This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Investigation of the 𝚫𝑰=𝟏/𝟐\Delta I=1/2 rule and test of CP symmetry through the measurement of decay asymmetry parameters in 𝚵\Xi^{-} decays

M. Ablikim1, M. N. Achasov5,b, P. Adlarson75, X. C. Ai81, R. Aliberti36, A. Amoroso74A,74C, M. R. An40, Q. An71,58, Y. Bai57, O. Bakina37, I. Balossino30A, Y. Ban47,g, V. Batozskaya1,45, K. Begzsuren33, N. Berger36, M. Berlowski45, M. Bertani29A, D. Bettoni30A, F. Bianchi74A,74C, E. Bianco74A,74C, A. Bortone74A,74C, I. Boyko37, R. A. Briere6, A. Brueggemann68, H. Cai76, X. Cai1,58, A. Calcaterra29A, G. F. Cao1,63, N. Cao1,63, S. A. Cetin62A, J. F. Chang1,58, T. T. Chang77, W. L. Chang1,63, G. R. Che44, G. Chelkov37,a, C. Chen44, Chao Chen55, G. Chen1, H. S. Chen1,63, M. L. Chen1,58,63, S. J. Chen43, S. L. Chen46, S. M. Chen61, T. Chen1,63, X. R. Chen32,63, X. T. Chen1,63, Y. B. Chen1,58, Y. Q. Chen35, Z. J. Chen26,h, W. S. Cheng74C, S. K. Choi11A, X. Chu44, G. Cibinetto30A, S. C. Coen4, F. Cossio74C, J. J. Cui50, H. L. Dai1,58, J. P. Dai79, A. Dbeyssi19, R.  E. de Boer4, D. Dedovich37, Z. Y. Deng1, A. Denig36, I. Denysenko37, M. Destefanis74A,74C, F. De Mori74A,74C, B. Ding66,1, X. X. Ding47,g, Y. Ding35, Y. Ding41, J. Dong1,58, L. Y. Dong1,63, M. Y. Dong1,58,63, X. Dong76, M. C. Du1, S. X. Du81, Z. H. Duan43, P. Egorov37,a, Y. H. Fan46, J. Fang1,58, S. S. Fang1,63, W. X. Fang1, Y. Fang1, R. Farinelli30A, L. Fava74B,74C, F. Feldbauer4, G. Felici29A, C. Q. Feng71,58, J. H. Feng59, K Fischer69, M. Fritsch4, C. D. Fu1, J. L. Fu63, Y. W. Fu1, H. Gao63, Y. N. Gao47,g, Yang Gao71,58, S. Garbolino74C, I. Garzia30A,30B, P. T. Ge76, Z. W. Ge43, C. Geng59, E. M. Gersabeck67, A Gilman69, K. Goetzen14, L. Gong41, W. X. Gong1,58, W. Gradl36, S. Gramigna30A,30B, M. Greco74A,74C, M. H. Gu1,58, Y. T. Gu16, C. Y Guan1,63, Z. L. Guan23, A. Q. Guo32,63, L. B. Guo42, M. J. Guo50, R. P. Guo49, Y. P. Guo13,f, A. Guskov37,a, T. T. Han50, W. Y. Han40, X. Q. Hao20, F. A. Harris65, K. K. He55, K. L. He1,63, F. H H.. Heinsius4, C. H. Heinz36, Y. K. Heng1,58,63, C. Herold60, T. Holtmann4, P. C. Hong13,f, G. Y. Hou1,63, X. T. Hou1,63, Y. R. Hou63, Z. L. Hou1, H. M. Hu1,63, J. F. Hu56,i, T. Hu1,58,63, Y. Hu1, G. S. Huang71,58, K. X. Huang59, L. Q. Huang32,63, X. T. Huang50, Y. P. Huang1, T. Hussain73, N Hüsken28,36, N. in der Wiesche68, M. Irshad71,58, J. Jackson28, S. Jaeger4, S. Janchiv33, J. H. Jeong11A, Q. Ji1, Q. P. Ji20, X. B. Ji1,63, X. L. Ji1,58, Y. Y. Ji50, X. Q. Jia50, Z. K. Jia71,58, H. J. Jiang76, P. C. Jiang47,g, S. S. Jiang40, T. J. Jiang17, X. S. Jiang1,58,63, Y. Jiang63, J. B. Jiao50, Z. Jiao24, S. Jin43, Y. Jin66, M. Q. Jing1,63, T. Johansson75, X. K.1, S. Kabana34, N. Kalantar-Nayestanaki64, X. L. Kang10, X. S. Kang41, M. Kavatsyuk64, B. C. Ke81, A. Khoukaz68, R. Kiuchi1, R. Kliemt14, O. B. Kolcu62A, B. Kopf4, M. Kuessner4, A. Kupsc45,75, W. Kühn38, J. J. Lane67, P.  Larin19, A. Lavania27, L. Lavezzi74A,74C, T. T. Lei71,58, Z. H. Lei71,58, H. Leithoff36, M. Lellmann36, T. Lenz36, C. Li44, C. Li48, C. H. Li40, Cheng Li71,58, D. M. Li81, F. Li1,58, G. Li1, H. Li71,58, H. B. Li1,63, H. J. Li20, H. N. Li56,i, Hui Li44, J. R. Li61, J. S. Li59, J. W. Li50, K. L. Li20, Ke Li1, L. J Li1,63, L. K. Li1, Lei Li3, M. H. Li44, P. R. Li39,j,k, Q. X. Li50, S. X. Li13, T.  Li50, W. D. Li1,63, W. G. Li1, X. H. Li71,58, X. L. Li50, Xiaoyu Li1,63, Y. G. Li47,g, Z. J. Li59, Z. X. Li16, C. Liang43, H. Liang1,63, H. Liang35, H. Liang71,58, Y. F. Liang54, Y. T. Liang32,63, G. R. Liao15, L. Z. Liao50, Y. P. Liao1,63, J. Libby27, A.  Limphirat60, D. X. Lin32,63, T. Lin1, B. J. Liu1, B. X. Liu76, C. Liu35, C. X. Liu1, F. H. Liu53, Fang Liu1, Feng Liu7, G. M. Liu56,i, H. Liu39,j,k, H. B. Liu16, H. M. Liu1,63, Huanhuan Liu1, Huihui Liu22, J. B. Liu71,58, J. L. Liu72, J. Y. Liu1,63, K. Liu1, K. Y. Liu41, Ke Liu23, L. Liu71,58, L. C. Liu44, Lu Liu44, M. H. Liu13,f, P. L. Liu1, Q. Liu63, S. B. Liu71,58, T. Liu13,f, W. K. Liu44, W. M. Liu71,58, X. Liu39,j,k, Y. Liu39,j,k, Y. Liu81, Y. B. Liu44, Z. A. Liu1,58,63, Z. Q. Liu50, X. C. Lou1,58,63, F. X. Lu59, H. J. Lu24, J. G. Lu1,58, X. L. Lu1, Y. Lu8, Y. P. Lu1,58, Z. H. Lu1,63, C. L. Luo42, M. X. Luo80, T. Luo13,f, X. L. Luo1,58, X. R. Lyu63, Y. F. Lyu44, F. C. Ma41, H. L. Ma1, J. L. Ma1,63, L. L. Ma50, M. M. Ma1,63, Q. M. Ma1, R. Q. Ma1,63, R. T. Ma63, X. Y. Ma1,58, Y. Ma47,g, Y. M. Ma32, F. E. Maas19, M. Maggiora74A,74C, S. Malde69, Q. A. Malik73, A. Mangoni29B, Y. J. Mao47,g, Z. P. Mao1, S. Marcello74A,74C, Z. X. Meng66, J. G. Messchendorp14,64, G. Mezzadri30A, H. Miao1,63, T. J. Min43, R. E. Mitchell28, X. H. Mo1,58,63, N. Yu. Muchnoi5,b, J. Muskalla36, Y. Nefedov37, F. Nerling19,d, I. B. Nikolaev5,b, Z. Ning1,58, S. Nisar12,l, Q. L. Niu39,j,k, W. D. Niu55, Y. Niu 50, S. L. Olsen63, Q. Ouyang1,58,63, S. Pacetti29B,29C, X. Pan55, Y. Pan57, A.  Pathak35, P. Patteri29A, Y. P. Pei71,58, M. Pelizaeus4, H. P. Peng71,58, Y. Y. Peng39,j,k, K. Peters14,d, J. L. Ping42, R. G. Ping1,63, S. Plura36, V. Prasad34, F. Z. Qi1, H. Qi71,58, H. R. Qi61, M. Qi43, T. Y. Qi13,f, S. Qian1,58, W. B. Qian63, C. F. Qiao63, J. J. Qin72, L. Q. Qin15, X. P. Qin13,f, X. S. Qin50, Z. H. Qin1,58, J. F. Qiu1, S. Q. Qu61, C. F. Redmer36, K. J. Ren40, A. Rivetti74C, M. Rolo74C, G. Rong1,63, Ch. Rosner19, S. N. Ruan44, N. Salone45, A. Sarantsev37,c, Y. Schelhaas36, K. Schoenning75, M. Scodeggio30A,30B, K. Y. Shan13,f, W. Shan25, X. Y. Shan71,58, J. F. Shangguan55, L. G. Shao1,63, M. Shao71,58, C. P. Shen13,f, H. F. Shen1,63, W. H. Shen63, X. Y. Shen1,63, B. A. Shi63, H. C. Shi71,58, J. L. Shi13, J. Y. Shi1, Q. Q. Shi55, R. S. Shi1,63, X. Shi1,58, J. J. Song20, T. Z. Song59, W. M. Song35,1, Y.  J. Song13, Y. X. Song47,g, S. Sosio74A,74C, S. Spataro74A,74C, F. Stieler36, Y. J. Su63, G. B. Sun76, G. X. Sun1, H. Sun63, H. K. Sun1, J. F. Sun20, K. Sun61, L. Sun76, S. S. Sun1,63, T. Sun1,63, W. Y. Sun35, Y. Sun10, Y. J. Sun71,58, Y. Z. Sun1, Z. T. Sun50, Y. X. Tan71,58, C. J. Tang54, G. Y. Tang1, J. Tang59, Y. A. Tang76, L. Y Tao72, Q. T. Tao26,h, M. Tat69, J. X. Teng71,58, V. Thoren75, W. H. Tian59, W. H. Tian52, Y. Tian32,63, Z. F. Tian76, I. Uman62B, S. J. Wang 50, B. Wang1, B. L. Wang63, Bo Wang71,58, C. W. Wang43, D. Y. Wang47,g, F. Wang72, H. J. Wang39,j,k, H. P. Wang1,63, J. P. Wang 50, K. Wang1,58, L. L. Wang1, M. Wang50, Meng Wang1,63, S. Wang13,f, S. Wang39,j,k, T.  Wang13,f, T. J. Wang44, W.  Wang72, W. Wang59, W. P. Wang71,58, X. Wang47,g, X. F. Wang39,j,k, X. J. Wang40, X. L. Wang13,f, Y. Wang61, Y. D. Wang46, Y. F. Wang1,58,63, Y. H. Wang48, Y. N. Wang46, Y. Q. Wang1, Yaqian Wang18,1, Yi Wang61, Z. Wang1,58, Z. L.  Wang72, Z. Y. Wang1,63, Ziyi Wang63, D. Wei70, D. H. Wei15, F. Weidner68, S. P. Wen1, C. W. Wenzel4, U. Wiedner4, G. Wilkinson69, M. Wolke75, L. Wollenberg4, C. Wu40, J. F. Wu1,63, L. H. Wu1, L. J. Wu1,63, X. Wu13,f, X. H. Wu35, Y. Wu71, Y. H. Wu55, Y. J. Wu32, Z. Wu1,58, L. Xia71,58, X. M. Xian40, T. Xiang47,g, D. Xiao39,j,k, G. Y. Xiao43, S. Y. Xiao1, Y.  L. Xiao13,f, Z. J. Xiao42, C. Xie43, X. H. Xie47,g, Y. Xie50, Y. G. Xie1,58, Y. H. Xie7, Z. P. Xie71,58, T. Y. Xing1,63, C. F. Xu1,63, C. J. Xu59, G. F. Xu1, H. Y. Xu66, Q. J. Xu17, Q. N. Xu31, W. Xu1,63, W. L. Xu66, X. P. Xu55, Y. C. Xu78, Z. P. Xu43, Z. S. Xu63, F. Yan13,f, L. Yan13,f, W. B. Yan71,58, W. C. Yan81, X. Q. Yan1, H. J. Yang51,e, H. L. Yang35, H. X. Yang1, Tao Yang1, Y. Yang13,f, Y. F. Yang44, Y. X. Yang1,63, Yifan Yang1,63, Z. W. Yang39,j,k, Z. P. Yao50, M. Ye1,58, M. H. Ye9, J. H. Yin1, Z. Y. You59, B. X. Yu1,58,63, C. X. Yu44, G. Yu1,63, J. S. Yu26,h, T. Yu72, X. D. Yu47,g, C. Z. Yuan1,63, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,63, Z. Y. Yuan59, C. X. Yue40, A. A. Zafar73, F. R. Zeng50, X. Zeng13,f, Y. Zeng26,h, Y. J. Zeng1,63, X. Y. Zhai35, Y. C. Zhai50, Y. H. Zhan59, A. Q. Zhang1,63, B. L. Zhang1,63, B. X. Zhang1, D. H. Zhang44, G. Y. Zhang20, H. Zhang71, H. C. Zhang1,58,63, H. H. Zhang59, H. H. Zhang35, H. Q. Zhang1,58,63, H. Y. Zhang1,58, J. Zhang81, J. J. Zhang52, J. L. Zhang21, J. Q. Zhang42, J. W. Zhang1,58,63, J. X. Zhang39,j,k, J. Y. Zhang1, J. Z. Zhang1,63, Jianyu Zhang63, Jiawei Zhang1,63, L. M. Zhang61, L. Q. Zhang59, Lei Zhang43, P. Zhang1,63, Q. Y.  Zhang40,81, Shuihan Zhang1,63, Shulei Zhang26,h, X. D. Zhang46, X. M. Zhang1, X. Y. Zhang50, Xuyan Zhang55, Y. Zhang69, Y.  Zhang72, Y.  T. Zhang81, Y. H. Zhang1,58, Yan Zhang71,58, Yao Zhang1, Z. H. Zhang1, Z. L. Zhang35, Z. Y. Zhang44, Z. Y. Zhang76, G. Zhao1, J. Zhao40, J. Y. Zhao1,63, J. Z. Zhao1,58, Lei Zhao71,58, Ling Zhao1, M. G. Zhao44, S. J. Zhao81, Y. B. Zhao1,58, Y. X. Zhao32,63, Z. G. Zhao71,58, A. Zhemchugov37,a, B. Zheng72, J. P. Zheng1,58, W. J. Zheng1,63, Y. H. Zheng63, B. Zhong42, X. Zhong59, H.  Zhou50, L. P. Zhou1,63, X. Zhou76, X. K. Zhou7, X. R. Zhou71,58, X. Y. Zhou40, Y. Z. Zhou13,f, J. Zhu44, K. Zhu1, K. J. Zhu1,58,63, L. Zhu35, L. X. Zhu63, S. H. Zhu70, S. Q. Zhu43, T. J. Zhu13,f, W. J. Zhu13,f, Y. C. Zhu71,58, Z. A. Zhu1,63, J. H. Zou1, J. Zu71,58
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
6 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
7 Central China Normal University, Wuhan 430079, People’s Republic of China
8 Central South University, Changsha 410083, People’s Republic of China
9 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
10 China University of Geosciences, Wuhan 430074, People’s Republic of China
11 Chung-Ang University, Seoul, 06974, Republic of Korea
12 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
13 Fudan University, Shanghai 200433, People’s Republic of China
14 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
15 Guangxi Normal University, Guilin 541004, People’s Republic of China
16 Guangxi University, Nanning 530004, People’s Republic of China
17 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
18 Hebei University, Baoding 071002, People’s Republic of China
19 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
20 Henan Normal University, Xinxiang 453007, People’s Republic of China
21 Henan University, Kaifeng 475004, People’s Republic of China
22 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
23 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
24 Huangshan College, Huangshan 245000, People’s Republic of China
25 Hunan Normal University, Changsha 410081, People’s Republic of China
26 Hunan University, Changsha 410082, People’s Republic of China
27 Indian Institute of Technology Madras, Chennai 600036, India
28 Indiana University, Bloomington, Indiana 47405, USA
29 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
30 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
31 Inner Mongolia University, Hohhot 010021, People’s Republic of China
32 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
33 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
34 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
35 Jilin University, Changchun 130012, People’s Republic of China
36 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
37 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
38 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
39 Lanzhou University, Lanzhou 730000, People’s Republic of China
40 Liaoning Normal University, Dalian 116029, People’s Republic of China
41 Liaoning University, Shenyang 110036, People’s Republic of China
42 Nanjing Normal University, Nanjing 210023, People’s Republic of China
43 Nanjing University, Nanjing 210093, People’s Republic of China
44 Nankai University, Tianjin 300071, People’s Republic of China
45 National Centre for Nuclear Research, Warsaw 02-093, Poland
46 North China Electric Power University, Beijing 102206, People’s Republic of China
47 Peking University, Beijing 100871, People’s Republic of China
48 Qufu Normal University, Qufu 273165, People’s Republic of China
49 Shandong Normal University, Jinan 250014, People’s Republic of China
50 Shandong University, Jinan 250100, People’s Republic of China
51 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
52 Shanxi Normal University, Linfen 041004, People’s Republic of China
53 Shanxi University, Taiyuan 030006, People’s Republic of China
54 Sichuan University, Chengdu 610064, People’s Republic of China
55 Soochow University, Suzhou 215006, People’s Republic of China
56 South China Normal University, Guangzhou 510006, People’s Republic of China
57 Southeast University, Nanjing 211100, People’s Republic of China
58 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
59 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
60 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
61 Tsinghua University, Beijing 100084, People’s Republic of China
62 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
63 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
64 University of Groningen, NL-9747 AA Groningen, The Netherlands
65 University of Hawaii, Honolulu, Hawaii 96822, USA
66 University of Jinan, Jinan 250022, People’s Republic of China
67 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
68 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
69 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
70 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
71 University of Science and Technology of China, Hefei 230026, People’s Republic of China
72 University of South China, Hengyang 421001, People’s Republic of China
73 University of the Punjab, Lahore-54590, Pakistan
74 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
75 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
76 Wuhan University, Wuhan 430072, People’s Republic of China
77 Xinyang Normal University, Xinyang 464000, People’s Republic of China
78 Yantai University, Yantai 264005, People’s Republic of China
79 Yunnan University, Kunming 650500, People’s Republic of China
80 Zhejiang University, Hangzhou 310027, People’s Republic of China
81 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan
Abstract

Using (10087±44)×106(10087\pm 44)\times 10^{6} J/ψJ/\psi events collected with the BESIII detector, numerous Ξ\Xi^{-} and Λ\Lambda decay asymmetry parameters are simultaneously determined from the process J/ψΞΞ¯+Λ(pπ)πΛ¯(n¯π0)π+J/\psi\to\Xi^{-}\bar{\Xi}^{+}\to\Lambda(p\pi^{-})\pi^{-}\bar{\Lambda}(\bar{n}\pi^{0})\pi^{+} and its charge-conjugate channel. The precisions of αΛ0\alpha_{\Lambda 0} for Λnπ0\Lambda\to n\pi^{0} and α¯Λ0\bar{\alpha}_{\Lambda 0} for Λ¯n¯π0\bar{\Lambda}\to\bar{n}\pi^{0} compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λnπ0\Lambda\to n\pi^{0} to that of Λpπ\Lambda\to p\pi^{-}, αΛ0/αΛ\langle\alpha_{\Lambda 0}\rangle/\langle\alpha_{\Lambda-}\rangle, is determined to be 0.873±0.0120.010+0.0110.873\pm 0.012^{+0.011}_{-0.010}, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ5\sigma, which signifies the existence of the ΔI=3/2\Delta I=3/2 transition in Λ\Lambda for the first time. Besides, we test for CP symmetry in ΞΛπ\Xi^{-}\to\Lambda\pi^{-} and in Λnπ0\Lambda\to n\pi^{0} with the best precision to date.

The non-invariance of fundamental interactions under the combination of charge-conjugation (C) and parity (P) transformations is a necessary condition for baryogenesis Sakharov (1967), a process that dynamically generates the matter-antimatter asymmetry in the universe. Although the Standard Model (SM) accommodates CP violation with the Kobayashi-Maskawa phase Cabibbo (1963); Kobayashi and Maskawa (1973), it can only explain a matter-antimatter asymmetry that is at least ten orders of magnitude smaller than the observed value Barr et al. (1979). Additional sources of CP violation beyond the SM are expected to exist, and the weak hadronic transitions of hyperons are another place to search for such sources of CP violation Salone et al. (2022); Donoghue et al. (1986).

When two or more transition amplitudes interfere with each other, relative weak- and strong-phase contributions exist between them. For KππK\to\pi\pi Alavi-Harati et al. (1999); Fanti et al. (1999), the CP violating weak phase comes from the interference between SS-wave isospin I=0I=0 (A0A_{0}) and isospin I=2I=2 (A2A_{2}) amplitudes, which correspond to ΔI=1/2\Delta I=1/2 and ΔI=3/2\Delta I=3/2 transitions, respectively Cirigliano et al. (2012). The unforeseen large discrepancy between the real parts of the two isospin amplitudes, Re(A0)/Re(A2)=22.45±0.06{\rm Re}(A_{0})/{\rm Re}(A_{2})=22.45\pm 0.06, known as the ΔI=1/2\Delta I=1/2 rule Amhis et al. (2022); Manzari et al. (2021), is a long-standing puzzle. Various theoretical models have been proposed to explain this large ratio, but the dual QCD approach Buras et al. (2014) and lattice QCD calculation Abbott et al. (2020) can only partially explain it. A comprehensive understanding of this rule is desirable.

The ΔI=1/2\Delta I=1/2 rule is also applicable in the decays of spin 1/2 hyperons Overseth and Pakvasa (1969); Olsen et al. (1970), which can be described in terms of its decay asymmetry parameters, αY\alpha_{\rm Y} and ϕY\phi_{\rm Y} Lee and Yang (1957). The ratio of decay asymmetry parameters for the two isospin decay modes Λnπ0\Lambda\to n\pi^{0} and Λpπ\Lambda\to p\pi^{-}, αΛ0/αΛ\alpha_{\Lambda 0}/\alpha_{\Lambda-}, is a sensitive probe to determine the contribution of ΔI=3/2\Delta I=3/2 transitions. In their absence, the ratio αΛ0/αΛ\alpha_{\Lambda 0}/\alpha_{\Lambda-} is predicted to be unity Olsen et al. (1970). A recent BESIII result suggests that this might not be the case Ablikim et al. (2019). Further studies of the isospin amplitude in hyperon decays is required to rigorously test the ΔI=1/2\Delta I=1/2 rule.

Moreover, contrary to kaon decays, CP-violation in hyperon decays could arise from the interference between parity-conserving (PP-wave) and parity-violating (SS-wave) amplitudes with a CP-odd weak phase. The decay asymmetry parameters of hyperon are CP-odd and assuming CP conservation αY=α¯Y\alpha_{\rm Y}=-\bar{\alpha}_{\rm Y} and ϕY=ϕ¯Y\phi_{\rm Y}=-\bar{\phi}_{\rm Y}, where α¯Y\bar{\alpha}_{\rm Y} and ϕ¯Y\bar{\phi}_{\rm Y} are decay asymmetry parameters for antihyperon Y¯\bar{Y} Donoghue et al. (1986). CP symmetry, which is broken in the presence of non-negligible weak phase contributions, is gauged by the CP-observables ACPA_{\rm CP} and ΔΦCP\Delta\Phi_{\rm CP} Ablikim et al. (2022a):

ACPY=αY+α¯YαYα¯Y=tan(δPδS)tan(ξPξS),A_{\rm CP}^{\rm Y}=\frac{\alpha_{\rm Y}+\bar{\alpha}_{\rm Y}}{\alpha_{\rm Y}-\bar{\alpha}_{\rm Y}}=-\tan\left(\delta_{P}-\delta_{S}\right)\tan\left(\xi_{P}-\xi_{S}\right), (1)
ΔϕCPY=ϕY+ϕ¯Y2=α1α2cosϕtan(ξPξS),\Delta\phi_{\rm CP}^{\rm Y}=\frac{\phi_{\rm Y}+\bar{\phi}_{\rm Y}}{2}=\frac{\langle\alpha\rangle}{\sqrt{1-\langle\alpha\rangle^{2}}}\cos\langle\phi\rangle\tan\left(\xi_{P}-\xi_{S}\right), (2)

where α=(αYα¯Y)/2\langle\alpha\rangle=(\alpha_{{\rm Y}}-\bar{\alpha}_{{\rm Y}})/2, ϕ=(ϕYϕ¯Y)/2\langle\phi\rangle=(\phi_{{\rm Y}}-\bar{\phi}_{{\rm Y}})/2, δPδS\delta_{P}-\delta_{S} denotes the strong phase difference of the final-state interaction, and ξPξS\xi_{P}-\xi_{S} denotes the weak phase difference. Experimentally, the weak phase difference has been directly determined to be (1.2±3.4±0.8)×102(1.2\pm 3.4\pm 0.8)\times 10^{-2} rad Ablikim et al. (2022a) for the decay ΞΛπ\Xi^{-}\to\Lambda\pi^{-} using entangled Ξ\Xi^{-} and Ξ¯+\bar{\Xi}^{+} produced at BESIII.

In this Letter, the process J/ψΞΞ¯+Λ(pπ)πΛ¯(n¯π0)π+J/\psi\to\Xi^{-}\bar{\Xi}^{+}\to\Lambda(p\pi^{-})\pi^{-}\bar{\Lambda}(\bar{n}\pi^{0})\pi^{+} is studied with (10087±44)×106(10087\pm 44)\times 10^{6} J/ψJ/\psi events Ablikim et al. (2022b) collected by the BESIII detector. Benefiting from the transversely-polarized hyperons and the spin correlation between hyperon and anti-hyperons, various decay properties of Ξ\Xi^{-} and Λ\Lambda are determined by an extended formalism that completely describes the angular distributions of the production and decay processes Perotti et al. (2019).

The design and performance of the BESIII detector are described in Refs. Ablikim et al. (2010); Huang et al. (2022). The corresponding simulation, analysis framework, and software are presented in Refs. Ping (2008); Deng et al. (2006); Li et al. (2006). Simulated Monte Carlo (MC) samples are produced with Geant4-based Agostinelli et al. (2003) MC software, which models the experimental conditions including the electron-positron collision, the decays of the particles, and the response of the detector. A sample of simulated events of generic J/ψJ/\psi decays, corresponding to the luminosity of data, is used to study the potential background reactions. To eliminate experimenter bias, the central values were blinded by using the hidden answer technique Klein and Roodman (2005) until all selections, fits, and uncertainty evaluations were finalized. Simulated signal and background samples are used to verify the analysis approaches and to study the systematic effects. Unless otherwise indicated, the charge-conjugate channel is implied throughout the text.

Four charged tracks are required in the multilayer drift chamber (MDC) within the range |cosθ|<0.93\lvert\cos\theta\rvert<0.93, where θ\theta is the polar angle with respect to the zz-axis, which is the symmetry axis of the MDC. Due to the non-overlapping momentum ranges of the proton and pions, a positively charged track with momentum greater than 0.320.32 GeV/cc is assigned to be a proton, while a positively and two negatively charged tracks with momentum less than 0.300.30 GeV/cc are assigned to be pions. The probability of misidentifying a proton for a π+\pi^{+} is negligible. The sequential decay ΞΛπpππ\Xi^{-}\to\Lambda\pi^{-}\to p\pi^{-}\pi^{-} is reconstructed by a vertex fit Xu et al. (2010); Ablikim et al. (2022a), which takes into account the flight paths of the hyperons. The combination with the smallest (MpππmΞ)2+(MpπmΛ)2(M_{p\pi^{-}\pi^{-}}-m_{\Xi^{-}})^{2}+(M_{p\pi^{-}}-m_{\Lambda})^{2} is retained, where Mpππ(pπ)M_{p\pi^{-}\pi^{-}(p\pi^{-})} denotes the invariant mass of pππp\pi^{-}\pi^{-} (pπp\pi^{-}) and mΞ(Λ)m_{\Xi^{-}(\Lambda)} refers to the nominal mass of Ξ\Xi^{-} (Λ\LambdaWorkman and Others (2022). The probability of a π\pi^{-} from the Λ\Lambda and Ξ\Xi^{-} decays being wrongly assigned is found to be 0.1%0.1\%, which is negligible. The candidate events are required to satisfy |MpπmΛ|<11\lvert M_{p\pi^{-}}-m_{\Lambda}\rvert<11 MeV/c2c^{2} and |MpππmΞ|<11\lvert M_{p\pi^{-}\pi^{-}}-m_{\Xi^{-}}\rvert<11 MeV/c2c^{2}. The decay lengths of the Ξ\Xi^{-} and Λ\Lambda are calculated in the vertex fit and required to be positive. To improve the resolution and minimize the discrepancy between data and MC simulation, the polar angle θΞ\theta_{\Xi^{-}} of the reconstructed Ξ\Xi^{-} in the e+ee^{+}e^{-} center-of-mass frame is required to satisfy |cosθΞ|<0.84\lvert\cos\theta_{\Xi^{-}}\rvert<0.84.

At least two photon candidates in the electromagnetic calorimeter (EMC) are required. A photon candidate should have energy greater than 2525 MeV in the barrel region (|cosθ|<0.8\lvert\cos\theta\rvert<0.8) or 5050 MeV in the end-cap region (0.86<|cosθ|<0.920.86<\lvert\cos\theta\rvert<0.92). For antiprotons, which may annihilate in the detector, photon candidates must be separated from charged tracks with an opening angle greater than 2020^{\circ}, while for other tracks the angle must be greater than 1010^{\circ}. To suppress electronic noise and showers unrelated to the event, photon candidates are required to have the EMC time difference from the event start time within [0,700][0,700] ns. To veto the showers from antineutron interactions in the EMC, the photon candidates should be separated from the direction of the Ξπ+\Xi^{-}\pi^{+} recoiling system with an opening angle greater than 1515^{\circ}. A boosted decision tree (BDT) classifier Therhaag (2010) is constructed based on the shower shape variables to discriminate a signal photon from a noise shower. The shower shape variables include the deposited energy, number of hits, second and Zernike moments, and deposition shape clu . The signal efficiency of the BDT is 90%90\%, and 55%55\% of the background is rejected. The π0\pi^{0} candidates are reconstructed from a pair of photons by constraining their invariant mass to the π0\pi^{0} nominal mass, and the corresponding χ1C2\chi^{2}_{1C} is required to be less than 25. Due to combinatorial effects, it is possible to have more than one unique π0\pi^{0} candidate in a single event.

A kinematic fit under the hypothesis of J/ψΞπ+n¯γγJ/\psi\to\Xi^{-}\pi^{+}\bar{n}\gamma\gamma is performed imposing energy-momentum conservation and constraining the invariant masses of γγ\gamma\gamma and γγn¯\gamma\gamma\bar{n} to the nominal masses of π0\pi^{0} and Λ¯\bar{\Lambda}, respectively. The kinematics of the Ξ\Xi^{-} are obtained from the above vertex fit. The antineutron is treated as a missing particle with unknown mass. The fit is performed for each π0\pi^{0} candidate. If there is more than one π0\pi^{0} candidate, the candidate with the smallest χ2\chi^{2} is retained, and χ2<200\chi^{2}<200 is required. The invariant mass of n¯γγπ+\bar{n}\gamma\gamma\pi^{+} is required to satisfy |Mn¯γγπ+mΞ¯+|<11\lvert M_{\bar{n}\gamma\gamma\pi^{+}}-m_{\bar{\Xi}^{+}}\rvert<11 MeV/c2c^{2}. Since all other final state particles are detected, the kinematic fit allows for the reconstruction of the four momentum of antineutron. The signal is identified by the antineutron’s missing mass, as shown in Fig. 1 with a prominent signal peak in the antineutron vicinity and a low level background.

Detailed studies are performed with MC simulation and data in the Ξ\Xi^{-} and Ξ¯+\bar{\Xi}^{+} sideband regions to evaluate the potential backgrounds. The dominant background, referred to as combinatorial background, is from signal events with misreconstructed π0\pi^{0} candidates, which does not peak in the antineutron missing mass distribution. The remaining background sources are classified into two categories Zhou et al. (2021): resonant background that contains ΞΞ¯+\Xi^{-}\bar{\Xi}^{+} intermediate states, such as, J/ψγηcγΞΞ¯+γΛ(pπ)πΛ¯(n¯π0)π+J/\psi\to\gamma\eta_{c}\to\gamma\Xi^{-}\bar{\Xi}^{+}\to\gamma\Lambda(\to p\pi^{-})\pi^{-}\bar{\Lambda}(\bar{n}\pi^{0})\pi^{+} and J/ψΞΞ¯+Λ(pπ)πΛ¯(p¯π+)π+J/\psi\to\Xi^{-}\bar{\Xi}^{+}\to\Lambda(\to p\pi^{-})\pi^{-}\bar{\Lambda}(\bar{p}\pi^{+})\pi^{+}; non-resonant background without ΞΞ¯+\Xi^{-}\bar{\Xi}^{+} intermediate states. The decay processes of resonant backgrounds are well understood, and the corresponding contributions are evaluated by MC simulation, which are generated according to the helicity amplitudes and weighted according to the branching fractions Workman and Others (2022). MC simulation shows that the distributions of MpππM_{p\pi^{-}\pi^{-}} and Mn¯γγπ+M_{\bar{n}\gamma\gamma\pi^{+}} of non-resonant background are almost flat. Therefore, the corresponding contribution can be evaluated from the Ξ\Xi^{-} and Ξ¯+\bar{\Xi}^{+} sideband regions.

\begin{overpic}[width=195.12767pt]{logxixippv11massfit.eps} \end{overpic}

Figure 1: Distribution of antineutron missing mass. The data are shown as black data points with error bars. The blue solid curve represents the total fit result, and the red dashed line denotes the signal shape. The dotted lines in green, light blue and magenta denote the combinatorial, resonant and non-resonant background contributions, respectively. The red arrows indicate the signal region.

Signal yields are obtained from an unbinned maximum likelihood fit of the missing mass distribution. In the fit shown in Fig. 1, the signal is described by an MC-simulated shape convolved by a Gaussian function accounting for the resolution difference between data and MC simulation. The combinatorial background is described by the signal MC sample, and it is parameterized by a product of an ARGUS function Albrecht et al. (1990) and a cubic function. Fixing both the magnitude and shape, the resonant and non-resonant backgrounds are described with the MC simulation and data events in the sideband region, respectively. The normalization of the background and the definition of the sideband region are shown in Sec. 2 of the Supplemental Material sup . The fit yields 143973±414143973\pm 414 signal events and a purity of 91.2%91.2\% in the mass range [0.925,0.955][0.925,0.955] GeV/c2c^{2}. The same procedure is performed for the charge-conjugate process and results in 123208±382123208\pm 382 signal events and a purity of 91.0%91.0\%.

The joint angular amplitude of the full decay chain can be written in a modular form as

𝒲(ξ;ω)=μ,ν=03Cμνμ,ν=03aμμΞaννΞaμ0Λaν0Λ¯.\mathcal{W}(\xi;\omega)=\sum_{\mu,\nu=0}^{3}C_{\mu\nu}\sum_{\mu^{\prime},\nu^{\prime}=0}^{3}a_{\mu\mu^{\prime}}^{\Xi}a_{\nu\nu^{\prime}}^{\Xi}a_{\mu^{\prime}0}^{\Lambda}a_{\nu^{\prime}0}^{\bar{\Lambda}}. (3)

Here CμνC_{\mu\nu} is a 4×44\times 4 real-valued spin density matrix describing the spin configuration of the entangled ΞΞ¯+\Xi^{-}\bar{\Xi}^{+} pair, aμνYa^{{\rm Y}}_{\mu\nu} is also a 4×44\times 4 real-valued matrix representing the propagation of the spin density matrix in the decays of a spin 1/2 hyperon into a spin 1/2 baryon and a pseudoscalar, YBπ{\rm Y}\to{\rm B}\pi. Therefore, the distribution of the nine helicity angles ξ=(θΞ,θΛ,ϕΛ,θΛ¯,ϕΛ¯,θp,ϕp,θn¯,ϕn¯)\xi=(\theta_{\Xi},\theta_{\Lambda},\phi_{\Lambda},\theta_{\bar{\Lambda}},\phi_{\bar{\Lambda}},\theta_{p},\phi_{p},\theta_{\bar{n}},\phi_{\bar{n}}) is determined by eight global parameters ω=(αJ/ψ,ΔΦJ/ψ,αΞ,ϕΞ,α¯Ξ,ϕ¯Ξ,αΛ,α¯Λ0)\omega=(\alpha_{J/\psi},\Delta\Phi_{J/\psi},\alpha_{\Xi},\phi_{\Xi},\bar{\alpha}_{\Xi},\bar{\phi}_{\Xi},\alpha_{\Lambda-},\bar{\alpha}_{\Lambda 0}). In this analysis, YBπ{\rm Y}\to{\rm B}\pi stands for ΞΛπ\Xi^{-}\to\Lambda\pi^{-}, Λpπ\Lambda\to p\pi^{-} and Λ¯n¯π0\bar{\Lambda}\to\bar{n}\pi^{0}. The distribution of the helicity angle θp\theta_{p} in the Λ\Lambda rest frame is written as

dNdcosθp1+αΛαΞcosθp\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{p}}\propto 1+\alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p} (4)

by integrating over the remaining eight helicity angles. The formalism of the full angular distribution and the definition of the reference system are discussed in detail in Ref. Ablikim et al. (2022a).

A simultaneous fit on the joint angular distribution is carried out with the production parameters, αJ/ψ\alpha_{J/\psi} and ΔΦJ/ψ\Delta\Phi_{J/\psi}, and decay asymmetry parameters of Ξ\Xi^{-} shared between the two charge-conjugate channels. For each channel, the probability distribution function of the eight unknown parameters ω\omega can be defined in terms of the helicity angles ξ\xi

𝒫(ξ;ω)=𝒲(ξ;ω)ε(ξ)/𝒩(ω),\mathcal{P}(\xi;\omega)=\mathcal{W}(\xi;\omega)\varepsilon(\xi)/\mathcal{N}(\omega), (5)

where the normalization factor 𝒩(ω)\mathcal{N}(\omega) is calculated with 𝒩(ω)=1Mj=1M𝒲(ξj;ω)𝒲(ξj;ωgen)\mathcal{N}(\omega)=\frac{1}{M}\sum_{j=1}^{M}\frac{\mathcal{W}(\xi_{j};\omega)}{\mathcal{W}(\xi_{j};\omega_{\rm gen})} by a signal MC sample generated with parameters ωgen\omega_{\rm gen}. The sum runs over all events in the generated sample MM, which is chosen to be thirty times the yield obtained in data after the full selection. The log-likelihood function for NN observed events is

𝒮=𝒢(i=1Nln𝒫(ξi;ω)jwjiNjbkgln𝒫(ξi;ω)),\small\mathcal{S}=-\mathcal{G}\left(\sum_{i=1}^{N}\ln\mathcal{P}(\xi_{i};\omega)-\sum_{j}{\sc w_{j}}\sum_{i}^{N_{j}^{\rm bkg}}\ln\mathcal{P}(\xi_{i};\omega)\right), (6)

where the second term in brackets with jj from one to three represents the three different sources of background remaining in the final event sample. Their contributions are evaluated with the corresponding MC samples or data events in the sideband region and their associated weight factors wjw_{j}. The global factor, 𝒢=(NjNjbkg×wj)/(N+jNjbkg×wj2)\mathcal{G}=(N-\sum_{j}N_{j}^{\rm bkg}\times\sc{w_{j}})/(N+\sum_{j}N_{j}^{\rm bkg}\times\sc{w_{j}}^{2}) , corrects for the statistical uncertainties in the weighted likelihood fit Langenbruch (2022).

The 𝒮\mathcal{S} function is minimized using Minuit2 Hatlo et al. (2005) to determine the production and decay asymmetry parameters ω\omega. The results from the fit, as shown in Table 1, are consistent with previous measurements, but with improved precision. In particular, αΛ0\alpha_{\Lambda 0} is almost the same in magnitude and opposite in sign as α¯Λ0\bar{\alpha}_{\Lambda 0}, and its precision is improved by a factor of four over previous measurements.

Table 1: The production and decay asymmetry parameters, the weak and strong phase differences from Ξ\Xi^{-} decay, the tests of CP symmetry, and the ratios of decay asymmetry parameters, αΛ0/αΛ\alpha_{\Lambda 0}/\alpha_{\Lambda-} and α¯Λ0/αΛ+\bar{\alpha}_{\Lambda 0}/\alpha_{\Lambda+}. The first and second uncertainties are statistical and systematic, respectively.
Parameters This work Previous result
αJ/ψ\alpha_{J/\psi} 0.611±0.0070.007+0.0130.611\pm 0.007^{+0.013}_{-0.007} 0.586±0.012±0.0100.586\pm 0.012\pm 0.010 Ablikim et al. (2022a)
ΔΦJ/ψ\Delta\Phi_{J/\psi} (rad) 1.30±0.030.03+0.021.30\pm 0.03^{+0.02}_{-0.03} 1.213±0.046±0.0161.213\pm 0.046\pm 0.016 Ablikim et al. (2022a)
αΞ\alpha_{\Xi} 0.367±0.0040.004+0.003-0.367\pm 0.004^{+0.003}_{-0.004} 0.376±0.007±0.003-0.376\pm 0.007\pm 0.003 Ablikim et al. (2022a)
ϕΞ\phi_{\Xi} (rad) 0.016±0.0120.008+0.004-0.016\pm 0.012^{+0.004}_{-0.008} 0.011±0.019±0.0090.011\pm 0.019\pm 0.009 Ablikim et al. (2022a)
α¯Ξ\bar{\alpha}_{\Xi} 0.374±0.0040.004+0.0030.374\pm 0.004^{+0.003}_{-0.004} 0.371±0.007±0.0020.371\pm 0.007\pm 0.002 Ablikim et al. (2022a)
ϕ¯Ξ\bar{\phi}_{\Xi} (rad) 0.010±0.0120.013+0.0030.010\pm 0.012^{+0.003}_{-0.013} 0.021±0.019±0.007-0.021\pm 0.019\pm 0.007 Ablikim et al. (2022a)
αΛ\alpha_{\Lambda-} 0.764±0.0080.006+0.0050.764\pm 0.008^{+0.005}_{-0.006} 0.7519±0.0036±0.00240.7519\pm 0.0036\pm 0.0024 Ablikim et al. (2022c)
αΛ+\alpha_{\Lambda+} 0.774±0.0090.005+0.005-0.774\pm 0.009^{+0.005}_{-0.005} 0.7559±0.0036±0.0030-0.7559\pm 0.0036\pm 0.0030 Ablikim et al. (2022c)
αΛ0\alpha_{\Lambda 0} 0.670±0.0090.008+0.0090.670\pm 0.009^{+0.009}_{-0.008} 0.75±0.050.75\pm 0.05 Workman and Others (2022)
α¯Λ0\bar{\alpha}_{\Lambda 0} 0.668±0.0080.008+0.006-0.668\pm 0.008^{+0.006}_{-0.008} 0.692±0.016±0.006-0.692\pm 0.016\pm 0.006 Ablikim et al. (2019)
δPδS\delta_{P}-\delta_{S} (rad) 0.033±0.0200.012+0.0080.033\pm 0.020^{+0.008}_{-0.012} 0.040±0.033±0.017-0.040\pm 0.033\pm 0.017 Ablikim et al. (2022a)
ξPξS\xi_{P}-\xi_{S} (rad) 0.007±0.0200.005+0.0180.007\pm 0.020^{+0.018}_{-0.005} 0.012±0.034±0.0080.012\pm 0.034\pm 0.008 Ablikim et al. (2022a)
ACPΞA_{\rm CP}^{\Xi} 0.009±0.0080.002+0.007-0.009\pm 0.008^{+0.007}_{-0.002} 0.006±0.013±0.0060.006\pm 0.013\pm 0.006 Ablikim et al. (2022a)
ΔϕCPΞ\Delta\phi_{\rm CP}^{\Xi} (rad) 0.003±0.0080.007+0.003-0.003\pm 0.008^{+0.003}_{-0.007} 0.005±0.014±0.003-0.005\pm 0.014\pm 0.003 Ablikim et al. (2022a)
ACPA_{\rm CP}^{-} 0.007±0.0080.003+0.002-0.007\pm 0.008^{+0.002}_{-0.003} 0.0025±0.0046±0.0012-0.0025\pm 0.0046\pm 0.0012 Ablikim et al. (2022c)
ACP0A_{\rm CP}^{0} 0.001±0.0090.007+0.0050.001\pm 0.009^{+0.005}_{-0.007} -
ACPΛA_{\rm CP}^{\Lambda} 0.004±0.0070.004+0.003-0.004\pm 0.007^{+0.003}_{-0.004} -
αΛ0/αΛ\alpha_{\Lambda 0}/\alpha_{\Lambda-} 0.877±0.0150.010+0.0140.877\pm 0.015^{+0.014}_{-0.010} 1.01±0.071.01\pm 0.07 Workman and Others (2022)
α¯Λ0/αΛ+\bar{\alpha}_{\Lambda 0}/\alpha_{\Lambda+} 0.863±0.0140.008+0.0120.863\pm 0.014^{+0.012}_{-0.008} 0.913±0.028±0.0120.913\pm 0.028\pm 0.012 Ablikim et al. (2019)

If CP is conserved, the product of the decay asymmetry parameters αΛαΞ\alpha_{\Lambda-}\alpha_{\Xi} and αΛ+α¯Ξ\alpha_{\Lambda+}\bar{\alpha}_{\Xi} should be equal to each other, and the ratios of helicity angular distributions for different nucleons in the final states, R(cosθp,cosθp¯)=(1+αΛαΞcosθp)/(1+αΛ+α¯Ξcosθp¯)R(\cos\theta_{p},\cos\theta_{\bar{p}})=(1+\alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p})/(1+\alpha_{\Lambda+}\bar{\alpha}_{\Xi}\cos\theta_{\bar{p}}) and R(cosθn,cosθn¯)=(1+αΛ0αΞcosθn)/(1+α¯Λ0α¯Ξcosθn¯)R(\cos\theta_{n},\cos\theta_{\bar{n}})=(1+\alpha_{\Lambda 0}\alpha_{\Xi}\cos\theta_{n})/(1+\bar{\alpha}_{\Lambda 0}\bar{\alpha}_{\Xi}\cos\theta_{\bar{n}}), are flat and equal to unity. In a similar way, if there is no ΔI=3/2\Delta I=3/2 transition in Λ\Lambda decay, αΛ\alpha_{\Lambda-} should be equal to αΛ0\alpha_{\Lambda 0} and the ratios, R(cosθn,cosθp)=(1+αΛ0αΞcosθn)/(1+αΛαΞcosθp)R(\cos\theta_{n},\cos\theta_{p})=(1+\alpha_{\Lambda 0}\alpha_{\Xi}\cos\theta_{n})/(1+\alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}) and R(cosθn¯,cosθp¯)=(1+α¯Λ0α¯Ξcosθn¯)/(1+αΛ+α¯Ξcosθp¯)R(\cos\theta_{\bar{n}},\cos\theta_{\bar{p}})=(1+\bar{\alpha}_{\Lambda 0}\bar{\alpha}_{\Xi}\cos\theta_{\bar{n}})/(1+\alpha_{\Lambda+}\bar{\alpha}_{\Xi}\cos\theta_{\bar{p}}), are also flat and equal to unity. The accuracy of the CP symmetry and the ΔI=1/2\Delta I=1/2 rule tests can be improved by using the isospin average for R1R_{1}, R1=(1+αΛαΞcosθ)/(1+α¯Λα¯Ξcosθ)R_{1}=(1+\alpha_{\Lambda}\alpha_{\Xi}\cos\theta)/(1+\bar{\alpha}_{\Lambda}\bar{\alpha}_{\Xi}\cos\theta), where cosθ\cos\theta stands for the helicity angle of nucleon, αΛ\alpha_{\Lambda} is defined as (2αΛ+αΛ0)/3(2\alpha_{\Lambda-}+\alpha_{\Lambda 0})/3, and the average of the decay symmetry parameters of hyperon and antihyperon for R2R_{2}, R2=(1+αΛ0αΞcosθ)/(1+αΛαΞcosθ)R_{2}=(1+\langle\alpha_{\Lambda 0}\rangle\langle\alpha_{\Xi}\rangle\cos\theta)/(1+\langle\alpha_{\Lambda-}\rangle\langle\alpha_{\Xi}\rangle\cos\theta).

To illustrate the tests of CP symmetry and the ΔI=1/2\Delta I=1/2 rule, four ratios of the helicity angular distributions for different nucleons in the final states are shown in Fig. 2 by dots with error bars. R1R_{1} and R2R_{2} with parameters from Table 1 are also presented in Fig. 2. The ratios obtained by fitting the events in bins of cosθ\cos\theta are in good agreement with the global curves obtained for R1R_{1} and R2R_{2}. The nearly flat distribution of R1R_{1} is consistent with CP conservation. The sloping distribution of R2R_{2} indicates the existence of the contribution of ΔI=3/2\Delta I=3/2 transition in Λ\Lambda decay.

\begin{overpic}[width=195.12767pt]{isospin.eps} \end{overpic}

Figure 2: The ratios of helicity angular distributions for different nucleons in the final states, R(cosθp,cosθp¯)R(\cos\theta_{p},\cos\theta_{\bar{p}}) and R(cosθn,cosθn¯)R(\cos\theta_{n},\cos\theta_{\bar{n}}) (top) as well as R(cosθn,cosθp)R(\cos\theta_{n},\cos\theta_{p}) and R(cosθn¯,cosθp¯)R(\cos\theta_{\bar{n}},\cos\theta_{\bar{p}}) (bottom) versus cosθ\cos\theta. The dots with errors are determined by independent fits for each cosθ\cos\theta bin of the corresponding nucleons. The solid curves in red with 1σ\sigma (red) and 3σ\sigma (pink) statistical uncertainty bands show the results of the simultaneous fit. The dashed curves in black show the CP-conserving and no ΔI=3/2\Delta I=3/2 transition expectations.

The systematic uncertainties are split into different categories: reconstruction and event selection of the signal candidates, the uncertainties related to the background contributions, and the effects which arise from the final fit procedure. The uncertainty of the π0\pi^{0} reconstruction is investigated by studying the decay J/ψΣ+(pπ0)πΛ¯(p¯π+)+c.c.J/\psi\to\Sigma^{+}(p\pi^{0})\pi^{-}\bar{\Lambda}(\bar{p}\pi^{+})+c.c. as it has a similar final state topology and decay length as the signal. The systematic uncertainty from π±\pi^{\pm} reconstruction is investigated by using a control sample of J/ψΞΞ¯+Λ(pπ)πΛ¯(p¯π+)π++c.c.J/\psi\to\Xi^{-}\bar{\Xi}^{+}\to\Lambda(p\pi^{-})\pi^{-}\bar{\Lambda}(\bar{p}\pi^{+})\pi^{+}+c.c.. The systematic uncertainties related to the selection criteria (the decay points and invariant masses of Λ\Lambda and Ξ\Xi^{-}, the polar angle of Ξ\Xi^{-}, the missing mass and the χ2\chi^{2} of the kinematic fit) are studied by varying their required values around the nominal ones and repeating the fit. The uncertainty due to the combinatorial background is determined by both smearing the parameters of model and varying its yield from the fit to the missing mass distribution by ±1σ\pm 1\sigma. The uncertainties associated with the resonant backgrounds, which are propagated from the uncertainties in branching fractions, number of J/ψJ/\psi events and MC sample statistics, are also evaluated by varying the background yield by ±1σ\pm 1\sigma. In the case of non-resonant background, the fit is repeated without this background component, and the deviation from the nominal fit is taken as the systematic uncertainty. To estimate the systematic uncertainty of the fit procedure, 1000 sets of toy MC samples are generated with the parameters from Table 1. Each set is fitted to obtain the distribution of the output parameters. The average values of the difference between the input and output parameters and statistical errors of the average differences are regarded as systematic uncertainties. More details can be found in the Supplemental Material sup .

In summary, the decay asymmetry parameters listed in Table 1 are simultaneously determined from the process J/ψΞΞ¯+Λ(pπ)πΛ¯(n¯π0)π+J/\psi\to\Xi^{-}\bar{\Xi}^{+}\to\Lambda(p\pi^{-})\pi^{-}\bar{\Lambda}(\bar{n}\pi^{0})\pi^{+} and its charge-conjugate channel with (10087±44)×106(10087\pm 44)\times 10^{6} J/ψJ/\psi events collected by the BESIII detector. Using Eq. 1 and Eq. 2, the CP observables ACPΞA_{\rm CP}^{\Xi} and ΔϕCPΞ\Delta\phi_{\rm CP}^{\Xi} for Ξ\Xi^{-} decay, as well as ACP=(αΛ+αΛ+)/(αΛαΛ+)A_{\rm CP}^{-}=(\alpha_{\Lambda-}+\alpha_{\Lambda+})/(\alpha_{\Lambda-}-\alpha_{\Lambda+}) and ACP0=(αΛ0+α¯Λ0)/(αΛ0α¯Λ0)A_{\rm CP}^{0}=(\alpha_{\Lambda 0}+\bar{\alpha}_{\Lambda 0})/(\alpha_{\Lambda 0}-\bar{\alpha}_{\Lambda 0}) of the charged and neutral Λ\Lambda decays, are obtained from the corresponding decay asymmetry parameters and correlations. ACPΞA_{\rm CP}^{\Xi} and ΔϕCPΞ\Delta\phi_{\rm CP}^{\Xi} are measured with world-leading precision, and A𝐶𝑃0A_{{\it CP}}^{0} is measured for the first time. The correlations ρ(αΛ,αΛ+)\rho(\alpha_{\Lambda-},\alpha_{\Lambda+}) and ρ(αΛ0,α¯Λ0)\rho(\alpha_{\Lambda 0},\bar{\alpha}_{\Lambda 0}) measured from two charge-conjugate channels are negligible. The precise CP symmetry test of the Λ\Lambda decay is conducted with its isospin averages, ACPΛ=(2A𝐶𝑃+A𝐶𝑃0)/3A_{\rm CP}^{\Lambda}=(2A_{{\it CP}}^{-}+A_{{\it CP}}^{0})/3, which improves the sensitivity of the CP symmetry test by 20% compared to the individual tests for each isospin decay mode. The strong phase and weak phase differences of ΞΛπ\Xi^{-}\to\Lambda\pi^{-}, derived from Eq. 1 and Eq. 2, are both consistent with previous BESIII results Ablikim et al. (2022a). The strong phase difference is also in agreement with the HyperCP measurement Holmstrom et al. (2004). The CP symmetry is conserved in the decay of Ξ\Xi^{-} and Λ\Lambda within the current precision. The theoretical predictions within the Standard Model Tandean and Valencia (2003); He et al. (2022) are 0.5×105(ACPΞ)SM6×1050.5\times 10^{-5}\leqslant(A_{\rm CP}^{\Xi})_{\mathrm{SM}}\leqslant 6\times 10^{-5}, 3.8×104(ξPξS)SM0.3×104-3.8\times 10^{-4}\leqslant(\xi_{P}-\xi_{S})_{\mathrm{SM}}\leqslant-0.3\times 10^{-4} and 3×105(ACPΛ)SM3×105-3\times 10^{-5}\leqslant(A_{CP}^{\Lambda})_{\mathrm{SM}}\leqslant 3\times 10^{-5}.

The ratios of αΛ0/αΛ\alpha_{\Lambda 0}/\alpha_{\Lambda-} and α¯Λ0/αΛ+\bar{\alpha}_{\Lambda 0}/\alpha_{\Lambda+} deviate from unity by more than 55 standard deviations, which signifies the existence of the ΔI=3/2\Delta I=3/2 transition in both Λ\Lambda and Λ¯\bar{\Lambda} decays for the first time. Using the averages of the ratio αΛ0/αΛ=0.870±0.0120.010+0.011\langle\alpha_{\Lambda 0}\rangle/\langle\alpha_{\Lambda-}\rangle=0.870\pm 0.012^{+0.011}_{-0.010} with combinations of the decay rates Γ(Λpπ)\Gamma(\Lambda\to p\pi^{-}), Γ(Λnπ0)\Gamma(\Lambda\to n\pi^{0}) Workman and Others (2022) and the NN-π\pi scattering phase shift Hoferichter et al. (2016), the ratio of ΔI=3/2\Delta I=3/2 to ΔI=1/2\Delta I=1/2 transitions in SS-wave is determined to be S1/S3=28.4±1.31.0+1.1±3.9S_{1}/S_{3}=28.4\pm 1.3^{+1.1}_{-1.0}\pm 3.9, while in PP-wave P1/P3=13.0±1.41.2+1.1±0.7P_{1}/P_{3}=-13.0\pm 1.4^{+1.1}_{-1.2}\pm 0.7 according to Ref. Salone et al. (2022), where the first uncertainties are statistical, the second systematic and the third from the input parameters. The ratio in SS-wave is consistent with Re(A0)/Re(A2){\rm Re}(A_{0})/{\rm Re}(A_{2}) in KππK\to\pi\pi within the uncertainty, while the ratio in PP-wave is measured for the first time and found different from that in SS-wave. This measurement provides a constraint for lattice QCD Abbott et al. (2020) and dual QCD Buras et al. (2014) approach to understand the ΔI=1/2\Delta I=1/2 rule.

The authors thank Professor X.G. He and Professor X. Feng for helpful discussions. The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center and the supercomputing center of the University of Science and Technology of China (USTC) for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12221005, 12225509, 12235017, 12122509, 12105276, 11625523; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207, U2032111, U1732263, U1832103; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation of Thailand under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374; Olle Engkvist Foundation under Contract No. 200-0605 and Lundström-Åman Foundation.

References