denote the solution at time step nn with iteration number ss in the finite element space Vh×QhV_{h}\times Q_{h} as (uhn,s,phn,s)(u_{h}^{n,s},p_{h}^{n,s}). Thus, the finite element formulation of the iterative scheme (13)–(15) is, at the time tnt_{n}, seeking uhn+1,sVh{u}^{n+1,s}_{h}\in V_{h}, phn+1,sQhp^{n+1,s}_{h}\in Q_{h}, ϕhn+1,sQh\phi^{n+1,s}_{h}\in Q_{h}, s=0,1,s=0,1,\cdots, such that for any vhVh{v_{h}}\in V_{h}, qhQhq_{h}\in Q_{h},

1.5(uhn+1,s,vh)\displaystyle 1.5(u_{h}^{n+1,s},v_{h}) +kν(uhn+1,s,vh)+k(NL(w~hn+1,s,uhn+1,s),vh)k(vh,phn+1,s)\displaystyle+k\nu(\nabla u_{h}^{n+1,s},\nabla v_{h})+k(\text{NL}(\tilde{w}_{h}^{n+1,s},u_{h}^{n+1,s}),v_{h})-k(\nabla\cdot v_{h},p^{n+1,s}_{h})
=(2uhn0.5uhn1,vh)+k(fn+1,vh),\displaystyle=(2u^{n}_{h}-0.5u^{n-1}_{h},v_{h})+k(f^{n+1},v_{h}), (176)
(ϕhn+1,s,qh)\displaystyle(\nabla\phi^{n+1,s}_{h},\nabla q_{h}) =1k(uhn+1,s,qh),\displaystyle=-\frac{1}{k}(\nabla\cdot{u}^{n+1,s}_{h},q_{h}), (177)
(phn+1,s+1,qh)\displaystyle(p^{n+1,s+1}_{h},q_{h}) =(phn+1,s+αϕhn+1,sρ(uhn+1,s),qh),\displaystyle=(p^{n+1,s}_{h}+\alpha\phi_{h}^{n+1,s}-\rho(\nabla\cdot u^{n+1,s}_{h}),q_{h}), (178)

where phn+1,0=2phnphn1p_{h}^{n+1,0}=2p_{h}^{n}-p_{h}^{n-1}. In the semi-implicit convection, w~hn+1,s=2uhnuhn1\tilde{w}^{n+1,s}_{h}=2u^{n}_{h}-u^{n-1}_{h}. In the fully implicit convection case, w~hn+1,s=uhn+1,s1\tilde{w}^{n+1,s}_{h}=u^{n+1,s-1}_{h} and when s=0s=0, uhn+1,1=2uhnuhn1u^{n+1,-1}_{h}=2u^{n}_{h}-u^{n-1}_{h}. When the conditions in Theorem 2 or Theorem 3 are satisfied, the iterative solution (uhn+1,su_{h}^{n+1,s}, phn+1,sp_{h}^{n+1,s}) converges linearly to (uhn+1u_{h}^{n+1}, phn+1p_{h}^{n+1}) of the following system

1.5(uhn+1,vh)\displaystyle 1.5(u_{h}^{n+1},v_{h}) +kν(uhn+1,vh)+k(NL(w~hn+1,uhn+1),vh)k(vh,phn+1)\displaystyle+k\nu(\nabla u_{h}^{n+1},\nabla v_{h})+k(\text{NL}(\tilde{w}_{h}^{n+1},u_{h}^{n+1}),v_{h})-k(\nabla\cdot v_{h},p^{n+1}_{h})
=(2uhn0.5uhn1,vh)+k(fn+1,vh),vhVh,\displaystyle=(2u^{n}_{h}-0.5u^{n-1}_{h},v_{h})+k(f^{n+1},v_{h}),\quad\forall v_{h}\in V_{h}, (179)
(uhn+1,qh)\displaystyle(\nabla\cdot u^{n+1}_{h},q_{h}) =0,qhQh,\displaystyle=0,\quad\forall q_{h}\in Q_{h}, (180)

where w~hn+1=2uhnuhn1\tilde{w}^{n+1}_{h}=2u^{n}_{h}-u^{n-1}_{h} for the semi-imcplicit convection and w~hn+1=uhn+1\tilde{w}^{n+1}_{h}=u^{n+1}_{h} for the fully implicit convection.

According to [17], the stability result of the traditional rotational projection method, of only one iterative projection in each time step, is not proven for the scheme (176), (177), and (178). This is because the intermediate terms uhn+1,su_{h}^{n+1,s} and ϕhn+1,s\phi_{h}^{n+1,s} make the analysis very complicated in the multi-step time discretization. Nevertheless, as for the limit scheme (179) and (180), the stability and error analyses are established below. In what follows, we use Lx2\|\cdot\|_{L_{x}^{2}} to denote L2(Ω)\|\cdot\|_{L^{2}(\Omega)} for simplicity.

3.1 Stability analysis for the convergent iterative projection method

Theorem 4.

Suppose the convection term adopts SI-SKEW or FI-SKEW with both non-div-free and div-free FEMs. If 0<k<10<k<1, then the velocity solution of the scheme (179) and (180) satisfies for a given final time T>0T>0, at any time step 2nTk2\leq n\leq\lfloor\frac{T}{k}\rfloor,

uhnLx22+2uhnuhn1Lx22exp(T1k)(uh1Lx22+2uh1uh0Lx22+4kj=2nfjLx22).\|u_{h}^{n}\|_{L^{2}_{x}}^{2}+\|2u_{h}^{n}-u_{h}^{n-1}\|_{L^{2}_{x}}^{2}\leq\exp\Big{(}\frac{T}{1-k}\Big{)}\cdot\Big{(}\|u_{h}^{1}\|_{L^{2}_{x}}^{2}+\|2u_{h}^{1}-u_{h}^{0}\|_{L^{2}_{x}}^{2}+4k\sum_{j=2}^{n}\|f^{j}\|_{L^{2}_{x}}^{2}\Big{)}. (181)

Proof.
It is easy to derive that for any w,vVw,v\in V,

(NL(w,v),v)=0.\displaystyle(\text{NL}(w,v),v)=0. (182)

Thus, if SI-SKEW or FI-SKEW form is used in (179), the convection term (NL(w~hn+1,uhn+1),uhn+1)(\text{NL}(\tilde{w}_{h}^{n+1},u_{h}^{n+1}),u^{n+1}_{h}) vanishes. Letting vh=uhn+1v_{h}=u_{h}^{n+1} in (179) and qh=phn+1q_{h}=p^{n+1}_{h} in (180) eliminates the convection term and k(uhn+1,phn+1)k(\nabla\cdot u^{n+1}_{h},p^{n+1}_{h}), and we obtain

(uhn+1,1.5uhn+12uhn+0.5uhn1)+kνuhn+1Lx22=k(fn+1,uhn+1).(u^{n+1}_{h},1.5u^{n+1}_{h}-2u^{n}_{h}+0.5u^{n-1}_{h})+k\nu\|\nabla u^{n+1}_{h}\|^{2}_{L^{2}_{x}}=k(f^{n+1},u^{n+1}_{h}). (183)

Applying the following algebraic identity for real numbers an+1,an,an1a^{n+1},a^{n},a^{n-1} (e.g., (4.7) in [19]),

an+1(1.5an+12an+0.5an1)=14(\displaystyle a^{n+1}\cdot(1.5a^{n+1}-2a^{n}+0.5a^{n-1})=\frac{1}{4}\big{(} |an+1|2+|2an+1an|2+|an+12an+an1|2\displaystyle|a^{n+1}|^{2}+|2a^{n+1}-a^{n}|^{2}+|a^{n+1}-2a^{n}+a^{n-1}|^{2}
|an|2|2anan1|2)\displaystyle-|a^{n}|^{2}-|2a^{n}-a^{n-1}|^{2}\big{)} (184)

on the first term in (183), we obtain

uhn+1Lx22+2uhn+1uhnLx22+uhn+12uhn+uhn1Lx22+4kνuhn+1Lx22\displaystyle\,\|u^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n+1}_{h}-u^{n}_{h}\|^{2}_{L^{2}_{x}}+\|u^{n+1}_{h}-2u^{n}_{h}+u^{n-1}_{h}\|^{2}_{L^{2}_{x}}+4k\nu\|\nabla u^{n+1}_{h}\|^{2}_{L^{2}_{x}}
=\displaystyle= uhnLx22+2uhnuhn1Lx22+4k(fn+1,uhn+1).\displaystyle\,\|u^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n}_{h}-u^{n-1}_{h}\|^{2}_{L^{2}_{x}}+4k(f^{n+1},u^{n+1}_{h}). (185)

Dropping the third and fourth terms on the left and replacing the last term on the right by the upper bound in Young’s inequality |4k(fn+1,uhn+1)|4kfn+1Lx22+kun+1Lx22|4k(f^{n+1},u^{n+1}_{h})|\leq 4k\|f^{n+1}\|^{2}_{L^{2}_{x}}+k\|u^{n+1}\|^{2}_{L^{2}_{x}}, we obtain

(1k)uhn+1Lx22+2uhn+1uhnLx22uhnLx22+2uhnuhn1Lx22+4kfn+1Lx22.\displaystyle(1-k)\|u^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n+1}_{h}-u^{n}_{h}\|^{2}_{L^{2}_{x}}\leq\|u^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n}_{h}-u^{n-1}_{h}\|^{2}_{L^{2}_{x}}+4k\|f^{n+1}\|^{2}_{L^{2}_{x}}. (186)

Denoting An=uhnLx22+2uhnuhn1Lx22A^{n}=\|u^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n}_{h}-u^{n-1}_{h}\|^{2}_{L^{2}_{x}}, then (186) yields

An+111kAn+4k1kfn+1Lx22.A^{n+1}\leq\frac{1}{1-k}A^{n}+\frac{4k}{1-k}\|f^{n+1}\|^{2}_{L^{2}_{x}}. (187)

Repeating this inequality backward leads to

An+11(1k)nA1+4kj=2n+11(1k)n+2jfjLx22.\displaystyle A^{n+1}\leq\frac{1}{(1-k)^{n}}A^{1}+4k\sum_{j=2}^{n+1}\frac{1}{(1-k)^{n+2-j}}\|f^{j}\|^{2}_{L^{2}_{x}}. (188)

Using a basic inequality (1+x)jexp(jx)(1+x)^{j}\leq\exp(jx) for x>1x>-1 and jj\in\mathbb{N}, we get

1(1k)j=(1+k1k)jexp(jk1k)exp(nk1k),j=1,,n.\frac{1}{(1-k)^{j}}=\Big{(}1+\frac{k}{1-k}\Big{)}^{j}\leq\exp\Big{(}\frac{jk}{1-k}\Big{)}\leq\exp\Big{(}\frac{nk}{1-k}\Big{)},\quad j=1,\cdots,n. (189)

Therefore,

An+1exp(nk1k)(A1+4kj=2n+1fjLx22).\displaystyle A^{n+1}\leq\exp\Big{(}\frac{nk}{1-k}\Big{)}\cdot\Big{(}A^{1}+4k\sum_{j=2}^{n+1}\|f^{j}\|^{2}_{L^{2}_{x}}\Big{)}. (190)

At any time step 1<nTk1<n\leq\lfloor\frac{T}{k}\rfloor, one has nkTnk\leq T and thus the estimate (181) follows.

\Box

3.2 Error analysis for the convergent iterative projection method

In the error analysis, we adopt the symbols and approach from [23, 14]. The error analysis in [23, 14] does not have time discretizations and focuses on the fully implicit convection case. As in [14], we introduce the Stokes projection πs:VVhdiv\pi_{s}:V\to V^{div}_{h} where

Vhdiv={vhVh:(vh,qh)=0,qhQh}V^{div}_{h}=\{v_{h}\in V_{h}:(\nabla\cdot v_{h},q_{h})=0,\ \forall\,q_{h}\in Q_{h}\} (191)

as

(πs(u),vh)=(u,vh),vhVhdiv.(\nabla\pi_{s}(u),\nabla v_{h})=(\nabla u,\nabla v_{h}),\quad\forall\,v_{h}\in V^{div}_{h}. (192)

In addition, let the L2L^{2}-projection πQ:QQh\pi_{Q}:Q\to Q_{h} be

(πQ(p),q)=(p,q),qQh.(\pi_{Q}(p),q)=(p,q),\quad\forall\,q\in Q_{h}. (193)

To simplify notations, we denote Hxm=Hm(Ω)H^{m}_{x}=H^{m}(\Omega), mm\in\mathbb{N}, Lx=L(Ω)L^{\infty}_{x}=L^{\infty}(\Omega), Lt2=L2(0,T)L^{2}_{t}=L^{2}(0,T), Lt=L(0,T)L^{\infty}_{t}=L^{\infty}(0,T), LtHxm=L(0,T;Hm(Ω))L^{\infty}_{t}H^{m}_{x}=L^{\infty}(0,T;H^{m}(\Omega)), Lx2Lt=L2(Ω;L(0,T))L^{2}_{x}L^{\infty}_{t}=L^{2}(\Omega;L^{\infty}(0,T)), and so on.

Suppose the degrees of local finite element polynomials in VhV_{h} and QhQ_{h} are rr and r1r-1, respectively, where r2r\geq 2. There exist the following estimates according to [14],

uπs(u)Hxm\displaystyle\|u-\pi_{s}(u)\|_{H^{m}_{x}} Chr+1muHxr+1,m=0,1,\displaystyle\leq Ch^{r+1-m}\|u\|_{H^{r+1}_{x}},\quad m=0,1, (194)
πs(u)Lx\displaystyle\|\pi_{s}(u)\|_{L^{\infty}_{x}} CuHx2,\displaystyle\leq C\|u\|_{H^{2}_{x}}, (195)
πs(u)Lx\displaystyle\|\nabla\pi_{s}(u)\|_{L^{\infty}_{x}} CuLx,\displaystyle\leq C\|\nabla u\|_{L^{\infty}_{x}}, (196)
πs(u)Lxp\displaystyle\|\nabla\pi_{s}(u)\|_{L^{p}_{x}} CuLxp,p[2,),\displaystyle\leq C\|\nabla u\|_{L^{p}_{x}},\quad\quad\ \ \forall\,p\in[2,\infty), (197)
pπQ(p)Hxm\displaystyle\|p-\pi_{Q}(p)\|_{H^{m}_{x}} ChrmpHxr,m=0,1.\displaystyle\leq Ch^{r-m}\|p\|_{H^{r}_{x}},\quad m=0,1. (198)

Furthermore, the followings hold

uLx(uHx1uHx2)1/2uHx2,\|u\|_{L^{\infty}_{x}}\leq(\|u\|_{H^{1}_{x}}\|u\|_{H^{2}_{x}})^{1/2}\leq\|u\|_{H^{2}_{x}}, (199)

where the first one is Agmon’s inequality.

Denote shn=πs(un)s^{n}_{h}=\pi_{s}(u^{n}) and the error as

en=unuhn=(unshn)(uhnshn)ηnϕhn.e^{n}=u^{n}-u^{n}_{h}=(u^{n}-s^{n}_{h})-(u^{n}_{h}-s^{n}_{h})\triangleq\eta^{n}-\phi^{n}_{h}. (200)

The following lemma is used in the proof of Theorem 5.

Lemma 8.

When utLxHxr+1u_{t}\in L^{\infty}_{x}H^{r+1}_{x}, then ηn+1ηnLx2Ckhr+1utLtHxr+1\|\eta^{n+1}-\eta^{n}\|_{L^{2}_{x}}\leq Ckh^{r+1}\|u_{t}\|_{L^{\infty}_{t}H^{r+1}_{x}}.

Proof.
Denote u(t)=u(t,x)u(t)=u(t,x) as a map from [0,T][0,T] to VV. Note

ηn+1ηn=\displaystyle\eta^{n+1}-\eta^{n}= (un+1πs(un+1))(unπs(un))=(Iπs)(u(tn+1)u(tn))\displaystyle(u^{n+1}-\pi_{s}(u^{n+1}))-(u^{n}-\pi_{s}(u^{n}))=(I-\pi_{s})(u(t^{n+1})-u(t^{n}))
=\displaystyle= tntn+1t(Iπs)u(t)dt=tntn+1(Iπs)ut(t)𝑑t.\displaystyle\int_{t^{n}}^{t^{n+1}}\partial_{t}(I-\pi_{s})u(t)dt=\int_{t^{n}}^{t^{n+1}}(I-\pi_{s})u_{t}(t)dt.

Thus,

ηn+1ηnLx22=\displaystyle\|\eta^{n+1}-\eta^{n}\|^{2}_{L^{2}_{x}}= Ω|tntn+1(Iπs)ut(t)𝑑t|2𝑑xΩktntn+1|(Iπs)ut(t)|2𝑑t𝑑x\displaystyle\int_{\Omega}\bigg{|}\int_{t^{n}}^{t^{n+1}}(I-\pi_{s})u_{t}(t)dt\bigg{|}^{2}dx\leq\int_{\Omega}k\int_{t^{n}}^{t^{n+1}}|(I-\pi_{s})u_{t}(t)|^{2}dtdx (201)
=\displaystyle= ktntn+1Ω|(Iπs)ut(t)|2𝑑x𝑑tktntn+1(Iπs)ut(t)Lx22𝑑t\displaystyle\,k\int_{t^{n}}^{t^{n+1}}\int_{\Omega}|(I-\pi_{s})u_{t}(t)|^{2}dxdt\leq\,k\int_{t^{n}}^{t^{n+1}}\|(I-\pi_{s})u_{t}(t)\|^{2}_{L^{2}_{x}}dt (202)
\displaystyle\leq k2Ch2r+2ut(t)LtHxr+12\displaystyle\,k^{2}Ch^{2r+2}\|u_{t}(t)\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}} (203)

where the Cauchy-Schwatz inequality is used in the last step of (201), Fubini’s theorem in the first step of (202) to switch the integration order, and the estimate (194) is applied in the last step.

\Box

The following definition is taken from [14].

Definition 2.

A scheme is robust if there is no negative power of viscosity in the L2L^{2} error bound of velocity, and not robust otherwise.

Theorem 5 (Error estimate of convergent iterative projection method with semi-implicit convection).

Assume the semi-implicit convection form, NL(2uhnuhn1,uhn+1)\text{NL}(2u^{n}_{h}-u^{n-1}_{h},u^{n+1}_{h}), is used in (179). Suppose u,utLt(Hxr+1)u,u_{t}\in L^{\infty}_{t}(H^{r+1}_{x}) with r2r\geq 2, utt,utttLx2(Lt)u_{tt},u_{ttt}\in L^{2}_{x}(L^{\infty}_{t}) and pLtHxrp\in L_{t}^{\infty}H^{r}_{x}. Let the time step size k<1k<1 and the spatial mesh size h<1h<1. Then for any 2nTk2\leq n\leq\lfloor\frac{T}{k}\rfloor, there exists a constant CC independent of the solution (u,p)(u,p) and the discretization parameters kk and hh, such that the velocity solution of the scheme (179) and (180) satisfies,

  • (i)

    in SI-SKEW with non-div-free FEMs,

    unuhnLx22+kν2(unuhn)Lx22Ch2r(h2+νk)uLtHxr+12\displaystyle\|u^{n}-u^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla(u^{n}-u^{n}_{h})\|^{2}_{L^{2}_{x}}\leq Ch^{2r}(h^{2}+\nu k)\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}
    +exp((1+CM1)T1k)(ϕh1Lx22+2ϕh1ϕh0Lx22+kν2ϕ1Lx22+CM221+CM1).\displaystyle\,+\exp{\Big{(}\frac{(1+CM_{1})T}{1-k}\Big{)}}\cdot\Big{(}\|\phi^{1}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{1}_{h}-\phi^{0}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla\phi^{1}\|^{2}_{L^{2}_{x}}+\frac{CM^{2}_{2}}{1+CM_{1}}\Big{)}. (204)

    In this case, the scheme is not robust and has spatial accuracy order rr.

  • (ii)

    in SI-SKEW with div-free FEMs, the error estimate (204) with M1M_{1} replaced with M1div0M^{div0}_{1} and M2M_{2} replaced with M2div0M^{div0}_{2}. In this case, the scheme is robust with spatial accuracy order rr.

The constants M1M_{1}, M1div0M^{div0}_{1}, M2M_{2}, M2div0M^{div0}_{2} are defined as

M1=\displaystyle M_{1}= M1div0+1νuLtHxr+12,M1div0=uLtHxr+12,M2=M2div0+hrνpLtHxr,\displaystyle\,M^{div0}_{1}+\frac{1}{\nu}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}},\quad M^{div0}_{1}=\,\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}},\quad M_{2}=\,M^{div0}_{2}+\frac{h^{r}}{\sqrt{\nu}}\|p\|_{L^{\infty}_{t}H^{r}_{x}}, (205)
M2div0=\displaystyle M^{div0}_{2}= hr+1utLtHxr+1+hruLtHxr+12+k2(utttLx2Lt+uLtHx3uttLx2Lt).\displaystyle\,h^{r+1}\|u_{t}\|_{L^{\infty}_{t}H^{r+1}_{x}}+h^{r}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}+k^{2}\big{(}\|u_{ttt}\|_{L^{2}_{x}L^{\infty}_{t}}+\|u\|_{L^{\infty}_{t}H^{3}_{x}}\|u_{tt}\|_{L^{2}_{x}L^{\infty}_{t}}\big{)}. (206)
Remark 2.

In Case (i) of Theorem 5, , if all the norms of uu and pp are bounded and ϕh0=ϕh1=0\phi^{0}_{h}=\phi^{1}_{h}=0, then when ν0+\nu\to 0+,

uuuhnLx2=\displaystyle\|u^{u}-u^{n}_{h}\|_{L_{x}^{2}}= O(hr+1+hrkν)+exp(O(1ν))O(hr+1ν+hr+k2ν)),\displaystyle\,O(h^{r+1}+h^{r}\sqrt{k\nu})+\exp\Big{(}O\Big{(}\frac{1}{\nu}\Big{)}\Big{)}\cdot O\big{(}h^{r+1}\sqrt{\nu}+h^{r}+k^{2}\sqrt{\nu})\big{)}, (207)
(uuuhn)Lx2=\displaystyle\|\nabla(u^{u}-u^{n}_{h})\|_{L_{x}^{2}}= O(hr+1kν+hr)+exp(O(1ν))O(hrkν+hrk+k1.5).\displaystyle\,O\left(\frac{h^{r+1}}{\sqrt{k\nu}}+h^{r}\right)+\exp\Big{(}O\Big{(}\frac{1}{\nu}\Big{)}\Big{)}\cdot O\bigg{(}\frac{h^{r}}{\sqrt{k\nu}}+\frac{h^{r}}{\sqrt{k}}+k^{1.5}\bigg{)}. (208)

The spatial accuracy order of both the L2L^{2} and H1H^{1} errors of velocity is rr. On the other hand, when h=0h=0, the accuracy order in time step size for the velocity in H1H^{1} norm is 1.5, the same as that for the rotational projection method [19] where the error is achieved without spatial discretizations. The negative viscosity power in M1M_{1} comes from (NL(2ϕhnϕhn1,shn+1),ϕhn+1)(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},s_{h}^{n+1}),\phi_{h}^{n+1}), which produces the viscosity in (245) from Young’s inequality in order to suppress ϕhn+1\nabla\phi^{n+1}_{h}. The negative viscosity power in M2M_{2} is created from the pressure term (ϕhn+1,pn+1πQ(pn+1))(\nabla\cdot\phi_{h}^{n+1},p^{n+1}-\pi_{Q}(p^{n+1})) by suppressing ϕhn+1\nabla\cdot\phi^{n+1}_{h} also using Young’s inequality.

Remark 3.

In Case (ii) of Theorem 5, if all the norms of uu and pp are bounded and ϕh0=ϕh1=0\phi^{0}_{h}=\phi^{1}_{h}=0, then when ν0+\nu\to 0+,

uuuhnLx2=O(hr+k2),(uuuhn)Lx2=1kνO(hr+k2).\displaystyle\|u^{u}-u^{n}_{h}\|_{L_{x}^{2}}=O(h^{r}+k^{2}),\quad\|\nabla(u^{u}-u^{n}_{h})\|_{L_{x}^{2}}=\frac{1}{\sqrt{k\nu}}O(h^{r}+k^{2}). (209)

Since the L2L^{2} error of velocity does not contain the negative power of ν\nu, this method is robust.

Proof.
In the proof, we use CC to denote a generic constant which is independent of u,p,k,hu,p,k,h, but may depend on the domain and the terminal time TT. The value of the constant may vary line by line according to the context.

Step 1. Derivation of the error equation (220). We rewrite (179) and (180) as

(1.5uhn+12uhn+0.5uhn1k,vh)\displaystyle\Big{(}\frac{1.5u_{h}^{n+1}-2u^{n}_{h}+0.5u^{n-1}_{h}}{k},v_{h}\Big{)} +ν(uhn+1,vh)+(NL(w~hn+1,uhn+1),vh)(vh,phn+1)\displaystyle+\nu(\nabla u_{h}^{n+1},\nabla v_{h})+(\text{NL}(\tilde{w}^{n+1}_{h},u^{n+1}_{h}),v_{h})-(\nabla\cdot v_{h},p^{n+1}_{h})
=(fn+1,vh),vhVh,\displaystyle=(f^{n+1},v_{h}),\qquad\forall\,v_{h}\in V_{h}, (210)
(uhn+1,qh)\displaystyle(\nabla\cdot u^{n+1}_{h},q_{h}) =0,qhQh,\displaystyle=0,\qquad\forall\,q_{h}\in Q_{h}, (211)

where w~hn+1=2uhnuhn1\tilde{w}^{n+1}_{h}=2u^{n}_{h}-u^{n-1}_{h} for SI convections and uhn+1u^{n+1}_{h} for FI convections.

Consider the Navier-Stokes equations in the following weak form

(1.5un+12un+0.5un1k,v)\displaystyle\Big{(}\frac{1.5u^{n+1}-2u^{n}+0.5u^{n-1}}{k},v\Big{)} +ν(un+1,v)+(NL(un+1,un+1),v)(v,pn+1)\displaystyle+\nu(\nabla u^{n+1},\nabla v)+(\text{NL}(u^{n+1},u^{n+1}),v)-(\nabla\cdot v,p^{n+1})
=(fn+1,v)+(Rn+1(k),v),vV,\displaystyle=(f^{n+1},v)+(R^{n+1}(k),v),\qquad\forall\,v\in V, (212)
(un+1,q)\displaystyle(\nabla\cdot u^{n+1},q) =0,qQ,\displaystyle=0,\qquad\forall\,q\in Q, (213)

where

(Rn+1(k),v)=(1.5un+12un+0.5un1kutn+1,v)(R^{n+1}(k),v)=\Big{(}\frac{1.5u^{n+1}-2u^{n}+0.5u^{n-1}}{k}-u^{n+1}_{t},v\Big{)} (214)

is the truncation term from the time discretization.

Subtracting (210) from (212) with v=vhv=v_{h} in (212), we obtain

(1.5en+12en+0.5en1k,vh)+ν(en+1,vh)(vh,pn+1phn+1)\displaystyle\,\Big{(}\frac{1.5e^{n+1}-2e^{n}+0.5e^{n-1}}{k},v_{h}\Big{)}+\nu(\nabla e^{n+1},\nabla v_{h})-(\nabla\cdot v_{h},p^{n+1}-p^{n+1}_{h})
=\displaystyle= B(vh)+(Rn+1(k),vh),vhVh,\displaystyle\,B(v_{h})+(R^{n+1}(k),v_{h}),\qquad\forall\,v_{h}\in V_{h}, (215)

where

B(vh)=(NL(w~hn+1,uhn+1),vh)(NL(un+1,un+1),vh).\displaystyle B(v_{h})=(\text{NL}(\tilde{w}^{n+1}_{h},u^{n+1}_{h}),v_{h})-(\text{NL}(u^{n+1},u^{n+1}),v_{h}). (216)

Using the notations in (200), the above equation becomes

(1.5ϕhn+12ϕhn+0.5ϕhn1k,vh)+ν(ϕhn+1,vh)+(vh,pn+1phn+1)+B(vh)\displaystyle\,\Big{(}\frac{1.5\phi^{n+1}_{h}-2\phi_{h}^{n}+0.5\phi_{h}^{n-1}}{k},v_{h}\Big{)}+\nu(\nabla\phi_{h}^{n+1},\nabla v_{h})+(\nabla\cdot v_{h},p^{n+1}-p^{n+1}_{h})+B(v_{h})
=\displaystyle= (1.5ηn+12ηn+0.5ηn1k,vh)+ν(ηn+1,vh)(Rn+1(k),vh),vhVh.\displaystyle\,\Big{(}\frac{1.5\eta^{n+1}-2\eta^{n}+0.5\eta^{n-1}}{k},v_{h}\Big{)}+\nu(\nabla\eta^{n+1},\nabla v_{h})-(R^{n+1}(k),v_{h}),\qquad\forall\,v_{h}\in V_{h}. (217)

Letting vh=ϕhn+1v_{h}=\phi^{n+1}_{h} in (217), we get

1k(1.5ϕhn+12ϕhn+0.5ϕhn1,ϕhn+1)+νϕhn+1Lx22+B(ϕhn+1)\displaystyle\,\frac{1}{k}(1.5\phi^{n+1}_{h}-2\phi^{n}_{h}+0.5\phi^{n-1}_{h},\phi^{n+1}_{h})+\nu\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+B(\phi^{n+1}_{h})
+(ϕhn+1,pn+1πQ(pn+1))+(ϕhn+1,πQ(pn+1)phn+1)\displaystyle\quad+(\nabla\cdot\phi^{n+1}_{h},p^{n+1}-\pi_{Q}(p^{n+1}))+(\nabla\cdot\phi^{n+1}_{h},\pi_{Q}(p^{n+1})-p^{n+1}_{h})
=\displaystyle= 1k(1.5ηn+12ηn+0.5ηn1,ϕhn+1)+ν(ηn+1,ϕhn+1)(Rn+1(k),ϕhn+1).\displaystyle\,\frac{1}{k}(1.5\eta^{n+1}-2\eta^{n}+0.5\eta^{n-1},\phi^{n+1}_{h})+\nu(\nabla\eta^{n+1},\nabla\phi^{n+1}_{h})-(R^{n+1}(k),\phi^{n+1}_{h}). (218)

Note that (ϕhn+1,πQ(pn+1)phn+1)=0(\nabla\cdot\phi^{n+1}_{h},\pi_{Q}(p^{n+1})-p^{n+1}_{h})=0 because ϕhn+1Vhdiv\phi^{n+1}_{h}\in V^{div}_{h} and πQ(pn+1)phn+1Qh\pi_{Q}(p^{n+1})-p^{n+1}_{h}\in Q_{h}. In addition, (ηn+1,ϕhn+1)=0(\nabla\eta^{n+1},\nabla\phi^{n+1}_{h})=0 because ηn+1=un+1shn+1\eta^{n+1}=u^{n+1}-s^{n+1}_{h} and (un+1,ϕhn+1)=(shn+1,ϕhn+1)(\nabla u^{n+1},\nabla\phi_{h}^{n+1})=(\nabla s^{n+1}_{h},\nabla\phi_{h}^{n+1}) by Stokes projection with ϕhn+1Vhdiv\phi_{h}^{n+1}\in V^{div}_{h}. Thus, (218) becomes

1k(1.5ϕhn+12ϕhn+0.5ϕhn1,ϕhn+1)+νϕhn+1Lx22\displaystyle\,\frac{1}{k}(1.5\phi^{n+1}_{h}-2\phi^{n}_{h}+0.5\phi^{n-1}_{h},\phi^{n+1}_{h})+\nu\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}
=\displaystyle= 1k(1.5ηn+12ηn+0.5ηn1,ϕhn+1)(ϕhn+1,pn+1πQ(pn+1))\displaystyle\,\frac{1}{k}(1.5\eta^{n+1}-2\eta^{n}+0.5\eta^{n-1},\phi^{n+1}_{h})-(\nabla\cdot\phi^{n+1}_{h},p^{n+1}-\pi_{Q}(p^{n+1}))
B(ϕhn+1)(Rn+1(k),ϕhn+1).\displaystyle\,-B(\phi^{n+1}_{h})-(R^{n+1}(k),\phi^{n+1}_{h}). (219)

Applying the identity (184) on the first term on the left of (219) leads to

1k(ϕhn+1Lx22+2ϕhn+1ϕhnLx22+ϕhn+12ϕhn+ϕhn1Lx22)+νϕhn+1Lx22\displaystyle\,\frac{1}{k}\big{(}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n+1}_{h}-\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\|\phi^{n+1}_{h}-2\phi^{n}_{h}+\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}\big{)}+\nu\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}
=\displaystyle= 1k(ϕhnLx22+2ϕhnϕhn1Lx22)+1k(1.5ηn+12ηn+0.5ηn1,ϕhn+1)\displaystyle\,\frac{1}{k}\big{(}\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}\big{)}+\frac{1}{k}(1.5\eta^{n+1}-2\eta^{n}+0.5\eta^{n-1},\phi^{n+1}_{h})
(ϕhn+1,pn+1πQ(pn+1))(Rn+1(k),ϕhn+1)B(ϕhn+1).\displaystyle\,-(\nabla\cdot\phi^{n+1}_{h},p^{n+1}-\pi_{Q}(p^{n+1}))-(R^{n+1}(k),\phi^{n+1}_{h})-B(\phi^{n+1}_{h}). (220)

Step 2. Estimation of common terms for SI and FI convections in (220). This refers to the second, third, and fourth terms on the right of (220).

  1. (1)

    As for the second term on the right of (220), we have

    1k|(1.5ηn+12ηn+0.5ηn1,ϕhn+1)|=1k|(1.5(ηn+1ηn)0.5(ηnηn1),ϕn+1)|\displaystyle\,\frac{1}{k}\big{|}(1.5\eta^{n+1}-2\eta^{n}+0.5\eta^{n-1},\phi^{n+1}_{h})\big{|}=\frac{1}{k}|(1.5(\eta^{n+1}-\eta^{n})-0.5(\eta^{n}-\eta^{n-1}),\phi^{n+1})\big{|}
    \displaystyle\leq 1k(1.5ηn+1ηnLx2+0.5ηnηn1Lx2)ϕhn+1Lx2\displaystyle\,\frac{1}{k}(1.5\|\eta^{n+1}-\eta^{n}\|_{L^{2}_{x}}+0.5\|\eta^{n}-\eta^{n-1}\|_{L^{2}_{x}})\|\phi^{n+1}_{h}\|_{L^{2}_{x}} (221)
    \displaystyle\leq Chr+1utLtHxr+1ϕhn+1Lx2110ϕhn+1Lx22+Ch2r+2utLtHxr+12,\displaystyle\,Ch^{r+1}\|u_{t}\|_{L^{\infty}_{t}H^{r+1}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}\leq\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r+2}\|u_{t}\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}, (222)

    where Lemma 8 is used in (221) and Young’s inequality is used to earn (222).

  2. (2)

    As for the third term on the right of (220), we can get

    |(ϕhn+1,pn+1πQ(pn+1))|\displaystyle\big{|}(\nabla\cdot\phi^{n+1}_{h},p^{n+1}-\pi_{Q}(p^{n+1}))\big{|} ϕhn+1Lx2pn+1πQ(pn+1)Lx2\displaystyle\leq\|\nabla\cdot\phi^{n+1}_{h}\|_{L^{2}_{x}}\|p^{n+1}-\pi_{Q}(p^{n+1})\|_{L^{2}_{x}} (223)
    ϕhn+1Lx2ChrpLtHxr\displaystyle\leq\|\nabla\phi^{n+1}_{h}\|_{L^{2}_{x}}Ch^{r}\|p\|_{L^{\infty}_{t}H^{r}_{x}} (224)
    ν4ϕhn+1Lx22+Ch2rpLtHxr2ν,\displaystyle\leq\frac{\nu}{4}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\frac{Ch^{2r}\|p\|^{2}_{L^{\infty}_{t}H^{r}_{x}}}{\nu}, (225)

    where the inequality (77) and the estimate (198) with m=0m=0 are applied to get (224) and Young’s inequality is used in the last step. One way to avoid negative powers of ν\nu is throwing derivatives to the pressure, thus we can get

    |(ϕhn+1,pn+1πQ(pn+1))|=|(ϕhn+1,(pn+1πQ(pn+1)))|\displaystyle\big{|}(\nabla\cdot\phi^{n+1}_{h},p^{n+1}-\pi_{Q}(p^{n+1}))\big{|}=\big{|}(\phi^{n+1}_{h},\nabla(p^{n+1}-\pi_{Q}(p^{n+1})))\big{|}
    \displaystyle\leq ϕhn+1Lx2(pn+1πQ(pn+1))Lx2ϕhn+1Lx2Chr1pLtHxr\displaystyle\|\phi^{n+1}_{h}\|_{L^{2}_{x}}\|\nabla(p^{n+1}-\pi_{Q}(p^{n+1}))\|_{L^{2}_{x}}\leq\|\phi^{n+1}_{h}\|_{L^{2}_{x}}Ch^{r-1}\|p\|_{L^{\infty}_{t}H^{r}_{x}} (226)
    \displaystyle\leq 110ϕhn+1Lx22+Ch2r2pLtHxr2,\displaystyle\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r-2}\|p\|^{2}_{L^{\infty}_{t}H^{r}_{x}}, (227)

    where the estimate (198) is used in (226).

    Note if a divergence-free FE pair is used, then ϕhn+1=0\nabla\cdot\phi^{n+1}_{h}=0 in L2L^{2} sense and (ϕhn+1,pn+1πQ(pn+1))=0(\nabla\cdot\phi^{n+1}_{h},p^{n+1}-\pi_{Q}(p^{n+1}))=0.

  3. (3)

    As for the fourth term on the right of (220), because 1.5un+12un+0.5un1k\frac{1.5u^{n+1}-2u^{n}+0.5u^{n-1}}{k}is an approximation of utn+1u^{n+1}_{t} with second order truncation error, there exists a positive constant C1C_{1} such that for almost every xΩx\in\Omega,

    (1.5un+12un+0.5un1kutn+1)(x)\displaystyle\Big{(}\frac{1.5u^{n+1}-2u^{n}+0.5u^{n-1}}{k}-u^{n+1}_{t}\Big{)}(x) =C1k2uttt(ξ1(x),x),\displaystyle=C_{1}k^{2}u_{ttt}(\xi_{1}(x),x), (228)

    where ξ1(x)(tn1,tn+1)\xi_{1}(x)\in(t^{n-1},t^{n+1}). Thus,

    |(Rn+1(k),ϕhn+1)||(C1k2uttt(ξ1(x),x),ϕhn+1(x))|\displaystyle\,\big{|}(R^{n+1}(k),\phi^{n+1}_{h})\big{|}\leq\,\big{|}(C_{1}k^{2}u_{ttt}(\xi_{1}(x),x),\phi^{n+1}_{h}(x))\big{|}
    \displaystyle\leq Ck2uttt(ξ1(x),x)Lx2ϕhn+1Lx2Ck2utttLx2Ltϕhn+1Lx2.\displaystyle\,Ck^{2}\|u_{ttt}(\xi_{1}(x),x)\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}\leq\,Ck^{2}\|u_{ttt}\|_{L^{2}_{x}L^{\infty}_{t}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}. (229)

    To reach (229), we have used un+1LxuLtHx3\|\nabla u^{n+1}\|_{L^{\infty}_{x}}\leq\|u\|_{L^{\infty}_{t}H^{3}_{x}} due to (199), and the following process

    uttt(ξ1(x),x)Lx2\displaystyle\|u_{ttt}(\xi_{1}(x),x)\|_{L^{2}_{x}} =(Ω|uttt(ξ1(x),x)|2dx)1/2\displaystyle=\Big{(}\int_{\Omega}|u_{ttt}(\xi_{1}(x),x)|^{2}\mathrm{d}x\Big{)}^{1/2}
    (Ωesssupt[0,T]|uttt(t,x)|2dx)1/2=utttLx2Lt.\displaystyle\leq\Big{(}\int_{\Omega}\operatorname*{ess\,sup}_{t\in[0,T]}|u_{ttt}(t,x)|^{2}\mathrm{d}x\Big{)}^{1/2}=\|u_{ttt}\|_{L^{2}_{x}L^{\infty}_{t}}. (230)

    Using Young’s inequality on (229) yields

    |(Rn+1(k),ϕhn+1)|110ϕhn+1Lx22+Ck4utttLx2Lt2.\displaystyle\big{|}(R^{n+1}(k),\phi^{n+1}_{h})\big{|}\leq\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ck^{4}\|u_{ttt}\|^{2}_{L^{2}_{x}L^{\infty}_{t}}. (231)

Step 3. Estimation of SI convection term B(ϕhn+1)B(\phi^{n+1}_{h}) in (220). In the SI convection case, B(ϕhn+1)=(NL(2uhnuhn1,uhn+1),ϕhn+1)(NL(un+1,un+1),ϕhn+1)B(\phi^{n+1}_{h})=(\text{NL}(2u^{n}_{h}-u^{n-1}_{h},u^{n+1}_{h}),\phi^{n+1}_{h})-(\text{NL}(u^{n+1},u^{n+1}),\phi^{n+1}_{h}). We replace uhju^{j}_{h} by ujηj+ϕhju^{j}-\eta^{j}+\phi^{j}_{h} for j=n+1,n,n1j=n+1,n,n-1 and obtain

B(ϕhn+1)=\displaystyle B(\phi^{n+1}_{h})= (NL((2unun1)(2ηnηn1)+(2ϕhnϕhn1),un+1ηn+1+ϕhn+1),ϕhn+1)\displaystyle\,(\text{NL}((2u^{n}-u^{n-1})-(2\eta^{n}-\eta^{n-1})+(2\phi^{n}_{h}-\phi^{n-1}_{h}),u^{n+1}-\eta^{n+1}+\phi^{n+1}_{h}),\phi^{n+1}_{h})
(NL(2uuun1,un+1),ϕhn+1)+(NL(2uuun1un+1,un+1),ϕhn+1)\displaystyle\,-(\text{NL}(2u^{u}-u^{n-1},u^{n+1}),\phi^{n+1}_{h})+(\text{NL}(2u^{u}-u^{n-1}-u^{n+1},u^{n+1}),\phi^{n+1}_{h}) (232)
=\displaystyle= (NL(2unun1,ηn+1),ϕhn+1)(NL(2ηnηn1,shn+1),ϕhn+1)\displaystyle\,-(\text{NL}(2u^{n}-u^{n-1},\eta^{n+1}),\phi^{n+1}_{h})-(\text{NL}(2\eta^{n}-\eta^{n-1},s^{n+1}_{h}),\phi^{n+1}_{h})
+(NL(2shnshn1,ϕhn+1),ϕhn+1)+(NL(2ϕhnϕhn1,shn+1),ϕhn+1)\displaystyle\,+(\text{NL}(2s^{n}_{h}-s^{n-1}_{h},\phi^{n+1}_{h}),\phi^{n+1}_{h})+(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},s^{n+1}_{h}),\phi^{n+1}_{h})
+(NL(2ϕhnϕhn1,ϕhn+1,ϕhn+1)+(NL(2unun1un+1,un+1),ϕhn+1).\displaystyle\,+(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},\phi^{n+1}_{h},\phi^{n+1}_{h})+(\text{NL}(2u^{n}-u^{n-1}-u^{n+1},u^{n+1}),\phi^{n+1}_{h}). (233)

Based on (233), the estimate of B(ϕhn+1)B(\phi^{n+1}_{h}) is split into the following 6 parts.

  1. (3A)

    Estimate of (NL(2unun1,ηn+1),ϕhn+1)(\text{NL}(2u^{n}-u^{n-1},\eta^{n+1}),\phi^{n+1}_{h}). Because unu^{n} and un1u^{n-1} are exact solutions, (2unun1)=0\nabla\cdot(2u^{n}-u^{n-1})=0 almost everywhere in Ω\Omega. Thus NL(2unun1,ηn+1)=((2unun1))ηn+1\text{NL}(2u^{n}-u^{n-1},\eta^{n+1})=((2u^{n}-u^{n-1})\cdot\nabla)\eta^{n+1}. Therefore,

    |(NL(2unun1,ηn+1),ϕhn+1)|\displaystyle|(\text{NL}(2u^{n}-u^{n-1},\eta^{n+1}),\phi^{n+1}_{h})|
    \displaystyle\leq 2unun1Lxηn+1Lx2ϕhn+1Lx2\displaystyle\|2u^{n}-u^{n-1}\|_{L^{\infty}_{x}}\|\nabla\eta^{n+1}\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}} (234)
    \displaystyle\leq 3uLtHx2ChruLtHxr+1ϕhn+1Lx2\displaystyle 3\|u\|_{L^{\infty}_{t}H^{2}_{x}}Ch^{r}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}} (235)
    \displaystyle\leq 110ϕhn+1Lx22+Ch2ruLtHxr+14,\displaystyle\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r}\|u\|^{4}_{L_{t}^{\infty}H^{r+1}_{x}}, (236)

    where (199) is used to obtain 2unun1Lx3uLtHx2\|2u^{n}-u^{n-1}\|_{L^{\infty}_{x}}\leq 3\|u\|_{L^{\infty}_{t}H^{2}_{x}}, the estimate (194) to get ηn+1Lx2ChruLtHxr+1\|\nabla\eta^{n+1}\|_{L^{2}_{x}}\leq Ch^{r}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}, and r2r\geq 2 and Young’s inequality are used in the last step.

  2. (3B)

    Estimate of (NL(2ηnηn1,shn+1),ϕhn+1)(\text{NL}(2\eta^{n}-\eta^{n-1},s^{n+1}_{h}),\phi^{n+1}_{h}). In the SI-SKEW convection form,

    |(NL(2ηnηn1,shn+1),ϕhn+1)|\displaystyle\,\big{|}(\text{NL}(2\eta^{n}-\eta^{n-1},s_{h}^{n+1}),\phi^{n+1}_{h})\big{|}
    =\displaystyle= |(((2ηnηn1))shn+1,ϕhn+1)+12(((2ηnηn1))shn+1,ϕhn+1)|\displaystyle\,\big{|}(((2\eta^{n}-\eta^{n-1})\cdot\nabla)s_{h}^{n+1},\phi^{n+1}_{h})+\frac{1}{2}((\nabla\cdot(2\eta^{n}-\eta^{n-1}))s_{h}^{n+1},\phi^{n+1}_{h})\big{|} (237)
    \displaystyle\leq shn+1Lx2ηnηn1Lx2ϕhn+1Lx2\displaystyle\,\|\nabla s_{h}^{n+1}\|_{L^{\infty}_{x}}\|2\eta^{n}-\eta^{n-1}\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}
    +12shn+1Lx(2ηnηn1)Lx2ϕhn+1Lx2\displaystyle\qquad\qquad\qquad\qquad\qquad+\frac{1}{2}\|s^{n+1}_{h}\|_{L^{\infty}_{x}}\|\nabla\cdot(2\eta^{n}-\eta^{n-1})\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}} (238)
    \displaystyle\leq (Chr+1uLtHx3uLtHxr+1+ChruLtHx2uLtHxr+1)ϕhn+1Lx2\displaystyle\,\big{(}Ch^{r+1}\|u\|_{L^{\infty}_{t}H^{3}_{x}}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}+Ch^{r}\|u\|_{L^{\infty}_{t}H^{2}_{x}}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}\big{)}\|\phi^{n+1}_{h}\|_{L^{2}_{x}} (239)
    \displaystyle\leq ChruLtHxr+12ϕhn+1Lx2\displaystyle\,Ch^{r}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}} (240)
    \displaystyle\leq 110ϕhn+1Lx22+Ch2ruLtHxr+14.\displaystyle\,\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r}\|u\|^{4}_{L^{\infty}_{t}H^{r+1}_{x}}. (241)

    To achieve (239), we have used shn+1LxCuLtLxCuLtHx3\|\nabla s_{h}^{n+1}\|_{L^{\infty}_{x}}\leq C\|\nabla u\|_{L^{\infty}_{t}L^{\infty}_{x}}\leq C\|u\|_{L^{\infty}_{t}H^{3}_{x}} due to (196) and (199), 2ηnηn1Lx2Chr+1uLtHxr+1\|2\eta^{n}-\eta^{n-1}\|_{L^{2}_{x}}\leq Ch^{r+1}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}} and (2ηnηn1)Lx2ChruLtHxr+1\|\nabla\cdot(2\eta^{n}-\eta^{n-1})\|_{L^{2}_{x}}\leq Ch^{r}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}} due to (194), and shn+1LxCuLtHx2\|s^{n+1}_{h}\|_{L^{\infty}_{x}}\leq C\|u\|_{L^{\infty}_{t}H^{2}_{x}} due to (195). To get (240), we have used uLtHx2uLtHx3uLtHxr+1\|u\|_{L^{\infty}_{t}H^{2}_{x}}\leq\|u\|_{L^{\infty}_{t}H^{3}_{x}}\leq\|u\|_{L^{\infty}_{t}H^{r+1}_{x}} when r2r\geq 2 and h<1h<1. In the step (241), Young’s inequality is applied.

    In div-free FEMs, the second term in (237) vanishes and the final upper bound in(241) becomes 110ϕhn+1Lx22+Ch2r+2uLtHxr+14\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r+2}\|u\|^{4}_{L^{\infty}_{t}H^{r+1}_{x}}.

  3. (3C)

    (NL(2shnshn1,ϕhn+1),ϕhn+1)=0(\text{NL}(2s^{n}_{h}-s^{n-1}_{h},\phi^{n+1}_{h}),\phi^{n+1}_{h})=0.

  4. (3D)

    Estimate of (NL(2ϕhnϕhn1,shn+1),ϕhn+1)(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},s^{n+1}_{h}),\phi^{n+1}_{h}). We need to avoid the differentiation of (2ϕhnϕhn1)(2\phi^{n}_{h}-\phi_{h}^{n-1}) because there are no terms containing the derivatives of (2ϕhn+1ϕhn)(2\phi_{h}^{n+1}-\phi_{h}^{n}) on the left of the formula (219), thus unable to generate recursive relations. For this purpose, we rewrite (NL(2ϕhnϕhn1,shn+1),ϕhn+1)(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},s^{n+1}_{h}),\phi^{n+1}_{h}) in the following form by using integration by parts,

    |(NL(2ϕhnϕhn1,shn+1),ϕhn+1)|\displaystyle\,\big{|}(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},s^{n+1}_{h}),\phi^{n+1}_{h})\big{|}
    =\displaystyle= 12|(((2ϕhnϕhn1))shn+1,ϕhn+1)(((2ϕhnϕhn1))ϕhn+1,shn+1)|\displaystyle\,\frac{1}{2}\big{|}(((2\phi^{n}_{h}-\phi^{n-1}_{h})\cdot\nabla)s^{n+1}_{h},\phi^{n+1}_{h})-(((2\phi^{n}_{h}-\phi^{n-1}_{h})\cdot\nabla)\phi^{n+1}_{h},s^{n+1}_{h})\big{|} (242)
    \displaystyle\leq 12shn+1Lx2ϕhnϕhn1Lx2ϕhn+1Lx2\displaystyle\,\frac{1}{2}\|\nabla s^{n+1}_{h}\|_{L^{\infty}_{x}}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}
    +12shn+1Lx2ϕhnϕhn1Lx2ϕhn+1Lx2\displaystyle\qquad\qquad\qquad\qquad\qquad+\frac{1}{2}\|s^{n+1}_{h}\|_{L^{\infty}_{x}}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|_{L^{2}_{x}}\|\nabla\phi^{n+1}_{h}\|_{L^{2}_{x}} (243)
    \displaystyle\leq CuLtLx2ϕhnϕhn1Lx2ϕhn+1Lx2\displaystyle\,C\|\nabla u\|_{L^{\infty}_{t}L^{\infty}_{x}}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}
    +CuLtHx22ϕhnϕhn1Lx2ϕhn+1Lx2\displaystyle\qquad\qquad\qquad\qquad\qquad+C\|u\|_{L^{\infty}_{t}H^{2}_{x}}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|_{L^{2}_{x}}\|\nabla\phi^{n+1}_{h}\|_{L^{2}_{x}} (244)
    \displaystyle\leq 110ϕhn+1Lx22+CuLtHxr+122ϕhnϕhn1Lx22\displaystyle\,\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+C\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}
    +ν4ϕhn+1Lx22+CuLtHxr+12ν2ϕhnϕhn1Lx22.\displaystyle\qquad\qquad\qquad\qquad\qquad+\frac{\nu}{4}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\frac{C\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}}{\nu}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}. (245)

    From (243) to (244) then to (245), the estimates (196) and (199) are employed to obtain shn+1LxCuLtLxCuLtHx3CuLtHxr+1\|\nabla s^{n+1}_{h}\|_{L^{\infty}_{x}}\leq C\|\nabla u\|_{L^{\infty}_{t}L^{\infty}_{x}}\leq C\|u\|_{L^{\infty}_{t}H^{3}_{x}}\leq C\|u\|_{L^{\infty}_{t}H^{r+1}_{x}} when r2r\geq 2, and (195) is used to obtain shn+1LxuLtHx2uLtHxr+1\|s^{n+1}_{h}\|_{L^{\infty}_{x}}\leq\|u\|_{L^{\infty}_{t}H^{2}_{x}}\leq\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}. Young’s inequality is applied from (244) to (245).

    Note when a divergence-free finite element space pair is used, (NL(2ϕhnϕhn1,shn+1),ϕhn+1)=(((2ϕhnϕhn1))shn+1,ϕhn+1)(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},s^{n+1}_{h}),\phi^{n+1}_{h})=(((2\phi^{n}_{h}-\phi^{n-1}_{h})\cdot\nabla)s^{n+1}_{h},\phi^{n+1}_{h}), whose upper bound would contain only the first two terms in (245), thus without the viscosity terms.

  5. (3E)

    (NL(2ϕhnϕhn1,ϕhn+1),ϕhn+1)=0(\text{NL}(2\phi^{n}_{h}-\phi^{n-1}_{h},\phi^{n+1}_{h}),\phi^{n+1}_{h})=0.

  6. (3F)

    Estimate of (NL(2unun1un+1,un+1),ϕhn+1)(\text{NL}(2u^{n}-u^{n-1}-u^{n+1},u^{n+1}),\phi^{n+1}_{h}). Since unu^{n}, un1u^{n-1} and um+1u^{m+1} are exact solutions, (2unun1un+1)=0\nabla\cdot(2u^{n}-u^{n-1}-u^{n+1})=0 almost everywhere in Ω\Omega. Thus, (NL(2unun1un+1,un+1),ϕhn+1)=(((2unun1un+1))un+1,ϕhn+1)(\text{NL}(2u^{n}-u^{n-1}-u^{n+1},u^{n+1}),\phi^{n+1}_{h})=(((2u^{n}-u^{n-1}-u^{n+1})\cdot\nabla)u^{n+1},\phi^{n+1}_{h}). Because 2unun12u^{n}-u^{n-1} is a second order accurate approximation of un+1u^{n+1}, there exists a positive constants C2C_{2} such that for almost every xΩx\in\Omega,

    (2unun1un+1)(x)\displaystyle(2u^{n}-u^{n-1}-u^{n+1})(x) =C2k2utt(ξ2(x),x),\displaystyle=C_{2}k^{2}u_{tt}(\xi_{2}(x),x), (246)

    where ξ2(x)(tn1,tn+1)\xi_{2}(x)\in(t^{n-1},t^{n+1}). Thus,

    |(NL(2unun1un+1,un+1),ϕhn+1)||((C2k2utt(ξ2(x),x))un+1,ϕhn+1)|\displaystyle\,\big{|}(\text{NL}(2u^{n}-u^{n-1}-u^{n+1},u^{n+1}),\phi^{n+1}_{h})\big{|}\leq\big{|}((C_{2}k^{2}u_{tt}(\xi_{2}(x),x)\cdot\nabla)u^{n+1},\phi^{n+1}_{h})\big{|}
    \displaystyle\leq C2k2un+1Lxutt(ξ2(x),x)Lx2ϕhn+1Lx2Ck2uLtHx3uttLx2Ltϕhn+1Lx2\displaystyle\,C_{2}k^{2}\|\nabla u^{n+1}\|_{L^{\infty}_{x}}\|u_{tt}(\xi_{2}(x),x)\|_{L^{2}_{x}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}\leq Ck^{2}\|u\|_{L^{\infty}_{t}H^{3}_{x}}\|u_{tt}\|_{L^{2}_{x}L^{\infty}_{t}}\|\phi^{n+1}_{h}\|_{L^{2}_{x}}
    \displaystyle\leq 110ϕhn+1Lx22+Ck4uLtHx32uttLx2Lt2.\displaystyle\,\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ck^{4}\|u\|^{2}_{L^{\infty}_{t}H^{3}_{x}}\|u_{tt}\|^{2}_{L^{2}_{x}L^{\infty}_{t}}. (247)

    To reach (247), we have used un+1LxuLtHx3\|\nabla u^{n+1}\|_{L^{\infty}_{x}}\leq\|u\|_{L^{\infty}_{t}H^{3}_{x}} due to (199), utt(ξ2(x),x)Lx2uttLx2Lt\|u_{tt}(\xi_{2}(x),x)\|_{L^{2}_{x}}\leq\|u_{tt}\|_{L^{2}_{x}L^{\infty}_{t}} similar to (230), and Young’s inequality.

Step 4. Finalization of error analysis from (220) and upper bounds obtained in Step 2. Dropping ϕhn+12ϕhn+ϕhn1Lx22\|\phi^{n+1}_{h}-2\phi^{n}_{h}+\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}} on the left of (220) and replacing the last four terms by their upper bounds in (222), (225), (231), (236), (241), (245), (247), we obtain

1k(ϕhn+1Lx22+2ϕhn+1ϕhnLx22)+νϕhn+1Lx22\displaystyle\,\frac{1}{k}\big{(}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n+1}_{h}-\phi^{n}_{h}\|^{2}_{L^{2}_{x}}\big{)}+\nu\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}
\displaystyle\leq 1k(ϕhnLx22+2ϕhnϕhn1Lx22)+ϕhn+1Lx22+ν2ϕhn+1Lx22\displaystyle\,\frac{1}{k}\big{(}\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}\big{)}+\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\frac{\nu}{2}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}
+C(1+1ν)uLtHxr+122ϕhnϕhn1Lx22\displaystyle\,+C\Big{(}1+\frac{1}{\nu}\Big{)}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}
+C(h2r+2utLtHxr+12+h2rpLtHxr2ν+h2ruLtHxr+14\displaystyle\,+C\Big{(}h^{2r+2}\|u_{t}\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}+\frac{h^{2r}\|p\|^{2}_{L^{\infty}_{t}H^{r}_{x}}}{\nu}+h^{2r}\|u\|^{4}_{L^{\infty}_{t}H^{r+1}_{x}}
+k4utttLx2Lt2+k4uLtHx32uttLx2Lt2).\displaystyle\qquad\quad+k^{4}\|u_{ttt}\|^{2}_{L^{2}_{x}L^{\infty}_{t}}+k^{4}\|u\|^{2}_{L^{\infty}_{t}H^{3}_{x}}\|u_{tt}\|^{2}_{L^{2}_{x}L^{\infty}_{t}}\Big{)}. (248)

According to the inequality i=1mxi2(i=1mxi)2\sum_{i=1}^{m}x_{i}^{2}\leq\left(\sum_{i=1}^{m}x_{i}\right)^{2} for any positive integer mm and positive real numbers xi,i=1,,mx_{i},i=1,\cdots,m, the sum of the five terms in the last pair of brackets on the right of (248) is bounded above by M22M_{2}^{2}, where M2M_{2} is defined in (205). Then, by multiplying kk on both sides and rearranging terms, we can rewrite (248) as

((1k)ϕhn+1Lx22+2ϕhn+1ϕhnLx22)+kν2ϕhn+1Lx22\displaystyle\,\big{(}(1-k)\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n+1}_{h}-\phi^{n}_{h}\|^{2}_{L^{2}_{x}}\big{)}+\frac{k\nu}{2}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}
\displaystyle\leq (ϕhnLx22+(1+kCM1)2ϕhnϕhn1Lx22)+kCM22,\displaystyle\,\big{(}\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+(1+kCM_{1})\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}\big{)}+kCM_{2}^{2}, (249)

where M1M_{1} is defined in (205). In the case of divergence free FEMs, many terms in (248) are changed based on the above analysis, but the same estimate (249) holds with M1M_{1} and M2M_{2} replaced with M1div0M^{div0}_{1} defined in (205) and M2div0M^{div0}_{2} in (206), respectively.

We further denote

anϕhnLx22+2ϕhnϕhn1Lx22+kν2ϕhn+1Lx22.a^{n}\triangleq\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}. (250)

It is easy to check that when k<1k<1, the left side of (249) is bounded below by (1k)an+1(1-k)a^{n+1}, and the right side of (249) is bounded above by (1+kCM1)an+kCM22(1+kCM_{1})a^{n}+kCM_{2}^{2}. Then (249) can be thrown into a recursive relation an+1βan+αa^{n+1}\leq\beta a^{n}+\alpha, where

α=kCM221k,β=1+kCM11k.\displaystyle\alpha=\frac{kCM^{2}_{2}}{1-k},\qquad\beta=\frac{1+kCM_{1}}{1-k}. (251)

This relation ultimately generates anen(β1)(a1+αβ1)a^{n}\leq e^{n(\beta-1)}\big{(}a^{1}+\frac{\alpha}{\beta-1}\big{)}, which corresponds to

anexp(nk(1+CM1)1k)(a1+CM221+CM1).\displaystyle a^{n}\leq\exp\Big{(}\frac{nk(1+CM_{1})}{1-k}\Big{)}\cdot\Big{(}a^{1}+\frac{CM^{2}_{2}}{1+CM_{1}}\Big{)}. (252)

By using nkTnk\leq T for nTkn\leq\lfloor\frac{T}{k}\rfloor and dropping 2ϕhnϕhn1Lx22\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}} in ana^{n}, we obtain

ϕhnLx22+kν2ϕhnLx22exp((1+CM1)T1k)(a1+CM221+CM1).\displaystyle\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla\phi^{n}_{h}\|^{2}_{L^{2}_{x}}\leq\exp{\Big{(}\frac{(1+CM_{1})T}{1-k}\Big{)}}\cdot\Big{(}a^{1}+\frac{CM^{2}_{2}}{1+CM_{1}}\Big{)}. (253)

As for the full error unuhn=(unshn)+ϕhnu^{n}-u^{n}_{h}=(u^{n}-s^{n}_{h})+\phi^{n}_{h}, we have

unuhnLx22+kν2(unuhn)Lx22\displaystyle\,\|u^{n}-u^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla(u^{n}-u^{n}_{h})\|^{2}_{L^{2}_{x}}
\displaystyle\leq ϕhnLx22+kν2ϕhnLx22+unshnLx22+kν2(unshn)Lx22\displaystyle\,\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\|u^{n}-s^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla(u^{n}-s^{n}_{h})\|^{2}_{L^{2}_{x}} (254)
\displaystyle\leq ϕhnLx22+kν2ϕhnLx22+Ch2r+2uLtHxr+12+Cνkh2ruLtHxr+12\displaystyle\,\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r+2}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}+C\nu kh^{2r}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}} (255)

where the inequality (194) is applied in the last step. Finally, the error estimate (204) is obtained by combining (253) and (255).

\Box

The error analysis of the fully implicit convection form is similar to the semi-implicit convection case and the result is summarized below.

Theorem 6 (Error estimate for convergence iterative projecction method with FI convection).

Assume the fully implicit convection form NL(uhn+1,uhn+1)\text{NL}(u^{n+1}_{h},u^{n+1}_{h}) is used in(179). Suppose u,utLt(Hxr+1)u,u_{t}\in L^{\infty}_{t}(H^{r+1}_{x}) with r2r\geq 2, utt,utttLx2(Lt)u_{tt},u_{ttt}\in L^{2}_{x}(L^{\infty}_{t}) and pLtHxrp\in L_{t}^{\infty}H^{r}_{x}. Let the time step size k<1k<1 and the spatial mesh size h<1h<1. Then for any 2nTk2\leq n\leq\lfloor\frac{T}{k}\rfloor, there exists a constant CC independent of the solution (u,p)(u,p) and the discretization parameters kk and hh, such that the velocity solution of the scheme (179) and (180) satisfies,

  • (i)

    under the FI-SKEW convection with non-div-free FEMs,

    unuhnLx22+kν2(unuhn)Lx22Ch2r(h2+νk)uLtHxr+12\displaystyle\,\|u^{n}-u^{n}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla(u^{n}-u^{n}_{h})\|^{2}_{L^{2}_{x}}\leq Ch^{2r}(h^{2}+\nu k)\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}
    +exp(TM31kM3)(ϕh1Lx22+2ϕh1ϕh0Lx22+kν2ϕ1Lx22+CM42M3).\displaystyle\,+\exp{\Big{(}\frac{TM_{3}}{1-kM_{3}}\Big{)}}\cdot\Big{(}\|\phi^{1}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{1}_{h}-\phi^{0}_{h}\|^{2}_{L^{2}_{x}}+\frac{k\nu}{2}\|\nabla\phi^{1}\|^{2}_{L^{2}_{x}}+\frac{CM^{2}_{4}}{M_{3}}\Big{)}. (256)

    This error estimate is non-robust and has spatial accuracy order rr.

  • (ii)

    under the FI-SKEW with div-free FEMs, the estimate (256) with M3M_{3} and M4M_{4} replaced with M3div0M^{div0}_{3} and M4div0M^{div0}_{4}, respectively. This error estimate is robust with spatial accuracy order rr.

The constants M3M_{3}, M3div0M^{div0}_{3}, M4M_{4}, and M4div0M^{div0}_{4} are defined below,

M3=\displaystyle M_{3}= M3div0+1νuLtHxr+12,M3div0= 1+CuLtHxr+1,\displaystyle M^{div0}_{3}+\frac{1}{\nu}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}},\quad M^{div0}_{3}=\,1+C\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}, (257)
M4=\displaystyle M_{4}= M4div0+hrνpLtHxr,M4div0=hr+1utLtHxr+1+hruLtHxr+12+k2utttLx2Lt.\displaystyle\,M^{div0}_{4}+\frac{h^{r}}{\sqrt{\nu}}\|p\|_{L^{\infty}_{t}H^{r}_{x}},M^{div0}_{4}=h^{r+1}\|u_{t}\|_{L^{\infty}_{t}H^{r+1}_{x}}+h^{r}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}+k^{2}\|u_{ttt}\|_{L^{2}_{x}L^{\infty}_{t}}. (258)

Proof.
Step 1
and Step 2 are identical to those in the proof of Theorem 5.
Step 3. In the FI convection case, B(ϕhn+1)=(NL(uhn+1,uhn+1),ϕhn+1)(NL(un+1,un+1),ϕhn+1)B(\phi^{n+1}_{h})=(\text{NL}(u^{n+1}_{h},u^{n+1}_{h}),\phi^{n+1}_{h})-(\text{NL}(u^{n+1},u^{n+1}),\phi^{n+1}_{h}). We replace uhju^{j}_{h} by ujηj+ϕhju^{j}-\eta^{j}+\phi^{j}_{h} for j=n+1,n,n1j=n+1,n,n-1 and obtain

B(ϕhn+1)=\displaystyle B(\phi^{n+1}_{h})= (NL(un+1,ηn+1),ϕhn+1)(NL(ηn+1,shn+1),ϕhn+1)+(NL(shn+1,ϕhn+1),ϕhn+1)\displaystyle\,-(\text{NL}(u^{n+1},\eta^{n+1}),\phi^{n+1}_{h})-(\text{NL}(\eta^{n+1},s^{n+1}_{h}),\phi^{n+1}_{h})+(\text{NL}(s^{n+1}_{h},\phi^{n+1}_{h}),\phi^{n+1}_{h})
+(NL(ϕhn+1,shn+1),ϕhn+1)+(NL(ϕhn+1,ϕhn+1,ϕhn+1).\displaystyle\,+(\text{NL}(\phi^{n+1}_{h},s^{n+1}_{h}),\phi^{n+1}_{h})+(\text{NL}(\phi^{n+1}_{h},\phi^{n+1}_{h},\phi^{n+1}_{h}). (259)

Below is the estimate of the 5 terms on the right of (259).

  1. (3A)

    Similar to (3A) in the proof of Theorem 5, one gets

    |NL(un+1,ηn+1,ϕhn+1)|\displaystyle|\text{NL}(u^{n+1},\eta^{n+1},\phi^{n+1}_{h})|\leq 110ϕhn+1Lx22+Ch2ruLx2Hxr+14,\displaystyle\,\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r}\|u\|^{4}_{L^{2}_{x}H^{r+1}_{x}}, (260)
    |NL(un+1,ηn+1,ϕhn+1)|\displaystyle|\text{NL}(u^{n+1},\eta^{n+1},\phi^{n+1}_{h})|\leq 110ϕhn+1Lx22+Ch2r+2uLx2Hxr+14.\displaystyle\,\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r+2}\|u\|^{4}_{L^{2}_{x}H^{r+1}_{x}}. (261)
  2. (3B)

    Similar to (3B) in the proof of Theorem 5, one gets

    |NL(ηn+1,shn+1,ϕhn+1)|\displaystyle|\text{NL}(\eta^{n+1},s_{h}^{n+1},\phi^{n+1}_{h})|\leq 110ϕhn+1Lx22+Ch2ruLx2Hxr+14.\displaystyle\,\frac{1}{10}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+Ch^{2r}\|u\|^{4}_{L^{2}_{x}H^{r+1}_{x}}. (262)
  3. (3C)

    (NL(shn+1,ϕhn+1),ϕhn+1)=0(\text{NL}(s^{n+1}_{h},\phi^{n+1}_{h}),\phi^{n+1}_{h})=0.

  4. (3D)

    Similar to (3D) in the proof of of Theorem 5, one gets for non-div-free FEMs

    |NL(ϕhn+1,shn+1,ϕhn+1)|\displaystyle|\text{NL}(\phi^{n+1}_{h},s_{h}^{n+1},\phi^{n+1}_{h})|\leq C(uLx2Hx3+CuLx2Hxr+12ν)ϕhn+1Lx22+ν4ϕhn+1Lx22.\displaystyle\,C\bigg{(}\|u\|_{L^{2}_{x}H^{3}_{x}}+\frac{C\|u\|^{2}_{L^{2}_{x}H^{r+1}_{x}}}{\nu}\bigg{)}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\frac{\nu}{4}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}. (263)

    For div-free FEMs, the viscosity terms on the right of (263) vanish.

  5. (3E)

    |NL(ϕhn+1,ϕhn+1,ϕhn+1)=0|\text{NL}(\phi^{n+1}_{h},\phi^{n+1}_{h},\phi^{n+1}_{h})=0.

Step 4. After collecting all estimates from Step 2 and 3, we obtain for FI-SKEW with non-divergence free FEMs

1k(ϕhn+1Lx22+2ϕhn+1ϕhnLx22)+νϕhn+1Lx221k(ϕhnLx22+2ϕhnϕhn1Lx22)\displaystyle\,\frac{1}{k}\big{(}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n+1}_{h}-\phi^{n}_{h}\|^{2}_{L^{2}_{x}}\big{)}+\nu\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}\leq\frac{1}{k}\big{(}\|\phi^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2\phi^{n}_{h}-\phi^{n-1}_{h}\|^{2}_{L^{2}_{x}}\big{)}
+ν2ϕhn+1Lx22+(1+C(uLtHxr+1+1νuLtHxr+12))ϕhn+1Lx22\displaystyle+\frac{\nu}{2}\|\nabla\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\Big{(}1+C\Big{(}\|u\|_{L^{\infty}_{t}H^{r+1}_{x}}+\frac{1}{\nu}\|u\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}\Big{)}\Big{)}\|\phi^{n+1}_{h}\|^{2}_{L^{2}_{x}}
+C(h2r+2utLtHxr+12+h2rpLtHxr2ν+h2ruLtHxr+14+k4utttLx2Lt2).\displaystyle\,+C\Big{(}h^{2r+2}\|u_{t}\|^{2}_{L^{\infty}_{t}H^{r+1}_{x}}+\frac{h^{2r}\|p\|^{2}_{L^{\infty}_{t}H^{r}_{x}}}{\nu}+h^{2r}\|u\|^{4}_{L^{\infty}_{t}H^{r+1}_{x}}+k^{4}\|u_{ttt}\|^{2}_{L^{2}_{x}L^{\infty}_{t}}\Big{)}. (264)

Afterwards, using the same process as in Step 4 in the proof of Theorem 5, the error estimate (256) is achieved. Specifically,

  • (i)

    under FI-SKEW with non-div-free FEMs, the error upper bound (256) has the same accuracy order as shown in Remark 2, which is non-robust and of spatial order rr.

  • (ii)

    under FI-SKEW with div-free FEMs, the error upper bound (256) with M3M_{3} replaced with M3div0M^{div0}_{3} and M4M_{4} replaced with M4div0M^{div0}_{4} has the same accuracy order as shown in Remark 3, which is robust and of spatial order rr.

\Box

4 Numerical tests

In all the numerical tests, the spatial domain is a unit cube and the regular tetrahedral meshes are used. Denote the number of subdivisions in each direction as NN. The Reynolds number is defined as

Re=LUν,Re=\frac{LU}{\nu}, (265)

where the length scale L=1L=1. The velocity scale UU is taken as the maximum initial velocity magnitude. The kinematic viscosity ν\nu is modulated to give various values of ReRe.

The spatial discretization is chosen as the Taylor-Hood pair of finite element spaces P2/P1P_{2}/P_{1}, that is, VhV_{h} is composed of continuous piecewise quadratic polynomials and QhQ_{h} continuous piecewise linear polynomials. This finite element pair is not divergence free according to Definition 1. The numerical integration uses a 24-point quadrature rule in [21], which is exact for 6th degree polynomials in a tetrahedron.

To solve the non-symmetric matrix equations (176), the ILUT preconditioned GMRES method from Yousef Saad’s SPARSKIT [25, 24] (https://www-users.cs.umn.edu/s̃aad/software/SPARSKIT/) is adopted. All the numerical simulations are performed in Michigan State University’s High Performance Computing Center (HPCC).

4.1 Stopping criterion and incompressibility measures

The stopping criterion of the iteration (176) and (177), (178) is set as

(phn+1,s+1phn+1,smax<ϵ and phn+1,s+1phn+1,sLx2<ϵ) or sIterMax.\displaystyle(\|p^{n+1,s+1}_{h}-p^{n+1,s}_{h}\|_{\max}<\epsilon\text{ and }\|p^{n+1,s+1}_{h}-p^{n+1,s}_{h}\|_{L^{2}_{x}}<\epsilon)\text{ or }s\geq\text{IterMax}. (266)

It may be expensive to achieve the full convergence in every time step and thus in practice we use an inexact approach where ϵ=102\epsilon=10^{-2} or 10710^{-7} and IterMax=50\text{IterMax}=50.

To track how the divergence free condition is satisfied by the numerical velocity through iterations, we use two measures. The first is a weak incompressibility measure,

|weak div|max=|πh(uhs)|max=maxq is a basis function of Qh|(uhs,q)|,|\text{weak div}|_{\text{max}}=|\pi_{h}(\nabla\cdot u_{h}^{s})|_{\text{max}}=\max_{q\text{ is a basis function of }Q_{h}}|(\nabla\cdot{u}^{s}_{h},q)|, (267)

where πh\pi_{h} is the L2L^{2} projection from VhV_{h} to QhQ_{h}, and the basis functions of QhQ_{h} are chosen as the continuous, piecewise linear functions which are of value one at one mesh point and zero on other mesh points. This measure has been used by Fortin and Glowinski [13] (Chapter 2) to monitor the convergence of some iterative algorithms for the Stokes equations. From the iterative relations (64) and (100), it is found that

(p¯s+1p¯s)i=1k(αG1+ρkM1)(u¯hs,qi),i=1,,m.(\vec{\bar{p}}^{s+1}-\vec{\bar{p}}^{s})_{i}=-\frac{1}{k}(\alpha G^{-1}+\rho kM^{-1})\cdot(\nabla\cdot\bar{u}^{s}_{h},q_{i}),\quad\forall\,i=1,\cdots,m. (268)

Since the matrix (αG1+ρkM1)(\alpha G^{-1}+\rho kM^{-1}) is invertible, the weak incompressibility measure provides an equivalent stopping criterion to (ps+1ps)(p^{s+1}-p^{s}) for the iterative scheme. Therefore, when the iterations converge, the weak incompressibility measure is zero for the velocity limit.

The second measure is the strong incompressibility measure which is defined as the pointwise maximum magnitude of the strong divergence of velocity,

|strong div|max=max𝐱Ω|uhs(x)|.|\text{strong div}|_{\text{max}}=\max_{{\bf x}\in\Omega}|\nabla\cdot{u}^{s}_{h}({x})|. (269)
Remark 4.

It is easy to see that these two measures are equivalent in the div-free FEMs. In the finite dimensional space VhL2(Ω)\nabla\cdot V_{h}\subset L^{2}(\Omega), maxxΩ|uhs(x)|\max_{x\in\Omega}|\nabla\cdot u^{s}_{h}(x)| is equivalent to uhsL2(Ω)\|\nabla\cdot u^{s}_{h}\|_{L^{2}(\Omega)}. Using u=0\nabla\cdot u=0 for the exact solution uu and the inequality (94), uhsL2(Ω)=(uhsu)L2(Ω)(uhsu)L2(Ω)\|\nabla\cdot u^{s}_{h}\|_{L^{2}(\Omega)}=\|\nabla\cdot(u^{s}_{h}-u)\|_{L^{2}(\Omega)}\leq\|\nabla(u^{s}_{h}-u)\|_{L^{2}(\Omega)}. This correlation suggests the strong incompressibility measure could serve as a marker of the spuriousness of the numerical solution.

4.2 Numerical tests of iteration convergence at a single time step

In Problem 1, the exact solution is

u1\displaystyle u_{1} =cos(t)g(x)g(y)g(z),u2=cos(t)g(x)g(y)g(z),\displaystyle=\cos(t)g(x)g^{\prime}(y)g^{\prime}(z),\hskip 27.46295ptu_{2}=\cos(t)g^{\prime}(x)g(y)g^{\prime}(z), (270)
u3\displaystyle u_{3} =2cos(t)g(x)g(y)g(z),p=cos(3t)sin(2πx)sin(2πy)z3,\displaystyle=-2\cos(t)g^{\prime}(x)g^{\prime}(y)g(z),\hskip 18.06749ptp=\cos(3t)\sin(2\pi x)\sin(2\pi y)z^{3}, (271)

where g(x)=10x2(1x)2g(x)=10x^{2}(1-x)^{2}. The computational domain is Ω=[0,1]3\Omega=[0,1]^{3}. Thus, the boundary value of velocity is zero and max|u|4.6\max{|u|}\approx 4.6. In this problem, the meshes are always uniform of resolution hh. The Reynolds number of this problem is Re=4.6νRe=\frac{4.6}{\nu}.

The first group of tests examines the convergence of the projection iterations in one single time step of the scheme (176), (177), and (178) on Problem 1. The target is to find the velocity and pressure at t2t_{2}, where their values at t0t_{0} and t1t_{1} are chosen as the exact solutions. All the simulations in this section use the SI-SKEW convection form, which have the similar behaviors as those in the FI-SKEW form. The results for Problem 2 mentioned in Section 4.5 is similar and thus not shown here.

The mesh resolution is chosen as N=80N=80 and the time step size is k=103k=10^{-3}. The computational results shown in Figure 2 agree with the normal mode analysis. That is, the Uzawa iterations reduce the weak incompressibility measure significantly only when the viscosity is large (ν102\nu\geq 10^{-2}), and have almost no effects when the viscosity is small (ν104\nu\leq 10^{-4}). In contrast, the standard projection iterations lead to the fast decay of the weak measure only when the viscosity is small (ν102\nu\leq 10^{-2}). But the rotational projection iterations give the fast decay of the weak measure for all the viscosity values being studied. A common feature of all these simulations is that the strong incompressibility measure tends to a nonzero steady state, which implies the velocity limit in this convergence process is not pointwise divergence free. This is because the Taylor-Hood FEMs are not divergence free.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Weak and strong measures of velocity over iterations of Problem 1 in the time step t=2×103t=2\times 10^{-3} with SI-SKEW convection, N=80N=80, k=103k=10^{-3}. First row: weak measure. Second row: strong measure.

4.3 About optimal parameter values of α\alpha and ρ\rho

The normal mode analysis of Section 2.1 shows that the choice of α=1.5\alpha=1.5 and ρ=ν\rho=\nu results in super convergence when the numerical solution is smooth and the convection is absent. When the numerical velocity has only H1H^{1} regularity and the convection is present, it is hard to analyze the optimal values of these two parameters. Thus, we use numerical tests to get some clues.

Firstly, we study the effect of parameter values on the iteration convergence at the initial time step t=0.002t=0.002 of Problem 1 with the SI-SKEW convection form and the mesh resolution N=80N=80. When α=1.5\alpha=1.5, the convergence is faster as ρ\rho grows from 0 to 2ν2\nu when ν=1\nu=1 and ν=0.001\nu=0.001, as shown in Figure 3[ab], with an exception at ν=1\nu=1, ρ=2ν\rho=2\nu. A direct comparison between ν=1\nu=1 and ν=0.001\nu=0.001 cases indicates the optimal parameters depend less sensitively on ρ\rho when ν\nu is small. On the other hand, when ν=0.001\nu=0.001 and ρ=2ν\rho=2\nu, the convergence increases as α\alpha goes from 1.5 to 2.4 or 2.6 (Figure 3[c]) and decreases as α\alpha continues from 2.6 to 3.0. Thus, the optimal value should be close to 2.5.

Refer to caption

[a] Refer to caption[b] Refer to caption[c]

Figure 3: Effects of α\alpha and ρ\rho on iteration convergence in Problem 1 in the time step t=2×103t=2\times 10^{-3} with SI-SKEW convection, N=80N=80, k=103k=10^{-3}. [a]: ν=1\nu=1 and α=1.5\alpha=1.5. [b]: ν=103\nu=10^{-3} and α=1.5\alpha=1.5. [c]: ν=103\nu=10^{-3} and ρ=2ν\rho=2\nu.

Secondly, we use the iterative projection method with FI-SKEW convection to solve Problem 1 from t=0t=0 to t=0.5t=0.5 with Re=4600Re=4600, N=60N=60, and the stopping criterion is |weak div|max<0.01|\text{weak div}|_{\max}<0.01. We test the speed of the iterative projection method with some different values of α(1,3)\alpha\in(1,3) and ρ[ν,2ν]\rho\in[\nu,2\nu] and the results are shown in Table 2. All these simulations produce the same error as in the case N=60N=60 in Table 8. Note in Table 2, the simulations of the same α\alpha value but different ρ\rho values have the identical solution process, which means the ρ\rho choice is not important here. The optimal value of α\alpha seems to be close to 2.5 in this particular example, which is consistent with the result from the initial time step test.

Table 2: Effects of parameters α\alpha and ρ\rho on iterations of FI-SKEW scheme of evolution of Problem 1
α\alpha ρ\rho average iterations
1.5 ν\nu, 1.9ν1.9\nu, 2ν2\nu 9.0
1.9 ν\nu, 1.9ν1.9\nu, 2ν2\nu 6.2
2.0 ν\nu, 1.9ν1.9\nu, 2ν2\nu 6.1
2.5 ν\nu, 1.9ν1.9\nu, 2ν2\nu 5.0
2.8 ν\nu, 1.9ν1.9\nu, 2ν2\nu 6.1

The similar tests are done for Problem 2 mentioned in Section 4.5, where the optimal value occurs around α=2.9\alpha=2.9 and ρ=2ν\rho=2\nu when ν=105\nu=10^{-5} (data not shown). Based on these numerical tests, we find that the optimal values of parameters to attain the fastest iteration convergence are in the range of (α,ρ)(1.5,3)×(ν,2ν)(\alpha,\rho)\in(1.5,3)\times(\nu,2\nu) and the specific value depends on the specific problem. It is recommended to test the optimal values at the initial time step with a coarse mesh before running a long time evolution.

4.4 Numerical tests on accuracy of iterative projection method of Problem 1

This group of tests investigates the stability and accuracy of the full scheme (176), (177), and (178) when it is applied to Problem 1. The simulations run from t=0t=0 to t=0.5t=0.5 with various Reynolds numbers starting from Re=920Re=920, where the convergence is evaluated at time t=0.5t=0.5. All the simulations in Section 4.4.1, Section 4.4.2, and Section 4.4.3 use α=1.5\alpha=1.5, ρ=ν\rho=\nu, k=0.001k=0.001.

4.4.1 Re=920Re=920: one iteration attains accurate solutions

In the first case, we choose Re=920Re=920 and the SI-SKEW convection form. When only one iteration is used, that is, the conventional rotational projection method is employed, the numerical solutions show the optimal convergence (see Table 3): second order accuracy of both the velocity (in H1H^{1} norm) and the pressure (in L2L^{2} norm). Therefore, in this case, more than one iteration is not needed. Notably, both the weak and strong incompressibility measures are small (less than 1) as shown in Figure 4.

Table 3: Errors at t=0.5t=0.5 when Re=920Re=920, iteration=1.
N uhuH1\|{u}_{h}-{u}\|_{H^{1}} rate |php|L2|p_{h}-p|_{L^{2}} rate
60 0.20×1010.20\times 10^{-1} 1.86 0.15×1040.15\times 10^{-4} 2.01
70 0.15×1010.15\times 10^{-1} 2.32 0.11×1040.11\times 10^{-4} 2.11
80 0.11×1010.11\times 10^{-1} 1.89 0.83×1050.83\times 10^{-5} 2.08
90 0.88×1020.88\times 10^{-2} 2.04 0.65×1050.65\times 10^{-5} 2.12
100 0.71×1020.71\times 10^{-2} 0.52×1050.52\times 10^{-5}
Refer to caption

[a] Refer to caption[b]

Figure 4: Weak [a] and strong [b] incompressibility measures for Problem 1 with Re=920Re=920, iteration=1.

4.4.2 Re=2300Re=2300: iterations reduce/remove spurious solutions

In this subsubsection, all the simulations use the SI-SKEW convection.

  1. (1)

    Only one projection per time step.

    When Re=2300Re=2300, only one projection in every time step leads to large errors when N=60,70,80N=60,70,80, but delivers accurate solutions when N=90,100N=90,100 (see Table 4). These coincide with sizes of the weak and strong incompressibility measures as shown in Figure 5: when N=60,70,80N=60,70,80, the measures grow exponentially in time and then stay at high values, but when N=90,100N=90,100, the measures are small (less than 0.1).

    Table 4: Errors at t=0.5t=0.5 when Re=2300Re=2300, iteration=1.
    N uhuH1\|{u}_{h}-{u}\|_{H^{1}} rate |php|L2|p_{h}-p|_{L^{2}} rate
    60 0.12×10+30.12\times 10^{+3} 11 0.31×10+10.31\times 10^{+1} 6
    70 0.42×10+20.42\times 10^{+2} 33 0.12×10+10.12\times 10^{+1} 35
    80 0.51×1000.51\times 10^{0} 33 0.10×1010.10\times 10^{-1} 62
    90 0.94×1020.94\times 10^{-2} 2.14 0.66×1050.66\times 10^{-5} 1.90
    100 0.75×1020.75\times 10^{-2} 0.54×1050.54\times 10^{-5}
    Refer to caption

    [a] Refer to caption[b]

    Figure 5: Weak [a] and strong [b] incompressibility measures of Problem 1 when Re=2300Re=2300, iteration=1.
  2. (2)

    Using fixed numbers of iterations per time step.

    To see the effects of iterative projections, we focus on the mesh N=60N=60 with a fixed number of iterations per time step: iteration=1, 2, 4, or 6. Based on Table 5, the errors decrease when more iterations are used and when iteration=6, the errors are optimal in the given time and spatial discretizations. The plottings of the numerical solutions in Figure 6 reveal that there are strongly unphysical oscillations when only one iteration is used, but the oscillations reduce when more iterations are added and completely vanish when iteration=6. Correspondingly, both the weak and strong incompressibility measures increase to large values (more than 1000) with respect to time when iteration=1,2,4, but small (less than 0.1) when iteration=6, as illustrated in Figure 7. Especially the strong incompressibility measure shares the same tendency as the H1H^{1} error of the velocity in the fixed VhV_{h} space (h=1/60h=1/60) when the iteration number increases, which is an evidence to Remark 4 that the strong incompressibility measure is a marker of spuriousness.

    Table 5: Errors at t=0.5t=0.5 when Re=2300Re=2300, N=60N=60, and a fixed number of iterations, “iter”, is applied in each time step.
    ReRe N iter uhuH1\|{u}_{h}-{u}\|_{H^{1}} |php|L2|p_{h}-p|_{L^{2}}
    2300 60 1 0.12×10+30.12\times 10^{+3} 0.31×10+10.31\times 10^{+1}
    2300 60 2 0.43×10+20.43\times 10^{+2} 0.13×10+10.13\times 10^{+1}
    2300 60 4 0.29×10+10.29\times 10^{+1} 0.26×1010.26\times 10^{-1}
    2300 60 6 0.23×1010.23\times 10^{-1} 0.15×1040.15\times 10^{-4}
    Refer to caption

    [a] Refer to caption[b] Refer to caption[c] Refer to caption[d]

    Figure 6: Numerical solution u3u_{3} on the plane z=5960z=\frac{59}{60} of Problem 1 at t=0.5 when Re=2300Re=2300 and N=60N=60. Iteration=1 in [a], 2 in [b], 4 in [c], 6 in [d].
    Refer to caption

    [a] Refer to caption[b]

    Figure 7: Weak [a] and strong [b] incompressibility measures when Re=2300Re=2300, N=60N=60, and iteration=1, 2, 4, 6.
  3. (3)

    Using stopping criterion in formula (266)

    One apparent issue of using a fixed number of iterations in every time step is that the smallest number of iterations sufficient for removing spurious modes is unknown before simulations. Therefore, we switch the stopping criterion (266) with ϵ=102\epsilon=10^{-2} and re-run the simulations of Problem 1 with Re=2300Re=2300. The optimal convergence is recovered as shown in Table 6. Both the weak and strong incompressibility measures are small, according to Figure 8.

    Table 6: Errors at t=0.5t=0.5 when Re=2300Re=2300 and the stopping criterion is (266) with ϵ=102\epsilon=10^{-2}. “average iter” is the average iteration in all the time steps.
    N uhuH1\|{u}_{h}-{u}\|_{H^{1}} |php|L2|p_{h}-p|_{L^{2}} average iter
    60 0.23×1010.23\times 10^{-1} 0.15×1040.15\times 10^{-4} 5.2
    70 0.16×1010.16\times 10^{-1} 0.11×1040.11\times 10^{-4} 3.5
    80 0.12×1010.12\times 10^{-1} 0.83×1050.83\times 10^{-5} 1.7
    90 0.94×1020.94\times 10^{-2} 0.66×1050.66\times 10^{-5} 1
    100 0.75×1020.75\times 10^{-2} 0.53×1050.53\times 10^{-5} 1
    Refer to caption
    Refer to caption
    Figure 8: Weak [a] and strong [b] incompressibility measures of Problem 1 when Re=2300Re=2300 and the stopping criterion is (266) with ϵ=102\epsilon=10^{-2}.

4.4.3 Re=4600Re=4600: semi-implicit vs fully-implicit schemes

  1. (1)

    SI-SKEW-based iterative projection method.

    When the Reynolds number increases to Re=4600Re=4600, we first employ the SI-SKEW convection and set the stopping criterion as (266) with ϵ=107\epsilon=10^{-7}. The numerical solutions show a strange behavior. The standard exact solution of u1u_{1} of Problem 1 is zero on the plane z=0.5z=0.5 at all time, but the numerical solution is nonzero, as shown in Figure  9. This solution is spurious but the magnitude of oscillation is much smaller than what are presented in Figure 6 when iteration=1. In addition, when the mesh is refined from N=60N=60 to N=100N=100, the numerical solution converges to that at N=100N=100 for both the velocity and pressure in L2L^{2} norm, as shown in Table 7. The velocity error with respect to the exact solution and the strong incompressibility measure are shown in Figure 10[ab]. Both surge suddenly from less than one to some large values at certain time steps between t=0.2t=0.2 and t=0.4t=0.4 for all these simulations. This further confirms the role of the strong measure as the marker of the spuriousness of numerical solutions.

    Refer to caption
    Refer to caption
    Refer to caption
    Figure 9: Numerical solutions of u1u_{1} on the z=0.5z=0.5 plane of Problem 1 at t=0.25,0.3,0.5t=0.25,0.3,0.5. Parameters: Re=4600Re=4600, N=100N=100, and k=103k=10^{-3}. The standard exact solution u1u_{1} is zero on this plane. The SI-SKEW convection is used.
    Table 7: Difference between the numerical solution with mesh resolution N<100N<100 and that of N=100N=100. Re=4600Re=4600. The SI-SKEW convection is used. Stopping criterion is (266) with ϵ=107\epsilon=10^{-7}.
    N uNu100L(0,0.5;LΩ)\|u_{N}-u_{100}\|_{L^{\infty}(0,0.5;L^{\infty}\Omega)} uNu100L2(0,0.5;L2Ω)\|u_{N}-u_{100}\|_{L^{2}(0,0.5;L^{2}\Omega)} pNp100L2(0,0.5;L2Ω)||p_{N}-p_{100}||_{L^{2}(0,0.5;L^{2}\Omega)} average iter
    60 0.25769×10+10.25769\times 10^{+1} 0.19696×1000.19696\times 10^{0} 0.17290×1000.17290\times 10^{0} 15.0
    70 0.25764×10+10.25764\times 10^{+1} 0.15761×1000.15761\times 10^{0} 0.13233×1000.13233\times 10^{0} 17.7
    80 0.26592×10+10.26592\times 10^{+1} 0.11724×1000.11724\times 10^{0} 0.95676×1010.95676\times 10^{-1} 21.4
    90 0.23662×10+10.23662\times 10^{+1} 0.71958×1010.71958\times 10^{-1} 0.57587×1010.57587\times 10^{-1} 27.9
    96 0.29156×10+10.29156\times 10^{+1} 0.44540×1010.44540\times 10^{-1} 0.28873×1010.28873\times 10^{-1} 25.0
    97 0.19185×10+10.19185\times 10^{+1} 0.41189×1010.41189\times 10^{-1} 0.26961×1010.26961\times 10^{-1} 25.6
    98 0.19823×10+10.19823\times 10^{+1} 0.40630×1010.40630\times 10^{-1} 0.27062×1010.27062\times 10^{-1} 26.4
    99 0.21280×10+10.21280\times 10^{+1} 0.35669×1010.35669\times 10^{-1} 0.21571×1010.21571\times 10^{-1} 25.5
    Refer to caption

    [a] Refer to caption[b] Refer to caption[c]

    Figure 10: [a,b]: velocity error [a] and strong incompressibility measure [b] of SI-SKEW with Re=4600Re=4600. [c]: strong incompressibility measure of FI-SKEW when Re=4600Re=4600. The stopping criterion is (266) with ϵ=102\epsilon=10^{-2} in [abc].

    The direct reason for this false numerical solution for the iterative SI-SKEW scheme is that at a certain time step, the weak incompressibility measure cannot converge to zero given sufficient iterations although this measure can be very small. For example, when N=100N=100, the weak incompressibility measure is stuck at 1.1067×1071.1067\times 10^{-7} at iteration steps from 22 to 50 at time step t=0.219t=0.219, the moment when the strong incompressibility measure suddenly rises to a high value in Figure 10[b]. Therefore, the iterative projection method fails to converge at this time step.

  2. (2)

    FI-SKEW-based iterative projection method

    When the FI-SKEW form is adopted and the stopping criterion is (266) with ϵ=102\epsilon=10^{-2}, the correct solution is recovered as shown in Table 8. This suggests the fully implicit scheme is more robust than the semi-implicit scheme under the same setting and a possible reason is that the fully implicit scheme preserves better the nonlinear structure of the original Navier-Stokes equations.

    A side note is that although the acceleration technique mentioned in Appendix B can speed up the iteration convergence in many simulations including the cases N=60,80,90N=60,80,90 in Table 8, it is not guaranteed to always produce convergence. For instance, when N=70N=70, the iteration using this acceleration blows up at time t=0.489t=0.489. More studies are required to uncover the conditions to apply the acceleration techniques.

    Table 8: Errors when Re=4600Re=4600 and the stopping criterion is (266) with ϵ=102\epsilon=10^{-2}. The convection is FI-SKEW.
    N uhuH1||{u}_{h}-{u}||_{H^{1}} rate |php|L2|p_{h}-p|_{L^{2}} rate average iter
    60 0.29×1010.29\times 10^{-1} 2.4 0.18×1040.18\times 10^{-4} 2.6 9.0
    70 0.20×1010.20\times 10^{-1} 2.2 0.12×1040.12\times 10^{-4} 1.4 6.5
    80 0.15×1010.15\times 10^{-1} 2.6 0.10×1040.10\times 10^{-4} 3.3 5.1
    90 0.10×1010.10\times 10^{-1} 2.1 0.68×1050.68\times 10^{-5} 0.6 3.9
    100 0.88×1020.88\times 10^{-2} 0.64×1050.64\times 10^{-5} 2.4

4.4.4 Some higher Reynolds numbers

This set of simulations applies the iterative projection method with the FI-SKEW convection term to handle some high Reynolds numbers Re=5×103Re=5\times 10^{3}, 10410^{4}, 2×1042\times 10^{4}, 4×1044\times 10^{4} of Problem 1, and the stopping criterion is (266) with ϵ=102\epsilon=10^{-2}. The computational results are shown in Figure 11. Both the L2L^{2} and H1H^{1} errors of velocity are optimal and increase when the Reynolds number is larger, which is consistent with the non-robust error estimates of this non-div-free FEM. The average iterations per time step also increase with the Reynolds numbers and are below 9 in these simulations.

Refer to caption

[a] Refer to caption[b] Refer to caption[c]

Figure 11: Simulation results for Problem 1 with FI-SKEW convection and the stopping criterion is (266) with ϵ=102\epsilon=10^{-2}. [ab]: L2L^{2} and H1H^{1} errors of velocity. [c]: average iteration numbers per time step.

4.4.5 Comparison with iterative IMEX projection scheme

Following [3], we use a BDF2-IMEX scheme, where the only difference with the method proposed in this work ((176), (177), and (178)) is that the equation (176) is replaced by

1.5(uhn+1,s,vh)\displaystyle 1.5(u_{h}^{n+1,s},v_{h}) +kν(uhn+1,s,vh)k(vh,phn+1,s)\displaystyle+k\nu(\nabla u_{h}^{n+1,s},\nabla v_{h})-k(\nabla\cdot v_{h},p^{n+1,s}_{h})
=(2uhn0.5uhn1,vh)+k(fn+1,vh)k((whn+1)whn+1,vh),\displaystyle=(2u^{n}_{h}-0.5u^{n-1}_{h},v_{h})+k(f^{n+1},v_{h})-k((w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h},v_{h}), (272)

where whn+1=2uhnuhn1w^{n+1}_{h}=2u^{n}_{h}-u^{n-1}_{h}. That is, the diffusion term ν(uhn+1,s,vh)\nu(\nabla u_{h}^{n+1,s},\nabla v_{h}) is implicit but the convection term ((whn+1)whn+1,vh)((w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h},v_{h}) is completely explicit. Using the same proof for Theorem 1, with ff replaced with f(whn+1)whn+1f-(w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h} in (30), it is easy to see that when ss\to\infty, the scheme converges to the following system,

1.5(uhn+1,vh)\displaystyle 1.5(u_{h}^{n+1},v_{h}) +kν(uhn+1,vh)k(vh,phn+1)=(2uhn0.5uhn1,vh)\displaystyle+k\nu(\nabla u_{h}^{n+1},\nabla v_{h})-k(\nabla\cdot v_{h},p^{n+1}_{h})=(2u^{n}_{h}-0.5u^{n-1}_{h},v_{h})
+k(fn+1,vh)k((whn+1)whn+1,vh),vhVh,\displaystyle+k(f^{n+1},v_{h})-k((w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h},v_{h}),\quad\forall v_{h}\in V_{h}, (273)
(uhn+1,qh)\displaystyle(\nabla\cdot u^{n+1}_{h},q_{h}) =0,qhQh.\displaystyle=0,\quad\forall q_{h}\in Q_{h}. (274)

For this scheme, it is impossible to prove an energy estimate similar to Theorem 4. Indeed, letting vh=un+1v_{h}=u^{n+1} in (273) and qh=phn+1q_{h}=p^{n+1}_{h} in (274), we obtain

uhn+1Lx22+2uhn+1uhnLx22+uhn+12uhn+uhn1Lx22+4kνuhn+1Lx22\displaystyle\,\|u^{n+1}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n+1}_{h}-u^{n}_{h}\|^{2}_{L^{2}_{x}}+\|u^{n+1}_{h}-2u^{n}_{h}+u^{n-1}_{h}\|^{2}_{L^{2}_{x}}+4k\nu\|\nabla u^{n+1}_{h}\|^{2}_{L^{2}_{x}}
=\displaystyle= uhnLx22+2uhnuhn1Lx22+4k(fn+1,uhn+1)4k((whn+1)whn+1,uhn+1).\displaystyle\,\|u^{n}_{h}\|^{2}_{L^{2}_{x}}+\|2u^{n}_{h}-u^{n-1}_{h}\|^{2}_{L^{2}_{x}}+4k(f^{n+1},u^{n+1}_{h})-4k((w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h},u^{n+1}_{h}). (275)

Following a process similar to that used to derive (94) and (95), we can get

|4k((whn+1)whn+1,uhn+1)|\displaystyle|4k((w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h},u^{n+1}_{h})|\leq  4kwhn+1Lx4uhn+1Lx4whn+1Lx2\displaystyle\,4k\|w^{n+1}_{h}\|_{L^{4}_{x}}\|u^{n+1}_{h}\|_{L^{4}_{x}}\|\nabla w^{n+1}_{h}\|_{L^{2}_{x}}
\displaystyle\leq  8kwhn+1Lx214whn+1Lx234uhn+1Lx214uhn+1Lx234whn+1Lx2.\displaystyle\,8k\|w^{n+1}_{h}\|^{\frac{1}{4}}_{L^{2}_{x}}\|\nabla w^{n+1}_{h}\|^{\frac{3}{4}}_{L^{2}_{x}}\|u^{n+1}_{h}\|^{\frac{1}{4}}_{L^{2}_{x}}\|\nabla u^{n+1}_{h}\|^{\frac{3}{4}}_{L^{2}_{x}}\|\nabla w^{n+1}_{h}\|_{L^{2}_{x}}. (276)

By the Poincaré inequality, whn+1Lx2Cwhn+1Lx2\|w^{n+1}_{h}\|_{L^{2}_{x}}\leq C\|\nabla w^{n+1}_{h}\|_{L^{2}_{x}} and uhn+1Lx2Cuhn+1Lx2\|u^{n+1}_{h}\|_{L^{2}_{x}}\leq C\|\nabla u^{n+1}_{h}\|_{L^{2}_{x}}. Then (276) becomes

|4k((whn+1)whn+1,uhn+1)|kC(2uhnuhn1)Lx22uhn+1Lx2.\displaystyle|4k((w^{n+1}_{h}\cdot\nabla)w^{n+1}_{h},u^{n+1}_{h})|\leq kC\|\nabla(2u^{n}_{h}-u^{n-1}_{h})\|^{2}_{L^{2}_{x}}\|\nabla u^{n+1}_{h}\|_{L^{2}_{x}}. (277)

This nonlinear term makes it impossible to derive a recursive relation from (275). Similarly, the error estimate for (273) and (274), by following the same process as in the proof of Theorem 5, generates one term (((2ϕhnϕhn1))(2ϕhnϕhn1),ϕhn+1)(((2\phi^{n}_{h}-\phi^{n-1}_{h})\cdot\nabla)(2\phi^{n}_{h}-\phi^{n-1}_{h}),\phi^{n+1}_{h}). Using the same argument as in (276) and (277), we can obtain its upper bound as C(2ϕhnϕhn1)Lx22ϕhn+1Lx2C\|\nabla(2\phi^{n}_{h}-\phi^{n-1}_{h})\|^{2}_{L^{2}_{x}}\|\nabla\phi^{n+1}_{h}\|_{L^{2}_{x}}. With the same reason for the stability, it is also impossible to derive a recursive relation for the error analysis.

The numerical simulations further suggest this iterative IMEX projection scheme is not so stable as the proposed scheme ((176), (177), and (178)). When Re=920Re=920 and k=0.001k=0.001, this scheme blows up around t=0.1t=0.1 (see Figure 12). In contrast, the iterative SI-SKEW scheme obtains the optimal convergence with just one iteration in each time step according to Section 4.4.1.

Refer to caption
Figure 12: Weak and strong incompressibility measures when iterative IMEX method is used in Problem 1 with Re=920Re=920 and k=0.001k=0.001. The stopping criterion is (266) with ϵ=107\epsilon=10^{-7}.

4.5 Problem 2: iterative projection method in lid driven cavity flow

Problem 2 is a classic lid driven cavity problem. The domain is Ω=(0.5,0.5)3\Omega=(-0.5,0.5)^{3} and the velocity is u=(0,1,0){u}=(0,1,0) on the wall x=0.5x=-0.5 and zero on the other walls. The initial velocity is set as zero everywhere except on the sliding wall. The meshes use Gauss-Lobatto points (e.g. [2]), where xi=0.5cos(iπN)x_{i}=0.5\cos(\frac{i\pi}{N}), yj=0.5cos(jπN)y_{j}=0.5\cos(\frac{j\pi}{N}), zl=lπN0.5z_{l}=\frac{l\pi}{N}-0.5, i,j,l=0,,Ni,j,l=0,\cdots,N, where NN is the number of subdivisions in each direction. The Reynolds number of this problem is Re=1νRe=\frac{1}{\nu}.

We run the simulations with the SI-SKEW convection form, ν=0.001\nu=0.001 or Re=1000Re=1000, α=1.5\alpha=1.5, ρ=ν\rho=\nu, and k=0.001k=0.001. The simulations are run until the velocity reaches a steady state. Since the exact solution is not available, the solution at t1t_{1} is taken the same as t0=0t_{0}=0. The solution at t2t_{2} is obtained by running the scheme until it converges.

When N=40N=40, the conventional rotational projection method shows very chaotic velocity and pressure fields at t=1t=1, as shown in Figure 13. But when two projection iterations are used in each time step, the velocity field looks very smooth (Figure 14).

Refer to caption

[a] Refer to caption[b]

Figure 13: Velocity[a] and pressure[b] on the x-y plane of z=0z=0, at time t=1t=1. Re=1000Re=1000, iteration=1, max speed=22.79.
Refer to caption

[b] Refer to caption[b]

Figure 14: Velocity[a] and ressure[b] on the x-y plane of z=0z=0 at time t=1t=1. Re=1000Re=1000, iteration=2, max speed=1.

The accuracy of the numerical solution is confirmed by the agreement with the results of [2] as shown in Figure 15 when the mesh is refined from N=20N=20 to N=40N=40 and iteration=2 in each time step. In [2], the standard projection scheme with BDF2 scheme in time and spectral method in space is used. More importantly, they construct a special solution ucu_{c} addressing the edge singularity to accompany the numerical solution. Therefore, without introducing the prescribed singular solution, the proposed iterative projection method obtains the correct solution with just two projections in each time step.

Refer to caption

[a] Refer to caption[b]

Figure 15: Comparison of normalized velocities, v/2v/2 and u/2u/2 (the whole velocity vector is (u,v,w)(u,v,w)) with those in [2], on the center lines (x,0,0)(x,0,0) and (0,y,0)(0,y,0) on the x-y plane z=0z=0 in the cubic cavity flow. The square symbols are extracted from figures of [2]. The solid lines are from the iterative projection method of this work. [a]: N=20N=20. [b]: N=40N=40. The Reynolds number Re=1000Re=1000. The time is t=20t=20.

5 Summary

This work introduces an iterative projection method for the Navier-Stokes equations, whose methodology is to iterate the classic projection method in every time step with a proper convection form to guarantee stability. The benefits are tremendous. First, when fully convergent, it produces the weakly divergence free velocity (and almost everywhere divergence free velocity on divergence free finite element methods). Second, the stability and error estimates are theoretically established when the projection iterations are convergent in every time step. Third, this method can handle high Reynolds numbers. When the finite element spaces are divergence free, this method is robust, that is, the error estimate of velocity in L2L^{2} norm is independent of the viscosity or Reynolds numbers. When the projection iterations are not fully convergent, the numerical experiments show that the method can still preserve stability and accuracy for high Reynolds numbers. All these properties are absent in the classic projection method. At the same time, this new approach keeps an essential property of the classic projection method: the splitting of the velocity and pressure fields, which results in the splitting of a large saddle point system into small elliptic problems.

A condition to warrant the iteration convergence with two parameters is derived, as shown in Theorem 2 and Theorem 3. A range of the parameter values to achieve the fast iteration convergence is given in Section 4.3. Two incompressibility measures are proposed to track the performance of numerical solutions. The weak measure monitors whether the iterations are convergent or not and the strong measure indicates whether the numerical solution is spurious or not. These two measures are equivalent for the div-free FEMs but not for the non-div-free FEMs. Under the non-div-free FEMs, if the weak measure is small but strong measure is too large, the numerical solution would be non-physical. In this work, both the semi-implicit and the fully implicit skew-symmetric convection forms are studied and tested. The numerical simulations show that the fully implicit scheme is more stable and accurate and efficient than the semi-implicit form.

Note it is the limit scheme, the one achieved when the iterative projections are convergent in each time step, that endows this method the properties such as stability, accuracy, and robustness to Reynolds numbers. Thus, there are many ways this work can be improved and extended. First, the scheme proposed in this work does not use any stabilization techniques mentioned in [14]. A simple and appealing stabilization is the grad-div method as mentioned in [11], also used in the augmented Lagrangian method [13], which has been shown to achieve robust error estimates for non-div-free FEMs. Second, there are many other forms of the convection term as shown in [9], whose theoretical and computational properties can be studied. Third, the convergence rate of the projection iterations for (4) and (5) is first order, and its comparison in efficiency with Newton’s method with GMRES approach of solving the nonlinear system as in [9] will be an interesting future work.

Finally, this iterative projection method is a completely new and efficient numerical method for the saddle point problem from the discretization of the time dependent Navier-Stokes equations. It is an extension of the Uzawa method by adding only one Poisson equation in the pressure space, which is from the Hodge decomposition of the intermediate velocity. The same as the Uzawa method, the method has a linear convergence rate. However, normal mode analysis and numerical experiments reveal that with proper parameters, the iterative projection method is much faster than the Uzawa method when the viscosity is small or the Reynolds number is large. Because the Uzawa method is a popular method for many saddle point problems including the Stokes equations and steady Navier-Stokes equations, it is worthwhile to consider whether this method can be extended to these saddle point problems.

Acknowledgment

K. Zhao was partially supported by the Simons Foundation Collaboration Grant for Mathematicians No. 413028. J. Wu was partially supported by the National Science Foundation of USA under grant DMS 2104682 and the AT&T Foundation at Oklahoma State University. W. Hu was partially supported by the NSF grant DMS-2111486. This work was supported in part by computational resources and services provided by HPCC of the Institute for Cyber-Enabled Research at Michigan State University through a collaboration program of Central Michigan University, USA.

Appendix A One-step projection does not produce divergence free velocity

Using the matrix and vector notations in Section 2.2.1, the equation (9) and (11) can be written as

Gϕn+1\displaystyle G\vec{\phi}^{n+1} =1kBu,\displaystyle=\frac{1}{k}B\vec{u}^{*}, (A.1)
A0un+1\displaystyle A_{0}\vec{u}^{n+1} =A0ukBTϕn+1.\displaystyle=A_{0}\vec{u}^{*}-kB^{T}\vec{\phi}^{n+1}. (A.2)

where A0A_{0} is the mass matrix of VhV_{h}. That is, (A0)ij=(wi,wj)(A_{0})_{ij}=(w_{i},w_{j}), i,j=1,,li,j=1,\cdots,l. These two equations yield

Bun+1=(IBA01BTG1)(Bu).\displaystyle B\vec{u}^{n+1}=(I-BA_{0}^{-1}B^{T}G^{-1})(B\vec{u}^{*}). (A.3)

In general, BA01BT=GBA_{0}^{-1}B^{T}=G does not hold for mixed finite element spaces. Thus, IBA01BTG1)0I-BA_{0}^{-1}B^{T}G^{-1})\neq 0 and Bun+10B\vec{u}^{n+1}\neq 0. This implies un+1u^{n+1} is not weakly divergence free in the traditional one-step projection method.

Appendix B An acceleration technique

As in [3], acceleration techniques based on Aitken method can be applied to the iterations in this work. There are many variants of Aitken’s method and we use the following one (Method 3 of [22]). Denote ff as an algorithm generating a fixed point pp of ff, i.e., p=f(p)p=f(p). Given an initial guess p0p_{0}, the non-accelerated algorithm produces a sequence {ps}\{p_{s}\} with the relation ps=f(ps1)p_{s}=f(p_{s-1}), s=1,2,s=1,2,\cdots. In the accelerated scheme, the new sequence is generated as follows. With an initial guess p0p_{0}, let p1=f(p0)p_{1}=f(p_{0}) and psp_{s}, s2s\geq 2, be as follows,

ps\displaystyle p_{s} =\displaystyle= f(ps1)+μk(ps1f(ps1)),\displaystyle f(p_{s-1})+\mu_{k}(p_{s-1}-f(p_{s-1})), (B.1)
where μk\displaystyle\text{ where }\quad\mu_{k} =\displaystyle= (rs,rsrs1)rsrs12,rs1=f(ps2)ps2,rs=f(ps1)ps1.\displaystyle\frac{(r_{s},r_{s}-r_{s-1})}{\|r_{s}-r_{s-1}\|^{2}},\quad r_{s-1}=f(p_{s-2})-p_{s-2},\quad r_{s}=f(p_{s-1})-p_{s-1}. (B.2)

A comparison is given for the iterations in the first time step between non-accelerated and accelerated schemes for Problem 1 with the rotational projection scheme and SI-SKEW convection form. The parameters used are ν=105\nu=10^{-5}, N=80N=80, time step size k=103k=10^{-3}. The results are shown in Figure B.1. In this example, the accelerated scheme saves about one half iterations as of the non-accelerated one.

Refer to caption
Figure B.1: Comparison of iterations between accelerated and non-accelerated schemes.

References

  • [1] N. Ahmed, C. Bartsch, V. John, and U. Wilbrandt. An assessment of some solvers for saddle point problems emerging from the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 331:492–513, 2018.
  • [2] S. Albensoeder and H.C. Kuhlmann. Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics, 206(2):536 – 558, 2005.
  • [3] J. Aoussou, J. Lin, and P.F.J. Lermusiaux. Iterated pressure-correction projection methods for the unsteady incompressible Navier–Stokes equations. Journal of Computational Physics, 373:940–974, 2018.
  • [4] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Nonlinear Programming. Stanford University Press, 1958.
  • [5] M. Benzi, G.H. Golub, , and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.
  • [6] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer, third edition, 2008.
  • [7] D.L. Brown, R. Cortez, and M.L. Minion. Accurate projection methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 168:464–499, 2001.
  • [8] M. Cai. Analysis of some projection method based preconditioners for models of incompressible flow. Applied Numerical Mathematics, 90:77–90, 2015.
  • [9] S. Charnyi, T. Heister, M.A. Olshanskii, and L.G. Rebholz. On conservation laws of Navier–Stokes Galerkin discretizations. Journal of Computational Physics, 337:289–308, 2017.
  • [10] A.J. Chorin. Numerical solution of the navier–stokes equations. Mathematics of Computation, 22:745–762, 1968.
  • [11] J. de Frutos, B. García-Archilla, V. John, and J. Novo. Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Advances in Computational Mathematics, 44:195–225, 2018.
  • [12] C. Doering, J. Wu, K. Zhao, and X. Zheng. Long time behavior of the two-dimensional boussinesq equations without buoyancy diffusion. Physics D: Nonlinear Phenomena, 376-377:144–159, 2018.
  • [13] M. Fortin and R. Glowinski. Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary-Value Problems. North Holland, 1983.
  • [14] B. Garcia-Archilla, V. John, and J. Novo. On the convergence order of the finite element error in the kinetic energy for high reynolds number incompressible flows. Computer Methods in Applied Mechanics and Engineering, 385:114032, 2021.
  • [15] B. Griffith. An accurate and efficient method for the incompressible navier–stokes equations using the projection method as a preconditioner. Journal of Computational Physics, 228:7565–7595, 2009.
  • [16] J.L. Guermond, C. Migeon, G. Pineau, and L. Quartapelle. Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. Journal of Fluid Mechanics, 450:169–199, 2002.
  • [17] J.L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 195(44):6011 – 6045, 2006.
  • [18] J.L. Guermond and L. Quartapelle. On stability and convergence of projection methods based on pressure poisson equation. International Journal for Numerical Methods in Fluids, 26:1039–1053, 1998.
  • [19] J.L. Guermond and J. Shen. On the error estimates for the rotational pressure-correction projection methods. Mathematics of Computation, 73:1719–1737, 2004.
  • [20] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, second edition, 2013.
  • [21] P. Keast. Moderate-degree tetrahedral quadrature formulas. Computer Methods in Applied Mechanics and Engineering, 55(3):339–348, 1986.
  • [22] A. Macleod. Acceleration of vector sequences by multi-dimensional delta2 methods. Communications in Applied Numerical Methods, 2(4):385–392, 1986.
  • [23] M.A. Olshanskii and L.G. Rebholz. Longer time accuracy for incompressible Navier–Stokes simulations with the EMAC formulation. Computer Methods in Applied Mechanics and Engineering, 372:113369, 2020.
  • [24] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1(4):387–402, 1994.
  • [25] Y. Saad and M.H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7:856–869, 1986.
  • [26] P.W. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows. Journal of Numerical Mathematics, 25(4):249–276, 2017.
  • [27] L.R. Scott and M. Vogelius. Conforming finite element methods for incompressible and nearly incompressible continua. In Lectures in Applied Mathematics, volume 22, pages 221–244. 1984.
  • [28] R. Temam. Une méthode d’approximation de la solution des équations de Navier-Stokes. Bulletin de la Société Mathématique de France, 96:115–152, 1968.
  • [29] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, 1984.
  • [30] L.J.P. Timmermans, P.D. Minev, and F.N. Van De Vosse. An approximate projection scheme for incompressible flow using spectral elements. International Journal for Numerical Methods in Fluids, 22(7):673–688, 1996.
  • [31] X. Zheng, J. Lowengrub, A. Anderson, and V. Cristini. Adaptive unstructured volume remeshing-ii: Applications to two- and three-dimensional levelset simulations of multiphase flow. Journal of Computational Physics, 208:625–650, 2005.