This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isodiametric inequality for vector spaces

Jiaqi Liao State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China & School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Emails: 9[email protected], [email protected]. Supported by National Key RD Program of China No. 2023YFA100960    Hong Liu Extremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS), Daejeon, South Korea. Emails: h[email protected]. Supported by Institute for Basic Science IBS-R029-C4.    Guiying Yan11footnotemark: 1
Abstract

A theorem of Kleitman states that a collection of binary vectors with diameter dd has cardinality at most that of a Hamming ball of radius d/2d/2. In this paper, we give a qq-analog of it.

1 Introduction

The classical isodiametric inequality in euclidean space states that the volume of a set with given diameter is maximized by euclidean balls. Analogues of isodiametric inequalities have been established in various settings. In the discrete setting, resolving a conjecture of Erdős, Kleitman [14] in 1966 famously proved an isodiametric inequality for Hamming space, the space of binary vectors equipped with Hamming distance. We shall state his result via graphs. Given a graph G=(V,E)G=(V,E), let δG(,):V2\delta_{G}(\cdot,\cdot):V^{2}\rightarrow\mathbb{N} be the graph distance, i.e. the length of the shortest path between two vertices. For a subset V\mathcal{F}\subseteq V, its diameter is diam():=maxa,bδG(a,b)\mathrm{diam}(\mathcal{F}):=\max_{a,b\in\mathcal{F}}\delta_{G}(a,b). Note that (V,δG)(V,\delta_{G}) is a metric space. The Hamming graph on [n][n] has vertex set 2[n]2^{[n]} and two vertices A,B2[n]A,B\in 2^{[n]} are adjacent if ABA\subseteq B and |B||A|=1\left|B\right|-\left|A\right|=1. Kleitman’s theorem is an isodiametric inequality on Hamming graphs, which reads as follows.

Theorem 1.1 (Kleitman, [14]).

Let n>dn>d and GG be the Hamming graph on [n][n]. Given V(G)\mathcal{F}\subseteq V(G), if diam()d\mathrm{diam}(\mathcal{F})\leqslant d, then

||{i=0t(ni)if d=2t;i=0t(ni)+(n1t)if d=2t+1.\left|\mathcal{F}\right|\leqslant\left\{\begin{aligned} &\sum_{i=0}^{t}\binom{n}{i}&\qquad&\text{if }d=2t;\\ &\sum_{i=0}^{t}\binom{n}{i}+\binom{n-1}{t}&\qquad&\text{if }d=2t+1.\end{aligned}\right.

The bounds above are optimal. When d=2td=2t, consider the Hamming ball of radius tt, i.e. =i=0t([n]i)\mathcal{F}=\sum_{i=0}^{t}\binom{[n]}{i}. When d=2t+1d=2t+1, consider =i=0t([n]i){A([n]t+1):1A}\mathcal{F}=\sum_{i=0}^{t}\binom{[n]}{i}\cup\{A\in\binom{[n]}{t+1}:1\in A\}. The original proof of Kleitman is combinatorial (see also [2] or [8]). Recently, Huang, Klurman and Pohoata [12] gave a nice linear algebraic proof. Extensions of this theorem have been explored for the nn-dimensional grid [m]n[m]^{n} using Hamming distance [3, 7], as well as for [m]n[m]^{n} and the nn-dimensional torus mn\mathbb{Z}_{m}^{n} with Manhattan distance [1, 4, 6]. We refer the readers to [5] more references and recent developments on Kleitman’s theorem.

In this paper, we give a qq-analog of Theorem 1.1. To state it, we need to generalize the Hamming graphs. Fix a prime power qq and let V:=𝔽qnV:=\mathbb{F}_{q}^{n} be the nn-dimensional vector space over 𝔽q\mathbb{F}_{q}. Denote by 𝒱:={subspaces of 𝔽qn}\mathcal{V}:=\left\{\text{subspaces of }\mathbb{F}_{q}^{n}\right\} and 𝒱(k):={A𝒱:dimA=k}\mathcal{V}(k):=\left\{A\in\mathcal{V}:\dim A=k\right\}. The gaussian binomial coefficients record the cardinality of 𝒱(k)\mathcal{V}(k): |𝒱(k)|=(nk)q:=(qn1)(qnk+11)(qk1)(q1).\left|\mathcal{V}(k)\right|=\binom{n}{k}_{q}:=\frac{(q^{n}-1)\cdots(q^{n-k+1}-1)}{(q^{k}-1)\cdots(q-1)}. The nn-dimensional qq-Hamming graph has vertex set 𝒱\mathcal{V}, in which two subspaces AA and BB are joined by an edge if and only if ABA\subseteq B and dimBdimA=1\dim B-\dim A=1.

Our main result is an isodiametric inequality on qq-Hamming graphs for large nn.

Theorem 1.2.

Fix a prime power qq. Let n=d+1n=d+1 or n>2dn>2d and let GG be the nn-dimensional qq-Hamming graph. Given 𝒱\mathcal{F}\subseteq\mathcal{V}, if diam()d\mathrm{diam}(\mathcal{F})\leqslant d, then

||{i=0t(ni)qif d=2t;i=0t(ni)q+(n1t)qif d=2t+1.\left|\mathcal{F}\right|\leqslant\left\{\begin{aligned} &\sum_{i=0}^{t}\binom{n}{i}_{q}&\qquad&\text{if }d=2t;\\ &\sum_{i=0}^{t}\binom{n}{i}_{q}+\binom{n-1}{t}_{q}&\qquad&\text{if }d=2t+1.\end{aligned}\right.

The bounds on the size of \mathcal{F} above are optimal. Indeed, set 1=k=0t𝒱(k)\mathcal{F}_{1}=\bigcup_{k=0}^{t}\mathcal{V}(k) and 2=1{A𝒱(t+1):xA}\mathcal{F}_{2}=\mathcal{F}_{1}\cup\left\{A\in\mathcal{V}(t+1):x\in A\right\} for some fixed xV{0}x\in V-\left\{0\right\}. Then 1\mathcal{F}_{1} attains the maximum bound if d=2td=2t and 2\mathcal{F}_{2} attains the maximum bound if d=2t+1d=2t+1.

An equivalent formulation of Theorem 1.2 is an isodiametric inequality on a metric space (𝒱,Δ)(\mathcal{V},\Delta), see (2.1) and Lemma 2.4. We believe that the isodiametric inequality holds for all n>dn>d. It would be interesting to bridge the gap in Theorem 1.2 when d+2n2dd+2\leq n\leq 2d.

2 Preliminaries

We need the following result on subspaces counting.

Lemma 2.1 ([11]).

Fix A𝒱(k)A\in\mathcal{V}(k). Then |{B𝒱():dim(AB)=j}|=q(kj)(j)(nkj)q(kj)q.\left|\left\{B\in\mathcal{V}(\ell):\dim(A\cap B)=j\right\}\right|=q^{(k-j)(\ell-j)}\binom{n-k}{\ell-j}_{q}\binom{k}{j}_{q}.

Let GG be a finite bipartite graph with partite sets XX and YY where |X|=|Y|\left|X\right|=\left|Y\right|. A perfect matching is a set of disjoint edges which covers every vertex. For a subset WXW\subseteq X (resp. WYW\subseteq Y), let Γ(W)\Gamma(W) denote the set of all vertices in YY (resp. XX) that are adjacent to at least one vertex of WW. Hall’s theorem states that if for every subset WXW\subseteq X, |W||Γ(W)|\left|W\right|\leqslant\left|\Gamma(W)\right|, then GG has a perfect matching. We shall use the following folklore corollary. A regular graph is a graph where each vertex has the same number of neighbors.

Proposition 2.2.

Every finite regular bipartite graph has a perfect matching.

2.1 A metric space (𝒱,Δ)(\mathcal{V},\Delta)

For A,B𝒱A,B\in\mathcal{V}, define Δ:𝒱×𝒱\Delta:\mathcal{V}\times\mathcal{V}\rightarrow\mathbb{N} as

Δ(A,B):=dim(A+B)dim(AB)=dimA+dimB2dim(AB).\Delta(A,B):=\dim(A+B)-\dim(A\cap B)=\dim A+\dim B-2\dim(A\cap B). (2.1)

The symmetric positive-definite function Δ\Delta is a metric on 𝒱\mathcal{V}.

Lemma 2.3.

The function Δ\Delta satisfies the triangle inequality.

Proof.

Recall the dimension formula from linear algebra, we have

Δ(A,C)\displaystyle\Delta(A,C) dimA+dimC2dim(ABBC)\displaystyle\leqslant\dim A+\dim C-2\dim(A\cap B\cap B\cap C)
=dimA+dimC2dim(AB)2dim(BC)+2dim((AB)+(BC))\displaystyle=\dim A+\dim C-2\dim(A\cap B)-2\dim(B\cap C)+2\dim((A\cap B)+(B\cap C))
dimA+dimC2dim(AB)2dim(BC)+2dimB\displaystyle\leqslant\dim A+\dim C-2\dim(A\cap B)-2\dim(B\cap C)+2\dim B
=Δ(A,B)+Δ(B,C).\displaystyle=\Delta(A,B)+\Delta(B,C).\qed

The following lemma shows that Theorem 1.2 is equivalent to an isodiametric inequality on the metric space (𝒱,Δ)(\mathcal{V},\Delta).

Lemma 2.4.

Let GG be the qq-Hamming graph. Then δG=Δ\delta_{G}=\Delta.

Proof.

Note that the union of an AA-(AB)(A\cap B) path and and (AB)(A\cap B)-BB path contains a path from AA to BB. Thus, δG(A,B)δG(A,AB)+δG(AB,B)=Δ(A,B)\delta_{G}(A,B)\leqslant\delta_{G}(A,A\cap B)+\delta_{G}(A\cap B,B)=\Delta(A,B).

We shall prove the converse Δ(A,B)δG(A,B)\Delta(A,B)\leq\delta_{G}(A,B) by induction on k=δG(A,B)k=\delta_{G}(A,B). The cases k{0,1}k\in\left\{0,1\right\} are trivial. Suppose now that δG(A,B)=k2\delta_{G}(A,B)=k\geq 2. Then there exists a vertex CC on the shortest path from AA to BB, such that δG(A,C)=1\delta_{G}(A,C)=1 and δG(B,C)=k1\delta_{G}(B,C)=k-1. By Lemma 2.3 and by the induction hypothesis, we have Δ(A,B)Δ(A,C)+Δ(B,C)=δG(A,C)+δG(B,C)=k.\Delta(A,B)\leqslant\Delta(A,C)+\Delta(B,C)=\delta_{G}(A,C)+\delta_{G}(B,C)=k.

For ,𝒢𝒱\mathcal{F},\mathcal{G}\subseteq\mathcal{V}, we say (,𝒢)(\mathcal{F},\mathcal{G}) is cross-ss-intersecting in VV if dim(AB)s\dim(A\cap B)\geqslant s for any AA\in\mathcal{F} and any B𝒢B\in\mathcal{G}. In particular, if =𝒢\mathcal{F}=\mathcal{G}, then \mathcal{F} is ss-intersecting in VV.

The following lemma follows immediately from (2.1).

Lemma 2.5.

Let 𝒱\mathcal{F}\subseteq\mathcal{V} with diam()=d\mathrm{diam}(\mathcal{F})=d. Then ((i),(j))(\mathcal{F}(i),\mathcal{F}(j)) is cross-(i+jd)/2\lceil\left(i+j-d\right)/2\rceil-intersecting in VV for any i,jsupp()i,j\in\mathrm{supp}(\mathcal{F}). In particular, (k)\mathcal{F}(k) is (kd/2)(k-\lfloor d/2\rfloor)-intersecting in VV for any ksupp()k\in\mathrm{supp}(\mathcal{F}).

Theorem 2.6 ([9]).

Let n2ksn\geqslant 2k-s and 𝒱(k)\mathcal{F}\subseteq\mathcal{V}(k). If \mathcal{F} is ss-intersecting in VV, then

||max{(nsks)q,(2ksks)q}.\left|\mathcal{F}\right|\leqslant\max\left\{\binom{n-s}{k-s}_{q},\binom{2k-s}{k-s}_{q}\right\}.

2.2 An isometry

Recall that, given two metric spaces (X1,d1)(X_{1},d_{1}) and (X2,d2)(X_{2},d_{2}), a bijection f:X1X2f:X_{1}\rightarrow X_{2} is said to be an isometry if d2(f(x),f(y))=d1(x,y)d_{2}(f(x),f(y))=d_{1}(x,y) for any x,yX1x,y\in X_{1}. Next we show that taking orthogonal complement is an isometry on (𝒱,Δ)(\mathcal{V},\Delta). If WW is a subspace of VV, then its orthogonal complement WW^{\perp} is the subspace of VV consisting of all elements vVv\in V such that v,w=0\langle v,w\rangle=0 for all wWw\in W, where v,w:=i=1nviwi\langle v,w\rangle:=\sum\limits_{i=1}^{n}v_{i}\cdot w_{i}.

Lemma 2.7.

The bijection f(U):=Uf(U):=U^{\perp} is an isometry on (𝒱,Δ)(\mathcal{V},\Delta).

Proof.

Take arbitrary U1,U2𝒱U_{1},U_{2}\in\mathcal{V}. Note that

Δ(U1,U2)\displaystyle\Delta(U_{1}^{\perp},U_{2}^{\perp}) =dim(U1+U2)dim(U1U2)=dim((U1U2))dim((U1+U2))\displaystyle=\dim(U_{1}^{\perp}+U_{2}^{\perp})-\dim(U_{1}^{\perp}\cap U_{2}^{\perp})=\dim((U_{1}\cap U_{2})^{\perp})-\dim((U_{1}+U_{2})^{\perp})
=ndim(U1U2)n+dim(U1+U2)=Δ(U1,U2).\displaystyle=n-\dim(U_{1}\cap U_{2})-n+\dim(U_{1}+U_{2})=\Delta(U_{1},U_{2}).\qed

Given 𝒱\mathcal{F}\subseteq\mathcal{V}, denote by diam():=maxA,BΔ(A,B)\mathrm{diam}(\mathcal{F}):=\max_{A,B\in\mathcal{F}}\Delta(A,B) its diameter and

D():=maxA,B|dimAdimB|.D(\mathcal{F}):=\max\limits_{A,B\in\mathcal{F}}\left|\dim A-\dim B\right|.

It follows from definition that |dimAdimB|Δ(A,B)\left|\dim A-\dim B\right|\leqslant\Delta(A,B), and so D()diam()D(\mathcal{F})\leqslant\mathrm{diam}(\mathcal{F}). We write (i)\mathcal{F}(i)\subseteq\mathcal{F} for the set of subspaces of dimension ii in \mathcal{F}. Let supp():={i:(i)}\mathrm{supp}(\mathcal{F}):=\left\{i\in\mathbb{N}:\mathcal{F}(i)\neq\varnothing\right\} and :={W:W}\mathcal{F}^{\perp}:=\left\{W^{\perp}:W\in\mathcal{F}\right\}. If diam()=d\mathrm{diam}(\mathcal{F})=d, define

m:=min{x:supp()[x,x+d] or supp()[x,x+d]}.m_{\mathcal{F}}:=\min\left\{x\in\mathbb{N}:\mathrm{supp}(\mathcal{F})\subseteq[x,x+d]\quad\text{ or }\quad\mathrm{supp}(\mathcal{F}^{\perp})\subseteq[x,x+d]\right\}.
Lemma 2.8.

If diam()=d\mathrm{diam}(\mathcal{F})=d, then m(nd)/2m_{\mathcal{F}}\leqslant\left(n-d\right)/2.

Proof.

It suffices to show that, if y:=min{x:supp()[x,x+d]}>(nd)/2,y:=\min\left\{x\in\mathbb{N}:\mathrm{supp}(\mathcal{F})\subseteq[x,x+d]\right\}>\left(n-d\right)/2, then we must have min{x:supp()[x,x+d]}(nd)/2\min\left\{x\in\mathbb{N}:\mathrm{supp}\left(\mathcal{F}^{\perp}\right)\subseteq[x,x+d]\right\}\leqslant(n-d)/2. But this follows from

supp()[y,y+d]supp()[ndy,ny],\mathrm{supp}(\mathcal{F})\subseteq[y,y+d]\quad\Rightarrow\quad\mathrm{supp}(\mathcal{F}^{\perp})\subseteq[n-d-y,n-y],

where ndy<nd(nd)/2=(nd)/2n-d-y<n-d-(n-d)/2=\left(n-d\right)/2.∎

By Lemmas 2.7 and 2.8, we may assume that

m=min{x:supp()[x,x+d]}(nd)/2.m_{\mathcal{F}}=\min\left\{x\in\mathbb{N}:\mathrm{supp}(\mathcal{F})\subseteq[x,x+d]\right\}\leqslant\left(n-d\right)/2. (2.2)

3 Proof of Theorem 1.2

Let us first consider the case n=d+1n=d+1. For each kn/2k\leqslant n/2, define a bipartite graph Gk:=(𝒱(k)𝒱(nk),k)G_{k}:=\left(\mathcal{V}(k)\uplus\mathcal{V}(n-k),\mathcal{E}_{k}\right), where

k={{A,B}:A𝒱(k),B𝒱(nk) and dim(AB)=0}.\mathcal{E}_{k}=\left\{\left\{A,B\right\}:A\in\mathcal{V}(k),B\in\mathcal{V}(n-k)\text{ and }\dim(A\cap B)=0\right\}.

By Lemma 2.1, we know that GkG_{k} is qk(nk){q^{k(n-k)}}-regular. By Proposition 2.2, there is a perfect matching in GkG_{k}. Note that if {A,B}\left\{A,B\right\} is an edge in GkG_{k}, then Δ(A,B)>d\Delta(A,B)>d. Thus for any kn/2k\leqslant n/2, we have

|(k)|+|(nk)|(nk)q.\left|\mathcal{F}(k)\right|+\left|\mathcal{F}(n-k)\right|\leqslant\binom{n}{k}_{q}.

Hence, if d=2td=2t, we have

||=i=0t(|(i)|+|(ni)|)i=0t(ni)q.\left|\mathcal{F}\right|=\sum_{i=0}^{t}\left(\left|\mathcal{F}(i)\right|+\left|\mathcal{F}(n-i)\right|\right)\leqslant\sum_{i=0}^{t}\binom{n}{i}_{q}.

If d=2t+1d=2t+1, then (t+1)\mathcal{F}(t+1) must be 11-intersecting in VV. By Theorem 2.6, we have |(t+1)|(n1t)q\left|\mathcal{F}(t+1)\right|\leqslant\binom{n-1}{t}_{q}. So

||=i=0t(|(i)|+|(ni)|)+|(t+1)|i=0t(ni)q+(n1t)q.\left|\mathcal{F}\right|=\sum_{i=0}^{t}\left(\left|\mathcal{F}(i)\right|+\left|\mathcal{F}(n-i)\right|\right)+\left|\mathcal{F}(t+1)\right|\leqslant\sum_{i=0}^{t}\binom{n}{i}_{q}+\binom{n-1}{t}_{q}.

We may now assume n>2dn>2d. The cases d{0,1}d\in\left\{0,1\right\} are trivial; assume then d2d\geq 2. Set t:=d/21t:=\lfloor d/2\rfloor\geqslant 1. We shall bound the size of each layer of \mathcal{F}. By Lemma 2.5, for any ksupp()k\in\mathrm{supp}(\mathcal{F}), (k)\mathcal{F}(k) is a (kt)(k-t)-intersecting family. Hence by Theorem 2.6, we have

|(k)|max{(nk+tt)q,(k+tt)q}.\left|\mathcal{F}(k)\right|\leqslant\max\left\{\binom{n-k+t}{t}_{q},\binom{k+t}{t}_{q}\right\}. (3.1)

Let m=mm=m_{\mathcal{F}}. Then by (2.2), mnd2m\leq\frac{n-d}{2}. Our strategy is to bound each of the slices (k)\mathcal{F}(k). The cases when dd and qq are small require separate treatments.

3.1 The case d=2d=2

In this case, we have t:=d/2=1t:=\lfloor d/2\rfloor=1 and D()d=2D(\mathcal{F})\leq d=2.

Suppose D()=0D(\mathcal{F})=0, i.e., supp()={m}\mathrm{supp}(\mathcal{F})=\left\{m\right\}. As mnd2m\leq\frac{n-d}{2}, by (3.1) we have

||=|(m)|max{(nm+11)q,(m+11)q}=(nm+11)q1+(n1)q,\left|\mathcal{F}\right|=\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{n-m+1}{1}_{q},\binom{m+1}{1}_{q}\right\}=\binom{n-m+1}{1}_{q}\leqslant 1+\binom{n}{1}_{q}, (3.2)

as desired.

Suppose then D()=1D(\mathcal{F})=1, i.e., supp()={m,m+1}\mathrm{supp}(\mathcal{F})=\left\{m,m+1\right\}. By Lemma 2.5, we have ((m),(m+1))(\mathcal{F}(m),\mathcal{F}(m+1)) is cross-mm-intersecting in VV. In other words, we have XYX\subseteq Y for any X(m)X\in\mathcal{F}(m) and any Y(m+1)Y\in\mathcal{F}(m+1). By Lemma 2.5 again, we have (m)\mathcal{F}(m) is (m1)(m-1)-intersecting in YY for any Y(m+1)Y\in\mathcal{F}(m+1).

Now, if |(m+1)|=1\left|\mathcal{F}(m+1)\right|=1, i.e., (m+1)={Y}\mathcal{F}(m+1)=\left\{Y\right\} for some Y𝒱(m+1)Y\in\mathcal{V}(m+1), then by Theorem 2.6 with V=YV=Y, we have

|(m)|max{(21)q,(m+11)q}=(m+11)q.\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{2}{1}_{q},\binom{m+1}{1}_{q}\right\}=\binom{m+1}{1}_{q}.

Thus, ||1+(m+11)q1+(n1)q\left|\mathcal{F}\right|\leqslant 1+\binom{m+1}{1}_{q}\leqslant 1+\binom{n}{1}_{q}.

If instead |(m+1)|2\left|\mathcal{F}(m+1)\right|\geqslant 2, i.e., (m+1)={Y1,Y2,}\mathcal{F}(m+1)=\left\{Y_{1},Y_{2},\ldots\right\}. Set Z:=Y1Y2Z:=Y_{1}\cap Y_{2} and thus dimZm\dim Z\leqslant m. Hence |(m)|1\left|\mathcal{F}(m)\right|\leqslant 1. On the other hand, by (3.1), we have

|(m+1)|max{(nm1)q,(m+21)q}=(nm1)q.\left|\mathcal{F}(m+1)\right|\leqslant\max\left\{\binom{n-m}{1}_{q},\binom{m+2}{1}_{q}\right\}=\binom{n-m}{1}_{q}.

Thus, ||1+(nm1)q1+(n1)q\left|\mathcal{F}\right|\leqslant 1+\binom{n-m}{1}_{q}\leqslant 1+\binom{n}{1}_{q}.

Suppose D()=2D(\mathcal{F})=2, i.e., supp()={m,m+1,m+2}\mathrm{supp}(\mathcal{F})=\left\{m,m+1,m+2\right\}. By Lemma 2.5, we have ((m),(m+2))(\mathcal{F}(m),\mathcal{F}(m+2)) is cross-mm-intersecting in VV and ((m+1),(m+2))(\mathcal{F}(m+1),\mathcal{F}(m+2)) is cross-(m+1)(m+1)-intersecting in VV respectively. In other words, we have XYX\subseteq Y for any X(m)(m+1)X\in\mathcal{F}(m)\cup\mathcal{F}(m+1) and any Y(m+2)Y\in\mathcal{F}(m+2). By Lemma 2.5 again, we have (m)\mathcal{F}(m) is (m1)(m-1)-intersecting in YY for any Y(m+2)Y\in\mathcal{F}(m+2) and (m+1)\mathcal{F}(m+1) is mm-intersecting in YY for any Y(m+2)Y\in\mathcal{F}(m+2) respectively.

If |(m+2)|=1\left|\mathcal{F}(m+2)\right|=1, say (m+2)={Y}\mathcal{F}(m+2)=\left\{Y\right\}, then By Theorem 2.6, we have

|(m)|max{(31)q,(m+11)q},\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{3}{1}_{q},\binom{m+1}{1}_{q}\right\},

and

|(m+1)|max{(21)q,(m+21)q}=(m+21)q.\left|\mathcal{F}(m+1)\right|\leqslant\max\left\{\binom{2}{1}_{q},\binom{m+2}{1}_{q}\right\}=\binom{m+2}{1}_{q}.

If instead |(m+2)|2\left|\mathcal{F}(m+2)\right|\geqslant 2, i.e., (m+2)={Y1,Y2,}\mathcal{F}(m+2)=\left\{Y_{1},Y_{2},\ldots\right\}. Set Z:=Y1Y2Z:=Y_{1}\cap Y_{2} and thus dimZm+1\dim Z\leqslant m+1. Then |(m+1)|1\left|\mathcal{F}(m+1)\right|\leqslant 1 and by Theorem 2.6, we have

|(m)|max{(21)q,(m+11)q}=(m+11)q.\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{2}{1}_{q},\binom{m+1}{1}_{q}\right\}=\binom{m+1}{1}_{q}.

By (3.1), we have

|(m+2)|max{(nm11)q,(m+31)q}.\left|\mathcal{F}(m+2)\right|\leqslant\max\left\{\binom{n-m-1}{1}_{q},\binom{m+3}{1}_{q}\right\}.

In each case, thanks to (n1)q>i=1n1(i1)q\binom{n}{1}_{q}>\sum\limits_{i=1}^{n-1}\binom{i}{1}_{q}, we have

||=ksupp()|(k)|1+(n1)q.\left|\mathcal{F}\right|=\sum_{k\in\mathrm{supp}(\mathcal{F})}\left|\mathcal{F}(k)\right|\leqslant 1+\binom{n}{1}_{q}.

3.2 The case d=3d=3

In this case, we have t:=d/2=1t:=\lfloor d/2\rfloor=1 and D()d=3D(\mathcal{F})\leq d=3.

If D()=0D(\mathcal{F})=0, as in (3.2), we have

||max{(nm+11)q,(m+11)q}=(nm+11)q1+(n1)q+(n11)q.\left|\mathcal{F}\right|\leqslant\max\left\{\binom{n-m+1}{1}_{q},\binom{m+1}{1}_{q}\right\}=\binom{n-m+1}{1}_{q}\leqslant 1+\binom{n}{1}_{q}+\binom{n-1}{1}_{q}.

If D()=1D(\mathcal{F})=1, i.e. supp()={m,m+1}\mathrm{supp}(\mathcal{F})=\left\{m,m+1\right\}. By (3.1), we have

|(m)|max{(nm+11)q,(m+11)q}=(nm+11)q,\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{n-m+1}{1}_{q},\binom{m+1}{1}_{q}\right\}=\binom{n-m+1}{1}_{q},

and

|(m+1)|max{(nm1)q,(m+21)q}=(nm1)q.\left|\mathcal{F}(m+1)\right|\leqslant\max\left\{\binom{n-m}{1}_{q},\binom{m+2}{1}_{q}\right\}=\binom{n-m}{1}_{q}.

Thus, ||(nm+11)q+(nm1)q1+(n1)q+(n11)q\left|\mathcal{F}\right|\leqslant\binom{n-m+1}{1}_{q}+\binom{n-m}{1}_{q}\leqslant 1+\binom{n}{1}_{q}+\binom{n-1}{1}_{q}.

Suppose D()=2D(\mathcal{F})=2, i.e., supp()={m,m+1,m+2}\mathrm{supp}(\mathcal{F})=\left\{m,m+1,m+2\right\}. Then by Lemma 2.5, we have ((m),(m+2))(\mathcal{F}(m),\mathcal{F}(m+2)) is cross-mm-intersecting in VV and (m+1)\mathcal{F}(m+1) is mm-intersecting in VV respectively. In other words, we have XYX\subseteq Y for any X(m)X\in\mathcal{F}(m) and any Y(m+2)Y\in\mathcal{F}(m+2). By Lemma 2.5 again, we have (m)\mathcal{F}(m) is (m1)(m-1)-intersecting in YY for any Y(m+2)Y\in\mathcal{F}(m+2). By (3.1),

|(m+1)|max{(nm1)q,(m+21)q}=(nm1)q.\left|\mathcal{F}(m+1)\right|\leqslant\max\left\{\binom{n-m}{1}_{q},\binom{m+2}{1}_{q}\right\}=\binom{n-m}{1}_{q}.

If |(m+2)|=1\left|\mathcal{F}(m+2)\right|=1, say (m+2)={Y}\mathcal{F}(m+2)=\left\{Y\right\}, then by Theorem 2.6, we have

|(m)|max{(31)q,(m+11)q}.\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{3}{1}_{q},\binom{m+1}{1}_{q}\right\}.

If |(m+2)|2\left|\mathcal{F}(m+2)\right|\geqslant 2, i.e., (m+2)={Y1,Y2,}\mathcal{F}(m+2)=\left\{Y_{1},Y_{2},\ldots\right\}. Set Z:=Y1Y2Z:=Y_{1}\cap Y_{2} and thus dimZm+1\dim Z\leqslant m+1. By Theorem 2.6 with V2.6=ZV_{\ref{EKRVEC}}=Z, we have

|(m)|max{(21)q,(m+11)q}=(m+11)q,\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{2}{1}_{q},\binom{m+1}{1}_{q}\right\}=\binom{m+1}{1}_{q},

and by (3.1),

|(m+2)|max{(nm11)q,(m+31)q}.\left|\mathcal{F}(m+2)\right|\leqslant\max\left\{\binom{n-m-1}{1}_{q},\binom{m+3}{1}_{q}\right\}.

In each case, thanks to (n1)q>i=1n1(i1)q\binom{n}{1}_{q}>\sum\limits_{i=1}^{n-1}\binom{i}{1}_{q}, we have

||=ksupp()|(k)|1+(n1)q+(n11)q.\left|\mathcal{F}\right|=\sum_{k\in\mathrm{supp}(\mathcal{F})}\left|\mathcal{F}(k)\right|\leqslant 1+\binom{n}{1}_{q}+\binom{n-1}{1}_{q}.

Suppose D()=3D(\mathcal{F})=3, i.e., supp()={m,m+1,m+2,m+3}\mathrm{supp}(\mathcal{F})=\left\{m,m+1,m+2,m+3\right\}. By Lemma 2.5, we have ((m),(m+3))(\mathcal{F}(m),\mathcal{F}(m+3)) is cross-mm-intersecting in VV and ((m+1),(m+3))(\mathcal{F}(m+1),\mathcal{F}(m+3)) is cross-(m+1)(m+1)-intersecting in VV respectively. In other words, we have XYX\subseteq Y for any X(m)(m+1)X\in\mathcal{F}(m)\cup\mathcal{F}(m+1) and any Y(m+3)Y\in\mathcal{F}(m+3). By Lemma 2.5 again, we have (m)\mathcal{F}(m) is (m1)(m-1)-intersecting in YY for any Y(m+3)Y\in\mathcal{F}(m+3) and (m+1)\mathcal{F}(m+1) is mm-intersecting in YY for any Y(m+3)Y\in\mathcal{F}(m+3) respectively. By (3.1),

|(m+2)|max{(nm11)q,(m+31)q}.\left|\mathcal{F}(m+2)\right|\leqslant\max\left\{\binom{n-m-1}{1}_{q},\binom{m+3}{1}_{q}\right\}.

If |(m+3)|=1\left|\mathcal{F}(m+3)\right|=1, say (m+3)={Y}\mathcal{F}(m+3)=\left\{Y\right\}, then by Theorem 2.6 with V2.6=YV_{\ref{EKRVEC}}=Y, we have

|(m)|max{(41)q,(m+11)q},\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{4}{1}_{q},\binom{m+1}{1}_{q}\right\},

and

|(m+1)|max{(31)q,(m+21)q}.\left|\mathcal{F}(m+1)\right|\leqslant\max\left\{\binom{3}{1}_{q},\binom{m+2}{1}_{q}\right\}.

If |(m+3)|2\left|\mathcal{F}(m+3)\right|\geqslant 2, i.e., (m+3)={Y1,Y2,}\mathcal{F}(m+3)=\left\{Y_{1},Y_{2},\ldots\right\}. Set Z:=Y1Y2Z:=Y_{1}\cap Y_{2}, thus dimZm+2\dim Z\leqslant m+2. By Theorem 2.6 with V2.6=ZV_{\ref{EKRVEC}}=Z, we have

|(m)|max{(31)q,(m+11)q},\left|\mathcal{F}(m)\right|\leqslant\max\left\{\binom{3}{1}_{q},\binom{m+1}{1}_{q}\right\},

and

|(m+1)|max{(21)q,(m+21)q}=(m+21)q,\left|\mathcal{F}(m+1)\right|\leqslant\max\left\{\binom{2}{1}_{q},\binom{m+2}{1}_{q}\right\}=\binom{m+2}{1}_{q},

and by (3.1),

|(m+3)|max{(nm21)q,(m+41)q}.\left|\mathcal{F}(m+3)\right|\leqslant\max\left\{\binom{n-m-2}{1}_{q},\binom{m+4}{1}_{q}\right\}.

In each case, thanks to (n1)q>i=1n1(i1)q\binom{n}{1}_{q}>\sum\limits_{i=1}^{n-1}\binom{i}{1}_{q}, we have

||=ksupp()|(k)|1+(n1)q+(n11)q.\left|\mathcal{F}\right|=\sum_{k\in\mathrm{supp}(\mathcal{F})}\left|\mathcal{F}(k)\right|\leqslant 1+\binom{n}{1}_{q}+\binom{n-1}{1}_{q}.

3.3 The cases d4d\geqslant 4

In these cases, we have t:=d/22t:=\lfloor d/2\rfloor\geqslant 2. Let us first assume that m=mt+1m=m_{\mathcal{F}}\geqslant t+1. Note that ||=k=mn/2|(k)|+k=n/2+1m+d|(k)|\left|\mathcal{F}\right|=\sum_{k=m}^{\lfloor n/2\rfloor}\left|\mathcal{F}(k)\right|+\sum_{k=\lfloor n/2\rfloor+1}^{m+d}\left|\mathcal{F}(k)\right|. For the first sum, by (3.1) and mt+1m\geq t+1 we have

(nt)q1k=mn/2|(k)|\displaystyle\binom{n}{t}_{q}^{-1}\cdot\sum_{k=m}^{\lfloor n/2\rfloor}\left|\mathcal{F}(k)\right| k=mn/2(nt)q1(nk+tt)qk=t+1(nt)q1(nk+tt)q\displaystyle\leqslant\sum_{k=m}^{\lfloor n/2\rfloor}\binom{n}{t}_{q}^{-1}\cdot\binom{n-k+t}{t}_{q}\leqslant\sum_{k=t+1}^{\infty}\binom{n}{t}_{q}^{-1}\cdot\binom{n-k+t}{t}_{q}
=k=t+1(qnk+t1)(qnk+11)(qn1)(qnt+11)\displaystyle=\sum_{k=t+1}^{\infty}\frac{(q^{n-k+t}-1)\cdots(q^{n-k+1}-1)}{(q^{n}-1)\cdots(q^{n-t+1}-1)}
<k=t+1qnk+tqnk+1qnqnt+1<r=1qtr=1qt1.\displaystyle<\sum_{k=t+1}^{\infty}\frac{q^{n-k+t}\cdots q^{n-k+1}}{q^{n}\cdots q^{n-t+1}}<\sum_{r=1}^{\infty}q^{-tr}=\frac{1}{q^{t}-1}. (3.3)

For the second sum, recall that mnd2m\leq\frac{n-d}{2} and so

(nt)q1k=n/2+1m+d|(k)|\displaystyle\binom{n}{t}_{q}^{-1}\cdot\sum_{k=\lfloor n/2\rfloor+1}^{m+d}\left|\mathcal{F}(k)\right| k=n/2+1(nd)/2+d(nt)q1(k+tt)q=k=n/2+1(n+d)/2(qk+t1)(qk+11)(qn1)(qnt+11)\displaystyle\leqslant\sum_{k=\lfloor n/2\rfloor+1}^{\lfloor(n-d)/2\rfloor+d}\binom{n}{t}_{q}^{-1}\cdot\binom{k+t}{t}_{q}=\sum_{k=\lfloor n/2\rfloor+1}^{\lfloor(n+d)/2\rfloor}\frac{(q^{k+t}-1)\cdots(q^{k+1}-1)}{(q^{n}-1)\cdots(q^{n-t+1}-1)}
k=n/2+1(n+d)/2qk+tqk+1qnqnt+1<r=1qtr=1qt1,\displaystyle\leqslant\sum_{k=\lfloor n/2\rfloor+1}^{\lfloor(n+d)/2\rfloor}\frac{q^{k+t}\cdots q^{k+1}}{q^{n}\cdots q^{n-t+1}}<\sum_{r=1}^{\infty}q^{-tr}=\frac{1}{q^{t}-1}, (3.4)

where the penultimate inequality follows from (n+d)/2+t<n\lfloor(n+d)/2\rfloor+t<n. Thus, ||<2qt1(nt)q\left|\mathcal{F}\right|<\frac{2}{q^{t}-1}\cdot\binom{n}{t}_{q}.

We may then assume that m=mtm=m_{\mathcal{F}}\leqslant t. Let M=maxsupp()M=\max\mathrm{supp}(\mathcal{F}) and further assume that

M{t+1,if d=2t;t+2,if d=2t+1.M\geqslant\left\{\begin{aligned} &t+1,&\qquad&\text{if }d=2t;\\ &t+2,&\qquad&\text{if }d=2t+1.\end{aligned}\right.

Then, we have

||i=0t1(ni)q+|(t)|+k=t+1M|(k)|.\left|\mathcal{F}\right|\leqslant\sum_{i=0}^{t-1}\binom{n}{i}_{q}+\left|\mathcal{F}(t)\right|+\sum_{k=t+1}^{M}\left|\mathcal{F}(k)\right|.

Let us first bound the size of (t)\mathcal{F}(t). To this end, fix Y(M)Y\in\mathcal{F}(M) and note that for any X(t)X\in\mathcal{F}(t),

dim(XY)=(dimX+dimYΔ(X,Y))/2(t+Md)/21.\dim(X\cap Y)=\lceil\left(\dim X+\dim Y-\Delta(X,Y)\right)/2\rceil\geqslant\lceil\left(t+M-d\right)/2\rceil\geqslant 1.

Thus by Lemma 2.1, we have

|(t)||{X𝒱(t):dim(XY)0}|=(nt)qqMt(nMt)q.\left|\mathcal{F}(t)\right|\leqslant\left|\{X\in\mathcal{V}(t):\dim(X\cap Y)\neq 0\}\right|=\binom{n}{t}_{q}-q^{Mt}\binom{n-M}{t}_{q}.

Note that

qMt(nMt)q(nt)q\displaystyle\frac{q^{Mt}\binom{n-M}{t}_{q}}{\binom{n}{t}_{q}} =(qnqM)(qnt+1qM)(qn1)(qnt+11)(qnqM)(qnt+1qM)qnqnt+1\displaystyle=\frac{(q^{n}-q^{M})\cdots(q^{n-t+1}-q^{M})}{(q^{n}-1)\cdots(q^{n-t+1}-1)}\geqslant\frac{(q^{n}-q^{M})\cdots(q^{n-t+1}-q^{M})}{q^{n}\cdots q^{n-t+1}}
=i=1t(1(q1)nMt+i)i=1t(1(q1)1+i)i=1t(1(21)1+i)\displaystyle=\prod_{i=1}^{t}\left(1-\left(q^{-1}\right)^{n-M-t+i}\right)\geqslant\prod_{i=1}^{t}\left(1-\left(q^{-1}\right)^{1+i}\right)\geqslant\prod_{i=1}^{t}\left(1-\left(2^{-1}\right)^{1+i}\right)
{(141)(181)=2132,if t=2;2i=1(1(21)i)12,if t3.\displaystyle\geqslant\left\{\begin{aligned} &\left(1-4^{-1}\right)\left(1-8^{-1}\right)=\frac{21}{32},&\qquad&\text{if }t=2;\\ &2\prod_{i=1}^{\infty}\left(1-\left(2^{-1}\right)^{i}\right)\geqslant\frac{1}{2},&\qquad&\text{if }t\geqslant 3.\end{aligned}\right.

To see the last inequality y:=i=1(12i)14y:=\prod\limits_{i=1}^{\infty}\left(1-2^{-i}\right)\geqslant\frac{1}{4}, set f(x)=i=1(1xi)1f(x)=\prod\limits_{i=1}^{\infty}\left(1-x^{i}\right)^{-1} where x<2/3x<2/3, it is the generating function of the partition function p(k)p(k), which is the number of distinct ways of representing kk as a sum of positive integers. Note that p(k)eπ2k/3p(k)\leqslant e^{\pi\sqrt{2k/3}} (see[15]) and eπ2k/3(3/2)ke^{\pi\sqrt{2k/3}}\leqslant(3/2)^{k} for k41k\geqslant 41; it can be verified (OEIS: A000041) that p(k)(3/2)kp(k)\leqslant(3/2)^{k} for 1k401\leqslant k\leqslant 40. Thus, f(x)=k=0p(k)xkk=0(3x/2)k=2/(23x)f(x)=\sum\limits_{k=0}^{\infty}p(k)x^{k}\leqslant\sum\limits_{k=0}^{\infty}(3x/2)^{k}={2}/\left(2-3x\right), and y=1/f(12)1/(223/2)=1/4y=1/f(\frac{1}{2})\geqslant 1/(\frac{2}{2-3/2})=1/4. Therefore, |(t)|c1(nt)q\left|\mathcal{F}(t)\right|\leqslant c_{1}\binom{n}{t}_{q}, where c1=11/32c_{1}=11/32 if t=2t=2 and c1=1/2c_{1}=1/2 if t3t\geq 3.

To bound k=t+1M|(k)|\sum\limits_{k=t+1}^{M}\left|\mathcal{F}(k)\right|, if max{q,t}>2\max\left\{q,t\right\}>2, then by (3.3) and (3.3) we have k=t+1M|(k)|2qt1(nt)q27(nt)q\sum\limits_{k=t+1}^{M}\left|\mathcal{F}(k)\right|\leqslant\frac{2}{q^{t}-1}\binom{n}{t}_{q}\leqslant\frac{2}{7}\binom{n}{t}_{q}. If q=t=2q=t=2, then note that there are at most 55 summands if t=2t=2 since Mt+dM\leqslant t+d. In this case, based on the calculation in (3.3) and (3.3), (nt)q1k=t+1M|(k)|aAa\binom{n}{t}_{q}^{-1}\cdot\sum\limits_{k=t+1}^{M}\left|\mathcal{F}(k)\right|\leqslant\sum\limits_{a\in A}a, where AA is a 55-term-subset of the multiset {1/4,1/4,1/16,1/16,1/64,1/64,1/256,1/256,}\left\{1/4,1/4,1/16,1/16,1/64,1/64,1/256,1/256,\ldots\right\}, then k=t+1M|(k)|4164(nt)q\sum\limits_{k=t+1}^{M}\left|\mathcal{F}(k)\right|\leqslant\frac{41}{64}\binom{n}{t}_{q}.

Put the upper bounds together, we have

||\displaystyle\left|\mathcal{F}\right| i=0t1(ni)q+|(t)|+k=t+1M|(k)|\displaystyle\leqslant\sum_{i=0}^{t-1}\binom{n}{i}_{q}+\left|\mathcal{F}(t)\right|+\sum_{k=t+1}^{M}\left|\mathcal{F}(k)\right|
i=0t1(ni)q+c1(nt)q+c2(nt)q\displaystyle\leqslant\sum_{i=0}^{t-1}\binom{n}{i}_{q}+c_{1}\binom{n}{t}_{q}+c_{2}\binom{n}{t}_{q}
<i=0t(ni)q.\displaystyle<\sum_{i=0}^{t}\binom{n}{i}_{q}.

where (c1,c2)=(11/32,41/64)(c_{1},c_{2})=\left(11/32,41/64\right) if q=t=2q=t=2, and (1/2,2/7)\left(1/2,2/7\right) if max{q,t}>2\max\left\{q,t\right\}>2.

We are left with the case when

M{t,if d=2t;t+1,if d=2t+1.M\leqslant\left\{\begin{aligned} &t,&\qquad&\text{if }d=2t;\\ &t+1,&\qquad&\text{if }d=2t+1.\end{aligned}\right.

When d=2td=2t, ||=iM|(i)|i=0t(ni)q\left|\mathcal{F}\right|=\sum_{i\leqslant M}\left|\mathcal{F}(i)\right|\leq\sum_{i=0}^{t}\binom{n}{i}_{q}. When d=2t+1d=2t+1, note that (t+1)\mathcal{F}(t+1) is 11-intersecting in VV if d=2t+1d=2t+1, so |(t+1)|(n1t)q\left|\mathcal{F}(t+1)\right|\leqslant\binom{n-1}{t}_{q} by (3.1). Therefore ||=iM|(i)|i=0t(ni)q+(n1t)q\left|\mathcal{F}\right|=\sum_{i\leqslant M}\left|\mathcal{F}(i)\right|\leq\sum_{i=0}^{t}\binom{n}{i}_{q}+\binom{n-1}{t}_{q}.

This completes the proof.

References

  • [1] R. Ahlswede, N. Cai, and Z. Zhang. Diametric theorems in sequence spaces. Combinatorica, 12(1):1–17, 1992.
  • [2] R. Ahlswede and G. O. H. Katona. Contributions to the geometry of Hamming spaces. Discrete Math., 17(1):1–22, 1977.
  • [3] R. Ahlswede and L. H. Khachatrian. The diametric theorem in Hamming spaces—optimal anticodes. Adv. in Appl. Math., 20(4):429–449, 1998.
  • [4] B. Bollobás and I. Leader. Maximal sets of given diameter in the grid and the torus. Discrete Math., 122(1-3):15–35, 1993.
  • [5] Z. Dong, J. Gao, H. Liu, M. Ouyang, and Q. Zhou. Optimal bounds for binary tt-codes and sets with restricted distances. Preprint.
  • [6] D. Z. Du and D. J. Kleitman. Diameter and radius in the Manhattan metric. Discrete Comput. Geom., 5(4):351–356, 1990.
  • [7] P. Frankl and Z. Füredi. The Erdős-Ko-Rado theorem for integer sequences. SIAM J. Algebraic Discrete Methods, 1(4):376–381, 1980.
  • [8] P. Frankl and N. Tokushige. Extremal problems for finite sets, volume 86 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2018.
  • [9] P. Frankl and R. M. Wilson. The Erdős-Ko-Rado theorem for vector spaces. J. Combin. Theory Ser. A, 43(2):228–236, 1986.
  • [10] J. Gao, H. Liu, and Z. Xu. Stability through non-shadows. Combinatorica, 43(6):1125–1137, 2023.
  • [11] C. Godsil and K. Meagher. Erdős-Ko-Rado theorems: algebraic approaches, volume 149 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
  • [12] H. Huang, O. Klurman, and C. Pohoata. On subsets of the hypercube with prescribed Hamming distances. J. Combin. Theory Ser. A, 171:105156, 21, 2020.
  • [13] G. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hungar., 15:329–337, 1964.
  • [14] D. J. Kleitman. On a combinatorial conjecture of Erdős. J. Combinatorial Theory, 1:209–214, 1966.
  • [15] W. d. A. Pribitkin. Simple upper bounds for partition functions. Ramanujan J., 18(1):113–119, 2009.