This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Investigation of Rocket Effect in Bright-Rimmed Clouds using Gaia EDR3

Piyali Saha,1,2,3 Maheswar G.,2 D. K. Ojha,4 Tapas Baug,1 and Sharma Neha5
1Satyendra Nath Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 106, India
2Indian Institute of Astrophysics (IIA), Sarjapur Road, Koramangala, Bangalore 560034, India
3Pt. Ravishankar Shukla University, Amanaka G.E. Road, Raipur, Chhatisgarh 492010, India
4Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
5Aryabhatta Research Institute of Observational SciencES (ARIES), Manora Peak, Nainital 263002, India
E-mail: [email protected] (PS)
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

Bright-rimmed clouds (BRCs) are excellent laboratories to explore the radiation-driven implosion mode of star formation because they show evidence of triggered star formation. In our previous study, BRC 18 has been found to accelerate away from the direction of the ionizing Hii region because of the well known “Rocket Effect". Based on the assumption that both BRC 18 and the candidate young stellar objects (YSOs) are kinematically coupled and using the latest Gaia EDR3 measurements, we found that the relative proper motions of the candidate YSOs exhibit a tendency of moving away from the ionizing source. Using BRC 18 as a prototype, we made our further analysis for 21 more BRCs, a majority of which showed a similar trend. For most of the BRCs, the median angle of the relative proper motion of the candidate YSOs is similar to the angle of on-sky direction from the ionizing source to the central IRAS source of the BRC. Based on Pearson’s and Spearman’s correlation coefficients, we found a strong correlation between these two angles, which is further supported by the Kolmogorov-Smirnov (K-S) test on them. The strong correlation between these two angles supports the “Rocket Effect” in the BRCs on the plane-of-sky.

keywords:
Stars: distances, pre-main-sequence, Proper motions, ISM: clouds
pubyear: 2022pagerange: Investigation of Rocket Effect in Bright-Rimmed Clouds using Gaia EDR3Investigation of Rocket Effect in Bright-Rimmed Clouds using Gaia EDR3

1 Introduction

The origination and evolution of massive stars can immensely affect the immediate surroundings where they form. The strong stellar winds or some supernova explosions may compress the nearby molecular clouds and thus trigger a subsequent formation of stars that otherwise may not have initiated. This is typically known as positive stellar feedback. In a converse scenario, the effect may be too intense that results in hindering further star formation activity by dispersing the pre-existing cloud material, which can be considered as negative stellar feedback. Thus stellar feedback has significant aftermaths in terms of cloud energetics, multiple stellar population, regulation of star formation rates, star formation efficiency, and so on (Zinnecker & Yorke, 2007).

The strong ultraviolet radiation emitting from the massive stars, or expansion of Hii regions, develops high-pressure waves by the ionizing heating into the surrounding pre-existing dense clumps. This enhanced pressure may trigger the birth of new proto-stellar cores or compress the pre-existing ones to eventually lead to formation of a new generation of stars. This mechanism of star formation triggered by radiation from neighbouring massive stars is known as radiation-driven implosion (RDI; Bertoldi, 1989; Bertoldi & McKee, 1990). The consequent clouds are known as bright-rimmed clouds (BRCs; Sugitani et al., 1991; Sugitani & Ogura, 1994), having their illuminated rim facing towards the ionizing star(s) and often tied up with an elongated structure along the opposite direction. They are isolated molecular clouds and often found to be located at the boundaries of evolved Hii regions. Sugitani et al. (1991) and Sugitani & Ogura (1994) listed a total of 89 BRCs based on their association with the Infrared Astronomical Satellite (IRAS) sources. Observational evidence of star formation, e.g., IRAS point sources, Hα\alpha emitting stars, infrared (IR) excess sources, Herbig-Haro objects, etc., were reported in those BRCs (e.g., Table 1 of Elmegreen, 1998). Also, signposts of spatial distribution along with gradient in evolutionary stages of young stellar objects (YSOs) are detected along the axes of the BRCs, which is typically known as “small-scale sequential star formation" (e.g., Sugitani et al., 1995; Ogura et al., 2007; Choudhury et al., 2010). Thus, BRCs are considered to be the markers of positive stellar feedback in the formation of YSOs.

Several analytical studies were carried out to understand the evolution of clouds during the RDI mode (e.g., Oort & Spitzer, 1955; Kahn, 1969). The process starts when an ionization front preceded by a shock front travels across the dense globule, causing it to collapse and resulting in formation of a highly dense core, which eventually could trigger the star formation. The time at which the star formation begins and the fraction of cloud material gets transformed into stars is typically 105\sim 10^{5} yrs (Saha et al., 2022, hereafter, Paper I). At the surface of ionization front, because of the enhanced pressure the ionized cloud material starts photo-evaporating towards the ionizing source and as a back reaction of the expelled ionized gas, the residual cloud escalates away from the direction of ionizing Hii region, which is typically known as the “Rocket Effect” (hereafter, RE; Oort, 1954). The YSOs formed by consequence of the RDI should share the kinematics similar to the accelerating cloud. Thus, the YSOs would accelerate radially away from the nearby massive star/s, which is/are responsible for ionizing the cloud and triggering the star formation in it (Dale et al., 2015).

To investigate the RE on the BRCs, we first examined the proper motion (PM) of candidate YSOs associated with BRC 18 in Paper I. BRC 18 resides at the eastern periphery of the λ\lambda Ori Hii region. The strong ionizing photons coming from the earliest type star of the Collinder 69 cluster, λ\lambda Ori (O8III; Conti & Leep, 1974), is considered to be responsible for the ongoing RDI mechanism in BRC 18 (Sugitani et al., 1991). Using the latest Gaia Early Data Release 3 (EDR3) astrometric measurements, we found that the majority of the candidate YSOs located towards BRC 18 share similar PM values and are lying at similar distances suggesting that they are all formed together and currently moving as a group. We then subtracted the median PM of the λ\lambda Ori Hii region from the observed PMs of the candidate YSOs vectorially. This results in the true internal projected motions of these candidate YSOs. A similar approach was followed in other recent studies also, for example, Sicilia-Aguilar et al. (2019) and Arun et al. (2021). Fig. 1 shows a cartoon diagram of a system consisting of a BRC and one ionizing source (also see Paper I), where we depict the angles used in our analysis. θip\theta_{ip} and θpm\theta_{pm} represent the angle of ionizing photons and the angle of the internal projected motion of YSOs, respectively. The θpm\theta_{pm} is estimated by the median angle made by the relative PM or internal projected motion of the candidate YSOs, starting from celestial north and increasing eastward. We estimate the θip\theta_{ip} as the angle made by the line joining the ionizing source and the central IRAS source residing in each BRC (Paper I). The θip\theta_{ip} values are also measured following the same convention as it was done for θpm\theta_{pm}. As discussed in Paper I, in an ideal RE scenario, θip\theta_{ip} is expected to be similar to θpm\theta_{pm}, i.e., \midθipθpm\theta_{ip}-\theta_{pm}0°\mid\simeq 0\degr, on the sky plane.

Both BRC 18 and Collinder 69 cluster, of which λ\lambda Ori is a part, reside at a similar distance (400\sim 400 pc; Paper I) indicating that both are lying almost on the sky plane. In BRC 18, we found \midθipθpm\theta_{ip}-\theta_{pm}=1°±14°\mid=1\degr\pm 14\degr, which is very close to 0°\degr, supporting the RE. Motivated by this finding we investigated the RE in additional 21 BRCs having a considerable number of candidate YSOs with reliable counterparts in the Gaia EDR3 archive. This paper is structured in the following manner. The archival data and data from literature are explained in section 2. A relevant discussion on the results is presented in section 3. Finally, we summarize and conclude our work in section 4.

Refer to caption
Figure 1: An illustration of a system consisting of a BRC (blue cloud with a thick yellow colored rim) and an ionizing source (blue star) (not to scale). The YSOs distributed towards the BRC are presented using red star symbols. The direction of photo-evaporation flow of the cloud material is shown using yellow colored arrows. The black colored arrow making an angle θip\theta_{ip} with respect to the north and directing away from the ionizing star, is the direction of ionizing photons. Another black colored arrow making an angle θpm\theta_{pm} with respect to the same and directing away from the YSOs, presents the angle of their relative proper motion.

2 Archival Data and data from literature

Based on various methods, for example, Two Micron All Sky Survey (2MASS), Spitzer, WISE archival data and results from near- and mid-IR photometric observations (e.g., Hayashi et al., 2012; Panwar et al., 2014; Sharma et al., 2016), slitless spectroscopy (Ogura et al., 2002; Ikeda et al., 2008; Hosoya et al., 2020), optical BVIc photometry (e.g. Chauhan et al., 2009), optical spectroscopy (e.g. Choudhury et al., 2010; Kounkel et al., 2018), X-ray imaging (Getman et al., 2012), astrometry from Gaia data release 2 (DR2) (Kounkel et al., 2018; Zari et al., 2018), method of maximum likelihood (Getman et al., 2018), presence of the candidate YSOs in the BRCs has been reported. We collected information of all candidate YSOs available in these references for our study.

Gaia EDR3 (Gaia Collaboration et al., 2020) presents precisely measured astrometric parameters of more than one billion objects, brighter than G21G\sim 21. We acquired distances (d) and PMs in right ascension (μα\mu_{\alpha\star}) and declination (μδ\mu_{\delta}) from Bailer-Jones et al. (2021) and the Gaia EDR3 archive (Gaia Collaboration et al., 2020), respectively, for our sources using a cross-match radius of 1\arcsec. Sources having their ratios, d/Δdd/\Delta d, μα/Δμα\mu_{\alpha\star}/\Delta\mu_{\alpha\star}, and μδ/Δμδ\mu_{\delta}/\Delta\mu_{\delta} all are 3\geqslant 3, are considered for this study, where, Δd\Delta d, Δμα\Delta\mu_{\alpha\star}, and Δμδ\Delta\mu_{\delta} are the measurement uncertainties in dd, μα\mu_{\alpha\star}, and μδ\mu_{\delta}, respectively. In an unresolved multiple stellar system, the presence of an orbiting companion around a source introduces a wobble at the point of maximum flux. Thus, the barycenter of the stellar system shifts away from its photocenter. This, in turn, results in a poorer goodness-of-fit statistics, and comes up with a higher renormalized unit weight error (RUWE), which is considered as a reliable indicator of the existence of a nearby associate (e.g., Belokurov et al., 2020; Stassun & Torres, 2021; Kervella et al., 2022). We included only those sources for which the RUWE \leq1.4 (Lindegren, 2018). The selection criteria are also mentioned in Paper I.

3 Results and Discussions

3.1 Selection of the BRCs

The methodology adopted here to affirm the coupling between young sources with their parental clouds is similar to our previous studies (Saha et al., 2020; Saha et al., 2021, 2022). Based on the literature, out of 89 BRCs, candidate YSOs have been identified towards 52 of them using various methods till date (as described in section 2). Among the 52 BRCs, we selected 29 of them, which are associated with at least 4 candidate YSOs satisfying our selection criteria. The median absolute deviation (MAD) was used to compute the statistical dispersion in dd, μα\mu_{\alpha\star}, and μδ\mu_{\delta}. Only those candidate YSOs, which are lying within 5×\timesMAD with respect to the median values of the dd, μα\mu_{\alpha\star}, and μδ\mu_{\delta}, are selected as the members of each of their respective BRCs. The adoption of 5×\timesMAD was made because the majority of the candidate YSOs in the BRCs are distributed within this boundary. We recomputed the median and the MAD of dd, μα\mu_{\alpha\star}, and μδ\mu_{\delta} of the selected candidate YSOs to estimate the final astrometric results of the BRCs (also see Paper I).

Of the 29 BRCs, we first excluded BRCs 15, 24, and 30, where the candidate YSOs are distributed far from the cloud-ionizing star vicinities. Also, we excluded BRC 51 due to its high MAD in μδ\mu_{\delta} (-2.187±\pm6.657 mas yr-1, obtained from Gaia EDR3 measurements of the candidate YSOs) from further study. Also, ionizing stars of this BRC (ζ\zeta Pup and γ2\gamma^{2} Vel; Thompson et al., 2004) do not have astrometric measurements in Gaia EDR3. Additionally, we set a numerical limit z=(dd)/(Δd+Δd)z=(d-d_{\star})/(\Delta d+\Delta d_{\star}) for the consistency of distance between the BRC (or the candidate YSOs residing in the BRC) and the respective ionizing sources, where, dd_{\star} and Δd\Delta d_{\star} are the distance for the ionizing source and its corresponding uncertainty, respectively. In our study, we select only those BRCs, for which z1z\leq 1. Thus, BRCs 34, 68, and 76 were eliminated. Therefore, out of 29 BRCs, seven were excluded from our further analysis. In Tables 1 and 2 (available as supplementary material), we present the details of candidate YSOs in the BRCs along with the θpm\theta_{pm} and θip\theta_{ip} found in the analysis. The strategies followed to obtain the θpm\theta_{pm} of the candidate YSOs in the remaining 22 BRCs are discussed below:

Refer to caption
Refer to caption
Refer to caption
Figure 2: (a) Plot of θip\theta_{ip} versus θpm\theta_{pm}. The solid black line shows the best-fitted line for 22 BRCs (case A). The solid grey line shows the best-fitted line for 20 BRCs, excluding BRCs 54 and 89 (case B). (b) Histogram of \midθipθpm\theta_{ip}-\theta_{pm}\mid for the BRCs with bin size 20°\sim 20\degr. (c) Cumulative histogram of the distribution of \midθipθpm\theta_{ip}-\theta_{pm}\mid for the BRCs with bin size 20°\sim 20\degr.

BRC 2: The massive source responsible for ionization of BRC 2 is BD+66 1675, which does not fulfill our selection criteria. We used the median PM obtained from the members of the Hii region Sh2-171, which are associated with BD+66 1675 (Getman et al., 2018; Panwar et al., 2018), as the reference to obtain the θpm\theta_{pm}.

BRCs 5 and 7: Three early type sources, BD+60 502, BD+60 504, and BD+60 507, are considered to influence BRCs 5 and 7 (Ishida, 1970; Morgan et al., 2004). BD+60 504, and BD+60 507 both have good astrometric measurements and reside at 212212181{}_{-81}^{121} and 19606568{}_{-68}^{65} pc, respectively. We used the PMs of BD+60 504 as the reference as its dd is more consistent with the BRCs.

BRCs 17 and 18: BRCs 17 and 18 reside at the λ\lambda Ori Hii region and considered to be ionized by λ\lambda-Ori (Sugitani et al., 1991). The methodology adopted to find the relative PM of the candidate YSOs in these BRCs is described in Paper I.

BRC 25: The massive source considered to ionize BRC 25 is HD 47839, which has a higher RUWE making its astrometric measurements unreliable. Therefore, we obtained the reference PM values of NGC 2264 from Buckner et al. (2020) to estimate the θpm\theta_{pm}.

BRCs 36 to 39: BRCs 36-39, located in the Hii region IC 1396, are considered to be ionized by the central ionizing source HD 206267 (Sugitani et al., 1991), which fails our selection criteria. Therefore, we used median PM values of the cluster members of IC 1396 provided in the literature (Contreras et al., 2002; Sicilia-Aguilar et al., 2005; Mercer et al., 2009; Sicilia-Aguilar et al., 2019) as the reference to compute the θpm\theta_{pm} of the candidate YSOs in the BRCs.

BRC 55: For BRC 55, in the Hii region RCW 27, the massive source responsible for ionizing BRC 55 is HD 73882, which has RUWE = 2.068. Therefore, we obtained the astrometric parameters of the members of RCW 27 (Prisinzano et al., 2018) from Gaia EDR3 and used the median PM of the cluster members as the reference PM to estimate θpm\theta_{pm}.

BRC 64: The star responsible for ionizing BRC 64 is LSS2231, located at 3145400437{}_{-437}^{400} pc, while BRC 64 resides at 2968±\pm225 pc. Thus the lower limit of dd of LSS2231 lies within the distance range of BRC 64. Though the RUWE of LSS2231 is 1.819, this is to note that it satisfies all of our other selection criteria. Due to lack of information of any other members of the Hii region BBW 347 where BRC 64 resides, we used the PM values of LSS2231 to estimate the θpm\theta_{pm}.

BRC 65: There are three early type sources considered to ionize BRC 65, which are, HD 101131, HD 101205, and HD 101436 (Thompson et al., 2004), located in the Hii region RCW 62. As only HD 101205 satisfies our selection criteria, we used its PM values as the reference to compute the θpm\theta_{pm}.

BRC 79: BRC 79 is found to be located in the Hii region RCW 108. Two massive sources are found to be responsible for the ionization of this region, HD 150136 (O5III) and HD 150135 (O6.5V) (Thompson et al., 2004). As dd of HD 150136 (14289396{}_{-96}^{93} pc) is more consistent than HD 150135 (12423739{}_{-39}^{37} pc) with the same for BRC 79, and the spectral type of HD 150136 is earlier than the later, we considered the PM of HD 150136 as the reference PM.

BRC 82: Three early type sources, HD 152233 (O6III), HD 326286 (B0), and HD 152245 (B0Ib) are considered to be responsible for the ionization of BRC 82 (Yamaguchi et al., 1999; Thompson et al., 2004). The earliest type ionizing source, HD 152233, is a member of the cluster NGC 6231. As there is a high possibility of the influence of other massive stars of NGC 6231, we obtained median PM of the cluster members from Kuhn et al. (2017) and considered those as reference PM.

The rest BRCs, i.e., 11, 26, 27, 31, 54, 75, and 89 are associated with Hii regions having reliable astrometric measurements of the ionizing sources in the Gaia EDR3 catalogue. Therefore, the PMs of these ionizing sources were used as the reference PMs in order to investigate the RE taking place in the respective BRCs.

3.2 Internal projected motion of the candidate YSOs in the BRCs

Our study finally focuses on 22 BRCs (including BRC 18), which consist of a considerable number of candidate YSOs with reliable astrometric measurements in Gaia EDR3. Mostly the YSOs are embedded deep in the natal cloud, so the optical emission from many of them are highly obscured by the circumstellar and interstelllar dust resulting in unreliable or no detection in Gaia EDR3. In Fig. 2 (a) we present the distribution of θip\theta_{ip} versus θpm\theta_{pm} of 22 BRCs. BRCs 54 and 89 show distinctively higher \midθipθpm\theta_{ip}-\theta_{pm}\mid compared to other BRCs. We marked them using open circles. Other 20 BRCs are shown using filled grey circles. We made two cases A and B, which indicate inclusion and exclusion of both BRCs 54 and 89, respectively. The solid black line shows the best-fitted line for case A. The slope of this line is estimated as 1.011±\pm0.103. We again show the best-fitted line in case B using solid grey line, of which the slope is estimated as 1.148±\pm0.071. Error in θpm\theta_{pm} is estimated using the error propagation method. The error in θip\theta_{ip} is negligible because the positional errors of the sources are in milli arcsecond order. To obtain the correlation between θip\theta_{ip} and θpm\theta_{pm}, we computed the Pearson’s correlation coefficient. For case A, the value is found to be 0.909 with pnull 4.641×\times10-9. The Spearman’s correlation coefficient is estimated as 0.899, with pnull as 1.247×\times10-8. We also performed Kolmogorov-Smirnov (K-S) test on these angles. The computed statistic is 0.182, and the pvalue is 0.821. For case B, the Pearson’s and Spearman’s correlation coefficients for 20 BRCs are estimated as 0.967 and 0.964 with pnull 3.444×\times10-12 and 8.654×\times10-12, respectively. The K-S test provides statistic of 0.200, and the pvalue is 0.771 for the 20 BRCs. All these statistical analyses indicate a strong correlation between θip\theta_{ip} and θpm\theta_{pm}. The distribution of \midθipθpm\theta_{ip}-\theta_{pm}\mid as a form of histogram with binsize 20°20\degr is shown in Fig. 2 (b), using white- and grey-colored bins, for cases A and B, respectively. A maximum in the lowest of \midθipθpm\theta_{ip}-\theta_{pm}\mid and a decrease in the number of BRCs with higher \midθipθpm\theta_{ip}-\theta_{pm}\mid is clearly noticeable. In Fig. 2 (c), we show the cumulative histogram of \midθipθpm\theta_{ip}-\theta_{pm}\mid, using white- and grey-colored bins, for cases A and B, respectively. It is apparent from both Figs. 2 (b) and (c), that almost 80\sim 80% of the BRCs show \midθipθpm\theta_{ip}-\theta_{pm}60°\mid\leq 60\degr.

This is to note that because of the lack of information of the radial velocities of the sources, in Paper I as well as in this study too, we consider only the PMs of the sources, which is on the sky plane. In an Hii region, where the ionizing star and the BRC both are not located at the sky plane, but have a significant distance along the line-of-sight, the \midθipθpm\theta_{ip}-\theta_{pm}0°\mid\sim 0\degr might not always be satisfied because of the possible presence of a significant radial component of motion of the BRC/ionizing source. Apparently, 180°>180\degr>\midθipθpm\theta_{ip}-\theta_{pm}>90°\mid>90\degr might seem as a phenomenon opposite to RE in 2D, i.e. PMs of the YSOs towards the ionizing star, but these sources may have significant components of motions in the radial direction, which might make their total motions in 3D away from the ionizing star, satisfying the RE scenario. Thus, the \midθipθpm\theta_{ip}-\theta_{pm}0°\mid\sim 0\degr condition does not signify the RE scenario completely in 2D, but in 3D.

A higher \midθipθpm\theta_{ip}-\theta_{pm}\mid for BRCs 54 and 89 signifies that the relative PM of the candidate YSOs direct towards their respective ionizing sources. For BRC 54, we initially suspected that the presence of another massive star, HD 73882 (also considered to ionize BRC 55), might have influenced the motion of the candidate YSOs. But due to higher distance (\sim13 pc), the probability of HD 73882 influencing BRC 54 is low. Prisinzano et al. (2018) detected second generation of stars around BRC 54, which indicates that the kinematic coupling between the candidate YSOs and BRC 54 might have been lost. Therefore, the θpm\theta_{pm} of the candidate YSOs might not indicate the PM of BRC 54.

The massive star considered to ionize BRC 89 is HD 165921, with respect to which θpm\theta_{pm} of the candidate YSOs is estimated. Based on the 2MASS all-sky survey, Bica et al. (2003) discovered a stellar cluster encircling an ionizing source HD 166056, a B2Ve star (Herbst et al., 1982) in BRC 89. It is embedded in a cavity, surrounded by a prominent shell-like structure indicative of expanding ionization front (Santos et al., 2014). The pressure of HD 166056 might have affected the motion of the surrounding YSOs which is why θpm\theta_{pm} of the candidate YSOs show significantly different direction in BRC 89.

4 Summary and Conclusions

As an effect of the RDI mechanism, the compression of the BRCs because of ionization by the nearby OB stars results into triggered star formation. This leads to a group of young population staying behind the BRCs. Also, the BRCs escalate away from the direction of ionizing Hii region as consequence of the photo-evaporation flow of cloud material in the direction of Hii region, which is well-known as the Rocket Effect. Assuming that the internal projected motion of the YSOs imitates the same of their parental clouds in the sky plane, 22 BRCs (including BRC 18; Paper I) are investigated based on the astrometric measurements of the associated candidate YSOs obtained from the latest Gaia EDR3. As BRCs 54 and 89 show relatively higher \midθipθpm\theta_{ip}-\theta_{pm}\mid, we made two cases A and B, which indicates inclusion and exclusion of both the BRCs, respectively. The main outcomes of this work are summarized below:

  • The Pearson’s correlation coefficient of θip\theta_{ip} and θpm\theta_{pm} for case A is found to be 0.909 with pnull 4.641×\times10-9. For case B, the same is estimated as 0.967 with pnull 3.444×\times10-12.

  • The Spearman’s correlation coefficient is found to be 0.899, with pnull as 1.247×\times10-8 for case A. For case B, the same is found to be 0.964 with pnull 8.654×\times10-12.

  • The statistic of K-S test is 0.182 with pvalue 0.821 and 0.200 with pvalue 0.771, for cases A and B, respectively.

  • Based on the histogram of \midθipθpm\theta_{ip}-\theta_{pm}\mid, we found that most of the BRCs have a minimum of the difference between θip\theta_{ip} and θpm\theta_{pm}.

  • The strong correlation between θip\theta_{ip} and θpm\theta_{pm} supports the RE in most of the BRCs on the plane-of-sky.

As the operating wavelength of Gaia is optical, the number of candidate YSOs detected is less possibly due to the presence of dense gas and dust surrounding them. More deep observations with good quality data would help us to increase the statistics and a better understanding.

Acknowledgements

We are grateful to the referee, Dr. Alexander Slater Binks, for his careful examination and generous suggestions that considerably improved the quality of the manuscript. We acknowledge the support by the S. N. Bose National Centre for Basic Sciences under the Department of Science and Technology, Govt. of India. This work has made use of archival data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement (MLA). DKO acknowledges the support of the Department of Atomic Energy, Government of India, under Project Identification No. RTI 4002.

Data Availability

The Gaia EDR3 proper motions and distances of the sources are available in https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=I/350/gaiaedr3 and https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=I/352, respectively.

References

  • Arun et al. (2021) Arun R., et al., 2021, MNRAS, 507, 267
  • Bailer-Jones et al. (2021) Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Demleitner M., Andrae R., 2021, AJ, 161, 147
  • Belokurov et al. (2020) Belokurov V., et al., 2020, MNRAS, 496, 1922
  • Bertoldi (1989) Bertoldi F., 1989, ApJ, 346, 735
  • Bertoldi & McKee (1990) Bertoldi F., McKee C. F., 1990, ApJ, 354, 529
  • Bica et al. (2003) Bica E., Dutra C. M., Soares J., Barbuy B., 2003, A&A, 404, 223
  • Buckner et al. (2020) Buckner A. S. M., et al., 2020, A&A, 636, A80
  • Chauhan et al. (2009) Chauhan N., Pandey A. K., Ogura K., Ojha D. K., Bhatt B. C., Ghosh S. K., Rawat P. S., 2009, MNRAS, 396, 964
  • Choudhury et al. (2010) Choudhury R., Mookerjea B., Bhatt H. C., 2010, ApJ, 717, 1067
  • Conti & Leep (1974) Conti P. S., Leep E. M., 1974, ApJ, 193, 113
  • Contreras et al. (2002) Contreras M. E., Sicilia-Aguilar A., Muzerolle J., Calvet N., Berlind P., Hartmann L., 2002, AJ, 124, 1585
  • Dale et al. (2015) Dale J. E., Haworth T. J., Bressert E., 2015, MNRAS, 450, 1199
  • Elmegreen (1998) Elmegreen B. G., 1998, in Woodward C. E., Shull J. M., Thronson Jr. H. A., eds, Astronomical Society of the Pacific Conference Series Vol. 148, Origins. p. 150 (arXiv:astro-ph/9712352)
  • Gaia Collaboration et al. (2020) Gaia Collaboration Brown A. G. A., Vallenari A., Prusti T., de Bruijne J. H. J., Babusiaux C., Biermann M., 2020, arXiv e-prints, p. arXiv:2012.01533
  • Getman et al. (2012) Getman K. V., Feigelson E. D., Sicilia-Aguilar A., Broos P. S., Kuhn M. A., Garmire G. P., 2012, MNRAS, 426, 2917
  • Getman et al. (2018) Getman K. V., Kuhn M. A., Feigelson E. D., Broos P. S., Bate M. R., Garmire G. P., 2018, MNRAS, 477, 298
  • Hayashi et al. (2012) Hayashi M., Itoh Y., Oasa Y., 2012, PASJ, 64, 96
  • Herbst et al. (1982) Herbst W., Miller D. P., Warner J. W., Herzog A., 1982, AJ, 87, 98
  • Hosoya et al. (2020) Hosoya K., Itoh Y., Oasa Y., Gupta R., Sen A. K., 2020, arXiv e-prints, p. arXiv:2006.00219
  • Ikeda et al. (2008) Ikeda H., et al., 2008, AJ, 135, 2323
  • Ishida (1970) Ishida K., 1970, PASJ, 22, 277
  • Kahn (1969) Kahn F. D., 1969, Physica, 41, 172
  • Kervella et al. (2022) Kervella P., Arenou F., Thévenin F., 2022, A&A, 657, A7
  • Kounkel et al. (2018) Kounkel M., et al., 2018, AJ, 156, 84
  • Kuhn et al. (2017) Kuhn M. A., Medina N., Getman K. V., Feigelson E. D., Gromadzki M., Borissova J., Kurtev R., 2017, AJ, 154, 87
  • Lindegren (2018) Lindegren L., 2018, Re-normalising the astrometric chi-square in Gaia DR2, GAIA-C3-TN-LU-LL-124, http://www.rssd.esa.int/doc_fetch.php?id=3757412
  • Mercer et al. (2009) Mercer E. P., Miller J. M., Calvet N., Hartmann L., Hernandez J., Sicilia-Aguilar A., Gutermuth R., 2009, AJ, 138, 7
  • Morgan et al. (2004) Morgan L. K., Thompson M. A., Urquhart J. S., White G. J., Miao J., 2004, A&A, 426, 535
  • Ogura et al. (2002) Ogura K., Sugitani K., Pickles A., 2002, AJ, 123, 2597
  • Ogura et al. (2007) Ogura K., Chauhan N., Pandey A. K., Bhatt B. C., Ojha D., Itoh Y., 2007, PASJ, 59, 199
  • Oort (1954) Oort J. H., 1954, Bull. Astron. Inst. Netherlands, 12, 177
  • Oort & Spitzer (1955) Oort J. H., Spitzer Jr. L., 1955, ApJ, 121, 6
  • Panwar et al. (2014) Panwar N., Chen W. P., Pandey A. K., Samal M. R., Ogura K., Ojha D. K., Jose J., Bhatt B. C., 2014, MNRAS, 443, 1614
  • Panwar et al. (2018) Panwar N., Pandey A. K., Samal M. R., Battinelli P., Ogura K., Ojha D. K., Chen W. P., Singh H. P., 2018, AJ, 155, 44
  • Prisinzano et al. (2018) Prisinzano L., Damiani F., Guarcello M. G., Micela G., Sciortino S., Tognelli E., Venuti L., 2018, A&A, 617, A63
  • Saha et al. (2020) Saha P., Gopinathan M., Kamath U., Lee C. W., Puravankara M., Mathew B., Sharma E., 2020, MNRAS, 494, 5851
  • Saha et al. (2021) Saha P., Maheswar G., Mathew B., Kamath U. S., 2021, A&A, 653, A142
  • Saha et al. (2022) Saha P., Gopinathan M., Ojha D. K., Neha S., 2022, MNRAS, 510, 2644
  • Santos et al. (2014) Santos F. P., Franco G. A. P., Roman-Lopes A., Reis W., Román-Zúñiga C. G., 2014, ApJ, 783, 1
  • Sharma et al. (2016) Sharma S., et al., 2016, AJ, 151, 126
  • Sicilia-Aguilar et al. (2005) Sicilia-Aguilar A., Hartmann L. W., Hernández J., Briceño C., Calvet N., 2005, AJ, 130, 188
  • Sicilia-Aguilar et al. (2019) Sicilia-Aguilar A., Patel N., Fang M., Roccatagliata V., Getman K., Goldsmith P., 2019, A&A, 622, A118
  • Stassun & Torres (2021) Stassun K. G., Torres G., 2021, ApJ, 907, L33
  • Sugitani & Ogura (1994) Sugitani K., Ogura K., 1994, ApJS, 92, 163
  • Sugitani et al. (1991) Sugitani K., Fukui Y., Ogura K., 1991, ApJS, 77, 59
  • Sugitani et al. (1995) Sugitani K., Tamura M., Ogura K., 1995, ApJ, 455, L39
  • Thompson et al. (2004) Thompson M. A., Urquhart J. S., White G. J., 2004, A&A, 415, 627
  • Yamaguchi et al. (1999) Yamaguchi R., Saito H., Mizuno N., Mine Y., Mizuno A., Ogawa H., Fukui Y., 1999, PASJ, 51, 791
  • Zari et al. (2018) Zari E., Hashemi H., Brown A. G. A., Jardine K., de Zeeuw P. T., 2018, A&A, 620, A172
  • Zinnecker & Yorke (2007) Zinnecker H., Yorke H. W., 2007, ARA&A, 45, 481
Table 1: Kinematic properties of the candidate YSOs in the BRCs and the respective ionizing sources.
BRC Name Hii region Ionizing Star dd (pc) θpm()\theta_{\rm pm}(^{\circ}) θip()\theta_{\rm ip}(^{\circ})^{\dagger}
(1) (2) (3) (4) (5) (6)
SFO 2 Sh2-171 BD+66 1675 1027±\pm69 14±\pm16 8
SFO 5 IC 1805 BD+60 504 2007±\pm236 340±\pm14 291
SFO 7 IC 1805 BD+60 504 2192±\pm31 2±\pm4 31
SFO 11 IC 1848 HD 17505 2119±\pm237 139±\pm29 173
SFO 17 Sh2-264 λ\lambda Ori 389±\pm9 362±\pm51 337
SFO 18 Sh2-264 λ\lambda Ori 394±\pm7 110±\pm14 109
SFO 25 NGC 2264 HD 47839 692±\pm12 25±\pm21 3
SFO 26 Sh2-296 HD 54662 1236±\pm127 229±\pm3 224
SFO 27 Sh2-296 HD 53456 1095±\pm71 374±\pm31 314
SFO 31 Sh2-117 HD 199579 787±\pm51 211±\pm4 241
SFO 36 Sh2-131 HD 206267 902±\pm47 250±\pm101 276
SFO 37 Sh2-131 HD 206267 968±\pm37 169±\pm5 167
SFO 38 Sh2-131 HD 206267 923±\pm41 11±\pm7 16
SFO 39 Sh2-131 HD 206267 932±\pm47 29±\pm13 92
SFO 54 NGC 2626 vdBH17a 978±\pm99 217±\pm10 362
SFO 55 RCW 27 HD 73882 897±\pm32 123±\pm29 139
SFO 64 BBW 347 LSS2231 2968±\pm225 28±\pm20 37
SFO 65 RCW 62 HD 101205 2434±\pm78 320±\pm35 262
SFO 75 RCW 98 LSS 3423 1884±\pm422 30±\pm41 103
SFO 79 RCW 108 HD 150136 1515±\pm263 304±\pm21 246
SFO 82 RCW 113/116 HD 152233 1804±\pm258 296±\pm13 292
SFO 89 Sh2-29 HD 165921 1290±\pm1394 233±\pm7 124

BRCs are identified as SFO (Sugitani, Fukui, Ogura) in Simbad.
Error in θip\theta_{\rm ip} is negligible, hence not tabulated.
BRCs having θip\theta_{\rm ip} and θpm>360\theta_{\rm pm}>360^{\circ} are actually corrected for keeping minimum angular distance between these two. For example, BRC 17 has θpm=2±51\theta_{\rm pm}=2^{\circ}\pm 51^{\circ}, but as θip=337\theta_{\rm ip}=337^{\circ}, we added 360360^{\circ} with θpm\theta_{\rm pm} to estimate the minimum \midθipθpm\theta_{ip}-\theta_{pm}\mid.

Table 2: Kinematic properties of the candidate YSOs in the BRCs and the respective ionizing sources.
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 2
529108978383373824 0.817180 68.533421
529108913962819840 0.822722 68.528244
529116984202552064 0.891505 68.665579
529109562499260672 0.996169 68.546432
529109669877060096 0.999364 68.561558
529109704236796288 1.006998 68.570463
529110082193916416 1.007424 68.576971
529109704236795136 1.010965 68.573980
529110009175851648 1.019057 68.581070
529109631218432896 1.021873 68.564734
529109635517322240 1.023521 68.562283
529109631218428160 1.030511 68.561745
529109596858989184 1.031638 68.556941
529107981950942080 1.041955 68.514546
529109631218727680 1.048587 68.557023
529109596859011200 1.051103 68.546706
529109493779803392 1.058296 68.539329
529109394995715584 1.061381 68.546951
529109291919950080 1.062938 68.538589
529107226036641024 1.066895 68.457339
529107638353526912 1.086603 68.483371
529107638353525376 1.086814 68.481625
529106508781158656 1.280217 68.513387
SFO 5
513565148141778560 37.017032 61.575681
513561716467377536 37.180873 61.526220
513560926193404544 37.181123 61.494877
513567209726131968 37.211332 61.665927
513562609820646656 37.256233 61.558057
513562919058291584 37.309085 61.557092
513586318040856064 37.423374 61.588046
SFO 7
465931972268206208 38.472445 61.947325
465919808920854016 38.490779 61.887787
465918228372937600 38.558287 61.801810
465915062974574080 38.592096 61.757173
465915681452980736 38.633960 61.812643
465915612730624896 38.648419 61.810991
465914066542002688 38.673421 61.717098
465915406574942848 38.675025 61.782352
465922385902976640 38.765262 61.914548
SFO 11
464554455998190592 42.856584 60.101325
464554421638442752 42.905852 60.107391
464555830388653568 42.965128 60.125149
464554284199714560 42.965341 60.112129
464555830387938048 42.967249 60.119478
464555830387929600 42.975882 60.128772
SFO 17
3340887246596977664 82.375789 12.098617
3340893641804344320 82.469851 12.163148
3340894088480934400 82.490234 12.201947
3340894500797788672 82.502617 12.229013
3340882749767481344 82.515892 12.022681
3340892714091577856 82.554715 12.146044
3340896184424945664 82.570998 12.261384
3340888380468287488 82.608051 12.055951
3340889106319041024 82.650334 12.111273
3340890480708558848 82.715427 12.143540

Table 3: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 17
3340878179922230272 82.754191 12.070638
3340878381785847296 82.754855 12.096842
3340878351720911872 82.783418 12.101767
3340878935836457472 82.802044 12.131820
3340973111582846464 82.814597 12.189917
3340877935108760576 82.822064 12.096582
3340972806641584128 82.831061 12.154255
3340972733626479616 82.835537 12.154705
3340877728950818816 82.839460 12.095517
3340877728950193152 82.840267 12.096578
3340874224256986112 82.840446 12.043069
3340871028801247232 82.841301 11.915700
3340871067456399360 82.849493 11.927072
3340973558259384832 82.853259 12.202055
3340973631275296256 82.856891 12.214288
3340973352101788672 82.867039 12.197495
3340973596915556864 82.868331 12.209797
3340678446763632640 82.910861 11.807321
3340681981520082944 82.916445 11.847166
3340972497403927552 82.918674 12.179685
3340658415036209664 82.938609 11.631929
3340975551124339712 82.963700 12.272423
3341000736812880896 82.964315 12.554071
3340994556355913728 82.986524 12.419345
3340993869161153536 82.993690 12.379817
3340969061430118400 82.999760 12.135219
3341001256504863744 83.002221 12.570847
3340997064616797696 83.025877 12.473332
3340997133336271360 83.026715 12.489470
3340681088166923776 83.030248 11.901174
3340779838055977984 83.043450 12.050434
3340984072339594240 83.060387 12.408031
3340969886063797248 83.064392 12.159503
3340984042275960832 83.081278 12.406744
3340774069916236800 83.109319 11.906737
3340774065621826048 83.111576 11.911601
3340984695110967296 83.143467 12.457907
3341008300251213824 83.169933 12.487643
3340984454592793088 83.179992 12.451460
3341007922294096896 83.189609 12.450624
3340764311750480384 83.266538 11.968315
3340761528611688960 83.287080 11.898705
SFO 18
3336168314489240576 85.660435 9.310332
3336168043908536832 85.680581 9.287969
3336155189070384128 85.729819 9.246989
3336152375867856384 85.747103 9.164555
3336161549917961216 85.802402 9.283812
3336180585212965376 85.814037 9.491866
3336149519712868864 85.837176 9.101955
3336160690924950528 85.873411 9.283380
3336177454181082624 85.890385 9.496435
3336156121079561216 85.914989 9.178026
3336149867606924288 85.935460 9.133633
3336156292877976064 85.961132 9.206919
3336157422453353472 85.963992 9.227901
3336159419614147584 85.968111 9.283435
3336157873425925120 85.968650 9.266585
3336102897844570112 85.972911 9.119901
3336159557053093376 85.985790 9.304671
3336159282175185920 86.006802 9.289093
3336159071720837120 86.008674 9.260364

Table 4: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 18
3336107772631258624 86.030253 9.110574
3336109048235617280 86.041829 9.144624
3336109563633776640 86.044381 9.212530
3336107429033839616 86.053240 9.086216
3336108223604259328 86.061986 9.135564
3336111006743055360 86.079400 9.209260
3336104581471997440 86.080668 9.089784
3336158594980405248 86.080847 9.271995
3336158521965029888 86.087587 9.267106
3336108361043207168 86.090606 9.148215
3336108361043207168 86.091194 9.147915
3336109937294863872 86.095395 9.176425
3336110834944361984 86.107235 9.200320
3336105028148588032 86.108237 9.116840
3336109902935129088 86.112112 9.178385
3336104955132704768 86.119424 9.105122
3336256176637551104 86.137795 9.446547
3336110525706708992 86.154261 9.222194
3336104787630415872 86.157234 9.099283
3336256103621173248 86.158848 9.432716
3336107227171825664 86.194115 9.189299
3336204155993987072 86.220057 9.218111
3335326299037613056 86.226617 8.713875
3336093513339795456 86.267100 9.081243
SFO 25
3326929118281227008 100.205037 9.960728
3326717466589159424 100.207263 9.882923
3326928705964373888 100.210787 9.915904
3326740728129988096 100.225458 9.873459
3326928847700236928 100.225790 9.931090
3326932004499068928 100.249125 10.036809
3326943897265235840 100.256368 10.248875
3326935960166062720 100.261885 10.119963
3326930874924790656 100.280257 9.975301
3326943927328338304 100.281154 10.251207
3326740521973590656 100.321865 9.908974
SFO 26
3046018985610505600 105.931990 -11.615694
3046026540451631232 105.957919 -11.521443
3046025720119222784 105.974974 -11.546624
3046025715819957248 105.975102 -11.543665
3046025548320530304 105.991885 -11.544413
3046025440943675008 105.993075 -11.559610
3045831583295956224 106.005495 -11.604856
3045831617655703168 106.016364 -11.599203
3045830346345248384 106.022991 -11.664542
SFO 27
3046026540451631104 105.957919 -11.521443
3046030427403041792 105.968721 -11.438005
3046026750911057408 105.970952 -11.493117
3046025715819957248 105.975102 -11.543665
3046027575540896256 105.984839 -11.428186
3046030564841979904 105.987988 -11.409098
3046027609900606976 106.005055 -11.425314
3046032072370037248 106.006838 -11.401754
3046027541185004544 106.009740 -11.427599
3046027335022717952 106.017002 -11.443177
3046032179749668864 106.019563 -11.394363
3046029224812170240 106.024675 -11.399645
3046032656484579328 106.025013 -11.357863
3046032175450394624 106.025134 -11.387689

Table 5: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 27
3046032214109395968 106.027125 -11.374434
3046032179749663232 106.027349 -11.387875
3046033829017076224 106.027389 -11.309653
3046028812495321088 106.027897 -11.435688
3046032901304147456 106.034603 -11.334795
3046033000084199424 106.038398 -11.321701
3046029259171897344 106.041477 -11.387892
3046408414583416832 106.051334 -11.299733
3046029667189515264 106.056360 -11.370099
3046028984293995520 106.057986 -11.411538
3046029568409539584 106.059362 -11.388029
3046026235515287552 106.064109 -11.478023
3046028915574513664 106.070001 -11.409016
3046029705848479744 106.083301 -11.372899
3046029396610840064 106.085899 -11.387360
3046027678624293888 106.094784 -11.464144
3046028571977483776 106.096879 -11.404809
3046028567676658688 106.107098 -11.403421
3045840688626813952 106.169933 -11.426916
3045840310669678080 106.187495 -11.466389
SFO 31
2163139941968363520 312.655751 44.348055
2163139873248885632 312.668531 44.339344
2163140006394622208 312.677957 44.364693
2163139804527939968 312.702434 44.351252
2163139804529410944 312.702892 44.348122
2163140457364449920 312.723076 44.407410
2163140560443665152 312.723456 44.408447
2163140143827638272 312.724408 44.361061
2163136810933010048 312.728592 44.336789
2163140251206016640 312.728724 44.382835
2163136712151471360 312.734157 44.306060
2163140281266601728 312.744801 44.388165
2163136746512695424 312.745882 44.331735
2163136746511218176 312.747839 44.327502
2163137120170654720 312.758957 44.335850
2163140319925497088 312.763891 44.404285
2163136192456870016 312.831063 44.325146
SFO 36
2178434217440720384 323.852133 57.550292
2178421813575206400 323.905550 57.478271
2178434389239575040 323.938735 57.557456
2178417656046880256 323.957301 57.401123
2178434561038259712 323.960316 57.596456
2178415834982840832 323.985635 57.347983
2178446002831454720 324.067038 57.580120
2178418167132388864 324.070784 57.444386
2178446342117152768 324.077924 57.607406
2178444864649304576 324.093245 57.528092
2178445109478268416 324.098667 57.545841
2178418304571527680 324.104485 57.463934
2178444899007898368 324.118437 57.537037
2178417278089774080 324.145473 57.436727
2178445624874345472 324.153753 57.568306
2178440741484235264 324.158434 57.449372
2178441604784967168 324.160031 57.488165
2178441909720014336 324.163107 57.498105
2178441914022611456 324.170965 57.502272
2178441707864184832 324.191461 57.492777
2178441742223922688 324.198437 57.498325
2178440470906711552 324.204093 57.421181
2178369930368001536 324.206879 57.374168

Table 6: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 36
2178442115878750464 324.211327 57.519617
2178440913279379456 324.224007 57.478980
2178440814510995456 324.224779 57.466286
2178440642705389824 324.239399 57.458397
2178393398069567488 324.239518 57.389290
2178440642712309760 324.240275 57.459183
2178442081510495232 324.240962 57.518048
2178441291236505088 324.241322 57.486287
2178442154540783104 324.247783 57.526332
2178393604228050432 324.253665 57.422881
2178442257613053952 324.254910 57.534543
2178442459476372480 324.255522 57.558474
2178441226827857920 324.256374 57.479491
2178440573992845568 324.260620 57.437321
2178441226827857920 324.262816 57.483628
2178440573992840448 324.263380 57.455095
2178447102343234048 324.265886 57.624686
2178393634282935040 324.274296 57.425248
2178442188900684032 324.275295 57.533776
2178440951949966848 324.279290 57.450210
2178442184589714944 324.282137 57.536404
2178444078686267648 324.283960 57.604479
2178441364259874304 324.284523 57.506525
2178393569868318208 324.287895 57.430134
2178441261187597056 324.289007 57.496765
2178441261187598336 324.289150 57.494766
2178441432986447360 324.293050 57.522256
2178441432986447872 324.293934 57.520104
2178394016544915456 324.294569 57.436194
2178441055029170688 324.297757 57.491271
2178443769448645376 324.298756 57.558096
2178394016544908288 324.300637 57.457276
2178443769448645632 324.301422 57.558842
2178394050904648448 324.307880 57.457498
2178440982007912704 324.311440 57.470808
2178441158101474560 324.312343 57.486782
2178441158108390144 324.312770 57.486519
2178394050904653312 324.316308 57.449764
2178393982185180160 324.318140 57.444534
2178444113039290368 324.319114 57.605811
2178393947825444864 324.320866 57.438297
2178441085078071808 324.321454 57.479803
2178441089388915200 324.322358 57.489084
2178441089388913920 324.322583 57.490908
2178441192468289024 324.331546 57.513574
2178441089388920832 324.333159 57.479476
2178442876095464192 324.333704 57.526427
2178392229838569472 324.336028 57.350092
2178442669938739712 324.341791 57.512066
2178393982185185792 324.342839 57.445544
2178442876095465472 324.348673 57.531615
2178442974872913152 324.349750 57.548867
2178392917033317376 324.350403 57.403143
2178394188343600896 324.353173 57.485799
2178442704296780288 324.363834 57.524861
2178442699985787904 324.364255 57.523214
2178392848313851392 324.368435 57.390246
2178443941247336192 324.370589 57.601205
2178443013534417408 324.371514 57.548204
2178395661507500800 324.374572 57.487368
2178443112301672704 324.377703 57.583804
2178443116606937088 324.378112 57.574356
2178393054472271872 324.378334 57.416702

Table 7: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 36
2178393054472273920 324.384810 57.417549
2178395597093125120 324.384830 57.490160
2178395592793859072 324.386841 57.474184
2178444250484986880 324.389828 57.597511
2178442807375996160 324.390869 57.537961
2178442837424749056 324.398815 57.549550
2178395425294441472 324.407814 57.479645
2178442738656526336 324.410436 57.527991
2178395631452868096 324.411854 57.493597
2178442841735735296 324.411907 57.547055
2178443425844596224 324.418660 57.575885
2178443219692854528 324.420668 57.560143
2178395356574972928 324.420927 57.466933
2178450637088253696 324.424351 57.677820
2178443219692855040 324.424390 57.560675
2178443421539290880 324.425704 57.575414
2178443219693138688 324.428171 57.556967
2178443425852969728 324.428688 57.579511
2178395837611290112 324.435646 57.528416
2178392740924572672 324.437010 57.403748
2178389339310069760 324.438109 57.328373
2178395356574976256 324.438442 57.471469
2178443254045917696 324.442181 57.574461
2178395837599325696 324.445379 57.532251
2178394497581292800 324.446132 57.434589
2178395459654186240 324.452937 57.489681
2178389790297157120 324.453941 57.389113
2178396142543875840 324.455299 57.532880
2178443185333123584 324.459138 57.561200
2178395562733396992 324.459288 57.502631
2178394291422867968 324.459296 57.430166
2178394699429915904 324.462830 57.463914
2178394531941272064 324.465701 57.447897
2178443284100355072 324.486562 57.580033
2178391302125646848 324.489868 57.405441
2178391199046443520 324.490090 57.379878
2178395975050256896 324.492197 57.522179
2178394669380222464 324.502463 57.473688
2178450538317241344 324.514567 57.693017
2178390958528283648 324.524777 57.378809
2178402262882609920 324.532163 57.598123
2178396009413394176 324.534021 57.524052
2178394394502336768 324.535220 57.446542
2178391370845370880 324.535333 57.419930
2178449232647211008 324.535644 57.618771
2178395081697083392 324.540760 57.495191
2178391130327213568 324.541678 57.397955
2178394768154306560 324.542438 57.452310
2178395253495768320 324.547566 57.517118
2178391370845377024 324.550076 57.416853
2178395287855504384 324.557715 57.528134
2178390305693267456 324.562898 57.365394
2178449816762756864 324.571359 57.657436
2178390305693509376 324.572937 57.375203
2178391881932722688 324.599781 57.460037
2178390649290896384 324.605400 57.386767
2178402056712608768 324.608188 57.569242
2178391989320655360 324.609953 57.477909
2178391680083024640 324.612183 57.444025
2178400888493119488 324.614296 57.518909
2178400888493120512 324.618131 57.518649
2178401232090491904 324.626306 57.548643
2178391611363553280 324.626488 57.438370

Table 8: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 36
2178391607051821568 324.634026 57.443286
2178397864836157440 324.635643 57.504446
2178391611363558144 324.640927 57.434762
2178401025932067328 324.645041 57.547196
2178397899195898368 324.646700 57.503741
2178398002263548416 324.655419 57.517729
2178397830476432896 324.664847 57.487861
2178397521238551040 324.665652 57.464661
2178401640101582848 324.667773 57.573126
2178397516931971840 324.681268 57.457493
2178397551292322304 324.689294 57.473025
SFO 37
2178110961019859200 325.111487 56.606547
2178110961019859328 325.113856 56.606019
2178110961019860864 325.119532 56.602676
SFO 38
2178572790254904192 324.985110 58.229860
2178572515384121344 324.993569 58.204090
2178573198273201920 325.018974 58.253206
2178561309803684608 325.090679 58.245960
2178561309803669376 325.106798 58.241177
2178561245389942016 325.113851 58.239224
2178562791578166784 325.116659 58.253957
2178574744461539200 325.131643 58.298669
2178562516700266624 325.152326 58.229408
2178562551060090624 325.153795 58.243853
2178562752912981248 325.154343 58.250826
2178562447980793088 325.161832 58.217437
2178562482340616192 325.171263 58.233038
2178562654139305856 325.171512 58.253125
2178575156779164416 325.178405 58.327041
2178562649833718528 325.186884 58.250933
2178561412882638336 325.187700 58.187668
2178562654140703872 325.193728 58.256421
2178562684193256704 325.200132 58.260469
SFO 39
2178252591856861440 326.315947 57.398345
2178253347771102336 326.392006 57.449805
2178253343467691904 326.403087 57.454570
2178302310399899136 326.460928 57.569224
2178254619081525248 326.475266 57.471767
2178249052803834240 326.501131 57.385957
2178254722160739328 326.506666 57.493876
2178255336331599104 326.567890 57.537926
2178254065020940544 326.608237 57.474642
SFO 54
5528463903210289152 128.825305 -40.639072
5528463898908631296 128.827379 -40.638469
5528460982632433536 128.851861 -40.630607
5528462460101182336 128.857268 -40.625275
5528460913912957952 128.857845 -40.649441
5528460909612659840 128.858711 -40.647091
5528462391381705344 128.865797 -40.629472
5528460600376692224 128.878977 -40.683239
5528462215282558848 128.886545 -40.637564
5528459814401329152 128.900026 -40.685088
5528461326229815296 128.917863 -40.668665
5528461493728727808 128.919382 -40.643420

Table 9: continued
candidate YSOs (Gaia EDR3) RA Dec.
(1) (2) (3)
SFO 55
5525309679224303616 130.258108 -40.851611
5525309404343867008 130.272932 -40.879715
5525309404347345664 130.278144 -40.871491
5525315417300607744 130.297572 -40.834450
5525315348582080640 130.306144 -40.835407
5525314558307488384 130.312112 -40.864011
5525314592666887040 130.319382 -40.858090
5525315451660343296 130.321984 -40.833414
5525314730105835904 130.342176 -40.840931
SFO 64
5339406344853783168 168.040164 -58.777692
5339406344853784064 168.043617 -58.775652
5339406276134319872 168.083076 -58.768528
5339407792307371264 168.083896 -58.735824
5339406138695368448 168.090774 -58.789143
5339406276134323840 168.095506 -58.768474
5339385316693599232 167.970779 -58.830521
5339406173055110912 168.100420 -58.779458
5339407719243340544 168.111612 -58.750773
5339406211759383040 168.125793 -58.779075
SFO 65
5333619447671205248 173.115031 -63.463595
5333606592810294656 173.268299 -63.514073
5333612537045149440 173.276352 -63.482744
SFO 75
5884681167820754944 238.922042 -54.662066
5884681270898481408 238.933403 -54.649745
5884681618820301184 238.974183 -54.635937
5884677972363578368 239.004325 -54.691620
SFO 79
5940872985209320960 249.965948 -48.861551
5940872985201536640 249.973811 -48.862893
5940862986517159552 250.041070 -48.794521
5940860130322500992 250.065560 -48.913008
5940863192675559808 250.071388 -48.789952
5940862677279451648 250.079483 -48.836526
5940861783926211200 250.089274 -48.878902
5940860203378210816 250.095269 -48.908659
5940860199040422912 250.100495 -48.912007
5940861955724931328 250.112240 -48.839791
SFO 82
5968283535216265088 251.786509 -41.270942
5968283397777300352 251.818542 -41.275009
5968283393435690752 251.828189 -41.269569
5968283874470676352 251.845438 -41.231744
5968271681105309312 251.850580 -41.272716
5968271990342949760 251.865275 -41.274959
SFO 89
4066264896044933888 272.460228 -24.089038
4066264582463138048 272.463524 -24.097850
4066261528767982336 272.474727 -24.125813
4066264616822113536 272.482763 -24.102785
4066261666237504640 272.484526 -24.113703
4066264616822117248 272.485582 -24.108377
4066264621175030912 272.489631 -24.102080
4066261563127704064 272.490897 -24.121382
4066261661884621952 272.491424 -24.115998
4066261696237927808 272.501261 -24.108107