This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Investigating the ZZ^{\prime} gauge boson at the future lepton colliders

Xinyue Yin School of Physics and Technology, University of Jinan, Jinan Shandong 250022, China    Honglei Li sps˙[email protected] School of Physics and Technology, University of Jinan, Jinan Shandong 250022, China    Yi Jin School of Physics and Technology, University of Jinan, Jinan Shandong 250022, China Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guilin Guangxi 541004, China    Zhilong Han School of Physics and Technology, University of Jinan, Jinan Shandong 250022, China    Zongyang Lu School of Physics and Technology, University of Jinan, Jinan Shandong 250022, China
Abstract

ZZ^{\prime} boson as a new gauge boson has been proposed in many new physics models. The interactions of ZZ^{\prime} coupling to fermions are detailed studied at the large hadron collider. A ZZ^{\prime} with the mass of a few TeV has been excluded in some special models. The future lepton colliders will focus on the studies of Higgs physics which provide the advantage to investigate the interactions of Higgs boson with the new gauge bosons. We investigate the ZZHZ^{\prime}ZH interaction via the process of e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b}. The angular distribution of the final leptons decaying from the ZZ-boson is related to the mixing of ZZ^{\prime}-ZZ and the mass of ZZ^{\prime}. The forward-backward asymmetry has been proposed as an observable to investigate the ZZ^{\prime}-ZZ mixing. The angular distributions change significantly with some special beam polarization comparing to the unpolarized condition.

I Introduction

With the running of the large hadron collider (LHC), the exploration of the heavy resonance, such as additional Higgs boson, neutral gauge boson (ZZ^{\prime}) and charged ones (W±W^{\prime\pm}), has been reached Tera-eV era currently. The Standard Model (SM) Higgs particle has been discovered in 2012 at LHC Aad et al. (2012); Chatrchyan et al. (2012), which confirms the prediction of the standard model for fundamental particles and the role of Higgs in the electroweak symmetry breaking. Further precision measurements on the Higgs particles have been proposed at the future Higgs factories, including the Circular Electron Positron Collider (CEPC) Dong et al. (2018), the electron-positron stage of the Future Circular Collider (FCC-ee) Abada et al. (2019a, b), and the International Linear Collider (ILC) Bambade et al. (2019). It is attractive to study the new physics effects in Higgs production at the future Higgs factories.

A simple extension of the SM can be possible by adding an additional U(1)U(1) group which may arise in models derived from grand unified theories (GUT). Additional U(1)U(1) groups can also arise from higher dimensional constructions like string compactifications. In many models of GUT symmetry breaking, U(1)U(1) groups survive at relatively low energies, leading to corresponding neutral gauge bosons, commonly referred to as ZZ^{\prime} bosons Langacker (2009). Such ZZ^{\prime} bosons typically couple to SM fermions via the electroweak interaction, and can be observed at hadron colliders as narrow resonances. This extra gauge boson ZZ^{\prime} has been searched for many years at the Tevatron, LEP and LHC Aaltonen et al. (2009a); Abazov et al. (2011); Feldman et al. (2006a); Chiappetta et al. (1996); Barger et al. (1996); Sirunyan et al. (2020); Aaboud et al. (2017). Another interesting motivation is that the ZZ^{\prime} boson as a mediator or candidate for the dark matter sectors, which is out of the reach of this paper.

There are many experimental searches for the extra gauge boson ZZ^{\prime} and the strong constraints on the mass of ZZ^{\prime}. The primary studied mode for a ZZ^{\prime} at a hadron collider is the Drell-Yan production of a dilepton resonance pppp (pp¯)Zl+l(p\bar{p})\to Z^{\prime}\to l^{+}l^{-}, where l=el=e or μ\mu. Other channels, such as ZjjZ^{\prime}\to jj where jj is jet, Ztt¯Z^{\prime}\to t\bar{t}, ZeμZ^{\prime}\to e\mu, or Zτ+τZ^{\prime}\to\tau^{+}\tau^{-}, are also possible. The forward-backward asymmetry for pppp (pp¯)l+l(p\bar{p})\to l^{+}l^{-} due to γ\gamma, ZZ, ZZ^{\prime} interference below the ZZ^{\prime} peak is also important. Nowadays, the collider phenomenology of the ZZ^{\prime} boson has been extensively studied (see, for example Rizzo (1986); Nandi (1986); Baer et al. (1987); Barger and Whisnant (1987); Gunion et al. (1988); Hewett and Rizzo (1989); Feldman et al. (2006b); Rizzo (2006); Lee (2009); Barger et al. (2009); Cao and Zhang (2016); Gulov et al. (2018)). Phenomenological implications of the ZZ^{\prime} boson in an additional U(1)U(1) extended model are enormous. They can be explored in fermion pair production processes in ee+e^{-}e^{+} collisions Funatsu et al. (2020); Gao et al. (2010); Das et al. (2021). With the accumulated events increasing on the Higgs particle, the interaction of ZZ^{\prime} and Higgs boson draws ones attention. An important process to study the ZZ^{\prime} boson is an associated production of the SM Higgs boson (HH) with the SM ZZ boson, such as ppZZHpp\to Z^{\prime}\to ZH at the LHC Li et al. (2013); Das and Okada (2020); Aaboud et al. (2018a); Sirunyan et al. (2021a) and e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH at future e+ee^{+}e^{-} linear colliders Gutiérrez-Rodríguez and Hernández-Ruiz (2015).

To study the properties of ZZ^{\prime}, including one additional U(1)XU(1)_{X} extension of the SM, we investigate the ZZ^{\prime} signal via the process of e+eZ/ZZHe^{+}e^{-}\to Z^{\prime}/Z\to ZH at the electron-positron collision in this paper. The cross section has been calculated including the ZZ^{\prime}-ZZ mixing effects. As the leptonic decay of ZZ boson can be a good trigger for the signal process, we show the final lepton angular distribution with the subsequent decay of Zl+lZ\to l^{+}l^{-} and Hbb¯H\to b\bar{b}. The correlation of the final lepton angular distribution with the ZZHZ^{\prime}ZH interactions has been investigated at the unpolarized/polarized electron-positron collision.

This paper is organized as follows. The theoretical framework is listed in details in Section II and the current experimental status on ZZ^{\prime} has been summarized as well. In Section III, we investigate the ZHZH production via Z/ZZ^{\prime}/Z mediators and give the final leptons’ angular distributions with various parameter sets. A forward-backward asymmetry has been proposed to be an observable for ZZ^{\prime}-ZZ mixing. Finally, the summary and discussion are given.

II Theoretical framework and experimental status

The gauge group structure of the standard model (SM), SU(3)C×SU(2)L×U(1)YSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}, can be extended with an additional U(1)XU(1)_{X} group. We follow the notations in reference Wells (2008) to display the interactions and mass relations. The new gauge sector U(1)XU(1)_{X} is only coupled with the standard model by kinetic mixing with hypercharge gauge boson BμB_{\mu}. The kinetic energy terms of the U(1)XU(1)_{X} gauge group are

K=14X^μνX^μν+χ2X^μνB^μν,\displaystyle\begin{split}\mathcal{L}_{K}&=-\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu}+\frac{\chi}{2}\hat{X}_{\mu\nu}\hat{B}^{\mu\nu}\end{split}, (1)

where χ1\chi\ll 1 is helpful to keep precision electroweak predictions consistent with experimental measurements. And the Lagrangian for the gauge sector is given by

G=14B^μνB^μν14W^μνaW^aμν14X^μνX^μν+χ2X^μνB^μν,\displaystyle\begin{split}\mathcal{L}_{G}&=-\frac{1}{4}\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}-\frac{1}{4}\hat{W}_{\mu\nu}^{a}\hat{W}^{a\mu\nu}-\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu}+\frac{\chi}{2}\hat{X}_{\mu\nu}\hat{B}^{\mu\nu},\end{split} (2)

where WμνaW_{\mu\nu}^{a}, BμνB_{\mu\nu}, XμνX_{\mu\nu} are the field strength tensors for SU(2)LSU(2)_{L}, U(1)YU(1)_{Y}, U(1)XU(1)_{X}, respectively. We can diagonalize the 3×\times3 neutral gauge boson mass matrix, and write the mass eigenstates as

(BW3X)=(cosθWsinθWcosαsinθWsinαsinθWcosθWcosαcosθWsinα0sinαcosα)(AZZ),\displaystyle\begin{split}\begin{pmatrix}B&\\ W^{3}&\\ X\end{pmatrix}&=\begin{pmatrix}\cos\theta_{W}&-\sin\theta_{W}\cos\alpha&\sin\theta_{W}\sin\alpha\\ \sin\theta_{W}&\cos\theta_{W}\cos\alpha&-\cos\theta_{W}\sin\alpha\\ 0&\sin\alpha&\cos\alpha\\ \end{pmatrix}\begin{pmatrix}A&\\ Z&\\ Z^{\prime}\end{pmatrix}\end{split}, (3)

where the usual weak mixing angle and the new gauge boson mixing angle are

sinθW=gg2+g2;tan2α=2ηsinθW1η2sin2θWΔz,\displaystyle\begin{split}\sin\theta_{W}&=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}\ ;\ \ \tan 2\alpha=\frac{-2\eta\sin\theta_{W}}{1-\eta^{2}\sin^{2}\theta_{W}-\Delta z}\ \end{split}, (4)

with Δz\Delta z = mX2mZ02\frac{m_{X}^{2}}{m_{Z_{0}}^{2}}, mZ02m_{Z_{0}}^{2} = (g2+g2)v24\frac{(g^{2}+g^{\prime 2})v^{2}}{4}, η=χ1χ2\eta=\frac{\chi}{\sqrt{1-\chi^{2}}}. mZ0m_{Z_{0}} and mXm_{X} are masses before mixing. The two heavier boson mass eigenvalues are

mZ,Z2=mZ022[(1+η2sin2θW+ΔZ)±(1η2sin2θWΔZ)2+4η2sin2θW].\displaystyle\begin{split}m_{Z,Z^{\prime}}^{2}&=\frac{m_{Z_{0}}^{2}}{2}\left[\left(1+\eta^{2}\sin^{2}\theta_{W}+\Delta Z\right)\pm\sqrt{\left(1-\eta^{2}\sin^{2}\theta_{W}-\Delta Z\right)^{2}+4\eta^{2}\sin^{2}\theta_{W}}\right]\end{split}. (5)

With the assumption of η1\eta\ll 1, we can take the mass eigenvalues as mZmZ0=91.19m_{Z}\approx m_{Z_{0}}=91.19GeV and mZmXm_{Z^{\prime}}\approx m_{X}. Therefore, the ZZ and ZZ^{\prime} coupling to SM fermions are

ψ¯ψZ=igcosθW[cosα(1ηsinθWtanα)][TL3(1ηtanα/sinθW)(1ηsinθWtanα)sin2θWQ],\displaystyle\begin{split}\bar{\psi}\psi Z&=\frac{ig}{\cos\theta_{W}}\left[\cos\alpha\left(1-\eta\sin\theta_{W}\tan\alpha\right)\right]\left[T_{L}^{3}-\frac{\left(1-\eta\tan\alpha/\sin\theta_{W}\right)}{\left(1-\eta\sin\theta_{W}\tan\alpha\right)}\sin^{2}\theta_{W}Q\right]\end{split}, (6)
ψ¯ψZ=igcosθW[cosα(tanα+ηsinθW)][TL3(tanα+η/sinθW)(tanα+ηsinθW)sin2θWQ],\displaystyle\begin{split}\bar{\psi}\psi Z^{\prime}&=\frac{-ig}{\cos\theta_{W}}\left[\cos\alpha\left(\tan\alpha+\eta\sin\theta_{W}\right)\right]\left[T_{L}^{3}-\frac{\left(\tan\alpha+\eta/\sin\theta_{W}\right)}{\left(\tan\alpha+\eta\sin\theta_{W}\right)}\sin^{2}\theta_{W}Q\right]\end{split}, (7)

and ZZHZ^{\prime}ZH interaction can be written as

ZZH=2imZ02v(cosα+ηsinθWsinα)(sinα+ηsinθWcosα).\displaystyle\begin{split}Z^{\prime}ZH&=2i\frac{m_{Z_{0}}^{2}}{v}\left(-\cos\alpha+\eta\sin\theta_{W}\sin\alpha\right)\left(\sin\alpha+\eta\sin\theta_{W}\cos\alpha\right).\end{split} (8)

The above is a very common model including ZZ^{\prime} boson. There are also such kinds of models which differ from the coupling strength, e.g., ZSSMZ^{\prime}_{SSM}, ZψZ^{\prime}_{\psi}, etc., which have been studied extensively at high energy colliders.

The processes of ppZe+epp\to Z^{\prime}\to e^{+}e^{-} and ppZμ+μpp\to Z^{\prime}\to\mu^{+}\mu^{-} are studied by the D0 Abazov et al. (2011) and CDF collaborations Aaltonen et al. (2009b), respectively, and lower limit on the mass of the Sequential Standard Model (SSM) ZZ^{\prime} boson of 1023 GeV is given by D0. The CDF excludes the mass region of 100 GeV <mZ<<m_{Z^{\prime}}< 982 GeV for a ZηZ^{\prime}_{\eta} boson in the E6 model.

For the SSM ZZ^{\prime} bosons decaying to a pair of τ\tau-leptons with mZm_{Z^{\prime}} <\textless 2.42 TeV is excluded at 95%\% confidence level by the ATLAS experiment, while mZm_{Z^{\prime}} <\textless 2.25 TeV is excluded for the non-universal G(221)G(221) model that exhibits enhanced couplings to third-generation fermions Aaboud et al. (2018b). And searches are performed for high-mass resonances in the dijet invariant mass spectrum. ZZ^{\prime} gauge bosons are excluded in the SSM with Zbb¯Z^{\prime}\to b\bar{b} for masses up to 2.0 TeV, and excluded in the leptophobic model with SM-value couplings to quarks for masses up to 2.1 TeV Aaboud et al. (2018c).

It shows that the results imply a lower limit of 4.5 (5.1) TeV on mZm_{Z^{\prime}} for the E6-motivated ZψZ^{\prime}_{\psi} (ZSSMZ^{\prime}_{SSM}) boson in the dilepton channel Aad et al. (2019). Upper limits are set on the production cross section times branching fraction for the ZZ^{\prime} boson in the top color-assisted-technicolor model, resulting in the exclusion of ZZ^{\prime} masses up to 3.9 TeV and 4.7 TeV for decay widths of 1%\% and 3%\% , respectively Aad et al. (2020). The heavy ZZ^{\prime} gauge bosons decay into eμe\mu final states in proton-proton collisions are excluded for masses up to 4.4 TeV by the CMS experiment Sirunyan et al. (2018). By analyzing data of proton-proton collision collected by the CMS experiment from 2016 to 2018, the limit of ZZ^{\prime} mass is obtained for the combination of the dielectron and dimuon channels. The limits are 5.15 TeV for the ZSSMZ^{\prime}_{SSM} and 4.56 TeV for the ZψZ^{\prime}_{\psi}~{}Sirunyan et al. (2021b).

The studies on the ZZ^{\prime} boson also conducted at the lepton colliders especially in the small mass regions. The experiments of ALEPH and OPAL at the LEP limited the mass of the ZZ^{\prime} boson with the process of e+effe^{+}e^{-}\to ff where ff is a τ\tau lepton or bb quark. The lower limits of ZZ^{\prime} from τ\tau-pair production are 365 GeV at ALEPH and 355 GeV at OPAL, and those from bb¯b\bar{b} production are 523 GeV at ALEPH and 375 GeV at OPAL Lynch et al. (2001). With the proposal of the future lepton colliders, the mass region and the coupling strength of the ZZ^{\prime} boson can be extended extensively, especially in the process of Higgs boson production.

III ZZHZ^{\prime}ZH interaction at the lepton colliders

III.1 e+eZ/ZZHe^{+}e^{-}\to Z^{\prime}/Z\to ZH

In this section, we consider the process of e+eZ/ZZHe^{+}e^{-}\to Z^{\prime}/Z\to ZH at the future lepton colliders. The cross sections are displayed in Fig.1 as a function of sinα\sin\alpha. The mass of ZZ^{\prime} is 300, 400, 500 and 600 GeV respectively. The cross section for mZ=500m_{Z^{\prime}}=500 GeV is the largest one due to the resonance enhanced effects with the center-of-mass-system (C.M.S.) energy s=500\sqrt{s}=500 GeV. We can notice that the cross section is 11.33 pb with mZ=500m_{Z^{\prime}}=500 GeV when sinα\sin\alpha is 0.01. The cross section of e+eZZHe^{+}e^{-}\to Z\to ZH is closed to 0.1 pb with a slight decrease when sinα\sin\alpha get large, that is because the interaction of ZZ and Higgs boson has a slight dependence on the mixing angle. The resonance threshold effects are obvious with the s=mZ\sqrt{s}=m_{Z^{\prime}} from the lines in the right panel comparing with the left ones. In Fig.2, we show the cross section distribution with various C.M.S. energies for mZ=500m_{Z^{\prime}}=500 GeV. With the increase of sinα\sin\alpha, the cross section of e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH gets large. If the C.M.S. energy is set around the value of mZm_{Z^{\prime}}, the cross section of e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH will be three or four orders larger than that without resonance effects.

Refer to caption
(a)
Refer to caption
(b)
Figure 1: The cross section of e+eZZHe^{+}e^{-}\to Z\to ZH (dashed) and e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH (solid) versus sinα\sin\alpha with s=500\sqrt{s}=500 GeV for the left panel. The right panel is the same plot as the left one with s=mZ\sqrt{s}=m_{Z^{\prime}}.
Refer to caption
Figure 2: The cross section of processes e+eZ/ZZHe^{+}e^{-}\to Z^{\prime}/Z\to ZH with mZ=500m_{Z^{\prime}}=500 GeV.

III.2 Angular distribution of the final leptons

With the cascaded decay of Hbb¯H\to b\bar{b} and Zl+lZ\to l^{+}l^{-}, we choose the final state of bb¯l+lb\bar{b}l^{+}l^{-} as the final signature at the collider. Following the discussion in the reference of Li et al. (2013), we adopt the angular distribution of the final leptons to investigate the ZZHZ^{\prime}ZH interaction. The angle can be expressed from the following formula,

cosθ=𝐩l𝐩e|𝐩l||𝐩e|,\displaystyle\begin{split}\cos\theta&=\frac{\mathbf{p}^{*}_{l^{-}}\cdot\mathbf{p}_{e^{-}}}{\lvert\mathbf{p}^{*}_{l^{-}}\rvert\cdot\lvert\mathbf{p}_{e^{-}}\rvert}\ ,\end{split} (9)

where 𝐩l\mathbf{p}^{*}_{l^{-}} is the three-momentum of the negative charged lepton in the ZZ boson rest frame and 𝐩e\mathbf{p}_{e^{-}} is the three-momentum of the electron in the e+ee^{+}e^{-} rest frame.

Refer to caption
(a) s\sqrt{s} = 500 GeV
Refer to caption
(b) s\sqrt{s} = 1000 GeV
Figure 3: The angular distribution for the charge lepton ll^{-} with η=0.1\eta=0.1. The C.M.S. energy is 500 GeV (a) and 1000 GeV (b). The solid lines are the distributions for process e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} and the dashed lines are for e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with mZm_{Z^{\prime}} taken as 200 GeV, 500 GeV and 1000 GeV respectively.

Fig.3 shows the angular distribution 1/σdσ/dcosθ1/\sigma d\sigma/d\cos\theta for the charged lepton ll^{-} in the process of e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with η=0.1\eta=0.1. The distributions with pure ZZ^{\prime} contributions are well separated from those with both ZZ^{\prime} and ZZ-boson mediators effects in Fig.3 (a) with s=500\sqrt{s}=500 GeV. The angular distributions are not very sensitive to the mass of ZZ^{\prime} bosons. Comparing the distributions with different C.M.S. energies from Fig.3(a) and Fig.3(b), the discrepancy is reduced with the increase of the collision energy. A forward-backward asymmetry can be defined as

AFB=σ(cosθ0)σ(cosθ<0)σ(cosθ0)+σ(cosθ<0).\displaystyle\begin{split}A_{FB}&=\frac{\sigma(\cos\theta\geq 0)-\sigma(\cos\theta<0)}{\sigma(\cos\theta\geq 0)+\sigma(\cos\theta<0)}\ .\end{split} (10)

Corresponding to the studies in Fig.3, the asymmetries are listed in Table 1. The forward-backward asymmetry is 0.0726 with s=mZ=500\sqrt{s}=m_{Z^{\prime}}=500 GeV for the pure ZZ^{\prime} contribution, while it changes to 0.0136-0.0136 after considering the ZZ-boson contributions.

s=500\sqrt{s}=500 GeV s=\sqrt{s}= 1000 GeV
mZm_{Z^{\prime}} 200 GeV 500 GeV 1000 GeV 200 GeV 500 GeV 1000 GeV
ZZ^{\prime} 8.51×1028.51\times 10^{-2} 7.26×1027.26\times 10^{-2} 7.14×1027.14\times 10^{-2} 4.94×1024.94\times 10^{-2} 4.02×1024.02\times 10^{-2} 3.83×1023.83\times 10^{-2}
Z/ZZ/Z^{\prime} 2.09×102-2.09\times 10^{-2} 1.36×102-1.36\times 10^{-2} 2.47×102-2.47\times 10^{-2} 1.05×102-1.05\times 10^{-2} 6.69×103-6.69\times 10^{-3} 4.98×103-4.98\times 10^{-3}
Table 1: The forward-backward asymmetry for process of e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} and e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with η=0.1\eta=0.1.
Refer to caption
Figure 4: The angular distribution for the charge lepton ll^{-} with sinα=0.01\sin\alpha=0.01. The solid lines are the distributions for process e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} or e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with mZm_{Z^{\prime}} taken as 200 GeV, 500 GeV and 1000 GeV respectively and the dashed lines are the SM process e+eZZHl+lbb¯e^{+}e^{-}\to Z\to ZH\to l^{+}l^{-}b\bar{b}.

The angular distributions of the charge lepton ll^{-} are showed in Fig.4 with sinα=0.01\sin\alpha=0.01. The distributions with cosθ\cos\theta <\textless 0 are lower than those with cosθ0\cos\theta\geq 0 for e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} in Fig.4 (a) and (b). And the distributions are separated obviously with various mZm_{Z^{\prime}} comparing with Fig.4 (a) and Fig.4 (c), where the contribution from ZZ-boson and ZZ^{\prime}-ZZ interference are included in Fig.4 (c). With increase of the C.M.S. energy as Fig.4 (d), the discrepancies are lessened but the asymmetries can be found with the resonance effects when mZ=s=1000m_{Z^{\prime}}=\sqrt{s}=1000 GeV for e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b}. The corresponding forward-backward asymmetries are listed in Table 2.

s=500\sqrt{s}=500 GeV s=\sqrt{s}= 1000 GeV
mZm_{Z^{\prime}} 200 GeV 500 GeV 1000 GeV 200 GeV 500 GeV 1000 GeV
ZZ^{\prime} 8.24×1028.24\times 10^{-2} 7.29×1027.29\times 10^{-2} 9.41×1029.41\times 10^{-2} 4.93×1024.93\times 10^{-2} 4.22×1024.22\times 10^{-2} 4.82×1024.82\times 10^{-2}
Z/ZZ/Z^{\prime} 2.17×102-2.17\times 10^{-2} 7.77×1027.77\times 10^{-2} 8.72×102-8.72\times 10^{-2} 1.20×102-1.20\times 10^{-2} 3.10×1023.10\times 10^{-2} 5.17×1025.17\times 10^{-2}
Table 2: The forward-backward asymmetry for process of e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} and e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with sinα=0.01\sin\alpha=0.01.

In Fig.5 we show the angular distributions of e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} and e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with different ZZ^{\prime}-ZZ mixing angles. With the increase of the mixing angle, the asymmetry becomes large with s=500\sqrt{s}=500 GeV. The asymmetry for e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH is close to the SM process of e+eZZHe^{+}e^{-}\to Z\to ZH with the small mixing angle displayed in Fig.5 (a), and the same performance are showed within ZZ-boson effects from Fig.5 (c). The asymmetry of the process e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with sinα=0.001\sin\alpha=0.001 is hardly distinguished from the asymmetry of pure ZZ-boson contribution. With the increase of the collision energy, the distributions show the same tendency in Fig.5 (b) and (d) except that the discrepancies become small comparing with Fig.5 (a) and (b). The detailed values are listed in Table.3 with different collision energy and sinα\sin\alpha. The asymmetry is 0.0722 (0.213) with sinα=0.001\sin\alpha=0.001 (sinα=0.05\sin\alpha=0.05) for e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} process with s=500\sqrt{s}=500 GeV. Both including the ZZ and ZZ^{\prime} effects, the asymmetry is 0.0223-0.0223 (0.210) with sinα=0.001\sin\alpha=0.001 (sinα=0.05\sin\alpha=0.05) for e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} process with s=500\sqrt{s}=500 GeV.

Refer to caption
Figure 5: The angular distribution for the charge lepton ll^{-} with mZ=500m_{Z^{\prime}}=500 GeV. The solid lines are the distributions for process e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} or e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with sinα\sin\alpha are taken as 0.001, 0.01, 0.02 and 0.05 respectively and the dashed lines are for SM process e+eZZHl+lbb¯e^{+}e^{-}\to Z\to ZH\to l^{+}l^{-}b\bar{b}.
s=500\sqrt{s}=500 GeV
sinα\sin\alpha 0.0010.001 0.010.01 0.020.02 0.050.05
ZZ^{\prime} 7.22×1027.22\times 10^{-2} 7.29×1027.29\times 10^{-2} 9.30×1029.30\times 10^{-2} 2.13×1012.13\times 10^{-1}
Z/ZZ/Z^{\prime} 2.23×102-2.23\times 10^{-2} 7.77×1027.77\times 10^{-2} 9.21×1029.21\times 10^{-2} 2.10×1012.10\times 10^{-1}
s=1000\sqrt{s}=1000 GeV
sinα\sin\alpha 0.0010.001 0.010.01 0.020.02 0.050.05
ZZ^{\prime} 4.18×1024.18\times 10^{-2} 4.22×1024.22\times 10^{-2} 4.94×1024.94\times 10^{-2} 1.16×1011.16\times 10^{-1}
Z/ZZ/Z^{\prime} 7.43×103-7.43\times 10^{-3} 3.10×1023.10\times 10^{-2} 8.29×1028.29\times 10^{-2} 1.39×1011.39\times 10^{-1}
Table 3: The forward-backward asymmetry for process of e+eZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}\to ZH\to l^{+}l^{-}b\bar{b} and e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with mZm_{Z^{\prime}} is set at 500 GeV.

III.3 Signals with beam polarization

The lepton colliders have the advantage at the polarization of electron/positron beams and somehow it can affect the measurement on the final particles’ distribution. We consider the production of e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH with the beam polarization. The cross sections for the studied process are displayed in Fig.6 with various polarizations of positron and a fixed value of electron. Pe±P_{e^{\pm}} denotes the longitudinal polarization of e±e^{\pm}. Pe+=100P_{e^{+}}=100 corresponds to purely right-handed e+e^{+}. The cross sections are decreased with the positron’s polarization changed from 100-100 to 100 when the electron is right-handed, while the inverse trends are showed when electron is left-handed. There is an interesting point with Pe+62P_{e^{+}}\sim 62 that all the lines are crossing together. This is due to the dependence on the polarization being cancelled at this point. Besides, the cross section gets small when the positron and the electron have the same sign polarizations.

Refer to caption
Figure 6: The cross section of e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH with polarized electron and positron beam.

The angular distribution is displayed in Fig.7 for process e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with various beam polarizations. The parameters are set as mZ=s=500m_{Z^{\prime}}=\sqrt{s}=500 GeV and sinα=0.01\sin\alpha=0.01. Comparing with the unpolarized condition, the distributions change obviously especially with the right-handed positron and left-handed electron collisions. Supposing the initial state with right-handed polarized positron and unpolarized electron, the distinctions are significantly in the distributions from Fig.7. The forward-backward asymmetries have been listed in Table 4. The asymmetry can reach 0.124-0.124 with one hundred percents polarization of right-handed positron and left-handed electron.

Refer to caption
Refer to caption
Figure 7: The angular distribution for process e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with mZ=s=500m_{Z^{\prime}}=\sqrt{s}=500 GeV and sinα=0.01\sin\alpha=0.01. The colored lines correspond to various polarization values (Pe+P_{e^{+}}, PeP_{e^{-}}).
(Pe+P_{e^{+}}, PeP_{e^{-}}) AFBA_{FB} (Pe+P_{e^{+}}, PeP_{e^{-}}) AFBA_{FB}
(100,100)(100,-100) 1.24×101-1.24\times 10^{-1} (100,0)(100,0) 1.23×101-1.23\times 10^{-1}
(80,80)(80,-80) 1.10×101-1.10\times 10^{-1} (80,0)(80,0) 4.51×102-4.51\times 10^{-2}
(60,60)(60,-60) 6.90×102-6.90\times 10^{-2} (60,0)(60,0) 2.70×1032.70\times 10^{-3}
(100,100)(-100,100) 1.27×1011.27\times 10^{-1} (100,0)(-100,0) 1.24×1011.24\times 10^{-1}
(80,80)(-80,80) 1.22×1011.22\times 10^{-1} (80,0)(-80,0) 1.18×1011.18\times 10^{-1}
(60,60)(-60,60) 1.19×1011.19\times 10^{-1} (60,0)(-60,0) 1.10×1011.10\times 10^{-1}
Table 4: The forward-backward asymmetry for process of e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b} with mZ=s=500m_{Z^{\prime}}=\sqrt{s}=500 GeV and sinα=0.01\sin\alpha=0.01.

IV Summary and Discussion

The extensions of the standard model have been studied extensively at the frontier of energy and luminosity of high energy collision experiments. ZZ^{\prime} boson as a new gauge boson has been proposed in many new physics models. As a proton-proton collider, the LHC has reported the searching results of ZZ^{\prime} with the mass of a few TeV. The interactions for ZZ^{\prime} coupling to fermions have been investigated in detail. The next generation of high energy colliders possibly focuses on the Higgs physics, i.e., Higgs-factory, which provides an opportunity to study the interaction of ZZ^{\prime} coupling to Higgs boson.

In this paper we investigated the process of e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b}. The interactions and couplings are followed up the models proposed by J.D. Wells et al.. The ZZ^{\prime} couplings to the standard models are related to the ZZ^{\prime}-ZZ mixing. We investigate the e+eZZHe^{+}e^{-}\to Z^{\prime}\to ZH production cross section. The cross section will be at the same order as the standard model process e+eZZHe^{+}e^{-}\to Z\to ZH with the mixing angle sinα102\sin\alpha\sim 10^{-2}. The angular distributions of the leptons decaying from the ZZ-boson rely on the mixing angle and ZZ^{\prime} mass, we have investigated the distributions with the parameters variation of 0.001<sinα<0.10.001<\sin\alpha<0.1, 200GeV<mZ<1000200~{}\text{GeV}<m_{Z^{\prime}}<1000 GeV and s=500,1000\sqrt{s}=500,1000 GeV. The forward-backward asymmetry can reach 0.0729 for sinα=0.01\sin\alpha=0.01 and mZ=s=500m_{Z^{\prime}}=\sqrt{s}=500 GeV. The beam polarization effects have been investigated for the signal process e+eZ/ZZHl+lbb¯e^{+}e^{-}\to Z^{\prime}/Z\to ZH\to l^{+}l^{-}b\bar{b}. The final particles distributions change obviously with some special polarization comparing to the unpolarized condition. As the raising of the precision measurement on the Higgs boson, these studies will promote the understanding of the interactions between Higgs particle and the new physics ones.

Ackonwledgement

This work was supported by the National Natural Science Foundation of China (NNSFC) under grant Nos. 11635009 and 11805081, Natural Science Foundation of Shandong Province under grant No. ZR2019QA021, and the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, No. NLK2021-07.

References

  • Aad et al. (2012) G. Aad et al. (ATLAS), Phys. Lett. B 716, 1 (2012), eprint 1207.7214.
  • Chatrchyan et al. (2012) S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30 (2012), eprint 1207.7235.
  • Dong et al. (2018) M. Dong et al. (CEPC Study Group) (2018), eprint 1811.10545.
  • Abada et al. (2019a) A. Abada et al. (FCC), Eur. Phys. J. C 79, 474 (2019a).
  • Abada et al. (2019b) A. Abada et al. (FCC), Eur. Phys. J. ST 228, 261 (2019b).
  • Bambade et al. (2019) P. Bambade et al. (2019), eprint 1903.01629.
  • Langacker (2009) P. Langacker, Rev. Mod. Phys. 81, 1199 (2009), eprint 0801.1345.
  • Aaltonen et al. (2009a) T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 031801 (2009a), eprint 0810.2059.
  • Abazov et al. (2011) V. M. Abazov et al. (D0), Phys. Lett. B 695, 88 (2011), eprint 1008.2023.
  • Feldman et al. (2006a) D. Feldman, Z. Liu, and P. Nath, Phys. Rev. Lett. 97, 021801 (2006a), eprint hep-ph/0603039.
  • Chiappetta et al. (1996) P. Chiappetta, J. Layssac, F. M. Renard, and C. Verzegnassi, Phys. Rev. D 54, 789 (1996), eprint hep-ph/9601306.
  • Barger et al. (1996) V. D. Barger, K.-m. Cheung, and P. Langacker, Phys. Lett. B 381, 226 (1996), eprint hep-ph/9604298.
  • Sirunyan et al. (2020) A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 124, 131802 (2020), eprint 1912.04776.
  • Aaboud et al. (2017) M. Aaboud et al. (ATLAS), JHEP 10, 182 (2017), eprint 1707.02424.
  • Rizzo (1986) T. G. Rizzo, Phys. Rev. D 34, 1438 (1986).
  • Nandi (1986) S. Nandi, Phys. Lett. B 181, 375 (1986).
  • Baer et al. (1987) H. Baer, D. Dicus, M. Drees, and X. Tata, Phys. Rev. D 36, 1363 (1987).
  • Barger and Whisnant (1987) V. D. Barger and K. Whisnant, Phys. Rev. D 36, 3429 (1987).
  • Gunion et al. (1988) J. F. Gunion, L. Roszkowski, and H. E. Haber, Phys. Rev. D 38, 105 (1988).
  • Hewett and Rizzo (1989) J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989).
  • Feldman et al. (2006b) D. Feldman, Z. Liu, and P. Nath, JHEP 11, 007 (2006b), eprint hep-ph/0606294.
  • Rizzo (2006) T. G. Rizzo, in Theoretical Advanced Study Institute in Elementary Particle Physics: Exploring New Frontiers Using Colliders and Neutrinos (2006), pp. 537–575, eprint hep-ph/0610104.
  • Lee (2009) H.-S. Lee, Phys. Lett. B 674, 87 (2009), eprint 0812.1854.
  • Barger et al. (2009) V. Barger, P. Langacker, and H.-S. Lee, Phys. Rev. Lett. 103, 251802 (2009), eprint 0909.2641.
  • Cao and Zhang (2016) Q.-H. Cao and D.-M. Zhang (2016), eprint 1611.09337.
  • Gulov et al. (2018) A. V. Gulov, A. A. Pankov, A. O. Pevzner, and V. V. Skalozub, Nonlin. Phenom. Complex Syst. 21, 21 (2018), eprint 1803.07532.
  • Funatsu et al. (2020) S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and N. Yamatsu, Phys. Rev. D 102, 015029 (2020), eprint 2006.02157.
  • Gao et al. (2010) T.-J. Gao, T.-F. Feng, X.-Q. Li, Z.-G. Si, and S.-M. Zhao, Sci. China Phys. Mech. Astron. 53, 1988 (2010).
  • Das et al. (2021) A. Das, P. S. B. Dev, Y. Hosotani, and S. Mandal (2021), eprint 2104.10902.
  • Li et al. (2013) H.-L. Li, Z.-G. Si, X.-Y. Yang, Z.-J. Yang, and Y.-J. Zheng, Phys. Rev. D 87, 115024 (2013), eprint 1305.1457.
  • Das and Okada (2020) A. Das and N. Okada (2020), eprint 2008.04023.
  • Aaboud et al. (2018a) M. Aaboud et al. (ATLAS), JHEP 03, 174 (2018a), [Erratum: JHEP 11, 051 (2018)], eprint 1712.06518.
  • Sirunyan et al. (2021a) A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 81, 688 (2021a), eprint 2102.08198.
  • Gutiérrez-Rodríguez and Hernández-Ruiz (2015) A. Gutiérrez-Rodríguez and M. A. Hernández-Ruiz, Adv. High Energy Phys. 2015, 593898 (2015), eprint 1506.07575.
  • Wells (2008) J. D. Wells, pp. 283–298 (2008), eprint 0803.1243.
  • Aaltonen et al. (2009b) T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 091805 (2009b), eprint 0811.0053.
  • Aaboud et al. (2018b) M. Aaboud et al. (ATLAS), JHEP 01, 055 (2018b), eprint 1709.07242.
  • Aaboud et al. (2018c) M. Aaboud et al. (ATLAS), Phys. Rev. D 98, 032016 (2018c), eprint 1805.09299.
  • Aad et al. (2019) G. Aad et al. (ATLAS), Phys. Lett. B 796, 68 (2019), eprint 1903.06248.
  • Aad et al. (2020) G. Aad et al. (ATLAS), JHEP 10, 061 (2020), eprint 2005.05138.
  • Sirunyan et al. (2018) A. M. Sirunyan et al. (CMS), JHEP 04, 073 (2018), eprint 1802.01122.
  • Sirunyan et al. (2021b) A. M. Sirunyan et al. (CMS), JHEP 07, 208 (2021b), eprint 2103.02708.
  • Lynch et al. (2001) K. R. Lynch, E. H. Simmons, M. Narain, and S. Mrenna, Phys. Rev. D 63, 035006 (2001), eprint hep-ph/0007286.