This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isoperimetric inequalities for Neumann eigenvalues on bounded domains in rank-1 symmetric spaces

Yifeng Meng School of Mathematical Sciences, Fudan University, Shanghai, 200433, China [email protected]  and  Kui Wang School of Mathematical Sciences, Soochow University, Suzhou, 215006, China [email protected]
Abstract.

In this paper, we prove sharp isoperimetric inequalities for lower order eigenvalues of Neumann Laplacian on bounded domains in both compact and noncompact rank-1 symmetric spaces. Our results generalize the work of Wang and Xia for bounded domains in the hyperbolic space [14], and Szegö-Weinberger inequalities in rank-1 symmetric spaces obtained by Aithal and Santhanam [1].

Key words and phrases:
Neumann eigenvalues, Isoperimetric inequality, Rank-1 symmetric space
2010 Mathematics Subject Classification:
35P15, 58G25
The research of the second author is supported by Natural Science Foundation of Jiangsu Province Grant No. BK20231309

1. Introduction

Let Ω\Omega be a bounded domain with smooth boundary, and we consider the following Neumann eigenvalue problem

(1.1) {Δu(x)=μ(Ω)u(x),xΩ,νu(x)=0,xΩ,\displaystyle\begin{cases}-\Delta u(x)=\mu(\Omega)u(x),&\quad x\in\Omega,\\ \partial_{\nu}u(x)=0,&\quad x\in\partial\Omega,\end{cases}

where ν\nu is the outward unit normal to Ω\partial\Omega. It is well known that the spectrum of problem (1.1) is discrete and denoted by

0=μ0(Ω)<μ1(Ω)μ2(Ω)+\displaystyle 0=\mu_{0}(\Omega)<\mu_{1}(\Omega)\leq\mu_{2}(\Omega)\leq\cdots\to+\infty

with its multiplicity. For a bounded domain in n\mathbb{R}^{n}, the classic Szegö-Weinberger inequality asserts that the ball is the unique maximizer of the first nonzero Neumann eigenvalue among domains having the same volume in n\mathbb{R}^{n}, namely,

(1.2) μ1(Ω)μ1(B),\displaystyle\mu_{1}(\Omega)\leq\mu_{1}(B),

where BB is a round ball in n\mathbb{R}^{n} with volume equal to |Ω||\Omega| (the volume of Ω\Omega). This result was proved by Szegö [10] in planer domains, and by Weinberger [13] for all dimensions. Moreover inequality (1.2) also holds for bounded domains in hyperbolic space, a hemisphere [4, 15] and 94%94\% of the 22-sphere [8]. Recently, the second named author [11] proved a Szegö-Weinberger type inequality for bounded domains in curved spaces.

For bounded simply connected planer domains, applying Szegö’s conformal map technique one can prove

(1.3) 1μ1(Ω)+1μ2(Ω)2μ1(B),\displaystyle\frac{1}{\mu_{1}(\Omega)}+\frac{1}{\mu_{2}(\Omega)}\geq\frac{2}{\mu_{1}(B)},

where BB is a round disk with |B|=|Ω||B|=|\Omega|. Moreover estimate (1.3) is sharp and the equality holds on round balls. In 1993, Ashbaugh and Benguria [3] improved (1.3) by removing the assumption of simply connectedness, and conjectured that

Conjecture 1.1.

For any bounded domain Ω\Omega in n\mathbb{R}^{n} (n3n\geq 3), it holds

1μ1(Ω)+1μ2(Ω)++1μn(Ω)nμ1(B),\displaystyle\frac{1}{\mu_{1}(\Omega)}+\frac{1}{\mu_{2}(\Omega)}+\cdots+\frac{1}{\mu_{n}(\Omega)}\geq\frac{n}{\mu_{1}(B)},

where BB is a round ball in n\mathbb{R}^{n} with |B|=|Ω||B|=|\Omega|. Moreover the equality occurs if and only if Ω\Omega is a round ball.

We refer to [2, 7] and references therein for some progress towards this conjecture. Recently, Wang and Xia [14] made an important progress, which supports Conjecture 1.1 well. Precisely, they proved

Theorem 1.2 ([14]).

For any bounded domain Ω\Omega in n\mathbb{R}^{n} (n3n\geq 3), it holds

(1.4) 1μ1(Ω)+1μ2(Ω)++1μn1(Ω)n1μ1(B),\displaystyle\frac{1}{\mu_{1}(\Omega)}+\frac{1}{\mu_{2}(\Omega)}+\cdots+\frac{1}{\mu_{n-1}(\Omega)}\geq\frac{n-1}{\mu_{1}(B)},

where BB is a round ball in n\mathbb{R}^{n} having the same volume as Ω\Omega. Moreover the equality occurs if and only if Ω\Omega is a round ball.

Wang and Xia [14] also proved that inequality (1.4) holds true for bounded domains in hyperbolic space; Benguria, Brandolini and Chiacchio proved (1.4) for bounded domains in a hemisphere [5] later. Besides, Wang and Xia [12] proved a similar result as (1.4) for the ratio of Dirichlet eigenvalues.

In 1996 Aithal and Santhanam [1] proved that Szegö-Weineberger inequality holds true for bounded domains in noncompact rank-1 symmetric spaces, and domains contained in a geodesic ball of radius i(M)/4i(M)/4 in compact rank-1 symmetric spaces. Here and thereafter i(M)i(M) denotes the injectivity radius of MM when MM is compact. Naturally, one may consider the Conjecture 1.1 in rank-1 symmetric spaces. Regarding Theorem 1.2, we consider Wang-Xia type estimate (1.4) on bounded domains in the remaining rank-1 symmetric spaces, and prove sharp isoperimetric inequalities for both compact and noncompact rank-1 symmetric spaces in this paper. Our first result is a sharp isoperimetric inequality for Neumann eigenvalues on bounded domains in compact rank-1 symmetric spaces.

Theorem 1.3.

Let Ω\Omega be a bounded domain with smooth boundary, contained in a geodesic ball of radius i(M)4\frac{i(M)}{4} in a compact rank-1 symmetric space MM with real dimension m=knm=kn (cf. Section 2). Let

(1.5) l={m1,if k=1,m,[m+k2]1,if 1<k<m,\displaystyle l=\begin{cases}m-1,&\text{if $k=1,m$},\\ \left[\frac{m+k}{2}\right]-1,&\text{if $1<k<m$},\end{cases}

where [m+k2]\left[\frac{m+k}{2}\right] is the largest integer that does not exceed m+k2\frac{m+k}{2}. Then

(1.6) 1μ1(Ω)+1μ2(Ω)++1μl(Ω)lμ1(B),\displaystyle\frac{1}{\mu_{1}(\Omega)}+\frac{1}{\mu_{2}(\Omega)}+\cdots+\frac{1}{\mu_{l}(\Omega)}\geq\frac{l}{\mu_{1}(B)},

where BB is a geodesic ball in MM having volume |Ω||\Omega|. Furthermore, the equality of (1.6) occurs if and only if Ω\Omega is a geodesic ball.

Our second result is a sharp isoperimetric inequality for Neumann eigenvalues in noncompact rank-1 symmetric spaces.

Theorem 1.4.

Let Ω\Omega be a bounded domain with smooth boundary in a noncompact rank-1 symmetric space MM with real dimension m=knm=kn (cf. Section 2). Then

(1.7) 1μ1(Ω)+1μ2(Ω)++1μp(Ω)pμ1(B),\displaystyle\frac{1}{\mu_{1}(\Omega)}+\frac{1}{\mu_{2}(\Omega)}+\cdots+\frac{1}{\mu_{p}(\Omega)}\geq\frac{p}{\mu_{1}(B)},

where BB is a geodesic ball in MM having volume |Ω||\Omega|, and

(1.8) p={k(n1),if n>1,kn1,if n=1.\displaystyle p=\begin{cases}k(n-1),&\text{if $n>1$},\\ kn-1,&\text{if $n=1$}.\end{cases}

Furthermore, the equality of (1.7) occurs if and only if Ω\Omega is a geodesic ball.

Obviously, both Theorem 1.3 and Theorem 1.4 imply

μ1(Ω)μ1(B),\mu_{1}(\Omega)\leq\mu_{1}(B),

recovering the main results of [1] proved by Aithal and Santhanam. Moreover if k=1k=1, i.e. MM is a hyperbolic space of dimension nn, p=n1p=n-1, hence Theorem 1.4 recovers Theorem 1.2 of [14] proved by Wang and Xia. On bounded domains in rank-1 symmetric spaces, it remains an interesting question that whether Ashbaugh and Benguria’s conjecture (Conjecture 1.1) holds or not.

The rest of the paper is organized as follows. In Section 2, we recall the geometry of rank-1 symmetric spaces. In Section 3, we give some useful tools needed in the proofs of main theorems. Sections 4 and 5 are devoted to proving Theorem 1.3 and Theorem 1.4.

2. Geometry of Rank-1 Symmetric spaces

Let MM denote any one of the following rank-1 symmetric spaces with real dimension mm: Complex projective space n\mathbb{C}\mathbb{P}^{n}, quarternionic projective space n\mathbb{H}\mathbb{P}^{n}, the Cayley projective plane 𝐂𝐚2\mathbf{Ca}\mathbb{P}^{2} or their non-compact duals. Let 𝕂\mathbb{K} denote \mathbb{R}, \mathbb{C},\mathbb{H} or 𝐂𝐚\mathbf{Ca}, and k=dim𝕂k=\dim_{\mathbb{R}}\mathbb{K}, then m=knm=kn.

We recall some basic facts about geodesic polar coordinates (r,ξ)(r,\xi) in both compact and noncompact rank-1 symmetric spaces, see [1, Section 3] and [9, Section 2] for more details. Let oMo\in M be the center of geodesic polar coordinates, and J(r)J(r) denote the Riemannian density function. Then

J(r)=sinm1rcosk1r\displaystyle J(r)=\sin^{m-1}r\cos^{k-1}r

for r(0,π/2)r\in(0,\pi/2) when MM is compact;

J(r)=sinhm1rcoshk1r\displaystyle J(r)=\sinh^{m-1}r\cosh^{k-1}r

for r>0r>0 when MM is noncompact. The trace of the second fundamental form of S(r)S(r) is

H(r)=J(r)J(r),\displaystyle H(r)=\frac{J^{\prime}(r)}{J(r)},

namely

H(r)={(m1)cotr(k1)tanr,if M is compact,(m1)cothr+(k1)tanhr,if M is noncompact.\displaystyle H(r)=\begin{cases}(m-1)\cot r-(k-1)\tan r,&\quad\text{if $M$ is compact},\\ (m-1)\coth r+(k-1)\tanh r,&\quad\text{if $M$ is noncompact}.\\ \end{cases}

The Laplace operator of MM is given by

ΔM=2r2+H(r)r+ΔSr,\displaystyle\Delta_{M}=\frac{\partial^{2}}{\partial r^{2}}+H(r)\frac{\partial}{\partial r}+\Delta_{S_{r}},

where ΔSr\Delta_{S_{r}} denotes the Laplacian of SrS_{r}. Moreover the first non-zero eigenvalue of ΔSr\Delta_{S_{r}} is

λ1(Sr)=H(r),\displaystyle\lambda_{1}(S_{r})=-H^{\prime}(r),

and the associated eigenfunctions are the linear coordinate functions restricted to 𝕊m1\mathbb{S}^{m-1}, denoted by ωi(ξ)(1im)\omega_{i}(\xi)\,(1\leq i\leq m), satisfying

(2.1) i=1m|Srωi(ξ)|2=H(r).\displaystyle\sum_{i=1}^{m}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}=-H^{\prime}(r).

Moreover it is known from the proof of [6, Lemma 4.11] that

|Srωi(ξ)|2={j=k+1mξi,ηj2sin2r+j=2kξi,ηj2sin2rcos2r,if M is compact,j=k+1mξi,ηj2sinh2r+j=2kξi,ηj2sinh2rcosh2r,if M is noncompact,\displaystyle|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}=\begin{cases}\sum\limits_{j=k+1}^{m}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sin^{2}r}+\sum\limits_{j=2}^{k}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sin^{2}r\cos^{2}r},&\quad\text{if $M$ is compact},\\ \sum\limits_{j=k+1}^{m}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sinh^{2}r}+\sum\limits_{j=2}^{k}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sinh^{2}r\cosh^{2}r},&\quad\text{if $M$ is noncompact},\end{cases}

where {ηk}k=1m\{\eta_{k}\}_{k=1}^{m} is an orthonormal basis of ToMT_{o}M with η1=(ω1(ξ),,ωm(ξ))\eta_{1}=(\omega_{1}(\xi),\cdots,\omega_{m}(\xi)) and ηi+1=Jηi\eta_{i+1}=J\eta_{i} for i=1,,k1i=1,\cdots,k-1. Then we estimate that for compact case

(2.2) |Srωi(ξ)|2=j=k+1mξi,ηj2sin2r+j=2kξi,ηj2sin2rcos2r{1sin2rcos2r,k11sin2r,k=11lH(r)\displaystyle\begin{split}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}&=\sum_{j=k+1}^{m}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sin^{2}r}+\sum_{j=2}^{k}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sin^{2}r\cos^{2}r}\\ &\leq\begin{cases}\frac{1}{\sin^{2}r\cos^{2}r},&k\neq 1\\ \frac{1}{\sin^{2}r},&k=1\end{cases}\\ &\leq-\frac{1}{l}H^{\prime}(r)\end{split}

for 0<rπ40<r\leq\frac{\pi}{4}, and for noncompact case

(2.3) |Srωi(ξ)|2=j=k+1mξi,ηj2sinh2r+j=2kξi,ηj2sinh2rcosh2r{1sinh2r,k<m1sinh2rcosh2r,k=m1pH(r),\displaystyle\begin{split}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}&=\sum_{j=k+1}^{m}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sinh^{2}r}+\sum_{j=2}^{k}\frac{\langle\xi_{i},\eta_{j}\rangle^{2}}{\sinh^{2}r\cosh^{2}r}\\ &\leq\begin{cases}\frac{1}{\sinh^{2}r},&k<m\\ \frac{1}{\sinh^{2}r\cosh^{2}r},&k=m\end{cases}\\ &\leq-\frac{1}{p}H^{\prime}(r),\end{split}

where ll and pp are defined by (1.5) and (1.8) respectively.

3. Some mathematical tools needed

In this section, we will give some properties of the first nonzero eigenvalue of Neumann Laplacian and corresponding eigenfunctions on round balls, and construct trial functions for lower order Neumann eigenvalues on bounded domains in rank-1 symmetric spaces.

3.1. Properties of eigenfunctions for geodesic balls

Let MM be a rank-1 symmetric space and BB be a round geodesic ball in MM with radius RR. If MM is compact, we assume further that R<π4R<\frac{\pi}{4}. It is known from [1, Section 3] that

μ1(B)=μ2(B)==μm(B),\displaystyle\mu_{1}(B)=\mu_{2}(B)=\cdots=\mu_{m}(B),

and the corresponding eigenfunctions are given by

hi(r,ξ)=g(r)ωi(ξ),i=1,2,,m,\displaystyle h_{i}(r,\xi)=g(r)\omega_{i}(\xi),\,i=1,2,\cdots,m,

where g(r)g(r) satisfies the following one dimensional boundary value problem

(3.1) {g′′(r)+H(r)g(r)+(μ1(B)+H(r))g(r)=0,r(0,R),g(0)=0,g(R)=0,\begin{cases}g^{\prime\prime}(r)+H(r)g^{\prime}(r)+\big{(}\mu_{1}(B)+H^{\prime}(r)\big{)}g(r)=0,\quad r\in(0,R),\\ g(0)=0,\,g^{\prime}(R)=0,\end{cases}

and ωi\omega_{i}’s are the restrictions of the linear coordinate functions on 𝕊m1\mathbb{S}^{m-1}. Moreover we can choose a solution gg of (3.1) satisfying g(0)=1g^{\prime}(0)=1, hence g(r)>0g(r)>0 in (0,R](0,R] and g(r)>0g^{\prime}(r)>0 in [0,R)[0,R). Furthermore it is easy to check that μ1(B)\mu_{1}(B) is the first eigenvalue corresponding to the quotient:

(3.2) 𝒬(φ)=0R(φ(r)2H(r)φ(r)2)J(r)𝑑r0Rφ2(r)J(r)𝑑r\displaystyle\mathcal{Q}(\varphi)=\frac{\int_{0}^{R}\big{(}\varphi^{\prime}(r)^{2}-H^{\prime}(r)\varphi(r)^{2}\big{)}J(r)\,dr}{\int_{0}^{R}\varphi^{2}(r)J(r)\,dr}

with constraints φ(0)=0\varphi(0)=0 and φC1([0,R])\varphi\in C^{1}([0,R]), where J(r)J(r) is the Riemannian density function defined in Section 2.

3.2. Trial functions for lower order Neumann eigenvalues

From here on, we assume Ω\Omega to be a bounded domain with smooth boundary in a rank-1 symmetric space MM. If MM is compact, we assume further that Ω\Omega is contained in a geodesic ball of radius i(M)/4i(M)/4. Denote by uiu_{i} an eigenfunction corresponding to μi(Ω)\mu_{i}(\Omega), then the Neumann eigenvalue μi(Ω)\mu_{i}(\Omega) can be characterized variationally by

(3.3) μi(Ω)=min{Ω|u|2𝑑xΩu2𝑑x:uH1(Ω){0},uspan{u0,u1,,ui1}}.\displaystyle\mu_{i}(\Omega)=\min\Big{\{}\frac{\int_{\Omega}|\nabla u|^{2}\,dx}{\int_{\Omega}u^{2}\,dx}:u\in H^{1}(\Omega)\setminus\{0\},u\in\operatorname{span}\{u_{0},u_{1},\cdots,u_{i-1}\}^{\perp}\Big{\}}.

Let BMB\subset M be a geodesic ball such that |Ω|=|B||\Omega|=|B|, and denote by RR the radius of BB. Define G(r):[0,)[0,)G(r):[0,\infty)\to[0,\infty) by

(3.4) G(r)={g(r),r<R,g(R),rR,\displaystyle G(r)=\begin{cases}g(r),&\quad r<R,\\ g(R),&\quad r\geq R,\end{cases}

where g(r)g(r) is defined by (3.1). By Brouwer’s fixed point theorem, we can choose a proper origin oΩo\in\Omega such that

(3.5) ΩG(ro)ωi(ξ)𝑑x=0,i=1,2,,m,\displaystyle\int_{\Omega}G(r_{o})\omega_{i}(\xi)\,dx=0,\,i=1,2,\cdots,m,

where ro(x)=dist(o,x)r_{o}(x)=\text{dist}(o,x) is the distance from oo to xx in MM.

From now on, we fix the point oo so that (3.5) holds. Let (r,ξ)(r,\xi) denote the polar coordinates centered at oo. For 1im1\leq i\leq m and 1jm1\leq j\leq m, we define

(3.6) vi(x)=G(r)ωi(ξ),\displaystyle v_{i}(x)=G(r)\omega_{i}(\xi),

and let

qij=Ωvi(x)uj(x)𝑑x.\displaystyle q_{ij}=\int_{\Omega}v_{i}(x)u_{j}(x)\,dx.

By QR-factorization, there exists an orthogonal matrix U=(aij)U=(a_{ij}) such that

0=Ωk=1naikvk(x)uj(x)dx\displaystyle 0=\int_{\Omega}\sum_{k=1}^{n}a_{ik}v_{k}(x)u_{j}(x)\,dx

for all 1j<im1\leq j<i\leq m. Therefore we can choose a proper basis of ToMT_{o}M so that

(3.7) Ωvi(x)uj(x)𝑑x=0,\displaystyle\int_{\Omega}v_{i}(x)u_{j}(x)\,dx=0,

for 1j<im1\leq j<i\leq m. According to (3.5) and (3.7), we find that vi(x)v_{i}(x) is a trial function for μi(Ω)\mu_{i}(\Omega). Thus in view of (3.3), we conclude that

(3.8) Ωvi(x)2𝑑x1μi(Ω)Ω|vi(x)|2𝑑x\displaystyle\int_{\Omega}v_{i}(x)^{2}\,dx\leq\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}|\nabla v_{i}(x)|^{2}\,dx

for 1im1\leq i\leq m.

4. proof of theorem 1.3

In this section, we consider the case of compact rank-1 symmetric spaces and prove Theorem 1.3. To begin with, we recall the following lower bound for the first nonzero Neumann eigenvalue on geodesic balls [1, Corollary 1], which will be used later on.

Lemma 4.1 ([1]).

Let MM be a rank-1 symmetric space of compact type (see Section 2), and BMB\subset M be a geodesic ball of radius RR. If Rπ4R\leq\frac{\pi}{4}, then

(4.1) μ1(B)2(m+k).\displaystyle\mu_{1}(B)\geq 2(m+k).
Lemma 4.2.

Let G(r)G(r) be the function defined in (3.4). Then the function

φ(r):=G(r)sinrcosr\varphi(r):=\frac{G(r)}{\sin r\cos r}

is nonincreasing in (0,π4)(0,\frac{\pi}{4}).

Proof.

If r>Rr>R, then G(r)=G(R)G(r)=G(R), hence φ(r)\varphi(r) is strictly decreasing in (R,π4)(R,\frac{\pi}{4}). Now we focus on the case of r[0,R]r\in[0,R]. Direct calculation gives

φ(r)=2sinrcosr(g(r)2cot2rg(r)),\displaystyle\varphi^{\prime}(r)=\frac{2}{\sin r\cos r}\Big{(}g^{\prime}(r)-2\cot 2rg(r)\Big{)},

and it suffices to show

(4.2) s(r):=g(r)2cot2rg(r)0\displaystyle s(r):=g^{\prime}(r)-2\cot 2rg(r)\leq 0

for r(0,R)r\in(0,R). Note s(0+)=0s(0^{+})=0 and s(R)<0s(R)<0, and then we assume by the contradiction that s(r)s(r) has a maximum point r0(0,R)r_{0}\in(0,R) and s(r0)>0s(r_{0})>0. So s(r0)=0s^{\prime}(r_{0})=0, namely

g′′(r0)(cotr0tanr0)g(r0)+1sin2r0cos2r0g(r0)=0.\displaystyle g^{\prime\prime}(r_{0})-(\cot r_{0}-\tan r_{0})g^{\prime}(r_{0})+\frac{1}{\sin^{2}r_{0}\cos^{2}r_{0}}g(r_{0})=0.

Applying the equation (3.1), the above equality is equivalent to

(4.3) (mcotr0ktanr0)g(r0)+(μ1(B)mksin2r0ksin2r0cos2r0)g(r0)=0.\displaystyle(m\cot r_{0}-k\tan r_{0})g^{\prime}(r_{0})+\Big{(}\mu_{1}(B)-\frac{m-k}{\sin^{2}r_{0}}-\frac{k}{\sin^{2}r_{0}\cos^{2}r_{0}}\Big{)}g(r_{0})=0.

The assumption s(r0)>0s(r_{0})>0 gives

g(r0)>2cot2r0g(r0),\displaystyle g^{\prime}(r_{0})>2\cot 2r_{0}g(r_{0}),

and combining with equality (4.3), we obtain that

(4.4) (μ1(B)+mksin2r0+ksin2r0cos2r0)(cotr0tanr0)(mcotr0ktanr0)>0.\displaystyle\Big{(}-\mu_{1}(B)+\frac{m-k}{\sin^{2}r_{0}}+\frac{k}{\sin^{2}r_{0}\cos^{2}r_{0}}\Big{)}-(\cot r_{0}-\tan r_{0})(m\cot r_{0}-k\tan r_{0})>0.

A brief calculation shows that (4.4) is equivalent to

μ1(B)+2(m+k)>0,\displaystyle-\mu_{1}(B)+2(m+k)>0,

contradicting with Lemma 4.1. Hence (4.2) comes true, proving the lemma. \square

Now we turn to prove Theorem 1.3.

Proof of Theorem 1.3.

Let vi(x)v_{i}(x) (1im1\leq i\leq m) be trial functions defined by (3.6), and

(4.5) |Mvi(x)|2=|G(r)|2ωi(ξ)2+G(r)2|Srωi(ξ)|2,|\nabla^{M}v_{i}(x)|^{2}=|G^{\prime}(r)|^{2}\omega_{i}(\xi)^{2}+G(r)^{2}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2},

where M\nabla^{M} denotes the gradient operator of MM, and Sr\nabla^{S_{r}} denotes the gradient operator of SrS_{r} with the induced metric. Plugging (4.5) into (3.8) and summing over ii, we have

(4.6) Ω|G(r)|2𝑑x\displaystyle\int_{\Omega}|G(r)|^{2}\,dx\leq i=1m1μi(Ω)Ω|G(r)|2|ωi(ξ)|2𝑑x+i=1m1μi(Ω)Ω|G(r)|2|Srωi(ξ)|2𝑑x.\displaystyle\sum_{i=1}^{m}\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}|G^{\prime}(r)|^{2}|\omega_{i}(\xi)|^{2}\,dx+\sum_{i=1}^{m}\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}|G(r)|^{2}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\,dx.

Recall that G(r)G(r) is a constant for r>Rr>R, we estimate that

(4.7) Ω|G(r)|2|ωi(ξ)|2𝑑x=ΩB|G(r)|2|ωi(ξ)|2𝑑xB|G(r)|2|ωi(ξ)|2𝑑x=1mB|G(r)|2𝑑x,\displaystyle\begin{split}\int_{\Omega}|G^{\prime}(r)|^{2}|\omega_{i}(\xi)|^{2}\,dx&=\int_{\Omega\cap B}|G^{\prime}(r)|^{2}|\omega_{i}(\xi)|^{2}\,dx\\ &\leq\int_{B}|G^{\prime}(r)|^{2}|\omega_{i}(\xi)|^{2}\,dx\\ &=\frac{1}{m}\int_{B}|G^{\prime}(r)|^{2}\,dx,\end{split}

where BB is the geodesic ball of radius RR centered at oo in MM with |B|=|Ω||B|=|\Omega|. Moreover by the assumption that Ω\Omega is contained in a geodesic ball of radius i(M)4\frac{i(M)}{4}, then we have Rπ4R\leq\frac{\pi}{4}. Using equality (2.1) and inequality (2.2) we estimate that

(4.8) i=1m1μi(Ω)|Srωi(ξ)|2i=1l1μi(Ω)|Srωi(ξ)|2+1μl+1(Ω)i=l+1m|Srωi(ξ)|2i=1l1μi(Ω)|Srωi(ξ)|2+1μl+1(Ω)(H(r)i=1l|Srωi(ξ)|2)=i=1l1μi(Ω)|Srωi(ξ)|2+1μl+1(Ω)i=1l(H(r)l|Srωi(ξ)|2)i=1l1μi(Ω)|Srωi(ξ)|2+i=1l1μi(Ω)(H(r)l|Srωi(ξ)|2)=1li=1lH(r)μi(Ω),\displaystyle\begin{split}&\sum_{i=1}^{m}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\\ \leq&\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\frac{1}{\mu_{l+1}(\Omega)}\sum_{i=l+1}^{m}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\\ \leq&\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\frac{1}{\mu_{l+1}(\Omega)}\big{(}-H^{\prime}(r)-\sum_{i=1}^{l}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\big{)}\\ =&\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\frac{1}{\mu_{l+1}(\Omega)}\sum_{i=1}^{l}\big{(}-\frac{H^{\prime}(r)}{l}-|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\big{)}\\ \leq&\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}\big{(}-\frac{H^{\prime}(r)}{l}-|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\big{)}\\ =&\frac{1}{l}\sum_{i=1}^{l}\frac{-H^{\prime}(r)}{\mu_{i}(\Omega)},\end{split}

where ll is defined by (1.5). Substituting inequalities (4.7) and (4.8) to inequality (4.6) yields

(4.9) ΩG(r)2𝑑xi=1m1mμi(Ω)BG(r)2𝑑x+1li=1l1μi(Ω)ΩG(r)2(H(r))𝑑x.\displaystyle\int_{\Omega}G(r)^{2}\,dx\leq\sum_{i=1}^{m}\frac{1}{m\mu_{i}(\Omega)}\int_{B}G^{\prime}(r)^{2}\,dx+\frac{1}{l}\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}G(r)^{2}(-H^{\prime}(r))\,dx.

Recall from Lemma 4.2 that G(r)sinrcosr\frac{G(r)}{\sin r\cos r} is monotone nonincreasing in (0,π4)(0,\frac{\pi}{4}), then

G(r)2H(r)=(mk)G(r)2sin2r+(k1)G(r)2sin2rcos2r\displaystyle-G(r)^{2}H^{\prime}(r)=(m-k)\frac{G(r)^{2}}{\sin^{2}r}+(k-1)\frac{G(r)^{2}}{\sin^{2}r\cos^{2}r}

is nonincreasing in (0,π4)(0,\frac{\pi}{4}) either, hence we have

(4.10) Ω|G(r)|2(H(r))𝑑xB|G(r)|2(H(r))𝑑x.\displaystyle\int_{\Omega}|G(r)|^{2}(-H^{\prime}(r))\,dx\leq\int_{B}|G(r)|^{2}(-H^{\prime}(r))\,dx.

By the definition of G(r)G(r), we see easily that G(r)G(r) is monotone increasing in (0,π4)(0,\frac{\pi}{4}), so

(4.11) B|G(r)|2𝑑x\displaystyle\int_{B}|G(r)|^{2}\,dx\leq Ω|G(r)|2𝑑x.\displaystyle\int_{\Omega}|G(r)|^{2}\,dx.

Putting inequalities (4.9), (4.10) and (4.11) together, we conclude that

BG(r)2𝑑x1li=1l1μi(Ω)(B|G(r)|2|G(r)|2H(r)dx),\displaystyle\begin{split}\int_{B}G(r)^{2}\,dx\leq\frac{1}{l}\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}\Big{(}\int_{B}|G^{\prime}(r)|^{2}-|G(r)|^{2}H^{\prime}(r)\,dx\Big{)},\end{split}

yielding

i=1l1μi(Ω)lB|G(r)|2𝑑xBG(r)2G(r)2H(r)dx=lμ1(B),\displaystyle\sum_{i=1}^{l}\frac{1}{\mu_{i}(\Omega)}\geq\frac{l\int_{B}|G(r)|^{2}\,dx}{\int_{B}G^{\prime}(r)^{2}-G(r)^{2}H^{\prime}(r)\,dx}=\frac{l}{\mu_{1}(B)},

where in the equality we used the fact that g(r)g(r) (r[0,R]r\in[0,R]) is the first eigenfunction with respect to μ1(B)\mu_{1}(B), as characterized by (3.2). Hence we complete the proof of estimate (1.6).

Moreover if the equality of (1.6) occurs, all inequalities above hold as equalities. Particularly (4.11) holds as an equality, then Ω=B\Omega=B. \square

5. proof of theorem 1.4

In this section, we assume MM is a noncompact rank-1 symmetric space. Let Ω\Omega be a bounded domain with smooth boundary in MM, and BB be a geodesic ball in MM with volume |Ω||\Omega|. Denote by RR be the radius of BB. The proof of Theorem 1.4 is quite similar as that of Theorem 1.3. To begin with, we first give a monotonicity lemma.

Lemma 5.1.

Let G(r)G(r) be the function defined in (3.4). Then the function

φ(r):=G(r)sinhr\varphi(r):=\frac{G(r)}{\sinh r}

is nonincreasing in (0,)(0,\infty).

Proof.

Note that G(r)=G(R)G(r)=G(R) for r>Rr>R, then φ(r)\varphi(r) is monotone decreasing in (R,)(R,\infty). Now we focus on the case of (0,R)(0,R). Taking derivative of φ(r)\varphi(r) yields

φ(r)=1sinh2r(G(r)sinhrG(r)coshr),\displaystyle\varphi^{\prime}(r)=\frac{1}{\sinh^{2}r}\big{(}G^{\prime}(r)\sinh r-G(r)\cosh r\big{)},

and it suffices to show that for r(0,R)r\in(0,R)

(5.1) s(r):=G(r)cothrG(r)0.\displaystyle s(r):=G^{\prime}(r)-\coth rG(r)\leq 0.

Noting that s(0+)=0s(0^{+})=0 and s(R)<0s(R)<0, we then assume by contradiction that s(r)s(r) has a maximum point r0(0,R)r_{0}\in(0,R) and s(r0)>0s(r_{0})>0. Then s(r0)=0s^{\prime}(r_{0})=0, i.e.

(5.2) g′′(r0)cothr0g(r0)+g(r0)sinh2r0=0.\displaystyle g^{\prime\prime}(r_{0})-\coth r_{0}g^{\prime}(r_{0})+\frac{g(r_{0})}{\sinh^{2}r_{0}}=0.

Combining equality (5.2) and equation (3.1), we have

(5.3) (mcothr0+(k1)tanhr0)g(r0)+(μ1(B)mk+1sinh2r0k1sinh2r0cosh2r0)g(r0)=0.\displaystyle(m\coth r_{0}+(k-1)\tanh r_{0})g^{\prime}(r_{0})+(\mu_{1}(B)-\frac{m-k+1}{\sinh^{2}r_{0}}-\frac{k-1}{\sinh^{2}r_{0}\cosh^{2}r_{0}})g(r_{0})=0.

Since s(r0)>0s(r_{0})>0, then

g(r0)cothr0g(r0)>0.\displaystyle g^{\prime}(r_{0})-\coth r_{0}g(r_{0})>0.

Thus it follows from above inequality and equality (5.3) that

μ1(B)+mk+1sinh2r0+k1sinh2r0cosh2r0>mcoth2r0+k1,\displaystyle-\mu_{1}(B)+\frac{m-k+1}{\sinh^{2}r_{0}}+\frac{k-1}{\sinh^{2}r_{0}\cosh^{2}r_{0}}>m\coth^{2}r_{0}+k-1,

that is

(5.4) msinh2r0(1cosh2r0)+(k1)(1cosh2r0sinh2r0cosh2r01)>μ1(B).\displaystyle\frac{m}{\sinh^{2}r_{0}}(1-\cosh^{2}r_{0})+(k-1)\big{(}\frac{1-\cosh^{2}r_{0}}{\sinh^{2}r_{0}\cosh^{2}r_{0}}-1\big{)}>\mu_{1}(B).

Clearly the left hand side of (5.4) is negative, and thus (5.4) is contradicting with the fact μ1(B)>0\mu_{1}(B)>0. Hence inequality (5.1) holds. \square

Now we turn to prove Theorem 1.4.

Proof of Theorem 1.4.

Let vi(x)v_{i}(x) (1im1\leq i\leq m) be trial functions defined by (3.6). Then similarly as in the proof of Theorem 1.3, we have

(5.5) ΩG(r)2𝑑x\displaystyle\int_{\Omega}G(r)^{2}\,dx\leq i=1m1μi(Ω)ΩG(r)2ωi(ξ)2𝑑x+i=1m1μi(Ω)Ω|G(r)|2|Srωi(ξ)|2𝑑x,\displaystyle\sum_{i=1}^{m}\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}G^{\prime}(r)^{2}\omega_{i}(\xi)^{2}\,dx+\sum_{i=1}^{m}\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}|G(r)|^{2}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\,dx,

and

(5.6) Ω|G(r)|2|ωi(ξ)|2𝑑x1mBG(r)2𝑑x,\int_{\Omega}|G^{\prime}(r)|^{2}|\omega_{i}(\xi)|^{2}\,dx\leq\frac{1}{m}\int_{B}G^{\prime}(r)^{2}\,dx,

where BB is the geodesic ball of radius RR centered at oo in MM with |B|=|Ω||B|=|\Omega|. Using (2.1) and (2.3) we estimate that

(5.7) i=1m1μi(Ω)|Srωi(ξ)|2i=1p1μi(Ω)|Srωi(ξ)|2+1μp+1(Ω)i=p+1m|Srωi(ξ)|2,i=1p1μi(Ω)|Srωi(ξ)|2+1μp+1(Ω)(H(r)i=1p|Srωi(ξ)|2)=i=1p1μi(Ω)|Srωi(ξ)|2+1μp+1(Ω)i=1p(H(r)p|Srωi(ξ)|2)i=1p1μi(Ω)|Srωi(ξ)|2+i=1p1μi(Ω)(H(r)p|Srωi(ξ)|2)=1pi=1pH(r)μi(Ω),\displaystyle\begin{split}&\sum_{i=1}^{m}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\\ \leq&\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\frac{1}{\mu_{p+1}(\Omega)}\sum_{i=p+1}^{m}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2},\\ \leq&\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\frac{1}{\mu_{p+1}(\Omega)}\big{(}-H^{\prime}(r)-\sum_{i=1}^{p}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\big{)}\\ =&\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\frac{1}{\mu_{p+1}(\Omega)}\sum_{i=1}^{p}\big{(}-\frac{H^{\prime}(r)}{p}-|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\big{)}\\ \leq&\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}+\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}\big{(}-\frac{H^{\prime}(r)}{p}-|\nabla^{S_{r}}\omega_{i}(\xi)|^{2}\big{)}\\ =&\frac{1}{p}\sum_{i=1}^{p}\frac{-H^{\prime}(r)}{\mu_{i}(\Omega)},\end{split}

where pp is defined by (1.8). Assembling inequalities (5.5), (5.6) and (5.7), we get

(5.8) ΩG(r)2𝑑x\displaystyle\int_{\Omega}G(r)^{2}\,dx\leq i=1m1mμi(Ω)BG(r)2𝑑x+1pi=1p1μi(Ω)ΩG(r)2(H(r))𝑑x.\displaystyle\sum_{i=1}^{m}\frac{1}{m\mu_{i}(\Omega)}\int_{B}G^{\prime}(r)^{2}\,dx+\frac{1}{p}\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}\int_{\Omega}G(r)^{2}(-H^{\prime}(r))\,dx.

Recall from Lemma 5.1 that G(r)/sinhrG(r)/\sinh r is nonincreasing in (0,)(0,\infty), so is

G(r)2(H(r))=(mk)G(r)2sinh2r+(k1)G(r)2sinh2rcosh2r.G(r)^{2}(-H^{\prime}(r))=(m-k)\frac{G(r)^{2}}{\sinh^{2}r}+(k-1)\frac{G(r)^{2}}{\sinh^{2}r\cosh^{2}r}.

Hence

(5.9) ΩG(r)2H(r)dxBG(r)2H(r)dx.\displaystyle\int_{\Omega}-G(r)^{2}H^{\prime}(r)\,dx\leq\int_{B}-G^{\prime}(r)^{2}H^{\prime}(r)\,dx.

Since G(r)G(r) is monotone increasing in (0,R)(0,R), then

(5.10) BG(r)2𝑑x\displaystyle\int_{B}G(r)^{2}\,dx ΩG(r)2𝑑x.\displaystyle\leq\int_{\Omega}G(r)^{2}\,dx.

So it follows from (5.8), (5.9) and (5.10) that

BG(r)2𝑑x1pi=1p1μi(Ω)BG(r)2G(r)2H(r)dx,\displaystyle\int_{B}G(r)^{2}\,dx\leq\frac{1}{p}\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}\int_{B}G^{\prime}(r)^{2}-G(r)^{2}H^{\prime}(r)\,dx,

implies

i=1p1μi(Ω)pBG(r)2𝑑xBG(r)2G(r)2H(r)dx=pμ1(B),\displaystyle\sum_{i=1}^{p}\frac{1}{\mu_{i}(\Omega)}\geq\frac{p\int_{B}G(r)^{2}\,dx}{\int_{B}G^{\prime}(r)^{2}-G(r)^{2}H^{\prime}(r)\,dx}=\frac{p}{\mu_{1}(B)},

proving (1.7). If the equality case of (1.7) occurs, then inequality (5.10) holds as an equality, hence Ω=B\Omega=B. \square

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • [1] A. R. Aithal and G. Santhanam. Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-11 symmetric spaces. Trans. Amer. Math. Soc., 348(10):3955–3965, 1996.
  • [2] Mark S. Ashbaugh. Open problems on eigenvalues of the Laplacian. In Analytic and geometric inequalities and applications, volume 478 of Math. Appl., pages 13–28. Kluwer Acad. Publ., Dordrecht, 1999.
  • [3] Mark S. Ashbaugh and Rafael D. Benguria. Universal bounds for the low eigenvalues of Neumann Laplacians in nn dimensions. SIAM J. Math. Anal., 24(3):557–570, 1993.
  • [4] Mark S. Ashbaugh and Rafael D. Benguria. Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature. J. London Math. Soc. (2), 52(2):402–416, 1995.
  • [5] Rafael D. Benguria, Barbara Brandolini, and Francesco Chiacchio. A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere. Commun. Contemp. Math., 22(3):1950018, 9, 2020.
  • [6] Philippe Castillon and Berardo Ruffini. A spectral characterization of geodesic balls in non-compact rank one symmetric spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19(4):1359–1388, 2019.
  • [7] Antoine Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
  • [8] Jeffrey J. Langford and Richard S. Laugesen. Maximizers beyond the hemisphere for the second Neumann eigenvalue. Math. Ann., 386(3-4):2255–2281, 2023.
  • [9] Xiaolong Li, Kui Wang, and Haotian Wu. The second Robin eigenvalue in non-compact rank-1 symmetric spaces. Preprint, 2022. arXiv:2208.07546 [math.DG].
  • [10] G. Szegö. Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal., 3:343–356, 1954.
  • [11] Kui Wang. An upper bound for the second Neumann eigenvalue on Riemannian manifolds. Geom. Dedicata, 201:317–323, 2019.
  • [12] Qiaoling Wang and Changyu Xia. On the Ashbaugh-Benguria conjecture about lower-order Dirichlet eigenvalues of the Laplacian. Anal. PDE, 14(7):2069–2078, 2021.
  • [13] H. F. Weinberger. An isoperimetric inequality for the NN-dimensional free membrane problem. J. Rational Mech. Anal., 5:633–636, 1956.
  • [14] Changyu Xia and Qiaoling Wang. On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian. Math. Ann., 385(1-2):863–879, 2023.
  • [15] Youyu Xu. The first nonzero eigenvalue of Neumann problem on Riemannian manifolds. J. Geom. Anal., 5(1):151–165, 1995.