This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isoclinism of skew braces

T. Letourmy  and  L. Vendramin Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium [email protected] Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium [email protected]
Abstract.

We define isoclinism of skew braces and present several applications. We study some properties of skew braces that are invariant under isoclinism. For example, we prove that right nilpotency is an isoclinism invariant. This result has application in the theory of set-theoretic solutions to the Yang–Baxter equation. We define isoclinic solutions and study multipermutation solutions under isoclinism.

Key words and phrases:
Skew brace, isoclinism, Yang–Baxter, multipermutation
2020 Mathematics Subject Classification:
Primary:16T25, Secondary:17D99

1. Introduction

The fundamental problem of constructing combinatorial solutions of the Yang–Baxter equation (YBE) is nowadays based on the use of specific (associative and non-associative) algebraic structures associated with the solution. One particular algebraic structure stands out: skew braces. Such structures were introduced in [15] and [11]. The theory originates in Jacobson radical rings, and it is now considered a hot topic, as skew braces appear in several different areas of mathematics, see for example [8, 17, 22].

Skew braces classify solutions [1, 2]. This justifies the search for classification results on skew braces. In this vein, several results are known; see for example [4, 11]. However, the classification of skew braces of order pnp^{n} (pp prime) is still hard to achieve.

To classify pp-groups, in [12] Hall introduced a specific equivalence relation that simplifies the problem. Without technicalities, one defines isoclinic groups as groups that have “essentially the same” commutator functions. Recall that the commutator function for the group GG is the map

G/Z(G)×G/Z(G)G,(xZ(G),yZ(G))[x,y]=xyx1y1.G/Z(G)\times G/Z(G)\to G,\quad(xZ(G),yZ(G))\mapsto[x,y]=xyx^{-1}y^{-1}.

Isoclinism is an equivalence relation that generalizes isomorphisms.

There are several different motivations to consider this notion in the context of skew braces. With isoclinism of skew braces, we will have a new tool to classify finite skew braces of prime-power order, something that ultimately will have applications in other branches of mathematics, for example in the theory of pre-Lie algebras [19, 20, 21].

In [14], the authors defined Schur covers of finite skew braces and proved that any two Schur covers are isoclinic.

In this work, we define isoclinism in the context of skew braces. We show that the following properties are preserved under isoclinism: triviality (Theorem 3.1), two-sidedness (Theorem 3.12), right nilpotence (Theorem 3.4), the lattice of sub skew braces containing the annihilator (Proposition 2.9), and the size of λ\lambda- and ρ\rho-orbits up to a constant factor (Theorem 3.19). As an application, we define a notion of isoclinism of set-theoretic solutions to the YBE. This new equivalence relation defined on the space of solutions suggests a way of attacking the classification problem of set-theoretic solutions to the YBE. Isoclinism classes of solutions could be relevant in the study of multipermutation solutions [3, 6, 9, 10, 13]. We prove in Section 4 that if (X,r)(X,r) and (Y,s)(Y,s) are isoclinic set-theoretic solutions and (X,r)(X,r) is multipermutation, then (Y,s)(Y,s) is multipermutation (see Theorem 4.3).

2. Isoclinism of skew braces

Recall that a skew brace is a triple (A,+,)(A,+,\circ), where (A,+)(A,+) and (A,)(A,\circ) are groups such that the compatibility condition a(b+c)=aba+aca\circ(b+c)=a\circ b-a+a\circ c holds for all a,b,cAa,b,c\in A. The inverse of an element aAa\in A with respect to the circle operation \circ will be denoted by aa^{\prime}. We will denote the groups (A,+)(A,+) and (A,)(A,\circ) respectively by A+A_{+} and AA_{\circ}.

Let AA be a skew brace. There are two canonical actions by automorphism

λ:AAut(A+),\displaystyle\lambda\colon A_{\circ}\to\operatorname{Aut}(A_{+}), λa(b)=a+ab,\displaystyle\lambda_{a}(b)=-a+a\circ b,
ρ:AAut(A+),\displaystyle\rho\colon A_{\circ}\to\operatorname{Aut}(A_{+}), ρa(b)=aba.\displaystyle\rho_{a}(b)=a\circ b-a.

By definition, a sub skew brace BB of AA is an ideal of AA if B+B_{+} is normal in A+A_{+}, BB_{\circ} is normal in AA_{\circ} and λa(B)B\lambda_{a}(B)\subseteq B for all aAa\in A.

We write A(2)=AAA^{(2)}=A*A to denote the additive subgroup of AA generated by {ab:a,bA}\{a*b:a,b\in A\}, where ab=a+abba*b=-a+a\circ b-b for all a,bAa,b\in A. One proves that A(2)A^{(2)} is an ideal of AA. If a,bAa,b\in A, we write [a,b]+=a+bab[a,b]_{+}=a+b-a-b and [a,b]=abab[a,b]_{\circ}=a\circ b\circ a^{\prime}\circ b^{\prime}. We write [A,A]+[A,A]_{+} to denote the commutator subgroup of the additive group of AA. The socle of AA is the ideal Soc(A)=kerλZ(A,+)\operatorname{Soc}(A)=\ker\lambda\cap Z(A,+) and the annihilator of AA is the ideal Ann(A)=Soc(A)Z(A,)\operatorname{Ann}(A)=\operatorname{Soc}(A)\cap Z(A,\circ); see [5].

Definition 2.1.

Let AA be a skew brace. The commutator AA^{\prime} of AA is the additive subgroup of AA generated by [A,A]+[A,A]_{+} and A(2)A^{(2)}.

Proposition 2.2.

Let AA be a skew brace. Then AA^{\prime} is an ideal of AA.

Proof.

It follows from the fact that for all aAa\in A and xAx\in A^{\prime} λa(x)=ax+xA\lambda_{a}(x)=a*x+x\in A^{\prime}, a+xa=x+[x,a]+Aa+x-a=x+[-x,a]_{+}\in A^{\prime} and

axa=λa(x)\displaystyle a\circ x\circ a^{\prime}=\lambda_{a}(x) +[ax,a]+\displaystyle+[-a\circ x,a]_{+}
aa+(ax)a+[a,axa+ax]+A\displaystyle-a^{\prime}*a+(a\circ x)*a^{\prime}+[a^{\prime},-a\circ x\circ a^{\prime}+a\circ x]_{+}\in A^{\prime}

for all aAa\in A and xAx\in A^{\prime}. ∎

A skew brace AA is said to be trivial if a+b=aba+b=a\circ b for all a,bAa,b\in A.

Example 2.3.

In the case of a trivial brace AA, AA^{\prime} is the commutator of the underlying group.

Notation 2.4.

In general, if A/BA/B is a quotient of a skew brace, we will denote the equivalence class of aAa\in A in A/BA/B by a¯\overline{a}.

Remark 2.5.

AA^{\prime} is the smallest ideal of AA such that Aab=A/AA^{\operatorname{ab}}=A/A^{\prime} is an abelian group.

Lemma 2.6.

We define two collections of maps ϕ+\phi_{+} and ϕ\phi_{*} that associate respectively to every skew brace BB the maps

(2.1) ϕ+B:(B/AnnB)2B,\displaystyle\phi^{B}_{+}\colon(B/\operatorname{Ann}B)^{2}\to B^{\prime}, (a¯,b¯)[a,b]+,\displaystyle(\overline{a},\overline{b})\mapsto[a,b]_{+},
(2.2) ϕB:(B/AnnB)2B,\displaystyle\phi^{B}_{*}\colon(B/\operatorname{Ann}B)^{2}\to B^{\prime}, (a¯,b¯)ab.\displaystyle(\overline{a},\overline{b})\mapsto a*b.

The maps (2.1) and (2.2) are well-defined.

Proof.

A direct calculation shows that (2.1) is well-defined. To prove that (2.2) is well defined, let (a¯,b¯)=(c¯,d¯)(B/AnnB)2\left(\overline{a},\overline{b}\right)=\left(\overline{c},\overline{d}\right)\in(B/\operatorname{Ann}B)^{2}. We have

a+abb(c+cdd)=a+adcd+c.\displaystyle-a+a\circ b-b-\left(-c+c\circ d-d\right)=-a+a\circ d-c\circ d+c.

After conjugating by cc, we get

ca+adcd\displaystyle c-a+a\circ d-c\circ d =(ca)adcd\displaystyle=\left(c-a\right)\circ a\circ d-c\circ d
=((ca)+a)dcd\displaystyle=\left(\left(c-a\right)+a\right)\circ d-c\circ d
=cdcd\displaystyle=c\circ d-c\circ d
=0.\displaystyle=0.

Since the conjugation by cc is an automorphism, we have ab=cda*b=c*d. ∎

Definition 2.7.

We say that the braces AA and BB are isoclinic if there are two isomorphisms ξ:A/AnnAB/AnnB\xi\colon A/\operatorname{Ann}A\to B/\operatorname{Ann}B and θ:AB\theta\colon A^{\prime}\to B^{\prime} such that

(2.3) A{{A^{\prime}}}(A/AnnA)2{{(A/\operatorname{Ann}A)^{2}}}A{{A^{\prime}}}B{{B^{\prime}}}(B/AnnB)2{{(B/\operatorname{Ann}B)^{2}}}B{{B^{\prime}}}ϕ+A\scriptstyle{\phi_{+}^{A}}θ\scriptstyle{\theta}ϕ+B\scriptstyle{\phi_{+}^{B}}ϕA\scriptstyle{\phi_{*}^{A}}ϕB\scriptstyle{\phi_{*}^{B}}θ\scriptstyle{\theta}ξ×ξ\scriptstyle{\xi\times\xi}

commutes. We call the pair (ξ,θ)(\xi,\theta) a skew brace isoclinism.

Notation 2.8.

For AA a skew brace and BB and CC sub skew braces, let

B+C={b+c:bB,cC}.B+C=\{b+c:b\in B,c\in C\}.

Note that, in general, if BB and CC are sub skew braces of AA, then B+CB+C is not a skew brace. However, B+CB+C is always a skew brace if CC is an ideal.

Proposition 2.9.

Let AA and BB be isoclinic skew braces. Then sub skew braces of AA containing Ann(A)\operatorname{Ann}(A) are in bijective correspondence with sub skew braces of BB containing Ann(B)\operatorname{Ann}(B). Furthermore, these corresponding sub skew braces are isoclinic.

Proof.

Let (ξ,θ)(\xi,\theta) be an isoclinism between AA and BB. The correspondence is given by A1π1(ξ(A1/Ann(A))A_{1}\mapsto\pi^{-1}(\xi(A_{1}/\operatorname{Ann}(A)) for all skew braces Ann(A)A1A\operatorname{Ann}(A)\subseteq A_{1}\subseteq A, where the map π:BB/Ann(B)\pi\colon B\to B/\operatorname{Ann}(B) is the canonical map. Let Ann(A)A1A\operatorname{Ann}(A)\subseteq A_{1}\subseteq A and Ann(B)B1B\operatorname{Ann}(B)\subseteq B_{1}\subseteq B be corresponding skew braces. Then, by the commutativity of the diagram (2.3), θ\theta restricts to an isomorphism A1B1A_{1}^{\prime}\to B_{1}^{\prime} and ξ\xi factors through an isomorphism A1¯B1¯\overline{A_{1}}\to\overline{B_{1}}. These two maps form an isoclinism from A1A_{1} to B1B_{1}. ∎

Proposition 2.10.

Let AA be a skew brace and KK be a sub skew brace of AA. Then KK is isoclinic to K+Ann(A)K+\operatorname{Ann}(A).

Proof.

It is a direct consequence of the fact that K=(K+Ann(A))K^{\prime}=(K+\operatorname{Ann}(A))^{\prime} and that K/Ann(K)(K+Ann(A))/Ann(K+Ann(A))K/\operatorname{Ann}(K)\simeq(K+\operatorname{Ann}(A))/\operatorname{Ann}(K+\operatorname{Ann}(A)). ∎

Proposition 2.11.

Let AA be a skew brace and KK be a sub skew brace of AA. If A/Ann(A)A/\operatorname{Ann}(A) is finite, then AA is isoclinic to KK if and only if K+Ann(A)=AK+\operatorname{Ann}(A)=A.

Proof.

Assume AA is isoclinic to KK. Then

|K/AnnK|=|A/AnnA||K/KAnn(A)||K/AnnK|.|K/\operatorname{Ann}K|=|A/\operatorname{Ann}A|\geq|K/K\cap\operatorname{Ann}(A)|\geq|K/\operatorname{Ann}K|.

Therefore, (K+Ann(A))/Ann(A)=A/Ann(A)(K+\operatorname{Ann}(A))/\operatorname{Ann}(A)=A/\operatorname{Ann}(A). Thus, K+Ann(A)=AK+\operatorname{Ann}(A)=A. ∎

Proposition 2.12.

Let AA and BB be isoclinic skew braces with isoclinism (ξ,θ)(\xi,\theta). If KAK\subseteq A^{\prime} is an ideal of AA, then θ(K)B\theta(K)\subseteq B^{\prime} is an ideal of BB. In addition, A/KA/K is isoclinic to B/θ(K)B/\theta(K).

Proof.

First notice that for all elements xAx\in A^{\prime} we have ξ(x¯)=θ(x)¯\xi(\overline{x})=\overline{\theta(x)}. It is enough to verify it on the generators of AA^{\prime}. The commutativity of (2.3) implies that for all a,a1Aa,a_{1}\in A,

θ([a,a1]+)¯=[ξ(a¯),ξ(a1¯)]+,θ(aa1)¯=ξ(a¯)ξ(a1¯).\overline{\theta([a,a_{1}]_{+})}=[\xi(\overline{a}),\xi(\overline{a_{1}})]_{+},\quad\overline{\theta(a*a_{1})}=\xi(\overline{a})*\xi(\overline{a_{1}}).

We show that θ(K)\theta(K) is an ideal of BB. Clearly θ(K)+\theta(K)_{+} is a subgroup of B+B_{+} and θ(K)\theta(K)_{\circ} is a subgroup of BB_{\circ}. Let kKk\in K. Let bBb\in B and aAa\in A be such that ξ(a¯)=b¯\xi(\overline{a})=\overline{b}. The commutativity of the diagram (2.3) implies that θ([a,k]+)=[b,θ(k)]+\theta([a,k]_{+})=[b,\theta(k)]_{+} and θ(ak)=bθ(k)\theta(a*k)=b*\theta(k). Thus, b+θ(k)b=θ(a+ka)θ(K)b+\theta(k)-b=\theta(a+k-a)\in\theta(K) and λb(θ(k))=θ(λa(k))\lambda_{b}(\theta(k))=\theta(\lambda_{a}(k)). Therefore θ(K)\theta(K) is a left ideal of BB that is normal in the additive group of BB. Similarly, one shows that KK_{\circ} is a normal subgroup of BB_{\circ} using the commutativity of the diagram (3.3). It is left to see that A/KA/K is isoclinic to B/θ(K)B/\theta(K). Firstly, (A/K)=A/K(A/K)^{\prime}=A^{\prime}/K and (B/θ(K))=B/θ(K)(B/\theta(K))^{\prime}=B^{\prime}/\theta(K). Thus θ\theta factors through an isomorphism θ¯:(A/K)(B/θ(K))\overline{\theta}\colon(A/K)^{\prime}\to(B/\theta(K))^{\prime}. The annihilator of A/KA/K corresponds by the canonical homomorphism to an ideal QQ of AA such that

Ann(A)+KQA.\operatorname{Ann}(A)+K\subseteq Q\subseteq A.

Similarly, the annihilator of B/θ(K)B/\theta(K) corresponds to an ideal Q1Q_{1} of BB such that

Ann(B)+θ(K)Q1B.\operatorname{Ann}(B)+\theta(K)\subseteq Q_{1}\subseteq B.

Thus

A/K¯A/QA¯/(Q/Ann(A)),\displaystyle\overline{A/K}\simeq A/Q\simeq\overline{A}/(Q/\operatorname{Ann}(A)), B/θ(K)¯B/Q1B¯/(Q1/Ann(B)).\displaystyle\overline{B/\theta(K)}\simeq B/Q_{1}\simeq\overline{B}/(Q_{1}/\operatorname{Ann}(B)).

It is left to see that ξ(Q/Ann(A))=Q1/Ann(B)\xi(Q/\operatorname{Ann}(A))=Q_{1}/\operatorname{Ann}(B). Let qQq\in Q, then [q,x]+K[q,x]_{+}\in K, qxKq*x\in K and [q,x]K[q,x]_{\circ}\in K for all xAx\in A. Let q1Bq_{1}\in B be a representative of ξ(q¯)\xi(\overline{q}). By the commutativity of the diagrams (2.3) and (3.3), [q1,x]+θ(K)[q_{1},x]_{+}\in\theta(K), q1xθ(K)q_{1}*x\in\theta(K) and [q1,x]θ(K)[q_{1},x]_{\circ}\in\theta(K) for all xBx\in B. By a symmetric argument, Q1/Ann(B)ξ(Q/Ann(A))Q_{1}/\operatorname{Ann}(B)\subseteq\xi(Q/\operatorname{Ann}(A)). The commutativity of (2.3) is straightforward. ∎

Proposition 2.13.

Let AA be a skew brace and KK an ideal of AA. Then A/KA/K is isoclinic to A/(KA)A/(K\cap A^{\prime}).

Proof.

We have that (A/K)=(A+K)/KA/(KA)=(A/(KA))(A/K)^{\prime}=(A^{\prime}+K)/K\simeq A^{\prime}/(K\cap A^{\prime})=(A/(K\cap A^{\prime}))^{\prime}. The annihilator of A/KA/K corresponds to an ideal QQ of AA such that Ann(A)+KQA\operatorname{Ann}(A)+K\subseteq Q\subseteq A. Similarly, the annihilator of A/(KA)A/(K\cap A^{\prime}) corresponds to an ideal Q1Q_{1} of AA such that Ann(A)+KAQ1A\operatorname{Ann}(A)+K\cap A^{\prime}\subseteq Q_{1}\subseteq A. Thus A/K¯A/Q\overline{A/K}\simeq A/Q and A/KA¯A/Q1\overline{A/K\cap A^{\prime}}\simeq A/Q_{1}. It is left to see that Q=Q1Q=Q_{1}. It is clear that Q1QQ_{1}\subseteq Q. Let qQq\in Q. Then [q,x]+K[q,x]_{+}\in K, qxKq*x\in K and [q,x]K[q,x]_{\circ}\in K for all xAx\in A. In addition, by the definition of AA^{\prime}, [q,x]+A[q,x]_{+}\in A^{\prime}, qxAq*x\in A^{\prime} and [q,x]A[q,x]_{\circ}\in A^{\prime} for all xAx\in A. Thus qQ1q\in Q_{1}. The commutativity of (2.3) is straightforward. ∎

Corollary 2.14.

Let AA be a finite skew brace and KK an ideal of AA. Then AA is isoclinic to A/KA/K if and only if KA={0}K\cap A^{\prime}=\{0\}.

Proof.

If KA{0}K\cap A^{\prime}\neq\{0\}, then

|(A/K)|=|A/(KA)|=|A|/|KA|<|A|.|(A/K)^{\prime}|=|A^{\prime}/(K\cap A^{\prime})|=|A^{\prime}|/|K\cap A^{\prime}|<|A^{\prime}|.

Thus AA cannot be isoclinic to A/KA/K. The other implication is a direct consequence of Proposition 2.13. ∎

Remark 2.15.

Let AA, A1A_{1}, BB and B1B_{1} be skew braces. If AA is isoclinic to A1A_{1} and BB is isoclinic to B1B_{1}, then A×BA\times B is isoclinic to A1×B1A_{1}\times B_{1}.

The following definition is motivated by its group-theoretic analog.

Definition 2.16.

A skew brace AA such that Ann(A)A\operatorname{Ann}(A)\subseteq A^{\prime} will be called a stem skew brace.

Proposition 2.17.

Two isoclinic stem skew braces have the same order.

Proof.

Let AA and BB be isoclinic stem skew braces with isoclinism (ξ,θ)(\xi,\theta). As Ann(A)A\operatorname{Ann}(A)\subseteq A^{\prime}, θ(x)¯=ξ(x¯)\overline{\theta(x)}=\xi(\overline{x}) for all xAnn(A)x\in\operatorname{Ann}(A). Thus, θ(Ann(A))Ann(B)\theta(\operatorname{Ann}(A))\subseteq\operatorname{Ann}(B). A symmetric argument shows that θ\theta restricts to an isomorphism of Ann(A)\operatorname{Ann}(A) and Ann(B)\operatorname{Ann}(B). The statement is then a consequence of A/Ann(A)B/Ann(B)A/\operatorname{Ann}(A)\simeq B/\operatorname{Ann}(B). ∎

Theorem 2.18.

Every skew brace is isoclinic to a stem skew brace.

Proof.

Let AA be a skew brace and II a set of indices (possibly uncountable). Let {ξi:iI}\{\xi_{i}:i\in I\} be a set of generators of AA (as a skew brace). Let GG be the free abelian group generated by {ηi:iI}\{\eta_{i}:i\in I\}. Then AA is isoclinic to A×GA\times G. Let A1A×GA_{1}\subseteq A\times G be the skew brace generated by {(ξi,ηi):iI}\{(\xi_{i},\eta_{i}):i\in I\}. Then clearly A1+GA_{1}+G coincides with A×GA\times G. Since GG is contained in the annihilator of A×GA\times G, it follows that A1A_{1} is isoclinic to A×GA\times G. Thus A1A_{1} is isoclinic to AA. Let π:A1G\pi\colon A_{1}\to G denote the projection on the second coordinate. Then π\pi factors through a morphism of abelian groups π¯:A1/A1G\overline{\pi}\colon A_{1}/A_{1}^{\prime}\to G. By the universal property of the free abelian group GG, there is a homomorphism ϕ:GA1/A1\phi\colon G\to A_{1}/A_{1}^{\prime} that maps ηi\eta_{i} to (ξi,ηi)¯\overline{(\xi_{i},\eta_{i})} for all iIi\in I. In fact, ϕ\phi is the inverse map of π¯\overline{\pi}. Therefore A1/A1GA_{1}/A_{1}^{\prime}\simeq G. Moreover,

Ann(A1)/(Ann(A1)A1)(Ann(A1)+A1)/A1,\operatorname{Ann}(A_{1})/(\operatorname{Ann}(A_{1})\cap A_{1}^{\prime})\simeq(\operatorname{Ann}(A_{1})+A_{1}^{\prime})/A_{1}^{\prime},

that is Ann(A1)/(Ann(A1)A1)\operatorname{Ann}(A_{1})/(\operatorname{Ann}(A_{1})\cap A_{1}^{\prime}) is isomorphic to a subgroup of a free abelian group. Thus Ann(A1)\operatorname{Ann}(A_{1}) is the direct product of Ann(A1)A1\operatorname{Ann}(A_{1})\cap A_{1}^{\prime} with another group KK. Since KA1={0}K\cap A_{1}^{\prime}=\{0\}, the skew brace A1/KA_{1}/K is isoclinic to A1A_{1}. The annihilator of A1/KA_{1}/K is Ann(A1)/K\operatorname{Ann}(A_{1})/K and is contained in the commutator, which is (A1+K)/K(A_{1}^{\prime}+K)/K. ∎

For n2n\geq 2, let CnC_{n} be the cyclic group of order nn.

Notation 2.19.

Let n2n\geq 2 be an integer. Let dd be an integer such that d|nd|n and every prime divisor of nn divides dd. We will denote by C(n,d)C(n,d) the skew brace CnC_{n} with multiplication defined as xy=x+dxy+yx\circ y=x+dxy+y.

The skew braces C(n,d)C(n,d) appear in the work of Rump [16].

Example 2.20.

Let m,n>2m,n>2 be integers, We have that ab=mn1aba*b=m^{n-1}ab for all a,bC(mn,mn1)a,b\in C(m^{n},m^{n-1}). The commutator is the set of multiples of mn1m^{n-1} and the annihilator is the set of multiples of mm. They coincide if and only if n=2n=2. Thus C(m2,m)C(m^{2},m) is a stem skew brace. It is straightforward to see that C(m2,m)C(m^{2},m) is isoclinic to C(mn,mn1)C(m^{n},m^{n-1}) for all n>1n>1.

3. Isoclinism Invariants

Theorem 3.1.

Let AA and BB be skew braces. If AA and BB are isoclinic then AA is trivial if and only if BB is trivial.

Proof.

It is a direct consequence of the commutativity of the right part of the diagram (2.3). ∎

Remark 3.2.

Two trivial skew braces are isoclinic if and only if their underlying groups are isoclinic. Therefore, we will not distinguish between the two notions when dealing with trivial skew braces.

Remark 3.3.

Let AA and BB be isoclinic skew braces. The quotients A/Ann(A)A/\operatorname{Ann}(A) and B/Ann(B)B/\operatorname{Ann}(B) are isomorphic. It follows that AA is annihilator nilpotent if and only if BB is annihilator nilpotent.

A skew brace AA is said to be right nilpotent if A(n)={0}A^{(n)}=\{0\} for some nn, where A(1)=AA^{(1)}=A and A(k+1)=A(k)AA^{(k+1)}=A^{(k)}*A for all kk.

Theorem 3.4.

Let AA and BB be isoclinic skew braces. Then AA is right nilpotent if and only if BB is right nilpotent.

Proof.

Let (ξ,θ)(\xi,\theta) be an isoclinism between AA and BB. Assume that AA is right nilpotent. By [7, Lemma 2.5], A/Soc(A)A/\operatorname{Soc}(A) is right nilpotent.

We claim that

(3.1) ξ(Soc(A)/Ann(A))=Soc(B)/Ann(B).\xi(\operatorname{Soc}(A)/\operatorname{Ann}(A))=\operatorname{Soc}(B)/\operatorname{Ann}(B).

Let aSoc(A)a\in\operatorname{Soc}(A) be such that ξ(a+Ann(A))=b+Ann(B)\xi(a+\operatorname{Ann}(A))=b+\operatorname{Ann}(B) for some bBb\in B. Let a1Aa_{1}\in A and b1Bb_{1}\in B such that ξ(a1+Ann(A))=b1+Ann(B)\xi(a_{1}+\operatorname{Ann}(A))=b_{1}+\operatorname{Ann}(B). By the commutativity of (2.3),

bb1\displaystyle b*b_{1} =ϕB(b+Ann(B),b1+Ann(B))\displaystyle=\phi_{*}^{B}(b+\operatorname{Ann}(B),b_{1}+\operatorname{Ann}(B))
=θ(ϕA(a+Ann(A),a1+Ann(A)))\displaystyle=\theta(\phi_{*}^{A}(a+\operatorname{Ann}(A),a_{1}+\operatorname{Ann}(A)))
=θ(aa1)=0.\displaystyle=\theta(a*a_{1})=0.

Similarly, bb is central in (B,+)(B,+). Now (3.1) follows.

It follows from the first isomorphism theorem that

(A/Ann(A))/(Soc(A)/Ann(A))(B/Ann(B))/(Soc(B)/Ann(B)).(A/\operatorname{Ann}(A))/(\operatorname{Soc}(A)/\operatorname{Ann}(A))\simeq(B/\operatorname{Ann}(B))/(\operatorname{Soc}(B)/\operatorname{Ann}(B)).

Hence A/Soc(A)B/Soc(B)A/\operatorname{Soc}(A)\simeq B/\operatorname{Soc}(B). Thus B/Soc(B)B/\operatorname{Soc}(B) is right nilpotent. By [7, Proposition 2.17], BB is right nilpotent. ∎

We now present the notions of terms and term functions from universal algebra in the context of skew braces. A more general approach can be found in §10, and §11 of the book [18].

Let XX be a set of objects called variables. The set of skew brace terms over XX is the smallest set T(X)T(X) such that

  1. (1)

    X{0}T(X)X\cup\{0\}\subseteq T(X), where 0 is a formal element, and

  2. (2)

    if p1,p2T(X)p_{1},p_{2}\in T(X), then the “strings” p1p2,p1+p2,p1,p2T(X)p_{1}\circ p_{2},p_{1}+p_{2},-p_{1},p_{2}^{\prime}\in T(X).

For pT(X)p\in T(X) we write pp as p(x1,,xn)p(x_{1},\dots,x_{n}) to indicate that the variables occurring in pp are among x1,,xnx_{1},\dots,x_{n}. We say that a skew brace term pp is nn-ary if the number of variables appearing explicitly in pp is n\leq n.

Given a skew brace term p(x1,,xn)p(x_{1},\dots,x_{n}) over some set of variables XX and a skew brace AA, we define a map pA:AnAp^{A}\colon A^{n}\to A inductively as follows:

  1. (1)

    if pp is a variable xiXx_{i}\in X, then pA(a1,,an)=aip^{A}(a_{1},\dots,a_{n})=a_{i} for all a1,,anAa_{1},\dots,a_{n}\in A;

  2. (2)

    if pp is of the form p1(x1,,xn)p2(x1,,xn)p_{1}(x_{1},\dots,x_{n})\star p_{2}(x_{1},\dots,x_{n}), then

    pA(a1,,an)=p1A(a1,,an)p2A(a1,,an),\displaystyle p^{A}(a_{1},\dots,a_{n})=p^{A}_{1}(a_{1},\dots,a_{n})\star p^{A}_{2}(a_{1},\dots,a_{n}),

    where \star denotes either \circ or ++;

  3. (3)

    if pp is of the form p1(x1,,xn)p_{1}(x_{1},\dots,x_{n})^{\prime}, then pA(a1,,an)=p1A(a1,,an)p^{A}(a_{1},\dots,a_{n})=p^{A}_{1}(a_{1},\dots,a_{n})^{\prime};

  4. (4)

    if pp is of the form p1(x1,,xn)-p_{1}(x_{1},\dots,x_{n}), then pA(a1,,an)=p1A(a1,,an)p^{A}(a_{1},\dots,a_{n})=-p^{A}_{1}(a_{1},\dots,a_{n}).

Example 3.5.

Let X={x,y}X=\{x,y\}, then p(x,y)=x+xyyp(x,y)=-x+x\circ y-y is a skew brace term over XX. Given a skew brace AA, its term function over AA is the map pA:A2Ap^{A}\colon A^{2}\to A, (a,b)ab(a,b)\mapsto a*b.

Notation 3.6.

Let AA be a skew brace. From now on, we denote by A¯\overline{A} the quotient A/AnnAA/\operatorname{Ann}A.

Lemma 3.7.

Let n,mn,m be integers, η1,,η2m\eta_{1},\dots,\eta_{2m} be nn-ary skew brace terms and pp be an mm-ary skew brace term. Let ϕ1,,ϕm\phi_{1},\dots,\phi_{m} be collections of maps where each ϕi\phi_{i} is either ϕ+\phi_{+} or ϕ\phi_{*}. Then one can construct a collection of well-defined maps ϕ\phi that associates to every skew brace BB a map ϕB:B¯nB\phi^{B}\colon\overline{B}^{n}\to B^{\prime} such that

ϕB(b1¯,,bn¯)=pB(a1(b1¯,,bn¯),,am(b1¯,,bn¯)),\phi^{B}(\overline{b_{1}},\dots,\overline{b_{n}})=p^{B}\left(a_{1}(\overline{b_{1}},\dots,\overline{b_{n}}),\dots,a_{m}(\overline{b_{1}},\dots,\overline{b_{n}})\right),

where ai:B¯nBa_{i}\colon\overline{B}^{n}\mapsto B is the map

(b1¯,,bn¯)ϕiB(η2i1B¯(b1¯,,bn¯),η2iB¯(b1¯,,bn¯))(\overline{b_{1}},\dots,\overline{b_{n}})\mapsto\phi_{i}^{B}(\eta^{\overline{B}}_{2i-1}(\overline{b_{1}},\dots,\overline{b_{n}}),\eta^{\overline{B}}_{2i}(\overline{b_{1}},\dots,\overline{b_{n}}))

for all 1im1\leq i\leq m. In addition, if AA and BB are two isoclinic skew braces with isoclinism (ξ,θ)(\xi,\theta), then the following diagram

(3.2) A¯n{{\overline{A}^{n}}}A{{A^{\prime}}}B¯n{{\overline{B}^{n}}}B{{B^{\prime}}}ϕA\scriptstyle{\phi^{A}}ϕB\scriptstyle{\phi^{B}}ξn\scriptstyle{\xi^{n}}θ\scriptstyle{\theta}

commutes.

Proof.

Let BB be a skew brace. One has that ϕB\phi^{B} is the composition of the maps

B¯n{{\overline{B}^{n}}}B¯2m{{\overline{B}^{2m}}}Bm{{B^{m}}}B{B}θ\scriptstyle{\theta}γ\scriptstyle{\gamma}pB\scriptstyle{p^{B}}

where

θ(b1¯,,bn¯)\displaystyle\theta(\overline{b_{1}},\dots,\overline{b_{n}}) =(η1B¯(b1¯,,bn¯),,η2mB¯(b1¯,,bn¯)),\displaystyle=(\eta^{\overline{B}}_{1}(\overline{b_{1}},\dots,\overline{b_{n}}),\dots,\eta^{\overline{B}}_{2m}(\overline{b_{1}},\dots,\overline{b_{n}})),
γ(f1¯,,f2m¯)\displaystyle\gamma(\overline{f_{1}},\dots,\overline{f_{2m}}) =(ϕ1B(f1¯,f2¯),,ϕmB(f2m1¯,f2m¯)).\displaystyle=(\phi^{B}_{1}(\overline{f_{1}},\overline{f_{2}}),\dots,\phi^{B}_{m}(\overline{f_{2m-1}},\overline{f_{2m}})).

Suppose that AA and BB are isoclinic skew braces with isoclinism (ξ,θ)(\xi,\theta). Since (ξ,θ)(\xi,\theta) is an isoclinism, [18, Theorem 10.3] implies that for all a1,,anAa_{1},\dots,a_{n}\in A and 1im1\leq i\leq m,

ϕiB(η2i1B¯(\displaystyle\phi_{i}^{B}(\eta^{\overline{B}}_{2i-1}( ξ(a1¯),,ξ(an¯)),η2iB¯(ξ(a1¯),,ξ(an¯)))\displaystyle\xi(\overline{a_{1}}),\dots,\xi(\overline{a_{n}})),\eta^{\overline{B}}_{2i}(\xi(\overline{a_{1}}),\dots,\xi(\overline{a_{n}})))
=ϕiB(ξ(η2i1A¯(a1¯,,an¯)),ξ(η2iA¯(a1¯,,an¯)))\displaystyle=\mathcal{\phi}_{i}^{B}(\xi(\eta^{\overline{A}}_{2i-1}(\overline{a_{1}},\dots,\overline{a_{n}})),\xi(\eta^{\overline{A}}_{2i}(\overline{a_{1}},\dots,\overline{a_{n}})))
=θ(ϕiA(η2i1A¯(a1¯,,an¯),η2iA¯(a1¯,,an¯))).\displaystyle=\theta(\phi_{i}^{A}(\eta^{\overline{A}}_{2i-1}(\overline{a_{1}},\dots,\overline{a_{n}}),\eta^{\overline{A}}_{2i}(\overline{a_{1}},\dots,\overline{a_{n}}))).

Therefore

ϕB(ξn(a1¯,,an¯))=θ(ϕA(a1¯,,an¯)).\phi^{B}(\xi^{n}(\overline{a_{1}},\dots,\overline{a_{n}}))=\theta(\phi^{A}(\overline{a_{1}},\dots,\overline{a_{n}})).

This means that the diagram (3.3) is commutative. ∎

Notation 3.8.

For XX a skew brace and x,yXx,y\in X, let

r(x,y)\displaystyle r(x,y) =yx+xy=[y,x+xy]++xy,\displaystyle=-y-x+x\circ y=[-y,-x+x\circ y]_{+}+x*y,
l(x,y)\displaystyle l(x,y) =xyyx=[xyy,x]++xy.\displaystyle=x\circ y-y-x=[x\circ y-y,-x]_{+}+x*y.
Proposition 3.9.

For all skew braces XX, the map

ϕX:X¯2X,(a¯,b¯)[a,b],\phi_{\circ}^{X}\colon\overline{X}^{2}\to X^{\prime},\quad(\overline{a},\overline{b})\mapsto[a,b]_{\circ},\\

is well-defined. In addition, if AA and BB are isoclinic skew braces with isoclinism (ξ,θ)(\xi,\theta), then

(3.3) A¯2{{\overline{A}^{2}}}A{{A^{\prime}}}B¯2{{\overline{B}^{2}}}B{{B^{\prime}}}ϕA\scriptstyle{\phi_{\circ}^{A}}ϕB\scriptstyle{\phi_{\circ}^{B}}ξ×ξ\scriptstyle{\xi\times\xi}θ\scriptstyle{\theta}

commutes.

Proof.

Let XX be a skew brace. For all a,bXa,b\in X,

[a,b]=[a,b]+l(b,a)r(ba,ab)+r(b,ab)+r(a,bab).[a,b]_{\circ}=[a,b]_{+}-l(b,a)-r(b\circ a,a^{\prime}\circ b^{\prime})+r(b,a^{\prime}\circ b^{\prime})+r(a,b\circ a^{\prime}\circ b^{\prime}).

Lemma 3.7 concludes the proof. ∎

Proposition 3.10.

Let AA and BB be two skew braces. If AA and BB are isoclinic, then A+A_{+} is isoclinic to B+B_{+} and AA_{\circ} is isoclinic to BB_{\circ}.

Proof.

Assume AA is isoclinic to BB with isoclinism (ξ,θ)(\xi,\theta). Because of the commutativity of (2.3), the map θ\theta restricts to an isomorphism θ1:[A,A]+[B,B]+\theta_{1}:[A,A]_{+}\rightarrow[B,B]_{+} and ξ(Z(A+)/AnnA)=Z(B+)/AnnB\xi(Z(A_{+})/\operatorname{Ann}A)=Z(B_{+})/\operatorname{Ann}B. Therefore ξ\xi induces a group isomorphism ξ1:A+/Z(A+)B+/Z(B+)\xi_{1}:A_{+}/Z(A_{+})\to B_{+}/Z(B_{+}) such that

(A+/Z(A+))2{{(A_{+}/Z(A_{+}))^{2}}}A+{{A_{+}^{\prime}}}(B+/Z(B+))2{{(B_{+}/Z(B_{+}))^{2}}}B+{{B_{+}^{\prime}}}ξ×ξ\scriptstyle{\xi\times\xi}θ1\scriptstyle{\theta_{1}}

commutes, where the horizontal maps are the classical commutator maps for groups. Proposition 3.9 and a similar argument shows that AA_{\circ} is isoclinic to BB_{\circ}. ∎

Remark 3.11.

If AA and BB are isoclinic skew braces, then AA is of nilpotent type if and only if BB is of nilpotent type.

Recall that a skew brace AA is said to be two-sided if (a+b)c=acc+bc(a+b)\circ c=a\circ c-c+b\circ c holds for all a,b,cAa,b,c\in A. In [15], Rump proved that radical rings are exactly two-sided skew braces with an abelian additive group.

Theorem 3.12.

Let AA and BB be skew braces. If AA and BB are isoclinic, then AA is two-sided if and only if BB is two-sided.

Proof.

We claim that for all skew braces XX

ϕX:(X¯)3X,(a¯,b¯,c¯)(a+b)cbc+cac,\phi^{X}\colon(\overline{X})^{3}\to X^{\prime},(\overline{a},\overline{b},\overline{c})\mapsto(a+b)\circ c-b\circ c+c-a\circ c,\\

is well-defined. In addition, if AA and BB be isoclinic skew braces with isoclinism (ξ,θ)(\xi,\theta). the following diagram

(3.4) A¯3{{\overline{A}^{3}}}A{{A^{\prime}}}B¯3{{\overline{B}^{3}}}B{{B^{\prime}}}ϕA\scriptstyle{\phi^{A}}ϕB\scriptstyle{\phi^{B}}ξ3\scriptstyle{\xi^{3}}θ\scriptstyle{\theta}

commutes. This is a direct consequence of the Lemma 3.7 and the fact that for any elements a,b,ca,b,c of any brace, the following equation holds

(a+b)cbc+cac=l(a+b,c)l(b,c)[a,bccb]+l(a,c)(a+b)\circ c-b\circ c+c-a\circ c=l(a+b,c)-l(b,c)-[a,b\circ c-c-b]_{+}-l(a,c)

This concludes the proof. ∎

Example 3.13.

Computer calculations using the database of [11] show that among the 47 skew braces of size eight, there are 20 isoclinism classes. Moreover, there are eight isoclinism classes of radical rings of size eight, 12 isoclinism classes of skew braces of abelian type of size eight and 16 isoclinism classes of two-sided skew braces of size eight. There are 101 skew braces of size 27 and there are 38 isoclinism classes. See Table 3.1 for other numbers.

size radical rings abelian type two-sided all
8 8 12 16 20
27 10 13 25 38
Table 3.1. Number of isoclinism classes of skew braces.
Notation 3.14.

Let BB be a skew brace. There is a canonical group homomorphism

B+ρBAut(B+),(a,b)(ca+ρb(c)a),B_{+}\rtimes_{\rho}B_{\circ}\to\operatorname{Aut}(B_{+}),\quad(a,b)\mapsto(c\mapsto a+\rho_{b}(c)-a),

We write c(a,b)=a+ρb(c)a\prescript{(a,b)}{}{}c=a+\rho_{b}(c)-a.

Notation 3.15.

Let AA be a skew brace, denote respectively by A+¯\overline{A_{+}} and A¯\overline{A_{\circ}} the groups A+/Ann(A)A_{+}/\operatorname{Ann}(A) and A/Ann(A)A_{\circ}/\operatorname{Ann}(A).

Remark 3.16.

The group homomorphism ρ:AAut(A+)\rho\colon A_{\circ}\to\operatorname{Aut}(A_{+}) induces a group homomorphism ρ¯:A¯Aut(A+¯)\overline{\rho}\colon\overline{A_{\circ}}\to\operatorname{Aut}(\overline{A_{+}}). One can check that the group A+¯ρ¯A¯\overline{A_{+}}\rtimes_{\overline{\rho}}\overline{A_{\circ}} is isomorphic to (A+ρA)/(Ann(A)×Ann(A))(A_{+}\rtimes_{\rho}A_{\circ})/(\operatorname{Ann}(A)\times\operatorname{Ann}(A)). Thus A+¯ρ¯A¯\overline{A_{+}}\rtimes_{\overline{\rho}}\overline{A_{\circ}} acts canonically on A+A_{+}.

Remark 3.17.

If AA and BB are isoclinic skew braces, then A+¯ρ¯A¯B+¯ρ¯B¯\overline{A_{+}}\rtimes_{\overline{\rho}}\overline{A_{\circ}}\simeq\overline{B_{+}}\rtimes_{\overline{\rho}}\overline{B_{\circ}}.

Notation 3.18.

Let AA be a skew brace. Let HH be a subgroup of A+¯ρ¯A¯\overline{A_{+}}\rtimes_{\overline{\rho}}\overline{A_{\circ}}. We call the orbit of an element aAa\in A under the induced action of HH an HH-orbit.

Theorem 3.19.

Let AA and BB be isoclinic skew braces. Let HH be a subgroup of A+¯ρ¯A¯\overline{A_{+}}\rtimes_{\overline{\rho}}\overline{A_{\circ}} and KK be the corresponding subgroup of B+¯ρ¯B¯\overline{B_{+}}\rtimes_{\overline{\rho}}\overline{B_{\circ}}. For c1c\in\mathbb{Z}_{\geq 1}, let m1m_{1} (resp. m2m_{2}) be the number of HH-orbits (resp. KK-orbits) of size cc. Then

m1=m2|A|/|B|.m_{1}=m_{2}|A|/|B|.
Proof.

Lemma 3.7 and the fact that

c(a,b)c=[a,bcb]++[bc,b]++bc\prescript{(a,b)}{}{}c-c=[a,b\circ c-b]_{+}+[b\circ c,-b]_{+}+b*c

imply that the map

ϕX:X¯3X,(a¯,b¯,c¯)c(a,b)c\phi^{X}\colon\overline{X}^{3}\to X^{\prime},\quad(\overline{a},\overline{b},\overline{c})\mapsto\prescript{(a,b)}{}{}c-c

is well-defined for all skew brace XX. In addition, the diagram

(3.5) A¯3{{\overline{A}^{3}}}A{{A^{\prime}}}B¯3{{\overline{B}^{3}}}B{{B^{\prime}}}ϕA\scriptstyle{\phi^{A}}ϕB\scriptstyle{\phi^{B}}ξ3\scriptstyle{\xi^{3}}θ\scriptstyle{\theta}

commutes.

An element aAa\in A has an HH-orbit of size cc if and only if the index of the subgroup C(a¯)={wH:ϕA(w,a¯)=0}C(\overline{a})=\{w\in H:\phi^{A}(w,\overline{a})=0\} in HH is cc. Let SS be the subset of A¯\overline{A} that consists of elements ww such that C(w)C(w) has index cc in HH. If π:AA¯\pi\colon A\to\overline{A} is the canonical homomorphism, π1(S)\pi^{-1}(S) is the set of elements of AA that have an HH-orbit of size cc. Hence m1c=|AnnA||S|m_{1}c=|\operatorname{Ann}A||S|. Because of the commutativity of (3.5), one also has that m2c=|AnnB||S|m_{2}c=|\operatorname{Ann}B||S|. Hence the claim follows. ∎

Remark 3.20.

We use the notations of Theorem 3.19.

  1. (1)

    Let

    H\displaystyle H ={(a¯,a¯):aA}A+¯ρ¯A¯,\displaystyle=\{(-\overline{a},\overline{a}):a\in A\}\subseteq\overline{A_{+}}\rtimes_{\overline{\rho}}\overline{A_{\circ}},
    K\displaystyle K ={(b¯,b¯):bB}B+¯ρ¯B¯.\displaystyle=\{(-\overline{b},\overline{b}):b\in B\}\subseteq\overline{B_{+}}\rtimes_{\overline{\rho}}\overline{B_{\circ}}.

    Note that KK is the subgroup of B+¯ρ¯B¯\overline{B_{+}}\rtimes_{\overline{\rho}}\overline{B_{\circ}} corresponding to HH by the isomorphism induced by isoclinism. Then the HH-orbits and the KK-orbits are, respectively, the orbits of the canonical actions λ:AAut(A+)\lambda\colon A_{\circ}\to\operatorname{Aut}(A_{+}) and λ:BAut(B+)\lambda\colon B_{\circ}\to\operatorname{Aut}(B_{+}).

  2. (2)

    Similarly, Theorem 3.19 applies to the pair H={(0¯,a¯):aA}H=\{(\overline{0},\overline{a}):a\in A\} and K={(0¯,b¯):bB}K=\{(\overline{0},\overline{b}):b\in B\}. In this case, the HH-orbits and the KK-orbits are, respectively, the orbits of the canonical actions ρ:AAut(A+)\rho\colon A_{\circ}\to\operatorname{Aut}(A_{+}) and ρ:BAut(B+)\rho\colon B_{\circ}\to\operatorname{Aut}(B_{+}).

Example 3.21.

Let AA be the skew brace C2×C4C_{2}\times C_{4} with multiplication given by

(x1,y1)(x2,y2)=(x1+x2,y1+y2+2x1y2)(x_{1},y_{1})\circ(x_{2},y_{2})=(x_{1}+x_{2},y_{1}+y_{2}+2x_{1}y_{2})

and BB the skew brace C2×C4C_{2}\times C_{4} with multiplication given by

(x1,y1)(x2,y2)=(x1+x2,y1+y2+2(x1+y2)x2+2y1y2).(x_{1},y_{1})\circ(x_{2},y_{2})=(x_{1}+x_{2},y_{1}+y_{2}+2(x_{1}+y_{2})x_{2}+2y_{1}y_{2}).

In the skew brace AA,

(x1,y1)(x2,y2)=(0,2x1y2)\displaystyle(x_{1},y_{1})*(x_{2},y_{2})=(0,2x_{1}y_{2})
and in BB
(x1,y1)(x2,y2)=(0,2(x1+y2)x2+2y1y2).\displaystyle(x_{1},y_{1})*(x_{2},y_{2})=(0,2(x_{1}+y_{2})x_{2}+2y_{1}y_{2}).

Both AA and BB have commutator C2C_{2} and annihilator quotient C2×C2C_{2}\times C_{2}. In addition, A+B+A_{+}\simeq B_{+} and AD8BA_{\circ}\simeq D_{8}\simeq B_{\circ} where D8D_{8} is the dihedral group of order 8. However, AA and BB are not isoclinic as AA has four λ\lambda-orbits of size one and two of size two and BB has two λ\lambda-orbits of size one and three of size two.

In group theory, the notion of isoclinism is very convenient in the study of finite pp-groups as these groups have non-trivial center and their commutator is a proper subgroup. This implies that isoclinism only depends on relations between groups of smaller order. However, there exist skew braces of prime-power size that have trivial annihilator. This is not the case for two-sided skew braces. An interesting property of two-sided skew braces is that the multiplicative conjugation is an action by automorphism of the multiplicative group over the additive one. Using this, one can extend the action defined earlier (see Notation 3.14) for two-sided skew braces. Let BB be a two-sided skew brace. Since the underlying multiplicative group acts on itself by conjugation, we can consider the semidirect product BBB_{\circ}\rtimes B_{\circ}. The map

BBAut(B+),(a,b)(cρa(bcb)),B_{\circ}\rtimes B_{\circ}\to\operatorname{Aut}(B_{+}),\quad(a,b)\mapsto(c\mapsto\rho_{a}(b\circ c\circ b^{\prime})),

defines an action by automorphisms of BBB_{\circ}\rtimes B_{\circ} over B+B_{+}. The latter comes from the fact that ρbab(bcb)=bρa(c)b\rho_{b\circ a\circ b^{\prime}}(b\circ c\circ b^{\prime})=b\circ\rho_{a}(c)\circ b^{\prime} for all a,b,cBa,b,c\in B. Thus we can consider the semi-direct product B+(BB)B_{+}\rtimes(B_{\circ}\rtimes B_{\circ}). Finally, straightforward computations show that the map

B+(BB)Aut(B+),(a,b,c)(da+ρb(cdc)a),B_{+}\rtimes(B_{\circ}\rtimes B_{\circ})\to\operatorname{Aut}(B_{+}),\quad(a,b,c)\mapsto(d\mapsto a+\rho_{b}(c\circ d\circ c^{\prime})-a),

defines an action by automorphisms of B+(BB)B_{+}\rtimes(B_{\circ}\rtimes B_{\circ}) over B+B_{+}. It is straightforward to see that the elements of BB whose orbits have size one are exactly the elements of the annihilator. Moreover, if BB is a two-sided skew brace of size pnp^{n}, the group B+(BB)B_{+}\rtimes(B_{\circ}\rtimes B_{\circ}) has size p3np^{3n}. Thus the non-trivial orbits of the action have size a power of pp. Let n1,,nmn_{1},\dots,n_{m} denote the sizes of the mm non-trivial orbits of BB, then we have the following class equation

pn=|Ann(B)|+i=1mni.p^{n}=|\operatorname{Ann}(B)|+\sum_{i=1}^{m}n_{i}.

Therefore pp divides |Ann(B)||\operatorname{Ann}(B)|. We have proved the following result:

Proposition 3.22.

Let pp be a prime number and BB be a two-sided skew brace of size pnp^{n} for some integer n1n\geq 1. Then Ann(B)\operatorname{Ann}(B) is non-trivial.

Proposition 3.23.

Let pp be a prime number and BB be a two-sided skew brace of size pnp^{n} for some integer n1n\geq 1. Then BB^{\prime} is a proper ideal of BB.

Proof.

We proceed by induction on nn. If n=1n=1, then BB is the trivial skew brace CpC_{p}. Assume now that n2n\geq 2. Since |B/Ann(B)|<pn|B/\operatorname{Ann}(B)|<p^{n}, it follows by the induction hypothesis that B¯=(B+Ann(B))/Ann(B)\overline{B}^{\prime}=(B^{\prime}+\operatorname{Ann}(B))/\operatorname{Ann}(B) is a proper sub skew brace of B¯\overline{B}. Thus B+Ann(B)BB^{\prime}+\operatorname{Ann}(B)\subsetneq B. ∎

4. An application to the Yang–Baxter equation

A set-theoretic solution to the Yang–Baxter equation (YBE) is a pair (X,r)(X,r), where XX is a set and r:X×XX×Xr\colon X\times X\to X\times X is a bijective map such that

(r×id)(id×r)(r×id)=(id×r)(r×id)(id×r).(r\times\operatorname{id})(\operatorname{id}\times r)(r\times\operatorname{id})=(\operatorname{id}\times r)(r\times\operatorname{id})(\operatorname{id}\times r).

By convention, we will consider finite non-degenerate solutions, that is solutions (X,r)(X,r), where XX is a finite set and

r(x,y)=(σx(y),τy(x))r(x,y)=(\sigma_{x}(y),\tau_{y}(x))

where the maps σx:XX\sigma_{x}\colon X\to X and τx:XX\tau_{x}\colon X\to X are bijective for every xXx\in X.

If (X,r)(X,r) is a solution, there is an equivalence relation on XX given by

xyσx=σy and τx=τy.x\sim y\Longleftrightarrow\sigma_{x}=\sigma_{y}\text{ and }\tau_{x}=\tau_{y}.

This equivalence relation induces a solution Ret(X,r)\operatorname{Ret}(X,r) on the set of equivalence classes. The solution Ret(X,r)\operatorname{Ret}(X,r) is called the retraction of (X,r)(X,r).

A solution (X,r)(X,r) is said to be multipermutation if there exists an integer m1m\geq 1 such that |Retm(X,r)|=1|\operatorname{Ret}^{m}(X,r)|=1, where Ret1(X,r)=Ret(X,r)\operatorname{Ret}^{1}(X,r)=\operatorname{Ret}(X,r) and

Retk(X,r)=Ret(Retk1(X,r))\operatorname{Ret}^{k}(X,r)=\operatorname{Ret}(\operatorname{Ret}^{k-1}(X,r))

for k2k\geq 2.

The permutation group of (X,r)(X,r) if the group 𝒢(X,r)=σx,τx:xX\mathcal{G}(X,r)=\langle\sigma_{x},\tau_{x}:x\in X\rangle. The permutation group of (X,r)(X,r) is a skew brace [1].

Definition 4.1.

Let (X,r)(X,r) and (Y,s)(Y,s) be solutions to the YBE. We say that (X,r)(X,r) and (Y,s)(Y,s) are permutation isoclinic if the skew braces 𝒢(X,r)\mathcal{G}(X,r) and 𝒢(Y,s)\mathcal{G}(Y,s) are isoclinic.

The following result follows from [7, Proposition 2.17], [7, Theorem 2.20] and [6, Theorem 4.13].

Lemma 4.2.

Let (X,r)(X,r) be a finite non-degenerate solution to the YBE. The following statements are equivalent:

  1. (1)

    (X,r)(X,r) is multipermutation.

  2. (2)

    G(X,r)G(X,r) is right nilpotent of nilpotent type.

  3. (3)

    𝒢(X,r)\mathcal{G}(X,r) is right nilpotent of nilpotent type.

Theorem 4.3.

Let (X,r)(X,r) and (Y,s)(Y,s) be permutation isoclinic solutions to the YBE. Then (X,r)(X,r) is multipermutation if and only if (Y,s)(Y,s) is multipermutation.

Proof.

If (X,r)(X,r) is multipermutation, then 𝒢(X,r)\mathcal{G}(X,r) is right nilpotent. Thus 𝒢(Y,s)\mathcal{G}(Y,s) is right nilpotent and hence (Y,s)(Y,s) is multipermutation. ∎

We conclude the paper with concrete examples of involutive solutions up to permutation isoclinism. Recall that solution (X,r)(X,r) is said to be involutive if r2=idr^{2}=\operatorname{id}. If (X,r)(X,r) is involutive, then

τy(x)=σσx(y)1(x)\tau_{y}(x)=\sigma^{-1}_{\sigma_{x}(y)}(x)

for all x,yXx,y\in X.

Example 4.4.

There are four permutation isoclinism classes of involutive solutions of size four. Let X={1,2,3,4}X=\{1,2,3,4\}. The following list provides a complete set of representatives over the set XX:

  1. (1)

    The flip (x,y)(y,x)(x,y)\mapsto(y,x).

  2. (2)

    σ1=σ2=id\sigma_{1}=\sigma_{2}=\operatorname{id}, σ3=(34)\sigma_{3}=(34) and σ4=(12)(34)\sigma_{4}=(12)(34).

  3. (3)

    σ1=(34)\sigma_{1}=(34), σ2=(1324)\sigma_{2}=(1324), σ3=(1423)\sigma_{3}=(1423) and σ4=(1,2)\sigma_{4}=(1,2).

  4. (4)

    σ1=(12)\sigma_{1}=(12), σ2=(1324)\sigma_{2}=(1324), σ3=(34)\sigma_{3}=(34) and σ4=(1423)\sigma_{4}=(1423).

Remark 4.5.

Permutation isoclinism of solutions does not preserve indecomposability. For example, let X={1,2,3,4}X=\{1,2,3,4\} and σ=(1234)\sigma=(1234). Then (X,r)(X,r), where

r(x,y)=(σ(y),σ1(x)),r(x,y)=(\sigma(y),\sigma^{-1}(x)),

is indecomposable and 𝒢(X,r)\mathcal{G}(X,r) is the trivial skew brace over the cyclic group C4C_{4}. It follows that (X,r)(X,r) is isoclinic to the flip over XX, as both solutions have isoclinic permutation braces (note that the permutation group of the flip is the trivial group).

Remark 4.6.

Permutation isoclinism of solutions does not preserve the multipermutation level. For example, let X={1,2,3,4}X=\{1,2,3,4\} and σ1=σ2=σ3=id\sigma_{1}=\sigma_{2}=\sigma_{3}=\operatorname{id}, σ4=(23)\sigma_{4}=(23). Then (X,r)(X,r) has multipermutation level two. Moreover, 𝒢(X,r)\mathcal{G}(X,r) is the trivial skew brace over the cyclic group C2C_{2}. Hence the solution (X,r)(X,r) is permutation isoclinic to the flip over XX.

Example 4.7.

There are six permutation isoclinism classes of involutive solutions of size five. Let X={1,2,3,4,5}X=\{1,2,3,4,5\}. The following list provides a complete set of representatives over XX:

  1. (1)

    The flip (x,y)(y,x)(x,y)\mapsto(y,x).

  2. (2)

    σ1=σ2=σ3=id\sigma_{1}=\sigma_{2}=\sigma_{3}=\operatorname{id}, σ4=(45)\sigma_{4}=(45), σ5=(23)(45)\sigma_{5}=(23)(45).

  3. (3)

    σ1=σ2=σ3=id\sigma_{1}=\sigma_{2}=\sigma_{3}=\operatorname{id}, σ4=(23)(45)\sigma_{4}=(23)(45), σ5=(12)(45)\sigma_{5}=(12)(45).

  4. (4)

    σ1=id\sigma_{1}=\operatorname{id}, σ2=(45)\sigma_{2}=(45), σ3=(2435)\sigma_{3}=(2435), σ4=(2534)\sigma_{4}=(2534) and σ5=(23)\sigma_{5}=(23).

  5. (5)

    σ1=id\sigma_{1}=\operatorname{id}, σ2=(23)\sigma_{2}=(23), σ3=(2435)\sigma_{3}=(2435), σ4=(45)\sigma_{4}=(45) and σ5=(2534)\sigma_{5}=(2534).

  6. (6)

    σ1=σ2=(45)\sigma_{1}=\sigma_{2}=(45), σ3=(14)(25)\sigma_{3}=(14)(25) and σ4=σ5=(12)\sigma_{4}=\sigma_{5}=(12).

Note that flips of size four and five are permutation isoclinic. The second solution is permutation isoclinic to the second solution of Example 4.4. The fourth solution is permutation isoclinic to the third solution of Example 4.4. The fifth solution is permutation isoclinic to the fourth solution of Example 4.4. This is a complete set of permutation isoclinisms between solutions of sizes four and five.

Acknowledgements

Vendramin is supported in part by OZR3762 of Vrije Universiteit Brussel. The authors thank the referee for useful comments and suggestions.

References

  • [1] D. Bachiller. Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks. J. Knot Theory Ramifications, 27(8):1850055, 36, 2018.
  • [2] D. Bachiller, F. Cedó, and E. Jespers. Solutions of the Yang-Baxter equation associated with a left brace. J. Algebra, 463:80–102, 2016.
  • [3] D. Bachiller, F. Cedó, and L. Vendramin. A characterization of finite multipermutation solutions of the Yang-Baxter equation. Publ. Mat., 62(2):641–649, 2018.
  • [4] V. G. Bardakov, M. V. Neshchadim, and M. K. Yadav. Computing skew left braces of small orders. Internat. J. Algebra Comput., 30(4):839–851, 2020.
  • [5] F. Catino, I. Colazzo, and P. Stefanelli. Skew left braces with non-trivial annihilator. J. Algebra Appl., 18(2):1950033, 23, 2019.
  • [6] F. Cedó, E. Jespers, L. . Kubat, A. Van Antwerpen, and C. Verwimp. On various types of nilpotency of the structure monoid and group of a set-theoretic solution of the Yang-Baxter equation. J. Pure Appl. Algebra, 227(2):Paper No. 107194, 38, 2023.
  • [7] F. Cedó, A. Smoktunowicz, and L. Vendramin. Skew left braces of nilpotent type. Proc. Lond. Math. Soc. (3), 118(6):1367–1392, 2019.
  • [8] L. N. Childs, C. Greither, K. P. Keating, A. Koch, T. Kohl, P. J. Truman, and R. G. Underwood. Hopf algebras and Galois module theory, volume 260 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, [2021] ©2021.
  • [9] P. Etingof, T. Schedler, and A. Soloviev. Set-theoretical solutions to the quantum Yang-Baxter equation. Duke Math. J., 100(2):169–209, 1999.
  • [10] T. Gateva-Ivanova and P. Cameron. Multipermutation solutions of the Yang-Baxter equation. Comm. Math. Phys., 309(3):583–621, 2012.
  • [11] L. Guarnieri and L. Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp., 86(307):2519–2534, 2017.
  • [12] P. Hall. The classification of prime-power groups. J. Reine Angew. Math., 182:130–141, 1940.
  • [13] V. Lebed and L. Vendramin. On structure groups of set-theoretic solutions to the Yang-Baxter equation. Proc. Edinb. Math. Soc. (2), 62(3):683–717, 2019.
  • [14] T. Letourmy and L. Vendramin. Schur covers of skew braces. arXiv:2302.03970, 2023.
  • [15] W. Rump. Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra, 307(1):153–170, 2007.
  • [16] W. Rump. Classification of cyclic braces. J. Pure Appl. Algebra, 209(3):671–685, 2007.
  • [17] W. Rump. The brace of a classical group. Note Mat., 34(1):115–144, 2014.
  • [18] H. P. Sankappanavar and S. Burris. A course in universal algebra. Graduate Texts Math, 78:56, 1981.
  • [19] A. Smoktunowicz. Algebraic approach to Rump’s results on relations between braces and pre-Lie algebras. J. Algebra Appl., 21(3):Paper No. 2250054, 13, 2022.
  • [20] A. Smoktunowicz. A new formula for Lazard’s correspondence for finite braces and pre-Lie algebras. J. Algebra, 594:202–229, 2022.
  • [21] A. Smoktunowicz. On the passage from finite braces to pre-Lie rings. Adv. Math., 409:Paper No. 108683, 2022.
  • [22] A. Smoktunowicz and L. Vendramin. On skew braces (with an appendix by N. Byott and L. Vendramin). J. Comb. Algebra, 2(1):47–86, 2018.