This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isospin Mixing and the Cubic Isobaric Multiplet Mass Equation in the Lowest 𝑻=𝟐,𝑨=𝟑𝟐T=2,~{}A=32 Quintet

M. Kamil Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    S. Triambak [email protected] Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    A. Magilligan Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA    A. García Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA    B. A. Brown Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA    P. Adsley School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa    V. Bildstein Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada    C. Burbadge Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada    A. Diaz Varela Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada    T. Faestermann Physik Department, Technische Universität München, D-85748 Garching, Germany    P. E. Garrett Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    R. Hertenberger Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany    N. Y. Kheswa iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa    K. G. Leach Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA    R. Lindsay Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    D. J. Marín-Lámbarri Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    F. Ghazi Moradi Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada    N. J. Mukwevho Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    R. Neveling iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa    J. C. Nzobadila Ondze Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    P. Papka Department of Physics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa    L. Pellegri School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa    V. Pesudo Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    B. M. Rebeiro Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa    M. Scheck School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom    F. D. Smit iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa    H. -F. Wirth Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
Abstract

The Isobaric Multiplet Mass Equation (IMME) is known to break down in the first T=2,A=32T=2,A=32 isospin quintet. In this work we combine high-resolution experimental data with state-of-the-art shell-model calculations to investigate isospin mixing as a possible cause for this violation. The experimental data are used to validate isospin-mixing matrix elements calculated with newly developed shell-model Hamiltonians. Our analysis shows that isospin mixing with non-analog T=1T=1 states contributes to the IMME breakdown, making the requirement of an anomalous cubic term inevitable for the multiplet.

preprint: APS/123-QED

If nuclear isospin TT were a conserved quantity, the members of an isobaric multiplet would be (2T+1)(2T+1)-fold degenerate. However, it is known Benenson and Kashy (1979) that this degeneracy is broken by two-body charge-dependent interactions, which can be described at tree-level as the sum of an isoscalar, isovector and isotensor operator of rank 2. To first order, the energy spacings between the multiplet members can be obtained from the expectation value of the charge-dependent perturbation. On applying the Wigner-Eckart theorem to the perturbing Hamiltonian, the mass splittings are described by the isobaric multiplet mass equation (IMME) Wigner (1958); Weinberg and Treiman (1959)

M(Tz)=a+bTz+cTz2,M(T_{z})=a+bT_{z}+cT_{z}^{2}, (1)

where each member of the multiplet is characterized by its isospin projection Tz=(NZ)/2T_{z}=(N-Z)/2.

The general success of the IMME over a large mass range made it a reliable tool to address a variety of research problems. For example, it was used to test recent advances in nuclear theory Holt et al. (2013); Ormand et al. (2017); Martin et al. (2021), map the proton dripline Ormand (1997), identify candidates for two-proton radioactivity Dossat et al. (2005); Blank and Borge (2008), search for physics beyond the standard model Adelberger et al. (1999), infer rapid proton capture (rprp) nuclear reaction rates relevant for studies of novae and x-ray bursts Wrede et al. (2009); Richter and Brown (2013); Ong et al. (2017), assess global nuclear mass model predictions Liu et al. (2011) and constrain calculations relevant for CKM unitarity tests Hardy and Towner (2015).

Table 1: Cubic IMME fit to measured mass excesses of the lowest T=2T=2 quintet in A=32A=32. The fit yields d=0.89(11)d=0.89(11) keV, with P(χ2,ν)=0.95P(\chi^{2},\nu)=0.95.
Isobar TzT_{z} MexpM_{\rm exp} (keV)a MIMMEM_{\rm IMME} (keV)
Ar32{}^{32}{\rm Ar} 2-2 2200.4(1.8)-2200.4(1.8) 2200.35(158)-2200.35(158)
Cl32{}^{32}{\rm Cl} 1-1 8288.4(7)b-8288.4(7)^{b} 8288.43(47)-8288.43(47)
S32{}^{32}{\rm S} 0 13967.58(28)c-13967.58(28)^{c} 13967.57(25)-13967.57(25)
P32{}^{32}{\rm P} +1+1 19232.44(7)d-19232.44(7)^{d} 19232.43(7)-19232.43(7)
Si32{}^{32}{\rm Si} +2+2 24077.69(30)-24077.69(30) 24077.69(30)-24077.69(30)

a Ground state masses are taken from Ref. Meng Wang and W. J. Huang and F.G. Kondev and G. Audi and S. Naimi (2021).

b Ex=5046.3(4)E_{x}=5046.3(4) keV from Ref. Bhattacharya et al. (2008).

c Ex=12047.96(28)E_{x}=12047.96(28) keV from Ref. Triambak et al. (2006).

d Ex=5072.44(6)E_{x}=5072.44(6) keV from Ref. Endt (1998).

In this context, the lowest isospin T=2T=2 quintet for A=32A=32 (with spin and parity Jπ=0+J^{\pi}=0^{+}) is an interesting case. The β\beta decay of 32Ar, the most proton-rich member of the quintet was previously used for searches of exotic scalar Adelberger et al. (1999) and tensor Araujo-Escalona et al. (2020) weak interactions as well as for benchmarking isospin symmetry breaking (ISB) corrections Bhattacharya et al. (2008) important for obtaining a precise value of VudV_{ud}, the up-down element of the CKM quark-mixing matrix Hardy and Towner (2015). In fact, the A=32A=32 quintet is one of the most extensively studied and precisely measured multiplets to date Triambak et al. (2006); Kwiatkowski et al. (2009); Kankainen et al. (2010); Blaum et al. (2003); Signoracci and Brown (2011); Lam et al. (2013). It remains an anomalous case, for which the IMME breaks down significantly MacCormick and Audi (2014). A satisfactory fit to the measured masses is only obtained with an additional cubic dTz3dT_{z}^{3} term, with d=0.89(11)d=0.89(11) keV (c.f. Table 1). This is the smallest and most precisely determined violation of the IMME observed so far. Unlike other multiplets, where apparent violations of the IMME were resolved through subsequent measurements Herfurth et al. (2001); Pyle et al. (2002); Gallant et al. (2014); Glassman et al. (2015); Zhang et al. (2012); Su et al. (2016), the A=32A=32 anomaly has persisted over several years, despite high-precision remeasurements of ground state masses Kwiatkowski et al. (2009); Kankainen et al. (2010); Shi et al. (2005) as well as excitation energies Triambak et al. (2006); Pyle et al. (2002). A recent compilation MacCormick and Audi (2014) showed the A=32A=32 quintet to be a unique case, in which the χ2\chi^{2} value for a cubic fit yields 95% probability that it is the correct model to describe the data. Since there are no known fundamental reasons that preclude a cubic IMME term, it is interesting that the magnitude of the extracted dd coefficient for this case agrees well with theoretical estimates that used a simple nonperturbative model Henley and Lacy (1969) or a three-body second-order Coulomb interaction Bertsch and Kahana (1970), both of which allow a non-vanishing cubic term, with |d|1keV\lvert d\rvert\approx 1~{}{\rm keV}. Alternatively, the role of isospin-mixing with non-analog 0+0^{+} states was also theoretically investigated in the recent past Signoracci and Brown (2011); Lam et al. (2013).

We delve into the above aspect here, via an analysis of high-resolution experimental data and a comparison with calculations that use recently developed shell model Hamiltonians Magilligan and Brown (2020). For the former, we mainly rely on data from a previous 32Ar β\beta decay experiment at CERN-ISOLDE Adelberger et al. (1999), that acquired β\beta-delayed protons from unbound states in the daughter 32Cl (Sp1581S_{p}\approx 1581 keV) with high resolution (full widths at half maximum of 6\sim 6 keV). The primary goal of the ISOLDE experiment was to search for scalar currents in the weak interaction, by determining the βν\beta\nu angular correlation (aβνa_{\beta\nu}) for the decay, via a precise analysis of the shape of the superallowed β\beta-delayed proton peak Adelberger et al. (1999). Part of the proton spectrum is shown in Fig. 1.

The high resolution nature of the ISOLDE data allow an identification of potential isospin admixtures to the T=2T=2 isobaric analog state (IAS) in 32Cl. The nature of each β\beta transition is encoded in the shapes of the proton groups, which would be different if the transitions were Fermi (0+0^{+} \to 0+0^{+}), with aβν=1a_{\beta\nu}=1 or Gamow-Teller (0+0^{+} \to 1+1^{+}), with aβν=1/3a_{\beta\nu}=-1/3.

Refer to caption
Figure 1: 32Ar β\beta-delayed proton spectrum from the ISOLDE experiment Adelberger et al. (1999) and its corresponding R-matrix fit. The inset shows a magnified portion of the spectrum.

We analyzed these data using the R-matrix formalism described in Refs. Barker (1971); Warburton (1986). In the analysis, the proton peaks were grouped as p0,p1,p2p_{0},~{}p_{1},~{}p_{2} or p3p_{3} depending on whether the proton emission left the residual 31S nucleus in its ground state or any of its first three excited states at 1249, 2234 and 3077 keV (see Fig. 9 in Ref. Bhattacharya et al. (2008)). Interference was allowed between all levels that had the same quantum numbers, transition type (Fermi or Gamow-Teller), and final states in 31S. The R-matrix fits folded in the detector response function and lepton recoil effects (described in Ref. Adelberger et al. (1999)), and were parameterized using various JπJ^{\pi} values for the daughter 32Cl states and associated aβνa_{\beta\nu} coefficients. The fits yielded relative intensities, 32Cl excitation energies and intrinsic widths. They were repeated for different values of aβνa_{\beta\nu}, spin-parity combinations and p0,p1,p2p_{0},~{}p_{1},~{}p_{2}, p3p_{3} assignments for the daughter levels to obtain best agreement with experimental data. A few important features of the analysis are described below.

Peaks C, E and H were assumed to be from the p1p_{1} group. These assignments were based on data reported by independent 32Ar β\beta-delayed proton-γ\gamma coincidence measurements Bhattacharya et al. (2008); Blank et al. (2021). We observe that a reasonably a good R-matrix fit is attained (Fig. 1) with the parameters listed in Table 2. The fit assumes that peak B arises from a Fermi transition, while the others (apart from peak I) are exclusively from Gamow-Teller decays. Based purely on χ2\chi^{2} values from independent fits, peak I could be either from a Fermi or Gamow-Teller decay.

Table 2: R-matrix fit results for the ISOLDE data. IprelI_{p}^{\rm rel} is the intensity relative to the p0p_{0} superallowed proton group. The last column lists corresponding states observed via the S32(3He,t){}^{32}{\rm S}(^{3}{\rm He},t) reaction.
Peak Group 32Ar β\beta decay Adelberger et al. (1999) S32(3He,t){}^{32}{\rm S}(^{3}{\rm He},t)
aβνa_{\beta\nu} ExE_{x} (keV) Γ\Gamma (keV) IprelI_{p}^{\rm rel} (%) ExE_{x} (keV)
A p0p_{0} 1/3-1/3 4366(4)4366(4) <1<1 0.23(3) 4356(5)4356(5)
B p0p_{0} 1 4443(3)4443(3) 77(15)77(15) 0.8(1)
C p1p_{1} 1/3-1/3 5721(4) 11(3)11(3) 0.10(3)
D p0p_{0} 1/3-1/3 4588(4)4588(4) 30(4)30(4) 0.20(3) 4584(5)
E p1p_{1} 1/3-1/3 6034(2)6034(2) 13(3)13(3) 0.14(2) ..
F p0p_{0} 1/3-1/3 4817(2)4817(2) 26(5)26(5) 0.26(3) 4815(5)
G p0p_{0} 1/3-1/3 5020(2)5020(2) 21(2)21(2) 0.49(6) 5020(5)
H p1p_{1} 1/3-1/3 6530(2)6530(2) 10(3)10(3) 0.25(3)
I p0p_{0} 1/3-1/3 or 1 5302(2)5302(2) 1\leq 1 0.45(4)
χ2/ν\chi^{2}/\nu = 0.80
Refer to caption
Figure 2: Triton spectrum from S32(3He,t){}^{32}{\rm S}(^{3}{\rm He},t) at θlab=10\theta_{\rm lab}=10^{\circ}.

We compared these results with S32(3He,t){}^{32}{\rm S}(^{3}{\rm He},t) data that were independently obtained at the MLL tandem accelerator facility in Garching, Germany. The experiment used \sim300 enA of 33 MeV He++3{}^{3}{\rm He}^{++} ions, incident on a 120μ120~{}\mug/cm2-thick natural ZnS target. The tritons exiting the target were momentum analyzed using the high-resolution Q3D magnetic spectrograph Löffler et al. (1973); Dollinger and Faestermann (2018). A sample triton spectrum in the energy range of interest is shown in Fig. 2. These data provided an important confirmation of the p0p_{0} assignments for peaks A, D, F and G in our R-matrix analysis. Additionally, since the S32(3He,t){}^{32}{\rm S}(^{3}{\rm He},t) charge-exchange reaction predominantly populates Jπ=1+J^{\pi}=1^{+}, T=1T=1 levels at forward angles 111This assumes no anomalous isospin-mixing mechanisms within 32S., the states observed at these energies in both 32Ar β\beta decay and the S32(3He,t){}^{32}{\rm S}(^{3}{\rm He},t) reaction can be ruled out as sources of Jπ=0+J^{\pi}=0^{+} isospin impurity. This comparative analysis leaves only the 4443 and 5302 keV levels (c.f. Table 2) as potential admixed states. We find from the β\beta decay data that the p1p_{1} intensity for the latter is around 1.2 times larger than its p0p_{0} group. In comparison, the p1p_{1} intensity for the IAS is roughly 80 times smaller than the p0p_{0}. This is due to the low penetrability of ł=2\l=2 protons from the Jπ=0+J^{\pi}=0^{+} IAS. The above discrepancy makes it highly unlikely for the 5302 keV state to have spin-parity 0+0^{+}, which rules it out as a source of isospin mixing.

We next used the measured β\beta-delayed proton intensities in Table 2, together with shell model calculations of isospin mixing to investigate the matter further. For the latter we used newly developed isospin non-conserving (INC) USDC and USDI interactions, described extensively in Ref. Magilligan and Brown (2020). The INC parameters in the new USD Hamiltonians were obtained from a fit to several mirror displacement energies and stringently tested via a comparison with experimental data Magilligan and Brown (2020). The isospin-mixing matrix elements calculated with these Hamiltonians were robustly validated Magilligan and Brown (2020) with results from independent high-precision 31,32Cl β\beta decay experiments Bennett et al. (2016); Melconian et al. (2011, 2012), where large isospin-mixing in the daughter 31,32S states were observed. More recently, such calculations were used together with a 32Ar β\beta decay measurement Blank et al. (2021), that acquired valuable proton-gamma coincidence data, albeit with lower proton energy resolution. Ref. Blank et al. (2021) identified two possible sources of T=1T=1 isospin mixing at 4799 and 4561 keV. However, their measured proton branches were significantly lower than calculated values. We show below that the higher-resolution ISOLDE data justifies ruling out these proposed levels, while providing a viable alternative for the admixed T=1,0+T=1,0^{+} state, which is consistent with both theory predictions as well as experimental observations.

Our shell model calculations show that the isospin mixing within the Tz=1,0,and1T_{z}=1,~{}0,~{}\mathrm{and}~{}-1 members of the quintet occurs primarily with a single T=1T=1 state, located few hundred keV below the T=2T=2 IAS in each isobar. The results are summarized in Table 3, which lists the energy differences (ΔE=EiEIAS\Delta E=E_{i}-E_{\rm IAS}) between the admixed T=1T=1 and T=2T=2 states for each nucleus, and the calculated isospin-mixing matrix element (vv) for 32Cl. The evaluated mixing matrix elements for each of the three nuclei are plotted in Fig. 3. We note that the mixing matrix elements obtained with the older USDB-CD interactions Ormand and Brown (1989) are nearly a factor of two smaller than the ones obtained with the newer interactions, for all three isobars. This is consistent with previous observations for 31,32Cl β\beta decay Magilligan and Brown (2020).

Refer to caption
Figure 3: Evaluated isospin mixing matrix elements (vv) using various interactions
Table 3: Calculated energy differences between the T=2T=2 IAS and the nearest 0+,T=10^{+},~{}T=1 state in 32Cl, 32S, and 32P. The isospin mixing matrix element in 32Cl is listed for comparison.
Interaction ΔE\Delta E (keV) vv (keV)
32Cl 32S 32P 32Cl
USDC -226 -186 -237 40
USDI -308 -266 -326 41
USDCm -324 -239 -293 46
USDIm -405 -321 -383 47
USDB-CD -440 -378 -427 22
Expt (this work) -603 39.0(24)39.0(24)

The predicted Jπ;T=0+;1J^{\pi};T=0^{+};1 level in 32Cl can be identified by obtaining an experimental value of vv from the data in Fig. 1 and Table 2. For two-state mixing, vexptv_{\rm expt} is simply

vexpt=ΔEexpt[B(F)admixB(F)SA]1/2,v_{\rm expt}=\Delta E_{\rm expt}\left[\frac{B(F)_{\rm admix}}{B(F)_{\rm SA}}\right]^{1/2}, (2)

where the ratio in the square bracket is the (Fermi) strength to the admixed T=1T=1 state, relative to the superallowed decay. This is easily determined from the measured IprelI_{p}^{\rm rel} values in Table 2, the ratio of calculated phase-space factors, a small ISB correction Bhattacharya et al. (2008) and the p0p_{0} contribution to the total superallowed intensity. On applying this prescription to the only candidate 0+0^{+} level at 4443 keV, we obtain a vexpt=39.0(24)v_{\rm expt}=39.0(24) keV, in excellent agreement with the calculations. The results in Table 3, together with our aforementioned observations and the experimental values listed in Table 2 allow a credible identification of the 4443 keV level as the predicted admixed T=1T=1 state. The discrepancy between theory and experiment for ΔE\Delta E should not be surprising, given the \sim150 keV root-mean-square (rms) deviation for energies in USD interactions Magilligan and Brown (2020).

We next investigated additional cubic (dTz3dT_{z}^{3}) and quartic (eTz4eT_{z}^{4}) terms to the IMME due to such isospin mixing. One can determine the exact solutions for the dd and ee coefficients by modifying Eq. (1) to incorporate such terms, such that

d\displaystyle d =112(M22M1+2M1M2)and\displaystyle=\frac{1}{12}\left(M_{2}-2M_{1}+2M_{-1}-M_{-2}\right)~{}{\rm and} (3)
e\displaystyle e =124(M24M1+6M04M1+M2),\displaystyle=\frac{1}{24}\left(M_{2}-4M_{1}+6M_{0}-4M_{-1}+M_{-2}\right),

where the MTZM_{T_{Z}} are isobar masses in the quintet. The results for dd and ee using the calculated values of vv and ΔE\Delta E are shown in Fig. 4, and labeled as “unshifted”. We repeated these evaluations by shifting the T=2T=2 states in 32Cl, 32S and 32P by the amount needed to reproduce our experimentally determined 603 keV energy difference in 32Cl. The same ΔE\Delta E was used for the three isobars due to the lack of similar experimental information for 32S and 32P. The shifts were accomplished by adding a T2T^{2} term to the Hamiltonian that shifts the T=2T=2 states relative to the others, without changing the isospin-mixing. As evident in Fig. 4, the shifts mildly affect the ee coefficient (due to changes in the T=0T=0 mixing with the IAS in 32S), but significantly decrease the calculated dd coefficient to 0.3\approx 0.30.40.4 keV for the new interactions.

Refer to caption
Figure 4: Extracted cubic and quartic coefficients. The three groups of results are obtained A) at face value, B) by shifting the energies of the T=2T=2 states in 32Cl, 32S and 32P to match the 603 keV energy difference observed in 32Cl, and C) on removing the T=1T=1 isospin mixing. The shaded areas correspond to experimental values.

The single-state contributions from T=0T=0 and T=1T=1 levels are

di\displaystyle d_{i} =16sP+16sCl\displaystyle=-\frac{1}{6}s_{\rm P}+\frac{1}{6}s_{\rm Cl}\newline (4)
ei\displaystyle e_{i} =16sP+14sS16sCl,\displaystyle=-\frac{1}{6}s_{\rm P}+\frac{1}{4}s_{\rm S}-\frac{1}{6}s_{\rm Cl},

where s=v2/ΔEs=-v^{2}/\Delta E is the shift in each IAS due to two-state mixing. Thus, one can remove the T=1T=1 mixing contribution for further investigation (labeled as “removed” in Fig. 4). We observe that on doing so, the extracted coefficients are mostly consistent with zero. The negative ee coefficient from the USDI calculation is due to mixing with a T=0T=0 state in 32S. However such T=0T=0 mixing would not explain the non-zero dd coefficient required for the quintet, as evident from Eq. (4).

The above analysis validates the contention that isospin mixing with predicted T=1T=1 levels necessitates a small cubic term for the multiplet. Our extracted dd coefficients for the “shifted” calculations from different USDC and USDI Hamiltonians agree reasonably well with one another, but are smaller than the experimental value d=0.89(11)d=0.89(11) keV, from Table 1.

Table 4: Calculated proton emission amplitudes from states in 32Cl, compared with experiment. The last column lists calculated isospin mixing corrections for 32Ar superallowed Fermi decay.
Interaction Proton emission amplitudes (A)(A) δCcm\delta_{C}^{\rm cm}
(shifted calculation) T=2T=2 T=2T=2 T=1T=1 (%)
(p0)(p_{0}) (p1)(p_{1}) (p0)(p_{0})
USDC 0.011 0.022 0.21 0.55
USDI 0.011 0.031 0.19 0.58
USDCm 0.0052 0.031 0.21 0.15
USDIm 0.0043 0.031 0.19 0.70
USDB-CD 0.0024 0.017 0.21 0.15
Γsp\Gamma_{\rm sp} (keV) 990 17.5 590
Γexpt\Gamma_{\rm expt} (keV) 0.0182(5)a 0.000233(7)a 77(15)b
AexptA_{\rm expt} 0.0041(1)a 0.0035(1)a 0.34(4)b

a From Ref. Bhattacharya et al. (2008).

b This work, using data from Ref. Adelberger et al. (1999).

As further tests of our calculations, we also evaluated amplitudes for isospin-forbidden proton emission from the two admixed Jπ=0+J^{\pi}=0^{+} levels in 32Cl and the effect of the T=1T=1 isospin mixing on the superallowed Fermi decay of 32Ar. Unlike the energy shift of the T=2T=2 IAS in 32Cl, which is predominantly from isospin mixing with the predicted 02+{}^{+}_{2} T=1T=1 state below the IAS, isospin-forbidden proton emission from the IAS depends on T=1T=1 mixing with a large number of states in 32Cl and isospin mixing within 31S, which is dominated by mixing of the lowest T=3/2T=3/2 state into its ground state.

We calculated proton widths for p0p_{0} and p1p_{1} transitions from the 02+0_{2}^{+} admixed T=1T=1 state and the T=2T=2 IAS in 32Cl. The widths were evaluated using the simple expression

Γth=(C2S)(32/31)2Γsp,\Gamma_{\rm th}=(C^{2}S)(32/31)^{2}\Gamma_{\rm sp}, (5)

where the (32/31)2(32/31)^{2} factor is a center-of-mass correction Dieperink and de Forest (1974), the C2SC^{2}S are the shell model spectroscopic factors, and Γsp\Gamma_{\rm sp} are single-particle proton widths. Similar to Ref. Signoracci and Brown (2011), the Γsp\Gamma_{\rm sp} were calculated from pp + S31{}^{31}{\rm S} scattering on potentials obtained with an energy-density functional calculation with the Skx Skyrme-type interaction Alex Brown (1998). On the other hand, the measured proton widths Bhattacharya et al. (2008) for the T=2T=2 IAS are known to be 18.2(5)18.2(5) eV and 0.233(7)0.233(7) eV for the p0p_{0} and p1p_{1} protons respectively. Together with the calculated single-particle proton decay widths, we use these results to obtain experimental values for the decay amplitudes A=(C2S)1/2A=(C^{2}S)^{1/2}. These are simply determined from the relation Γexpt=Aexpt2(32/31)2Γsp\Gamma_{\rm expt}=A_{\rm expt}^{2}(32/31)^{2}\Gamma_{\rm sp}. The results for AexptA_{\rm expt} are shown in Table 4 and compared with theory predictions, obtained using the ‘shifted’ calculations.222For example, for the shifted USDCm calculation, the calculated amplitude can be decomposed as AA = 0.0041 (01+{}^{+}_{1}; T=1T=1) ++ 0.0159 (02+{}^{+}_{2}; T=1T=1) ++ 0.0009 (03+{}^{+}_{3}; T=1T=1) ++ 0.0009 (all other T=1T=1) 0.0166-0.0166 (31S; T=3/2T=3/2) = 0.0052. The USDC result has a larger amplitude, mainly due to a 50% smaller destructive contribution from the T=3/2T=3/2 state in 31S. We observe reasonable agreement between theory and experiment, except for the T=2T=2 p1p_{1} transition, whose calculated amplitudes are found to be much larger.

Finally, we also provide isospin-symmetry-breaking (ISB) corrections for 32Ar \to 32Cl superallowed Fermi decay, due to the isospin-mixing in 32Cl. The T=2T=2 \to T=2T=2 superallowed strength is reduced by a factor (1δC)(1-\delta_{C}), where δC\delta_{C} is the total ISB correction Hardy and Towner (2015). Such corrections play a critical role in testing the unitarity of the CKM matrix and placing important constraints on beyond the standard model (BSM) physics Hardy and Towner (2015). The ISB correction is generally expressed as a sum of two separate contributions, δC=δCcm+δCro\delta_{C}=\delta_{C}^{\rm cm}+\delta_{C}^{\rm ro} Bhattacharya et al. (2008), from configuration mixing and a overlap mismatch between the parent and daughter radial wavefunctions. The former are known to quite model dependent as they are very sensitive to the details of their calculation Hardy and Towner (2015). Our calculated results for δCcm\delta_{C}^{\rm cm} (from the T=1T=1 mixing in 32Cl) are listed the final column of Table 4. It may be noted that for the shifted USDCm and USDIm calculations, which show best agreement with the measured T=2T=2 p0p_{0} amplitude, we obtain δCcm\delta_{C}^{\rm cm} = 0.15% and 0.70% respectively. From a previous evaluation of δCro=1.4%\delta_{C}^{\rm ro}=1.4\% Bhattacharya et al. (2008), these yield δC=1.6%\delta_{C}=1.6\% and 2.1%2.1\%, in agreement with the experimentally extracted value, δCexpt=2.1(8)%\delta_{C}^{\rm expt}=2.1(8)\% Bhattacharya et al. (2008).

In summary, we used high-resolution experimental data to validate newly-developed shell model calculations of isospin mixing in 32Cl. This analysis is used to investigate the observed IMME violation in the first T=2,A=32T=2,~{}A=32 quintet. We show that isospin mixing with shell-model-predicted T=1T=1 states below the IAS necessarily result in a break down of the IMME, leading to the requirement of a small cubic term. However, this alone cannot explain the magnitude of the experimental dd coefficient in Table 1. Experimental investigations of intruder 0+0^{+} levels, isospin-mixing in 32S and 32P, continuum coupling of the proton unbound states in 32Cl, and further mass measurements may be useful in this regard.

Our observations pertaining to 32Ar \to 32Cl superallowed Fermi decay may also be useful to benchmark theory calculations Bhattacharya et al. (2008) of model-dependent ISB corrections that are important for top-row CKM unitarity tests Hardy and Towner (2015). This is particularly relevant in light of recent evaluations of radiative corrections Seng et al. (2018) that show an apparent violation of CKM unitarity at the >3σ>3\sigma level Seng et al. (2021).

Acknowledgements.
We thank Eric Adelberger and Gordon Ball for insightful and illuminating discussions. This work was partially supported by the National Research Foundation (NRF), South Africa under Grant No. 85100, the U.S. National Science Foundation under Grant No. PHY-1811855 and the U.S. Department of Energy under Grants No. DE-SC0017649 and DE-FG02-93ER40789. P.A. acknowledges funding from the Claude Leon Foundation in the form of a postdoctoral fellowship.

References

  • Benenson and Kashy (1979) W. Benenson and E. Kashy, Rev. Mod. Phys. 51, 527 (1979).
  • Wigner (1958) E. P. Wigner, in Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research, Houston, Vol. 1, edited by W. O. Milligan (The Robert Welch Foundation, 1958, 1958) p. 88.
  • Weinberg and Treiman (1959) S. Weinberg and S. B. Treiman, Phys. Rev. 116, 465 (1959).
  • Holt et al. (2013) J. D. Holt, J. Menéndez,  and A. Schwenk, Phys. Rev. Lett. 110, 022502 (2013).
  • Ormand et al. (2017) W. E. Ormand, B. A. Brown,  and M. Hjorth-Jensen, Phys. Rev. C 96, 024323 (2017).
  • Martin et al. (2021) M. S. Martin, S. R. Stroberg, J. D. Holt,  and K. G. Leach, Phys. Rev. C 104, 014324 (2021).
  • Ormand (1997) W. E. Ormand, Phys. Rev. C 55, 2407 (1997).
  • Dossat et al. (2005) C. Dossat et al.Phys. Rev. C 72, 054315 (2005).
  • Blank and Borge (2008) B. Blank and M. Borge, Progress in Particle and Nuclear Physics 60, 403 (2008).
  • Adelberger et al. (1999) E. G. Adelberger et al.Phys. Rev. Lett. 83, 1299 (1999).
  • Wrede et al. (2009) C. Wrede, J. A. Caggiano, J. A. Clark, C. M. Deibel, A. Parikh,  and P. D. Parker, Phys. Rev. C 79, 045808 (2009).
  • Richter and Brown (2013) W. A. Richter and B. A. Brown, Phys. Rev. C 87, 065803 (2013).
  • Ong et al. (2017) W.-J. Ong et al.Phys. Rev. C 95, 055806 (2017).
  • Liu et al. (2011) M. Liu, N. Wang, Y. Deng,  and X. Wu, Phys. Rev. C 84, 014333 (2011).
  • Hardy and Towner (2015) J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).
  • Meng Wang and W. J. Huang and F.G. Kondev and G. Audi and S. Naimi (2021) Meng Wang and W. J. Huang and F.G. Kondev and G. Audi and S. Naimi, Chinese Physics C 45, 030003 (2021).
  • Bhattacharya et al. (2008) M. Bhattacharya, D. Melconian, A. Komives, S. Triambak, A. García, E. G. Adelberger, B. A. Brown, M. W. Cooper, T. Glasmacher, V. Guimaraes, P. F. Mantica, A. M. Oros-Peusquens, J. I. Prisciandaro, M. Steiner, H. E. Swanson, S. L. Tabor,  and M. Wiedeking, Phys. Rev. C 77, 065503 (2008).
  • Triambak et al. (2006) S. Triambak, A. García, E. G. Adelberger, G. J. P. Hodges, D. Melconian, H. E. Swanson, S. A. Hoedl, S. K. L. Sjue, A. L. Sallaska,  and H. Iwamoto, Phys. Rev. C 73, 054313 (2006).
  • Endt (1998) P. Endt, Nuclear Physics A 633, 1 (1998).
  • Araujo-Escalona et al. (2020) V. Araujo-Escalona, D. Atanasov, X. Fléchard, P. Alfaurt, P. Ascher, B. Blank, L. Daudin, M. Gerbaux, J. Giovinazzo, S. Grévy, T. Kurtukian-Nieto, E. Liénard, G. Quéméner, N. Severijns, S. Vanlangendonck, M. Versteegen,  and D. Zákoucký, Phys. Rev. C 101, 055501 (2020).
  • Kwiatkowski et al. (2009) A. A. Kwiatkowski, B. R. Barquest, G. Bollen, C. M. Campbell, D. L. Lincoln, D. J. Morrissey, G. K. Pang, A. M. Prinke, J. Savory, S. Schwarz, C. M. Folden, D. Melconian, S. K. L. Sjue,  and M. Block, Phys. Rev. C 80, 051302 (2009).
  • Kankainen et al. (2010) A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V. S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein,  and J. Äystö, Phys. Rev. C 82, 052501 (2010).
  • Blaum et al. (2003) K. Blaum, G. Audi, D. Beck, G. Bollen, F. Herfurth, A. Kellerbauer, H.-J. Kluge, E. Sauvan,  and S. Schwarz, Phys. Rev. Lett. 91, 260801 (2003).
  • Signoracci and Brown (2011) A. Signoracci and B. A. Brown, Phys. Rev. C 84, 031301 (2011).
  • Lam et al. (2013) Y. H. Lam, N. A. Smirnova,  and E. Caurier, Phys. Rev. C 87, 054304 (2013).
  • MacCormick and Audi (2014) M. MacCormick and G. Audi, Nuclear Physics A 925, 61 (2014).
  • Herfurth et al. (2001) F. Herfurth, J. Dilling, A. Kellerbauer, G. Audi, D. Beck, G. Bollen, H.-J. Kluge, D. Lunney, R. B. Moore, C. Scheidenberger, S. Schwarz, G. Sikler, J. Szerypo,  and I. Collaboration, Phys. Rev. Lett. 87, 142501 (2001).
  • Pyle et al. (2002) M. C. Pyle, A. García, E. Tatar, J. Cox, B. K. Nayak, S. Triambak, B. Laughman, A. Komives, L. O. Lamm, J. E. Rolon, T. Finnessy, L. D. Knutson,  and P. A. Voytas, Phys. Rev. Lett. 88, 122501 (2002).
  • Gallant et al. (2014) A. T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, U. Chowdhury, A. Grossheim, R. Klawitter, A. A. Kwiatkowski, K. G. Leach, A. Lennarz, T. D. Macdonald, B. E. Schultz, J. Lassen, H. Heggen, S. Raeder, A. Teigelhöfer, B. A. Brown, A. Magilligan, J. D. Holt, J. Menéndez, J. Simonis, A. Schwenk,  and J. Dilling, Phys. Rev. Lett. 113, 082501 (2014).
  • Glassman et al. (2015) B. E. Glassman, D. Pérez-Loureiro, C. Wrede, J. Allen, D. W. Bardayan, M. B. Bennett, B. A. Brown, K. A. Chipps, M. Febbraro, C. Fry, M. R. Hall, O. Hall, S. N. Liddick, P. O’Malley, W. Ong, S. D. Pain, S. B. Schwartz, P. Shidling, H. Sims, P. Thompson,  and H. Zhang, Phys. Rev. C 92, 042501 (2015).
  • Zhang et al. (2012) Y. H. Zhang et al.Phys. Rev. Lett. 109, 102501 (2012).
  • Su et al. (2016) J. Su, W. Liu, N. Zhang, Y. Shen, Y. Lam, N. Smirnova, M. MacCormick, J. Wang, L. Jing, Z. Li, Y. Wang, B. Guo, S. Yan, Y. Li, S. Zeng, G. Lian, X. Du, L. Gan, X. Bai, Z. Gao, Y. Zhang, X. Zhou, X. Tang, J. He, Y. Yang, S. Jin, P. Ma, J. Ma, M. Huang, Z. Bai, Y. Zhou, W. Ma, J. Hu, S. Xu, S. Ma, S. Chen, L. Zhang, B. Ding, Z. Li,  and G. Audi, Physics Letters B 756, 323 (2016).
  • Shi et al. (2005) W. Shi, M. Redshaw,  and E. G. Myers, Phys. Rev. A 72, 022510 (2005).
  • Henley and Lacy (1969) E. M. Henley and C. E. Lacy, Phys. Rev. 184, 1228 (1969).
  • Bertsch and Kahana (1970) G. Bertsch and S. Kahana, Physics Letters B 33, 193 (1970).
  • Magilligan and Brown (2020) A. Magilligan and B. A. Brown, Phys. Rev. C 101, 064312 (2020).
  • Barker (1971) F. C. Barker, Australian Journal of Physics 24, 771 (1971).
  • Warburton (1986) E. K. Warburton, Phys. Rev. C 33, 303 (1986).
  • Blank et al. (2021) B. Blank, N. Adimi, M. Alcorta, A. Bey, M. J. G. Borge, B. A. Brown, F. de Oliveira Santos, C. Dossat, H. O. U. Fynbo, J. Giovinazzo, H. H. Knudsen, M. Madurga, A. Magilligan, I. Matea, A. Perea, K. Sümmerer, O. Tengblad,  and J. C. Thomas, Eur. Phys. J. A 57, 28 (2021).
  • Löffler et al. (1973) M. Löffler, H. Scheerer,  and H. Vonach, Nuclear Instruments and Methods 111, 1 (1973).
  • Dollinger and Faestermann (2018) G. Dollinger and T. Faestermann, Nuclear Physics News 28, 5 (2018).
  • Bennett et al. (2016) M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, D. W. Bardayan, A. A. Chen, K. A. Chipps, C. Fry, B. E. Glassman, C. Langer, N. R. Larson, E. I. McNeice, Z. Meisel, W. Ong, P. D. O’Malley, S. D. Pain, C. J. Prokop, H. Schatz, S. B. Schwartz, S. Suchyta, P. Thompson, M. Walters,  and X. Xu, Phys. Rev. Lett. 116, 102502 (2016).
  • Melconian et al. (2011) D. Melconian, S. Triambak, C. Bordeanu, A. García, J. C. Hardy, V. E. Iacob, N. Nica, H. I. Park, G. Tabacaru, L. Trache, I. S. Towner, R. E. Tribble,  and Y. Zhai, Phys. Rev. Lett. 107, 182301 (2011).
  • Melconian et al. (2012) D. Melconian, S. Triambak, C. Bordeanu, A. García, J. C. Hardy, V. E. Iacob, N. Nica, H. I. Park, G. Tabacaru, L. Trache, I. S. Towner, R. E. Tribble,  and Y. Zhai, Phys. Rev. C 85, 025501 (2012).
  • Ormand and Brown (1989) W. E. Ormand and B. A. Brown, Nuclear Physics A 491, 1 (1989).
  • Dieperink and de Forest (1974) A. E. L. Dieperink and T. de Forest, Phys. Rev. C 10, 543 (1974).
  • Alex Brown (1998) B. Alex Brown, Phys. Rev. C 58, 220 (1998).
  • Seng et al. (2018) C.-Y. Seng, M. Gorchtein, H. H. Patel,  and M. J. Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018).
  • Seng et al. (2021) C.-Y. Seng, D. Galviz, W. J. Marciano,  and U.-G. Meißner, “An update on |Vus||{V}_{us}| and |Vus/Vud||{V}_{us}/{V}_{ud}| from semileptonic kaon and pion decays,”  (2021), arXiv:2107.14708 [hep-ph] .