This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Involution Matrix Loci and Orbit Harmonics

Moxuan (Jasper) Liu Department of Mathematics
UC San Diego
La Jolla, CA, 92093
USA
(mol008, bprhoades)@ucsd.edu
Yichen Ma Department of Mathematics
Cornell University
Ithaca, NY, 14853
USA
[email protected]
Brendon Rhoades  and  Hai Zhu School of Mathematical Sciences
Peking University
Haidian District, Beijing 100871
China
[email protected]
Abstract.

Let Matn×n(){\mathrm{Mat}}_{n\times n}({\mathbb{C}}) be the affine space of n×nn\times n complex matrices with coordinate ring [𝐱n×n]{\mathbb{C}}[{\mathbf{x}}_{n\times n}]. We define graded quotients of [𝐱n×n]{\mathbb{C}}[{\mathbf{x}}_{n\times n}] which carry an action of the symmetric group 𝔖n{\mathfrak{S}}_{n} by simultaneous permutation of rows and columns. These quotient rings are obtained by applying the orbit harmonics method to matrix loci corresponding to all involutions in 𝔖n{\mathfrak{S}}_{n} and the conjugacy classes of involutions in 𝔖n{\mathfrak{S}}_{n} with a given number of fixed points. In the case of perfect matchings on {1,,n}\{1,\dots,n\} with nn even, the Hilbert series of our quotient ring is related to Tracy-Widom distributions and its graded Frobenius image gives a refinement of the plethysm sn/2[s2]s_{n/2}[s_{2}].

1. Introduction

Let 𝐱N=(x1,,xN){\mathbf{x}}_{N}=(x_{1},\dots,x_{N}) be a list of NN variables and let [𝐱N]:=[x1,,xN]{\mathbb{C}}[{\mathbf{x}}_{N}]:={\mathbb{C}}[x_{1},\dots,x_{N}] be the polynomial ring over these variables. If 𝒵N\mathcal{Z}\subseteq{\mathbb{C}}^{N} is a finite locus of points in affine NN-space, we have the vanishing ideal

(1.1) 𝐈(𝒵):={f[𝐱N]:f(𝐳)=0 for all 𝐳𝒵}{\mathbf{I}}(\mathcal{Z}):=\{f\in{\mathbb{C}}[{\mathbf{x}}_{N}]\,:\,f({\mathbf{z}})=0\text{ for all ${\mathbf{z}}\in\mathcal{Z}$}\}

and an identification [𝒵]=[𝐱N]/𝐈(𝒵){\mathbb{C}}[\mathcal{Z}]={\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathbf{I}}(\mathcal{Z}) of vector spaces. The method of orbit harmonics replaces 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) by its associated graded ideal gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}); we have an isomorphism

(1.2) [𝒵]=[𝐱N]/𝐈(𝒵)[𝐱N]/gr𝐈(𝒵)=R(𝒵){\mathbb{C}}[\mathcal{Z}]={\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathbf{I}}(\mathcal{Z})\cong{\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})=R(\mathcal{Z})

where the quotient R(𝒵):=[𝐱N]/gr𝐈(𝒵)R(\mathcal{Z}):={\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) is a graded {\mathbb{C}}-vector space. If 𝒵\mathcal{Z} is stable under the action of a finite matrix group GGLN()G\subseteq GL_{N}({\mathbb{C}}), then (1.2) is an isomorphism of GG-modules, where R(𝒵)R(\mathcal{Z}) is a graded GG-module.

Geometrically, orbit harmonics corresponds to linearly deforming the reduced locus 𝒵\mathcal{Z} to a scheme of multiplicity |𝒵||\mathcal{Z}| supported at the origin. This deformation is shown schematically in the picture below for a locus 𝒵\mathcal{Z} of six points in the plane which is stable under the group (𝔖3)(\cong{\mathfrak{S}}_{3}) generated by reflections in the lines.

\bullet\bullet\bullet\bullet\bullet\bullet\bullet

Orbit harmonics has seen applications to presenting cohomology rings [GP], Macdonald theory [Griffin, HRS], cyclic sieving [OR], Donaldson-Thomas theory [RRT], and Ehrhart theory [RR]. When the locus 𝒵\mathcal{Z} has favorable ‘organization’ and interesting symmetries, the quotient R(𝒵)R(\mathcal{Z}) often has nice properties. One expects algebraic properties of R(𝒵)R(\mathcal{Z}) to be governed by combinatorial properties of 𝒵\mathcal{Z}.

Let 𝐱n×n=(xi,j)1i,jn{\mathbf{x}}_{n\times n}=(x_{i,j})_{1\leq i,j\leq n} be an n×nn\times n matrix of variables. Consider the affine space Matn×n(){\mathrm{Mat}}_{n\times n}({\mathbb{C}}) of n×nn\times n complex matrices with coordinate ring [𝐱n×n]{\mathbb{C}}[{\mathbf{x}}_{n\times n}]. The application of orbit harmonics to finite matrix loci 𝒵Matn×n()\mathcal{Z}\subseteq{\mathrm{Mat}}_{n\times n}({\mathbb{C}}) was initiated by Rhoades [RhoadesViennot]. He considered the locus 𝒵=𝔖nMatn×n()\mathcal{Z}={\mathfrak{S}}_{n}\subseteq{\mathrm{Mat}}_{n\times n}({\mathbb{C}}) of n×nn\times n permutation matrices. Since 𝔖n{\mathfrak{S}}_{n} forms a group, this permutation matrix locus carries an action of 𝔖n×𝔖n{\mathfrak{S}}_{n}\times{\mathfrak{S}}_{n} by left and right multiplication. Algebraic properties of R(𝔖n)R({\mathfrak{S}}_{n}) are governed by longest increasing subsequences in 𝔖n{\mathfrak{S}}_{n} and the Schensted correspondence. Liu extended [Liu] this work to the locus 𝒵=r𝔖n\mathcal{Z}={\mathbb{Z}}_{r}\wr{\mathfrak{S}}_{n} of rr-colored permutation matrices.

In this paper we consider matrix loci 𝒵Matn×n()\mathcal{Z}\subseteq{\mathrm{Mat}}_{n\times n}({\mathbb{C}}) which do not form a group, but are closed under permutation matrix conjugation. We consider the locus

(1.3) n:={w𝔖n:w2=1}Matn×n(){\mathcal{M}}_{n}:=\{w\in{\mathfrak{S}}_{n}\,:\,w^{2}=1\}\subseteq{\mathrm{Mat}}_{n\times n}({\mathbb{C}})

of involutions (or matchings). For 0an0\leq a\leq n with anmod2a\equiv n\mod 2, we have the sublocus

(1.4) n,a:={wn:w has exactly a fixed points}{\mathcal{M}}_{n,a}:=\{w\in{\mathcal{M}}_{n}\,:\,\text{$w$ has exactly $a$ fixed points}\}

of matchings with aa fixed points. If nn is even, we write

(1.5) 𝒫n:=n,0(n even){\mathcal{PM}}_{n}:={\mathcal{M}}_{n,0}\quad\quad\text{($n$ even)}

for the set of perfect matchings (or fixed-point-free involutions). The loci n{\mathcal{M}}_{n} and n,a{\mathcal{M}}_{n,a} are closed under the conjugation action of the permutation matrix group 𝔖n{\mathfrak{S}}_{n}. The quotients R(n)R({\mathcal{M}}_{n}) and R(n,a)R({\mathcal{M}}_{n,a}) are therefore graded 𝔖n{\mathfrak{S}}_{n}-modules. Our results on these modules are as follows.

  • We give explicit generating sets for the associated graded ideals gr𝐈(n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n}) and gr𝐈(𝒫n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}); see Propositions 3.4, 4.5.

  • We show (Theorem 3.3) that R(n)R({\mathcal{M}}_{n}) admits a basis of monomials 𝔪(w){\mathfrak{m}}(w) indexed by matchings wnw\in{\mathcal{M}}_{n} where

    𝔪(w):=w(i)=ji<jxi,j{\mathfrak{m}}(w):=\prod_{\begin{subarray}{c}w(i)=j\\ i\,<\,j\end{subarray}}x_{i,j}

    is the squarefree product of upper triangular variables indexed by 2-cycles in ww.

  • We describe the graded 𝔖n{\mathfrak{S}}_{n}-module structure of each of the orbit harmonics quotient rings R(n)R({\mathcal{M}}_{n}) and R(n,a)R({\mathcal{M}}_{n,a}); see Theorems 3.5, LABEL:thm:conjugacy-module-character.

In the case of R(𝒫n)R({\mathcal{PM}}_{n}), the graded structure in the last bullet point has an especially nice form. For nn even, the conjugation action of 𝔖n{\mathfrak{S}}_{n} on perfect matchings is well-known to have Frobenius image

(1.6) Frob(𝒫n)=sn/2[s2]=λnλ evensλ{\mathrm{Frob}}({\mathcal{PM}}_{n})=s_{n/2}[s_{2}]=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \lambda\text{ even}\end{subarray}}s_{\lambda}

where sn/2[s2]s_{n/2}[s_{2}] is the plethysm of Schur functions and the sum is over partitions λn\lambda\vdash n with only even parts. The graded refinement of this character weights this sum according to the length of the first row of λ\lambda, viz.

(1.7) grFrob(R(𝒫n);q)=λnλ evenqnλ12sλ{\mathrm{grFrob}}(R({\mathcal{PM}}_{n});q)=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \lambda\text{ even}\end{subarray}}q^{\frac{n-\lambda_{1}}{2}}\cdot s_{\lambda}

where qq is a grading variable; see Theorem 4.4. The Hilbert series of R(𝒫n)R({\mathcal{PM}}_{n}) is (up to renormalization) the distribution of the longest decreasing subsequence statistic on fixed-point-free involutions in 𝔖n{\mathfrak{S}}_{n}; see Corollary 4.6. Baik and Rains proved [BR] that the limit as nn\to\infty of this Hilbert series arises in random matrix theory as a flavor of the Tracy-Widom distribution (up to renormalization and reversal).

The rest of the paper is organized as follows. In Section 2 we give background material on the orbit harmonics deformation, symmetric functions, and 𝔖n{\mathfrak{S}}_{n}-representation theory. In Section 3 we prove our results on the matrix locus n{\mathcal{M}}_{n} of all involutions in 𝔖n{\mathfrak{S}}_{n}. In Section 4 we turn to the perfect matching locus 𝒫n{\mathcal{PM}}_{n}. Section 5 is the most technical part of the paper; it computes the graded 𝔖n{\mathfrak{S}}_{n}-structure of R(n,a)R({\mathcal{M}}_{n,a}). We close in Section LABEL:sec:Conclusion with some conjectures and open problems.

2. Background

2.1. Orbit Harmonics

Let 𝒵N\mathcal{Z}\subseteq{\mathbb{C}}^{N} be a finite locus of points in affine NN-space. As in the introduction, the vanishing ideal 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) is given by

(2.1) 𝐈(𝒵):={f[𝐱N]:f(𝐳)=0 for all 𝐳𝒵}.{\mathbf{I}}(\mathcal{Z}):=\{f\in{\mathbb{C}}[{\mathbf{x}}_{N}]:f({\mathbf{z}})=0\text{ for all ${\mathbf{z}}\in\mathcal{Z}$}\}.

Multivariate Lagrange interpolation gives the identification of vector spaces

(2.2) [𝒵][𝐱N]/𝐈(𝒵){\mathbb{C}}[\mathcal{Z}]\cong{\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathbf{I}}(\mathcal{Z})

where [𝒵]{\mathbb{C}}[\mathcal{Z}] is the space of all functions 𝒵\mathcal{Z}\to{\mathbb{C}}. If 𝒵\mathcal{Z} is stable under the action of a finite matrix group GGLN()G\subseteq GL_{N}({\mathbb{C}}), the ideal 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) is also GG-stable and (2.2) is an isomorphism of GG-modules.

Given a nonzero polynomial f[𝐱N]f\in{\mathbb{C}}[{\mathbf{x}}_{N}], write f=f0+f1++fdf=f_{0}+f_{1}+\dots+f_{d}, where fif_{i} is homogeneous of degree ii and fd0f_{d}\neq 0. Let τ(f)\tau(f) be the top degree homogeneous part of ff, that is, τ(f):=fd\tau(f):=f_{d}. Given an ideal I[𝐱N]I\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}], the associated graded ideal of II is the homogeneous ideal

(2.3) grI:=(τ(f):fI,f0).{\mathrm{gr}}\,I:=(\tau(f):f\in I,f\neq 0).
Remark 2.1.

Given a generating set I=(f1,,fr)I=(f_{1},\dots,f_{r}) of an ideal I[𝐱N]I\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}], we have a containment (τ(f1),,τ(fr))grI(\tau(f_{1}),\dots,\tau(f_{r}))\subseteq{\mathrm{gr}}\,I of homogeneous ideals in [𝐱N]{\mathbb{C}}[{\mathbf{x}}_{N}], but this containment is strict in general.

The identification of ungraded {\mathbb{C}}-vector spaces in Equation (2.2) extended to a vector space isomorphism

(2.4) [𝒵][𝐱N]/𝐈(𝒵)[𝐱N]/gr𝐈(𝒵)=:R(𝒵).{\mathbb{C}}[\mathcal{Z}]\cong{\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathbf{I}}(\mathcal{Z})\cong{\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})=:R(\mathcal{Z}).

Since gr𝐈(𝒵)[𝐱N]{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}] is a homogeneous ideal, R(𝒵)R(\mathcal{Z}) has the additional structure of a graded {\mathbb{C}}-vector space. If 𝒵\mathcal{Z} is stable under the action of a finite matrix group GGLn()G\subseteq GL_{n}({\mathbb{C}}), we may regard (2.4) as an isomorphism of ungraded GG-modules, where R(𝒵)R(\mathcal{Z}) has the additional structure of a graded GG-module.

We will need a slightly more refined statement than the isomporphism (2.4). If V=d0VdV=\bigoplus_{d\geq 0}V_{d} is a graded vector space and m0m\geq 0, we write Vm:=d=0mVdV_{\leq m}:=\bigoplus_{d=0}^{m}V_{d}. In particular, we write [𝐱N]m{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m} for the vector space of polynomials in [𝐱N]{\mathbb{C}}[{\mathbf{x}}_{N}] of degree m\leq m. If I[𝐱N]I\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}] is an ideal, we have a subspace I[𝐱N]m[𝐱N]mI\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}. The following result is standard; see e.g. [RhoadesViennot, Lem. 3.15].

Lemma 2.2.

Suppose I[𝐱N]I\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}] is an ideal and m0m\geq 0. Let [𝐱N]m{\mathcal{B}}\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m} be a set of homogeneous polynomials which descends to a vector space basis for ([𝐱N]/grI)m({\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathrm{gr}}\,I)_{\leq m}. Then {\mathcal{B}} descends to a vector space basis of [𝐱N]m/(I[𝐱N]m){\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/(I\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}).

Now suppose 𝒵N\mathcal{Z}\subseteq{\mathbb{C}}^{N} is a finite locus which is stable under the action of a finite matrix group GGLN()G\subseteq GL_{N}({\mathbb{C}}). For m0m\geq 0, the subspace [𝐱N]m[𝐱N]{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}] is GG-stable, as is the ideal 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}). The quotient [𝐱N]m/(I[𝐱N]m){\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/(I\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}) is therefore an ungraded GG-module. The following result refines the isomorphism (2.4).

Lemma 2.3.

Suppose a finite locus 𝒵N\mathcal{Z}\subseteq{\mathbb{C}}^{N} is stable under the action of a finite matrix group GGLN()G\subseteq GL_{N}({\mathbb{C}}). For m0m\geq 0, we have an isomorphism of ungraded GG-modules

R(𝒵)m=([𝐱N]/gr𝐈(𝒵))mG[𝐱N]m/(I[𝐱N]m).R(\mathcal{Z})_{\leq m}=({\mathbb{C}}[{\mathbf{x}}_{N}]/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}))_{\leq m}\cong_{G}{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/(I\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}).

Lemma 2.3 is well-known in orbit harmonics theory, but we include a proof for the benefit of the reader.

Proof.

Let [𝐱N]m{\mathcal{B}}\subseteq{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m} be a set of homogeneous polynomials which descends to a vector space basis of R(𝒵)mR(\mathcal{Z})_{\leq m}. Lemma 2.2 says that {\mathcal{B}} also descends to a vector space basis of the quotient [𝐱N]m/(𝐈(𝒵)[𝐱N]m).{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/({\mathbf{I}}(\mathcal{Z})\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}).

Fix a matrix gGg\in G. Write =01m{\mathcal{B}}={\mathcal{B}}_{0}\sqcup{\mathcal{B}}_{1}\sqcup\cdots\sqcup{\mathcal{B}}_{m} where d{\mathcal{B}}_{d} denotes the elements in {\mathcal{B}} of homogeneous degree dd. One checks that

  • the representing matrix for gg on R(𝒵)mR(\mathcal{Z})_{\leq m} is block diagonal with respect to the stratification =d=0md{\mathcal{B}}=\bigsqcup_{d=0}^{m}{\mathcal{B}}_{d},

  • the representing matrix for gg on [𝐱N]m/(𝐈(𝒵)[𝐱N]m){\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/({\mathbf{I}}(\mathcal{Z})\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}) is block triangular with respect to the stratification =d=0md{\mathcal{B}}=\bigsqcup_{d=0}^{m}{\mathcal{B}}_{d}, and

  • the diagonal blocks of the above two matrices coincide.

By the above three bullet points, the [G]{\mathbb{C}}[G]-modules R(𝒵)mR(\mathcal{Z})_{\leq m} and [𝐱N]m/(𝐈(𝒵)[𝐱N]m){\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/({\mathbf{I}}(\mathcal{Z})\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}) have the same composition series. Since GG is a finite group, the group algebra [G]{\mathbb{C}}[G] is semisimple and we have R(𝒵)mG[𝐱N]m/(𝐈(𝒵)[𝐱N]m)R(\mathcal{Z})_{\leq m}\cong_{G}{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}/({\mathbf{I}}(\mathcal{Z})\cap{\mathbb{C}}[{\mathbf{x}}_{N}]_{\leq m}), as desired. ∎

The above proof works over any field 𝔽\mathbb{F} in which the order of GG is nonzero. For arbitrary fields 𝔽\mathbb{F}, the 𝔽[G]\mathbb{F}[G]-modules (𝔽[𝐱N]/gr𝐈(𝒵))m(\mathbb{F}[{\mathbf{x}}_{N}]/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}))_{\leq m} and 𝔽[𝐱N]m/(𝐈(𝒵)𝔽[𝐱N]m)\mathbb{F}[{\mathbf{x}}_{N}]_{\leq m}/({\mathbf{I}}(\mathcal{Z})\cap\mathbb{F}[{\mathbf{x}}_{N}]_{\leq m}) have the same composition series (i.e. these modules are Brauer-isomorphic).

2.2. The Schensted Correspondence

Let nn be a positive integer. A partition of nn is a sequence of non-decreasing positive integers λ=(λ1,λ2,,λk)\lambda=(\lambda_{1},\lambda_{2},\dots,\lambda_{k}) such that i=1kλi=n\sum_{i=1}^{k}\lambda_{i}=n. We write λn\lambda\vdash n to say that λ\lambda is a partition of nn.

Let λ=(λ1,λ2,,λk)n\lambda=(\lambda_{1},\lambda_{2},\dots,\lambda_{k})\vdash n. A Young diagram of shape λ\lambda is the diagram obtained by placing λi\lambda_{i} boxes in the ii-th row. Below on the left is a Young diagram of shape (4,2,1)7(4,2,1)\vdash 7.

{ytableau}

&           {ytableau} 1 & 3 6 7 2 5 4

A standard Young tableaux of shape λ\lambda is a bijective filling of [n][n] into the boxes of the Young diagram of shape λ\lambda, such that the entries are increasing across rows and down columns. Above on the right is a standard Young tableaux of shape (4,2,1)(4,2,1). We write SYT(λ)\mathrm{SYT}(\lambda) to denote the collection of standard Young tableau of shape λ\lambda.

The Schensted correspondence [Schensted] is a bijection

(2.5) 𝔖nλn{(P,Q):P,QSYT(λ)},{\mathfrak{S}}_{n}\xrightarrow{\quad\sim\quad}\bigsqcup_{\lambda\vdash n}\{(P,Q):P,Q\in\mathrm{SYT}(\lambda)\},

which associates each permutation w𝔖nw\in{\mathfrak{S}}_{n} with a pair of standard Young tableau (P(w),Q(w))(P(w),Q(w)) of the same shape. The Schensted correspondence is usually described by an insertion algorithm, which can be found in [Sagan].

Remark 2.4.

One important fact about the Schensted correspondence is that if w𝔖nw\in{\mathfrak{S}}_{n} corresponds to the pair of tableau (P,Q)(P,Q), then w1w^{-1} corresponds to the pair of tableau (Q,P)(Q,P). In particular, if w𝔖nw\in{\mathfrak{S}}_{n} is an involution, the pair of tableau that corrsponds to ww will have the form (P,P)(P,P).

2.3. Representation Theory of 𝔖n{\mathfrak{S}}_{n}

We write Λ=n 0Λn\Lambda=\bigoplus_{n\,\geq\,0}\Lambda_{n} for the graded algebra of symmetric functions in an infinite variable set 𝐱=(x1,x2,){\mathbf{x}}=(x_{1},x_{2},\dots) over the ground field (q){\mathbb{C}}(q). For example, the power sum symmetric function of degree nn is given by pn:=i1xinΛnp_{n}:=\sum_{i\geq 1}x_{i}^{n}\in\Lambda_{n}. It is well known that {p1,p2,}\{p_{1},p_{2},\dots\} is an algebraically independent generating set Λ\Lambda.

Bases of the nthn^{th} graded piece Λn\Lambda_{n} of Λ\Lambda are indexed by partitions λn\lambda\vdash n. For example, the power sum basis {pλ:λn}\{p_{\lambda}\,:\,\lambda\vdash n\} is defined by pλ:=pλ1pλ2p_{\lambda}:=p_{\lambda_{1}}p_{\lambda_{2}}\cdots for λ=(λ1λ2)\lambda=(\lambda_{1}\geq\lambda_{2}\geq\cdots). We will also need the Schur basis {sλ:λn}\{s_{\lambda}\,:\,\lambda\vdash n\}.

A symmetric function FΛF\in\Lambda is Schur-positive if the coefficients cλ(q)c_{\lambda}(q) in its ss-expansion F=λcλ(q)sλF=\sum_{\lambda}c_{\lambda}(q)\cdot s_{\lambda} satisfy cλ(q)0[q]c_{\lambda}(q)\in\mathbb{R}_{\geq 0}[q]. If F,GΛF,G\in\Lambda we define FGF\leq G by

FGF\leq G if and only if GFG-F is Schur-positive.

Furthermore, if PP is some property that partitions may or may not have and F=λcλ(q)sλF=\sum_{\lambda}c_{\lambda}(q)\cdot s_{\lambda}, we define the truncation {F}P\{F\}_{P} by

(2.6) {F}P:=λχ[λ satisfies P]cλ(q)sλ.\{F\}_{P}:=\sum_{\lambda}\chi[\text{$\lambda$ satisfies $P$}]\cdot c_{\lambda}(q)\cdot s_{\lambda}.

Here χ[S]\chi[S] is 1 if a statement SS is true and 0 otherwise. The truncation operator {}P\{-\}_{P} will typically be used to restrict the first row lengths of a partition, e.g. {}λ1=a\{-\}_{\lambda_{1}=a} or {}λ1a\{-\}_{\lambda_{1}\leq a}.

In addition to its usual multiplication, the graded ring Λ\Lambda carries an additional binary operation called plethysm. If F=F(x1,x2,)ΛF=F(x_{1},x_{2},\dots)\in\Lambda and n>0n>0, we defined pn[F]Λp_{n}[F]\in\Lambda by

(2.7) pn[F]:=F(x1n,x2n,).p_{n}[F]:=F(x_{1}^{n},x_{2}^{n},\dots).

Since {p1,p2,}\{p_{1},p_{2},\dots\} is an algebraically independent generating set of Λ\Lambda, the rules

(2.8) {(G1+G2)[F]=G1[F]+G2[F](G1G2)[F]=G1[F]G2[F]c[F]=c\begin{cases}(G_{1}+G_{2})[F]=G_{1}[F]+G_{2}[F]\\ (G_{1}\cdot G_{2})[F]=G_{1}[F]\cdot G_{2}[F]\\ c[F]=c\end{cases}

for all G1,G2,FΛG_{1},G_{2},F\in\Lambda and all scalars c(q)c\in{\mathbb{C}}(q) uniquely define a symmetric function G[F]ΛG[F]\in\Lambda for all G,FΛG,F\in\Lambda. For more details on plethysm, see Macdonald’s book [Macdonald].

Irreducible representations of the symmetric group 𝔖n{\mathfrak{S}}_{n} over {\mathbb{C}} are in one-to-one correspondence with partitions λn\lambda\vdash n. If λn\lambda\vdash n is a partition, write VλV^{\lambda} for the corresponding irreducible 𝔖n{\mathfrak{S}}_{n}-module. If VV is any finite-dimensional 𝔖n{\mathfrak{S}}_{n}-module, there are unique multiplicities cλ0c_{\lambda}\geq 0 so that VλncλVλV\cong\bigoplus_{\lambda\vdash n}c_{\lambda}V^{\lambda}. The Frobenius image of VV is the symmetric function

(2.9) Frob(V):=λncλsλ{\mathrm{Frob}}(V):=\sum_{\lambda\,\vdash\,n}c_{\lambda}\cdot s_{\lambda}

obtained by replacing each irreducible VλV^{\lambda} with the corresponding Schur function sλs_{\lambda}. For example, the trivial representation 𝟏𝔖n{\mathbf{1}}_{{\mathfrak{S}}_{n}} corresponds to the Schur function sns_{n} indexed by the one-part partition (n)(n). If V=d0VdV=\bigoplus_{d\geq 0}V_{d} is a graded 𝔖n{\mathfrak{S}}_{n}-module, we define the graded Frobenius image by

(2.10) grFrob(V;q):=d 0Frob(Vd)qd.{\mathrm{grFrob}}(V;q):=\sum_{d\,\geq\,0}{\mathrm{Frob}}(V_{d})\cdot q^{d}.

More generally, if V=d0VdV=\bigoplus_{d\geq 0}V_{d} is a graded vector space, the Hilbert series of VV is

(2.11) Hilb(V;q):=d 0dim(Vd)qd.{\mathrm{Hilb}}(V;q):=\sum_{d\,\geq\,0}\dim(V_{d})\cdot q^{d}.

Given n,m0n,m\geq 0, we have an embedding 𝔖n×𝔖m𝔖n+m{\mathfrak{S}}_{n}\times{\mathfrak{S}}_{m}\subseteq{\mathfrak{S}}_{n+m} by letting 𝔖n{\mathfrak{S}}_{n} permute the first nn letters of [n+m][n+m] and letting 𝔖m{\mathfrak{S}}_{m} permute the last mm letters. If VV is an 𝔖n{\mathfrak{S}}_{n}-module an WW is an 𝔖m{\mathfrak{S}}_{m}-module, the tensor product VWV\otimes W is naturally an 𝔖n×𝔖m{\mathfrak{S}}_{n}\times{\mathfrak{S}}_{m}-module. The induction product of VV and WW is

(2.12) VW:=Ind𝔖n×𝔖m𝔖n+m(VW).V\circ W:={\mathrm{Ind}}_{{\mathfrak{S}}_{n}\times{\mathfrak{S}}_{m}}^{{\mathfrak{S}}_{n+m}}(V\otimes W).

Induction product of representations corresponds to multiplication of symmetric functions; we have (see e.g. [Macdonald, Sagan])

(2.13) Frob(VW)=Frob(V)Frob(W).{\mathrm{Frob}}(V\circ W)={\mathrm{Frob}}(V)\cdot{\mathrm{Frob}}(W).

For n,m0n,m\geq 0, the wreath product 𝔖n𝔖m{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m} is the subgroup of 𝔖nm{\mathfrak{S}}_{nm} generated by \dots

  • the nn-fold direct product 𝔖m×𝔖m××𝔖m{\mathfrak{S}}_{m}\times{\mathfrak{S}}_{m}\times\cdots\times{\mathfrak{S}}_{m} permuting elements of the sets

    {1,2,,m},{m+1,m+2,,2m},,{nmm+1,nmm+2,,nm}\{1,2,\dots,m\},\{m+1,m+2,\dots,2m\},\dots,\{nm-m+1,nm-m+2,\dots,nm\}

    independently, as well as

  • products of transpositions of the form

    (imm+1,jmm+1)(imm+2,jmm+2)(im,jm)(im-m+1,jm-m+1)(im-m+2,jm-m+2)\cdots(im,jm)

    for 1i,jn1\leq i,j\leq n which interchange two of the above nn sets ‘wholesale’.

One way to visualize the group 𝔖n𝔖m{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m} is as follows. Fill the entries of an n×mn\times m grid with the numbers 1,2,,nm1,2,\dots,nm in English reading order. For example, if n=3n=3 and m=4m=4 we have the following figure.

{ytableau}1&23456789101112\ytableau 1&234\\ 5678\\ 9101112

The group 𝔖n𝔖m{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m} is the subgroup of 𝔖nm{\mathfrak{S}}_{nm} generated by permutations which either permute entries within rows or interchange rows wholesale. We have embeddings 𝔖mn𝔖n𝔖m{\mathfrak{S}}_{m}^{n}\subseteq{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m} and 𝔖n𝔖n𝔖m{\mathfrak{S}}_{n}\subseteq{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}; the images of these embeddings generate 𝔖n𝔖m{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}.

If VV is an 𝔖n{\mathfrak{S}}_{n}-module and WW is an 𝔖m{\mathfrak{S}}_{m}-module, we have a (𝔖n𝔖m)({\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m})-module VWV\wr W with underlying vector space

(2.14) VW:=VWWnV\wr W:=V\otimes\overbrace{W\otimes\cdots\otimes W}^{n}

and group action determined by

(2.15) {(u1,,un)(vw1wn):=v(u1w1)(unwn)(u1,,un)𝔖mn,t(vw1wn):=tvwt1(1)wt1(n)t𝔖n.\begin{cases}(u_{1},\dots,u_{n})\cdot(v\otimes w_{1}\otimes\cdots\otimes w_{n}):=v\otimes(u_{1}\cdot w_{1})\otimes\cdots\otimes(u_{n}\cdot w_{n})&(u_{1},\dots,u_{n})\in{\mathfrak{S}}_{m}^{n},\\ t\cdot(v\otimes w_{1}\otimes\cdots\otimes w_{n}):=t\cdot v\otimes w_{t^{-1}(1)}\otimes\cdots\otimes w_{t^{-1}(n)}&t\in{\mathfrak{S}}_{n}.\end{cases}

Plethysm of symmetric functions relates to this construction via

(2.16) Frob(V)[Frob(W)]=Ind𝔖n𝔖m𝔖nm(VW).{\mathrm{Frob}}(V)[{\mathrm{Frob}}(W)]={\mathrm{Ind}}_{{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}}^{{\mathfrak{S}}_{nm}}(V\wr W).

See [Macdonald] for a textbook treatment of this fact. We will only use this construction when both VV and WW are trivial modules; we note the combinatorial interpretation of the relevant symmetric function sn[sm]s_{n}[s_{m}].

Lemma 2.5.

For n,m0n,m\geq 0, let Πn,m\Pi_{n,m} be the family of set partitions of [nm][nm] consisting of nn blocks, each of size mm. The symmetric group 𝔖nm{\mathfrak{S}}_{nm} acts on Πn,m\Pi_{n,m}; let [Πn,m]{\mathbb{C}}[\Pi_{n,m}] be the corresponding permutation module. The 𝔖nm{\mathfrak{S}}_{nm}-module [Πn,m]{\mathbb{C}}[\Pi_{n,m}] has Frobenius image

Frob(Πn,m)=sn[sm].{\mathrm{Frob}}(\Pi_{n,m})=s_{n}[s_{m}].
Proof.

It is not hard to see that 𝟏𝔖n𝟏𝔖m=𝟏𝔖n𝔖m{\mathbf{1}}_{{\mathfrak{S}}_{n}}\wr{\mathbf{1}}_{{\mathfrak{S}}_{m}}={\mathbf{1}}_{{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}} so that sn[sm]s_{n}[s_{m}] is the Frobenius image of the coset representation

(2.17) Ind𝔖n𝔖m𝔖nm𝟏𝔖n𝔖m=[𝔖nm/(𝔖n𝔖m)].{\mathrm{Ind}}_{{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}}^{{\mathfrak{S}}_{nm}}{\mathbf{1}}_{{\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}}={\mathbb{C}}[{\mathfrak{S}}_{nm}/({\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m})].

On the other hand, there is a natural correspondence between set partitions in Πn,m\Pi_{n,m} and cosets in 𝔖nm/(𝔖n𝔖m){\mathfrak{S}}_{nm}/({\mathfrak{S}}_{n}\wr{\mathfrak{S}}_{m}) which is equivariant with respect to 𝔖nm{\mathfrak{S}}_{nm}. ∎

In particular, if nn is even, Lemma 2.5 implies that the Frobenius image of the action of 𝔖n{\mathfrak{S}}_{n} on the set 𝒫n{\mathcal{PM}}_{n} of perfect matchings on [n][n] is sn/2[s2]s_{n/2}[s_{2}]. It is an extremely difficult open problem to determine the ss-expansion sa[sb]s_{a}[s_{b}] for arbitrary a,ba,b. However, if nn is even it is known that

(2.18) sn/2[s2]=λnλ evensλs_{n/2}[s_{2}]=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \text{$\lambda$ even}\end{subarray}}s_{\lambda}

is the multiplicity-free sum over all sλs_{\lambda} where λn\lambda\vdash n has all even parts.

We will need a standard result on symmetrizers acting on 𝔖n{\mathfrak{S}}_{n}-irreducibles. Let jnj\leq n and consider the embedding 𝔖j𝔖n{\mathfrak{S}}_{j}\subseteq{\mathfrak{S}}_{n} where 𝔖j{\mathfrak{S}}_{j} acts on the first jj letters. This induces an embedding of group algebras [𝔖j][𝔖n]{\mathbb{C}}[{\mathfrak{S}}_{j}]\subseteq{\mathbb{C}}[{\mathfrak{S}}_{n}]. We let ηj[𝔖j][𝔖n]\eta_{j}\in{\mathbb{C}}[{\mathfrak{S}}_{j}]\subseteq{\mathbb{C}}[{\mathfrak{S}}_{n}] be the element which symmetrizes with respect to 𝔖j{\mathfrak{S}}_{j}, i.e.

(2.19) ηj:=w𝔖jw.\eta_{j}:=\sum_{w\,\in\,{\mathfrak{S}}_{j}}w.

If VV is an 𝔖n{\mathfrak{S}}_{n}-module, the element ηj\eta_{j} acts as an operator on VV. The following result characterizes when ηj\eta_{j} annihilates irreducible 𝔖n{\mathfrak{S}}_{n}-modules.

Lemma 2.6.

Let jnj\leq n. For a partition λn\lambda\vdash n, we have ηjVλ0\eta_{j}\cdot V^{\lambda}\neq 0 if and only if λ1j\lambda_{1}\geq j.

Lemma 2.6 is standard, but we include a proof for the convenience of the reader.

Proof.

For any 𝔖n{\mathfrak{S}}_{n}-module VV, it is not hard to check that

(2.20) ηjV=V𝔖j:={vV:wv=v for all w𝔖j}.\eta_{j}\cdot V=V^{{\mathfrak{S}}_{j}}:=\{v\in V\,:\,w\cdot v=v\text{ for all $w\in{\mathfrak{S}}_{j}$}\}.

Therefore, we have

(2.21) ηjVλ0(Res𝔖n𝔖j(Vλ))𝔖j0\eta_{j}\cdot V^{\lambda}\neq 0\quad\Leftrightarrow\quad\left(\mathrm{Res}^{{\mathfrak{S}}_{n}}_{{\mathfrak{S}}_{j}}(V^{\lambda})\right)^{{\mathfrak{S}}_{j}}\neq 0

which is true if and only if the trivial representation 𝟏𝔖j{\mathbf{1}}_{{\mathfrak{S}}_{j}} occurs with positive multiplicity in the restriction Res𝔖n𝔖j(Vλ)\mathrm{Res}^{{\mathfrak{S}}_{n}}_{{\mathfrak{S}}_{j}}(V^{\lambda}). The Branching Rule for 𝔖n{\mathfrak{S}}_{n}-modules (see e.g. [Macdonald, Sagan]) states that Res𝔖n𝔖n1Vλ=μVμ\mathrm{Res}^{{\mathfrak{S}}_{n}}_{{\mathfrak{S}}_{n-1}}V^{\lambda}=\bigoplus_{\mu}V^{\mu} where the direct sum is over partitions μn1\mu\vdash n-1 obtained by removing an outer corner of λ\lambda. Iterating, we see that (2.21) holds if and only if λ1j\lambda_{1}\geq j. ∎

3. The Matching Locus

As in the introduction, we consider the locus n={w𝔖n:w2=1}Matn×n(){\mathcal{M}}_{n}=\{w\in{\mathfrak{S}}_{n}\,:\,w^{2}=1\}\subseteq{\mathrm{Mat}}_{n\times n}({\mathbb{C}}) of n×nn\times n permutation matrices corresponding to involutions. The symmetric group 𝔖n{\mathfrak{S}}_{n} acts on n{\mathcal{M}}_{n} by conjugation:

(3.1) vw:=vwv1v𝔖n,wn.v\cdot w:=vwv^{-1}\quad\quad v\in{\mathfrak{S}}_{n},\,w\in{\mathcal{M}}_{n}.

The corresponding action of 𝔖n{\mathfrak{S}}_{n} on [𝐱n×n]{\mathbb{C}}[{\mathbf{x}}_{n\times n}] is

(3.2) vxi,j:=xv(i),v(j)v𝔖n, 1i,jn.v\cdot x_{i,j}:=x_{v(i),v(j)}\quad\quad v\in{\mathfrak{S}}_{n},\,1\leq i,j\leq n.

The ideal gr𝐈(n)[𝐱n×n]{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})\subseteq{\mathbb{C}}[{\mathbf{x}}_{n\times n}] is homogeneous and 𝔖n{\mathfrak{S}}_{n}-stable.

3.1. Matching monomial basis

In order to study the ring R(n)R({\mathcal{M}}_{n}), it will be useful to have an explicit generating set of its defining ideal gr𝐈(n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n}). It will turn out that such a generating set is as follows.

Definition 3.1.

Let In[𝐱n×n]I_{n}^{\mathcal{M}}\subseteq{\mathbb{C}}[{\mathbf{x}}_{n\times n}] be the ideal generated by

  • all sums xi,1++xi,nx_{i,1}+\cdots+x_{i,n} of variables in a single row,

  • all sums x1,j++xn,jx_{1,j}+\cdots+x_{n,j} of variables in a single column,

  • all products xi,jxi,jx_{i,j}\cdot x_{i,j^{\prime}} of variables in a single row,

  • all products xi,jxi,jx_{i,j}\cdot x_{i^{\prime},j} of variables in a single column, and

  • all diagonally symmetric differences xi,jxj,ix_{i,j}-x_{j,i} of variables.

Here 1i,i,j,jn1\leq i,i^{\prime},j,j^{\prime}\leq n.

We aim to show that gr𝐈(n)=In{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})=I^{\mathcal{M}}_{n} as ideals in [𝐱n×n]{\mathbb{C}}[{\mathbf{x}}_{n\times n}]. One of these containments is straightforward.

Lemma 3.2.

We have Ingr𝐈(n)I^{\mathcal{M}}_{n}\subseteq{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n}).

Proof.

As n={P(w):w𝔖n,w2=1}{\mathcal{M}}_{n}=\{P(w):w\in{\mathfrak{S}}_{n},w^{2}=1\}, it consists of all n×nn\times n symmetric 0 and 11 matrices with exactly one 11 in each row and column. For 1i,i,j,jn1\leq i,i^{\prime},j,j^{\prime}\leq n, the following polynomials are contained in (and in fact generate) the ideal 𝐈(n){\mathbf{I}}({\mathcal{M}}_{n}):

  • xi,j(xi,j1)x_{i,j}(x_{i,j}-1)

  • xi,1++xi,n1x_{i,1}+\cdots+x_{i,n}-1,

  • x1,j++x1,j1x_{1,j}+\cdots+x_{1,j}-1,

  • xi,jxi,jx_{i,j}\cdot x_{i,j^{\prime}},

  • xi,jxi,jx_{i,j}\cdot x_{i^{\prime},j},

  • xi,jxj,ix_{i,j}-x_{j,i}.

Note that the top degree homogeneous part of these polynomials are exactly the generators of InI^{\mathcal{M}}_{n}, so the proof is complete. ∎

As explained in Remark 2.1, the top degree components of a given generating set of 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) do not in general suffice to generate gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). In order to show that we have generating in the context of Lemma 3.2, we show that the quotient [𝐱n×n]/In{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{M}}_{n} has vector space dimension at most |n||{\mathcal{M}}_{n}|. Recall from the introduction that if wnw\in{\mathcal{M}}_{n} is a matching, the matching monomial 𝔪(w)[𝐱n×n]{\mathfrak{m}}(w)\in{\mathbb{C}}[{\mathbf{x}}_{n\times n}] is the product over all variables xi,jx_{i,j} for which i<w(i)=ji<w(i)=j.

Theorem 3.3.

The set {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\} of matching monomials descends to a vector space basis of R(n)R({\mathcal{M}}_{n}).

Proof.

We show that {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\} descends to a spanning set of the vector space [𝐱n×n]/In{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{M}}_{n}. This will establish that

(3.3) |n|=dimR(n)=dim[𝐱n×n]/gr𝐈(n)dim[𝐱n×n]/In|n||{\mathcal{M}}_{n}|=\dim R({\mathcal{M}}_{n})=\dim{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})\leq\dim{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{M}}_{n}\leq|{\mathcal{M}}_{n}|

where the first equality follows from the orbit harmonics isomorphism (2.4), the second equality is the definition of R(n)R({\mathcal{M}}_{n}), the following inequality is a consequence of Lemma 3.2, and the last inequality is our spanning claim. This chain of (in)equalities will then show that R(n)=[𝐱n×n]/InR({\mathcal{M}}_{n})={\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{M}}_{n} and that {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\} descends to a basis of R(n)R({\mathcal{M}}_{n}).

It remains to show that {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\} descends to a spanning set of [𝐱n×n]/In{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{M}}_{n}. Consider a monomial mm in the variable set 𝐱n×n{\mathbf{x}}_{n\times n}. We want to show that mm lies in the span of {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\} modulo InI^{\mathcal{M}}_{n}. Write

(3.4) m=xi1,j1xi2,j2xik,jkm=x_{i_{1},j_{1}}x_{i_{2},j_{2}}\dots x_{i_{k},j_{k}}

for some 1i1,j1,i2,j2,,ik,jkn1\leq i_{1},j_{1},i_{2},j_{2},\dots,i_{k},j_{k}\leq n. Since xi,j2Inx_{i,j}^{2}\in I^{\mathcal{M}}_{n} and xi,jxj,imodInx_{i,j}\equiv x_{j,i}\mod I^{\mathcal{M}}_{n} for all 1i,jn1\leq i,j\leq n we may assume that

()(\triangle) the monomial mm is squarefree, and every variable xis,jsx_{i_{s},j_{s}} which appears in mm satisfies isjsi_{s}\leq j_{s}.

We call a monomial in 𝐱n×n{\mathbf{x}}_{n\times n} satisfying this condition triangular. We induct on the number 0rk0\leq r\leq k of factors xis,jsx_{i_{s},j_{s}} of the triangular monomial mm which satisfy is=jsi_{s}=j_{s}.

First assume that r=0r=0, so that isjsi_{s}\neq j_{s} for all 1sk1\leq s\leq k. If there exist 1llk1\leq l\neq l^{\prime}\leq k with il=ili_{l}=i_{l^{\prime}} then xil,jlxil,jjInx_{i_{l},j_{l}}\cdot x_{i_{l^{\prime}},j_{j^{\prime}}}\in I^{\mathcal{M}}_{n} so that mInm\in I^{\mathcal{M}}_{n} certainly lies in the span of {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\} modulo InI^{\mathcal{M}}_{n}. Similarly, we are done if there exist 1llk1\leq l\neq l^{\prime}\leq k with jl=jlj_{l}=j_{l^{\prime}}. If there exist 1l,lk1\leq l,l^{\prime}\leq k with il=jli_{l}=j_{l^{\prime}}, then using xi,jxj,imodInx_{i,j}\equiv x_{j,i}\mod I^{\mathcal{M}}_{n}, we have

(3.5) xil,jlxil,jlxjl,ilxil,jl0modIn,x_{i_{l},j_{l}}x_{i_{l^{\prime}},j_{l^{\prime}}}\equiv x_{j_{l},i_{l}}x_{i_{l^{\prime}},j_{l^{\prime}}}\equiv 0\mod I^{\mathcal{M}}_{n},

so that mInm\in I^{\mathcal{M}}_{n} in this case, as well. We may therefore assume that the indices i1,j1,i2,j2,,ik,jki_{1},j_{1},i_{2},j_{2},\dots,i_{k},j_{k} are distinct so that w=(i1,j1)(i2,j2)(ik,jk)w=(i_{1},j_{1})(i_{2},j_{2})\dots(i_{k},j_{k}) is the reduced cycle form of an involution w𝔖nw\in{\mathfrak{S}}_{n}. By definition, we have m=𝔪(w)m={\mathfrak{m}}(w) which completes the base case.

If r>0r>0 the triangular monomial mm contains the variable xi,ix_{i,i} for some ii. We may use the congruences

(3.6) xi,iji1jnxi,jj<i1jnxj,ij>i1jnxi,jmodIn,x_{i,i}\equiv-\sum_{\begin{subarray}{c}j\,\neq\,i\\ 1\,\leq\,j\,\leq\,n\end{subarray}}x_{i,j}\equiv-\sum_{\begin{subarray}{c}j\,<\,i\\ 1\,\leq\,j\,\leq\,n\end{subarray}}x_{j,i}-\sum_{\begin{subarray}{c}j\,>\,i\\ 1\,\leq\,j\,\leq\,n\end{subarray}}x_{i,j}\mod I^{\mathcal{M}}_{n},

to rewrite mm modulo InI^{\mathcal{M}}_{n} as the summation of triangular monomials of the same degree, but with one fewer variable on the main diagonal. By induction, we see that mm lies in the span of {𝔪(w):wn}\{{\mathfrak{m}}(w)\,:\,w\in{\mathcal{M}}_{n}\}. ∎

For example, if n=4n=4 we have the matching monomial basis of R(4)R({\mathcal{M}}_{4}) given by

{1x1,2,x1,3,x1,4,x2,3,x2,4,x3,4x1,2x3,4,x1,3x2,4,x1,4x2,3}\{1\quad\mid\quad x_{1,2},\,\,x_{1,3},\,\,x_{1,4},\,\,x_{2,3},\,\,x_{2,4},\,\,x_{3,4}\quad\mid\quad x_{1,2}x_{3,4},\,\,x_{1,3}x_{2,4},\,\,x_{1,4}x_{2,3}\}

where the bars indicate separation by degree. We record the generating set of gr𝐈(n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n}) derived obtained in the above proof. It is precisely the set of highest degree components of the ‘natural’ generating set of 𝐈(n){\mathbf{I}}({\mathcal{M}}_{n}) shown in the proof of Lemma 3.2.

Proposition 3.4.

We have In=gr𝐈(n)I^{\mathcal{M}}_{n}={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n}).

Proof.

In the proof of Theorem 3.3, we established Equation 3.3. Note that |n||{\mathcal{M}}_{n}| on both ends of the chain forces all inequalities to be equalities. Specifically, we have

(3.7) dim[𝐱n×n]/gr𝐈(n)=dim[𝐱n×n]/In.\dim{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})=\dim{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{M}}_{n}.

This together with Lemma 3.2 gives the equality of the two ideals. ∎

3.2. Module structure

The basis of R(n)R({\mathcal{M}}_{n}) in Theorem 3.3 is closed under the action wxi,j=xw(i),w(j)w\cdot x_{i,j}=x_{w(i),w(j)} of 𝔖n{\mathfrak{S}}_{n}. This is not a common property for ‘nice’ bases of quotient rings with group actions. Thanks to this special property, we may easily compute the graded 𝔖n{\mathfrak{S}}_{n}-structure of R(n)R({\mathcal{M}}_{n}).

Theorem 3.5.

The graded Frobenius image of R(n)R({\mathcal{M}}_{n}) is given by

grFrob(R(n);q)=k= 0n/2qksk[s2]sn2k.{\mathrm{grFrob}}(R({\mathcal{M}}_{n});q)=\sum_{k\,=\,0}^{\lfloor n/2\rfloor}q^{k}\cdot s_{k}[s_{2}]\cdot s_{n-2k}.
Proof.

By Theorem 3.3, the degree kk piece R(n)kR({\mathcal{M}}_{n})_{k} of R(n)R({\mathcal{M}}_{n}) is isomorphic to the permutation action of 𝔖n{\mathfrak{S}}_{n} on the vector space

(3.8) Vn,k:=span{μ a matching on [n]:μ has exactly k matched pairs}.V_{n,k}:=\mathrm{span}_{\mathbb{C}}\{\mu\text{ a matching on $[n]$}\,:\,\mu\text{ has exactly $k$ matched pairs}\}.

It is not hard to see that Vn,kV_{n,k} decomposes as the induction product

(3.9) Vn,kInd𝔖2k×𝔖n2k𝔖n(V2k,kVn2k,0)=V2k,kVn2k,0=V2k,k𝟏𝔖n2k.V_{n,k}\cong{\mathrm{Ind}}_{{\mathfrak{S}}_{2k}\times{\mathfrak{S}}_{n-2k}}^{{\mathfrak{S}}_{n}}(V_{2k,k}\otimes V_{n-2k,0})=V_{2k,k}\circ V_{n-2k,0}=V_{2k,k}\circ{\mathbf{1}}_{{\mathfrak{S}}_{n-2k}}.

Lemma 2.5 implies that Frob(V2k,k)=sk[s2]{\mathrm{Frob}}(V_{2k,k})=s_{k}[s_{2}]. Since Frob(𝟏𝔖n2k)=sn2k{\mathrm{Frob}}({\mathbf{1}}_{{\mathfrak{S}}_{n-2k}})=s_{n-2k}, we are done. ∎

The explicit graded decomposition of R(n)R({\mathcal{M}}_{n}) into irreducibles is easily obtained from Equation (2.18), Theorem 3.5, and the Pieri Rule

(3.10) sλsb=νsνs_{\lambda}\cdot s_{b}=\sum_{\nu}s_{\nu}

where the sum is over partitions ν\nu of such that λν\lambda\subseteq\nu and the difference νλ\nu-\lambda of Young diagrams consists of bb boxes, no two of which share a column. For example, if n=6n=6 we have

grFrob(6;q)\displaystyle{\mathrm{grFrob}}({\mathcal{M}}_{6};q) =q0s6+q1s1[s2]s4+q2s2[s2]s2+q3s3[s2]\displaystyle=q^{0}\cdot s_{6}+q^{1}\cdot s_{1}[s_{2}]\cdot s_{4}+q^{2}\cdot s_{2}[s_{2}]\cdot s_{2}+q^{3}\cdot s_{3}[s_{2}]
=q0s6+q1s2s4+q2(s4+s22)s2+q3(s6+s42+s222)\displaystyle=q^{0}\cdot s_{6}+q^{1}\cdot s_{2}\cdot s_{4}+q^{2}\cdot(s_{4}+s_{22})\cdot s_{2}+q^{3}\cdot(s_{6}+s_{42}+s_{222})
=q0s6+q1(s6+s51+s42)+q2(s6+s51+2s42+s321+s222)+q4(s6+s42+s222).\displaystyle=q^{0}\cdot s_{6}+q^{1}\cdot(s_{6}+s_{51}+s_{42})+q^{2}\cdot(s_{6}+s_{51}+2s_{42}+s_{321}+s_{222})+q^{4}\cdot(s_{6}+s_{42}+s_{222}).

The Hilbert series of R(n)R({\mathcal{M}}_{n}) is an easy consequence of Theorem 3.3. Recall the double factorial (2d1)!!:=(2d1)(2d3)1(2d-1)!!:=(2d-1)\cdot(2d-3)\cdot\cdots\cdot 1.

Corollary 3.6.

The Hilbert series of R(n)R({\mathcal{M}}_{n}) is given by

Hilb(R(n);q)=d= 0n/2(n2d)(2d1)!!qd.{\mathrm{Hilb}}(R({\mathcal{M}}_{n});q)=\sum_{d\,=\,0}^{\lfloor n/2\rfloor}{n\choose 2d}\cdot(2d-1)!!\cdot q^{d}.
Proof.

Apply Theorem 3.3 and count matching monomials by degree. ∎

In Figure 1, we give the histogram of Hilb(R(n);q){\mathrm{Hilb}}(R({\mathcal{M}}_{n});q) when n=200n=200. The horizontal axis corresponds to degrees dd, and the height of each bar represents the corresponding dimR(n)d\dim R({\mathcal{M}}_{n})_{d}.

Refer to caption
Figure 1. Coefficients of Hilb(R(n);q){\mathrm{Hilb}}(R({\mathcal{M}}_{n});q) when n=200n=200

4. The Perfect Matching Locus

In this section, assume nn is even. We consider the locus

𝒫n={w𝔖n:w2=1, w has no fixed points}{\mathcal{PM}}_{n}=\{w\in{\mathfrak{S}}_{n}\,:\,w^{2}=1,\text{ $w$ has no fixed points}\}

of perfect matchings (or fixed-point-free involutions) inside n{\mathcal{M}}_{n}. Our study of R(𝒫n)R({\mathcal{PM}}_{n}) is more indirect than our study of R(n)R({\mathcal{M}}_{n}). In particular, the authors do not know an explicit basis of R(𝒫n)R({\mathcal{PM}}_{n}).

4.1. η\eta-annihilation

As in the case of n{\mathcal{M}}_{n}, it will be useful to understand the defining ideal gr𝐈(𝒫n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}) of R(𝒫n)R({\mathcal{PM}}_{n}). This ideal will turn out to have the following generating set.

Definition 4.1.

Assume n>0n>0 is even. Let I𝒫n[𝐱n×n]I^{{\mathcal{PM}}}_{n}\subseteq{\mathbb{C}}[{\mathbf{x}}_{n\times n}] be the ideal

I𝒫n:=In+(xi,i: 1in)=gr𝐈(n)+(xi,i: 1in).I^{{\mathcal{PM}}}_{n}:=I^{\mathcal{M}}_{n}+(x_{i,i}\,:\,1\leq i\leq n)={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})+(x_{i,i}\,:\,1\leq i\leq n).

We will show that I𝒫n=gr𝐈(𝒫n)I^{\mathcal{PM}}_{n}={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}) as ideals in [𝐱n×n]{\mathbb{C}}[{\mathbf{x}}_{n\times n}]. As in the case of n{\mathcal{M}}_{n}, one containment is straightforward.

Lemma 4.2.

For n>0n>0 even we have I𝒫ngr𝐈(𝒫n)I^{{\mathcal{PM}}}_{n}\subseteq{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}).

Proof.

Since 𝒫nn{\mathcal{PM}}_{n}\subseteq{\mathcal{M}}_{n} we have 𝐈(n)𝐈(𝒫n){\mathbf{I}}({\mathcal{M}}_{n})\subseteq{\mathbf{I}}({\mathcal{PM}}_{n}) and therefore gr𝐈(n)gr𝐈(𝒫n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})\subseteq{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}). Furthermore, we have xi,i𝐈(𝒫n)x_{i,i}\in{\mathbf{I}}({\mathcal{PM}}_{n}) for 1in1\leq i\leq n since the involutions in 𝒫n{\mathcal{PM}}_{n} have no fixed points. ∎

Theorem 3.3 gives bounds on the degrees of the quotient ring [𝐱n×n]/In𝒫{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{{\mathcal{PM}}} by the ideal in Definition 4.1. Recall that ηj=w𝔖jw[𝔖n]\eta_{j}=\sum_{w\in{\mathfrak{S}}_{j}}w\in{\mathbb{C}}[{\mathfrak{S}}_{n}] acts on 𝔖n{\mathfrak{S}}_{n}-modules by symmetrization with respect to the first jj letters.

Lemma 4.3.

Let 0jn0\leq j\leq n and assume nn is even. The symmetrizer ηj[𝔖j][𝔖n]\eta_{j}\in{\mathbb{C}}[{\mathfrak{S}}_{j}]\subseteq{\mathbb{C}}[{\mathfrak{S}}_{n}] annihilates the degree dd part ([𝐱n×n]/In𝒫)d({\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}})_{d} of the ring [𝐱n×n]/In𝒫{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}} whenever j>n2dj>n-2d. In particular, if λn\lambda\vdash n and an irreducible 𝔖n{\mathfrak{S}}_{n}-module VλV^{\lambda} appears in ([𝐱n×n]/In𝒫)d({\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}})_{d}, we have λ1n2d\lambda_{1}\leq n-2d.

Proof.

The second statement follows from the first part and Lemma 2.6. We prove the first statement as follows.

Since InI𝒫nI^{\mathcal{M}}_{n}\subseteq I^{\mathcal{PM}}_{n}, by Theorem 3.3 the set {𝔪(w):wn has exactly d 2-cycles}\{{\mathfrak{m}}(w):\text{$w\in{\mathcal{M}}_{n}$ has exactly $d$ $2$-cycles}\} of matching monoimals descends to a spanning set of ([𝐱n×n]/In𝒫)d({\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}})_{d}. Therefore it suffices to show that

ηj𝔪(w)0modIn𝒫\eta_{j}\cdot{\mathfrak{m}}(w)\equiv 0\mod{I_{n}^{\mathcal{PM}}}

where wnw\in{\mathcal{M}}_{n} has dd 22-cycles and j>n2dj>n-2d.

Write 𝔪(w)=k=1dxik,jk{\mathfrak{m}}(w)=\prod_{k=1}^{d}x_{i_{k},j_{k}} and let S={i1,j1,,id,jd},T=S[j]S=\{i_{1},j_{1},\dots,i_{d},j_{d}\},T=S\cap[j]. We have that

(4.1) ηj𝔪(w)f:T[j]k=1dxf(ik),f(jk)modIn𝒫,\eta_{j}\cdot{\mathfrak{m}}(w)\doteq\sum_{f:T\rightarrow[j]}\prod_{k=1}^{d}x_{f(i_{k}),f(j_{k})}\mod{I_{n}^{\mathcal{PM}}},

where \doteq denotes equality up to a scalar multiple, and the summation is over all functions f:T[j]f:T\to[j] with the convention f()=f(\ell)=\ell if T\ell\not\in T. The verification of (4.1) uses the fact that each diagonal variable xi,ix_{i,i}, each row product xi,jxi,jx_{i,j}\cdot x_{i,j^{\prime}}, and each column product xi,jxi,jx_{i,j}\cdot x_{i^{\prime},j} lie in In𝒫I_{n}^{\mathcal{PM}}. We want to show that

(4.2) f:T[j]k=1dxf(ik),f(jk)0modIn𝒫.\sum_{f:T\rightarrow[j]}\prod_{k=1}^{d}x_{f(i_{k}),f(j_{k})}\equiv 0\mod{I_{n}^{\mathcal{PM}}}.

Let Tk={ik,jk}[j]T_{k}=\{i_{k},j_{k}\}\cap[j]. We calculate

(4.3) f:T[j]k=1dxf(ik),f(jk)=k=1d(g:Tk[j]xg(ik),g(jk))k=1d(g:Tk[n][j]xg(ik),g(jk))=f:T[n][j](k=1dxf(ik),f(jk))f:T([n][j])(ST)(k=1dxf(ik),f(jk))modI𝒫n\sum_{f:T\rightarrow[j]}\prod_{k=1}^{d}x_{f(i_{k}),f(j_{k})}=\prod_{k=1}^{d}\bigg{(}\sum_{g:T_{k}\rightarrow[j]}x_{g(i_{k}),g(j_{k})}\bigg{)}\doteq\prod_{k=1}^{d}\bigg{(}\sum_{g:T_{k}\rightarrow[n]\setminus[j]}x_{g(i_{k}),g(j_{k})}\bigg{)}\\ =\sum_{f:T\rightarrow[n]\setminus[j]}\left(\prod_{k=1}^{d}x_{f(i_{k}),f(j_{k})}\right)\equiv\sum_{f:T\rightarrow([n]\setminus[j])\setminus(S\setminus T)}\left(\prod_{k=1}^{d}x_{f(i_{k}),f(j_{k})}\right)\mod{I^{\mathcal{PM}}_{n}}

with the convention g()=g(\ell)=\ell if Tk\ell\not\in T_{k}, where the \doteq is true modulo I𝒫nI^{\mathcal{PM}}_{n} because each row sum j=1nxi,j\sum_{j=1}^{n}x_{i,j} and each column sum i=1nxi,j\sum_{i=1}^{n}x_{i,j} lies in I𝒫nI^{\mathcal{PM}}_{n} and the congruence \equiv holds because each row product and column product lies in I𝒫nI^{{\mathcal{PM}}}_{n}.

In order to prove Equation (4.2), it remains to show

(4.4) f:T([n][j])(ST)(k=1dxf(ik),f(jk))0modI𝒫n.\sum_{f:T\rightarrow([n]\setminus[j])\setminus(S\setminus T)}\left(\prod_{k=1}^{d}x_{f(i_{k}),f(j_{k})}\right)\equiv 0\mod{I^{\mathcal{PM}}_{n}}.

Note that the set ([n][j])(ST)([n]\setminus[j])\setminus(S\setminus T) has cardinality

(4.5) |([n][j])(ST)|=nj(2d|T|)=nj2d+|T|<|T|.\lvert([n]\setminus[j])\setminus(S\setminus T)\rvert=n-j-(2d-\lvert T\rvert)=n-j-2d+\lvert T\rvert<\lvert T\rvert.

Every function f:T([n][j])(ST)f:T\rightarrow([n]\setminus[j])\setminus(S\setminus T) indexing the sum in (4.4) is therefore not an injection. This given, Equation (4.4) follows from the fact that each diagonal variable xi,ix_{i,i}, each row product xi,jxi,jx_{i,j}\cdot x_{i,j^{\prime}} and each column product xi,jxi,jx_{i,j}\cdot x_{i^{\prime},j} lie in In𝒫I_{n}^{\mathcal{PM}}. ∎

4.2. Module structure

Lemma 4.3 gives a bound on the irreducible representations appearing in [𝐱n×n]/I𝒫n{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{PM}}_{n}. This bound allows us to deduce the graded Frobenius image of R(𝒫n)R({\mathcal{PM}}_{n}) from that of R(n)R({\mathcal{M}}_{n}).

Theorem 4.4.

For n>0n>0 even, the graded Frobenius image of R(𝒫n)R({\mathcal{PM}}_{n}) is given by

grFrob(R(𝒫n);q)=λnλ evenqnλ12sλ.{\mathrm{grFrob}}(R({\mathcal{PM}}_{n});q)=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \text{$\lambda$ even}\end{subarray}}q^{\frac{n-\lambda_{1}}{2}}\cdot s_{\lambda}.
Proof.

Definition 4.1 and Lemma 4.2 imply that InI𝒫ngr𝐈(𝒫n)I^{\mathcal{M}}_{n}\subseteq I^{\mathcal{PM}}_{n}\subseteq{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}). Therefore, we have graded 𝔖n{\mathfrak{S}}_{n}-equivariant surjections

(4.6) R(n)[𝐱n×n]/In𝒫R(𝒫n).R({\mathcal{M}}_{n})\twoheadrightarrow{\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}}\twoheadrightarrow R({\mathcal{PM}}_{n}).

By Theorem 3.5 and the Pieri Rule, any irreducible VλV^{\lambda} appearing in R(n)dR({\mathcal{M}}_{n})_{d} will have λ1n2d\lambda_{1}\geq n-2d. Thus, any VλV^{\lambda} appearing in ([𝐱n×n]/I𝒫n)d({\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I^{\mathcal{PM}}_{n})_{d} and R(𝒫n)dR({\mathcal{PM}}_{n})_{d} will also satisfy λ1n2d\lambda_{1}\geq n-2d. On the other hand, Lemma 4.3 says that each VλV^{\lambda} appearing in ([𝐱n×n]/In𝒫)d({\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}})_{d} satisfies λ1n2d\lambda_{1}\leq n-2d, hence each Specht module VλV^{\lambda} appearing in R(𝒫n)dR({\mathcal{PM}}_{n})_{d} should also satisfy λ1n2d\lambda_{1}\leq n-2d. It follows that

every irreducible VλV^{\lambda} appearing in R(𝒫n)dR({\mathcal{PM}}_{n})_{d} satisfies λ1=n2d\lambda_{1}=n-2d.

Lemma 2.5 and Equation (2.18) yield the ungraded Frobenius image

(4.7) Frob(R(𝒫n))=Frob([𝒫n])=sn/2[s2]=λnλ evensλ.{\mathrm{Frob}}(R({\mathcal{PM}}_{n}))={\mathrm{Frob}}({\mathbb{C}}[{\mathcal{PM}}_{n}])=s_{n/2}[s_{2}]=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \text{$\lambda$ even}\end{subarray}}s_{\lambda}.

Since R(𝒫n)=d0R(𝒫n)dR({\mathcal{PM}}_{n})=\bigoplus_{d\geq 0}R({\mathcal{PM}}_{n})_{d}, the italicized statement in the last paragraph forces

(4.8) Frob(R(𝒫n)d)=λnλ evenλ1=n2dsλ,{\mathrm{Frob}}(R({\mathcal{PM}}_{n})_{d})=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \text{$\lambda$ even}\\ \lambda_{1}\,=\,n-2d\end{subarray}}s_{\lambda},

which completes the proof. ∎

The reasoning in Theorem 4.4 did not directly show that I𝒫n=gr𝐈(𝒫n)I^{{\mathcal{PM}}}_{n}={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}). We deduce this equality of ideals using some symmetric function theory.

Proposition 4.5.

We have I𝒫n=gr𝐈(𝒫n)I^{{\mathcal{PM}}}_{n}={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}).

Proof.

Recall the symmetric function operators {}λ1n2d\{-\}_{\lambda_{1}\leq n-2d} and {}λ1=n2d\{-\}_{\lambda_{1}=n-2d} introduced in Section 2. For any dn/2d\leq n/2, we claim that

(4.9) {sd[s2]sn2d}λ1n2dλnλ evenλ1=n2dsλ={sn/2[s2]}λ1=n2d\left\{s_{d}[s_{2}]\cdot s_{n-2d}\right\}_{\lambda_{1}\leq n-2d}\,\,\leq\,\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \text{$\lambda$ even}\\ \lambda_{1}\,=\,n-2d\end{subarray}}s_{\lambda}=\{s_{n/2}[s_{2}]\}_{\lambda_{1}=n-2d}

where FGF\leq G means that GFG-F is Schur-positive. Indeed, by Pieri’s Rule and Equation (2.18),

(4.10) {sd[s2]sn2d}λ1n2d=(μ,ν)sλ\left\{s_{d}[s_{2}]\cdot s_{n-2d}\right\}_{\lambda_{1}\leq n-2d}\,\,=\,\sum_{(\mu,\nu)}s_{\lambda}

where the sum is over all ordered pairs (μ,ν)(\mu,\nu) consisting of

  • an even partition μ2d\mu\vdash 2d, and

  • a horizontal strip ν\nu of size n2dn-2d where λ/μ=ν\lambda/\mu=\nu, such that

  • λ1n2d\lambda_{1}\leq n-2d

Since |ν|=n2d|\nu|=n-2d, the Pieri Rule forces λ1n2d\lambda_{1}\geq n-2d, so that each sλs_{\lambda} appearing in (4.10) satisfies λ1=n2d=|ν|\lambda_{1}=n-2d=\lvert\nu\rvert. Thus each column of λ\lambda contains a box of ν\nu, which means that each part of λ\lambda equals some part of μ\mu or n2dn-2d. Therefore λ\lambda is even and (μ,ν)(\mu,\nu) is uniquely determined by λ\lambda. Hence the claimed inequality (4.9) holds.

We deduce the proposition from (4.9). If VV is a graded 𝔖n{\mathfrak{S}}_{n}-module, write VdV_{\leq d} for the restriction of VV to degrees d\leq d. We have

(4.11) d= 0n21qd{sd[s2]sn2d}λ1n2dgrFrob([𝐱n×n]/In𝒫;q)grFrob(R(𝒫n);q).\sum_{d\,=\,0}^{\frac{n}{2}-1}q^{d}\cdot\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq n-2d}\,\,\geq\,\,{\mathrm{grFrob}}({\mathbb{C}}[{\mathbf{x}}_{n\times n}]/I_{n}^{\mathcal{PM}};q)\,\,\geq\,\,{\mathrm{grFrob}}(R({\mathcal{PM}}_{n});q).

where

  • the first inequality in (4.11) follows from the ideal containment gr𝐈(n)=InI𝒫n{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})=I^{{\mathcal{M}}}_{n}\subseteq I^{{\mathcal{PM}}}_{n}, Theorem 3.5, and Lemma 4.3, and

  • the second inequality in (4.11) follows from Lemma 4.2.

On the other hand, by (4.9) and Theorem 4.4 we have

(4.12) d= 0n21{sd[s2]sn2d}λ1n2dd= 0n21{sn/2[s2]}λ1=n2d=sn/2[s2]=Frob(R(𝒫n)),\sum_{d\,=\,0}^{\frac{n}{2}-1}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq n-2d}\,\,\leq\,\,\sum_{d\,=\,0}^{\frac{n}{2}-1}\{s_{n/2}[s_{2}]\}_{\lambda_{1}=n-2d}=s_{n/2}[s_{2}]={\mathrm{Frob}}(R({\mathcal{PM}}_{n})),

which implies that (4.11) is a chain of equalities. Lemma 4.2 implies I𝒫ngr𝐈(𝒫n)I^{{\mathcal{PM}}}_{n}\subseteq{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{PM}}_{n}), and the proposition follows. ∎

Theorem 3.5 gives a combinatorial formula for the Hilbert series of R(𝒫n)R({\mathcal{PM}}_{n}). If w𝔖nw\in{\mathfrak{S}}_{n} is a permutation, a decreasing subsequence of length kk is a sequence 1i1<<ikn1\leq i_{1}<\cdots<i_{k}\leq n of indices such that w(i1)>>w(ik)w(i_{1})>\cdots>w(i_{k}). We write

(4.13) lds(w):=longest decreasing subsequence of w\mathrm{lds}(w):=\text{longest decreasing subsequence of $w$}

for the longest possible length of a decreasing subsequence of ww. It is a famous result of Baik, Deift, and Johansson [BDJ] that the distribution of the statistic lds\mathrm{lds} on 𝔖n{\mathfrak{S}}_{n} converges to the Tracy-Wildom distribution, after appropriate rescaling. Restricting lds\mathrm{lds} to the set 𝒫n{\mathcal{PM}}_{n} of fixed-point-free involutions gives the Hilbert series of R(𝒫n)R({\mathcal{PM}}_{n}), up to reversal.

Corollary 4.6.

Assume that nn is even. The Hilbert series of R(𝒫n)R({\mathcal{PM}}_{n}) is given by

(4.14) Hilb(R(𝒫n);q)=w𝒫nqnlds(w)2.{\mathrm{Hilb}}(R({\mathcal{PM}}_{n});q)=\sum_{w\,\in\,{\mathcal{PM}}_{n}}q^{\frac{n-\mathrm{lds}(w)}{2}}.
Proof.

We recall several standard facts about the Schensted correspondence. Suppose w𝔖nw\in{\mathfrak{S}}_{n} satisfies w(P,Q)w\mapsto(P,Q).

  1. (1)

    We have w1(Q,P)w^{-1}\mapsto(Q,P). In particular, we have wnw\in{\mathcal{M}}_{n} if and only if P=QP=Q.

  2. (2)

    The statistic lds(w)\mathrm{lds}(w) equals the length of the first column of PP (or QQ).

  3. (3)

    If wnw\in{\mathcal{M}}_{n}, the number of fixed points of ww equals the number of columns in PP of odd length.

From these facts, for any dn/2d\leq n/2 we have

(4.15) |{w𝒫n:lds(w)=n2d}|=λnλ1=n2dλ even|SYT(λ)|=λnλ1=n2dλ even|SYT(λ)||\{w\in{\mathcal{PM}}_{n}\,:\,\mathrm{lds}(w)=n-2d\}|=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \lambda^{\prime}_{1}\,=\,n-2d\\ \lambda^{\prime}\text{ even}\end{subarray}}|\mathrm{SYT}(\lambda)|=\sum_{\begin{subarray}{c}\lambda\,\vdash\,n\\ \lambda_{1}\,=\,n-2d\\ \lambda\text{ even}\end{subarray}}|\mathrm{SYT}(\lambda)|

where λ\lambda^{\prime} is the conjugate partition obtained from interchanging the rows and columns of λ\lambda. Since dimVλ=|SYT(λ)|\dim V^{\lambda}=|\mathrm{SYT}(\lambda)|, we are done by Theorem 4.4. ∎

The asymptotics of the distribution in Corollary 4.6 may be derived from work of Baik and Rains [BR, Thm. 3.1]. After rescaling, the distribution of lds\mathrm{lds} on n{\mathcal{M}}_{n} converges to the GOE distribution of random matrix theory as nn\to\infty. Figure 1 gives the histogram of Hilb(R(𝒫n);q){\mathrm{Hilb}}(R({\mathcal{PM}}_{n});q) when n=100n=100. The horizontal axis corresponds to degrees dd, and the height of each bar represents the corresponding dimR(𝒫n)d\dim R({\mathcal{PM}}_{n})_{d}.

Refer to caption
Figure 2. Coefficients of Hilb(R(𝒫n);q){\mathrm{Hilb}}(R({\mathcal{PM}}_{n});q) when n=100n=100

5. Conjugacy classes of involutions

For 0an0\leq a\leq n with anmod2a\equiv n\mod 2, we have the following subset of the locus nMatn×n(){\mathcal{M}}_{n}\subseteq{\mathrm{Mat}}_{n\times n}({\mathbb{C}}) of all involution permutation matrices:

(5.1) n,a:={wn:w has a fixed points}.{\mathcal{M}}_{n,a}:=\{w\in{\mathcal{M}}_{n}\,:\,\text{$w$ has $a$ fixed points}\}.

The set of matrices n,a{\mathcal{M}}_{n,a} forms a single orbit under the conjugation action of 𝔖n{\mathfrak{S}}_{n}, and can be identified with permutations of cycle type (2(na)/2,1a)(2^{(n-a)/2},1^{a}). We have the disjoint union n=an,a{\mathcal{M}}_{n}=\bigsqcup_{a}{\mathcal{M}}_{n,a}. Our study of R(n,a)R({\mathcal{M}}_{n,a}) will be more indirect and involved than our study of R(n)R({\mathcal{M}}_{n}) or R(𝒫n)R({\mathcal{PM}}_{n}); we will calculate the graded 𝔖n{\mathfrak{S}}_{n}-structure of R(n,a)R({\mathcal{M}}_{n,a}) in Theorem LABEL:thm:conjugacy-module-character after many lemmas. The added difficulties in studying R(n,a)R({\mathcal{M}}_{n,a}) are the lack of an explicit basis for this quotient ring (as in Theorem 3.3 for R(n)R({\mathcal{M}}_{n})) and the failure of η\eta-operator annihilation to determine R(n,a)R({\mathcal{M}}_{n,a}) (as it did in the proof of Theorem 4.4 for R(𝒫n)R({\mathcal{PM}}_{n})).

5.1. Some symmetric function results

This subsection proves technical results on Schur expansions which will assist in our analysis of R(n,a)R({\mathcal{M}}_{n,a}). This material should probably be skipped on a first reading and returned to as needed.

These technical results require some notation. If f(q)=dcdqdf(q)=\sum_{d}c_{d}\cdot q^{d} is a polynomial in qq, we write qdf:=cd\langle q^{d}\rangle f:=c_{d} for the coefficient of qdq^{d} in ff. Similarly, if F=λcλsλF=\sum_{\lambda}c_{\lambda}\cdot s_{\lambda} is a symmetric function expressed in the Schur basis, we write sλF:=cλ\langle s_{\lambda}\rangle F:=c_{\lambda} for the coefficient of sλs_{\lambda}. Finally, if mm\in{\mathbb{Z}} we write mmod2{0,1}m\mod 2\in\{0,1\} for the remainder of mm modulo 22. The next lemma describes the Schur expansion of the ungraded Frobenius image of [2d+a,d]{\mathbb{C}}[{\mathcal{M}}_{2d+a,d}].

Lemma 5.1.

For each λa+2d\lambda\vdash a+2d, write λ=λ1d1λ2d2λmdm\lambda=\lambda_{1}^{d_{1}}\lambda_{2}^{d_{2}}\cdots\lambda_{m}^{d_{m}} where λ1>λ2>>λm>0\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}>0, and let δi:=λimod2{0,1}\delta_{i}:=\lambda_{i}\mod 2\in\{0,1\}. Then

(5.2) sλ(sd[s2]sa)=qai=1mδi2(i=1mj=0λi2λi+12qj)\langle s_{\lambda}\rangle(s_{d}[s_{2}]\cdot s_{a})=\left\langle q^{\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}}\right\rangle\Bigg{(}\prod_{i=1}^{m}\sum_{j=0}^{\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil}q^{j}\Bigg{)}

with the convention λm+1=0\lambda_{m+1}=0.

Proof.

By Pieri’s Rule and Equation (2.18), we have

(5.3) sλ(sd[s2]sa)=|{horizontal strips μλ:λ/μ is a partition,|μ|=a, and λ/μ is even}|=|{(x1,x2,,xm)0m:xiλiλi+1xiλimod2, and i=1mxi=a}|.\langle s_{\lambda}\rangle(s_{d}[s_{2}]\cdot s_{a})=\left\lvert\left\{\text{horizontal strips $\mu\subseteq\lambda$}\,:\,\begin{matrix}\text{$\lambda/\mu$ is a partition,}\\ \text{$\lvert\mu\rvert=a$, and $\lambda/\mu$ is even}\end{matrix}\right\}\right\rvert=\\ \left\lvert\left\{(x_{1},x_{2},\cdots,x_{m})\in\mathbb{Z}_{\geq 0}^{m}\,:\,\text{$x_{i}\leq\lambda_{i}-\lambda_{i+1}$, $x_{i}\equiv\lambda_{i}\mod{2}$, and $\sum_{i=1}^{m}x_{i}=a$}\right\}\right\rvert.

One the other hand,

(5.4) qai=1mδi2(i=1mj=0λi2λi+12qj)=|{(y1,y2,,ym)0m:yiλi2λi+12 and i=1myi=ai=1mδi2}|.\left\langle q^{\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}}\right\rangle\Bigg{(}\prod_{i=1}^{m}\sum_{j=0}^{\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil}q^{j}\Bigg{)}=\\ \left\lvert\left\{(y_{1},y_{2},\cdots,y_{m})\in\mathbb{Z}_{\geq 0}^{m}\,:\,\text{$y_{i}\leq\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil$ and $\sum_{i=1}^{m}y_{i}=$}\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}\right\}\right\rvert.

We show that

(5.5) |{(x1,x2,,xm)0m:xiλiλi+1xiλimod2, and i=1mxi=a}|=|{(y1,y2,,ym)0m:yiλi2λi+12 and i=1myi=ai=1mδi2}|.\left\lvert\left\{(x_{1},x_{2},\cdots,x_{m})\in\mathbb{Z}_{\geq 0}^{m}\,:\,\text{$x_{i}\leq\lambda_{i}-\lambda_{i+1}$, $x_{i}\equiv\lambda_{i}\mod{2}$, and $\sum_{i=1}^{m}x_{i}=a$}\right\}\right\rvert=\\ \left\lvert\left\{(y_{1},y_{2},\cdots,y_{m})\in\mathbb{Z}_{\geq 0}^{m}\,:\,\text{$y_{i}\leq\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil$ and $\sum_{i=1}^{m}y_{i}=\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}$}\right\}\right\rvert.

Indeed, if we let

(5.6) A:={(x1,x2,,xm)0m:xiλiλi+1xiλimod2, and i=1mxi=a}A:=\left\{(x_{1},x_{2},\cdots,x_{m})\in\mathbb{Z}_{\geq 0}^{m}\,:\,\text{$x_{i}\leq\lambda_{i}-\lambda_{i+1}$, $x_{i}\equiv\lambda_{i}\mod{2}$, and $\sum_{i=1}^{m}x_{i}=a$}\right\}

and

(5.7) B:={(y1,y2,,ym)0m:yiλi2λi+12 and i=1myi=ai=1mδi2},B:=\left\{(y_{1},y_{2},\cdots,y_{m})\in\mathbb{Z}_{\geq 0}^{m}\,:\,\text{$y_{i}\leq\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil$ and $\sum_{i=1}^{m}y_{i}=\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}$}\right\},

we have a map f:ABf:A\to B given by

(5.8) f:(xi)i[m](xi2)i[m].f:(x_{i})_{i\in[m]}\longmapsto\Big{(}\left\lfloor\frac{x_{i}}{2}\right\rfloor\Big{)}_{i\in[m]}.

It remains to show that ff is a bijection as follows.

First, we show that f:ABf:A\to B is well-defined, i.e. f(A)Bf(A)\subseteq B. In fact, if (xi)i[m]A(x_{i})_{i\in[m]}\in A, since xiλimod2x_{i}\equiv\lambda_{i}\mod{2} we have

(5.9) xi2=xiδi2.\left\lfloor\frac{x_{i}}{2}\right\rfloor=\frac{x_{i}-\delta_{i}}{2}.

Therefore

(5.10) xi2λiλi+1δi2,\left\lfloor\frac{x_{i}}{2}\right\rfloor\leq\frac{\lambda_{i}-\lambda_{i+1}-\delta_{i}}{2},

which forces

(5.11) xi2λiλi+1δi2=λiλi+1δiδi+12=λi2λi+12.\left\lfloor\frac{x_{i}}{2}\right\rfloor\leq\left\lfloor\frac{\lambda_{i}-\lambda_{i+1}-\delta_{i}}{2}\right\rfloor=\frac{\lambda_{i}-\lambda_{i+1}-\delta_{i}-\delta_{i+1}}{2}=\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil.

Since

(5.12) i= 1mxi2=i= 1mxiδi2=ai=1mδi2\sum_{i\,=\,1}^{m}\left\lfloor\frac{x_{i}}{2}\right\rfloor=\sum_{i\,=\,1}^{m}\frac{x_{i}-\delta_{i}}{2}=\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}

we have (xi2)i[m]B(\lfloor\frac{x_{i}}{2}\rfloor)_{i\in[m]}\in B so that f:ABf:A\to B is well-defined.

Next, we claim that f:ABf:A\to B is injective. Indeed, for any tuple (x1,,xm)A(x_{1},\dots,x_{m})\in A, Equation (5.9) implies that each entry xix_{i} is determined by xi2\left\lfloor\frac{x_{i}}{2}\right\rfloor. The injectivity of ff follows.

Finally, we show that ff is surjective. Let (y1,,ym)B(y_{1},\dots,y_{m})\in B and set xi:=2yi+δix_{i}:=2y_{i}+\delta_{i} for 1im1\leq i\leq m. We claim that (x1,,xm)A(x_{1},\dots,x_{m})\in A. Given 1im1\leq i\leq m, since

(5.13) yiλi2λi+12y_{i}\leq\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil

we have

(5.14) xi2(λi2λi+12)+δi=2(λiδi2λi+1+δi+12)+δi=λiλi+1δi+1λiλi+1.x_{i}\leq 2\left(\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil\right)+\delta_{i}=2\left(\frac{\lambda_{i}-\delta_{i}}{2}-\frac{\lambda_{i+1}+\delta_{i+1}}{2}\right)+\delta_{i}=\lambda_{i}-\lambda_{i+1}-\delta_{i+1}\leq\lambda_{i}-\lambda_{i+1}.

In addition,

(5.15) xi=2yi+δiδiλimod2.x_{i}=2y_{i}+\delta_{i}\equiv\delta_{i}\equiv\lambda_{i}\mod{2}.

Furthermore, we have

(5.16) i= 1mxi=2i= 1myi+i= 1mδi=2ai=1mδi2+i= 1mδi=a.\sum_{i\,=\,1}^{m}x_{i}=2\sum_{i\,=\,1}^{m}y_{i}+\sum_{i\,=\,1}^{m}\delta_{i}=2\cdot\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}+\sum_{i\,=\,1}^{m}\delta_{i}=a.

We conclude that (x1,,xm)A(x_{1},\dots,x_{m})\in A, and we have f:(x1,,xm)(y1,,ym)f:(x_{1},\dots,x_{m})\mapsto(y_{1},\dots,y_{m}). Therefore, the map ff is a bijection, Equation (5.5) holds, and the proof is complete. ∎

Our second lemma is an identity of symmetric functions. Roughly speaking, it stratifies the Schur expansion of s(na)/2[s2]sas_{(n-a)/2}[s_{2}]\cdot s_{a} according to the length of the first row.

Lemma 5.2.

If anmod2a\equiv n\mod 2 we have the identity of symmetric functions

(5.17) d= 0(na)/2{sd[s2]sn2dsd1[s2]sn2d+2}λ1n2d+a=s(na)/2[s2]sa.\sum_{d\,=\,0}^{(n-a)/2}\{s_{d}[s_{2}]\cdot s_{n-2d}-s_{d-1}[s_{2}]\cdot s_{n-2d+2}\}_{\lambda_{1}\leq n-2d+a}=s_{(n-a)/2}[s_{2}]\cdot s_{a}.
Proof.

For any abnmod2a\equiv b\equiv n\mod{2}, we claim that

(5.18) {s(na)/2[s2]sa}λ1=a+b={s(nb)/2[s2]sb}λ1=a+b,\left\{s_{(n-a)/2}[s_{2}]\cdot s_{a}\right\}_{\lambda_{1}=a+b}=\left\{s_{(n-b)/2}[s_{2}]\cdot s_{b}\right\}_{\lambda_{1}=a+b},
(5.19) {s(na)/2[s2]sa}λ1=a+b1={s(nb)/2[s2]sb}λ1=a+b1.\left\{s_{(n-a)/2}[s_{2}]\cdot s_{a}\right\}_{\lambda_{1}=a+b-1}=\left\{s_{(n-b)/2}[s_{2}]\cdot s_{b}\right\}_{\lambda_{1}=a+b-1}.

For Equation (5.18), fix λn\lambda\vdash n such that λ1=a+b\lambda_{1}=a+b and write λ=λ1d1λ2d2λmdm\lambda=\lambda_{1}^{d_{1}}\lambda_{2}^{d_{2}}\cdots\lambda_{m}^{d_{m}} where a+b=λ1>λ2>>λm>0a+b=\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}>0. Let δi:=λimod2{0,1}\delta_{i}:=\lambda_{i}\mod 2\in\{0,1\} for 1im1\leq i\leq m. Consider the polynomial f[q]f\in{\mathbb{Z}}[q] given by

(5.20) f:=i=1mj=0λi2λi+12qj.f:=\prod_{i=1}^{m}\sum_{j=0}^{\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil}q^{j}.

Observe that the coefficient sequence of ff is palindromic. Since λ1=a+b0mod2\lambda_{1}=a+b\equiv 0\mod{2}, we have δ1=0\delta_{1}=0. Therefore

(5.21) ai=1mδi2+bi=1mδi2=a+bi=1m(δi+δi+1)2=λ1i=1m(δi+δi+1)2=i= 1m(λiδi2λi+1+δi+12)=i= 1m(λi2λi+12)=deg(f).\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}+\frac{b-\sum_{i=1}^{m}\delta_{i}}{2}=\frac{a+b-\sum_{i=1}^{m}(\delta_{i}+\delta_{i+1})}{2}=\frac{\lambda_{1}-\sum_{i=1}^{m}(\delta_{i}+\delta_{i+1})}{2}=\\ \sum_{i\,=\,1}^{m}\left(\frac{\lambda_{i}-\delta_{i}}{2}-\frac{\lambda_{i+1}+\delta_{i+1}}{2}\right)=\sum_{i\,=\,1}^{m}\left(\left\lfloor\frac{\lambda_{i}}{2}\right\rfloor-\left\lceil\frac{\lambda_{i+1}}{2}\right\rceil\right)=\deg(f).

The palindromicity of ff yields

(5.22) qai=1mδi2f=qbi=1mδi2f.\left\langle q^{\frac{a-\sum_{i=1}^{m}\delta_{i}}{2}}\right\rangle f=\left\langle q^{\frac{b-\sum_{i=1}^{m}\delta_{i}}{2}}\right\rangle f.

Equation (5.18) follows from Equation (5.22) and Lemma 5.1. The proof of Equation (5.19) is similar to that of Equation (5.18) and omitted.

We use Equations (5.18) and (5.19) to prove the desired Equation (5.17). The left hand side of Equation (5.17) may be rewritten

(5.23) d= 0na2{sd[s2]sn2dsd1[s2]sn2d+2}λ1n2d+a=d= 0na2{sd[s2]sn2d}λ1n2d+ad= 0na2{sd1[s2]sn2d+2}λ1n2d+a=d= 0na2{sd[s2]sn2d}λ1n2d+ad= 0na21{sd[s2]sn2d}λ1n2d+a2={s(na)/2[s2]sa}λ12a+d= 0na21{sd[s2]sn2d}n2d+a1λ1n2d+a.\sum_{d\,=\,0}^{\frac{n-a}{2}}\{s_{d}[s_{2}]\cdot s_{n-2d}-s_{d-1}[s_{2}]\cdot s_{n-2d+2}\}_{\lambda_{1}\leq n-2d+a}=\\ \sum_{d\,=\,0}^{\frac{n-a}{2}}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq n-2d+a}-\sum_{d\,=\,0}^{\frac{n-a}{2}}\{s_{d-1}[s_{2}]\cdot s_{n-2d+2}\}_{\lambda_{1}\leq n-2d+a}=\\ \sum_{d\,=\,0}^{\frac{n-a}{2}}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq n-2d+a}-\sum_{d\,=\,0}^{\frac{n-a}{2}-1}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq n-2d+a-2}=\\ \{s_{(n-a)/2}[s_{2}]\cdot s_{a}\}_{\lambda_{1}\leq 2a}+\sum_{d\,=\,0}^{\frac{n-a}{2}-1}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{n-2d+a-1\leq\lambda_{1}\leq n-2d+a}.

Using Equations (5.18) and (5.19) with b=n2db=n-2d, we have

(5.24) {s(na)/2[s2]sa}λ12a+d= 0na21{sd[s2]sn2d}n2d+a1λ1n2d+a={s(na)/2[s2]sa}λ12a+d= 0na21{s(na)/2[s2]sa}n2d+a1λ1n2d+a=s(na)/2[s2]sa.\{s_{(n-a)/2}[s_{2}]\cdot s_{a}\}_{\lambda_{1}\leq 2a}+\sum_{d\,=\,0}^{\frac{n-a}{2}-1}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{n-2d+a-1\leq\lambda_{1}\leq n-2d+a}=\\ \{s_{(n-a)/2}[s_{2}]\cdot s_{a}\}_{\lambda_{1}\leq 2a}+\sum_{d\,=\,0}^{\frac{n-a}{2}-1}\{s_{(n-a)/2}[s_{2}]\cdot s_{a}\}_{n-2d+a-1\leq\lambda_{1}\leq n-2d+a}=s_{(n-a)/2}[s_{2}]\cdot s_{a}.

The desired Equation (5.17) follows from Equations (5.23) and (5.24). ∎

Our final symmetric function lemma is an equality (5.25) of two sums involving Schur function plethysms. The right hand side is the Frobenius image dsd[s2]sn2d\sum_{d}s_{d}[s_{2}]\cdot s_{n-2d} of the 𝔖n{\mathfrak{S}}_{n}-module [n]{\mathbb{C}}[{\mathcal{M}}_{n}]. The terms of the left hand side involve the Frobenius images sd[s2]sn2ds_{d}[s_{2}]\cdot s_{n-2d} of the submodules [n,n2d]{\mathbb{C}}[{\mathcal{M}}_{n,n-2d}], but are truncated by the length of the first row.

Lemma 5.3.

We have the identity of symmetric functions

(5.25) d= 0n/2({sd[s2]sn2d}λ12(n2d)+{sd[s2]sn2d}λ12(n2d)2)=d= 0n/2sd[s2]sn2d.\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\big{(}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)-2}\big{)}=\sum_{d\,=\,0}^{\lfloor n/2\rfloor}s_{d}[s_{2}]\cdot s_{n-2d}.

The proof of Lemma 5.3 is an application of Equation (5.24) to (5.25). Thanks to these tools, this proof is not as difficult as that of Lemmas 5.1 or 5.2.

Proof.

Applying Equation (5.24) to the right hand side of Equation (5.25), we get

d= 0n/2\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor} sd[s2]sn2d=\displaystyle s_{d}[s_{2}]\cdot s_{n-2d}=
(5.26) d= 0n/2({sd[s2]sn2d}λ12(n2d)+k=0d1{sk[s2]sn2k}2n2k2d1λ12n2k2d)=\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\Bigg{(}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{k=0}^{d-1}\{s_{k}[s_{2}]\cdot s_{n-2k}\}_{2n-2k-2d-1\leq\lambda_{1}\leq 2n-2k-2d}\Bigg{)}=
(5.27) d= 0n/2{sd[s2]sn2d}λ12(n2d)+d= 0n/2k=0d1{sk[s2]sn2k}2n2k2d1λ12n2k2d=\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\sum_{k=0}^{d-1}\{s_{k}[s_{2}]\cdot s_{n-2k}\}_{2n-2k-2d-1\leq\lambda_{1}\leq 2n-2k-2d}=
(5.28) d= 0n/2{sd[s2]sn2d}λ12(n2d)+k= 0n/21d=k+1n/2{sk[s2]sn2k}2n2k2d1λ12n2k2d=\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{k\,=\,0}^{\lfloor n/2\rfloor-1}\sum_{d=k+1}^{\lfloor n/2\rfloor}\{s_{k}[s_{2}]\cdot s_{n-2k}\}_{2n-2k-2d-1\leq\lambda_{1}\leq 2n-2k-2d}=
(5.29) d= 0n/2{sd[s2]sn2d}λ12(n2d)+k= 0n/21{sk[s2]sn2k}2n2k2n/21λ12n4k2=\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{k\,=\,0}^{\lfloor n/2\rfloor-1}\{s_{k}[s_{2}]\cdot s_{n-2k}\}_{2n-2k-2\lfloor n/2\rfloor-1\leq\lambda_{1}\leq 2n-4k-2}=
(5.30) d= 0n/2{sd[s2]sn2d}λ12(n2d)+d= 0n/21{sd[s2]sn2d}2n2d2n/21λ12(n2d)2=\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{d\,=\,0}^{\lfloor n/2\rfloor-1}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{2n-2d-2\lfloor n/2\rfloor-1\leq\lambda_{1}\leq 2(n-2d)-2}=
(5.31) d= 0n/2{sd[s2]sn2d}λ12(n2d)+d= 0n/21{sd[s2]sn2d}λ12(n2d)2=\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{d\,=\,0}^{\lfloor n/2\rfloor-1}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)-2}=
(5.32) d= 0n/2{sd[s2]sn2d}λ12(n2d)+d= 0n/2{sd[s2]sn2d}λ12(n2d)2\displaystyle\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)}+\sum_{d\,=\,0}^{\lfloor n/2\rfloor}\{s_{d}[s_{2}]\cdot s_{n-2d}\}_{\lambda_{1}\leq 2(n-2d)-2}

where the second-to-last equality follows from the fact that each sλs_{\lambda} appearing in the Schur expansion of sd[s2]sn2ds_{d}[s_{2}]\cdot s_{n-2d} satisfies

(5.33) λ1n2d=2n2d(n1)12n2d2n/21.\lambda_{1}\geq n-2d=2n-2d-(n-1)-1\geq 2n-2d-2\lfloor n/2\rfloor-1.

5.2. The ideal In,aI_{n,a}^{\mathcal{M}}

We want to understand the defining ideal gr𝐈(n,a){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}) of R(n,a)R({\mathcal{M}}_{n,a}). As in the case of gr𝐈(n){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n}) (Lemma 3.2), some elements of gr𝐈(n,a){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}) are not difficult to obtain.

Definition 5.4.

Suppose 0an0\leq a\leq n and 2(na)2\mid(n-a). Let In,a[𝐱n×n]I_{n,a}^{\mathcal{M}}\subseteq{\mathbb{C}}[{\mathbf{x}}_{n\times n}] be the ideal

(5.34) In,a\displaystyle I_{n,a}^{\mathcal{M}} =In+(x1,1++xn,n)+(iSxi,i:S[n],|S|>a)\displaystyle=I_{n}^{\mathcal{M}}+(x_{1,1}+\cdots+x_{n,n})+\left(\prod_{i\,\in\,S}x_{i,i}\,:\,S\subseteq[n],\,|S|>a\right)
(5.35) =gr𝐈(n)+(x1,1++xn,n)+(iSxi,i:S[n],|S|>a).\displaystyle={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n})+(x_{1,1}+\cdots+x_{n,n})+\left(\prod_{i\,\in\,S}x_{i,i}\,:\,S\subseteq[n],\,|S|>a\right).

The equality (5.35) is justified by Proposition 3.4.

In other words, the ideal In,aI_{n,a}^{\mathcal{M}} is generated by InI_{n}^{\mathcal{M}} together with the diagonal sum x1,1++xn,nx_{1,1}+\cdots+x_{n,n} and any product of a+1a+1 variables on the diagonal. The analog of Lemma 3.2 is as follows.

Lemma 5.5.

We have In,agr𝐈(n,a)I_{n,a}^{\mathcal{M}}\subseteq{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}).

Unlike in the case of n{\mathcal{M}}_{n} or 𝒫n{\mathcal{PM}}_{n}, we do not have In,a=gr𝐈(n,a)I_{n,a}^{\mathcal{M}}={\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}) in general. We leave finding an explicit generating set of gr𝐈(n,a){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}) as an open problem.

Proof.

Since n,an{\mathcal{M}}_{n,a}\subseteq{\mathcal{M}}_{n}, we need only show that the diagonal sum x1,1++xn,nx_{1,1}+\cdots+x_{n,n} and the product iSxi,i\prod_{i\,\in\,S}x_{i,i} lie in gr𝐈(n,a){\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}) for |S|>a|S|>a. Indeed, we have x1,1++xn,na𝐈(n,a)x_{1,1}+\cdots+x_{n,n}-a\in{\mathbf{I}}({\mathcal{M}}_{n,a}) and therefore x1,1++xn,ngr𝐈(n,a)x_{1,1}+\cdots+x_{n,n}\in{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}). Furthermore, if |S|>a|S|>a we have iSxi,i𝐈(n,a)\prod_{i\,\in\,S}x_{i,i}\in{\mathbf{I}}({\mathcal{M}}_{n,a}) and therefore iSxi,igr𝐈(n,a)\prod_{i\,\in\,S}x_{i,i}\in{\mathrm{gr}}\,{\mathbf{I}}({\mathcal{M}}_{n,a}). ∎

We want to show that certain degrees of the graded 𝔖n{\mathfrak{S}}_{n}-module R(n,a)R({\mathcal{M}}_{n,a}) are annihilated by the symmetrization operator ηj=w𝔖jw\eta_{j}=\sum_{w\in{\mathfrak{S}}_{j}}w. This will be done in Lemma LABEL:lem:conjugacy-module-annihilation below. In order to prove Lemma LABEL:lem:conjugacy-module-annihilation we require two technical results; the first is as follows.

Lemma 5.6.

Fix A={i1,j1,,id,jd}A=\{i_{1},j_{1},\cdots,i_{d},j_{d}\} consisting of dd pairs of integers in [n][n] and suppose B[n]B\subseteq[n] satisfies |A|>|B|+a\lvert A\rvert>\lvert B\rvert+a. For each function f:ABf:A\rightarrow B, at least one of the two following statements is true.

  • There exist integers 1k1<k2<<ka+1d1\leq k_{1}<k_{2}<\cdots<k_{a+1}\leq d such that f(ik)=f(jk)f(i_{k_{\ell}})=f(j_{k_{\ell}}) for all [a+1]\ell\in[a+1].

  • There exist integers 1t1<t2d1\leq t_{1}<t_{2}\leq d such that f({it1,jt1})f({it2,jt2})f(\{i_{t_{1}},j_{t_{1}}\})\cap f(\{i_{t_{2}},j_{t_{2}}\})\neq\varnothing.

Proof.

We prove this lemma by contradiction. Assume that neither of the two statements holds. Since the first statement does not hold, we have

(5.36) d:=|{1kd:f(ik)=f(jk)}|a.d^{\prime}:=|\{1\leq k\leq d\,:\,f(i_{k})=f(j_{k})\}|\leq a.

Define CAC\subseteq A by

(5.37) C:={ik,jk:f(ik)=f(jk)}.C:=\{i_{k},j_{k}\,:\,f(i_{k})=f(j_{k})\}.

Then |C|=2d2a|C|=2d^{\prime}\leq 2a, |f(C)|=d|f(C)|=d^{\prime}, and the restriction fACf\mid_{A\setminus C} of ff to ACA\setminus C is injective. Since the second statement does not hold, we have

(5.38) f(AC)f(C)=.f(A\setminus C)\cap f(C)=\varnothing.

We compute

(5.39) |f(A)|=|f(AC)|+|f(C)|=|f(AC)|+d=|AC|+d=|A|d>|B|+ad|B|\lvert f(A)\rvert=\lvert f(A\setminus C)\rvert+\lvert f(C)\rvert=\lvert f(A\setminus C)\rvert+d^{\prime}\\ =\lvert A\setminus C\rvert+d^{\prime}=\lvert A\rvert-d^{\prime}>\lvert B\rvert+a-d^{\prime}\geq\lvert B\rvert

where the first equality is justified by (5.38), the second equality uses |f(C)|=d|f(C)|=d^{\prime}, the third equality holds because fACf\mid_{A\setminus C} is injective, the fourth equality holds because |C|=2d|C|=2d^{\prime}, the strict inequality >> holds because |A|>|B|+a|A|>|B|+a, and the weak inequality \geq uses ada\geq d^{\prime}. But (5.39) implies |f(A)|>|B||f(A)|>|B|, which is a contradiction. ∎

For 1pn1\leq p\leq n we have the symmetrization operator ηp=w𝔖pw\eta_{p}=\sum_{w\in{\mathfrak{S}}_{p}}w over 𝔖p𝔖n{\mathfrak{S}}_{p}\subseteq{\mathfrak{S}}_{n}. We use Lemma 5.6 to show that the images of certain matching monomials under ηp\eta_{p} lie in the ideal In,aI_{n,a}^{\mathcal{M}}.

Lemma 5.7.

Suppose 2(na)2\mid(n-a). Let w=(i1,j1)(i2,j2)(id,jd)𝔖nw=(i_{1},j_{1})(i_{2},j_{2})\cdots(i_{d},j_{d})\in{\mathfrak{S}}_{n} be a matching with dd matched pairs. For 1pn1\leq p\leq n with p>n2d+ap>n-2d+a we have ηp𝔪(w)In,a\eta_{p}\cdot{\mathfrak{m}}(w)\in I_{n,a}^{\mathcal{M}}.

The proof of Lemma 5.7 is involved, but worth it. It will enable us to fruitfully apply Lemma 2.6 to the ring R(n,a)R({\mathcal{M}}_{n,a}).

Proof.

We prove this lemma by induction on