This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Investigation of coefficient expressions arising in the homogenization process

Here we investigate some of the expressions that arise in the coefficients of the homogenized equations. A key question is whether a given expression vanishes for all periodic functions. We have observed that certain expressions seem to vanish if and only if the periodic function has matching derivatives:

f(j)(0)\displaystyle f^{(j)}(0) =f(j)(1)\displaystyle=f^{(j)}(1) (1)

for all whole numbers jj. In order to prove this, we may try to write the expression as a linear combination of the differences f(j)(0)f(j)(1)f^{(j)}(0)-f^{(j)}(1). To make this more straightforward, we can consider the case that ff is a trigonometric polynomial, in the hope of extending the proof to analytic functions by using Fourier series.

0.1 Useful trig identities

cos(a)sin(b)\displaystyle\cos(a)\sin(b) =12(sin(a+b)+sin(ab))\displaystyle=\frac{1}{2}(\sin(a+b)+\sin(a-b)) (2)
cos(a)cos(b)\displaystyle\cos(a)\cos(b) =12(cos(a+b)+cos(ab))\displaystyle=\frac{1}{2}(\cos(a+b)+\cos(a-b)) (3)

For simplicity we consider just the function

f(y)\displaystyle f(y) =j=0sajcos(2πjy).\displaystyle=\sum_{j=0}^{s}a_{j}\cos(2\pi jy). (5)

Then we find

f(y)\displaystyle\llbracket f\rrbracket(y) =j=1sajsin(2πjy)2πj.\displaystyle=\sum_{j=1}^{s}a_{j}\frac{\sin(2\pi jy)}{2\pi j}. (6)

0.2 Showing that f(y)f(y)=0\braket{f(y)\llbracket f\rrbracket(y)}=0

We have

f(y)f(y)\displaystyle\braket{f(y)\llbracket f\rrbracket(y)} =j=1sk=0sajak2πj01cos(2πyk)sin(2πyj)𝑑y\displaystyle=\sum_{j=1}^{s}\sum_{k=0}^{s}\frac{a_{j}a_{k}}{2\pi j}\int_{0}^{1}\cos(2\pi yk)\sin(2\pi yj)dy (7)
=j=1sk=0sajak4πj01(sin(2πy(k+j))+sin(2πy(kj)))𝑑y\displaystyle=\sum_{j=1}^{s}\sum_{k=0}^{s}\frac{a_{j}a_{k}}{4\pi j}\int_{0}^{1}\left(\sin(2\pi y(k+j))+\sin(2\pi y(k-j))\right)dy (8)
=0.\displaystyle=0. (9)

Where we have used (2).

0.3 Showing that (f(y))2f(y)=0\braket{(f(y))^{2}\llbracket f\rrbracket(y)}=0

We have

(f(y))2f(y)\displaystyle\braket{(f(y))^{2}\llbracket f\rrbracket(y)} =j=1sk=0s=0sajaka2πj01sin(2πyj)cos(2πyk)cos(2πy)𝑑y.\displaystyle=\sum_{j=1}^{s}\sum_{k=0}^{s}\sum_{\ell=0}^{s}\frac{a_{j}a_{k}a_{\ell}}{2\pi j}\int_{0}^{1}\sin(2\pi yj)\cos(2\pi yk)\cos(2\pi y\ell)dy. (10)

Let us define the shorthand

S(n)\displaystyle S(n) =sin(2πyn)\displaystyle=\sin(2\pi yn) (11)
C(n)\displaystyle C(n) =cos(2πyn).\displaystyle=\cos(2\pi yn). (12)

Using (3) and (2), the integrand can be expressed as a sum of 4 sines:

4sin(2πyj)cos(2πyk)cos(2πy)=S(j+k+)+S(jk)+S(jk+)+S(j+k).4\sin(2\pi yj)\cos(2\pi yk)\cos(2\pi y\ell)=S(j+k+\ell)+S(j-k-\ell)+S(j-k+\ell)+S(j+k-\ell).

Thus the integral vanishes, so the entire expression vanishes.

0.4 Showing that f(y)f(y)0\braket{f(y)\llbracket\llbracket f\rrbracket\rrbracket(y)}\neq 0

We have

f[y]\displaystyle\llbracket\llbracket f\rrbracket\rrbracket[y] =j=1saj(2πj)2cos(2πjy).\displaystyle=\sum_{j=1}^{s}-\frac{a_{j}}{(2\pi j)^{2}}\cos(2\pi jy). (13)

Thus

f(y)f(y)\displaystyle\braket{f(y)\llbracket\llbracket f\rrbracket\rrbracket(y)} =j=1sk=0sajak(2πj)201C(j)C(k)𝑑y\displaystyle=\sum_{j=1}^{s}\sum_{k=0}^{s}-\frac{a_{j}a_{k}}{(2\pi j)^{2}}\int_{0}^{1}C(j)C(k)dy (14)
=j=1sk=0sajak2(2πj)201C(k+j)+C(kj)dy\displaystyle=\sum_{j=1}^{s}\sum_{k=0}^{s}-\frac{a_{j}a_{k}}{2(2\pi j)^{2}}\int_{0}^{1}C(k+j)+C(k-j)dy (15)
=j=1saj22(2πj)2\displaystyle=\sum_{j=1}^{s}-\frac{a_{j}^{2}}{2(2\pi j)^{2}} (16)
0.\displaystyle\neq 0. (17)

0.5 Infinite Fourier Series

When the Fourier series of f(y)f(y) does not terminate, then some of the results above will depend on whether we can interchange the integral and infinite sums. E.g., we would have

(f(y))2f(y)\displaystyle\braket{(f(y))^{2}\llbracket f\rrbracket(y)} =limn01j=1nk=0n=0najaka2πjsin(2πyj)cos(2πyk)cos(2πy)dy.\displaystyle=\lim_{n\to\infty}\int_{0}^{1}\sum_{j=1}^{n}\sum_{k=0}^{n}\sum_{\ell=0}^{n}\frac{a_{j}a_{k}a_{\ell}}{2\pi j}\sin(2\pi yj)\cos(2\pi yk)\cos(2\pi y\ell)dy. (18)

Under what conditions can we change the order of the integral and sums? The dominated convergence theorem suggests that we need some function g(y)g(y) such that

|j=1nk=0n=0najaka2πjsin(2πyj)cos(2πyk)cos(2πy)|g(y)\displaystyle\left|\sum_{j=1}^{n}\sum_{k=0}^{n}\sum_{\ell=0}^{n}\frac{a_{j}a_{k}a_{\ell}}{2\pi j}\sin(2\pi yj)\cos(2\pi yk)\cos(2\pi y\ell)\right|\leq g(y) (19)

for all n,yn,y.

1 Old material using polynomials

1.1 Polynomial derivative differences

Let

p(x)\displaystyle p(x) =k=0sakxk\displaystyle=\sum_{k=0}^{s}a_{k}x^{k} (20)

Then

p(j)(1)p(j)(0)\displaystyle p^{(j)}(1)-p^{(j)}(0) =k=j+1sk!(kj)!ak=:dj(p).\displaystyle=\sum_{k=j+1}^{s}\frac{k!}{(k-j)!}a_{k}=:d_{j}(p). (21)

1.2 Showing that f(y)f(y)=0\braket{f(y)\llbracket f\rrbracket(y)}=0

This property is already known, but here we prove it for polynomials. In this case, the expression vanishes regardless of whether it is periodic.

Taking the double-bracket of a generic polynomial (20), we find

p(y)\displaystyle\llbracket p\rrbracket(y) =k=0sakk+1(yk+1y+k2(k+2)).\displaystyle=\sum_{k=0}^{s}\frac{a_{k}}{k+1}\left(y^{k+1}-y+\frac{k}{2(k+2)}\right). (22)

Then

p(y)p(y)\displaystyle\braket{p(y)\llbracket p\rrbracket(y)} =j,k=0sajakjk(jk)2(k+1)(k+2)(j+1)(j+2)(j+k+2)=j,k=0sCjkajak.\displaystyle=\sum_{j,k=0}^{s}a_{j}a_{k}\frac{jk(j-k)}{2(k+1)(k+2)(j+1)(j+2)(j+k+2)}=\sum_{j,k=0}^{s}C_{jk}a_{j}a_{k}. (23)

Notice that

Cjk={0j=kCkjjk.C_{jk}=\begin{cases}0&j=k\\ -C_{kj}&j\neq k.\end{cases}

Because of this antisymmetry, the sum (23) vanishes.

1.3 f(y)2f(y)\braket{f(y)^{2}\llbracket f\rrbracket(y)}

From (22) we have

(p(y))2p(y)\displaystyle(p(y))^{2}\llbracket p\rrbracket(y) =i,j,k=0saiajakk+1(yi+j+k+1yi+j+1+k2(k+2)yi+j),\displaystyle=\sum_{i,j,k=0}^{s}\frac{a_{i}a_{j}a_{k}}{k+1}\left(y^{i+j+k+1}-y^{i+j+1}+\frac{k}{2(k+2)}y^{i+j}\right), (24)

and

(p(y))2p(y)\displaystyle\braket{(p(y))^{2}\llbracket p\rrbracket(y)} =i,j,k=0saiajakk+1(1i+j+k+21i+j+2+k2(k+2)(i+j+1))\displaystyle=\sum_{i,j,k=0}^{s}\frac{a_{i}a_{j}a_{k}}{k+1}\left(\frac{1}{i+j+k+2}-\frac{1}{i+j+2}+\frac{k}{2(k+2)(i+j+1)}\right)
=i,j,k=0saiajakk(i+j)(i+jk)2(k+1)(k+2)(i+j+1)(i+j+2)(i+j+k+2)\displaystyle=\sum_{i,j,k=0}^{s}a_{i}a_{j}a_{k}\frac{k(i+j)(i+j-k)}{2(k+1)(k+2)(i+j+1)(i+j+2)(i+j+k+2)}
=k=1sj=0s=js+jakajajk(k)2(k+1)(k+2)(+1)(+2)(+k+2)\displaystyle=\sum_{k=1}^{s}\sum_{j=0}^{s}\sum_{\ell=j}^{s+j}a_{k}a_{j}a_{\ell-j}\frac{k\ell(\ell-k)}{2(k+1)(k+2)(\ell+1)(\ell+2)(\ell+k+2)}
=k=1sj=0s=js+jakajajN,kD,k=:S.\displaystyle=\sum_{k=1}^{s}\sum_{j=0}^{s}\sum_{\ell=j}^{s+j}a_{k}a_{j}a_{\ell-j}\frac{N_{\ell,k}}{D_{\ell,k}}=:S.

We can see immediately that all terms involving a0a_{0} vanish because N,k=Nk,N_{\ell,k}=-N_{k,\ell} and D,k=Dk,D_{\ell,k}=D_{k,\ell}.

How can we show that this vanishes for a smoothly periodic function?

1.4 f(y)f(y)\braket{f(y)\llbracket\llbracket f\rrbracket\rrbracket(y)}

This expression does not vanish, even if ff is smoothly periodic. Direct computation yields

p(y)\displaystyle\llbracket\llbracket p\rrbracket\rrbracket(y) =j,k=0sCjkajak\displaystyle=\sum_{j,k=0}^{s}C_{jk}a_{j}a_{k} (25)

where

Cjk=jk(j1)(k1)(j+k+15)+24(j+k)12(j+1)(j+2)(j+3)(k+1)(k+2)(k+3)(j+k+3)\displaystyle C_{jk}=jk\frac{(j-1)(k-1)(j+k+15)+24(j+k)}{12(j+1)(j+2)(j+3)(k+1)(k+2)(k+3)(j+k+3)} (26)

Note that in this case Cjk=CkjC_{jk}=C_{kj}.