This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isometry Theorem for Continuous Quiver of Type A~\tilde{A}

XIAOWEN GAO1 and MINGHUI ZHAO2 1 School of Science, Beijing Forestry University, Beijing 100083, P. R. China [email protected] (X.Gao) 2 School of Science, Beijing Forestry University, Beijing 100083, P. R. China [email protected] (M.Zhao)
Abstract.

The Isometry Theorem for continuous quiver of type AA plays an important role in persistent homology. In this paper, we shall generalize Isometry Theorem to continuous quiver of type A~\tilde{A}.

Key words and phrases:
Continuous quiver, Isometry Theorem
2010 Mathematics Subject Classification:
Primary 16G20; Secondary 55N31.
Corresponding author

1. Introduction

Representation theory of quivers is important in persistent homology and widely used in topological data analysis.

Gabriel gave the classification of indecomposable representations of quivers of finite type in [11]. In [10], Crawley-Boevey gave a classification of indecomposable representations of \mathbb{R}. In [6], Botnan gave a classification of indecomposable representations of infinite zigzag. Igusa, Rock and Todorov introduced general continuous quivers of type AA and classified indecomposable representations in [14]. In [1, 2, 18, 19], Appel, Sala and Schiffmann introduced continuum quivers independently. By using these results, persistence diagrams corresponding to representations are defined.

The Isometry Theorem shows that the interleaving distance between two representations of a given quiver is equal to the bottleneck distance between corresponding persistence diagrams. The stability part of Isometry Theorem for continuous quiver \mathbb{R} was given by Cohen-Steiner-Edelsbrunner-Harer in [9], Chazal-De Silva-Glisse-Oudot in [8] and Bauer-Lesnick in [3]. The converse stability part was given by Bubenik-Scott in [7] and Lesnick in [16]. In addition, Botnan studied the stability of zigzag persistence modules in [5]. For the history of Isometry Theorem, see [17].

In [13], Hanson and Rock introduced continuous quivers of type A~\tilde{A} and gave a classification of indecomposable representations. In[15, 18, 19], Igusa-Todorov and Sala-Schiffmann also study continuous quivers of type A~\tilde{A} and its persistence representations.

In this paper, we shall give an Isometry Theorem for continuous quivers of type A~\tilde{A}. The proof of this theorem is based on the equivalence between the category of representations of continuous quivers of type A~\tilde{A} and that of continuous quivers of type AA with automorphism.

In Section 2, we shall recall Isometry Theorem for continuous quivers of type AA. The Isometry Theorem for continuous quivers of type A~\tilde{A} will be given in Section 3 and its proof will be given in Section 4.

2. Continuous quivers of type A{A}

2.1. Continuous quivers of type A{A}

Let \mathbb{R} be the set of real numbers and << be the normal order on \mathbb{R}. Following notations in [14], A=(,<){A}_{\mathbb{R}}=(\mathbb{R},<) is called a continuous quiver of type AA.

Let kk be a fixed field. A representation of A{A}_{\mathbb{R}} over kk is given by 𝕍=(𝕍(x),𝕍(x,y))\mathbb{V}=(\mathbb{V}(x),\mathbb{V}(x,y)), where 𝕍(x)\mathbb{V}(x) is a kk-vector space for any xx\in\mathbb{R} and 𝕍(x,y):𝕍(x)𝕍(y)\mathbb{V}(x,y):\mathbb{V}(x)\rightarrow\mathbb{V}(y) is a kk-linear map for any x<yx<y\in\mathbb{R} satisfying that 𝕍(x,y)𝕍(y,z)=𝕍(x,z)\mathbb{V}(x,y)\circ\mathbb{V}(y,z)=\mathbb{V}(x,z) for any x<y<zx<y<z\in\mathbb{R}. Let 𝕍=(𝕍(x),𝕍(x,y))\mathbb{V}=(\mathbb{V}(x),\mathbb{V}(x,y)) and 𝕎=(𝕎(x),𝕎(x,y))\mathbb{W}=(\mathbb{W}(x),\mathbb{W}(x,y)) be two representations of A{A}_{\mathbb{R}}. A family of kk-linear maps φ=(φ(x))x\varphi=(\varphi(x))_{x\in\mathbb{R}} is called a morphism from 𝕍\mathbb{V} to 𝕎\mathbb{W}, if φ(y)𝕍(x,y)\varphi(y)\mathbb{V}(x,y)= 𝕎(x,y)φ(x)\mathbb{W}(x,y)\varphi(x), for any x<yx<y\in\mathbb{R}.

Denoted by Repk(A)\mathrm{Rep}_{k}({A}_{\mathbb{R}}) the category of representations of A{A}_{\mathbb{R}} and by Repkpwf(A)\mathrm{Rep}^{pwf}_{k}({A}_{\mathbb{R}}) the subcategory of pointwise finite-dimensional representations.

For each a,ba,b\in\mathbb{R}, we use the notation |a,b||a,b| for one of (a,b),[a,b),(a,b](a,b),[a,b),(a,b] and [a,b][a,b]. In this paper, we allow a=a=-\infty or b=+b=+\infty, that is the notation |a,b||a,b| may mean (a,+)(a,+\infty), (,b)(-\infty,b) or (,+)(-\infty,+\infty), too.

Denote T|a,b|=(T|a,b|(x),T|a,b|(x,y)){T}_{|a,b|}=({T}_{|a,b|}(x),{T}_{|a,b|}(x,y)) as the following representation of A{A}_{\mathbb{R}}, where

T|a,b|(x)={k,x|a,b|,0,otherwise;{T}_{|a,b|}(x)=\left\{\begin{aligned} k,&\qquad x\in|a,b|,\\ 0,&\qquad\textrm{otherwise};\\ \end{aligned}\right.

and

T|a,b|(x,y)={1k,x<yandx,y|a,b|,0,otherwise.{T}_{|a,b|}(x,y)=\left\{\begin{aligned} 1_{k},&\qquad x<y\,\,\textrm{and}\,\,x,y\in|a,b|,\\ 0,&\qquad\textrm{otherwise}.\\ \end{aligned}\right.

The representation T|a,b|{T}_{|a,b|} is called an interval representation.

Let 𝕍\mathbb{V} be a pointwise finite-dimensional representation of A{{A}}_{\mathbb{R}}. In [10, 4, 14], it is proved that it can be decomposed into the direct sum of indecomposable interval representations

𝕍=iIT|ai,bi|.\mathbb{V}=\bigoplus_{i\in I}{T}_{|a_{i},b_{i}|}.

2.2. Isometry Theorem

In this section, we follow the notation in [17].

Let 𝕍=(𝕍(x),𝕍(x,y))\mathbb{V}=(\mathbb{V}(x),\mathbb{V}(x,y)) and 𝕎=(𝕎(x),𝕎(x,y))\mathbb{W}=(\mathbb{W}(x),\mathbb{W}(x,y)) be two representations of A{A}_{\mathbb{R}}. For 0ε0\leq\varepsilon\in\mathbb{R}, a family of linear map α(x):𝕍(x)𝕎(x+ε)\alpha(x):\mathbb{V}(x)\rightarrow\mathbb{W}(x+\varepsilon) is called a morphism of degree ε\varepsilon from 𝕍\mathbb{V} to 𝕎\mathbb{W} if the diagram

𝕍(x)\textstyle{\mathbb{V}(x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α(x)\scriptstyle{\alpha(x)}𝕍(y)\textstyle{\mathbb{V}(y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α(y)\scriptstyle{\alpha(y)}𝕎(x+ε)\textstyle{\mathbb{W}(x+\varepsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝕎(y+ε)\textstyle{\mathbb{W}(y+\varepsilon)}

is commutative for any xyx\leq y\in\mathbb{R}. Denoted by HomAε(𝕍,𝕎)\textrm{Hom}_{{A}_{\mathbb{R}}}^{\varepsilon}({\mathbb{V}},{\mathbb{W}}) the set of morphisms of degree ε\varepsilon from 𝕍{\mathbb{V}} to 𝕎{\mathbb{W}}.

An ε\varepsilon-interleaving between 𝕍\mathbb{V} and 𝕎\mathbb{W} is two families of morphisms αHomAε(𝕍,𝕎)\alpha\in\textrm{Hom}_{{A}_{\mathbb{R}}}^{\varepsilon}({\mathbb{V}},{\mathbb{W}}) and βHomAε(𝕎,𝕍)\beta\in\textrm{Hom}_{{A}_{\mathbb{R}}}^{\varepsilon}({\mathbb{W}},{\mathbb{V}}) such that the diagrams

𝕍(x)\textstyle{\mathbb{V}(x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α(x)\scriptstyle{\alpha(x)}𝕍(x+2ε)\textstyle{\mathbb{V}(x+2\varepsilon)}𝕍(x+ε)\textstyle{\mathbb{V}(x+\varepsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α(x+ε)\scriptstyle{\alpha(x+\varepsilon)}𝕎(x+ε)\textstyle{\mathbb{W}(x+\varepsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β(x+ε)\scriptstyle{\beta(x+\varepsilon)}𝕎(x)\textstyle{\mathbb{W}(x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β(x)\scriptstyle{\beta(x)}𝕎(x+2ε)\textstyle{\mathbb{W}(x+2\varepsilon)}

are commutative for any xx\in\mathbb{R}.

The interleaving distance of representations of A{A}_{\mathbb{R}} is defined as

di,A(𝕍,𝕎)=inf{ε0there is an ε-interleaving between 𝕍 and 𝕎}.d_{i,{A}_{\mathbb{R}}}(\mathbb{V},\mathbb{W})=\inf\{\varepsilon\geq 0\mid\textrm{there is an $\varepsilon$-interleaving between $\mathbb{V}$ and $\mathbb{W}$}\}.

For a pointwise finite-dimensional representation 𝕍=iIT|ai,bi|\mathbb{V}=\bigoplus_{i\in I}{T}_{|a_{i},b_{i}|} of A{{A}}_{\mathbb{R}}. The set of intervals |ai,bi||a_{i},b_{i}| for all iIi\in I is called the persistence barcodes of 𝕍\mathbb{V}. The multiset dgm(𝕍)dgm(\mathbb{V}) of points with coordinate (ai,bi)(a_{i},b_{i}) is called the persistence diagram of 𝕍\mathbb{V}.

Let AA and BB be two multisets of points in the extended plane ¯2\bar{\mathbb{R}}^{2}. A partial matching between AA and BB is a subset PP of A×BA\times B such that

  1. (1)

    there is at most one point bBb\in B such that (a,b)P(a,b)\in P for any aAa\in A;

  2. (2)

    there is at most one point aAa\in A such that (a,b)P(a,b)\in P for any bBb\in B.

The bottleneck cost c(P)c(P) of the partial matching PP is defined as

c(P)=max{sup(a,b)Pab,sups=(sx,sy)Ssxsy2},c(P)=\max\{\sup_{(a,b)\in P}||a-b||_{\infty},\sup_{s=(s_{x},s_{y})\in S}{\frac{s_{x}-s_{y}}{2}}\},

where SS is the set of unmatched points in ABA\cup B. The bottleneck distance between AA and BB is defined as

db,2(A,B)=infpartial matching Pc(P).d_{b,\mathbb{R}^{2}}(A,B)=\inf_{\textrm{partial matching }P}c(P).
Theorem 2.1 ([17]).

Let 𝕍\mathbb{V} and 𝕎\mathbb{W} be two pointwise finite-dimensional representations of continuous quiver A{{A}}_{\mathbb{R}} of type A{A}. Then,

db,2(dgm(𝕍),dgm(𝕎))=di,A(𝕍,𝕎).d_{b,\mathbb{R}^{2}}(dgm(\mathbb{V}),dgm(\mathbb{W}))=d_{i,{A}_{\mathbb{R}}}(\mathbb{V},\mathbb{W}).

3. Continuous quivers of type A~\tilde{A}

3.1. Continuous quivers of type A~\tilde{A}

We define an equivalence ”\sim” on \mathbb{R}, where xyx\sim y if and only if yxy-x\in\mathbb{Z} for any x,yx,y\in\mathbb{R}. Let [x][x] be the equivalent class of xx for any xx\in\mathbb{R} and define [x]<[y][x]<[y] if and only if x<yx<y and |xy|<12|x-y|<\frac{1}{2}. Let A~=(/,<)\tilde{{A}}_{\mathbb{R}}=(\mathbb{R}/{\sim},<), which is called a continuous quiver of type A~\tilde{A}.

A representation of A~\tilde{{A}}_{\mathbb{R}} over kk is given by V=(V([x]),V([x],[y]))\textbf{V}=(\textbf{V}([x]),\textbf{V}([x],[y])), where V([x])\textbf{V}([x]) is a kk-vector space, and V([x],[y]):V([x])V([y])\textbf{V}([x],[y]):\textbf{V}([x])\rightarrow\textbf{V}([y]) is a kk-linear map for any [x]<[y]/[x]<[y]\in\mathbb{R}/{\sim} satisfying that V([x],[y])V([y],[z])=V([x],[z])\textbf{V}([x],[y])\circ\textbf{V}([y],[z])=\textbf{V}([x],[z]) for any [x]<[y]<[z]/[x]<[y]<[z]\in\mathbb{R}/{\sim}. Let V=(V([x]),V([x],[y]))\textbf{V}=(\textbf{V}([x]),\textbf{V}([x],[y])) and W=(W([x]),W([x],[y]))\textbf{W}=(\textbf{W}([x]),\textbf{W}([x],[y])) be representations of A~\tilde{{A}}_{\mathbb{R}}. A family of kk-linear maps f([x]):V([x])W([x])f([x]):\textbf{V}([x])\rightarrow\textbf{W}([x]) is called a morphism from V to W, if it satisfies f([y])V([x],[y])f([y])\textbf{V}([x],[y])= W([x],[y])f([x])\textbf{W}([x],[y])f([x]), for any [x]<[y][x]<[y].

Let V=(V([x]),V([x],[y]))\textbf{V}=(\textbf{V}([x]),\textbf{V}([x],[y])) be a representation of A~\tilde{{A}}_{\mathbb{R}} over kk. The representation V are called nilpotent, provided that the linear map V([xn],[x])V([xn1],[xn])V([x1],[x2])V([x],[x1])\textbf{V}([x_{n}],[x])\circ\textbf{V}([x_{n-1}],[x_{n}])\circ\cdots\circ\textbf{V}([x_{1}],[x_{2}])\circ\textbf{V}([x],[x_{1}]) is nilpotent for any [x]<[x1]<[x2]<<[xn1]<[xn]<[x][x]<[x_{1}]<[x_{2}]<\cdots<[x_{n-1}]<[x_{n}]<[x].

Denoted by Repknil(A~)\mathrm{Rep}^{nil}_{k}(\tilde{{A}}_{\mathbb{R}}) the category of nilpotent representations of A~\tilde{{A}}_{\mathbb{R}} and by Repkpwf(A~)\mathrm{Rep}^{pwf}_{k}(\tilde{{A}}_{\mathbb{R}}) the subcategory of pointwise finite-dimensional representations.

For each a<ba<b\in\mathbb{R}, consider a representation 𝐓|a,b|=(𝐓|a,b|([x]),𝐓|a,b|([x],[y]))\mathbf{T}_{|a,b|}=(\mathbf{T}_{|a,b|}([x]),\mathbf{T}_{|a,b|}([x],[y])) of A~\tilde{{A}}_{\mathbb{R}}, defined by

T|a,b|([x])=z[x]T|a,b|(z),\textbf{T}_{|a,b|}([x])=\bigoplus_{z\in[x]}{T}_{|a,b|}(z),
T|a,b|([x],[y])=z1[x],z2[y],|z1z2|<1T|a,b|(z1,z2).\textbf{T}_{|a,b|}([x],[y])=\bigoplus_{z_{1}\in[x],z_{2}\in[y],|z_{1}-z_{2}|<1}{T}_{|a,b|}(z_{1},z_{2}).

Since the representation T|a,b|T_{|a,b|} is indecomposable, 𝐓|a,b|\mathbf{T}_{|a,b|} is an indecomposable representation of A~\tilde{{A}}_{\mathbb{R}}. The representation 𝐓|a,b|\mathbf{T}_{|a,b|} are called interval representations.

Hanson and Rock proved the following theorem in [13].

Theorem 3.1 ([13]).

Let 𝐕\mathbf{V} be a pointwise finite-dimensional nilpotent representation of A~\tilde{{A}}_{\mathbb{R}}. Then, it can be decomposed into the direct sum of indecomposable interval representations

𝐕=iI𝐓|ai,bi|.\mathbf{V}=\bigoplus_{i\in I}\mathbf{T}_{|a_{i},b_{i}|}.

3.2. Isometry Theorem

Let 𝐕=(𝐕([x]),𝐕([x],[y]))\mathbf{V}=(\mathbf{V}([x]),\mathbf{V}([x],[y])), 𝐖=(𝐖([x]),𝐖([x],[y]))\mathbf{W}=(\mathbf{W}([x]),\mathbf{W}([x],[y])) be two representations of A~\tilde{{A}}_{\mathbb{R}}. For 0ε<10\leq\varepsilon<1\in\mathbb{R}, a family of linear maps α([x]):𝐕([x])𝐖([x+ε])\alpha([x]):\mathbf{V}([x])\rightarrow\mathbf{W}([x+\varepsilon]) is called a morphism of degree ε\varepsilon from 𝐕\mathbf{V} to 𝐖\mathbf{W} if the diagram

𝐕([x])\textstyle{\mathbf{V}([x])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α([x])\scriptstyle{\alpha([x])}𝐕([y])\textstyle{\mathbf{V}([y])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α([y])\scriptstyle{\alpha([y])}𝐖([x+ε])\textstyle{\mathbf{W}([x+\varepsilon])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐖([y+ε])\textstyle{\mathbf{W}([y+\varepsilon])}

is commutative for any xyx\leq y\in\mathbb{R} such that |xy|<12|x-y|<\frac{1}{2}. Denoted by HomA~ε(𝕍,𝕎)\textrm{Hom}_{\tilde{{A}}_{\mathbb{R}}}^{\varepsilon}({\mathbb{V}},{\mathbb{W}}) the set of morphisms of degree ε\varepsilon from 𝐕{\mathbf{V}} to 𝐖{\mathbf{W}}.

An ε\varepsilon-interleaving between 𝐕\mathbf{V} and 𝐖\mathbf{W} is two morphisms αHomA~ε(𝐕,𝐖)\alpha\in\textrm{Hom}_{\tilde{{A}}_{\mathbb{R}}}^{\varepsilon}({\mathbf{V}},{\mathbf{W}}) and βHomA~ε(𝐖,𝐕)\beta\in\textrm{Hom}_{\tilde{{A}}_{\mathbb{R}}}^{\varepsilon}({\mathbf{W}},{\mathbf{V}}) such that the diagrams

𝐕([x])\textstyle{\mathbf{V}([x])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α([x])\scriptstyle{\alpha([x])}𝐕([x+2ε])\textstyle{\mathbf{V}([x+2\varepsilon])}𝐕([x+ε])\textstyle{\mathbf{V}([x+\varepsilon])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α([x+ε])\scriptstyle{\alpha([x+\varepsilon])}𝐖([x+ε])\textstyle{\mathbf{W}([x+\varepsilon])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β([x+ε])\scriptstyle{\beta([x+\varepsilon])}𝐖([x])\textstyle{\mathbf{W}([x])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β([x])\scriptstyle{\beta([x])}𝐖([x+2ε])\textstyle{\mathbf{W}([x+2\varepsilon])}

are commutative for any xx\in\mathbb{R}.

The interleaving distance of A~\tilde{{A}}_{\mathbb{R}} representations between 𝐕\mathbf{V} and 𝐖\mathbf{W} is defined as

di,A~(𝐕,𝐖)=inf{ε0there is an ε-interleaving between 𝐕 and 𝐖}.d_{i,\tilde{{A}}_{\mathbb{R}}}(\mathbf{V},\mathbf{W})=\inf\{\varepsilon\geq 0\mid\textrm{there is an $\varepsilon$-interleaving between $\mathbf{V}$ and $\mathbf{W}$}\}.

Consider an equivalence ”\sim” on 2\mathbb{R}^{2}, where (x1,x2)(y1,y2)(x_{1},x_{2})\sim(y_{1},y_{2}) if and only if y1x1=y2x2y_{1}-x_{1}=y_{2}-x_{2}\in\mathbb{Z} for any (x1,x2),(y1,y2)2(x_{1},x_{2}),(y_{1},y_{2})\in\mathbb{R}^{2}. Let 𝐕=iI𝐓|ai,bi|\mathbf{V}=\bigoplus_{i\in I}\mathbf{T}_{|a_{i},b_{i}|} be a pointwise finite-dimensional nilpotent representation of A~\tilde{{A}}_{\mathbb{R}}. The multiset dgm(𝐕)dgm(\mathbf{V}) in 2/\mathbb{R}^{2}/{\sim} consisting of equivalent classes of points with coordinate (ai,bi)(a_{i},b_{i}) is called the persistence diagram of 𝐕\mathbf{V}.

Let AA and BB be two multisets in 2/\mathbb{R}^{2}/{\sim}. A partial matching between AA and BB is a subset PP of A×BA\times B such that

  1. (1)

    there is at most one b¯B\bar{b}\in B such that (a¯,b¯)P(\bar{a},\bar{b})\in P for any a¯A\bar{a}\in A;

  2. (2)

    there is at most one a¯A\bar{a}\in A such that (a¯,b¯)P(\bar{a},\bar{b})\in P for any b¯B\bar{b}\in B.

The bottleneck cost c(P)c(P) of the partial matching PP is defined as

c(P)=max{sup(a¯,b¯)Pa¯b¯,sups¯=(sx,sy)¯Ssxsy2},c(P)=\max\{\sup_{(\bar{a},\bar{b})\in P}||\bar{a}-\bar{b}||_{\infty},\sup_{\bar{s}=\overline{(s_{x},s_{y})}\in S}{\frac{s_{x}-s_{y}}{2}}\},

where a¯b¯=minaa¯,bb¯ab||\bar{a}-\bar{b}||_{\infty}=\min_{a\in\bar{a},b\in\bar{b}}||a-b||_{\infty} and SS is the set of unmatched elements in ABA\cup B. The bottleneck distance is defined as

db,2/(A,B)=infpartial matching Pc(P).d_{b,\mathbb{R}^{2}/{\sim}}(A,B)=\inf_{\textrm{partial matching }P}c(P).

The following theorem is the main result in this paper.

Theorem 3.2.

Let 𝐕\mathbf{V} and 𝐖\mathbf{W} be two pointwise finite-dimensional nilpotent representations of A~\tilde{{A}}_{\mathbb{R}}. Then,

db,,2/(dgm(𝐕),dgm(𝐖))=di,A~(𝐕,𝐖)d_{b,,\mathbb{R}^{2}/{\sim}}(dgm(\mathbf{V}),dgm(\mathbf{W}))=d_{i,\tilde{{A}}_{\mathbb{R}}}(\mathbf{V},\mathbf{W})

The proof of this theorem will be given in the next section.

4. The proof of the main result

4.1. Continuous quivers of type AA with automorphism

In this section, we follow the notation in [12].

Consider a morphism σ:\sigma:\mathbb{R}\mapsto\mathbb{R} sending xx to x+1x+1. In this paper, Q=(A,σ)\textbf{Q}=(A_{\mathbb{R}},\sigma) is called a continuous quiver of type AA with automorphism σ\sigma. A representation of Q over kk is given by a representation 𝕍=(𝕍(x),𝕍(x,y))\mathbb{V}=(\mathbb{V}(x),\mathbb{V}(x,y)) of AA_{\mathbb{R}} such that 𝕍(x)=𝕍(σ(x))\mathbb{V}(x)=\mathbb{V}(\sigma(x)) for any xx\in\mathbb{R} and 𝕍(x,y)=𝕍(σ(x),σ(y))\mathbb{V}(x,y)=\mathbb{V}(\sigma(x),\sigma(y)) for any xyx\leq y\in\mathbb{R}.

For a representation 𝕍=(𝕍(x),𝕍(x,y))\mathbb{V}=(\mathbb{V}(x),\mathbb{V}(x,y)) of AA_{\mathbb{R}}, consider a representation σ(𝕍)=(σ(𝕍)(x),σ(𝕍)(x,y))\sigma^{*}(\mathbb{V})=(\sigma^{*}(\mathbb{V})(x),\sigma^{*}(\mathbb{V})(x,y)), where σ(𝕍)(x)=𝕍(σ(x))\sigma^{*}(\mathbb{V})(x)=\mathbb{V}(\sigma(x)) and σ(𝕍)(x,y)=𝕍(σ(x,y))\sigma^{*}(\mathbb{V})(x,y)=\mathbb{V}(\sigma(x,y)). Note that k(σ)k(𝕍)\bigoplus_{k\in\mathbb{Z}}(\sigma^{*})^{k}(\mathbb{V}) is representation of 𝐐\mathbf{Q}. Let

𝕋|a,b|=k(σ)k(T|a,b|).\mathbb{T}_{|a,b|}=\bigoplus_{k\in\mathbb{Z}}(\sigma^{*})^{k}(T_{|a,b|}).

Since the representation T|a,b|T_{|a,b|} is indecomposable, so is 𝕋|a,b|\mathbb{T}_{|a,b|}. The representation 𝕋|a,b|\mathbb{T}_{|a,b|} is called an interval representation of Q.

Denoted by Repk(Q)\mathrm{Rep}_{k}(\textbf{Q}) the category of representations of Q. Denote Repkpwf(Q)\mathrm{Rep}_{k}^{pwf}(\textbf{Q}) the subcategory of Repk(Q)\mathrm{Rep}_{k}(\textbf{Q}) consisting of pointwise finite-dimensional representations.

Note that there exists an equivalence

Ψ:Repk(A~)Repk(𝐐)\Psi:\mathrm{Rep}_{k}(\tilde{{A}}_{\mathbb{R}})\rightarrow\mathrm{Rep}_{k}(\mathbf{Q})

such that Ψ(𝐕)(x)=𝐕([x])\Psi({\mathbf{V}})(x)={\mathbf{V}}([x]) for any xx\in\mathbb{R} and Ψ(𝐕)(x,y)=𝐕([x],[y])\Psi({\mathbf{V}})(x,y)={\mathbf{V}}([x],[y]) for any x<yx<y\in\mathbb{R} such that |xy|<12|x-y|<\frac{1}{2}. By definitions, we have

Ψ(𝐓|a,b|)=𝕋|a,b|.\Psi(\mathbf{T}_{|a,b|})=\mathbb{T}_{|a,b|}.

Let 𝕍\mathbb{V} be a pointwise finite-dimensional representation of Q. Theorem 3.1 implies that 𝕍\mathbb{V} can be decomposed into the direct sum of indecomposable interval representations

𝕍=iI𝕋|ai,bi|.\mathbb{V}=\bigoplus_{i\in I}\mathbb{T}_{|a_{i},b_{i}|}.

For two representations 𝕍=(𝕍(x),𝕍(x,y))\mathbb{V}=(\mathbb{V}(x),\mathbb{V}(x,y)), 𝕎=(𝕎(x),𝕎(x,y))\mathbb{W}=(\mathbb{W}(x),\mathbb{W}(x,y)) of 𝐐\mathbf{Q} and 0ε0\leq\varepsilon\in\mathbb{R}, let Hom𝐐ε(𝕍,𝕎)\textrm{Hom}_{\mathbf{Q}}^{\varepsilon}({\mathbb{V}},{\mathbb{W}}) be the set consisting of morphisms α=(α(x):𝕍(x)𝕎(x+ε))\alpha=(\alpha(x):\mathbb{V}(x)\rightarrow\mathbb{W}(x+\varepsilon)) of degree ε\varepsilon such that α(x)=α(x+1)\alpha(x)=\alpha(x+1).

An ε\varepsilon-interleaving of 𝐐\mathbf{Q} representations between 𝕍\mathbb{V} and 𝕎\mathbb{W} is two families of morphisms αHom𝐐ε(𝕍,𝕎)\alpha\in\textrm{Hom}_{\mathbf{Q}}^{\varepsilon}({\mathbb{V}},{\mathbb{W}}) and βHom𝐐ε(𝕎,𝕍)\beta\in\textrm{Hom}_{\mathbf{Q}}^{\varepsilon}({\mathbb{W}},{\mathbb{V}}) such that the following diagrams are commutative for any xx\in\mathbb{R}.

𝕍(x)\textstyle{\mathbb{V}(x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α(x)\scriptstyle{\alpha(x)}𝕍(x+2ε)\textstyle{\mathbb{V}(x+2\varepsilon)}𝕍(x+ε)\textstyle{\mathbb{V}(x+\varepsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α(x+ε)\scriptstyle{\alpha(x+\varepsilon)}𝕎(x+ε)\textstyle{\mathbb{W}(x+\varepsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β(x+ε)\scriptstyle{\beta(x+\varepsilon)}𝕎(x)\textstyle{\mathbb{W}(x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β(x)\scriptstyle{\beta(x)}𝕎(x+2ε)\textstyle{\mathbb{W}(x+2\varepsilon)}

The interleaving distance of 𝕍\mathbb{V} and 𝕎\mathbb{W} is defined as

di,𝐐(𝕍,𝕎)=inf{ε0there is an ε-interleaving between 𝕍 and 𝕎}.d_{i,\mathbf{Q}}(\mathbb{V},\mathbb{W})=\inf\{\varepsilon\geq 0\mid\textrm{there is an $\varepsilon$-interleaving between $\mathbb{V}$ and $\mathbb{W}$}\}.

4.2. The proof of the main result

Let σ:22\sigma:\mathbb{R}^{2}\rightarrow\mathbb{R}^{2} be a map sending (x,y)(x,y) to (x+1,y+1)(x+1,y+1).

Lemma 4.1.

Let AA and BB be two σ\sigma-invariant multisets of points in 2\mathbb{R}^{2} and denote A¯={a¯|aA}\bar{A}=\{\bar{a}|a\in A\} and B¯={b¯|bB}\bar{B}=\{\bar{b}|b\in B\}. Assume that A¯\bar{A} and B¯\bar{B} are finite multisets. Then we have

db,2(A,B)=db,2/(A¯,B¯),d_{b,\mathbb{R}^{2}}(A,B)=d_{b,\mathbb{R}^{2}/{\sim}}(\bar{A},\bar{B}),
Proof.

At first, we shall prove

db,2(A,B)db,2/(A¯,B¯).d_{b,\mathbb{R}^{2}}(A,B)\geq d_{b,\mathbb{R}^{2}/{\sim}}(\bar{A},\bar{B}). (4.1)

Assume that db,2/(A¯,B¯)=ϵd_{b,\mathbb{R}^{2}/{\sim}}(\bar{A},\bar{B})=\epsilon. Let PP be a partial matching between AA and BB. If c(P)=c(P)=\infty, then we have c(P)ϵc(P)\geq\epsilon. If c(P)c(P) is finite, we shall prove c(P)ϵc(P)\geq\epsilon, too.

Denoted by A¯\bar{A}^{\prime} the subset of A¯\bar{A} consisting of a¯A¯\bar{a}\in\bar{A} such that all points in a¯\bar{a} are matched points in AA. Let B¯′′\bar{B}^{\prime\prime} be the subset of B¯\bar{B} satisfying that

  1. (1)

    for any b¯B¯′′\bar{b}\in\bar{B}^{\prime\prime}, there exist some aa¯A¯a^{\prime}\in\bar{a}\in\bar{A}^{\prime} and some bb¯b^{\prime}\in\bar{b} such that (a,b)P(a^{\prime},b^{\prime})\in P;

  2. (2)

    for any aa¯A¯a^{\prime}\in\bar{a}\in\bar{A}^{\prime} and bb¯B¯′′b^{\prime}\in\bar{b}\not\in\bar{B}^{\prime\prime}, it holds that (a,b)P(a^{\prime},b^{\prime})\not\in P.

Since c(P)c(P) is finite, we have |B¯′′||A¯||\bar{B}^{\prime\prime}|\geq|\bar{A}^{\prime}|. Then we can get a bijection τ\tau between A¯\bar{A}^{\prime} and a subset B¯′′′\bar{B}^{\prime\prime\prime} of B¯′′\bar{B}^{\prime\prime} satisfying that there are some aa¯a^{\prime}\in\bar{a} and some bτ(a¯)b^{\prime}\in\tau(\bar{a}) with (a,b)P(a^{\prime},b^{\prime})\in P for any a¯A¯\bar{a}\in\bar{A}^{\prime}.

Similarly, denoted by B¯\bar{B}^{\prime} the subset of B¯\bar{B} consisting of b¯B¯\bar{b}\in\bar{B} such that all points in b¯\bar{b} are matched points in BB. Let A¯′′\bar{A}^{\prime\prime} be a subset of A¯\bar{A} satisfying that

  1. (1)

    for any a¯A¯′′\bar{a}\in\bar{A}^{\prime\prime}, there exist some aa¯a^{\prime}\in\bar{a} and some bb¯B¯b^{\prime}\in\bar{b}\in\bar{B}^{\prime} such that (a,b)P(a^{\prime},b^{\prime})\in P;

  2. (2)

    for any aa¯A¯′′a^{\prime}\in\bar{a}\not\in\bar{A}^{\prime\prime} and bb¯B¯b^{\prime}\in\bar{b}\in\bar{B}^{\prime}, it holds that (a,b)P(a^{\prime},b^{\prime})\not\in P.

Since c(P)c(P) is finite, we have |A¯′′||B¯||\bar{A}^{\prime\prime}|\geq|\bar{B}^{\prime}|. Then we can get a bijection θ\theta between B¯\bar{B}^{\prime} and a subset A¯′′′\bar{A}^{\prime\prime\prime} of A¯′′\bar{A}^{\prime\prime} satisfying that there are some aθ(b¯)a^{\prime}\in\theta(\bar{b}) and some bb¯b^{\prime}\in\bar{b} with (a,b)P(a^{\prime},b^{\prime})\in P for any b¯B¯\bar{b}\in\bar{B}^{\prime}.

Let A¯={A1,A2,,As}\bar{A}^{\prime}=\{A_{1},A_{2},\ldots,A_{s}\}. For convenience, assume that τ(Ai)B¯\tau(A_{i})\not\in\bar{B}^{\prime} if ili\leq l and τ(Ai)B¯\tau(A_{i})\in\bar{B}^{\prime} if i>li>l. Let

B¯={τ(Al+1),τ(Al+2),,τ(As),B1,B2,,Bt}\bar{B}^{\prime}=\{\tau(A_{l+1}),\tau(A_{l+2}),\ldots,\tau(A_{s}),B_{1},B_{2},\ldots,B_{t}\}

and

A¯θ(B¯)={Am1,,Amr}.\bar{A}^{\prime}-\theta(\bar{B}^{\prime})=\{A_{m_{1}},\ldots,A_{m_{r}}\}.

For any 1ir1\leq i\leq r, we have a sequence

Ami,τ(Ami),θτ(Ami),τθτ(Ami),,X,A_{m_{i}},\tau(A_{m_{i}}),\theta\tau(A_{m_{i}}),\tau\theta\tau(A_{m_{i}}),\ldots,X,

where X=τ(Ap)X=\tau(A_{p}) with plp\leq l or X=θ(Bq)A¯A¯X=\theta(B_{q})\in\bar{A}-\bar{A}^{\prime}. In the first case, let

P¯i={(Ami,τ(Ami)),(θτ(Ami),τθτ(Ami)),,(Ap,τ(Ap))}.\bar{P}_{i}=\{(A_{m_{i}},\tau(A_{m_{i}})),(\theta\tau(A_{m_{i}}),\tau\theta\tau(A_{m_{i}})),\ldots,(A_{p},\tau(A_{p}))\}.

In the second case, let

P¯i={(Ami,τ(Ami)),(θτ(Ami),τθτ(Ami)),,(Aq,Bq)}.\bar{P}_{i}=\{(A_{m_{i}},\tau(A_{m_{i}})),(\theta\tau(A_{m_{i}}),\tau\theta\tau(A_{m_{i}})),\ldots,(A_{q},B_{q})\}.

Let

P¯0={(θ(X),X)|XB¯ and (,X)P¯i for all i}.\bar{P}_{0}=\{(\theta(X),X)|X\in\bar{B}^{\prime}\textrm{ and $(-,X)\not\in\bar{P}_{i}$ for all $i$}\}.

Let

P¯=P¯0P¯1P¯r.\bar{P}=\bar{P}_{0}\cup\bar{P}_{1}\cup\cdots\cup\bar{P}_{r}.

Note that P¯\bar{P} is a partial matching between A¯\bar{A} and B¯\bar{B}. Hence, we have c(P¯)ϵc(\bar{P})\geq\epsilon by definition.

Since aba¯b¯||a-b||_{\infty}\geq||\bar{a}-\bar{b}||_{\infty} for any (a,b)P(a,b)\in P, we have

sup(a,b)Pabsup(a¯,b¯)P¯a¯b¯.\sup_{(a,b)\in{P}}||a-b||_{\infty}\geq\sup_{(\bar{a},\bar{b})\in\bar{P}}||\bar{a}-\bar{b}||_{\infty}. (4.2)

Meanwhile, the point s¯\bar{s} is unmatched in A¯B¯\bar{A}\cup\bar{B} implies that ss^{\prime} is unmatched in ABA\cup B for any ss¯s^{\prime}\in\bar{s}. Let SS and S¯\bar{S} be the sets of unmatched elements in ABA\cup B and A¯B¯\bar{A}\cup\bar{B} respectively. Hence, we have

sups=(sx,sy)Ssxsy2sups¯=(sx,sy)¯S¯sxsy2.\sup_{s=(s_{x},s_{y})\in S}{\frac{s_{x}-s_{y}}{2}}\geq\sup_{\bar{s}=\overline{(s_{x},s_{y})}\in\bar{S}}{\frac{s_{x}-s_{y}}{2}}. (4.3)

Formulas 4.2 and 4.3 implies that c(P)c(P¯)c(P)\geq c(\bar{P}) and we get (4.1).

Then, we shall prove

db,2(A,B)db,2/(A¯,B¯).d_{b,\mathbb{R}^{2}}(A,B)\leq d_{b,\mathbb{R}^{2}/{\sim}}(\bar{A},\bar{B}). (4.4)

Assume that db,2(A,B)=ϵd_{b,\mathbb{R}^{2}}(A,B)=\epsilon. Let P¯\bar{P} be a partial matching between A¯\bar{A} and B¯\bar{B}. For any (a¯,b¯)P¯(\bar{a},\bar{b})\in\bar{P} and any aa¯a^{\prime}\in\bar{a}, there exists bb¯b^{\prime}\in\bar{b} such that ab=a¯b¯||a^{\prime}-b^{\prime}||_{\infty}=||\bar{a}-\bar{b}||_{\infty}. Let PP be the set of all (a,b)(a^{\prime},b^{\prime}) considered above. Since the sets AA and BB are σ\sigma-invariant, a¯\bar{a} is a subset of AA, b¯\bar{b} is a subset of BB and PP is a partial matching between A{A} and B{B}. Hence, we have c(P)ϵc({P})\geq\epsilon by definition.

Since ab=a¯b¯||a^{\prime}-b^{\prime}||_{\infty}=||\bar{a}-\bar{b}||_{\infty} for any (a¯,b¯)P¯(\bar{a},\bar{b})\in\bar{P}, we have

sup(a,b)Pab=sup(a¯,b¯)P¯a¯b¯\sup_{(a,b)\in{P}}||a^{\prime}-b^{\prime}||_{\infty}=\sup_{(\bar{a},\bar{b})\in\bar{P}}||\bar{a}-\bar{b}||_{\infty} (4.5)

by constructions. Meanwhile, the point s¯\bar{s} is unmatched in A¯B¯\bar{A}\cup\bar{B} if and only if ss^{\prime} is unmatched in ABA\cup B for any ss¯s^{\prime}\in\bar{s}. Let SS and S¯\bar{S} be the sets of unmatched elements in ABA\cup B and A¯B¯\bar{A}\cup\bar{B} respectively. Hence, we have

sups=(sx,sy)Ssxsy2=sups¯=(sx,sy)¯S¯sxsy2.\sup_{s=(s_{x},s_{y})\in S}{\frac{s_{x}-s_{y}}{2}}=\sup_{\bar{s}=\overline{(s_{x},s_{y})}\in\bar{S}}{\frac{s_{x}-s_{y}}{2}}. (4.6)

Formulas 4.5 and 4.6 implies that c(P)=c(P¯)c(P)=c(\bar{P}) and we get (4.4).

By Formulas 4.1 and 4.4, we get the desired result.

Proposition 4.2.

For two pointwise finite-dimensional nilpotent representations 𝐕\mathbf{V} and 𝐖\mathbf{W} of A~\tilde{{A}}_{\mathbb{R}}, we have

di,A~(𝐕,𝐖)db,2/(dgm(𝐕),dgm(𝐖)).d_{i,\tilde{{A}}_{\mathbb{R}}}(\mathbf{V},\mathbf{W})\geq d_{b,\mathbb{R}^{2}/{\sim}}(dgm(\mathbf{V}),dgm(\mathbf{W})).
Proof.

Since Ψ\Psi is an equivalence between Repkpwf(A~)\mathrm{Rep}^{pwf}_{k}(\tilde{{A}}_{\mathbb{R}}) and Repkpwf(𝐐)\mathrm{Rep}^{pwf}_{k}(\mathbf{Q}), we have

di,A~(𝐕,𝐖)=di,𝐐(Ψ(𝐕),Ψ(𝐖)).d_{i,\tilde{{A}}_{\mathbb{R}}}(\mathbf{V},\mathbf{W})=d_{i,\mathbf{Q}}(\Psi(\mathbf{V}),\Psi(\mathbf{W})). (4.7)

Note Hom𝐐ε(Ψ(𝐕),Ψ(𝐖))\textrm{Hom}_{\mathbf{Q}}^{\varepsilon}(\Psi(\mathbf{V}),\Psi(\mathbf{W})) is a subset of HomAε(Ψ(𝐕),Ψ(𝐖))\textrm{Hom}_{{A}_{\mathbb{R}}}^{\varepsilon}(\Psi(\mathbf{V}),\Psi(\mathbf{W})). Hence,

di,𝐐(Ψ(𝐕),Ψ(𝐖))di,A(Ψ(𝐕),Ψ(𝐖)).d_{i,\mathbf{Q}}(\Psi(\mathbf{V}),\Psi(\mathbf{W}))\geq d_{i,{A}_{\mathbb{R}}}(\Psi(\mathbf{V}),\Psi(\mathbf{W})).

By using Theorem 2.1, we have

di,A(Ψ(𝐕),Ψ(𝐖))=db,2(dgm(Ψ(𝐕)),dgm(Ψ(𝐖))).d_{i,{A}_{\mathbb{R}}}(\Psi(\mathbf{V}),\Psi(\mathbf{W}))=d_{b,\mathbb{R}^{2}}(dgm(\Psi(\mathbf{V})),dgm(\Psi(\mathbf{W}))).

Since dgm(Ψ(𝐕))dgm(\Psi(\mathbf{V})) and dgm(Ψ(𝐖))dgm(\Psi(\mathbf{W})) are σ\sigma-invariant multisets such that dgm(Ψ(𝐕))¯\overline{dgm(\Psi(\mathbf{V}))} and dgm(Ψ(𝐖))¯\overline{dgm(\Psi(\mathbf{W}))} are finite, Lemma 4.1 implies that

db,2(dgm(Ψ(𝐕)),Ψ(dgm(𝐖)))=db,2/(dgm(𝐕),dgm(𝐖)).d_{b,\mathbb{R}^{2}}(dgm(\Psi(\mathbf{V})),\Psi(dgm(\mathbf{W})))=d_{b,\mathbb{R}^{2}/{\sim}}(dgm(\mathbf{V}),dgm(\mathbf{W})). (4.8)

Hence, we get the desired result.

Lemma 4.3 ([17]).

Let |p,q||p,q|, |r,s||r,s| be two intervals. Then,

di,A(T|p,q|,T|r,s|)ab,d_{i,{A}_{\mathbb{R}}}(T_{|p,q|},T_{|r,s|})\leq||a-b||_{\infty},

where a=(p,q)a=(p,q), b=(r,s)b=(r,s) are the corresponding points in 2\mathbb{R}^{2}.

Lemma 4.4.

Let |p,q||p,q|, |r,s||r,s| be two intervals. Then,

di,𝐐(𝕋|p,q|,𝕋|r,s|)a¯b¯.d_{i,\mathbf{Q}}(\mathbb{T}_{|p,q|},\mathbb{T}_{|r,s|})\leq||\bar{a}-\bar{b}||_{\infty}.

where a=(p,q)a=(p,q), b=(r,s)b=(r,s) are the corresponding points in 2\mathbb{R}^{2} and a¯\bar{a}, b¯\bar{b} are the equivalent classes in 2/\mathbb{R}^{2}/{\sim}.

Proof.

By definition of a¯b¯||\bar{a}-\bar{b}||_{\infty}, we can choose a=(p,q)a¯a^{\prime}=(p^{\prime},q^{\prime})\in\bar{a} and b=(r,s)b¯b^{\prime}=(r^{\prime},s^{\prime})\in\bar{b} such that

ab=a¯b¯.||a^{\prime}-b^{\prime}||_{\infty}=||\bar{a}-\bar{b}||_{\infty}. (4.9)

By Lemma 4.3, there is a ε\varepsilon-interleaving (α,β)(\alpha,\beta) of T|p,q|T_{|p^{\prime},q^{\prime}|} and T|r,s|T_{|r^{\prime},s^{\prime}|} such that

εab.\varepsilon\leq||a^{\prime}-b^{\prime}||_{\infty}. (4.10)

Since

𝕋|p,q|=k(σ)k(T|p,q|)\mathbb{T}_{|p,q|}=\bigoplus_{k\in\mathbb{Z}}(\sigma^{*})^{k}(T_{|p^{\prime},q^{\prime}|})

and

𝕋|r,s|=k(σ)k(T|r,s|),\mathbb{T}_{|r,s|}=\bigoplus_{k\in\mathbb{Z}}(\sigma^{*})^{k}(T_{|r^{\prime},s^{\prime}|}),

the pair (k(σ)k(α),k(σ)k(β))(\bigoplus_{k\in\mathbb{Z}}(\sigma^{*})^{k}(\alpha),\bigoplus_{k\in\mathbb{Z}}(\sigma^{*})^{k}(\beta)) of maps is a ε\varepsilon-interleaving of 𝕋|p,q|\mathbb{T}_{|p,q|} and 𝕋|r,s|\mathbb{T}_{|r,s|}. Hence,

di,𝐐(𝕋|p,q|,𝕋|r,s|)ε.d_{i,\mathbf{Q}}(\mathbb{T}_{|p,q|},\mathbb{T}_{|r,s|})\leq\varepsilon. (4.11)

Then, Formulas (4.9), (4.10) and (4.11) imply the desired result.

Similarly to the proof of the converse stability part of Theorem 2.1 in [17], we have the following lemma.

Lemma 4.5.

For two representations 𝕍\mathbb{V} and 𝕎\mathbb{W} of 𝐐\mathbf{Q}, we have

di,𝐐(𝕍,𝕎)db,2(dgm(𝕍),dgm(𝕎)).d_{i,\mathbf{Q}}(\mathbb{V},\mathbb{W})\leq d_{b,\mathbb{R}^{2}}(dgm(\mathbb{V}),dgm(\mathbb{W})).
Proof.

Let 𝕍\mathbb{V} and 𝕎\mathbb{W} be two representations of Q and db,2(dgm(𝕍),dgm(𝕎))=εd_{b,\mathbb{R}^{2}}(dgm(\mathbb{V}),dgm(\mathbb{W}))=\varepsilon. By definitions, the representations 𝕍\mathbb{V} and 𝕎\mathbb{W} can be wrote as direct sums of indecomposable interval representations as follows

𝕍=iI1𝕍ijJ𝕍j,\mathbb{V}=\bigoplus_{i\in I_{1}}\mathbb{V}_{i}\oplus\bigoplus_{j\in J}\mathbb{V}_{j},
𝕎=iI2𝕎ijJ𝕎j,\mathbb{W}=\bigoplus_{i\in I_{2}}\mathbb{W}_{i}\oplus\bigoplus_{j\in J}\mathbb{W}_{j},

and there is a partial matching between the direct summands of 𝕍\mathbb{V} and those of 𝕎\mathbb{W} such that

  1. (1)

    𝕍j\mathbb{V}_{j} is matched with 𝕎j\mathbb{W}_{j} for any jJj\in J,

  2. (2)

    𝕍i\mathbb{V}_{i} is unmatched for any iI1i\in I_{1},

  3. (3)

    𝕎i\mathbb{W}_{i} is unmatched for any iI2i\in I_{2}.

By Lemma 4.4, we have di,𝐐(𝕍j,𝕎j)εd_{i,\mathbf{Q}}(\mathbb{V}_{j},\mathbb{W}_{j})\leq\varepsilon.

If 𝕍=𝕍1𝕍2\mathbb{V}=\mathbb{V}_{1}\bigoplus\mathbb{V}_{2} and 𝕎=𝕎1𝕎2\mathbb{W}=\mathbb{W}_{1}\bigoplus\mathbb{W}_{2}, then

di,𝐐(𝕍1𝕍2,𝕎1𝕎2)max{di,𝐐(𝕍1,𝕎1),di,𝐐(𝕍2,𝕎2)}.d_{i,\mathbf{Q}}(\mathbb{V}_{1}\bigoplus\mathbb{V}_{2},\mathbb{W}_{1}\bigoplus\mathbb{W}_{2})\leq max\{d_{i,\mathbf{Q}}(\mathbb{V}_{1},\mathbb{W}_{1}),d_{i,\mathbf{Q}}(\mathbb{V}_{2},\mathbb{W}_{2})\}.

Hence, we have di,𝐐(𝕍,𝕎)εd_{i,\mathbf{Q}}(\mathbb{V},\mathbb{W})\leq\varepsilon.

Proposition 4.6.

For two representations 𝐕\mathbf{V} and 𝐖\mathbf{W} of A~\tilde{{A}}_{\mathbb{R}}. we have

di,A~(𝐕,𝐖)db,2/(dgm(𝐕),dgm(𝐖))d_{i,\tilde{{A}}_{\mathbb{R}}}(\mathbf{V},\mathbf{W})\leq d_{b,\mathbb{R}^{2}/{\sim}}(dgm(\mathbf{V}),dgm(\mathbf{W}))
Proof.

By Lemma 4.5, we have

di,𝐐(Ψ(𝐕),Ψ(𝐖))db,2(dgm(Ψ(𝐕)),dgm(Ψ(𝐖))).d_{i,\mathbf{Q}}(\Psi(\mathbf{V}),\Psi(\mathbf{W}))\leq d_{b,\mathbb{R}^{2}}(dgm(\Psi(\mathbf{V})),dgm(\Psi(\mathbf{W}))).

Then, the desired result is implied by Formulas (4.7) and (4.8).

Propositions 4.2 and 4.6 imply Theorem 3.2.

References

  • [1] A. Appel and F. Sala. Quantization of continuum Kac–Moody algebras. Pure and Applied Mathematics Quarterly, 16(3):439–493, 2020.
  • [2] A. Appel, F. Sala, and O. Schiffmann. Continuum Kac–Moody algebras. Moscow Mathematical Journal, 22(2):177–224, 2022.
  • [3] U. Bauer and M. Lesnick. Induced matchings of barcodes and the algebraic stability of persistence. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, page 355–364, New York, NY, USA, 2014. Association for Computing Machinery.
  • [4] M. Botnan and W. Crawley-Boevey. Decomposition of persistence modules. Proceedings of the American Mathematical Society, 148(11):4581–4596, 2020.
  • [5] M. Botnan and M. Lesnick. Algebraic stability of zigzag persistence modules. Algebraic &\& Geometric Topology, 18(6):3133–3204, 2018.
  • [6] M. B. Botnan. Interval decomposition of infinite zigzag persistence modules. Proceedings of the American Mathematical Society, 145(8):3571–3577, 2017.
  • [7] P. Bubenik and J. A. Scott. Categorification of persistent homology. Discrete &\& Computational Geometry, 51:600–627, 2014.
  • [8] F. Chazal, V. De Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules. Springer, 2016.
  • [9] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete &\& Computational Geometry, 37:103–120, 2007.
  • [10] W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules. Journal of Algebra and its Applications, 14(05):1550066, 2015.
  • [11] P. Gabriel. Unzerlegbare darstellungen I. Manuscripta mathematica, 6:71–103, 1972.
  • [12] X. Gao and M. Zhao. Maximal rigid representations of continuous quivers of type A with automorphism. arXiv:2410.07210, 2024.
  • [13] E. J. Hanson and J. D. Rock. Decomposition of pointwise finite-dimensional S1{S}^{1} persistence modules. Journal of Algebra and Its Applications, 23(03):2450054, 2024.
  • [14] K. Igusa, J. D. Rock, and G. Todorov. Continuous quivers of type A{A} (I) foundations. Rendiconti del Circolo Matematico di Palermo Series 2, 72(2):833–868, 2023.
  • [15] K. Igusa and G. Todorov. Continuous Frobenius Categories, pages 115–143. Springer, Berlin, Heidelberg, 2013.
  • [16] M. Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.
  • [17] S. Y. Oudot. Persistence theory: from quiver representations to data analysis, volume 209. American Mathematical Society, 2017.
  • [18] F. Sala and O. Schiffmann. The circle quantum group and the infinite root stack of a curve. Selecta Mathematica, 25(77):1–86, 2019.
  • [19] F. Sala and O. Schiffmann. Fock space representation of the circle quantum group. International Mathematics Research Notices, 2021(22):17025–17070, 2021.