This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isomorphisms Between Local Cohomology Modules as Truncations of Taylor Series

Jennifer Kenkel Department of Mathematics, University of Kentucky, 719 Patterson Office Tower, Lexington, KYΒ 40507, USA [email protected]
Abstract.

Let RR be a standard graded polynomial ring that is finitely generated over a field, and let II be a homogenous prime ideal of RR. Bhatt, Blickle, Lyubeznik, Singh, and Zhang examined the local cohomology of R/ItR/I^{t}, as tt grows arbitrarily large. Such rings are known as thickenings of R/IR/I. We consider R=𝔽​[X]R=\mathbb{F}[X] where 𝔽\mathbb{F} is a field of characteristic 0, XX is a 2Γ—m2\times m matrix, and II is the ideal generated by size two minors. We give concrete constructions for the local cohomology modules of thickenings of R/IR/I. Bizarrely, these local cohomology modules can be described using the Taylor series of natural log.

The author was supported by NSF grant DMSΒ 1246989.

1. Introduction

Let RR be a graded Noetherian commutative ring and II a homogeneous ideal of RR. For each integer t>1t>1, the rings R/ItR/I^{t} are referred to as thickenings of R/IR/I. The canonical surjection from R/It+1R/I^{t+1} to R/ItR/I^{t} induces a degree-preserving map on local cohomology modules:

Hπ”ͺk​(R/It+1)j⟢Hπ”ͺk​(R/It)jH^{k}_{\mathfrak{m}}(R/I^{t+1})_{j}\longrightarrow H^{k}_{\mathfrak{m}}(R/I^{t})_{j}

Our focus is on local cohomology modules supported in the maximal ideal, π”ͺ\mathfrak{m}.

In general, much of the work that has been done on local cohomology modules examines whether the module is or is not zero. While they are useful, local cohomology modules are defined homologically, and thus are difficult to work with concretely. They tend to be large and, even when derived from simple rings, are rarely explicitly described. In a paper of Bhatt, Blickle, Lyubeznik, Singh, and Zhang, the authors examined when the induced maps on local cohomology modules in a fixed degree are isomorphisms for large values of tt [BBL+19]. Their work is part of a growing movement towards studying how local cohomology modules behave [BBL+19, DM17, DM18, DS18].

In this paper, we will build on the work of [BBL+19]. We consider the induced maps on local cohomology modules in the case of a determinantal ring. Consider a power series with variables in the ideal II. In the ring R/ItR/I^{t}, such an infinite series behaves like a finite sum, as all but finitely many terms are zero. We use this idea to understand isomorphisms between local cohomology modules as truncations of a power series. In particular, we show that in characteristic 0, Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} is generated as a vector space over the base field by an element represented by the Taylor series of natural log. This gives an explicit description of the isomorphisms guaranteed in [BBL+19]. We then construct elements of the same local cohomology module over a field of characteristic p>0p>0, and show that the rank of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} grows arbitrarily large along an infinite subsequence of natural numbers tt.

This paper is structured as follows:

  1. (1)

    In Section 2, we set the scene by introducing a determinantal variety over a field of characteristic 0. We recall the results of [BBL+19] and verify this variety satisfies the hypotheses there given.

  2. (2)

    In Section 3, we introduce our protagonist, the local cohomology module of thickenings of a determinantal variety. We show that, in degree 0, the vector space rank of this module is 1.

  3. (3)

    In Section 4, we explicitly construct an element of the local cohomology described in Section 3. Based on our results from Section 3, we are ensured that we have a basis for this module as a vector space.

  4. (4)

    In Section 5, we consider the same variety over a field of positive characteristic. We explicitly construct elements of the module Hπ”ͺ3(R/It))0H^{3}_{\mathfrak{m}}(R/I^{t}))_{0} for all t>1t>1. In that context, isomorphisms do not exist.

2. Isomorphisms Are Guaranteed to Exist

For the entirety of this paper, we examine the ring R=𝔽​[X]R=\mathbb{F}[X] where XX is a 2Γ—32\times 3 matrix of indeterminates and 𝔽\mathbb{F} is a field:

R=𝔽​[uvwxyz].R=\mathbb{F}\begin{bmatrix}u&v&w\\ x&y&z\end{bmatrix}.

Let II be the ideal generated by the size two minors of the matrix XX, that is, the elements;

Ξ”1=v​zβˆ’w​y,Ξ”2=w​xβˆ’u​z,Ξ”3=u​yβˆ’v​x.\Delta_{1}=vz-wy,\quad\Delta_{2}=wx-uz,\quad\Delta_{3}=uy-vx.

The field 𝔽\mathbb{F} will be of characteristic 0, except in Section 5.

In this section, we will repeat the theorem of [BBL+19] that guarantees an isomorphism between local cohomology modules of thickenings. We will then verify that the ring RR and the ideal II satisfy the hypotheses when the cohomological index, kk, is equal to 3.

Theorem 2.1.

[BBL+19] Let XX be a closed lci subvariety of β„™n\mathbb{P}^{n} over a field of characteristic 0, defined by a sheaf of ideals ℐ\mathcal{I}. Let XtβŠ‚β„™nX_{t}\subset\mathbb{P}^{n} be the tt-th thickening of XX, i.e., the closed subscheme defined by the sheaf of ideals ℐt\mathcal{I}^{t}. LetΒ β„±\mathcal{F} be a coherent sheaf on β„™n\mathbb{P}^{n} that is flat along XX. Then, for each k<codim⁑(Sing⁑X)k<\operatorname{codim}(\operatorname{Sing}X), the natural map

Hk​(Xt+1,π’ͺXt+1βŠ—π’ͺβ„™nβ„±)⟢Hk​(Xt,π’ͺXtβŠ—π’ͺβ„™nβ„±)H^{k}(X_{t+1},\mathcal{O}_{X_{t+1}}\otimes_{\mathcal{O}_{\mathbb{P}^{n}}}\mathcal{F})\longrightarrow H^{k}(X_{t},\mathcal{O}_{X_{t}}\otimes_{\mathcal{O}_{\mathbb{P}^{n}}}\mathcal{F})

is an isomorphism for all t≫0t\gg 0. In particular, if XX is smooth or has at most isolated singular points, then the map above is an isomorphism for k<dim⁑Xk<\operatorname{dim}X and t≫0t\gg 0.

Rather than considering this theorem in the setting of sheaf cohomology, as it originally appears, we consider the local cohomology setting:

Theorem 2.2.

[BBL+19] Let RR be a standard graded polynomial ring that is finitely generated over a fieldΒ R0R_{0} of characteristic 0. Let π”ͺ\mathfrak{m} be the homogeneous maximal ideal of RR. Let II be a homogeneous prime ideal such that R/IR/I is a locally complete intersection on the set Spec⁑R\{π”ͺ}\operatorname{Spec}\,{R}\backslash\{\mathfrak{m}\}, and let kk be a natural number such that k<dim⁑(R)βˆ’height⁑(Sing⁑R/I)k<\operatorname{dim}(R)-~{}\operatorname{height}\,(\operatorname{Sing}R/I). Then, for a fixed natural number jj, the maps between the modules Hπ”ͺk​(R/It+1)jH^{k}_{\mathfrak{m}}(R/I^{t+1})_{j} and Hπ”ͺk​(R/It)jH^{k}_{\mathfrak{m}}(R/I^{t})_{j} are isomorphisms for sufficiently large tt.

We first determine in which indices the hypotheses of Theorem 2.2 apply. For a general treatment of determinantal rings, see [BV88]. In particular, Proposition 1.1 of [BV88] gives that the ring R/IR/I has dimension 4, and Theorem 2.6 gives that the localization of R/IR/I at a prime ideal 𝔭\mathfrak{p} is regular if and only if 𝔭\mathfrak{p} is not equal to the maximal ideal π”ͺ\mathfrak{m}.

Since R/IR/I is regular when localized away from the maximal ideal, the ring R/IR/I is a locally complete intersection on the punctured spectrum. On the other hand, (R/I)π”ͺ(R/I)_{\mathfrak{m}} is not regular, so we have that Sing⁑(R/I)=π”ͺ\operatorname{Sing}(R/I)={\mathfrak{m}} and thus height⁑(Sing⁑(R/I))\operatorname{height}\,\left(\operatorname{Sing}(R/I)\right) is the dimension of R/IR/I, which is 4. Therefore Theorem 2.2 applies for cohomological indices k≀3k\leq 3.

3. The rank of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} is one

Hochster and Eagon showed that determinantal rings are Cohen-Macaulay in [HE71], specifically, in our case, the local cohomology modules Hπ”ͺk​(R/I)H^{k}_{\mathfrak{m}}(R/I) are zero at every cohomological index kβ‰ 4k\neq 4. However, the successive thickenings, R/ItR/I^{t}, are not Cohen-Macaulay for all tt greater than 1; see [DEP80].

As is stated in Proposition 7.24 of [BV88], the depth of the ring R/ItR/I^{t} is at least three for all tt. Since the rings R/ItR/I^{t} are not Cohen-Macaulay for all tβ‰₯2t\geq 2, this implies that the depth of R/ItR/I^{t} must be exactly three. Therefore the module Hπ”ͺ3​(R/It)H^{3}_{\mathfrak{m}}(R/I^{t}) is nonzero for all thickenings with tβ‰₯2t\geq 2. As we shall see, Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} is a rank 1 vector space over 𝔽\mathbb{F} for each tβ‰₯2t\geq 2. Towards proving this, we first recall the following theorem.

Theorem 3.1.

[LSW16] Let R=℀​[X]R=\mathbb{Z}[X] be a polynomial ring, where XX is an mΓ—nm\times n matrix of indeterminates. Let IdI_{d} be the ideal generated by the size dd minors of XX. If 2≀d≀min⁑(m,n)2\leq d\leq\operatorname{min}(m,n) and dd differs from at least one of mm and nn, then there exists a degree-preserving isomorphism

HIdm​nβˆ’d2+1​(℀​[X])β‰…Hπ”ͺm​n​(β„šβ€‹[X]).H^{mn-d^{2}+1}_{I_{d}}(\mathbb{Z}[X])\cong H^{mn}_{\mathfrak{m}}(\mathbb{Q}[X]).

Applying Theorem 3.1 when XX is an 2Γ—32\times 3 matrix of indeterminates and II is the ideal generated by size 22 minors of XX gives:

(3.1.1) HI3​(℀​[X])β‰…Hπ”ͺ6​(β„šβ€‹[X])H^{3}_{I}(\mathbb{Z}[X])\cong H^{6}_{\mathfrak{m}}(\mathbb{Q}[X])

We are considering the ring 𝔽​[X]\mathbb{F}[X] where 𝔽\mathbb{F} is some field of characteristic 0, not the ring ℀​[X]\mathbb{Z}[X]. However, we claim the above isomorphism implies that the modules HI3​(𝔽​[X])H^{3}_{I}(\mathbb{F}[X]) and Hπ”ͺ6​(𝔽​[X])H^{6}_{\mathfrak{m}}(\mathbb{F}[X]) are isomorphic. To see this, first tensor both sides of Equation 3.1.1 with the module 𝔽​[X]\mathbb{F}[X] to get

(3.1.2) 𝔽​[X]βŠ—β„€β€‹[X]HI3​(℀​[X])≅𝔽​[X]βŠ—β„€β€‹[X]Hπ”ͺ6​(β„šβ€‹[X]).\mathbb{F}[X]\otimes_{\mathbb{Z}[X]}H^{3}_{I}(\mathbb{Z}[X])\cong\mathbb{F}[X]\otimes_{\mathbb{Z}[X]}H^{6}_{\mathfrak{m}}(\mathbb{Q}[X]).

Note that, since 𝔽\mathbb{F} is a field of characteristic 0, the module 𝔽​[X]\mathbb{F}[X] is flat over ℀​[X]\mathbb{Z}[X].

Lemma 3.2.

[ILL+07] Let II be an ideal of a ring RR, and let MM be an RR-module. Then if R⟢SR\longrightarrow S is flat, there is a natural isomorphism of SS-modules

SβŠ—RHIj​(M)β‰…HI​Sj​(SβŠ—RM).S\otimes_{R}H^{j}_{I}(M)\cong H^{j}_{IS}(S\otimes_{R}M).

Applying Lemma 3.2 to Equation 3.1.2 gives that

𝔽​[X]βŠ—β„€β€‹[X]HI3​(℀​[X])\displaystyle\mathbb{F}[X]\otimes_{\mathbb{Z}[X]}H^{3}_{I}(\mathbb{Z}[X]) β‰…HI​𝔽​[X]3​(𝔽​[X]βŠ—β„€β€‹[X]℀​[X])\displaystyle\cong H^{3}_{I\mathbb{F}[X]}(\mathbb{F}[X]\otimes_{\mathbb{Z}[X]}\mathbb{Z}[X])
β‰…HI3​(𝔽​[X]).\displaystyle\cong H^{3}_{I}(\mathbb{F}[X]).

Similarly

𝔽​[X]βŠ—β„€β€‹[X]Hπ”ͺ6​(β„šβ€‹[X])\displaystyle\mathbb{F}[X]\otimes_{\mathbb{Z}[X]}H^{6}_{\mathfrak{m}}(\mathbb{Q}[X]) β‰…Hπ”ͺ6​(𝔽​[X]βŠ—β„€β€‹[X]β„šβ€‹[X])\displaystyle\cong H^{6}_{\mathfrak{m}}(\mathbb{F}[X]\otimes_{\mathbb{Z}[X]}\mathbb{Q}[X])
β‰…Hπ”ͺ6​(𝔽​[X]).\displaystyle\cong H^{6}_{\mathfrak{m}}(\mathbb{F}[X]).
Proposition 3.3.

The module Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} is an 𝔽\mathbb{F}-vector space of rank 1 for all tt.

Proof.

Let Ο‰R\omega_{R} denote the canonical module of RR and let ER​(R/π”ͺ)E_{R}(R/\mathfrak{m}) denote the injective hull of the residue field, R/π”ͺR/\mathfrak{m}. As RR is a Gorenstein ring of dimension 6, the canonical module Ο‰R\omega_{R} is isomorphic to R​(βˆ’6)R(-6). The injective hull ER​(R/π”ͺ)E_{R}(R/\mathfrak{m}) is isomorphic to Hπ”ͺ6​(R)​(βˆ’6)H^{6}_{\mathfrak{m}}(R)(-6).

Local duality gives that

Hπ”ͺ3​(R/It)βˆ¨β‰…ExtR3⁑(R/It,Ο‰R),H^{3}_{\mathfrak{m}}(R/I^{t})^{\vee}\cong\operatorname{Ext}^{3}_{R}(R/I^{t},\omega_{R}),

where (βˆ’)∨(-)^{\vee} indicates HomR⁑(βˆ’,ER​(R/π”ͺ))\operatorname{Hom}_{R}(-,E_{R}(R/\mathfrak{m})).

An RR-homomorphism in HomR(Hπ”ͺ3(R/It),ER(R/π”ͺ))j\operatorname{Hom}_{R}(H^{3}_{\mathfrak{m}}(R/I^{t}),E_{R}(R/\mathfrak{m}))_{j} is determined by the preimage of elements in ER​(R/π”ͺ)E_{R}(R/\mathfrak{m}) of degree zero. Therefore the rank of HomR(Hπ”ͺ3(R/It),ER(R/π”ͺ))j\operatorname{Hom}_{R}(H^{3}_{\mathfrak{m}}(R/I^{t}),E_{R}(R/\mathfrak{m}))_{j} is equal to the rank of Hπ”ͺ3​(R/It)βˆ’jH^{3}_{\mathfrak{m}}(R/I^{t})_{-j}. We thus have

rank⁑Hπ”ͺ3​(R/It)j\displaystyle\operatorname{rank}H^{3}_{\mathfrak{m}}(R/I^{t})_{j} =rank(Hπ”ͺ3(R/It)∨)βˆ’j\displaystyle=\operatorname{rank}\left(H^{3}_{\mathfrak{m}}(R/I^{t})^{\vee}\right)_{-j}
=rank⁑((ExtR3⁑(R/It,Ο‰R))βˆ’j)\displaystyle=\operatorname{rank}(\left(\operatorname{Ext}^{3}_{R}(R/I^{t},\omega_{R})\right)_{-j})
=rank((ExtR3(R/It,R(βˆ’6)))βˆ’j\displaystyle=\operatorname{rank}(\left(\operatorname{Ext}^{3}_{R}(R/I^{t},R(-6))\right)_{-j}
=rank((ExtR3(R/It,R))βˆ’jβˆ’6,\displaystyle=\operatorname{rank}(\left(\operatorname{Ext}^{3}_{R}(R/I^{t},R)\right)_{-j-6},

i.e., the rank of Hπ”ͺ3​(R/It)jH^{3}_{\mathfrak{m}}(R/I^{t})_{j} is the same as the rank of ExtR3(R/It,R)βˆ’(j+6)\operatorname{Ext}^{3}_{R}(R/I^{t},R)_{-(j+6)}. Note that one can define a different local cohomology module as the direct limit of these Ext\operatorname{Ext}-modules :

HI3​(R)=limt⟢∞ExtR3⁑(R/It,R).H^{3}_{I}(R)=\lim\limits_{t\longrightarrow\infty}\operatorname{Ext}^{3}_{R}(R/I^{t},R).

Since TheoremΒ 2.2 guarantees an eventual isomorphism, the rank of the module Hπ”ͺ3​(R/It)jH^{3}_{\mathfrak{m}}(R/I^{t})_{j} must equal the rank of HI3​(R)j+6H^{3}_{I}(R)_{j+6} for sufficiently large tt. Therefore, we can compute the rank of Hπ”ͺ3​(R/It)jH^{3}_{\mathfrak{m}}(R/I^{t})_{j} as an 𝔽\mathbb{F}-vector space by instead calculating the rank of HI3​(R)H^{3}_{I}(R) with a degree shift:

(3.3.1) rank⁑Hπ”ͺ3​(R/It)j=rank⁑HI3​(R)βˆ’jβˆ’6\operatorname{rank}H^{3}_{\mathfrak{m}}(R/I^{t})_{j}=\operatorname{rank}H^{3}_{I}(R)_{-j-6}

for sufficiently large tt.

Recall that EquationΒ 3.1.2 gave HI3​(𝔽​[X])β‰…Hπ”ͺ6​(𝔽​[X])H^{3}_{I}(\mathbb{F}[X])\cong H^{6}_{\mathfrak{m}}(\mathbb{F}[X]) as graded modules. Therefore, the rank of HI3​(𝔽​[X])H^{3}_{I}(\mathbb{F}[X]) in any degree is equal to the rank of Hπ”ͺ6​(𝔽​[X])H^{6}_{\mathfrak{m}}(\mathbb{F}[X]) in that degree. Since the rank of Hπ”ͺ3​(R/It)jH^{3}_{\mathfrak{m}}(R/I^{t})_{j} equals the rank of HI3​(R)βˆ’jβˆ’6H^{3}_{I}(R)_{-j-6} from EquationΒ 3.3.1, we have

rank⁑Hπ”ͺ3​(R/It)j=rank⁑Hπ”ͺ6​(R)βˆ’jβˆ’6\operatorname{rank}H^{3}_{\mathfrak{m}}(R/I^{t})_{j}=\operatorname{rank}H^{6}_{\mathfrak{m}}(R)_{-j-6}

In particular, when j=0j=0

rank⁑Hπ”ͺ3​(R/It)0=rank⁑Hπ”ͺ6​(R)βˆ’6.\operatorname{rank}H^{3}_{\mathfrak{m}}(R/I^{t})_{0}=\operatorname{rank}H^{6}_{\mathfrak{m}}(R)_{-6}.

As RR is a regular ring in six variables, the top local cohomology module is well-understood:

Hπ”ͺ6​(R)=1u​v​w​x​y​z​𝔽​[uβˆ’1,vβˆ’1,wβˆ’1,xβˆ’1,yβˆ’1,zβˆ’1].H^{6}_{\mathfrak{m}}(R)=\frac{1}{uvwxyz}\mathbb{F}[u^{-1},v^{-1},w^{-1},x^{-1},y^{-1},z^{-1}].

It follows from the above description that the rank of Hπ”ͺ6​(R)βˆ’6H^{6}_{\mathfrak{m}}(R)_{-6} equals 1 as an 𝔽\mathbb{F}-vector space. ∎

4. An Element of Local Cohomology Is Described Using Natural Log

One can determine the module Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} by considering elements in the Čech complex on the generators

𝐱=u,v,w,x,y,z{\bf x}=u,v,w,x,y,z

of the maximal ideal, π”ͺ\mathfrak{m}. As R/IR/I is a four dimensional ring, the maximal ideal π”ͺ\mathfrak{m} could be generated up to radical by only four elements. However, we chose to use six variables, for the sake of symmetry.

Thus, we expect to find an element of CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t}), that is, an element of

(R/It)u​v​wβŠ•(R/It)u​v​xβŠ•(R/It)u​v​yβŠ•β€¦βŠ•(R/It)x​y​z(R/I^{t})_{uvw}\oplus(R/I^{t})_{uvx}\oplus(R/I^{t})_{uvy}\oplus\ldots\oplus(R/I^{t})_{xyz}

that maps to 0 in CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}) but is not in the image of CΛ‡2​(x,R/It)\check{C}^{2}(\textbf{x},R/I^{t}). Note that the presence of only two variables in the denominator of a particular component of CΛ‡3​(x,R/It)\check{C}^{3}(\textbf{x},R/I^{t}) does not guarantee that the element is in the image of CΛ‡2​(x,R/It)\check{C}^{2}(\textbf{x},R/I^{t}), as we shall see.

Surprisingly, the isomorphism Hπ”ͺ3​(R/It+1)0⟢Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t+1})_{0}\longrightarrow H^{3}_{\mathfrak{m}}(R/I^{t})_{0} can be elegantly understood in terms of truncations of the formal power series of natural log.

Theorem 4.1.

Let R=𝔽​[uvwxyz]R=\mathbb{F}\begin{bmatrix}u&v&w\\ x&y&z\end{bmatrix}, i.e., RR is the ring of polynomials in 6 indeterminates over a field of characteristic 0. Let II be the ideal generated by size two minors of [uvwxyz]\begin{bmatrix}u&v&w\\ x&y&z\end{bmatrix} and let

Ξ”1=v​zβˆ’w​y,Ξ”2=w​xβˆ’u​z,Ξ”3=u​yβˆ’v​x.\Delta_{1}=vz-wy,\quad\Delta_{2}=wx-uz,\quad\Delta_{3}=uy-vx.

Then the identity

ln⁑(w​yv​z​u​zw​x​v​xu​y)=ln⁑(1)=0\ln\left(\frac{wy}{vz}\frac{uz}{wx}\frac{vx}{uy}\right)=\ln(1)=0

gives the following identity in the fraction field of the II-adic completion of RR:

βˆ‘m=1∞1m​(Ξ”1v​z)m+βˆ‘m=1∞1m​(Ξ”2w​x)m+βˆ‘m=1∞1m​(Ξ”1u​y)m=0.\displaystyle\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{1}}{vz}\right)^{m}+\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{2}}{wx}\right)^{m}+\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{1}}{uy}\right)^{m}=0.

The tt​ht^{th} truncation of this Taylor series yields the generator for Hπ”ͺ3​(R/It)0.H^{3}_{\mathfrak{m}}(R/I^{t})_{0}.

While the above identity in the fraction field of the II-adic completion is the heart of our local cohomology module element, it must be finessed slightly into the form of an element in CΛ‡3​(𝐱,𝐑/𝐈𝐭)\check{C}^{3}(\bf{x},R/I^{t}). We will show that Table 1 describes such an element, which we will henceforth refer to as Ξ·\eta. We will prove the above theorem in two steps. First, in Subsection 4.1, we will show that Ξ·\eta maps to 0 in CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}). Second, in Subsection 4.2, we will show that Ξ·\eta is not in the image of CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}).

Table 1. Element in Hπ”ͺ3​(R/It)H^{3}_{\mathfrak{m}}(R/I^{t})
Component of CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t}) Component in the II-adic completion
Ru​v​wR_{uvw} 0 0
Ru​v​xR_{uvx} 0 0
Ru​w​xR_{uwx} 0 0
Rv​w​xR_{vwx} 0 0
Ru​v​yR_{uvy} 0 0
Ru​w​yR_{uwy} 0 0
Rv​w​yR_{vwy} 0 0
Ru​x​yR_{uxy} βˆ’βˆ‘m=1tβˆ’11m​(Ξ”3u​y)m-\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{3}}{uy})^{m} ln⁑(u​yv​x)\ln\left(\frac{uy}{vx}\right)
Rv​x​yR_{vxy} βˆ‘m=1tβˆ’11m​(Ξ”3v​x)m\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{3}}{vx})^{m} ln⁑(u​yv​x)\ln\left(\frac{uy}{vx}\right)
Rw​x​yR_{wxy} βˆ‘m=1tβˆ’11m​(Ξ”2w​x)mβˆ’βˆ‘k=1tβˆ’11k​(Ξ”1w​y)m\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{2}}{wx})^{m}-\sum\limits_{k=1^{t-1}}\frac{1}{k}(\frac{\Delta_{1}}{wy})^{m} ln⁑(u​zw​x)+ln⁑(w​yv​z)\ln\left(\frac{uz}{wx}\right)+\ln\left(\frac{wy}{vz}\right)
Ru​v​zR_{uvz} 0 0
Ru​w​zR_{uwz} 0 0
Rv​w​zR_{vwz} 0 0
Ru​x​zR_{uxz} βˆ’βˆ‘m=1tβˆ’11m​(Ξ”2u​z)m-\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{2}}{uz})^{m} ln⁑(u​zw​x)\ln(\frac{uz}{wx})
Rv​x​zR_{vxz} βˆ’βˆ‘m=1tβˆ’11m​(Ξ”1v​z)m+βˆ‘k=1tβˆ’11k​(Ξ”3v​x)m-\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{1}}{vz})^{m}+\sum\limits_{k=1^{t-1}}\frac{1}{k}(\frac{\Delta_{3}}{vx})^{m} ln⁑(v​zw​y)+ln⁑(u​yv​x)\ln\left(\frac{vz}{wy}\right)+\ln\left(\frac{uy}{vx}\right)
Rw​x​zR_{wxz} βˆ‘m=1tβˆ’11m​(Ξ”2w​x)m\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{2}}{wx})^{m} ln⁑(u​zw​x)\ln\left(\frac{uz}{wx}\right)
Ru​y​zR_{uyz} βˆ‘m=1tβˆ’11m​(Ξ”3u​y)mβˆ’βˆ‘k=1tβˆ’11k​(Ξ”2u​z)m\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{3}}{uy})^{m}-\sum\limits_{k=1^{t-1}}\frac{1}{k}(\frac{\Delta_{2}}{uz})^{m} ln⁑(v​xu​y)+ln⁑(u​zw​x)\ln\left(\frac{vx}{uy}\right)+\ln\left(\frac{uz}{wx}\right)
Rv​y​zR_{vyz} βˆ’βˆ‘m=1tβˆ’11m​(Ξ”1v​z)m-\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{1}}{vz})^{m} ln⁑(v​zw​y)\ln\left(\frac{vz}{wy}\right)
Rw​y​zR_{wyz} βˆ‘m=1tβˆ’11m​(Ξ”1w​y)m\sum\limits_{m=1}^{t-1}\frac{1}{m}(\frac{\Delta_{1}}{wy})^{m} ln⁑(v​zw​y)\ln\left(\frac{vz}{wy}\right)
Rx​y​zR_{xyz} 0 0

4.1. The Element Ξ·\eta Vanishes

First we show that the element given by Table 1 is a cocycle, that is, the image of Ξ·\eta is 0 in CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}).

Proof.

Let R^\hat{R} denote the II-adic completion of RR. Then, in the fraction field of R^\hat{R}, one has

0\displaystyle 0 =ln⁑(1)\displaystyle=\ln(1)
=ln⁑(w​yv​z​u​zw​x​v​xu​y)\displaystyle=\ln\left({\color[rgb]{0.8359375,0.3671875,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.8359375,0.3671875,0}\frac{wy}{vz}}{\color[rgb]{0.80078125,0.47265625,0.65625}\definecolor[named]{pgfstrokecolor}{rgb}{0.80078125,0.47265625,0.65625}\frac{uz}{wx}}{\color[rgb]{0,0.4453125,0.69921875}\definecolor[named]{pgfstrokecolor}{rgb}{0,0.4453125,0.69921875}\frac{vx}{uy}}\right)
=ln⁑((1βˆ’(1βˆ’w​yv​z))​(1βˆ’(1βˆ’u​zw​x))​(1βˆ’(1βˆ’v​xu​y)))\displaystyle=\ln\left(\left(1-{\color[rgb]{0.8359375,0.3671875,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.8359375,0.3671875,0}\left(1-\frac{wy}{vz}\right)}\right)\left(1-{\color[rgb]{0.80078125,0.47265625,0.65625}\definecolor[named]{pgfstrokecolor}{rgb}{0.80078125,0.47265625,0.65625}\left(1-\frac{uz}{wx}\right)}\right)\left(1-{\color[rgb]{0,0.4453125,0.69921875}\definecolor[named]{pgfstrokecolor}{rgb}{0,0.4453125,0.69921875}\left(1-\frac{vx}{uy}\right)}\right)\right)
=ln⁑((1βˆ’(v​zβˆ’w​yv​z))​(1βˆ’(w​xβˆ’u​zw​x))​(1βˆ’(u​yβˆ’v​xu​y)))\displaystyle=\ln\left(\left(1-{\color[rgb]{0.8359375,0.3671875,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.8359375,0.3671875,0}\left(\frac{vz-wy}{vz}\right)}\right)\left(1-{\color[rgb]{0.80078125,0.47265625,0.65625}\definecolor[named]{pgfstrokecolor}{rgb}{0.80078125,0.47265625,0.65625}\left(\frac{wx-uz}{wx}\right)}\right)\left(1-{\color[rgb]{0,0.4453125,0.69921875}\definecolor[named]{pgfstrokecolor}{rgb}{0,0.4453125,0.69921875}\left(\frac{uy-vx}{uy}\right)}\right)\right)
=ln⁑((1βˆ’(Ξ”1v​z))​(1βˆ’(Ξ”2w​x))​(1βˆ’(Ξ”3u​y)))\displaystyle=\ln\left(\left(1-{\color[rgb]{0.8359375,0.3671875,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.8359375,0.3671875,0}\left(\frac{\Delta_{1}}{vz}\right)}\right)\left(1-{\color[rgb]{0.80078125,0.47265625,0.65625}\definecolor[named]{pgfstrokecolor}{rgb}{0.80078125,0.47265625,0.65625}\left(\frac{\Delta_{2}}{wx}\right)}\right)\left(1-{\color[rgb]{0,0.4453125,0.69921875}\definecolor[named]{pgfstrokecolor}{rgb}{0,0.4453125,0.69921875}\left(\frac{\Delta_{3}}{uy}\right)}\right)\right)
=ln⁑((1βˆ’(Ξ”1v​z))+ln⁑(1βˆ’(Ξ”2w​x))+ln⁑(1βˆ’(Ξ”3u​y)))\displaystyle=\ln\left(\left(1-{\color[rgb]{0.8359375,0.3671875,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.8359375,0.3671875,0}\left(\frac{\Delta_{1}}{vz}\right)}\right)+\ln\left(1-{\color[rgb]{0.80078125,0.47265625,0.65625}\definecolor[named]{pgfstrokecolor}{rgb}{0.80078125,0.47265625,0.65625}\left(\frac{\Delta_{2}}{wx}\right)}\right)+\ln\left(1-{\color[rgb]{0,0.4453125,0.69921875}\definecolor[named]{pgfstrokecolor}{rgb}{0,0.4453125,0.69921875}\left(\frac{\Delta_{3}}{uy}\right)}\right)\right)
=βˆ‘m=1∞1m​(Ξ”1v​z)m+βˆ‘m=1∞1m​(Ξ”2w​x)m+βˆ‘m=1∞1m​(Ξ”3u​y)m.\displaystyle=\displaystyle\sum\limits_{m=1}^{\infty}\frac{1}{m}\left({\color[rgb]{0.8359375,0.3671875,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.8359375,0.3671875,0}\frac{\Delta_{1}}{vz}}\right)^{m}+\sum\limits_{m=1}^{\infty}\frac{1}{m}\left({\color[rgb]{0.80078125,0.47265625,0.65625}\definecolor[named]{pgfstrokecolor}{rgb}{0.80078125,0.47265625,0.65625}\frac{\Delta_{2}}{wx}}\right)^{m}+\sum\limits_{m=1}^{\infty}\frac{1}{m}\left({\color[rgb]{0,0.4453125,0.69921875}\definecolor[named]{pgfstrokecolor}{rgb}{0,0.4453125,0.69921875}\frac{\Delta_{3}}{uy}}\right)^{m}.

Because the minors, Ξ”i\Delta_{i}, are in the ideal II, in CΛ‡3​(x,R/It)\check{C}^{3}(\textbf{x},R/I^{t}), the elements of the form

βˆ‘m=1tβˆ’11m​(Ξ”1v​z)m\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{1}}{vz}\right)^{m}

are exactly equal to the truncations of the sum,

βˆ‘m=1∞1m​(Ξ”1v​z)m.\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{1}}{vz}\right)^{m}.

Therefore, an element of CΛ‡3​(x,R/It)\check{C}^{3}(\textbf{x},R/I^{t}) has the same image in CΛ‡4​(x,R/It)\check{C}^{4}(\textbf{x},R/I^{t}) as would an element in CΛ‡3​(x,limt⟢∞R/It)\check{C}^{3}(\textbf{x},\lim_{t\longrightarrow\infty}R/I^{t}), that is, an element in the Čech complex of the II-adic completion of RR. We also record the completion of the element in Table 1.

The element Ξ·\eta of TableΒ 1 is nonzero only in components of CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t}) with one of the variables, u,v,u,v, and ww (i.e., variables in the first row) and two of the variables x,y,x,y, or zz (i.e., variables in the second row) inverted. Thus, the image of Ξ·\eta in all components of CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}) with only one of the variables x,y,x,y, or zz inverted will certainly be 0; that is, the image of Ξ·\eta is 0 in the components (R/It)u​v​w​x,(R/It)u​v​w​y(R/I^{t})_{uvwx},(R/I^{t})_{uvwy} and (R/It)u​v​w​z(R/I^{t})_{uvwz}.

By symmetry, it suffices to check that the image of Ξ·\eta is 0 in the three components, (R/It)u​v​x​y,(R/It)u​x​y​z,(R/I^{t})_{uvxy},(R/I^{t})_{uxyz}, and (R/It)u​w​x​y(R/I^{t})_{uwxy}.

  1. 1.

    In (R/It)u​v​x​y(R/I^{t})_{uvxy}, Ξ·\eta maps to:

    βˆ‘m=1tβˆ’11m​(Ξ”3u​y)+βˆ‘m=1tβˆ’11m​(Ξ”3v​x),\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{3}}{uy}\right)+\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{3}}{vx}\right),

    which agrees with the infinite sum

    βˆ‘m=1∞1m​(Ξ”3u​y)+βˆ‘m=1∞1m​(Ξ”3v​x)\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{3}}{uy}\right)+\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{3}}{vx}\right)

    in the II-adic completion of the module (R/It)u​v​x​y(R/I^{t})_{uvxy}. We have that the sum equals

    ln⁑(v​xu​y)+ln⁑(u​yv​x)=ln⁑(v​xu​y)βˆ’ln⁑(v​xu​y)=0.\displaystyle\ln\left(\frac{vx}{uy}\right)+\ln\left(\frac{uy}{vx}\right)=\ln\left(\frac{vx}{uy}\right)-\ln\left(\frac{vx}{uy}\right)=0.
  2. 2.

    The image of Ξ·\eta in (R/It)u​x​y​z(R/I^{t})_{uxyz} is

    βˆ‘m=1tβˆ’11m​(Ξ”3u​y)mβˆ’βˆ‘m=1tβˆ’11m​(Ξ”2u​z)mβˆ’βˆ‘m=1tβˆ’11m​(Ξ”3u​y)m+βˆ‘m=1tβˆ’11m​(Ξ”2u​z)m=0\displaystyle\sum_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{3}}{uy}\right)^{m}-\sum_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{2}}{uz}\right)^{m}-\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{3}}{uy}\right)^{m}+\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{2}}{uz}\right)^{m}=0
  3. 3.

    Finally, the image of Ξ·\eta in (R/It)u​w​x​y(R/I^{t})_{uwxy} is

    βˆ‘m=1tβˆ’11m​(Ξ”3u​y)m+βˆ‘m=1tβˆ’11m​(Ξ”2w​x)mβˆ’βˆ‘k=1tβˆ’11k​(Ξ”1w​y)m\displaystyle\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{3}}{uy}\right)^{m}+\sum\limits_{m=1}^{t-1}\frac{1}{m}\left(\frac{\Delta_{2}}{wx}\right)^{m}-\sum\limits_{k=1}^{t-1}\frac{1}{k}\left(\frac{\Delta_{1}}{wy}\right)^{m}

    which, in R/ItR/I^{t} is the same as

    βˆ‘m=1∞1m​(Ξ”3u​y)m+βˆ‘m=1∞1m​(Ξ”2w​x)mβˆ’βˆ‘k=1∞1k​(Ξ”1w​y)m\displaystyle\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{3}}{uy}\right)^{m}+\sum\limits_{m=1}^{\infty}\frac{1}{m}\left(\frac{\Delta_{2}}{wx}\right)^{m}-\sum\limits_{k=1}^{\infty}\frac{1}{k}\left(\frac{\Delta_{1}}{wy}\right)^{m}
    =\displaystyle= ln⁑(v​xu​y)+ln⁑(u​zw​x)βˆ’ln⁑(v​zw​y)\displaystyle\ln\left(\frac{vx}{uy}\right)+\ln\left(\frac{uz}{wx}\right)-\ln\left(\frac{vz}{wy}\right)
    =\displaystyle= ln⁑(v​xu​y)+ln⁑(u​zw​x)+ln⁑(w​yv​z)\displaystyle\ln\left(\frac{vx}{uy}\right)+\ln\left(\frac{uz}{wx}\right)+\ln\left(\frac{wy}{vz}\right)
    =\displaystyle= ln⁑(v​x​u​z​w​yu​y​w​x​v​z)\displaystyle\ln\left(\frac{vxuzwy}{uywxvz}\right)
    =\displaystyle= ln⁑(1)\displaystyle\ln(1)
    =\displaystyle= 0.∎\displaystyle 0.\qed

4.2. The Element Ξ·\eta Is Not a Coboundary

The element given by Table 1 is not a coboundary, that is, the element Ξ·\eta is not the image of an element from CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}).

Proof.

Give RR the following multi-grading:

deg⁑(u)\displaystyle\deg(u) =(1,0,0,0)\displaystyle=(1,0,0,0) deg⁑(x)\displaystyle\deg(x) =(1,0,0,1)\displaystyle=(1,0,0,1)
deg⁑(v)\displaystyle\deg(v) =(0,1,0,0)\displaystyle=(0,1,0,0) deg⁑(y)\displaystyle\deg(y) =(0,1,0,1)\displaystyle=(0,1,0,1)
deg⁑(w)\displaystyle\deg(w) =(0,0,1,0)\displaystyle=(0,0,1,0) deg⁑(z)\displaystyle\deg(z) =(0,0,1,1)\displaystyle=(0,0,1,1)

The generators of the ideal II are homogeneous with respect to this multi-grading, and hence one obtains a grading on R/ItR/I^{t}. The element, η∈CΛ‡3​(𝐱,R/It)\eta\in\check{C}^{3}({\bf x},R/I^{t}) is homogeneous of degree (0,0,0,0)(0,0,0,0).

Suppose for the sake of contradiction that the element, Ξ·\eta were a coboundary, that is, in the image of CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}). The map from CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}) to CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t}) is degree-preserving. Therefore, an element of CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}) mapping to the given element would necessarily be degree (0,0,0,0)(0,0,0,0) in each component.

Consider the Ru​vR_{uv} component of Cˇ​(𝐱,R/It)\check{C}({\bf x},R/I^{t}). Since deg⁑(1un​vm)=(βˆ’n,βˆ’m,0,0)\deg(\frac{1}{u^{n}v^{m}})=(-n,-m,0,0), in order for an arbitrary element deg⁑(aun​vm)\deg(\frac{a}{u^{n}v^{m}}) of (R/It)u​v(R/I^{t})_{uv} with a∈R/Ita\in R/I^{t} to be of multi-degree (0,0,0,0)(0,0,0,0), it must be that deg⁑(a)=(n,m,0,0)\deg(a)=(n,m,0,0), or a=0a=0. But since a∈Ra\in R, this means a=λ​un​vma=\lambda u^{n}v^{m}. Thus, any degree (0,0,0,0)(0,0,0,0) element in Ru​vR_{uv} is of the form

λ​un​vmun​vm\frac{\lambda u^{n}v^{m}}{u^{n}v^{m}}

for Ξ»βˆˆπ”½\lambda\in\mathbb{F}. Thus any multi-degree (0,0,0,0)(0,0,0,0) element in Ru​vR_{uv} is, in fact, in the field 𝔽\mathbb{F}.

The same argument shows that all elements in Ru​w,Rv​w,Rx​y,Rx​z,Ry​z,Ru​x,Rv​yR_{uw},R_{vw},R_{xy},R_{xz},R_{yz},R_{ux},R_{vy}, and Rw​zR_{wz} in multi-degree (0,0,0,0)(0,0,0,0) are scalars from the field 𝔽\mathbb{F}.

Note that Ξ·\eta, is 0 in the Ru​v​xR_{uvx} component. Since the elements in Ru​xR_{ux} and Ru​vR_{uv} are scalars in 𝔽\mathbb{F}, the preimage of Ξ·\eta in the Rx​vR_{xv} component must also be a scalar. Using the fact that Ξ·\eta is 0 in the Ru​v​y,Ru​w​x,Ru​w​z,Rv​w​zR_{uvy},R_{uwx},R_{uwz},R_{vwz}, and Rv​w​yR_{vwy} components, a similar argument shows that the preimage of Ξ·\eta would be forced to be a scalar in every component of CΛ‡2​(x,R)\check{C}^{2}(\textbf{x},R).

Thus, if the element Ξ·\eta were in the image of an element of CΛ‡2​(x,R)\check{C}^{2}(\textbf{x},R), it would be the image of an element that consisted of scalars in each component. However, Ξ”1u​y\frac{\Delta_{1}}{uy} is not in 𝔽\mathbb{F}. ∎

Note that the arguments in 4.2 were independent of the characteristic of the ground field.

5. Explorations in Characteristic p>0p>0

The results of Theorem 2.2 require the characteristic of the ground field be 0. In characteristic p>0p>0, the situation is remarkably different.

We shall consider the same setting but over a field of positive characteristic. Let XX be a 2Γ—32\times 3 matrix of indeterminates and let RR be the ring 𝔽​[X]\mathbb{F}[X] for a field of prime characteristic p>0p>0:

R=𝔽​[uvwxyz].R=\mathbb{F}\begin{bmatrix}u&v&w\\ x&y&z\end{bmatrix}.

As before, let II be the ideal generated by size two minors of the matrix XX, and let

Ξ”1=v​zβˆ’w​y,Ξ”2=w​xβˆ’u​z,Ξ”3=u​yβˆ’v​x.\Delta_{1}=vz-wy,\quad\Delta_{2}=wx-uz,\quad\Delta_{3}=uy-vx.

In the characteristic 0 case, PropositionΒ 3.3 guaranteed that the local cohomology module Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} is an 𝔽\mathbb{F}-vector space of rank 1 for all tβ‰₯2t\geq 2. In the characteristic p>0p>0 case, there is no such guarantee, and indeed,we shall see that the ranks of the local cohomology modules Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} grow arbitrarily large on a subsequence of tt in the natural numbers.

In Subsection 5.1, we construct elements of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0}. The construction proceeds by showing in Subsection 5.2 that the given elements are not boundaries, then showing in Subsection 5.3 that the given elements are cycles.

5.1. Elements Of Local Cohomology Modules In Positive Characteristic

We seek to construct elements of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} when the ground field is characteristic p>0p>0. The element Ξ·\eta from Table 1 is no longer defined when the characteristic of the field is positive, as Ξ·\eta is defined using the fraction 1m\frac{1}{m} for arbitrary m≀tβˆ’1m\leq t-1.

Theorem 5.1.

Let qq be the largest power of p such that q≀tβˆ’1q\leq t-1, and let q2q_{2} be the smallest power of pp such that q+q2β‰₯tq+q_{2}\geq t. Further, suppose that mm is a positive integer with 0<m≀q0<m\leq q such that q2|mq_{2}\lvert m. Then

rank⁑Hπ”ͺ3​(R/It)0β‰₯2β€‹βŒŠqq2βŒ‹βˆ’1.\operatorname{rank}H^{3}_{\mathfrak{m}}(R/I^{t})_{0}\geq 2\left\lfloor\frac{q}{q_{2}}\right\rfloor-1.

In particular, whenever t=pe+1t=p^{e}+1 for some ee, we have that the rank of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} is at least 2​tβˆ’12t-1.

Proof.

The proof of Theorem 5.1 proceeds by concrete construction; we will demonstrate 2β€‹βŒŠqq2βŒ‹βˆ’12\left\lfloor\frac{q}{q_{2}}\right\rfloor-1 linearly independent elements in Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0}.

First, let

Ξ±=v​xu​y,Ξ²=w​yv​z,Ξ³=u​zw​x.\alpha=\dfrac{vx}{uy},\quad\beta=\dfrac{wy}{vz},\quad\gamma=\dfrac{uz}{wx}.

Note that 1βˆ’Ξ±=Ξ”3u​y,1βˆ’Ξ²=Ξ”1v​z1-\alpha=\frac{\Delta_{3}}{uy},1-\beta=\frac{\Delta_{1}}{vz} and 1βˆ’Ξ³=Ξ”2w​x1-\gamma=\frac{\Delta_{2}}{wx}. We claim the elements of TableΒ 2 and TableΒ 3 are nonzero elements of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} whenever qq, q2q_{2}, and mm satisfy the hypotheses of TheoremΒ 5.1. Furthermore, the elements of TableΒ 2 and TableΒ 3 are distinct when mβ‰ qm\neq q. We will refer to the elements in Table 2 as Ξ·1,m\eta_{1,m} and the elements in Table 3 as Ξ·2,m\eta_{2,m}, with mm ranging over all integers less than qq that are divisible by q2q_{2} as in Theorem 5.1.

Table 2. Elements in CΛ‡3​(𝐱,R^)\check{C}^{3}({\bf x},\hat{R}) in characteristic p>0p>0
Component of CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t})
Ru​v​wR_{uvw} 0
Ru​v​xR_{uvx} 0
Ru​w​xR_{uwx} 0
Rv​w​xR_{vwx} 0
Ru​v​yR_{uvy} 0
Ru​w​yR_{uwy} 0
Rv​w​yR_{vwy} 0
Ru​x​yR_{uxy} xuqβˆ’m​(Ξ±mβˆ’1)\frac{x}{u}^{q-m}(\alpha^{m}-1)
Rv​x​yR_{vxy} yvqβˆ’m​(1Ξ±mβˆ’1)\frac{y}{v}^{q-m}(\frac{1}{\alpha^{m}}-1)
Rw​x​yR_{wxy} zwqβˆ’m​(1βˆ’Ξ³mβˆ’1Ξ²m+1)\frac{z}{w}^{q-m}(1-\gamma^{m}-\frac{1}{\beta^{m}}+1)
Ru​v​zR_{uvz} 0
Ru​w​zR_{uwz} 0
Rv​w​zR_{vwz} 0
Ru​x​zR_{uxz} xuqβˆ’m​(1βˆ’1Ξ³m)\frac{x}{u}^{q-m}(1-\frac{1}{\gamma}^{m})
Rv​x​zR_{vxz} yvqβˆ’m(1Ξ±mβˆ’1+Ξ²mβˆ’1))\frac{y}{v}^{q-m}(\frac{1}{\alpha}^{m}-1+\beta^{m}-1))
Rw​x​zR_{wxz} zwqβˆ’m​(1βˆ’Ξ³m)\frac{z}{w}^{q-m}(1-\gamma^{m})
Ru​y​zR_{uyz} xuqβˆ’m​(1βˆ’Ξ±mβˆ’1Ξ³m+1)\frac{x}{u}^{q-m}(1-\alpha^{m}-\frac{1}{\gamma}^{m}+1)
Rv​y​zR_{vyz} yvqβˆ’m​(Ξ²mβˆ’1)\frac{y}{v}^{q-m}(\beta^{m}-1)
Rw​y​zR_{wyz} zwqβˆ’m​(1Ξ²mβˆ’1)\frac{z}{w}^{q-m}(\frac{1}{\beta}^{m}-1)
Rx​y​zR_{xyz} 0
Table 3. Elements in CΛ‡3​(𝐱,R^)\check{C}^{3}({\bf x},\hat{R}) in characteristic p>0p>0
Component of CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t})
Ru​v​wR_{uvw} 0
Ru​v​xR_{uvx} uxqβˆ’m​(1βˆ’1Ξ±m)\frac{u}{x}^{q-m}(1-\frac{1}{\alpha}^{m})
Ru​w​xR_{uwx} uxqβˆ’m​(1βˆ’Ξ³m)\frac{u}{x}^{q-m}(1-\gamma^{m})
Rv​w​xR_{vwx} uxqβˆ’m​(1βˆ’1Ξ±mβˆ’Ξ³m+1)\frac{u}{x}^{q-m}(1-\frac{1}{\alpha}^{m}-\gamma^{m}+1)
Ru​v​yR_{uvy} vyqβˆ’m​(Ξ±mβˆ’1)\frac{v}{y}^{q-m}(\alpha^{m}-1)
Ru​w​yR_{uwy} vyqβˆ’m(1βˆ’Ξ±mβˆ’1Ξ²m+1))\frac{v}{y}^{q-m}(1-\alpha^{m}-\frac{1}{\beta}^{m}+1))
Rv​w​yR_{vwy} vyqβˆ’m​(1Ξ²mβˆ’1)\frac{v}{y}^{q-m}(\frac{1}{\beta}^{m}-1)
Ru​x​yR_{uxy} 0
Rv​x​yR_{vxy} 0
Rw​x​yR_{wxy} 0
Ru​v​zR_{uvz} wzqβˆ’m​(1βˆ’1Ξ³mβˆ’Ξ²m+1)\frac{w}{z}^{q-m}(1-\frac{1}{\gamma}^{m}-\beta^{m}+1)
Ru​w​zR_{uwz} wzqβˆ’m​(Ξ³+1)\frac{w}{z}^{q-m}(\gamma+1)
Rv​w​zR_{vwz} wzqβˆ’m​(Ξ²mβˆ’1)\frac{w}{z}^{q-m}(\beta^{m}-1)
Ru​x​zR_{uxz} 0
Rv​x​zR_{vxz} 0
Rw​x​zR_{wxz} 0
Ru​y​zR_{uyz} 0
Rv​y​zR_{vyz} 0
Rw​y​zR_{wyz} 0
Rx​y​zR_{xyz} 0

We consider the elements Ξ·1,m\eta_{1,m}. The argument for the elements Ξ·2,m\eta_{2,m} is symmetric.

5.2. The Elements Ξ·1,m\eta_{1,m} Are Not Coboundaries

We first consider the case that mβ‰ qm\neq q and so qβˆ’mβ‰₯1q-m\geq 1. We claim these elements are not in the image of CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}).

Suppose the element Ξ·1,m\eta_{1,m} is in the image of CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}) for some arbitrary mβ‰ qm\neq q that satisfies the hypotheses of Theorem 5.1. Using the multi-grading introduced in Section 4.2, every component of the elements Ξ·1,m\eta_{1,m} is of degree (0,0,0,qβˆ’m)(0,0,0,q-m), where 1≀qβˆ’m<q1\leq q-m<q. Since the maps between Čech complexes are degree preserving, they would need to be the image of elements also of degree (0,0,0,qβˆ’m)(0,0,0,q-m). Consider Rx​y,Rx​z,R_{xy},R_{xz}, and Ry​zR_{yz}. There are no elements of degree (0,0,0,qβˆ’m)(0,0,0,q-m) in each of these components whenever qβˆ’mβ‰₯1q-m\geq 1.

If Ξ·1,m\eta_{1,m} were in the image of an element in Cˇ​(𝐱,R/It)\check{C}({\bf x},R/I^{t}), the Ru​v​xR_{uvx} component would be a sum of the elements in the Ru​v,Ru​xR_{uv},R_{ux}, and Rv​xR_{vx} components. In the Ru​v,Ru​xR_{uv},R_{ux}, and Rv​xR_{vx} components, the multi-degree elements of degree (0,0,0,qβˆ’m)(0,0,0,q-m) where qβˆ’mβ‰₯1q-m\geq 1 are the following:

Ru​v:\displaystyle R_{uv}: (yv)qβˆ’mβ€‹π”½βŠ•(xu)qβˆ’m​𝔽\displaystyle\quad\left(\frac{y}{v}\right)^{q-m}\mathbb{F}\oplus\left(\frac{x}{u}\right)^{q-m}\mathbb{F}
Ru​x:\displaystyle R_{ux}: (xu)qβˆ’m​𝔽\displaystyle\quad\left(\frac{x}{u}\right)^{q-m}\mathbb{F}
Rv​x:\displaystyle R_{vx}: (yv)qβˆ’m​𝔽​[u​yv​x].\displaystyle\quad\left(\frac{y}{v}\right)^{q-m}\mathbb{F}\left[\frac{uy}{vx}\right].

The entry in the Ru​v​xR_{uvx} component of Ξ·1,m\eta_{1,m} is 0. As (yv)qβˆ’mβ€‹π”½βŠ•(xu)qβˆ’m​𝔽\left(\frac{y}{v}\right)^{q-m}\mathbb{F}\oplus\left(\frac{x}{u}\right)^{q-m}\mathbb{F} do not contain polynomials in 𝔽​[u​yv​x]\mathbb{F}[\frac{uy}{vx}], in order for the sum of components from Ru​v,Ru​xR_{uv},R_{ux}, and Rv​xR_{vx} to be zero, the element in the Rv​xR_{vx} component could not be a polynomial in 𝔽\mathbb{F} and must be of the form λ​(yv)qβˆ’m\lambda\left(\frac{y}{v}\right)^{q-m} where Ξ»\lambda is some scalar from 𝔽\mathbb{F}. Thus, if Ξ·1,m\eta_{1,m} is in the image of an element in CΛ‡2​(𝐱,R/It)\check{C}^{2}({\bf x},R/I^{t}), that element is a constant from 𝔽\mathbb{F} in the Rv​xR_{vx} component.

Similarly, the element in Rw​v​zR_{wvz} comes from a sum of the elements in the Rw​v,Rw​z,R_{wv},R_{wz}, and Rv​zR_{vz} components. Since the entry in the Ru​v​yR_{uvy} component is 0, there must not be a nonzero power of w​yv​z\frac{wy}{vz} in the Rv​zR_{vz} component. The entry in Rv​zR_{vz} then must be λ′​(yv)\lambda^{\prime}\left(\frac{y}{v}\right), where Ξ»β€²\lambda^{\prime} is some scalar from 𝔽\mathbb{F}.

But then consider Ξ·1,m\eta_{1,m} in the Rv​x​zR_{vxz} component

(yv)qβˆ’m​(1Ξ±mβˆ’1βˆ’Ξ²m+1).\left(\frac{y}{v}\right)^{q-m}\left(\frac{1}{\alpha^{m}}-1-\beta^{m}+1\right).

If Ξ·1,m\eta_{1,m} were a coboundary, then the above would have to be a sum of elements from Rv​x,Rv​zR_{vx},R_{vz}, and Rx​zR_{xz} components. We have already established there are no elements of degree (0,0,0,qβˆ’m)(0,0,0,q-~{}m) in Rx​zR_{xz}, so it must only be from Rv​xR_{vx} and Rv​zR_{vz}. However, by the above argument, the only possible elements in those components are in yv​𝔽\frac{y}{v}\mathbb{F}. As Ξ·1,m\eta_{1,m} in the Rv​x​zR_{vxz} component is not in yv​𝔽\frac{y}{v}\mathbb{F}, it cannot be a coboundary.

5.3. The Elements Ξ·1,m\eta_{1,m} Are Cocycles

We show that the elements given by Table 2 are indeed cocycles, that is, the images of Ξ·1,m\eta_{1,m} and Ξ·2,m\eta_{2,m} are 0 in CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}). The argument for the elements given by Table 3 works similarly.

By symmetry, it suffices to check that the image of Ξ·1,m\eta_{1,m} is 0 in the three components, (R/It)u​v​x​y,(R/It)u​x​y​z,(R/I^{t})_{uvxy},(R/I^{t})_{uxyz}, and (R/It)u​w​x​y(R/I^{t})_{uwxy}.

First consider the image of Ξ·1,m\eta_{1,m} in the (R/It)u​x​y​z(R/I^{t})_{uxyz} component:

βˆ’\displaystyle- (xu)qβˆ’m​(Ξ±mβˆ’1)+(xu)qβˆ’m​(1βˆ’1Ξ³m)βˆ’(xu)qβˆ’m​(1βˆ’Ξ±mβˆ’1Ξ³m+1)\displaystyle\left(\frac{x}{u}\right)^{q-m}(\alpha^{m}-1)+\left(\frac{x}{u}\right)^{q-m}\left(1-\frac{1}{\gamma^{m}}\right)-\left(\frac{x}{u}\right)^{q-m}\left(1-\alpha^{m}-\frac{1}{\gamma^{m}}+1\right)
=\displaystyle= (xu)qβˆ’m​(βˆ’Ξ±m+1+1βˆ’1Ξ³mβˆ’1+Ξ±m+1Ξ³mβˆ’1)\displaystyle\left(\frac{x}{u}\right)^{q-m}\left(-\alpha^{m}+1+1-\frac{1}{\gamma^{m}}-1+\alpha^{m}+\frac{1}{\gamma^{m}}-1\right)
=\displaystyle= 0.\displaystyle 0.

Second, consider the image of Ξ·1,m\eta_{1,m} in the (R/It)u​w​x​y(R/I^{t})_{uwxy} component:

βˆ’(xu)qβˆ’m​(Ξ±mβˆ’1)+(zw)qβˆ’m​(1βˆ’Ξ³mβˆ’1Ξ²m+1)\displaystyle-\left(\frac{x}{u}\right)^{q-m}(\alpha^{m}-1)+\left(\frac{z}{w}\right)^{q-m}(1-\gamma^{m}-\frac{1}{\beta^{m}}+1)
=\displaystyle= βˆ’(xu)qβˆ’m​αm+(xu)qβˆ’m+(zw)qβˆ’mβˆ’(zw)qβˆ’m​γmβˆ’(zw)qβˆ’m​1Ξ²m+(zw)qβˆ’m\displaystyle-\left(\frac{x}{u}\right)^{q-m}\alpha^{m}+\left(\frac{x}{u}\right)^{q-m}+\left(\frac{z}{w}\right)^{q-m}-\left(\frac{z}{w}\right)^{q-m}\gamma^{m}-\left(\frac{z}{w}\right)^{q-m}\frac{1}{\beta^{m}}+\left(\frac{z}{w}\right)^{q-m}
=\displaystyle= βˆ’(xu)qβˆ’m​(v​xu​y)m+(xu)qβˆ’m+(zw)qβˆ’m\displaystyle-\left(\frac{x}{u}\right)^{q-m}\left(\frac{vx}{uy}\right)^{m}+\left(\frac{x}{u}\right)^{q-m}+\left(\frac{z}{w}\right)^{q-m}
βˆ’(zw)qβˆ’m​(u​zw​x)mβˆ’(zw)qβˆ’m​(v​zw​y)m+(zw)qβˆ’m\displaystyle\quad\quad\quad-\left(\frac{z}{w}\right)^{q-m}\left(\frac{uz}{wx}\right)^{m}-\left(\frac{z}{w}\right)^{q-m}\left(\frac{vz}{wy}\right)^{m}+\left(\frac{z}{w}\right)^{q-m}
=\displaystyle= βˆ’xq​vmuq​ym+(xu)qβˆ’m+(zw)qβˆ’mβˆ’zq​umwq​xmβˆ’vm​zqwq​ym+(zw)qβˆ’m.\displaystyle-\frac{x^{q}v^{m}}{u^{q}y^{m}}+\left(\frac{x}{u}\right)^{q-m}+\left(\frac{z}{w}\right)^{q-m}-\frac{z^{q}u^{m}}{w^{q}x^{m}}-\frac{v^{m}z^{q}}{w^{q}y^{m}}+\left(\frac{z}{w}\right)^{q-m}.

Since mm is divisible by q2q_{2} by hypothesis, write m=΢​q2m=\zeta q_{2} for some natural number ΞΆ\zeta. Then the above equals

(w​x)q​(βˆ’u΢​q2​y΢​q2+v΢​q2​x΢​q2)+(u​z)q​(u΢​q2​y΢​q2βˆ’v΢​q2​x΢​q2)uq​wq​xm​ym\displaystyle\frac{(wx)^{q}(-u^{\zeta q_{2}}y^{\zeta q_{2}}+v^{\zeta q_{2}}x^{\zeta q_{2}})+(uz)^{q}(u^{\zeta q_{2}}y^{\zeta q_{2}}-v^{\zeta q_{2}}x^{\zeta q_{2}})}{u^{q}w^{q}x^{m}y^{m}}
=\displaystyle= (w​x)q​(βˆ’u΢​yΞΆ+v΢​xΞΆ)q2+(u​z)q​(u΢​yΞΆβˆ’v΢​xΞΆ)q2uq​wq​xm​ym\displaystyle\frac{(wx)^{q}(-u^{\zeta}y^{\zeta}+v^{\zeta}x^{\zeta})^{q_{2}}+(uz)^{q}(u^{\zeta}y^{\zeta}-v^{\zeta}x^{\zeta})^{q_{2}}}{u^{q}w^{q}x^{m}y^{m}}
=\displaystyle= βˆ’(w​x)q​(v΢​xΞΆβˆ’u΢​yΞΆ)q2+(u​z)q​(u΢​yΞΆβˆ’v΢​xΞΆ)q2uq​wq​xm​ym\displaystyle\frac{-(wx)^{q}(v^{\zeta}x^{\zeta}-u^{\zeta}y^{\zeta})^{q_{2}}+(uz)^{q}(u^{\zeta}y^{\zeta}-v^{\zeta}x^{\zeta})^{q_{2}}}{u^{q}w^{q}x^{m}y^{m}}
=\displaystyle= (βˆ’(w​x)q+(u​z)q)​(v΢​xΞΆβˆ’u΢​yΞΆ)q2uq​wq​xm​ym\displaystyle\frac{\left(-(wx)^{q}+(uz)^{q}\right)(v^{\zeta}x^{\zeta}-u^{\zeta}y^{\zeta})^{q_{2}}}{u^{q}w^{q}x^{m}y^{m}}
=\displaystyle= (βˆ’w​z+u​z)q​(v΢​xΞΆβˆ’u΢​yΞΆ)q2uq​wq​xm​ym.\displaystyle\frac{\left(-wz+uz\right)^{q}(v^{\zeta}x^{\zeta}-u^{\zeta}y^{\zeta})^{q_{2}}}{u^{q}w^{q}x^{m}y^{m}}.

The polynomial (xβˆ’y)(x-y) divides (xΞΆβˆ’yΞΆ)(x^{\zeta}-y^{\zeta}) for any natural number ΞΆ\zeta. Let φ΢​(x,y)\varphi_{\zeta}(x,y) be the polynomial such that φ΢​(x,y)​(xβˆ’y)=(xΞΆβˆ’yΞΆ)\varphi_{\zeta}(x,y)(x-y)=(x^{\zeta}-y^{\zeta}). Then the above is

(βˆ’w​z+u​z)q​((u​yβˆ’v​x)​φ΢​(u​y,v​x))q2uq​wq​xm​ym\displaystyle\frac{\left(-wz+uz\right)^{q}((uy-vx)\varphi_{\zeta}(uy,vx))^{q_{2}}}{u^{q}w^{q}x^{m}y^{m}}
=(Ξ”1)q​(Ξ”3)q2​φ΢​(u​y,v​x)q2uq​wq​xm​ym.\displaystyle=\frac{\left(\Delta_{1}\right)^{q}\left(\Delta_{3}\right)^{q_{2}}\varphi_{\zeta}(uy,vx)^{q_{2}}}{u^{q}w^{q}x^{m}y^{m}}.

By hypothesis, q+q2β‰₯tq+q_{2}\geq t. So this is indeed 0 in the Ru​w​x​yR_{uwxy} component of CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}).

Third and finally, consider the image in Ru​v​x​yR_{uvxy}. We will use the fact that mm is divisible by q2q_{2}, so again, let ΞΆ\zeta be the natural number such that m=΢​q2m=\zeta q_{2}.

(xu)qβˆ’m​(1βˆ’(v​xu​y)m)βˆ’(yv)qβˆ’m​((u​yv​x)mβˆ’1)\displaystyle\left(\frac{x}{u}\right)^{q-m}\left(1-\left(\frac{vx}{uy}\right)^{m}\right)-\left(\frac{y}{v}\right)^{q-m}\left(\left(\frac{uy}{vx}\right)^{m}-1\right)
=\displaystyle= (xu)qβˆ’m​(1βˆ’(v​xu​y)΢​q2)βˆ’(yv)qβˆ’m​((u​yv​x)΢​q2βˆ’1)\displaystyle\left(\frac{x}{u}\right)^{q-m}\left(1-\left(\frac{vx}{uy}\right)^{\zeta q_{2}}\right)-\left(\frac{y}{v}\right)^{q-m}\left(\left(\frac{uy}{vx}\right)^{\zeta q_{2}}-1\right)
=\displaystyle= (xu)qβˆ’m​(1βˆ’(v​xu​y)ΞΆ)q2βˆ’(yv)qβˆ’m​((u​yv​x)ΞΆβˆ’1)q2\displaystyle\left(\frac{x}{u}\right)^{q-m}\left(1-\left(\frac{vx}{uy}\right)^{\zeta}\right)^{q_{2}}-\left(\frac{y}{v}\right)^{q-m}\left(\left(\frac{uy}{vx}\right)^{\zeta}-1\right)^{q_{2}}
=\displaystyle= (xu)qβˆ’m​(1u​y)m​((u​y)ΞΆβˆ’(v​x)ΞΆ)q2βˆ’(yv)qβˆ’m​(1v​x)m​((u​y)ΞΆβˆ’(v​x)ΞΆ)q2.\displaystyle\left(\frac{x}{u}\right)^{q-m}\left(\frac{1}{uy}\right)^{m}\left((uy)^{\zeta}-\left(vx\right)^{\zeta}\right)^{q_{2}}-\left(\frac{y}{v}\right)^{q-m}\left(\frac{1}{vx}\right)^{m}\left(\left(uy\right)^{\zeta}-\left(vx\right)^{\zeta}\right)^{q_{2}}.

Then the above is

(xu)qβˆ’m​(1u​y)m​(u​yβˆ’v​x)q2​φ΢q2​(u​y,v​x)βˆ’(yv)qβˆ’m​(1v​x)m​(u​yβˆ’v​x)q2​φ΢q2​(u​y,v​x)\displaystyle\left(\frac{x}{u}\right)^{q-m}\left(\frac{1}{uy}\right)^{m}(uy-vx)^{q_{2}}\varphi_{\zeta}^{q_{2}}(uy,vx)-\left(\frac{y}{v}\right)^{q-m}\left(\frac{1}{vx}\right)^{m}(uy-vx)^{q_{2}}\varphi_{\zeta}^{q_{2}}(uy,vx)
=Ξ”3q2​φ΢q2​(u​y,v​x)​((xu)qβˆ’m​(1u​y)mβˆ’(yv)qβˆ’m​(1v​x)m)\displaystyle=\Delta_{3}^{q_{2}}\varphi^{q_{2}}_{\zeta}(uy,vx)\left(\left(\frac{x}{u}\right)^{q-m}\left(\frac{1}{uy}\right)^{m}-\left(\frac{y}{v}\right)^{q-m}\left(\frac{1}{vx}\right)^{m}\right)
=Ξ”3q2​φ΢q2​(u​y,v​x)​(1u​v)qβˆ’m​((x​v)qβˆ’m​(1u​y)mβˆ’(u​y)qβˆ’m​(1v​x)m)\displaystyle=\Delta_{3}^{q_{2}}\varphi^{q_{2}}_{\zeta}(uy,vx)\left(\frac{1}{uv}\right)^{q-m}\left(\left(xv\right)^{q-m}\left(\frac{1}{uy}\right)^{m}-\left(uy\right)^{q-m}\left(\frac{1}{vx}\right)^{m}\right)
=Ξ”3q2​φ΢q2​(u​y,v​x)​(1u​v)qβˆ’m​(1u​y​v​xm)​((v​x)qβˆ’(u​y)q)\displaystyle=\Delta_{3}^{q_{2}}\varphi^{q_{2}}_{\zeta}(uy,vx)\left(\frac{1}{uv}\right)^{q-m}\left(\frac{1}{uyvx}^{m}\right)\left(\left(vx\right)^{q}-\left(uy\right)^{q}\right)
=Ξ”3q2​φ΢q2​(u​y,v​x)​(1u​v)qβˆ’m​(1u​y​v​xm)​(v​xβˆ’u​y)q\displaystyle=\Delta_{3}^{q_{2}}\varphi^{q_{2}}_{\zeta}(uy,vx)\left(\frac{1}{uv}\right)^{q-m}\left(\frac{1}{uyvx}^{m}\right)\left(vx-uy\right)^{q}
=Ξ”3q2+q​φ΢q2​(u​y,v​x)​(1u​v)qβˆ’m​(1u​y​v​xm).\displaystyle=\Delta_{3}^{q_{2}+q}\varphi^{q_{2}}_{\zeta}(uy,vx)\left(\frac{1}{uv}\right)^{q-m}\left(\frac{1}{uyvx}^{m}\right).

Recall that q2+qβ‰₯tq_{2}+q\geq t, so this is indeed 0 in the Ru​v​x​yR_{uvxy} component of CΛ‡4​(𝐱,R/It)\check{C}^{4}({\bf x},R/I^{t}).

Now consider the case that m=qm=q and so qβˆ’m=0q-m=0, which is recorded in TableΒ 4. In this case, the element is in multi-degree (0,0,0,0)(0,0,0,0). Recall that the argument from SectionΒ 4.2 is characteristic free, so to show this element is not a coboundary.

Table 4. Elements in CΛ‡3​(𝐱,R^)\check{C}^{3}({\bf x},\hat{R}) in characteristic p>0p>0
Component of CΛ‡3​(𝐱,R/It)\check{C}^{3}({\bf x},R/I^{t})
Ru​v​wR_{uvw} 0 0
Ru​v​xR_{uvx} 0 0
Ru​w​xR_{uwx} 0 0
Rv​w​xR_{vwx} 0 0
Ru​v​yR_{uvy} 0 0
Ru​w​yR_{uwy} 0 0
Rv​w​yR_{vwy} 0 0
Ru​x​yR_{uxy} (Ξ±qβˆ’1)(\alpha^{q}-1) βˆ’(Ξ”3u​y)q-\left(\frac{\Delta_{3}}{uy}\right)^{q}
Rv​x​yR_{vxy} (1Ξ±qβˆ’1)(\frac{1}{\alpha^{q}}-1) (Ξ”3v​x)q\left(\frac{\Delta_{3}}{vx}\right)^{q}
Rw​x​yR_{wxy} (1βˆ’Ξ³qβˆ’1Ξ²q+1)(1-\gamma^{q}-\frac{1}{\beta^{q}}+1) (Ξ”2w​x)qβˆ’(Ξ”1w​y)q\left(\frac{\Delta_{2}}{wx}\right)^{q}-\left(\frac{\Delta_{1}}{wy}\right)^{q}
Ru​v​zR_{uvz} 0 0
Ru​w​zR_{uwz} 0 0
Rv​w​zR_{vwz} 0 0
Ru​x​zR_{uxz} (1βˆ’1Ξ³q)(1-\frac{1}{\gamma}^{q}) βˆ’(Ξ”2u​z)q-\left(\frac{\Delta_{2}}{uz}\right)^{q}
Rv​x​zR_{vxz} (1Ξ±qβˆ’1+Ξ²qβˆ’1))(\frac{1}{\alpha}^{q}-1+\beta^{q}-1)) (Ξ”3v​x)qβˆ’(Ξ”1v​z)q\left(\frac{\Delta_{3}}{vx}\right)^{q}-\left(\frac{\Delta_{1}}{vz}\right)^{q}
Rw​x​zR_{wxz} (1βˆ’Ξ³q)(1-\gamma^{q}) (Ξ”2w​x)q\left(\frac{\Delta_{2}}{wx}\right)^{q}
Ru​y​zR_{uyz} (1βˆ’Ξ±qβˆ’1Ξ³q+1)(1-\alpha^{q}-\frac{1}{\gamma}^{q}+1) (Ξ”3u​y)qβˆ’(Ξ”2u​z)q\left(\frac{\Delta_{3}}{uy}\right)^{q}-\left(\frac{\Delta_{2}}{uz}\right)^{q}
Rv​y​zR_{vyz} (Ξ²qβˆ’1)(\beta^{q}-1) βˆ’(Ξ”1v​z)q-\left(\frac{\Delta_{1}}{vz}\right)^{q}
Rw​y​zR_{wyz} (1Ξ²qβˆ’1)(\frac{1}{\beta}^{q}-1) (Ξ”w​y)q\left(\frac{\Delta}{wy}\right)^{q}
Rx​y​zR_{xyz} 0 0

Thus we have demonstrated 2β€‹βŒŠqq2βˆ’1βŒ‹2\lfloor\frac{q}{q_{2}}-1\rfloor linearly independent elements of Hπ”ͺ3​(R/It)0H^{3}_{\mathfrak{m}}(R/I^{t})_{0} when the base field is characteristic p>0p>0. ∎

References

  • [BBL+19] B.Β Bhatt, M.Β Blickle, G.Β Lyubeznik, A.Β K. Singh, and W.Β Zhang. Stabilization of the cohomology of thickenings. Amer. J. Math., 141:531–561, 2019.
  • [BV88] W.Β Bruns and U.Β Vetter. Determinantal rings. Lecture notes in mathematics (Springer-Verlag); no. 1327. 1988.
  • [DEP80] C.Β DeConcini, D.Β Eisenbud, and C.Β Procesi. Young diagrams and determinantal varieties. Invent. Math., 56(2):129–165, 1980.
  • [DM17] H.Β Dao and J.Β MontaΓ±o. Length of local cohomology of powers of ideals. Trans. Amer. Math. Soc., May 2017.
  • [DM18] H.Β Dao and J.Β MontaΓ±o. On asymptotic vanishing behavior of local cohomology. ArXiv e-prints, September 2018.
  • [DS18] A.Β De Stefani and I.Β Smirnov. Decomposition of graded local cohomology tables. ArXiv e-prints, October 2018.
  • [HE71] M.Β Hochster and J.Β A. Eagon. Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Amer. J. Math., 93(4):1020–1058, 1971.
  • [ILL+07] S.Β Iyengar, G.Β Leuschke, A.Β Leykin, C.Β Miller, E.Β Miller, A.Β K. Singh, and U.Β Walther. Twenty-four hours of local cohomology, volumeΒ 87 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007.
  • [LSW16] G.Β Lyubeznik, A.Β K. Singh, and U.Β Walther. Local cohomology modules supported at determinantal ideals. J. Eur. Math. Soc. (JEMS), 18(11):2545–2578, 2016.