This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

USTC-ICTS/PCFT-22-27

Irregular universe in the Nieh-Yan modified teleparallel gravity

Mingzhe Li Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China Peng Huanwu Center for Fundamental Theory, University of Science and Technology of China, Hefei, Anhui 230026, China    Haomin Rao School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China University of Chinese Academy of Sciences, 100190 Beijing, China
Abstract

The Nieh-Yan modified teleparallel gravity is a model which modifies the general relativity equivalent teleparallel gravity by a coupling between the Nieh-Yan density and an axion-like field. This model predicts parity violations in the gravitational waves if the axion-like field has a non-trivial background, and more importantly it is ghost free and avoids the pathologies presented in other parity-violating gravity models. The cosmological dynamics and perturbations of the Nieh-Yan modified teleparallel gravity have been investigated in detail, but all these previous investigations rely on the symmetry requirement that in the background universe both the metric and affine connection are homogeneous and isotropic. In this paper we relax the symmetry constraint on the connection and leave it arbitrary at the beginning, after all the cosmological principle only needs the metric of the background spacetime to meet the symmetry requirement. We find a new flat universe solution for the Nieh-Yan modified teleparallel gravity, for which the background dynamics itself is unchanged but the perturbations around it present a new feature that the scalar and tensor perturbations are coupled together at the linear level. The implications of this peculiar feature in primordial perturbations from inflation are also discussed.

I introduction

Stimulated by the experimental detections of gravitational waves (GWs) ligo1 ; ligo2 and the developments in the cosmic microwave background radiation (CMB) experiments CMB1 ; CMB2 , parity violating gravities attracted lots of interests in recent years. A famous and frequently studied parity violating gravity model is the so-called Chern-Simons modified gravity CSgravity1 ; CSgravity2 which within the framework of Riemannian geometry modifies general relativity (GR) by a gravitational Chern-Simons term. The Chern-Simons modified gravity predicts the difference between the amplitudes of the left- and right-handed polarized components of gravitational waves, i.e., the so-called amplitude birefringence phenomenon. However, this model was found to suffer from the problem of vacuum instability because one of the circularly polarized components of GWs becomes a ghost at high frequencies CSgravity3 . Further extensions Crisostomi:2017ugk ; Gao:2019liu ; Zhao:2019xmm to this model did not circumvent this difficulty because in these extended models the pathological behavior still appear at high energy scales, as shown in Ref. Bartolo:2020gsh . It is very difficult to have a ghost-free parity violating gravity model within the framework of Riemannian geometry.

Successful parity violating gravity models are available if we go beyond the Riemannian geometry. For example, the Nieh-Yan modified teleparallel gravity (NYTG) PVtele1 ; PVtele2 is constructed within the framework of the teleparallel gravity (TG) Tele ; tele2021 , where the gravity is identified with the spacetime torsion in stead of the curvature. One may have a GR equivalent TG model Maluf:2013gaa (we may call it TGR). The NYTG model PVtele1 ; PVtele2 modifies TGR slightly by the anomalous coupling θ𝒯𝒯~\theta\mathcal{T}\widetilde{\mathcal{T}} between an axion-like field θ(x)\theta(x) and the Nieh-Yan density Nieh:1981ww : 𝒯𝒯~(1/2)εμνρσ𝒯μνλ𝒯λρσ\mathcal{T}\widetilde{\mathcal{T}}\equiv(1/2)\varepsilon^{\mu\nu\rho\sigma}\mathcal{T}^{\lambda}_{~{}\mu\nu}\mathcal{T}_{\lambda\rho\sigma}, where 𝒯μνλ\mathcal{T}^{\lambda}_{~{}\mu\nu} is the torsion tensor, εμνρσ\varepsilon^{\mu\nu\rho\sigma} is Levi-Civita tensor which relates the totally antisymmetric symbol ϵμνρσ\epsilon^{\mu\nu\rho\sigma} and the determinant of the metric gg through the equation εμνρσ=ϵμνρσ/g\varepsilon^{\mu\nu\rho\sigma}=\epsilon^{\mu\nu\rho\sigma}/\sqrt{-g}. The Nieh-Yan density is parity-odd, so at the background with μθ0\partial_{\mu}\theta\neq 0, the Nieh-Yan coupling term θ𝒯𝒯~\theta\mathcal{T}\widetilde{\mathcal{T}} violates the parity symmetry spontaneously. The NYTG model has been applied to cosmology in Refs. PVtele1 ; PVtele2 , where it was found that this model predicts a difference between the propagating velocities of the left- and right-handed polarized components of GWs, i.e., the so-called velocity birefringence phenomenon. More importantly, through detailed investigations on the cosmological perturbations, it was shown in Refs. PVtele1 ; PVtele2 that the NYTG model is ghost-free. Recently, this model was found to be compatible with the results of most local tests in the Solar System at the post-Newtonian order Rao:2021azn ; Qiao:2021fwi , the upper limit on its model parameters by the GWs data of LIGO/Virgo Collaboration was obtained in Ref. Wu:2021ndf , and the enhancement of primordial GWs during inflation due to the velocity birefringence of NYTG model and its implications in the air-based GWs experiments were studied in Ref. Cai:2021uup . Other recent studies on parity violating gravities can be found in Refs. Li:2021mdp ; Gong:2021jgg ; Hohmann:2022wrk ; Tong:2022cdz ; Li:2022vtn ; Zhang:2022xmm ; Zhu:2022dfq ; Zhu:2022uoq ; Filho:2022yrk ; Qiao:2022mln ; Cai:2022lec ; Chen:2022wtz .

In all the previous studies of the cosmological applications of the NYTG model, both the metric and the affine connection of the background universe are required to be homogeneous and isotropic at the beginning. The spacetime under this strong symmetry constraint is called the regular universe in this paper. The background solutions of the regular universe have been well studied within the TG framework Hohmann:2019nat ; Hohmann:2020zre ; Coley:2022qug , and are universally applicable to almost all TG models. In fact these solutions have been frequently adopted by different authors, e.g., Myrzakulov:2010vz ; Cai:2011tc ; Cai:2015emx ; Hohmann:2022wrk 111 Actually, the cosmological background solution whose tetrad is eμA=diag(1,a,a,a)e^{A}_{~{}\mu}=\mathrm{diag}(1,a,a,a) or eμA=diag(a,a,a,a)e^{A}_{~{}\mu}=\mathrm{diag}(a,a,a,a) under the Weitzenböck gauge is the regular flat universe. However, most of the earlier literature did not clearly point out that the selection of such a tetrad under the Weitzenböck gauge actually requires the connection to satisfy the same symmetry of the metric..

However, the cosmological principle only needs the metric of the background universe to meet the high symmetry requirement. In the Riemannian geometry, once we impose this symmetry requirement on the metric, the connection (i.e., the Christoffel symbol) satisfies the same symmetry requirement automatically. In TG models, the symmetry constraint on the affine connection is independent of the one on the metric. If one drops this extra constraint on the connection and leaves it arbitrary at the beginning, there will be final solutions for which the connection is neither homogeneous nor isotropic. We call the universe which has a homogeneous and isotropic metric and a non-homogeneous and non-isotropic affine connection the irregular universe. So far the irregular universe has rarely aroused research interest, only a few literatures have initially studied the flat irregular universe (or irregular Minkowski spacetime) solutions in f(𝕋)f(\mathbb{T}) gravity models Bejarano:2017akj ; Bejarano:2019fii ; BeltranJimenez:2020fvy ; Golovnev:2020nln . The irregular universe does not violate the cosmological principle, but questions are in coming: What features and new physical phenomena could exist in the irregular universe? Or might the irregular universe have properties that are clearly contradictory to experiments so that only the regular universe is physically feasible? These questions deserve detailed studies for any TG models.

In this paper, we will study the irregular universe in the NYTG model. Firstly, we will obtain a more general flat universe solution than those in Refs. PVtele1 ; PVtele2 by solving the equations of motion of the NYTG model directly under the condition that only the metric is required to be homogeneous and isotropic. By analyzing the symmetry of the connection, we will show that the flat universe we obtain is generally an irregular flat universe, and in special cases it reduces back to a regular universe. We will also show that even in the irregular flat universe, the background equations in the NYTG model are exactly the same as those in GR. Secondly, we will study the linear cosmological perturbations around the irregular flat universe. We will find that tensor perturbations and scalar perturbations are coupled at the linear perturbation level. This is a peculiar feature that distinguishes the irregular universe from the regular universe in the NYTG model. We speculate that this peculiar feature is caused by the fact that the interior space does not satisfy the homogeneity and isotropy in the irregular universe. Finally, we will study the primordial fluctuations generated by slow-roll inflation in the regular and irregular flat universes. We will show that the primordial fluctuations of left- and right-handed GWs are different whether in the regular universe or in the irregular universe. We will also show that there is a strong statistical correlation between primordial scalar fluctuations and primordial tensor fluctuations generated by slow-roll inflation in the irregular universe.

This paper is organized as follows. In Sec. II, we briefly introduce the TG theory and the NYTG model. In Sec. III, we study spatially flat cosmological background solutions that only requires the metric to be homogeneous and isotropic in the NYTG model. In Sec. IV, through the quadratic actions for scalar, vector, and tensor perturbations, we investigate linear perturbations around the regular and irregular flat universes. In Sec. V, we apply our result to the early universe and discuss briefly the primordial perturbations generated by slow-roll inflation.

In this paper, we adopt the unit 8πG=18\pi G=1, and use the signature (+,,,)(+,-,-,-) for the metric. The tensor indices of the interior space are denoted by A,B,C,=0,1,2,3A,B,C,...=0,1,2,3 and by a,b,c,=1,2,3a,b,c,...=1,2,3 when limiting to spatial components. They are lowered and raised by the Minkowski metric ηAB\eta_{AB} and its inverse ηAB\eta^{AB}. The spacetime tensor indices are denoted by Greek μ,ν,ρ,=0,1,2,3\mu,\nu,\rho,...=0,1,2,3 and by Latin i,j,k,=1,2,3i,j,k,...=1,2,3 when limiting to spatial components. They are lowered and raised by the spacetime metric gμνg_{\mu\nu} and its inverse gμνg^{\mu\nu}. The antisymmetric symbol ϵμνρσ\epsilon^{\mu\nu\rho\sigma} has the properties: ϵ0ijk=ϵijkϵijk\epsilon^{0ijk}=\epsilon^{ijk}\equiv\epsilon_{ijk}, and ϵ123=1\epsilon^{123}=1. In addition, we distinguish the spacetime affine connection Γ^μνρ\hat{\Gamma}^{\rho}_{~{}\mu\nu} and its associated covariant derivative ^\hat{\nabla} from the Levi-Civita connection Γμνρ{\Gamma}^{\rho}_{~{}\mu\nu} and its associated covariant derivative {\nabla} respectively.

II TG theory and the NYTG model

The TG theory can be considered as a constrained metric-affine theory. It is formulated in a spacetime endowed with a metric gμνg_{\mu\nu} and an affine connection Γ^μνρ\hat{\Gamma}^{\rho}_{~{}\mu\nu}, which is curvature free and metric compatible,

R^ρμνσ=μΓ^νρσνΓ^μρσ+Γ^μλσΓ^νρλΓ^νλσΓ^μρλ=0,^ρgμν=ρgμνΓ^ρμλgλνΓ^ρνλgμλ=0.\hat{R}^{\sigma}_{~{}\rho\mu\nu}=\partial_{\mu}\hat{\Gamma}^{\sigma}_{~{}\nu\rho}-\partial_{\nu}\hat{\Gamma}^{\sigma}_{~{}\mu\rho}+\hat{\Gamma}^{\sigma}_{~{}\mu\lambda}\hat{\Gamma}^{\lambda}_{~{}\nu\rho}-\hat{\Gamma}^{\sigma}_{~{}\nu\lambda}\hat{\Gamma}^{\lambda}_{~{}\mu\rho}=0~{},~{}\hat{\nabla}_{\rho}g_{\mu\nu}=\partial_{\rho}g_{\mu\nu}-\hat{\Gamma}^{\lambda}_{~{}\rho\mu}g_{\lambda\nu}-\hat{\Gamma}^{\lambda}_{~{}\rho\nu}g_{\mu\lambda}=0~{}. (1)

Without curvature and nonmetricity, in the TG theory the gravity is identified with spacetime torsion 𝒯μνρ=2Γ^[μν]ρ\mathcal{T}^{\rho}_{~{}\mu\nu}=2\hat{\Gamma}_{\,[\mu\nu]}^{\rho}. One can also describe the TG theory using the language of the tetrad eμAe^{A}_{~{}\mu} and the spin connection ωBμA\omega^{A}_{~{}B\mu}. They relates the metric gμνg_{\mu\nu} and the affine connection Γ^μνρ\hat{\Gamma}^{\rho}_{~{}\mu\nu} through the following relations

gμν=ηABeμAeνB,Γ^μνρ=eAρ(μeνA+ωBμAeνB).g_{\mu\nu}=\eta_{AB}e^{A}_{~{}\mu}e^{B}_{~{}\nu}~{}~{},~{}~{}\hat{\Gamma}^{\rho}_{~{}\mu\nu}=e_{A}^{~{}\,\rho}(\partial_{\mu}e^{A}_{~{}\nu}+\omega^{A}_{~{}B\mu}e^{B}_{~{}\nu})~{}. (2)

The torsion tensor is written as

𝒯μνρ=2eAρ([μeν]A+ωB[μAeν]B).\mathcal{T}^{\rho}_{~{}\mu\nu}=2e_{A}^{~{}\,\rho}(\partial_{[\mu}e^{A}_{~{}\nu]}+\omega^{A}_{~{}B[\mu}e^{B}_{~{}\nu]})~{}. (3)

The teleparallel constraints (1) dictate that the spin connection can be in general expressed as

ωBμA=(Λ1)CAμΛBC,\omega_{~{}B\mu}^{A}=(\Lambda^{-1})^{A}_{~{}C}\partial_{\mu}\Lambda_{~{}B}^{C}~{}, (4)

where ΛBA\Lambda^{A}_{~{}B} is arbitrary element of Lorentz transformation matrix which is position dependent and satisfies the relation ηABΛCAΛDB=ηCD\eta_{AB}\Lambda^{A}_{~{}C}\Lambda^{B}_{~{}D}=\eta_{CD} at any spacetime point. Therefore, the tetrad eμAe^{A}_{~{}\mu} and the Lorentz matrix ΛBA\Lambda^{A}_{~{}B} can be regarded as the basic variables of the TG theory. In this way, the teleparallel constraints (1) are automatically satisfied.

The TGR model, as the GR equivalent TG model, has the following action,

STGR=12d4x|e|𝕋d4x|e|(12𝒯μ𝒯μ+18𝒯αβμ𝒯αβμ+14𝒯αβμ𝒯βαμ),\displaystyle S_{TGR}=\frac{1}{2}\int\mathrm{d}^{4}x~{}{|e|}\,\mathbb{T}\equiv\int\mathrm{d}^{4}x~{}{|e|}\left(-\frac{1}{2}\mathcal{T}_{\mu}\mathcal{T}^{\mu}+\frac{1}{8}\mathcal{T}_{\alpha\beta\mu}\mathcal{T}^{\alpha\beta\mu}+\frac{1}{4}\mathcal{T}_{\alpha\beta\mu}\mathcal{T}^{\beta\alpha\mu}\right)~{}, (5)

where |e|=g{|e|}=\sqrt{-g} is the determinant of the tetrad, 𝕋\mathbb{T} is the torsion scalar, and 𝒯μ=𝒯μαα\mathcal{T}_{\mu}=\mathcal{T}^{\alpha}_{~{}~{}\mu\alpha} is the torsion vector. Since we have the identity R(e)=𝕋+2μ𝒯μ-{R}(e)=\mathbb{T}+2{\nabla}_{\mu}\mathcal{T}^{\mu}, the action (5) is identical to the Einstein-Hilbert action up to a surface term, where the curvature scalar R(e)R(e) is defined by the Levi-Civita connection and considered as being fully constructed from the metric, and in turn from the tetrad. Since the surface term in the action does not affect the equations of motion, we say that the TGR is equivalent to GR at the level of the equations of motion.

The NYTG model PVtele1 ; PVtele2 modifies the TGR model by introducing the coupling

SNY=c4d4x|e|θ𝒯𝒯~,S_{NY}=\frac{c}{4}\int\mathrm{d}^{4}x~{}{|e|}~{}\theta\,\mathcal{T}\widetilde{\mathcal{T}}~{}, (6)

between an axion-like field θ\theta and the Nieh-Yan density 𝒯𝒯~\mathcal{T}\widetilde{\mathcal{T}}. The coupling constant cc is dimensionless. Generally we should also consider its own dynamics of the axion-like field and take other matter into account, so the full action of the NYTG model is

SNYTG=d4x|e|[12𝕋+c4θ𝒯𝒯~+12μθμθV(θ)]+Sm.\displaystyle S_{NYTG}=\int\mathrm{d}^{4}x~{}{|e|}\left[\frac{1}{2}\mathbb{T}+\frac{c}{4}\,\theta\,\mathcal{T}\widetilde{\mathcal{T}}+\frac{1}{2}\nabla_{\mu}\theta\nabla^{\mu}\theta-V(\theta)\right]+S_{m}~{}. (7)

Other matter with the action SmS_{m} is assumed to be coupled to spacetime minimally through the tetrad. At the background in which the axion-like field has non-zero spacetime derivatives, the Nieh-Yan coupling term breaks parity spontaneously. Because only the first-order derivatives of the basic variables appears in the action, the NYTG model can avoid the Ostrogradski ghost mode, which is expected to be originated from higher-order derivatives in the action Woodard:2006nt .

As with most modified TG theories, the NYTG model apparently has two kinds of gauge symmetries: diffeomorphism invariance and local Lorentz invariance. The latter transformation makes the following change:

eμA(L1)BAeμB,ΛBAΛCALBC,e^{A}_{~{}\mu}\rightarrow(L^{-1})^{A}_{~{}B}e^{B}_{~{}\mu}~{},~{}\Lambda^{A}_{~{}B}\rightarrow\Lambda^{A}_{~{}C}L^{C}_{~{}B}~{}, (8)

where LBA(x)L^{A}_{~{}B}(x) are the element of Lorentz matrix. We would like to use different notations to distinguish two kinds of Lorentz matrices: ΛBA(x)\Lambda^{A}_{~{}B}(x) is used to express the spin connection as in Eq. (4), but LBA(x)L^{A}_{~{}B}(x) represents the local transformation that makes a shift from one local frame to another. Transformation (8) can be expressed in terms of tetrad and spin connections as

eμA(L1)BAeμB,ωBμA(L1)CAωDμCLBD+(L1)CAμLBC.e^{A}_{~{}\mu}\rightarrow(L^{-1})^{A}_{~{}B}e^{B}_{~{}\mu}~{},~{}\omega^{A}_{~{}B\mu}\rightarrow(L^{-1})^{A}_{~{}C}\omega^{C}_{~{}D\mu}L^{D}_{~{}B}+(L^{-1})^{A}_{~{}C}\partial_{\mu}L^{C}_{~{}B}~{}. (9)

It is easy to prove that the metric gμνg_{\mu\nu} and torsion tensor 𝒯μνρ\mathcal{T}_{~{}\mu\nu}^{\rho} are invariant under the local Lorentz transformation (8), as is the action (7). Due to the local Lorentz invariance, one can choose the gauge ΛBA=δBA\Lambda^{A}_{~{}B}=\delta^{A}_{~{}B}, i.e., ωBμA=0\omega^{A}_{~{}B\mu}=0. This is the Weitzenböck connection, which has been frequently adopted in the literature. In addition, there is another symmetry hidden in the NYTG model. The Nieh-Yan term (6) can be integrated by parts as

SNY=c2d4xηABϵμνρσ(μθ)(ΛCAeνC)ρ(ΛDBeσD).S_{NY}=-\frac{c}{2}\int\mathrm{d}^{4}x~{}\eta_{AB}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}\theta)(\Lambda^{A}_{~{}C}e^{C}_{~{}\nu})\partial_{\rho}(\Lambda^{B}_{~{}D}e^{D}_{~{}\sigma})~{}. (10)

It can be seen that the Nieh-Yan term (6) is invariant under the following transformation

(ΛCAeμC)LBA(θ)(ΛCBeμC),(\Lambda^{A}_{~{}C}e^{C}_{~{}\mu})\rightarrow L^{A}_{~{}B}(\theta)(\Lambda^{B}_{~{}C}e^{C}_{~{}\mu})\,, (11)

where LBA(θ)L^{A}_{~{}B}(\theta) is Lorentz matrix that depends only on axion-like field θ\theta. Note that ΛCAeμC\Lambda^{A}_{~{}C}e^{C}_{~{}\mu} is invariant under transformation (8). Due to the Lorentz symmetry (8), the transformation (11) can always be attributed to the fact that the tetrad eμAe^{A}_{~{}\mu} remains unchanged while the Lorentz matrix ΛBA\Lambda^{A}_{~{}B} undergoes a Lorentz transformation. Obviously the metric and the action of TGR model are invariant under such a transformation. So the total action of the NYTG model is invariant under the transformation (11).

The equations of motion follow from the variation of the action (7) with respect to eμAe^{A}_{~{}\mu} and ΛBA\Lambda^{A}_{~{}B} separately

Gμν+Nμν\displaystyle G^{\mu\nu}+N^{\mu\nu} =\displaystyle= Tμν+Tθμν,\displaystyle T^{\mu\nu}+T^{\mu\nu}_{\theta}~{}, (12)
N[μν]\displaystyle N^{[\mu\nu]} =\displaystyle= 0,\displaystyle 0~{}, (13)

where Nμν=(c/2)εμλρσλθ𝒯ρσνN^{\mu\nu}=(c/2)\varepsilon^{\mu\lambda\rho\sigma}\partial_{\lambda}\theta\,\mathcal{T}^{\nu}_{~{}\rho\sigma}, GμνG^{\mu\nu} is the Einstein tensor, Tμν=(2/g)(δSm/δgμν)T^{\mu\nu}=-(2/\sqrt{-g})(\delta S_{m}/\delta g_{\mu\nu}) and Tθμν=[V(θ)αθαθ/2]gμν+μθνθT^{\mu\nu}_{\theta}=[V(\theta)-\nabla_{\alpha}\theta\nabla^{\alpha}\theta/2]g^{\mu\nu}+\nabla^{\mu}\theta\nabla^{\nu}\theta are the energy-momentum tensors for the matter and the axion-like field θ\theta respectively. Similar to most modified TG models, the equation of motion (13) from the variation of ΛBA\Lambda^{A}_{~{}B} is not independent of Eq. (12), it is just the antisymmetric part of the latter. As explained in Ref. PVtele2 , this is due to the local Lorentz invariance of the action, any change caused by δΛBA\delta\Lambda^{A}_{~{}B} can always be equivalent to the change caused by δeμA\delta e^{A}_{~{}\mu}, so requiring the action to take the extremum under δeμA\delta e^{A}_{~{}\mu} already includes the case where the action takes the extremum under δΛBA\delta\Lambda^{A}_{~{}B}. There is another equation following from the variation of the action (7) with respect to θ\theta,

θ+V(1)c4𝒯𝒯~=0,{\square}\theta+V^{(1)}-\frac{c}{4}\mathcal{T}\widetilde{\mathcal{T}}=0~{}, (14)

where =gμνμν{\square}=g^{\mu\nu}{\nabla}_{\mu}{\nabla}_{\nu} and V(n)=dnV(θ)/dθnV^{(n)}=\mathrm{d}^{n}V(\theta)/\mathrm{d}\theta^{n}. All of these equations of motion are consistent with the Bianchi identity μGμν=0\nabla_{\mu}G^{\mu\nu}=0 and the covariant conservation law μTμν=0\nabla_{\mu}T^{\mu\nu}=0.

Also in Refs. PVtele1 ; PVtele2 , the cosmological perturbations of the NYTG model were analyzed in detail. It was found that the NYTG model makes a difference between the propagating velocities of the left- and right-handed polarized components of GWs, but makes no difference between their amplitudes. This phenomenon is called velocity birefringence, which is a clear physical signal of parity violation. More importantly, the NYTG model was confirmed to be ghost free through the quadratic action of cosmological perturbations.

It is worth mentioning that the Nieh-Yan density 𝒯𝒯~\mathcal{T}\widetilde{\mathcal{T}} is not the only parity-odd term within the TG framework. A more general model including all the parity-odd terms which are quadratic in the torsion tensor was considered in Ref. PVtele3 . But then it was found in Ref. PVtele4 that this more general model suffers from the problem of ghost instability again, unless it completely reduces to the NYTG model. Therefore, within the TG framework, for all parity-odd terms which are quadratic in the torsion tensor, only the Nieh-Yan density 𝒯𝒯~\mathcal{T}\widetilde{\mathcal{T}} can avoid the ghost instability. This means the NYTG model is robust to some extent.

III Irregular flat universe in the NYTG model

So far all the studies on the cosmological applications of the NYTG model only considered the regular universe as the background, that means both the metric and the affine connection are constrained to be homogeneous and isotropic. This constraint may be too strong, after all the cosmological principle which is supported by current observations only needs the metric of the background spacetime to meet the high symmetry requirement. In this paper, we will drop the symmetry requirement on the connection and leave it arbitrary at the beginning. After this relaxation, it is expected that the NYTG model will have more interesting cosmological background solutions. We are interested in the irregular universe solutions in which the metric homogeneous and isotropic but the connection is neither homogeneous nor isotropic. For simplicity, we will only consider the spatially flat universe.

In flat universe, the metric can be expressed in rectangular coordinate as

ds2=gμνdxμdxν=a2(dη2δijdxidxj),\mathrm{d}s^{2}=g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}=a^{2}\left(\mathrm{d}\eta^{2}-\delta_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}\right)~{}, (15)

where a=a(η)a=a(\eta) is the scale factor of the universe, η\eta is the conformal time. This is the Friedmann-Robertson-Walker (FRW) metric. There are 6 Killing vector fields {ξIμ,I=1,26}\{\xi_{I}^{\mu},I=1,2...6\} in flat universe, which can be expressed as

ξIμ=δIμ,ξI+3μ=ϵIijδiμxj,I=1,2,3\xi^{\mu}_{I}=\delta^{\,\mu}_{~{}I}~{},~{}\xi^{\mu}_{I+3}=\epsilon_{Iij}\delta^{\mu}_{~{}i}x^{j}~{},~{}~{}~{}~{}I=1,2,3 (16)

where ξ1μ,ξ2μ,ξ3μ\xi^{\mu}_{1},\xi^{\mu}_{2},\xi^{\mu}_{3} are Killing vector fields representing the symmetry of spatial translation, and ξ4μ,ξ5μ,ξ6μ\xi^{\mu}_{4},\xi^{\mu}_{5},\xi^{\mu}_{6} are Killing vector fields representing the symmetry of spatial rotation. One can prove that the FRW metric satisfies the condition: ξIgμν=0\mathcal{L}_{\xi_{I}}g_{\mu\nu}=0, where ξI\mathcal{L}_{\xi_{I}} is the Lie derivative along the Killing vector field ξIμ\xi^{\mu}_{I}. This reflects the result that the metric is homogeneous and isotropic. One can also prove that ξIΓμνρ=0\mathcal{L}_{\xi_{I}}\Gamma^{\rho}_{~{}\mu\nu}=0 for the Levi-Civita connection Γμνρ\Gamma^{\rho}_{~{}\mu\nu}, which is automatically homogeneous and isotropic. This is why we do not need to pay extra attention to the symmetry of the connection within the framework of Riemannian geometry.

III.1 Regular flat universe

For TG models, even the metric is determined, the affine connection is still arbitrary to some extent. Usually, as suggested in Refs Hohmann:2019nat ; Hohmann:2020zre ; Coley:2022qug , a further constraint was imposed that requires the connection is also homogeneous and isotropic, that is,

ξIΓ^μνρ=^μ^νξIρ^μ(𝒯νσρξIσ)=0.\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{\rho}_{~{}\mu\nu}=\hat{\nabla}_{\mu}\hat{\nabla}_{\nu}\,\xi^{\rho}_{I}-\hat{\nabla}_{\mu}(\mathcal{T}^{\rho}_{~{}\nu\sigma}\xi^{\sigma}_{I})=0~{}. (17)

Although Γ^μνρ\hat{\Gamma}^{\rho}_{~{}\mu\nu} is coordinate dependent, the Lie derivative of Γ^μνρ\hat{\Gamma}^{\rho}_{~{}\mu\nu} does not depend on the coordinate. Hence the condition (17) is unambiguous. Combining Eqs. (15) and (17) selected the regular flat universe solution in which the tetrad eμAe^{A}_{\mu} and Lorentz matrix ΛBA\Lambda^{A}_{~{}B} have the following forms:

eμA=aδμA,ΛBA=Λ̊BA,e^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu}~{},~{}\Lambda^{A}_{~{}B}=\mathring{\Lambda}^{A}_{~{}B}~{}, (18)

where Λ̊BA\mathring{\Lambda}^{A}_{~{}B} is a global Lorentz matrix, which does not depend on spacetime. All other solutions satisfying Eqs. (15) and (17) differ from the solution (18) only by Lorentz transformation (8), so they are physically equivalent to the solution (18). The above process does not depend on a specific TG theory, so the solution (18) is generally applicable to most TG theories.

For the NYTG model, the solution (18) can automatically satisfy the constraint N[μν]=0N^{[\mu\nu]}=0, so the solution (18) is compatible with the NYTG model. Furthermore, solution (18) leads to Nμν=0N^{\mu\nu}=0 and 𝒯𝒯~=0\mathcal{T}\widetilde{\mathcal{T}}=0, which means that the Nieh-Yan term has no effect on the regular flat universe background. Therefore, the background equations of the regular flat universe are exactly the same as those of GR PVtele1 ; PVtele2 .

III.2 Irregular flat universe

To look for the irregular universe solution, we should give up the constraint (17) on the connection. After this relaxation, the connection is left to be determined by the equation of motion.

In a flat universe, we can always simply find the non-zero components of GμνG^{\mu\nu}, TμνT^{\mu\nu} and TθμνT^{\mu\nu}_{\theta} as

G00=32a4,T00=ρa2,Tθ00=ρθa2,Gij=2+2a4δij,Tij=pa2δij,Tθij=pθa2δij,G^{00}=\frac{3\mathcal{H}^{2}}{a^{4}}~{},~{}T^{00}=\frac{\rho}{a^{2}}~{},~{}T_{\theta}^{00}=\frac{\rho_{\theta}}{a^{2}}~{},~{}G^{ij}=-\frac{2\mathcal{H}^{\prime}+\mathcal{H}^{2}}{a^{4}}\delta_{ij}~{},~{}T^{ij}=\frac{p}{a^{2}}\delta_{ij}~{},~{}T_{\theta}^{ij}=\frac{p_{\theta}}{a^{2}}\delta_{ij}~{}, (19)

where =a/a\mathcal{H}=a^{\prime}/a is the conformal Hubble rate, prime represents the derivative with respect to the conformal time η\eta, ρθ=θ2/(2a2)+V\rho_{\theta}=\theta^{\prime 2}/\left(2a^{2}\right)+V and pθ=θ2/(2a2)Vp_{\theta}=\theta^{\prime 2}/\left(2a^{2}\right)-V are the energy density and pressure of the θ\theta field, and ρ\rho and pp denote the energy density and pressure of other matter. Thanks to the Lorentz symmetry (8), we can always reduce the tetrad to the simple form eμA=aδμAe^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu} in flat universe. In order to facilitate further analysis, we decompose the independent non-zero components of spin connections ωBμA\omega^{A}_{~{}B\mu} as follows

δiaωa00=𝒰i,δaiδjbωbka=Σϵijk+ϵijlΣkl+ΣiδjkΣjδik,\displaystyle\delta^{a}_{~{}i}\omega^{0}_{~{}a0}=\mathcal{U}_{i}~{}~{},~{}~{}\delta^{i}_{~{}a}\delta^{b}_{~{}j}\omega^{a}_{~{}bk}=\Sigma\epsilon_{ijk}+\epsilon_{ijl}\Sigma_{kl}+\Sigma_{i}\delta_{jk}-\Sigma_{j}\delta_{ik}~{},
δaiδjbωb0a=ϵijk𝒱k,δiaωaj0=σδij+σij+ϵijkσk,\displaystyle\delta^{i}_{~{}a}\delta^{b}_{~{}j}\omega^{a}_{~{}b0}=\epsilon_{ijk}\mathcal{V}_{k}~{}~{},~{}~{}\delta^{a}_{~{}i}\omega^{0}_{~{}aj}=\sigma\delta_{ij}+\sigma_{ij}+\epsilon_{ijk}\sigma_{k}~{}, (20)

where Σij\Sigma_{ij} and σij\sigma_{ij} are symmetric and traceless spatial tensors. In the above decomposition we have exploited the property ωABμ=ωBAμ\omega_{AB\mu}=-\omega_{BA\mu} due to ^ρgμν=0\hat{\nabla}_{\rho}g_{\mu\nu}=0. Note that the variables σ,Σ,𝒰i,𝒱i,σi,Σi,σij,Σij\sigma,\Sigma,\mathcal{U}_{i},\mathcal{V}_{i},\sigma_{i},\Sigma_{i},\sigma_{ij},\Sigma_{ij} are not completely independent because we have not yet imposed R^ρμνσ=0\hat{R}^{\sigma}_{~{}\rho\mu\nu}=0 on the spin connection. Combining eμA=aδμAe^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu} and Eq. (III.2), NμνN^{\mu\nu} can be obtained as

N00=0,N0i=0,Ni0=2cθa4σi,Nij=cθa4(2ΣδijΣij+ϵijkΣk).N^{00}=0~{}~{},~{}~{}N^{0i}=0~{}~{},~{}~{}N^{i0}=\frac{2c\theta^{\prime}}{a^{4}}\sigma_{i}~{}~{},~{}~{}N^{ij}=\frac{c\theta^{\prime}}{a^{4}}\left(2\Sigma\delta_{ij}-\Sigma_{ij}+\epsilon_{ijk}\Sigma_{k}\right)~{}. (21)

In order for Eqs. (12) and (13) to hold, there must be

σi=0,Σi=0,Σij=0,Σ=Σ(η).\sigma_{i}=0~{}~{},~{}~{}\Sigma_{i}=0~{}~{},~{}~{}\Sigma_{ij}=0~{}~{},~{}~{}\Sigma=\Sigma(\eta)~{}. (22)

Combining eμA=aδμAe^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu}, Eqs. (III.2) and (22), Nieh-Yan density can be obtained as

𝒯𝒯~=24Σa2(σ).\mathcal{T}\widetilde{\mathcal{T}}=\frac{24\Sigma}{a^{2}}(\mathcal{H}-\sigma)~{}. (23)

In order for Eq. (14) to hold, the Nieh-Yan density 𝒯𝒯~\mathcal{T}\widetilde{\mathcal{T}} can only be a function of time η\eta, so σ=σ(η)\sigma=\sigma(\eta) when Σ0\Sigma\neq 0.

Combining Eqs. (III.2) and (22), R^ρμνσ=0\hat{R}^{\sigma}_{~{}\rho\mu\nu}=0 gives

𝒮ij𝒰i,j+ϵijkΣ𝒰k+ϵikl𝒮jk𝒱l=0,\displaystyle\mathcal{S}^{\prime}_{ij}-\mathcal{U}_{i,j}+\epsilon_{ijk}\Sigma\,\mathcal{U}_{k}+\epsilon_{ikl}\mathcal{S}_{jk}\mathcal{V}_{l}=0~{}, (24)
Σδij𝒱i,j+ϵijkΣ𝒰kϵikl𝒮jk𝒰l=0,\displaystyle\Sigma^{\prime}\delta_{ij}-\mathcal{V}_{i,j}+\epsilon_{ijk}\Sigma\,\mathcal{U}_{k}-\epsilon_{ikl}\mathcal{S}_{jk}\mathcal{U}_{l}=0~{}, (25)
ϵikl𝒮lj,k+Σ(𝒮ij𝒮kkδij)=0,\displaystyle\epsilon_{ikl}\mathcal{S}_{lj,k}+\Sigma(\mathcal{S}_{ij}-\mathcal{S}_{kk}\delta_{ij})=0~{}, (26)
ϵinm𝒮jn𝒮kmΣ2ϵijk=0,\displaystyle\epsilon_{inm}\mathcal{S}_{jn}\mathcal{S}_{km}-\Sigma^{2}\epsilon_{ijk}=0~{}, (27)

where 𝒮ij=σδij+σij\mathcal{S}_{ij}=\sigma\delta_{ij}+\sigma_{ij} and the subscript “,i,i” represents a derivative with respect to xix^{i}. The trace of Eq. (26) gives

σΣ=0.\sigma\Sigma=0~{}. (28)

This means that at least one of σ\sigma and Σ\Sigma is zero. If σ=0\sigma=0, the equation after the Hodge duality of the ”j,kj,k” index in Eq. (27) can be decomposed as follows according to the trace part and the traceless part:

6Σ2+σijσij=0,σikσjk13(σklσkl)δij=0.6\,\Sigma^{2}+\sigma_{ij}\sigma_{ij}=0~{}~{},~{}~{}\sigma_{ik}\sigma_{jk}-\frac{1}{3}(\sigma_{kl}\sigma_{kl})\delta_{ij}=0~{}. (29)

The solution of Eq. (29) is Σ=0,σij=0\Sigma=0,\sigma_{ij}=0. This means that Eqs. (27) and (28) must give

Σ=0.\Sigma=0~{}. (30)

Combining Eqs. (22) and (30) gives Nμν=0N^{\mu\nu}=0 and 𝒯𝒯~=0\mathcal{T}\widetilde{\mathcal{T}}=0, which means that the Nieh-Yan term has no effect even on the irregular flat universe background. Therefore, the background equations of the irregular flat universe are exactly the same as those of GR. This is a somewhat unexpected result. But the fact that Nieh-Yan term has no effect on the background does not mean that it has no effect on the perturbations. In order to analyze the perturbations, we need to first find the background solution of the irregular flat universe.

Substituting Eq. (30) into Eqs. (24), (25), (26) and (27), we get

𝒮ij𝒰i,j+ϵikl𝒮jk𝒱l=0,\displaystyle\mathcal{S}^{\prime}_{ij}-\mathcal{U}_{i,j}+\epsilon_{ikl}\mathcal{S}_{jk}\mathcal{V}_{l}=0~{}, (31)
𝒱i,j+ϵikl𝒮jk𝒰l=0,\displaystyle\mathcal{V}_{i,j}+\epsilon_{ikl}\mathcal{S}_{jk}\mathcal{U}_{l}=0~{}, (32)
ϵikl𝒮lj,k=0,\displaystyle\epsilon_{ikl}\mathcal{S}_{lj,k}=0~{}, (33)
ϵinm𝒮jn𝒮km=0,\displaystyle\epsilon_{inm}\mathcal{S}_{jn}\mathcal{S}_{km}=0~{}, (34)

Although there are more equations than variables, this does not mean that Eqs. (31), (32), (33) and (34) have no solution. It can be verified that the following are the solution of Eqs. (31), (32), (33) and (34)

𝒮ij=vivjf(η)F(1)(vx),\displaystyle\mathcal{S}_{ij}=v_{i}v_{j}f(\eta)F^{(1)}(\vec{v}\cdot\vec{x})~{},
𝒱i=ga(η)αia(η,x)ha(η)βia(η,x),\displaystyle\mathcal{V}_{i}=g_{a}(\eta)\alpha^{a}_{i}(\eta,\vec{x})-h_{a}(\eta)\beta^{a}_{i}(\eta,\vec{x})~{},
𝒰i=ha(η)αia(η,x)+ga(η)βia(η,x)+vif(1)(η)F(vx),\displaystyle\mathcal{U}_{i}=h_{a}(\eta)\alpha^{a}_{i}(\eta,\vec{x})+g_{a}(\eta)\beta^{a}_{i}(\eta,\vec{x})+v_{i}f^{(1)}(\eta)F(\vec{v}\cdot\vec{x})~{}, (35)

where

αia(η,x)=cosh[vf(η)F(vx)]δai+vaviv2(1cosh[vf(η)F(vx)]),\displaystyle\alpha^{a}_{i}(\eta,\vec{x})=\cosh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]\delta_{ai}+\frac{v_{a}v_{i}}{v^{2}}\Big{(}1-\cosh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]\Big{)}~{},
βia(η,x)=ϵaijvjvsinh[vf(η)F(vx)],\displaystyle\beta^{a}_{i}(\eta,\vec{x})=\epsilon_{aij}\frac{v_{j}}{v}\sinh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]~{},

where v1,v2,v3v_{1},v_{2},v_{3} are constant parameters, v=δijvivjv=\sqrt{\delta^{ij}v_{i}v_{j}}, vx=vixi\vec{v}\cdot\vec{x}=v_{i}x^{i}, f(η),ga(η),ha(η)f(\eta),g_{a}(\eta),h_{a}(\eta) are arbitrary smooth function of conformal time η\eta, F(vx)F(\vec{v}\cdot\vec{x}) is arbitrary smooth function of vx\vec{v}\cdot\vec{x}, f(n)(η)f^{(n)}(\eta) is the nn derivative of f(η)f(\eta) with respect to conformal time η\eta, and F(n)(vx)F^{(n)}(\vec{v}\cdot\vec{x}) is the nn derivative of F(vx)F(\vec{v}\cdot\vec{x}) with respect to vx\vec{v}\cdot\vec{x}.

Putting solutions (22), (30) and (III.2) into the decomposition (III.2), the spin connection ωBμA\omega^{A}_{~{}B\mu} when the tetrad is eμA=aδμAe^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu} can be obtained as

ω00a=ωa00=hc(η)αac(η,x)+gc(η)βac(η,x)+vaf(1)(η)F(vx),\displaystyle\omega^{a}_{~{}00}=\omega^{0}_{~{}a0}=h_{c}(\eta)\alpha^{c}_{a}(\eta,\vec{x})+g_{c}(\eta)\beta^{c}_{a}(\eta,\vec{x})+v_{a}f^{(1)}(\eta)F(\vec{v}\cdot\vec{x})~{},
ωb0a=ϵabi[gc(η)αic(η,x)hc(η)βic(η,x)],\displaystyle\omega^{a}_{~{}b0}=\epsilon_{abi}\left[g_{c}(\eta)\alpha^{c}_{i}(\eta,\vec{x})-h_{c}(\eta)\beta^{c}_{i}(\eta,\vec{x})\right]~{},
ωai0=ω0ia=vavif(η)F(1)(vx),ωbia=0.\displaystyle\omega^{0}_{~{}ai}=\omega^{a}_{~{}0i}=v_{a}v_{i}f(\eta)F^{(1)}(\vec{v}\cdot\vec{x})~{},~{}~{}\omega^{a}_{~{}bi}=0~{}. (36)

It can be verified that the spin connection (III.2) does satisfy the teleparallel constraints (1). Due to the symmetry (11), not every hI(η)h_{I}(\eta) and gI(η)g_{I}(\eta) represent a physically inequivalent solution. In order to see this better, we perform a Lorentz transformation (9) on the above solution. The transformation matrix LBAL^{A}_{~{}B} is

L00=cosh[vf(η)F(vx)],La0=L0a=vavsinh[vf(η)F(vx)],\displaystyle L^{0}_{~{}0}=\cosh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]~{},~{}L^{0}_{~{}a}=L^{a}_{~{}0}=\frac{v_{a}}{v}\sinh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]~{},
Lba=δab+vavbv2(cosh[vf(η)F(vx)]1),\displaystyle L^{a}_{~{}b}=\delta_{ab}+\frac{v_{a}v_{b}}{v^{2}}\Big{(}\cosh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]-1\Big{)}~{}, (37)

Then, the tetrad e~μA=LBAeμB\tilde{e}^{A}_{~{}\mu}=L^{A}_{~{}B}e^{B}_{~{}\mu} and the corresponding spin connection ω~BμA\tilde{\omega}^{A}_{~{}B\mu} are

e~00=acosh[vf(η)F(vx)],e~0a=δaie~i0=avavsinh[vf(η)F(vx)],\displaystyle\tilde{e}^{0}_{~{}0}=a\cosh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]~{},\tilde{e}^{a}_{~{}0}=\delta^{ai}\tilde{e}^{0}_{~{}i}=a\frac{v_{a}}{v}\sinh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]~{},
e~ia=a[δai+vaviv2(cosh[vf(η)F(vx)]1)],\displaystyle\tilde{e}^{a}_{~{}i}=a\left[\delta_{ai}+\frac{v_{a}v_{i}}{v^{2}}\big{(}\cosh\left[vf(\eta)F(\vec{v}\cdot\vec{x})\right]-1\big{)}\right]~{},
ω~00a=ω~a00=ha(η),ω~b0a=ϵabcgb(η),ω~BiA=0.\displaystyle\tilde{\omega}^{a}_{~{}00}=\tilde{\omega}^{0}_{~{}a0}=h_{a}(\eta)~{},~{}\tilde{\omega}^{a}_{~{}b0}=\epsilon_{abc}g_{b}(\eta)~{},~{}\tilde{\omega}^{A}_{~{}Bi}=0~{}. (38)

It can be verified that the metric gμνg_{\mu\nu} and connection Γ^μνρ\hat{\Gamma}^{\rho}_{~{}\mu\nu} given by solution (III.2) are the same as those given by the tetrad eμA=aδμAe^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu} and the spin connection (III.2). Since the solution (III.2) satisfies the teleparallel constraints (1), the spin connection ω~BμA\tilde{\omega}^{A}_{~{}B\mu} in the solution (III.2) can be expressed by a Lorentz matrix Λ~BA(η,x)\tilde{\Lambda}^{A}_{~{}B}(\eta,\vec{x}). And ω~BiA=0\tilde{\omega}^{A}_{~{}Bi}=0 means that Λ~BA(η,x)=Λ~BA(η)\tilde{\Lambda}^{A}_{~{}B}(\eta,\vec{x})=\tilde{\Lambda}^{A}_{~{}B}(\eta). So taking different ha(η)h_{a}(\eta) and ga(η)g_{a}(\eta) is actually taking different Λ~BA(η)\tilde{\Lambda}^{A}_{~{}B}(\eta). Since θ=θ(η)\theta=\theta(\eta) in the cosmological background, different Λ~BA(η)\tilde{\Lambda}^{A}_{~{}B}(\eta) can be converted to each other through the Lorentz transformation Λ~BA(η)LCA(θ)Λ~BC(η)\tilde{\Lambda}^{A}_{~{}B}(\eta)\rightarrow L^{A}_{~{}C}(\theta)\tilde{\Lambda}^{C}_{~{}B}(\eta). Therefore, the solutions with different ha(η)h_{a}(\eta) and ga(η)g_{a}(\eta) can be transformed into each other by transformation (11), so they are physically equivalent. In this case, we only need to consider the simplest case below, that is, the case where ha(η)=ga(η)=0h_{a}(\eta)=g_{a}(\eta)=0, so that the solution (III.2) can be simplified to

eμA=aδμA,\displaystyle e^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu}~{},
ω00a=ωa00=vaf(1)(η)F(vx),ωb0a=0,\displaystyle\omega^{a}_{~{}00}=\omega^{0}_{a0}=v_{a}f^{(1)}(\eta)F(\vec{v}\cdot\vec{x})~{},~{}\omega^{a}_{~{}b0}=0~{},
ω0ia=ωai0=vavif(η)F(1)(vx),ωbia=0.\displaystyle\omega^{a}_{~{}0i}=\omega^{0}_{ai}=v_{a}v_{i}f(\eta)F^{(1)}(\vec{v}\cdot\vec{x})~{},~{}\omega^{a}_{~{}bi}=0~{}. (39)

The solution (III.2) can be expressed by the tetrad eμAe^{A}_{~{}\mu} and the Lorentz matrix ΛBA\Lambda^{A}_{~{}B} as

eμA=aδμA,Λ=Λ̊exp[f(η)F(vx)va𝕂a],e^{A}_{~{}\mu}=a\delta^{A}_{~{}\mu}~{},~{}~{}\Lambda=\mathring{\Lambda}\cdot\exp\Big{[}f(\eta)F(\vec{v}\cdot\vec{x})\,v_{a}\mathbb{K}^{a}\Big{]}~{}, (40)

where Λ̊\mathring{\Lambda} is a spacetime independent Lorentz matrix, and 𝕂1,𝕂2,𝕂3\mathbb{K}^{1},\mathbb{K}^{2},\mathbb{K}^{3} are the boost matrices whose expression are

𝕂1=(0100100000000000),𝕂2=(0010000010000000),𝕂3=(0001000000001000).\mathbb{K}^{1}=\left(\begin{array}[]{cccc}0&1&0&0\\ 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right)~{},~{}~{}\mathbb{K}^{2}=\left(\begin{array}[]{cccc}0&0&1&0\\ 0&0&0&0\\ 1&0&0&0\\ 0&0&0&0\end{array}\right)~{},~{}~{}\mathbb{K}^{3}=\left(\begin{array}[]{cccc}0&0&0&1\\ 0&0&0&0\\ 0&0&0&0\\ 1&0&0&0\end{array}\right)~{}.

Regardless of the functional form of f(η)f(\eta) and F(vx)F(\vec{v}\cdot\vec{x}), it can be verified that the solution (40) always satisfies the teleparallel constraints (1) and makes Eqs. (12) and (14) self-consistent. Note that the boosted tetrad solutions similar to the solution (40) are also discussed in Ref. Bejarano:2019fii ; BeltranJimenez:2020fvy ; Golovnev:2020nln . Putting solution (40) into Eqs. (12) and (14), we can get

32=a2(ρθ+ρ),2+2=a2(pθ+p),θ′′+2θ+a2V(1)=0.3\mathcal{H}^{2}=a^{2}\left(\rho_{\theta}+\rho\right)~{},~{}~{}2\mathcal{H}^{\prime}+\mathcal{H}^{2}=-a^{2}\left(p_{\theta}+p\right)~{},~{}~{}\theta^{\prime\prime}+2\mathcal{H}\theta^{\prime}+a^{2}V^{(1)}=0~{}. (41)

The background equations are exactly the same as those of GR. This means that the Nieh-Yan term has no effect even on the irregular flat universe background. This is consistent with our analysis above.

Finally, let’s focus on the symmetry of the connection given by the solution (40). The non-zero components of ξIΓ^μνρ\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{\rho}_{~{}\mu\nu} given by the solution (40) are

ξIΓ^0i0=ξIΓ^00i=vIvif(1)(η)F(1)(vx),\displaystyle\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{0}_{~{}0i}=\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{i}_{~{}00}=v_{I}v_{i}f^{(1)}(\eta)F^{(1)}(\vec{v}\cdot\vec{x})~{},
ξIΓ^ij0=ξIΓ^j0i=vIvivjf(η)F(2)(vx),\displaystyle\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{0}_{~{}ij}=\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{i}_{~{}j0}=v_{I}v_{i}v_{j}f(\eta)F^{(2)}(\vec{v}\cdot\vec{x})~{},
ξI+3Γ^0i0=ξI+3Γ^00i=ϵIijvjf(1)(η)F(vx)+viϵIjkvjxkf(1)(η)F(1)(vx),\displaystyle\mathcal{L}_{\xi_{I+3}}\hat{\Gamma}^{0}_{~{}0i}=\mathcal{L}_{\xi_{I+3}}\hat{\Gamma}^{i}_{~{}00}=-\epsilon_{Iij}v_{j}f^{(1)}(\eta)F(\vec{v}\cdot\vec{x})+v_{i}\epsilon_{Ijk}v_{j}x^{k}f^{(1)}(\eta)F^{(1)}(\vec{v}\cdot\vec{x})~{},
ξI+3Γ^ij0=ξI+3Γ^j0i=2v(iϵj)Ikvkf(η)F(1)(vx)+vivjϵIklvkxlf(η)F(2)(vx),\displaystyle\mathcal{L}_{\xi_{I+3}}\hat{\Gamma}^{0}_{~{}ij}=\mathcal{L}_{\xi_{I+3}}\hat{\Gamma}^{i}_{~{}j0}=2v_{(i}\epsilon_{j)Ik}v_{k}f(\eta)F^{(1)}(\vec{v}\cdot\vec{x})+v_{i}v_{j}\epsilon_{Ikl}v_{k}x^{l}f(\eta)F^{(2)}(\vec{v}\cdot\vec{x})~{}, (42)

where I=1,2,3I=1,2,3 in Eq. (III.2), and the subscript parentheses denotes the symmetrization. The fact that ξIΓ^μνρ0\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{\rho}_{~{}\mu\nu}\neq 0 indicates that the spacetime connection given by the solution (40) is neither homogeneous nor isotropic. So the solution (40) does represent an irregular flat universe. When vi=0v_{i}=0 or f(η)=0f(\eta)=0 or F(vx)=0F(\vec{v}\cdot\vec{x})=0, there is ξIΓ^μνρ=0\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{\rho}_{~{}\mu\nu}=0, and the solution (40) dose reduce to the regular flat universe solution (18).

IV Perturbations around the irregular flat universe

In the previous section we studied the flat universe solution of the NYTG model that only requires the metric to be homogeneous and isotropic. We found that the Nieh-Yan term has no effect even on the irregular flat universe background. In order to explore the effect of the Nieh-Yan term on the irregular flat universe, we study the linear cosmological perturbations around the irregular flat universe (40) in this section. For simplicity, we only consider the case of F(vx)=vxF(\vec{v}\cdot\vec{x})=\vec{v}\cdot\vec{x}, which is equivalent to requiring that the coefficients of the equations of linear perturbations do not depend on the spatial coordinates x\vec{x} (see below for details). And we also ignore other matter so that Sm=0S_{m}=0.

We use the following parametrization for perturbed tetrad Izumi:2012qj :

e 00=a(1+A),ei0=a(β,i+βiV),e 0c=aδci(χ,i+χiV),\displaystyle e^{0}_{\ 0}=a(1+A)~{},~{}e^{0}_{\ i}=a(\beta_{,i}+\beta_{i}^{V})~{},~{}e^{c}_{\ 0}=a\delta_{ci}(\chi_{,i}+\chi_{i}^{V})~{},
eic=aδcj[(1ψ)δij+α,ij+αj,iVϵijk(λ,k+λkV)+12hijT],\displaystyle e^{c}_{\ i}=a\delta_{cj}[(1-\psi)\delta_{ij}+\alpha_{,ij}+\alpha_{j,i}^{V}-\epsilon_{ijk}(\lambda_{,k}+\lambda_{k}^{V})+\frac{1}{2}h^{T}_{ij}]~{}, (43)

So the perturbed metric components have the familiar forms:

g00=a2(1+2A),g0i=a2(B,i+BiV),\displaystyle g_{00}=a^{2}(1+2A)~{},~{}g_{0i}=-a^{2}(B_{,i}+B_{i}^{V})~{},
gij=a2[(12ψ)δij+2α,ij+αi,jV+αj,iV+hijT],\displaystyle g_{ij}=-a^{2}[(1-2\psi)\delta_{ij}+2\alpha_{,ij}+\alpha_{i,j}^{V}+\alpha_{j,i}^{V}+h^{T}_{ij}]~{}, (44)

where B=χβB=\chi-\beta and BiV=χiVβiVB^{V}_{i}=\chi^{V}_{i}-\beta^{V}_{i}. Besides the familiar scalar perturbations (A,B,ψ,αA,B,\psi,\alpha), vector perturbations (BiV,αiVB_{i}^{V},\alpha^{V}_{i}), and tensor perturbations hijTh^{T}_{ij} in the metric, the parametrization of tetrad brings six extra variables, which are scalar perturbation λ,χ+β\lambda,\chi+\beta and vector perturbation λiV,χiV+βiV\lambda_{i}^{V},\chi_{i}^{V}+\beta_{i}^{V}. All the vector perturbations are transverse and denoted by the superscript VV, both the tensor perturbations are transverse and traceless and denoted by the superscript TT. In addition, the scalar field θ\theta is decomposed as θ(η,x)=θ¯(η)+δθ(η,x)\theta(\eta,\vec{x})=\bar{\theta}(\eta)+\delta\theta(\eta,\vec{x}).

Although we can perform a similar decomposition on the Lorentz matrix ΛBA\Lambda^{A}_{~{}B} following the parametrization in Ref. PVtele2 , we do not need to do so in this paper. Because we can always transform the perturbed Lorentz matrix into the background Lorentz matrix in Eq. (40) through the infinitesimal Lorentz transformation (8). In other words, we can always absorb the perturbations of the Lorentz matrix ΛBA\Lambda^{A}_{~{}B} into the perturbations of the tetrad eμAe^{A}_{~{}\mu} through the infinitesimal Lorentz transformation (8), so that we only need to deal with the perturbations of the the tetrad.

Due to the diffeomorphism invariance, it is safe to take the unitary gauge δθ=0,α=0,αiV=0\delta\theta=0,~{}\alpha=0,~{}\alpha_{i}^{V}=0. This simplifies the calculations, for example, the gauge invariant scalar perturbation ζ=(ψ+δθ/θ)\zeta=-(\psi+\mathcal{H}\delta\theta/\theta^{\prime}) representing the curvature perturbation of the hypersurfaces of constant θ\theta reduces to ψ-\psi under the unitary gauge. Since both α\alpha and αiV\alpha_{i}^{V} are perturbations which enter the metric, the perturbations α\alpha, αiV\alpha_{i}^{V} and δθ\delta\theta are invariant under the infinitesimal Lorentz transformation (8). Therefore, the unitary gauge is compatible with the operation of absorbing the perturbations of the Lorentz matrix into the perturbations of the tetrad.

The non-isotropic nature of the background connection may lead to coupling of scalar, vector and tensor perturbations. Therefore, when studying linear perturbations around the irregular flat universe (40), we should not deal with scalar, vector, or tensor perturbations individually, but should deal with all perturbation variables simultaneously. In the following we choose AA, ζ\zeta, BB, BiVB_{i}^{V}, βi=β,i+βiV\beta_{i}=\beta_{,i}+\beta_{i}^{V}, λi=λ,i+λiV\lambda_{i}=\lambda_{,i}+\lambda_{i}^{V} and hijTh^{T}_{ij} as independent variables, and we study the linear perturbations around the irregular flat universe by means of quadratic action.

For the NYTG model (7) with Sm=0S_{m}=0, one can directly obtain the quadratic action as

S(2)=d4xa2{6ζA3ζ2(2A+ζ)ζ,iia2VA2+2(ζA)B,ii+18(hijThijThij,kThij,kT)\displaystyle S^{(2)}=\int\mathrm{d}^{4}x~{}a^{2}\bigg{\{}6\mathcal{H}\zeta^{\prime}A-3{\zeta^{\prime}}^{2}-(2A+\zeta)\zeta_{,ii}-a^{2}VA^{2}+2(\zeta^{\prime}-\mathcal{H}A)B_{,ii}+\frac{1}{8}\left(h^{T\prime}_{ij}h^{T\prime}_{ij}-h^{T}_{ij,k}h^{T}_{ij,k}\right)
14BiVBi,jjV+cθ[2λiζ,i+12ϵijk(βiβj,kλiλj,k)+𝒮^ijλiβj12ϵijk𝒮ilhjlTβk18ϵijkhilThjl,kT]}.\displaystyle\quad\quad\quad\quad-\frac{1}{4}B_{i}^{V}B_{i,jj}^{V}+c\theta^{\prime}\Big{[}2\lambda_{i}\zeta_{,i}+\frac{1}{2}\epsilon^{ijk}(\beta_{i}\beta_{j,k}-\lambda_{i}\lambda_{j,k})+\hat{\mathcal{S}}_{ij}\lambda_{i}\beta_{j}-\frac{1}{2}\epsilon^{ijk}\mathcal{S}_{il}h^{T}_{jl}\beta_{k}-\frac{1}{8}\epsilon^{ijk}h^{T}_{il}h^{T}_{jl,k}\Big{]}\bigg{\}}.~{}~{}~{} (45)

where 𝒮ij=vivjf(η)F(1)(vx)\mathcal{S}_{ij}=v_{i}v_{j}f(\eta)F^{(1)}(\vec{v}\cdot\vec{x}) and 𝒮^ij=(vivjv2δij)f(η)F(1)(vx)\hat{\mathcal{S}}_{ij}=(v_{i}v_{j}-v^{2}\delta_{ij})f(\eta)F^{(1)}(\vec{v}\cdot\vec{x}). In general, the coefficients 𝒮ij\mathcal{S}_{ij} and 𝒮^ij\hat{\mathcal{S}}_{ij} are explicitly dependent on the spatial coordinate x\vec{x} unless FF is a linear function of vx\vec{v}\cdot\vec{x}. It means that generally the evolution equations for the linear perturbations are neither homogeneous nor isotropic. This is reasonable since we are studying the perturbations around an irregular background. In this paper we only consider the case where F(vx)=vxF(\vec{v}\cdot\vec{x})=\vec{v}\cdot\vec{x} for simplicity 222The expression of F(vx)F(\vec{v}\cdot\vec{x}) can differ by a constant term, which does not change the coefficients 𝒮ij\mathcal{S}_{ij} and 𝒮^ij\hat{\mathcal{S}}_{ij}. And a constant factor of the difference of F(vx)F(\vec{v}\cdot\vec{x}) can be absorbed into f(η)f(\eta).. In this way, 𝒮ij\mathcal{S}_{ij} and 𝒮^ij\hat{\mathcal{S}}_{ij} are constant coefficients. So the evolution equations for the linear perturbations are homogeneous. We will see later that when all constraints are lifted, the quadratic action (IV) will become homogeneous and isotropic. In addition, the terms 𝒮^ijλiβj\hat{\mathcal{S}}_{ij}\lambda_{i}\beta_{j} and ϵijk𝒮ilhjlTβk\epsilon^{ijk}\mathcal{S}_{il}h^{T}_{jl}\beta_{k} in the action (IV) show that there is a coupling of scalar, vector and tensor perturbations. But such coupling may be eliminated by the constraints imposed by the action (IV) itself. Therefore, only after the constraints are lifted can we know whether there is really a coupling of scalar, vector and tensor perturbations.

To further simplify the quadratic action, we change to the momentum space in terms of Fourier transformations,

ζ(η,x)=d3k(2π)32ζ(η,k)eikx,\zeta(\eta,\vec{x})=\int\frac{\mathrm{d}^{3}k}{(2\pi)^{\frac{3}{2}}}\,\zeta(\eta,\vec{k})\,\mathrm{e}^{\mathrm{i}\vec{k}\cdot\vec{x}}~{}, (46)

and we also expand the variables AA, BB, λi{\lambda}_{i}, βi{\beta}_{i} and hijTh^{T}_{ij} in the same way. Note that we use the normal letter i\mathrm{i} for imaginary unit to distinguish it from the italic letter ii used for spatial indices. The tensor perturbation hijTh^{T}_{ij} can be further expanded as

hijT(η,k)=AhA(η,k)e^ijA(k),h^{T}_{ij}(\eta,\vec{k})=\sum_{\mathrm{A}}h_{\mathrm{A}}(\eta,\vec{k})\,\hat{e}_{ij}^{\mathrm{A}}(\vec{k})~{}, (47)

where {e^ijA(k),A=L,R}\{\hat{e}^{\mathrm{A}}_{ij}(\vec{k}),~{}\mathrm{A}=\mathrm{L},\mathrm{R}\} are circular polarization bases 333 Note that the choice of circular polarization bases is not unique, e^ijA(k)\hat{e}^{\mathrm{A}}_{ij}(\vec{k}) can be rotated along the k\vec{k}-axis while maintaining all the properties of the circular polarization bases. For the case where there is a constant vector v0\vec{v}\neq 0 on the background, we can always choose the circular polarization bases to satisfy vivje^ijA(k)=(v2/2)sin2ϑv_{i}v_{j}\hat{e}^{\mathrm{A}}_{ij}(\vec{k})=(v^{2}/\sqrt{2})\sin^{2}\vartheta, where ϑ\vartheta is the angle between k\vec{k} and v\vec{v}. This choice maximally simplifies the quadratic action (57), so we adopt this choice in this paper. satisfying k^lϵlike^jkA(k)=i𝔭Ae^ijA(k)\hat{k}^{l}\epsilon_{lik}\hat{e}_{jk}^{\mathrm{A}}(\vec{k})=\mathrm{i}\mathfrak{p}_{\mathrm{A}}\hat{e}_{ij}^{\mathrm{A}}(\vec{k}), where k^\hat{k} is the unit vector of k\vec{k}, 𝔭L=1\mathfrak{p}_{\mathrm{L}}=-1 and 𝔭R=1\mathfrak{p}_{\mathrm{R}}=1. Note that we use the normal letter A\mathrm{A} for the left- and right- hand indices to distinguish it from the italic letter AA used to represent the tetrad indices. The quadratic action in the momentum space can be expressed as

S(2)=dηd3ka2{6ζA3ζζ+k2(2A+ζ)ζ+2k2(Aζ)B\displaystyle S^{(2)}=\int\mathrm{d}\eta\int\mathrm{d}^{3}k~{}a^{2}\bigg{\{}6\mathcal{H}\zeta^{\prime}A^{*}-3\zeta^{*\prime}\zeta^{\prime}+k^{2}(2A+\zeta)\zeta^{*}+2k^{2}(\mathcal{H}A-\zeta^{\prime})B^{*}
a2VAA+14k2BiVBiV+14𝒜[hAhA(k2cθ𝔭Ak)hAhA]\displaystyle\quad\quad\quad\quad-a^{2}VA^{*}A+\frac{1}{4}k^{2}B_{i}^{V*}B_{i}^{V}+\frac{1}{4}\sum_{\mathcal{A}}\left[h_{\mathrm{A}}^{*\prime}h_{\mathrm{A}}^{\prime}-(k^{2}-c\theta^{\prime}\mathfrak{p}_{\mathrm{A}}k)h^{*}_{\mathrm{A}}h_{\mathrm{A}}\right]
+cθ[2ikiλiζ+i2ϵijkki(βjβkλjλk)+𝒮^ijλiβj12βi(A𝒮iAhA)]},\displaystyle\quad\quad\quad\quad+c\theta^{\prime}\Big{[}2\mathrm{i}k^{i}\lambda^{*}_{i}\zeta+\frac{\mathrm{i}}{2}\epsilon^{ijk}k^{i}(\beta^{*}_{j}\beta_{k}-\lambda^{*}_{j}\lambda_{k})+\hat{\mathcal{S}}_{ij}\lambda^{*}_{i}\beta_{j}-\frac{1}{2}\beta^{*}_{i}\Big{(}\sum_{\mathrm{A}}\mathcal{S}^{\mathrm{A}}_{i}h_{\mathrm{A}}\Big{)}\Big{]}\bigg{\}}, (48)

where 𝒮iA(k)=ϵijk𝒮jle^klA(k)\mathcal{S}^{\mathrm{A}}_{i}(\vec{k})=\epsilon_{ijk}{\mathcal{S}}_{jl}\hat{e}^{\mathrm{A}}_{kl}(\vec{k}). It can be seen that AA, BB, BiVB_{i}^{V}, λi\lambda_{i} and βi\beta_{i} are all non-dynamical fields and the variations of the action (IV) with them lead to the following constraints:

BiV=0,\displaystyle B^{V}_{i}=0~{}, (49)
Aζ=0,\displaystyle\mathcal{H}A-\zeta^{\prime}=0~{}, (50)
3ζ+k2ζa2VA+k2B=0,\displaystyle 3\mathcal{H}\zeta^{\prime}+k^{2}\zeta-a^{2}VA+\mathcal{H}k^{2}B=0~{}, (51)
ϵijkkjλkiS^ijβj+2kiζ=0,\displaystyle\epsilon_{ijk}k^{j}\lambda_{k}-\mathrm{i}\hat{S}_{ij}\beta_{j}+2k^{i}\zeta=0~{}, (52)
S^ijλj+iϵijkkjβk+12A𝒮iAhA=0.\displaystyle-\hat{S}_{ij}\lambda_{j}+\mathrm{i}\epsilon_{ijk}k^{j}\beta_{k}+\frac{1}{2}\sum_{A}\mathcal{S}^{\mathrm{A}}_{i}h_{\mathrm{A}}=0~{}. (53)

For the regular flat universe case with vi=0v_{i}=0 or f(η)=0f(\eta)=0, there are S^ij=0\hat{S}_{ij}=0 and 𝒮iA=0\mathcal{S}^{\mathrm{A}}_{i}=0, so the solution of Eqs. (49), (50), (51), (52) and (53) is

ζ=0,A=0,B=0,BiV=0,λi=ikiλ,βi=ikiβ,\zeta=0~{},~{}A=0~{},~{}B=0~{},~{}B_{i}^{V}=0~{},~{}\lambda_{i}=\mathrm{i}k^{i}\lambda~{},~{}\beta_{i}=\mathrm{i}k^{i}\beta~{}, (54)

where λ\lambda and β\beta are arbitrary scalar perturbations. Substituting the Eq. (54) back into the action (IV), the action (IV) can be simplified as

S(2)=dηd3ka24A(|hA|2ωA2|hA|2),S^{(2)}=\int\mathrm{d}\eta\int\mathrm{d}^{3}k\,\frac{a^{2}}{4}\sum_{\mathrm{A}}\left(|h_{\mathrm{A}}^{\prime}|^{2}-\omega_{\mathrm{A}}^{2}|h_{\mathrm{A}}|^{2}\right)~{}, (55)

where ωA2=k2cθ𝔭Ak\omega^{2}_{\mathrm{A}}=k^{2}-c\theta^{\prime}\mathfrak{p}_{\mathrm{A}}k. It can be seen that there is no scalar dynamical degree of freedom at the linear perturbation level. This is a bit strange because the action (7) clearly shows that there is a scalar dynamical degree of freedom. Further research in Ref. PVtele2 shows that the missing scalar dynamical degree of freedom reappears in the regular curved universe. The phenomenon of degrees of freedom being hidden under special background also appears in f(𝕋)f(\mathbb{T}) gravity Ong:2013qja and massive gravity DeFelice:2012mx . This implies that such a special background is likely to suffer from strong coupling issue Delhom:2022vae . It can also be seen that the modified dispersion relation ωA2\omega^{2}_{\mathrm{A}} is helicity dependent. This means that GWs with different helicities will have different propagation velocities. This phenomenon is called velocity birefringence, which is a direct reflection of the parity violation in the NYTG model. These results are consistent with the results in Refs. PVtele1 ; PVtele2 444The subtle difference in the dispersion relation ωA2\omega^{2}_{\mathrm{A}} is due to the difference between expanding by eikxe^{\mathrm{i}\vec{k}\cdot\vec{x}} and expanding by eikxe^{-\mathrm{i}\vec{k}\cdot\vec{x}} in the Fourier transformation..

For the irregular flat universe case with vi0v_{i}\neq 0 and f(η)0f(\eta)\neq 0, the solution of Eqs. (49), (50), (51), (52) and (53) is

A=ζ/,B=[θ2ζ+2k2ζ]/2k22,BiV=0,\displaystyle A=\zeta^{\prime}/\mathcal{H}~{},~{}B=-\left[\theta^{\prime 2}\zeta^{\prime}+2k^{2}\mathcal{H}\zeta\right]/2k^{2}\mathcal{H}^{2}~{},~{}B^{V}_{i}=0~{},~{}
λi=(2cosϑkvsin2ϑϵijkkjvk)ζi22kki(A𝔭AhA),\displaystyle\lambda_{i}=\Big{(}\frac{2\cos\vartheta}{kv\sin^{2}\vartheta}\epsilon_{ijk}k^{j}v_{k}\Big{)}\zeta-\frac{\mathrm{i}}{2\sqrt{2}k}k^{i}\Big{(}\sum_{\mathrm{A}}\mathfrak{p}_{\mathrm{A}}h_{\mathrm{A}}\Big{)}~{},
βi=(2iv2f(η)sin2ϑki+2ivf(η)cosϑksin2ϑvi)ζ+ivf(η)cosϑ22kvi(AhA),\displaystyle\beta_{i}=\Big{(}\frac{2\mathrm{i}}{v^{2}f(\eta)\sin^{2}\vartheta}k^{i}+\frac{2\mathrm{i}vf(\eta)\cos\vartheta}{k\sin^{2}\vartheta}v_{i}\Big{)}\zeta+\frac{\mathrm{i}vf(\eta)\cos\vartheta}{2\sqrt{2}k}v_{i}\Big{(}\sum_{\mathrm{A}}h_{\mathrm{A}}\Big{)}~{}, (56)

where ϑ\vartheta is the angle between k\vec{k} and v\vec{v}. Substituting the above results back into the action (IV), the action (IV) can be simplified as

S(2)=dηd3k{z22(|ζ|2k2|ζ|2)+a24A(|hA|2ωA2|hA|2)ca2θk2ζ(A𝔭AhA)},S^{(2)}=\int\mathrm{d}\eta\int\mathrm{d}^{3}k\,\bigg{\{}\frac{z^{2}}{2}\left(|\zeta^{\prime}|^{2}-k^{2}|\zeta|^{2}\right)+\frac{a^{2}}{4}\sum_{\mathrm{A}}\left(|h_{\mathrm{A}}^{\prime}|^{2}-\omega_{\mathrm{A}}^{2}|h_{\mathrm{A}}|^{2}\right)-\frac{ca^{2}\theta^{\prime}k}{\sqrt{2}}\zeta^{*}\Big{(}\sum_{\mathrm{A}}\mathfrak{p}_{\mathrm{A}}h_{\mathrm{A}}\Big{)}\bigg{\}}~{}, (57)

where z2=a2θ2/2z^{2}=a^{2}\theta^{\prime 2}/\mathcal{H}^{2}. For the action (57), the following points need to be emphasized. Firstly, it can be seen that there is indeed a scalar dynamical degree of freedom, which again verifies that there is a scalar dynamical degree of freedom hidden under the regular flat universe at the linear perturbation level. Secondly, there are two tensor dynamics degrees of freedom and the dispersion relation ωA2\omega_{\mathrm{A}}^{2} is helicity dependent, as is the case for the regular universe. This means that the velocity birefringence phenomenon of GWs also exists in the irregular universe. Thirdly, it is surprising that viv_{i} and f(η)f(\eta) are completely cancelled in the step of lifting the constraints, so that the action (57) no longer depends on viv_{i} and f(η)f(\eta). This makes the case of vi=0,f(η)=0v_{i}=0,f(\eta)=0 not the limit of the case of vi0,f(η)0v_{i}\rightarrow 0,f(\eta)\rightarrow 0. This is somewhat analogous to the case where a massless photon is not the limit of a photon with mass tends to zero. Fourth, it can be seen that the coefficients in the action (57) are homogeneous and isotropic. This means that the evolution equations of the scalar perturbation ζ\zeta and the tensor perturbations hAh_{\mathrm{A}} are homogeneous and isotropic. It should be emphasized that such a property depends on the fact that we only consider the simple case with F(vx)=vxF(\vec{v}\cdot\vec{x})=\vec{v}\cdot\vec{x}. In the next section we will see that this results in isotropic power spectra for perturbations. This is consistent with observations since the current data from the CMB found no statistically significant evidence for direction dependence of the power spectra Planck:2018jri . More general considerations of the function FF and the constrains on it from observational data through detailed analysis deserve further studies. These considerations are model dependent and beyond the scope of this paper. Finally, it can be seen that even after the constraints are lifted, there is still a coupling of scalar and tensor degrees of freedom. This is a feature that neither in the regular flat universe nor in the regular curved universe. This means that scalar perturbations and tensor perturbations can influence each other at the linear perturbation level. This can be seen more clearly from the perspective of the equations of motion. From the action (57), the linear equations of ζ\zeta and hAh_{\mathrm{A}} can be obtained as

ζ′′+2zzζ+k2ζ+ca2θk2z2(A𝔭AhA)=0,\displaystyle\zeta^{\prime\prime}+2\frac{z^{\prime}}{z}\zeta^{\prime}+k^{2}\zeta+\frac{ca^{2}\theta^{\prime}k}{\sqrt{2}z^{2}}\Big{(}\sum_{\mathrm{A}}\mathfrak{p}_{\mathrm{A}}h_{\mathrm{A}}\Big{)}=0~{}, (58)
hA′′+2hA+ωA2hA+2cθ𝔭Akζ=0.\displaystyle h_{\mathrm{A}}^{\prime\prime}+2\mathcal{H}h_{\mathrm{A}}^{\prime}+\omega_{\mathrm{A}}^{2}h_{\mathrm{A}}+\sqrt{2}c\theta^{\prime}\mathfrak{p}_{\mathrm{A}}k\zeta=0~{}. (59)

Eq. (58) shows that the tensor perturbations hAh_{\mathrm{A}} can be used as a source of the scalar perturbation ζ\zeta. The scalar perturbation ζ\zeta can be excited when left- and right- handed GWs have different amplitudes or phases. And Eq. (59) shows that the scalar perturbation ζ\zeta can be used as a source of the tensor perturbations hAh_{\mathrm{A}}. It is worth noting that the source of the tensor perturbations hAh_{\mathrm{A}} caused by ζ\zeta is helicity-dependent, that is, the excitation effects caused by ζ\zeta on the left- and right-handed GWs are different.

V Primordial fluctuations generated by inflation

In the previous section, we preliminarily studied the the linear perturbations around the regular and irregular flat universe, and obtained the quadratic action after the constraints was lifted. In this section, we will preliminarily study the primordial fluctuations generated by slow-roll inflation in the regular and irregular flat universe.

V.1 The case of the regular universe

For the case of regular universe, the quadratic action (55) can be expressed as

S(2)=dηd3ka22A[|12hA|2(k2cθ𝔭Ak)|12hA|2].S^{(2)}=\int\mathrm{d}\eta\int\mathrm{d}^{3}k\,\frac{a^{2}}{2}\sum_{\mathrm{A}}\left[\Big{|}\frac{1}{\sqrt{2}}h_{\mathrm{A}}^{\prime}\Big{|}^{2}-\left(k^{2}-c\theta^{\prime}\mathfrak{p}_{\mathrm{A}}k\right)\Big{|}\frac{1}{\sqrt{2}}h_{\mathrm{A}}\Big{|}^{2}\right]~{}. (60)

Note that since there are only tensor degrees of freedom in the regular flat universe at the linear perturbation level, a scalar field other than θ\theta needs to be introduced to generate the primordial scalar perturbation PVtele1 ; Cai:2021uup . In this subsection we do not consider the case of introducing additional scalar fields, and we only focus on the tensor perturbations.

Next we consider the case of slow-roll inflation dominated by the axion-like field θ\theta. Since the background equations of the regular flat universe are exactly the same as those in GR, the background evolution during inflation will be exactly the same as the case of slow-roll inflation in GR Baumann:2009ds ; Wang:2013zva . So we don’t need to repeat the analysis of the details of single scalar field inflation. We introduce two commonly used slow-roll parameters

εH˙H2,δθ¨Hθ˙,\varepsilon\equiv-\frac{\dot{H}}{H^{2}}~{},~{}\delta\equiv\frac{\ddot{\theta}}{H\dot{\theta}}~{}, (61)

where H=a˙/a=/aH=\dot{a}/{a}=\mathcal{H}/a is the Hubble rate, the upper dot represents the derivative with respect to the physical time tt. We assume ε|δ|1\varepsilon\sim|\delta|\ll 1, |ε˙/H||ε||\dot{\varepsilon}/H|\ll|\varepsilon| and |δ˙/H||δ||\dot{\delta}/H|\ll|\delta| during inflation. Under the slow-roll approximation,

1+εη,θ2εη.\mathcal{H}\approx-\frac{1+\varepsilon}{\eta}~{}~{},~{}~{}\theta^{\prime}\approx\frac{\sqrt{2\varepsilon}}{\eta}~{}. (62)

Without loss of generality, in Eq. (62) we have assumed that the value of θ\theta decreases during inflation.

Next, by combining Eqs (60) and (62), the correlation function of hAh_{\mathrm{A}} can be obtained through the process in Appendix C:

hAhAH2e𝔭Aε/2cπk(3+2ε),\langle h_{\mathrm{A}}^{\dagger}h_{\mathrm{A}}\rangle\approx H^{2}\mathrm{e}^{-\mathfrak{p}_{\mathrm{A}}\sqrt{\varepsilon/2}c\pi}k^{-(3+2\varepsilon)}~{}, (63)

and hLhR=0\langle h_{\mathrm{L}}^{\dagger}h_{\mathrm{R}}\rangle=0. Through the correlation functions (63), the power spectrum of the left- and right-handed GWs can be obtained as

𝒫A(k)=k3π2hAhAH2π2e𝔭Aε/2cπk2ε.\mathcal{P}_{\mathrm{A}}(k)=\frac{k^{3}}{\pi^{2}}\langle h_{\mathrm{A}}^{\dagger}h_{\mathrm{A}}\rangle\approx\frac{H^{2}}{\pi^{2}}\mathrm{e}^{-\mathfrak{p}_{\mathrm{A}}\sqrt{\varepsilon/2}c\pi}k^{-2\varepsilon}~{}. (64)

The power spectrum of the tensor perturbations can be obtained as

𝒫T(k)=𝒫L(k)+𝒫R(k)H2π2[1+cosh(ε2cπ)]k2ε.\mathcal{P}_{T}(k)=\mathcal{P}_{\mathrm{L}}(k)+\mathcal{P}_{\mathrm{R}}(k)\approx\frac{H^{2}}{\pi^{2}}\left[1+\cosh\left(\sqrt{\frac{\varepsilon}{2}}c\pi\right)\right]k^{-2\varepsilon}~{}. (65)

The relative different between the power spectrum of the left- and right-handed GWs can be obtained as

Π𝒫R𝒫L𝒫R+𝒫Ltanh(ε2cπ)ε2cπ.\Pi\equiv\frac{\mathcal{P}_{\mathrm{R}}-\mathcal{P}_{\mathrm{L}}}{\mathcal{P}_{\mathrm{R}}+\mathcal{P}_{\mathrm{L}}}\approx-\tanh\left(\sqrt{\frac{\varepsilon}{2}}c\pi\right)\approx-\sqrt{\frac{\varepsilon}{2}}c\pi~{}. (66)

Π0\Pi\neq 0 means that the magnitudes of the primordial fluctuations of left- and right-handed GWs are different. This is a clear physical signal of parity violation. But this seems to contradict the conclusion in Refs. PVtele1 ; PVtele2 that there is only velocity birefringence of GWs but no amplitude birefringence of GWs in the NYTG model. The reason for this contradiction is that θ\theta^{\prime} is approximated as a constant in the analysis of the evolution of GWs in Refs. PVtele1 ; PVtele2 . Of course, this approximation is valid when studying the propagation of GWs in a slowly expanding universe. However, θ=aθ˙1/η\theta^{\prime}=a\dot{\theta}\propto 1/\eta cannot be approximated as a constant during the slow-roll inflation dominated by θ\theta. We know that for a harmonic oscillator (the equation of motion is x¨+ω2x=0\ddot{x}+\omega^{2}x=0), the amplitude of the harmonic oscillator can be changed when the frequency ω\omega is time-dependent. And when the time dependence of θ\theta^{\prime} is not negligible, the time dependence of ωL\omega_{L} and ωR\omega_{R} will be different, resulting in different effects on the amplitudes of left- and right-hand GWs. This is why the magnitudes of the primordial fluctuations of left- and right-handed GWs generated by slow-roll inflation in the regular flat universe are different. If ε0\varepsilon\rightarrow 0, it can be seen from Eq. (62) that θ0\theta^{\prime}\approx 0 can be approximated as a constant, and from Eq. (66), it can be seen that Π0\Pi\rightarrow 0 too, that is, the magnitudes of the primordial fluctuation of the left- and right-handed GWs are the same.

Finally, let’s look at the case when the coupling constant c0c\rightarrow 0, then

𝒫T(k)2H2π2k2ε,Π0.\mathcal{P}_{T}(k)\approx\frac{2H^{2}}{\pi^{2}}k^{-2\varepsilon}~{}~{},~{}~{}\Pi\approx 0~{}. (67)

This is exactly the result of the slow-roll inflation of single scalar field in GR.

V.2 The case of the irregular universe

For the case of irregular universe, since the coupling of ζ\zeta and hAh_{\mathrm{A}} in the action (57) makes it difficult to analyze the quantum fluctuations, we first diagonalize the variables ζ\zeta and hAh_{\mathrm{A}} below. Firstly, for the convenience of analysis, we introduce new variables ξ1=(z/a)ζ\xi_{1}=(z/a)\zeta, ξ2=(1/2)hL\xi_{2}=(1/\sqrt{2})h_{\mathrm{L}} and ξ3=(1/2)hR\xi_{3}=(1/\sqrt{2})h_{\mathrm{R}}, so that the action (57) can be simplified as

S(2)=dηd3ka22{s=13ξsξss1=13s2=13𝐌s1s2ξs1ξs2},with𝐌=(k2Ωκκκk2σ0κ0k2+σ),S^{(2)}=\int\mathrm{d}\eta\int\mathrm{d}^{3}k\,\frac{a^{2}}{2}\bigg{\{}\sum_{\mathrm{s}=1}^{3}\xi^{*\prime}_{\mathrm{s}}\xi_{\mathrm{s}}-\sum_{\mathrm{s}_{1}=1}^{3}\sum_{\mathrm{s}_{2}=1}^{3}\mathbf{M}_{\mathrm{s}_{1}\mathrm{s}_{2}}\xi^{*}_{\mathrm{s}_{1}}\xi_{\mathrm{s}_{2}}\bigg{\}}~{},~{}~{}\text{with}~{}~{}\mathbf{M}=\left(\begin{array}[]{ccc}k^{2}-\Omega&-\kappa&\kappa\\ -\kappa&k^{2}-\sigma&0\\ \kappa&0&k^{2}+\sigma\\ \end{array}\right)~{}, (68)

where Ω=z′′/za′′/a\Omega=z^{\prime\prime}/z-a^{\prime\prime}/a, σ=cθk\sigma=-c\theta^{\prime}k and κ=ck\kappa=c\mathcal{H}k are background quantities. Secondly, we introduce an orthogonal matrix 𝐓\mathbf{T} that can diagonalize the matrix 𝐌\mathbf{M}, and its expression is

𝐓=(𝐭1T𝐭2T𝐭3T),with𝐭s=s2+5s51+(τsσ)2κ2+(1(τsσ)(τs+Ω)κ2)2((τsσ)/κ1(τsσ)(τs+Ω)/κ21),\mathbf{T}=\left(\begin{array}[]{c}\mathbf{t}_{1}^{\mathrm{T}}\\ \mathbf{t}_{2}^{\mathrm{T}}\\ \mathbf{t}_{3}^{\mathrm{T}}\\ \end{array}\right)~{},~{}\text{with}~{}~{}\mathbf{t}_{\mathrm{s}}=\frac{-\mathrm{s}^{2}+5\mathrm{s}-5}{\sqrt{1+\frac{(\tau_{\mathrm{s}}-\sigma)^{2}}{\kappa^{2}}+\left(1-\frac{(\tau_{\mathrm{s}}-\sigma)(\tau_{\mathrm{s}}+\Omega)}{\kappa^{2}}\right)^{2}}}\left(\begin{array}[]{c}(\tau_{\mathrm{s}}-\sigma)/\kappa\\ 1-(\tau_{\mathrm{s}}-\sigma)(\tau_{\mathrm{s}}+\Omega)/\kappa^{2}\\ 1\\ \end{array}\right)~{}, (69)

where the superscript T\mathrm{T} means transpose, and {τs,s=1,2,3}\{\tau_{\mathrm{s}},~{}\mathrm{s}=1,2,3\} are the solutions of the cubic equation

τ3+Ωτ2(2κ2+σ2)τσ2Ω=0.\tau^{3}+\Omega\tau^{2}-(2\kappa^{2}+\sigma^{2})\tau-\sigma^{2}\Omega=0~{}. (70)

The specific expressions of {τs,s=1,2,3}\{\tau_{\mathrm{s}},~{}\mathrm{s}=1,2,3\} are in Appendix A. Finally, we introduce new variables {qs,s=1,2,3}\{q_{\mathrm{s}},~{}\mathrm{s}=1,2,3\}, which are defined as

(q1q2q3)=𝐓(ξ1ξ2ξ3).\left(\begin{array}[]{c}q_{1}\\ q_{2}\\ q_{3}\\ \end{array}\right)=\mathbf{T}\left(\begin{array}[]{c}\xi_{1}\\ \xi_{2}\\ \xi_{3}\\ \end{array}\right). (71)

Thus, the action (68) can be further simplified as

S(2)=s=13dηd3ka22{|qs|2(k2+τs)|qs|2}.S^{(2)}=\sum_{\mathrm{s}=1}^{3}\int\mathrm{d}\eta\int\mathrm{d}^{3}k\,\frac{a^{2}}{2}\Big{\{}|q_{\mathrm{s}}^{\prime}|^{2}-(k^{2}+\tau_{\mathrm{s}})|q_{\mathrm{s}}|^{2}\Big{\}}~{}. (72)

So far, we have simplified the action (57) with coupling between variables to the action (72) without coupling between variables. The latter form makes it easier to calculate the primordial fluctuations generated by inflation.

Next we consider the case of slow-roll inflation dominated by the axion-like field θ\theta. Since in Sec. III we proved that the background equations of the irregular flat universe are exactly the same as those in GR, the background evolution during inflation will be exactly the same as the case of slow-roll inflation in GR. Under the slow-roll approximation, the background quantities Ω\Omega, σ\sigma and κ\kappa can be approximately expressed as

Ω3(ε+δ)2η2,σ2εckη,κ(1+ε)ckη.\Omega\approx\frac{3(\varepsilon+\delta)}{2\eta^{2}}~{},~{}\sigma\approx-\frac{\sqrt{2\varepsilon}ck}{\eta}~{},~{}\kappa\approx-\frac{(1+\varepsilon)ck}{\eta}~{}. (73)

In this section, we also assume that the coupling constant c1c\sim 1 (it can also be seen as a requirement of naturalness), so that cεc\gg\sqrt{\varepsilon}. Ignoring high-order small quantities such as ε2\varepsilon^{2}, {τs,s=1,2,3}\{\tau_{\mathrm{s}},~{}\mathrm{s}=1,2,3\} in Eq. (A) can be approximated as

τ1(2+3ε)ck2η3(ε+δ)2η2,τ20,τ3(2+3ε)ck2η3(ε+δ)2η2.\tau_{1}\approx\frac{(2+3\varepsilon)ck}{\sqrt{2}\eta}-\frac{3(\varepsilon+\delta)}{2\eta^{2}}~{},~{}\tau_{2}\approx 0~{},~{}\tau_{3}\approx-\frac{(2+3\varepsilon)ck}{\sqrt{2}\eta}-\frac{3(\varepsilon+\delta)}{2\eta^{2}}~{}. (74)

If only up to the order of ε\sqrt{\varepsilon} is retained, the orthogonal matrix 𝐓\mathbf{T} can be approximated as

𝐓(121+ε21ε2ε1212121ε21+ε2)\mathbf{T}\approx\left(\begin{array}[]{ccc}\frac{1}{\sqrt{2}}&\frac{1+\sqrt{\varepsilon}}{2}&-\frac{1-\sqrt{\varepsilon}}{2}\\ -\sqrt{\varepsilon}&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&-\frac{1-\sqrt{\varepsilon}}{2}&\frac{1+\sqrt{\varepsilon}}{2}\\ \end{array}\right) (75)

Regarding the approximate expression (75), there are two points that need additional explanation. First, the order ε\sqrt{\varepsilon} is the lowest order approximation required to preserve the difference in the power spectrum of left- and right-handed GWs. If we further ignore the contribution of ε\sqrt{\varepsilon} in 𝐓\mathbf{T}, the difference in the power spectrum of left- and right-handed GWs disappears. And if we keep the higher-order terms, it brings only more complex but less important corrections in the power spectrum. Second, it can be seen that the matrix 𝐓\mathbf{T} does not tend to the identity matrix as c0c\rightarrow 0 in the approximate expression (75). This is confusing because the three variables are all decoupled as c0c\rightarrow 0 in the action (68). The reason for this confusing phenomenon is that we have used the approximation cεc\gg\sqrt{\varepsilon} in Eqs. (74) and (75). If cc is too small, neither the Eq. (74) nor Eq. (75) hold. See Appendix B for the approximate behavior of orthogonal matrix 𝐓\mathbf{T} when c0c\rightarrow 0.

Next, by combining Eqs (72) and (74), the correlation function between variables qsq_{\mathrm{s}} can be obtained through the process in Appendix C:

q1q1H22ecπ2k(3+3ε+δ),q2q2H22k(3+2ε),q3q3H22ecπ2k(3+3ε+δ),\langle q_{1}^{\dagger}q_{1}\rangle\approx\frac{H^{2}}{2}\mathrm{e}^{\frac{c\pi}{\sqrt{2}}}k^{-(3+3\varepsilon+\delta)}~{},~{}\langle q_{2}^{\dagger}q_{2}\rangle\approx\frac{H^{2}}{2}k^{-(3+2\varepsilon)}~{},~{}\langle q_{3}^{\dagger}q_{3}\rangle\approx\frac{H^{2}}{2}\mathrm{e}^{-\frac{c\pi}{\sqrt{2}}}k^{-(3+3\varepsilon+\delta)}~{}, (76)

and qs1qs2=0\langle q_{\mathrm{s}_{1}}^{\dagger}q_{\mathrm{s}_{2}}\rangle=0 when s1s2\mathrm{s}_{1}\neq\mathrm{s}_{2}. Then, using the approximation techniques in Appendix D and combining Eqs (71), (75) and (76), the correlation functions for the variables ζ\zeta and hAh_{\mathrm{A}} can be obtained as

ζζ12εcosh(cπ2)H2knS4,\displaystyle\langle\zeta^{\dagger}\zeta\rangle\approx\frac{1}{2\varepsilon}\cosh\left(\frac{c\pi}{\sqrt{2}}\right)H^{2}k^{n_{S}-4}~{},
hAhA[12+12cosh(cπ2)𝔭Aεsinh(cπ2)]H2knT3,\displaystyle\langle h_{\mathrm{A}}^{\dagger}h_{\mathrm{A}}\rangle\approx\left[\frac{1}{2}+\frac{1}{2}\cosh\left(\frac{c\pi}{\sqrt{2}}\right)-\mathfrak{p}_{\mathrm{A}}\sqrt{\varepsilon}\sinh\left(\frac{c\pi}{\sqrt{2}}\right)\right]H^{2}k^{n_{T}-3}~{},
ζhA𝔭A22εsinh(cπ2)H2k(3+3ε+δ),\displaystyle\langle\zeta^{\dagger}h_{\mathrm{A}}\rangle\approx-\frac{\mathfrak{p}_{\mathrm{A}}}{2\sqrt{2\varepsilon}}\sinh\left(\frac{c\pi}{\sqrt{2}}\right)H^{2}k^{-(3+3\varepsilon+\delta)}~{},
hLhR12[1cosh(cπ2)]H2k(3+3ε+δ)12csch2(cπ22)(ε+δ),\displaystyle\langle h_{\mathrm{L}}^{\dagger}h_{\mathrm{R}}\rangle\approx\frac{1}{2}\left[1-\cosh\left(\frac{c\pi}{\sqrt{2}}\right)\right]H^{2}k^{-(3+3\varepsilon+\delta)-\frac{1}{2}\,\mathrm{csch}^{2}\left(\frac{c\pi}{2\sqrt{2}}\right)(\varepsilon+\delta)}~{}, (77)

where

nS1(δ+3ε),nT(3ε+δ)+12sech2(cπ22)(ε+δ).n_{S}\approx 1-(\delta+3\varepsilon)~{}~{},~{}~{}n_{T}\approx-(3\varepsilon+\delta)+\frac{1}{2}\,\mathrm{sech}^{2}\left(\frac{c\pi}{2\sqrt{2}}\right)(\varepsilon+\delta)~{}. (78)

It should be noted that since Eqs. (74) and (75) are approximately true only when cεc\gg\sqrt{\varepsilon}, Eqs. (V.2) and (78) are also approximately true only when cεc\gg\sqrt{\varepsilon}.

Through the correlation functions (V.2), the power spectrum of the scalar perturbation ζ\zeta can be obtained as

𝒫S(k)=k32π2ζζH28π2εcosh(cπ2)knS1.\mathcal{P}_{S}(k)=\frac{k^{3}}{2\pi^{2}}\langle\zeta^{\dagger}\zeta\rangle\approx\frac{H^{2}}{8\pi^{2}\varepsilon}\cosh\left(\frac{c\pi}{\sqrt{2}}\right)k^{n_{S}-1}~{}. (79)

The power spectrum of the left- and right-handed GWs can be obtained as

𝒫A(k)=k3π2hAhAH22π2[1+cosh(cπ2)2𝔭Aεsinh(cπ2)]knT.\mathcal{P}_{\mathrm{A}}(k)=\frac{k^{3}}{\pi^{2}}\langle h_{\mathrm{A}}^{\dagger}h_{\mathrm{A}}\rangle\approx\frac{H^{2}}{2\pi^{2}}\left[1+\cosh\left(\frac{c\pi}{\sqrt{2}}\right)-2\mathfrak{p}_{\mathrm{A}}\sqrt{\varepsilon}\sinh\left(\frac{c\pi}{\sqrt{2}}\right)\right]k^{n_{T}}. (80)

The power spectrum of the tensor perturbations can be obtained as

𝒫T(k)=𝒫L(k)+𝒫R(k)H2π2[1+cosh(cπ2)]knT.\mathcal{P}_{T}(k)=\mathcal{P}_{\mathrm{L}}(k)+\mathcal{P}_{\mathrm{R}}(k)\approx\frac{H^{2}}{\pi^{2}}\left[1+\cosh\left(\frac{c\pi}{\sqrt{2}}\right)\right]k^{n_{T}}~{}. (81)

The tensor-to-scalar ratio rr can be obtained as

r𝒫T𝒫S=8[1+sech(cπ2)]ε.r\equiv\frac{\mathcal{P}_{T}}{\mathcal{P}_{S}}=8\left[1+\mathrm{sech}\left(\frac{c\pi}{\sqrt{2}}\right)\right]\varepsilon~{}. (82)

The relative different between the power spectrum of the left- and right-handed GWs can be obtained as

Π𝒫R𝒫L𝒫R+𝒫L2εtanh(cπ2).\Pi\equiv\frac{\mathcal{P}_{\mathrm{R}}-\mathcal{P}_{\mathrm{L}}}{\mathcal{P}_{\mathrm{R}}+\mathcal{P}_{\mathrm{L}}}\approx-2\sqrt{\varepsilon}\tanh\left(\frac{c\pi}{\sqrt{2}}\right)~{}. (83)

Strictly speaking, since Eqs. (V.2) and (78) are only approximately true when cεc\gg\sqrt{\varepsilon}, Eqs. (79)-(83) are also approximately true only when cεc\gg\sqrt{\varepsilon}. But If we ignore this fact and force c0c\rightarrow 0, then

𝒫SH28π2εknS1,𝒫T2H2π2knT,r16ε,Π0.\mathcal{P}_{S}\approx\frac{H^{2}}{8\pi^{2}\varepsilon}k^{n_{S}-1}~{},~{}\mathcal{P}_{T}\approx\frac{2H^{2}}{\pi^{2}}k^{n_{T}}~{},~{}r\approx 16\varepsilon~{},~{}\Pi\approx 0~{}. (84)

It can be seen that except for the spectral indices nSn_{S} and nTn_{T}, Eq. (84) is the result of the slow-roll inflation in GR.

Once the spectral index nS,nTn_{S},n_{T} and the tensor-to-scalar ratio rr are measured experimentally, we can obtain the slow-roll parameters ε,δ\varepsilon,\delta and the coupling constant cc as

ε=116[4(1nS)+r+(r+44nS)2+16rnT],\displaystyle\varepsilon=\frac{1}{16}\Big{[}4(1-n_{S})+r+\sqrt{(r+4-4n_{S})^{2}+16r\,n_{T}}\Big{]}~{}, (85)
δ=116[4(1nS)3r+3(r+44nS)2+16rnT],\displaystyle\delta=\frac{1}{16}\Big{[}4(1-n_{S})-3r+3\sqrt{(r+4-4n_{S})^{2}+16r\,n_{T}}\Big{]}~{}, (86)
c=2πarccosh[(r+44nS)2+16rnT4(1nS)8nT8(1nS+nT)].\displaystyle c=\frac{\sqrt{2}}{\pi}\mathrm{arccosh}\bigg{[}\frac{\sqrt{(r+4-4n_{S})^{2}+16r\,n_{T}}-4(1-n_{S})-8n_{T}}{8(1-n_{S}+n_{T})}\bigg{]}~{}. (87)

In order to ensure that cc given by Eq. (87) is real, we need the values of nS,nTn_{S},n_{T} and rr to fall in the blue region in FIG. 1.

Refer to caption
Figure 1: The blue region is the region where the coupling constant cc is real. Since Planck 2018 Planck:2018nkj gives r<0.101r<0.101 and nS0.966n_{S}\approx 0.966, we only considered the interval 0<r/(1nS)<30<r/(1-n_{S})<3.

If the values of nS,nTn_{S},n_{T} and rr fall outside the blue region in FIG. 1, it means that cc given by Eq. (87) is not real, and this irregular universe model cannot be consistent with the experiment. If the values of the nS,nTn_{S},n_{T} and rr fall in the blue region in FIG. 1, then we can obtain the values of ε,δ\varepsilon,\delta and cc, so that we can calculate the value of the relative different Π\Pi between the left- and right-handed primordial GWs through Eq. (83). On this basis, if the relative different Π\Pi can be measured experimentally, we can test whether this irregular universe model is consistent with the experiment by comparing the theoretical and experimental values of Π\Pi.

Unfortunately, primordial GWs have not yet been observed experimentally, so we cannot know the values of tensor spectral index nTn_{T}, the tensor-to-scalar ratio rr and the relative different Π\Pi between the left- and right-handed primordial GWs. From the Planck 2018 Planck:2018nkj , we only know that the scalar spectral index nS0.966n_{S}\approx 0.966 and the tensor-to-scalar ratio r<0.101r<0.101. Therefore, all we can know is that the allowable value range of the slow-roll parameters ε,δ\varepsilon,\delta is

0<ε<0.1018[1+sech(cπ/2)]<0.012625,δ0.0343ε.0<\varepsilon<\frac{0.101}{8\left[1+\mathrm{sech}\left(c\pi/\sqrt{2}\right)\right]}<0.012625~{}~{},~{}~{}\delta\approx 0.034-3\varepsilon~{}. (88)

The maximum value of ε\varepsilon depends on the coupling constant cc, but will not exceed 0.0126250.012625 (the upper limit of ε\varepsilon when cc\rightarrow\infty). The allowable value of δ\delta is determined by ε\varepsilon. FIG. 2 shows the allowable value range of slow-roll parameters ε,δ\varepsilon,\delta when c=1c=1.

Refer to caption
Figure 2: In the ε\varepsilon-δ\delta plane, the blue line is the allowable value range when c=1c=1.

Although by comparing the results in subsections V.1 and V.2, we can find that the power spectrum of the left- and right-handed GWs given by the irregular universe is different from that of the regular universe. But this is not the main difference between irregular and regular universes for primordial fluctuations. For primordial fluctuations, the most important feature of the irregular universe compared to the regular universe is that the correlation function of scalar perturbation and tensor perturbations ζhA0\langle\zeta^{\dagger}h_{\mathrm{A}}\rangle\neq 0 at the linear perturbation level. This means that there is a strong statistical correlation between primordial scalar fluctuations and primordial tensor fluctuations generated by slow-roll inflation in the irregular universe. The apparent reason for this phenomenon is that the quadratic action contains the coupling of scalar perturbations and tensor perturbations in the irregular universe, as exhibited by the action (57). The deeper reason may be that the condition ξIΓ^μνρ0\mathcal{L}_{\xi_{I}}\hat{\Gamma}^{\rho}_{~{}\mu\nu}\neq 0 destroys the homogeneity and isotropy of the interior space, so that the scalar fluctuations and the tensor fluctuations can interact with each other in the irregular universe.

VI Conclusion

As a step towards exploring the irregular universe within the TG framework, in this paper, we studied the irregular flat universe of the NYTG model. Firstly, we obtained the irregular flat universe solution of the NYTG model under the condition that only the symmetry of the metric is required. We found that the cosmological background equations of the NYTG model are exactly the same as those of GR in both the regular flat universe and the irregular flat universe. Secondly, we studied the linear cosmological perturbations around the irregular flat universes. We found a peculiar feature of the irregular flat universe: the tensor and scalar perturbations are coupled together at the linear perturbation level. We speculate that this peculiar feature is caused by the fact that the interior space does not satisfy the homogeneity and isotropy in the irregular universe. Finally, we applied the NYTG model to the early universe and studied the primordial perturbations generated by slow-roll inflation in the regular and irregular flat universes. We found that the left- and right-handed primordial GWs are different in both the regular flat universe and the irregular flat universe. We also found that there is a strong statistical correlation between the primordial scalar and tensor perturbations generated by slow-roll inflation in the case of irregular universe, this is a direct consequence of the direct coupling between the scalar and tensor perturbations at linear order.

Acknowledgement: This work is supported in part by National Key R&D Program of China Grant No. 2021YFC2203102, and by NSFC under Grant No. 12075231 and 12047502.

Appendix A Solutions of the cubic equation

Consider a cubic equation with respect to the variable τ\tau as

𝔞τ3+𝔟τ2+𝔠τ+𝔡=0,\mathfrak{a}\tau^{3}+\mathfrak{b}\tau^{2}+\mathfrak{c}\tau+\mathfrak{d}=0~{}, (89)

where 𝔞\mathfrak{a}, 𝔟\mathfrak{b}, 𝔠\mathfrak{c} and 𝔡\mathfrak{d} are real coefficients. In order to express the solution of Eq. (89) conveniently, we introduce the following parameters

𝔄=𝔟23𝔞𝔠,𝔅=𝔟𝔠9𝔞𝔡,=𝔠23𝔟𝔡,Δ=𝔅24𝔄,Θ=13arccos(2𝔄𝔟3𝔅𝔞2𝔄3/2).\mathfrak{A}=\mathfrak{b}^{2}-3\mathfrak{a}\mathfrak{c}~{},~{}\mathfrak{B}=\mathfrak{b}\mathfrak{c}-9\mathfrak{a}\mathfrak{d}~{},~{}\mathfrak{C}=\mathfrak{c}^{2}-3\mathfrak{b}\mathfrak{d}~{},~{}\Delta=\mathfrak{B}^{2}-4\mathfrak{A}\mathfrak{C}~{},~{}\Theta=\frac{1}{3}\arccos\left(\frac{2\mathfrak{A}\mathfrak{b}-3\mathfrak{B}\mathfrak{a}}{2\mathfrak{A}^{3/2}}\right)~{}. (90)

When Δ<0\Delta<0, Eq. (89) has three real solutions, which are

τ1=13𝔞(𝔟+2𝔄cosΘ),\displaystyle\tau_{1}=-\frac{1}{3\mathfrak{a}}\left(\mathfrak{b}+2\sqrt{\mathfrak{A}}\cos\Theta\right)~{},
τ2=13𝔞[𝔟+𝔄(cosΘ3sinΘ)],\displaystyle\tau_{2}=\frac{1}{3\mathfrak{a}}\left[-\mathfrak{b}+\sqrt{\mathfrak{A}}\left(\cos\Theta-\sqrt{3}\sin\Theta\right)\right]~{},
τ3=13𝔞[𝔟+𝔄(cosΘ+3sinΘ)],\displaystyle\tau_{3}=\frac{1}{3\mathfrak{a}}\left[-\mathfrak{b}+\sqrt{\mathfrak{A}}\left(\cos\Theta+\sqrt{3}\sin\Theta\right)\right]~{}, (91)

The Eq. (70) in the main text is the result of taking 𝔞=1\mathfrak{a}=1, 𝔟=Ω\mathfrak{b}=\Omega, 𝔠=(2κ2+σ2)\mathfrak{c}=-(2\kappa^{2}+\sigma^{2}) and 𝔡=σ2Ω\mathfrak{d}=-\sigma^{2}\Omega in Eq. (89). In this case, there are always 𝔄0\mathfrak{A}\geq 0 and Δ0\Delta\leq 0, where the equal sign holds if and only if κ=σ=Ω=0\kappa=\sigma=\Omega=0. And when κ=σ=Ω=0\kappa=\sigma=\Omega=0, obviously the three solutions of Eq. (70) are τ1=τ2=τ3=0\tau_{1}=\tau_{2}=\tau_{3}=0, and the orthogonal matrix 𝐓\mathbf{T} is the identity matrix.

Appendix B The orthogonal matrix 𝐓\mathbf{T} when c0c\rightarrow 0

In this appendix, we discuss the approximate behavior of the orthogonal matrix 𝐓\mathbf{T} in Eq. (69) as c0c\rightarrow 0 in a more general background (not only during inflation). Since σc\sigma\propto c and κc\kappa\propto c, then

κΩc,σΩc,κ22σΩc.\frac{\kappa}{\Omega}\propto c~{},~{}\frac{\sigma}{\Omega}\propto c~{},~{}\frac{\kappa^{2}}{2\sigma\Omega}\propto c~{}. (92)

When cc is much smaller than any other background quantities such as ε\sqrt{\varepsilon}, θ˙\dot{\theta} and 1\mathcal{H}^{-1}, ignoring the quadratic and higher terms of cc, the solutions of Eq. (70) can be approximately expressed as

τ1Ω,τ2σ,τ3σ.\tau_{1}\approx\Omega~{},~{}\tau_{2}\approx\sigma~{},~{}\tau_{3}\approx\sigma~{}. (93)

So the orthogonal matrix 𝐓\mathbf{T} in Eq. (69) can be approximately expressed as

𝐓=(1κΩκΩκΩ1κ22σΩκΩκ22σΩ1)whenc0(100010001)\mathbf{T}=\left(\begin{array}[]{ccc}1&\frac{\kappa}{\Omega}&-\frac{\kappa}{\Omega}\\ -\frac{\kappa}{\Omega}&1&\frac{\kappa^{2}}{2\sigma\Omega}\\ \frac{\kappa}{\Omega}&-\frac{\kappa^{2}}{2\sigma\Omega}&1\\ \end{array}\right)\xrightarrow{\text{when}~{}c\rightarrow 0}\left(\begin{array}[]{ccc}1&0&0\\ 0&1&0\\ 0&0&1\\ \end{array}\right) (94)

It can be easily seen from Eqs. (92) and (94) that when c0c\rightarrow 0, the orthogonal matrix 𝐓\mathbf{T} does tend to the identity matrix. This is consistent with the fact that all variables in the action (68) tend to be decoupled when c0c\rightarrow 0.

Appendix C Correlation function generated by inflation

The purpose of this appendix is to show how to calculate the correlation function generated by inflation. Consider a univariate system whose effective action during inflation is

S=12dηd3ka2[|qk|2(k22𝔞kη3𝔟η2)|qk|2],S=\frac{1}{2}\int\mathrm{d}\eta\,\mathrm{d}^{3}k\,a^{2}\left[|q_{\vec{k}}^{\prime}|^{2}-\left(k^{2}-\frac{2\mathfrak{a}k}{\eta}-\frac{3\mathfrak{b}}{\eta^{2}}\right)|q_{\vec{k}}|^{2}\right]~{}, (95)

where 𝔞\mathfrak{a} and 𝔟\mathfrak{b} are real parameters, and 𝔟\mathfrak{b} has the same order of magnitude as the slow-roll parameter ε\varepsilon. Here q(η,x)q(\eta,\vec{x}) is the variable and we have changed to the Fourier space qk(η)q_{\vec{k}}(\eta). After quantization, the variable qk(η)q_{\vec{k}}(\eta) can be expanded as

qk(η)=1a(η)(vk(η)a^k+vk(η)a^k),q_{\vec{k}}(\eta)=\frac{1}{a(\eta)}\left(v_{k}(\eta)\hat{a}_{\vec{k}}+v_{k}^{*}(\eta)\hat{a}_{\vec{k}}^{\dagger}\right)~{}, (96)

where a^k\hat{a}_{\vec{k}}^{\dagger} and a^k\hat{a}_{\vec{k}} are the generation and annihilation operators that satisfy the following commutation relations

[a^ka^k]=δ(3)(kk),[a^ka^k]=[a^ka^k]=0,[\hat{a}_{\vec{k}}~{}\hat{a}_{\vec{k}^{\prime}}^{\dagger}]=\updelta^{(3)}(\vec{k}-\vec{k}^{\prime})~{}~{},~{}~{}[\hat{a}_{\vec{k}}~{}\hat{a}_{\vec{k}^{\prime}}]=[\hat{a}_{\vec{k}}^{\dagger}~{}\hat{a}_{\vec{k}^{\prime}}^{\dagger}]=0~{}, (97)

and vk(η)v_{k}(\eta) satisfies the following equation

vk′′+(k22𝔞kημ21/4η2)vk=0,v_{k}^{\prime\prime}+\left(k^{2}-\frac{2\mathfrak{a}k}{\eta}-\frac{\mu^{2}-1/4}{\eta^{2}}\right)v_{k}=0~{}, (98)

where μ3/2+ε+𝔟\mu\approx 3/2+\varepsilon+\mathfrak{b}. Note that in Eq. (98), we used the approximation a′′/a[(3/2+ε)21/4]/ηa^{\prime\prime}/a\approx[(3/2+\varepsilon)^{2}-1/4]/\eta, and we ignored the higher-order terms of ε\varepsilon and 𝔟\mathfrak{b}. Next we choose the Bunch-Davies vacuum at η\eta\rightarrow-\infty, that is,

limηvk=12keikη.\lim_{\eta\rightarrow-\infty}v_{k}=\frac{1}{\sqrt{2k}}\mathrm{e}^{-\mathrm{i}k\eta}~{}. (99)

Under this condition, the solution for Eq. (98) is (for more detail, see Satoh:2010ep )

vk(η)=eikη(2kη)μ(η)12eiπ(14+μ2)𝐔(1/2+μi𝔞,1+2μ;2ikη)e𝔞π2,v_{k}(\eta)=\mathrm{e}^{-\mathrm{i}k\eta}(-2k\eta)^{\mu}(-\eta)^{\frac{1}{2}}\mathrm{e}^{-\mathrm{i}\pi(\frac{1}{4}+\frac{\mu}{2})}\mathbf{U}\left(1/2+\mu-\mathrm{i}\mathfrak{a},1+2\mu;~{}2\mathrm{i}k\eta\right)\mathrm{e}^{-\frac{\mathfrak{a}\pi}{2}}~{}, (100)

where 𝐔(c1,c2;z)\mathbf{U}(c_{1},c_{2};\,\mathrm{z}) is the confluent hypergeometric function. The |vk||v_{k}| has the following asymptotic form when kη0k\eta\rightarrow 0^{-} (super-horizon scale)

|vk|2μ1π12Γ(μ)kμ(η)12μe𝔞π2212e𝔞π2aHkμ|v_{k}|\approx 2^{\mu-1}\pi^{-\frac{1}{2}}\Gamma(\mu)k^{-\mu}(-\eta)^{\frac{1}{2}-\mu}\mathrm{e}^{-\frac{\mathfrak{a}\pi}{2}}\approx 2^{-\frac{1}{2}}\mathrm{e}^{-\frac{\mathfrak{a}\pi}{2}}aHk^{-\mu} (101)

where Γ(z)\Gamma(\mathrm{z}) is the Gamma function. In the last approximately equal sign in Eq. (101), we used the approximations μ3/2\mu\approx 3/2 and (η)1aH(-\eta)^{-1}\approx aH. Combining Eqs. (96), (97) and (101), we can obtain the correlation function on the super-horizon scale as

0|qkqk|0H22e𝔞πk(3+2ε+2𝔟)δ(3)(k+k).\langle 0|q^{\dagger}_{\vec{k}}q_{\vec{k}^{\prime}}|0\rangle\approx\frac{H^{2}}{2}\mathrm{e}^{-\mathfrak{a}\pi}k^{-(3+2\varepsilon+2\mathfrak{b})}\updelta^{(3)}(\vec{k}+\vec{k}^{\prime})~{}. (102)

where |0|0\rangle is the vacuum state, which satisfies a^k|0=0\hat{a}_{\vec{k}}|0\rangle=0. For the sake of convenience, we can omit the subscript k\vec{k} and throw away the annoying delta function δ(3)(k+k)\updelta^{(3)}(\vec{k}+\vec{k}^{\prime}), so that the correlation function (102) can be abbreviated as

qqH22e𝔞πk(3+2ε+2𝔟).\langle q^{\dagger}q\rangle\approx\frac{H^{2}}{2}\mathrm{e}^{-\mathfrak{a}\pi}k^{-(3+2\varepsilon+2\mathfrak{b})}~{}. (103)

Appendix D Summation of nearly scale-invariant functions

Consider there are NN nearly scale-invariant functions {f𝔦(k)=C𝔦kn𝔦,𝔦=1,2,,N}\{\mathrm{f}_{\mathfrak{i}}(k)=C_{\mathfrak{i}}k^{n_{\mathfrak{i}}},~{}\mathfrak{i}=1,2,...,N\}, where |n𝔦|1|n_{\mathfrak{i}}|\ll 1. Then the sum of these functions should also be a nearly scale-invariant function, so it can be approximated as

f(k)=𝔦=1Nf𝔦(k)=𝔦=1NC𝔦kn𝔦Ckn,with|n|1.\mathrm{f}(k)=\sum_{\mathfrak{i}=1}^{N}\mathrm{f}_{\mathfrak{i}}(k)=\sum_{\mathfrak{i}=1}^{N}C_{\mathfrak{i}}k^{n_{\mathfrak{i}}}\approx Ck^{n}~{},~{}\text{with}~{}|n|\ll 1~{}. (104)

Next we need to find the coefficient CC and the exponent nn in Eq. (104). Since n𝔦0n_{\mathfrak{i}}\approx 0 and n0n\approx 0, we can approximately let n𝔦=n=0n_{\mathfrak{i}}=n=0 in Eq. (104), so that Eq. (104) becomes

C𝔦=1NC𝔦.C\approx\sum_{\mathfrak{i}=1}^{N}C_{\mathfrak{i}}~{}. (105)

Next, let Eq. (104) take the derivative of kk and then let n𝔦=n=0n_{\mathfrak{i}}=n=0 on the exponent of kk. Then the approximate expression of nn can be obtained as

n1C𝔦=1NC𝔦n𝔦.n\approx\frac{1}{C}\sum_{\mathfrak{i}=1}^{N}C_{\mathfrak{i}}n_{\mathfrak{i}}~{}. (106)

References

  • (1) B. P. Abbott et al. [LIGO Scientific and Virgo], Phys. Rev. Lett. 116, no.6, 061102 (2016) doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].
  • (2) B. P. Abbott et al. [LIGO Scientific and Virgo], Phys. Rev. Lett. 119, no.16, 161101 (2017) doi:10.1103/PhysRevLett.119.161101 [arXiv:1710.05832 [gr-qc]].
  • (3) H. Li, S. Y. Li, Y. Liu, Y. P. Li, Y. Cai, M. Li, G. B. Zhao, C. Z. Liu, Z. W. Li and H. Xu, et al. “Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope,” Natl. Sci. Rev. 6, no.1, 145-154 (2019) doi:10.1093/nsr/nwy019 [arXiv:1710.03047 [astro-ph.CO]].
  • (4) K. Abazajian et al. [CMB-S4], Astrophys. J. 926, no.1, 54 (2022) doi:10.3847/1538-4357/ac1596 [arXiv:2008.12619 [astro-ph.CO]].
  • (5) R. Jackiw and S. Y. Pi, Phys. Rev. D 68, 104012 (2003) doi:10.1103/PhysRevD.68.104012 [arXiv:gr-qc/0308071 [gr-qc]].
  • (6) S. Alexander and N. Yunes, Phys. Rept. 480, 1-55 (2009) doi:10.1016/j.physrep.2009.07.002 [arXiv:0907.2562 [hep-th]].
  • (7) S. Dyda, E. E. Flanagan and M. Kamionkowski, Phys. Rev. D 86, 124031 (2012) doi:10.1103/PhysRevD.86.124031 [arXiv:1208.4871 [gr-qc]].
  • (8) M. Crisostomi, K. Noui, C. Charmousis and D. Langlois, Phys. Rev. D 97, no.4, 044034 (2018) doi:10.1103/PhysRevD.97.044034 [arXiv:1710.04531 [hep-th]].
  • (9) X. Gao and X. Y. Hong, Phys. Rev. D 101, no.6, 064057 (2020) doi:10.1103/PhysRevD.101.064057 [arXiv:1906.07131 [gr-qc]].
  • (10) W. Zhao, T. Zhu, J. Qiao and A. Wang, “Waveform of gravitational waves in the general parity-violating gravities,” Phys. Rev. D 101, no.2, 024002 (2020) doi:10.1103/PhysRevD.101.024002 [arXiv:1909.10887 [gr-qc]].
  • (11) N. Bartolo, L. Caloni, G. Orlando and A. Ricciardone, JCAP 03, 073 (2021) doi:10.1088/1475-7516/2021/03/073 [arXiv:2008.01715 [astro-ph.CO]].
  • (12) M. Li, H. Rao and D. Zhao, JCAP 11, 023 (2020) doi:10.1088/1475-7516/2020/11/023 [arXiv:2007.08038 [gr-qc]].
  • (13) M. Li, H. Rao and Y. Tong, Phys. Rev. D 104, no.8, 084077 (2021) doi:10.1103/PhysRevD.104.084077 [arXiv:2104.05917 [gr-qc]].
  • (14) R.  Aldrovandi and J. G. Pereira, Teleparallel Gravity, Vol. 173. Springer, 23 Dordrecht, (2013).
  • (15) S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. L. Said, J. Mifsud and E. Di Valentino, [arXiv:2106.13793 [gr-qc]].
  • (16) J. W. Maluf, Annalen Phys. 525, 339-357 (2013) doi:10.1002/andp.201200272 [arXiv:1303.3897 [gr-qc]].
  • (17) H. T. Nieh and M. L. Yan, J. Math. Phys. 23, 373 (1982) doi:10.1063/1.525379
  • (18) H. Rao, Phys. Rev. D 104, no.12, 124084 (2021) doi:10.1103/PhysRevD.104.124084 [arXiv:2107.08597 [gr-qc]].
  • (19) J. Qiao, T. Zhu, G. Li and W. Zhao, JCAP 04, no.04, 054 (2022) doi:10.1088/1475-7516/2022/04/054 [arXiv:2110.09033 [gr-qc]].
  • (20) Q. Wu, T. Zhu, R. Niu, W. Zhao and A. Wang, Phys. Rev. D 105, no.2, 024035 (2022) doi:10.1103/PhysRevD.105.024035 [arXiv:2110.13870 [gr-qc]].
  • (21) R. G. Cai, C. Fu and W. W. Yu, Phys. Rev. D 105, no.10, 103520 (2022) doi:10.1103/PhysRevD.105.103520 [arXiv:2112.04794 [astro-ph.CO]].
  • (22) M. Li and D. Zhao, Phys. Lett. B 827 (2022), 136968 doi:10.1016/j.physletb.2022.136968 [arXiv:2108.01337 [gr-qc]].
  • (23) C. Gong, T. Zhu, R. Niu, Q. Wu, J. L. Cui, X. Zhang, W. Zhao and A. Wang, Phys. Rev. D 105 (2022) no.4, 044034 doi:10.1103/PhysRevD.105.044034 [arXiv:2112.06446 [gr-qc]].
  • (24) M. Hohmann and C. Pfeifer, Phys. Lett. B 834 (2022), 137437 doi:10.1016/j.physletb.2022.137437 [arXiv:2203.01856 [gr-qc]].
  • (25) X. Tong and Z. Z. Xianyu, JHEP 10 (2022), 194 doi:10.1007/JHEP10(2022)194 [arXiv:2203.06349 [hep-ph]].
  • (26) M. Li, Y. Tong and D. Zhao, Phys. Rev. D 105 (2022) no.10, 104002 doi:10.1103/PhysRevD.105.104002 [arXiv:2203.06912 [gr-qc]].
  • (27) F. Zhang, J. X. Feng and X. Gao, JCAP 10 (2022), 054 doi:10.1088/1475-7516/2022/10/054 [arXiv:2205.12045 [gr-qc]].
  • (28) T. Zhu, W. Zhao and A. Wang, Phys. Rev. D 107, no.2, 024031 (2023) doi:10.1103/PhysRevD.107.024031 [arXiv:2210.05259 [gr-qc]].
  • (29) T. Zhu, W. Zhao and A. Wang, Phys. Rev. D 107, no.4, 044051 (2023) doi:10.1103/PhysRevD.107.044051 [arXiv:2211.04711 [gr-qc]].
  • (30) A. A. A. Filho, J. R. Nascimento, A. Y. Petrov and P. J. Porfírio, [arXiv:2211.11821 [gr-qc]].
  • (31) J. Qiao, Z. Li, T. Zhu, R. Ji, G. Li and W. Zhao, Front. Astron. Space Sci. 9, 1109086 (2023) doi:10.3389/fspas.2022.1109086 [arXiv:2211.16825 [gr-qc]].
  • (32) Y. Cai, Phys. Rev. D 107, no.6, 063512 (2023) doi:10.1103/PhysRevD.107.063512 [arXiv:2212.10893 [gr-qc]].
  • (33) Z. Chen, Y. Yu and X. Gao, [arXiv:2212.14362 [gr-qc]].
  • (34) M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, Phys. Rev. D 100, no.8, 084002 (2019) doi:10.1103/PhysRevD.100.084002 [arXiv:1901.05472 [gr-qc]].
  • (35) M. Hohmann, Int. J. Geom. Meth. Mod. Phys. 18, no.supp01, 2140005 (2021) doi:10.1142/S0219887821400053 [arXiv:2008.12186 [gr-qc]].
  • (36) A. A. Coley, R. J. v. Hoogen and D. D. McNutt, [arXiv:2205.10719 [gr-qc]].
  • (37) R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011) doi:10.1140/epjc/s10052-011-1752-9 [arXiv:1006.1120 [gr-qc]].
  • (38) Y. F. Cai, S. H. Chen, J. B. Dent, S. Dutta and E. N. Saridakis, Class. Quant. Grav. 28, 215011 (2011) doi:10.1088/0264-9381/28/21/215011 [arXiv:1104.4349 [astro-ph.CO]].
  • (39) Y. F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, Rept. Prog. Phys. 79, no.10, 106901 (2016) doi:10.1088/0034-4885/79/10/106901 [arXiv:1511.07586 [gr-qc]].
  • (40) C. Bejarano, R. Ferraro and M. J. Guzmán, Eur. Phys. J. C 77, no.12, 825 (2017) doi:10.1140/epjc/s10052-017-5394-4 [arXiv:1707.06637 [gr-qc]].
  • (41) C. Bejarano, R. Ferraro, F. Fiorini and M. J. Guzmán, Universe 5, 158 (2019) doi:10.3390/universe5060158 [arXiv:1905.09913 [gr-qc]].
  • (42) J. Beltrán Jiménez, A. Golovnev, T. Koivisto and H. Veermäe, Phys. Rev. D 103, no.2, 024054 (2021) doi:10.1103/PhysRevD.103.024054 [arXiv:2004.07536 [gr-qc]].
  • (43) A. Golovnev and M. J. Guzman, Phys. Rev. D 103, no.4, 044009 (2021) doi:10.1103/PhysRevD.103.044009 [arXiv:2012.00696 [gr-qc]].
  • (44) R. P. Woodard, Lect. Notes Phys. 720, 403-433 (2007) doi:10.1007/978-3-540-71013-4_14 [arXiv:astro-ph/0601672 [astro-ph]].
  • (45) M. Hohmann and C. Pfeifer, Eur. Phys. J. C 81, no.4, 376 (2021) doi:10.1140/epjc/s10052-021-09165-x [arXiv:2012.14423 [gr-qc]].
  • (46) M. Li, Z. Li and H. Rao, Phys. Lett. B 834, 137395 (2022) doi:10.1016/j.physletb.2022.137395 [arXiv:2201.02357 [gr-qc]].
  • (47) K. Izumi and Y. C. Ong, JCAP 06, 029 (2013) doi:10.1088/1475-7516/2013/06/029 [arXiv:1212.5774 [gr-qc]].
  • (48) Y. C. Ong, K. Izumi, J. M. Nester and P. Chen, Phys. Rev. D 88, 024019 (2013) doi:10.1103/PhysRevD.88.024019 [arXiv:1303.0993 [gr-qc]].
  • (49) A. De Felice, A. E. Gumrukcuoglu and S. Mukohyama, Phys. Rev. Lett. 109, 171101 (2012) doi:10.1103/PhysRevLett.109.171101 [arXiv:1206.2080 [hep-th]].
  • (50) A. Delhom, A. Jiménez-Cano and F. J. Maldonado Torralba, [arXiv:2207.13431 [gr-qc]].
  • (51) Y. Akrami et al. [Planck], Astron. Astrophys. 641 (2020), A10 doi:10.1051/0004-6361/201833887 [arXiv:1807.06211 [astro-ph.CO]].
  • (52) D. Baumann, doi:10.1142/9789814327183_0010 [arXiv:0907.5424 [hep-th]].
  • (53) Y. Wang, Commun. Theor. Phys. 62, 109-166 (2014) doi:10.1088/0253-6102/62/1/19 [arXiv:1303.1523 [hep-th]].
  • (54) N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A1 doi:10.1051/0004-6361/201833880 [arXiv:1807.06205 [astro-ph.CO]].
  • (55) M. Satoh, JCAP 11, 024 (2010) doi:10.1088/1475-7516/2010/11/024 [arXiv:1008.2724 [astro-ph.CO]].