This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inverse problems for first-order hyperbolic equations with time-dependent coefficients

Giuseppe Floridia Università Mediterranea di Reggio Calabria, Department PAU Via dell’Università 25 89124 Reggio Calabria, Italy [email protected]  and  Hiroshi Takase Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan [email protected]
(Date: August 23, 2021.)
Abstract.

We prove global Lipschitz stability for inverse source and coefficient problems for first-order linear hyperbolic equations, the coefficients of which depend on both space and time. We use a global Carleman estimate, and a crucial point, introduced in this paper, is the choice of the length of integral curves of a vector field generated by the principal part of the hyperbolic operator to construct a weight function for the Carleman estimate. These integral curves correspond to the characteristic curves in some cases.

Key words and phrases:
Inverse problems, first-order hyperbolic equations, Carleman estimates, integral curves, characteristic curves
2020 Mathematics Subject Classification:
35R30, 35R25, 35L04, 35F16, 35Q49

1. Introduction

Let dd\in\mathbb{N}, Ωd\Omega\subset\mathbb{R}^{d} be a bounded domain with Lipschitz boundary Ω\partial\Omega, T>0T>0, and Q:=Ω×(0,T)Q:=\Omega\times(0,T). For a,bda,b\in\mathbb{R}^{d}, we denote by aba\cdot b the inner product on d\mathbb{R}^{d}. We define the first-order partial differential operator PP such that

Pu:=A0(x,t)tu+A(x,t)u,Pu:=A^{0}(x,t)\partial_{t}u+A(x,t)\cdot\nabla u,

where A0C1(Q¯)L(Ω×(0,))A^{0}\in C^{1}(\overline{Q})\cap L^{\infty}(\Omega\times(0,\infty)) is a positive function, and A=(A1,,Ad)C2(Q¯;d)A=(A^{1},\cdots,A^{d})\in C^{2}(\overline{Q};\mathbb{R}^{d}) is a vector-valued function on Q¯\overline{Q}. In this paper, we obtain global Lipschitz stability results for three inverse problems for equations with the principal part of type PP.

State of the art

The arguments of this paper are based on the Carleman estimates, which were introduced by Carleman in [8] to prove unique continuation properties for elliptic partial differential equations with not necessarily analytic coefficients, and the Bukhgeim–Klibanov method introduced in [4]. The methodology using the Carleman estimates is widely applicable to not only inverse problems and unique continuation (e.g., [2], [18], [19], [24], [25], [30], and [40]), but also control theory (e.g., [7], [9], [13], [14], [31], and [34]) for various partial differential equations.

Now, we describe some results concerned with the operator PP. For the radiative transport equation having the principal part of type

tu(x,v,t)+vu(x,v,t),(x,v,t)Ω×𝕊d1×(0,T),\partial_{t}u(x,v,t)+v\cdot\nabla u(x,v,t),\quad(x,v,t)\in\Omega\times\mathbb{S}^{d-1}\times(0,T),

where 𝕊d1:={vd|v|=1}\mathbb{S}^{d-1}:=\{v\in\mathbb{R}^{d}\mid|v|=1\} is a set of a velocity field, Klibanov and Pamyatnykh [26] and [27] proved the Carleman estimates and global uniqueness theorem for inverse coefficient problem of determining a zeroth-order coefficient. In [26] and [27], the weight function for the Carleman estimate was independent of the principal parts:

φ(x,t)=|xx0|2βt2,\varphi(x,t)=|x-x_{0}|^{2}-\beta t^{2},

where x0dx_{0}\in\mathbb{R}^{d} and β>0\beta>0 were fixed. For the same weight function used for transport equations with space-dependent first-order coefficients, see also Gaitan and Ouzzane [15]. Machida and Yamamoto [32] and [33] also proved global Lipschitz stability for inverse coefficient problems, where they took a linear function as the weight function for the Carleman estimate:

φ(x,t)=γxβt,\varphi(x,t)=\gamma\cdot x-\beta t,

where γd\gamma\in\mathbb{R}^{d} and β>0\beta>0 were fixed. Recently, Lai and Li [29] proved Lipschitz stability for inverse source and coefficient problems of determining a zeroth-order coefficient under the assumption that there existed a suitable weight function for the Carleman estimate.

For first-order hyperbolic operators of type PP with a variable principal part, Gölgeleyen and Yamamoto [16] proved Lipschitz stability and conditional Hölder stability for inverse source and inverse coefficient problems, where they assumed the existence of a suitable weight function φ=φ(x,t)\varphi=\varphi(x,t) for the Carleman estimate satisfying

min(x,t)Q¯Pφ(x,t)>0\min_{(x,t)\in\overline{Q}}P\varphi(x,t)>0

when A01A^{0}\equiv 1 and A=A(x)A=A(x). In the same time-independent case, Cannarsa, Floridia, Gölgeleyen, and Yamamoto [5] proved local Hölder stability for inverse coefficient problems of determining the principal part and a zeroth-order coefficient, where they took a function

φ(x,t)=A(x)xβt\varphi(x,t)=A(x)\cdot x-\beta t

as the weight function for the Carleman estimate, and determined the coefficients up to a local domain, depending on the weight function, from local boundary data. In the same time-independent case, we also mention that Gaitan and Ouzzane [15] proved global Lipschitz stability for inverse coefficient problem of determining a zeroth-order coefficient via the Carleman estimate.

In these results mentioned above, in general, one must impose some assumptions on the principal parts and weight functions to guarantee the Carleman estimates that is not needed in this paper. Moreover, we must note that these results were all for first-order equations with coefficients independent of time tt. However, equations with time-dependent principal parts of type PP often appear in mathematical physics, for example, the conservation law of mass in time-dependent velocity fields, and the mathematical analysis for such equations is needed (e.g., Taylor [39, Section 17.1] and Evans [11, Section 11.1]). In regard to first-order hyperbolic equations having time-dependent principal parts, although the theory about direct problems for the above equations is quite complete, there are some open questions for inverse problems due to the major difficulties in dealing with time-dependent coefficients. About inverse problems and time-dependent principal parts, we mention Cannarsa, Floridia, and Yamamoto [6] that proved an observability inequality for a non-degenerate case. Floridia and Takase [12] proved the observability inequality for a degenerate case, which was motivated by applications to inverse problems. In both papers, they dealt with the case A01A^{0}\equiv 1 and A=A(t)A=A(t). For more references regarding inverse problems and controllability for conservation laws with time-dependent coefficients, see [17], [22], [23], and [28]. Regarding inverse problems for nonlinear first-order equations, readers are referred to Esteve and Zuazua [10], which studies Hamilton–Jacobi equations (see also Porretta and Zuazua [34]).

For the second-order hyperbolic equations with time-dependent coefficients, the literature about inverse problems is more extensive. In this context, Jiang, Liu, and Yamamoto [20], and Yu, Liu, and Yamamoto [41] proved the local Hölder stability for inverse source and coefficient problems in the Euclidean space assuming the Carleman estimates existed. Takase [38] proved local Hölder stability for the wave equation and obtained some sufficient conditions for the Carleman estimate by using geometric analysis on Lorentzian manifolds.

Finally, we note that, on the well-posedness by the method of characteristics of first-order hyperbolic equations with principal parts of type PP, readers are referred to John [21, Chapter 1], Rauch [35, Chapter 1], Evans [11, Chapter 3], and Bressan [3]. In addition to that, for symmetric hyperbolic systems, readers are referred to Rauch [35, Chapter 2], Ringström [36, Chapter 7], and Taylor [39, Section 16.2].

Purpose of this paper

Although a large number of studies have been made on inverse problems for first-order equations, as already mentioned, what seems to be lacking is analysis for equations with time-dependent coefficients. In this paper we investigate equations with coefficients depending on both space and time. The important point we want to make is the decisive way to choose the weight function in the Carleman estimate for applications to inverse problems. Indeed, the weight function of our Carleman estimate (see Proposition 3.1 and Lemma 3.2) is linear in tt, which is similar to Machida–Yamamoto [32], Gölgeleyen–Yamamoto [16], and Cannarsa–Floridia–Yamamoto [6]. However, the novelty is that the spatial term of the weight function in our Carleman estimate is the length of integral curves of the vector-valued function A(,0)A(\cdot,0), which is different from the ones in all the above results ([6], [12], [15], [16], [26], [27], and [32]) and a new attempt. Owing to the choice, we need not assume any assumptions on AA to guarantee the Carleman estimates like in [16] and [5], but assume only the finiteness of the length of integral curves (see Definition 2.4 and (2.2)). We remark that these integral curves correspond to the characteristic curves in the case A01A^{0}\equiv 1 and A=A(x)A=A(x). In addition, we note that thanks to the above linearity with respect to tt, we do not need to extend the solution to (T,0)(-T,0), which enables us to apply the Carleman estimate to inverse problems for wider functional space of time-dependent coefficients A0A^{0} and AA.

Structure of this paper

The main results in this paper are global Lipschitz stability for the inverse source problem (Theorem 2.11), inverse coefficient problem to determine the zeroth-order coefficient (Theorem 2.12), and inverse coefficient problem to determine the time-independent principal part (Theorem 2.13). After describing some settings, we present them in section 2. In section 3, we establish the global Carleman estimate (Proposition 3.1), which is the main tool to prove the main results, under the assumption that a suitable weight function exists. After that, we prove the existence of such a weight function by taking the length of integral curves generated by the vector-valued function A(,0)A(\cdot,0) (Lemma 3.2). In addition, in section 3, we introduce energy estimates needed to prove the main results. In section 4, we show the proofs of the main results. In Appendix, we give the proofs of auxiliary and original results.

2. Preliminary and statements of main results

Before showing main results, we describe some definitions and settings needed to present them.

Definition 2.1.

For a vector-valued function XC2(Ω¯;d)X\in C^{2}(\overline{\Omega};\mathbb{R}^{d}) and xΩ¯x\in\overline{\Omega}, a C2C^{2} curve c:[η1,η2]Ω¯c:[-\eta_{1},\eta_{2}]\to\overline{\Omega} for some η10\eta_{1}\geq 0 and η20\eta_{2}\geq 0 with η1+η2>0\eta_{1}+\eta_{2}>0 is called an integral curve of XX through xx if it solves the following initial problem for ordinary differential equations

{c(σ):=dcdσ(σ)=X(c(σ)),σ[η1,η2],c(0)=x.\begin{cases}\displaystyle c^{\prime}(\sigma):=\frac{dc}{d\sigma}(\sigma)=X(c(\sigma)),\quad\sigma\in[-\eta_{1},\eta_{2}],\\ c(0)=x.\end{cases}
Remark 2.2.

If cxc_{x} denotes the integral curve of XX through xx, then cx(σ)c_{x}(\sigma) is C2C^{2} with respect to xΩ¯x\in\overline{\Omega}.

Definition 2.3.

Let a,ba,b\in\mathbb{R} with a<ba<b. An integral curve c:[a,b]Ω¯c:[a,b]\to\overline{\Omega} is called maximal if it cannot be extended in Ω¯\overline{\Omega} to a segment [aη1,b+η2][a-\eta_{1},b+\eta_{2}] for some η10\eta_{1}\geq 0 and η20\eta_{2}\geq 0 with η1+η2>0\eta_{1}+\eta_{2}>0.

Definition 2.4.

A vector-valued function XC2(Ω¯;d)X\in C^{2}(\overline{\Omega};\mathbb{R}^{d}) is called dissipative if the maximal integral curve cxc_{x} of XX through xx is defined on a finite segment [σ(x),σ+(x)][\sigma_{-}(x),\sigma_{+}(x)] and σC(Ω¯)H2(Ω)\sigma_{-}\in C(\overline{\Omega})\cap H^{2}(\Omega).

Remark 2.5.

If XC2(Ω¯;d)X\in C^{2}(\overline{\Omega};\mathbb{R}^{d}) is dissipative, then cx(σ(x))c_{x}(\sigma_{-}(x)), cx(σ+(x))Ωc_{x}(\sigma_{+}(x))\in\partial\Omega, where cxc_{x} is the maximal integral curve of XX through xx.

Refer to caption
Figure 1. cxc_{x} is the maximal integral curve of XX through xx.

The terminology dissipative for vector fields seems not to be widely-used. However, the authors use this terminology on the analogy of CDRM (compact dissipative Riemannian manifold) used in a setting of integral geometry problems for tensor fields. In this subject, CDRM is equivalent to the absence of a geodesic of infinite length in a compact Riemannian manifold with strictly convex boundary (e.g., [37, Chapter 4]).

We assume the followings on the vector-valued function AC2(Q¯;d)A\in C^{2}(\overline{Q};\mathbb{R}^{d}):

(2.1) ρ>0s.t.min(x,t)Q¯|A(x,t)|ρ;\exists\rho>0\ \text{s.t.}\ \min_{(x,t)\in\overline{Q}}|A(x,t)|\geq\rho\ ;
t[0,T)s.t.A(,t)is dissipative.\exists t_{*}\in[0,T)\ \text{s.t.}\ A(\cdot,t_{*})\ \text{is dissipative}.

Without loss of generality, we assume t=0t_{*}=0 in the above, i.e.,

(2.2) A(,0)is dissipativeA(\cdot,0)\ \text{is dissipative}

because it suffices to consider the change of variables t~:=tt\tilde{t}:=t-t_{*} and A~(,t~):=A(,t~+t)\tilde{A}(\cdot,\tilde{t}):=A(\cdot,\tilde{t}+t_{*}).

Remark 2.6.

In the case A01A^{0}\equiv 1 and A=A(x)A=A(x), (2.2) means that any maximal characteristic curves have finite length.

Example 2.7.

Let d=2d=2 and Br:={(x,y)2x2+y2<r2}B_{r}:=\{(x,y)\in\mathbb{R}^{2}\mid x^{2}+y^{2}<r^{2}\} for r>0r>0. Then, X(x,y):=(x1)X(x,y):=\begin{pmatrix}-x\\ -1\end{pmatrix} on Ω=Br{y>0}\Omega=B_{r}\cap\{y>0\} is dissipative because we see σ\sigma_{-} is smooth on Ω¯\overline{\Omega}. However, Y(x,y):=(yx)Y(x,y):=\begin{pmatrix}-y\\ x\end{pmatrix} on BrBr2¯B_{r}\setminus\overline{B_{\frac{r}{2}}} is not dissipative because we can not define σ\sigma_{-}.

Refer to caption
Figure 2. Pictures of XX (left) and YY (right).

Under the assumption (2.2), we can give the following notations. For a fixed xΩ¯x\in\overline{\Omega}, let cx:[σ(x),σ+(x)]Ω¯c_{x}:[\sigma_{-}(x),\sigma_{+}(x)]\to\overline{\Omega} be the maximal integral curve of A(,0)A(\cdot,0) through xx, i.e., cxc_{x} satisfies

{cx(σ)=A(cx(σ),0),σ[σ(x),σ+(x)],cx(0)=x.\begin{cases}c_{x}^{\prime}(\sigma)=A(c_{x}(\sigma),0),\quad\sigma\in[\sigma_{-}(x),\sigma_{+}(x)],\\ c_{x}(0)=x.\end{cases}

Since cxc_{x} is a rectifiable curve by (2.2), we can define the function φ0\varphi_{0} on Ω¯\overline{\Omega} as the length of the arc of the maximal integral curves defined on [σ(x),0][\sigma_{-}(x),0]:

(2.3) φ0(x):=σ(x)0|cx(σ)|𝑑σ,\varphi_{0}(x):=\int_{\sigma_{-}(x)}^{0}|c_{x}^{\prime}(\sigma)|d\sigma,

the integral of which is independent of a choice of parameters.

Lemma 2.8.

Let AC2(Q¯;d)A\in C^{2}(\overline{Q};\mathbb{R}^{d}) be a vector-valued function. Assume (2.1) and (2.2). Then, the function φ0\varphi_{0} defined by (2.3) is in the class C(Ω¯)H2(Ω)C(\overline{\Omega})\cap H^{2}(\Omega).

Proof.

It follows from Definition 2.4 and Remark 2.2.∎

To prove the global Lipschitz stability for inverse problems for the hyperbolic equations, the observation time should be given large enough for the solutions to reach the boundaries owing to the finite propagation speeds (see Bardos, Lebeau, and Rauch [1]). Then, we define the following quantities to describe this situation mathematically.

For the positive function A0C1(Ω¯)L(Ω×(0,))A^{0}\in C^{1}(\overline{\Omega})\cap L^{\infty}(\Omega\times(0,\infty)) and φ0\varphi_{0} defined by (2.3), we define the positive number

(2.4) T0:=(supxΩ,t>0A0(x,t))(maxxΩ¯φ0(x))ρ.T_{0}:=\frac{\displaystyle\Big{(}\sup_{x\in\Omega,t>0}A^{0}(x,t)\Big{)}\Big{(}\max_{x\in\overline{\Omega}}\varphi_{0}(x)\Big{)}}{\rho}.

Moreover, considering inverse problems for the hyperbolic equation with time-dependent principal part, we will assume

(2.5) C>0s.t.ξd,(x,t)Q¯,|tA(x,t)ξ|C|A(x,t)ξ|.\exists C>0\ \text{s.t.}\ \forall\xi\in\mathbb{R}^{d},\ \forall(x,t)\in\overline{Q},\quad|\partial_{t}A(x,t)\cdot\xi|\leq C|A(x,t)\cdot\xi|.

The condition (2.5) will be decisive in the the energy estimate given in Lemma 3.3 and in the proofs of Theorem 2.11 and Theorem 2.12.

Remark 2.9.

When d=1d=1, (2.1) implies (2.5).

If a non-vanishing vector valued function AA satisfies (2.5), then AA has the following structure.

Proposition 2.10.

If a vector-valued function AC2(Q¯;d)A\in C^{2}(\overline{Q};\mathbb{R}^{d}) satisfies (2.1) and (2.5), then AA can be represented by

A(x,t)=A(x,0)e0tϕ(x,s)𝑑s,(x,t)Q¯A(x,t)=A(x,0)e^{\int_{0}^{t}\phi(x,s)ds},\quad(x,t)\in\overline{Q}

for some function ϕC1(Q¯)\phi\in C^{1}(\overline{Q}).

The proof of Proposition 2.10 is presented in Appendix. Proposition 2.10 is decisive in the realization of a weight function for the Carleman estimate, which will be given in Lemma 3.2.

Now, we define some notations. Set

Σ+:={(x,t)Ω×(0,T)A(x,t)ν(x)>0},\Sigma_{+}:=\{(x,t)\in\partial\Omega\times(0,T)\mid A(x,t)\cdot\nu(x)>0\},

where we recall ν\nu is the outer unit normal to Ω\partial\Omega. Moreover, we set Σ:=(Σ+)c=(Ω×(0,T))Σ+\Sigma_{-}:=(\Sigma_{+})^{c}=(\partial\Omega\times(0,T))\setminus\Sigma_{+}.

We use the notations H0(Ω):=L2(Ω)H^{0}(\Omega):=L^{2}(\Omega), H0(0,T;H1(Ω)):=L2(0,T;H1(Ω))H^{0}(0,T;H^{1}(\Omega)):=L^{2}(0,T;H^{1}(\Omega)), and t0w=w\partial_{t}^{0}w=w for a function ww throughout this paper to avoid notational complexity.

2.1. Inverse source problems

We consider the initial boundary value problem

(2.6) {Pu+p(x,t)u=R(x,t)f(x)inQ,u=0onΣ,u(,0)=0onΩ,\displaystyle\begin{cases}Pu+p(x,t)u=R(x,t)f(x)\quad&\text{in}\ Q,\\ u=0\quad&\text{on}\ \Sigma_{-},\\ u(\cdot,0)=0\quad&\text{on}\ \Omega,\end{cases}

where pW1,(0,T;L(Ω))p\in W^{1,\infty}(0,T;L^{\infty}(\Omega)), RH1(0,T;L(Ω))R\in H^{1}(0,T;L^{\infty}(\Omega)), and fL2(Ω)f\in L^{2}(\Omega). Given A0A^{0}, AA, pp, and RR, we consider the inverse source problem to determine the source term ff in Ω\Omega by observation data uu on Σ+\Sigma_{+}.

Theorem 2.11.

Let A0C1(Q¯)L(Ω×(0,))A^{0}\in C^{1}(\overline{Q})\cap L^{\infty}(\Omega\times(0,\infty)) satisfying min(x,t)Q¯A0(x,t)>0\displaystyle\min_{(x,t)\in\overline{Q}}A^{0}(x,t)>0, and AC2(Q¯;d)A\in C^{2}(\overline{Q};\mathbb{R}^{d}) satisfying (2.1), (2.2), and (2.5). Let pW1,(0,T;L(Ω))p\in W^{1,\infty}(0,T;L^{\infty}(\Omega)), RH1(0,T;L(Ω))R\in H^{1}(0,T;L^{\infty}(\Omega)), and fL2(Ω)f\in L^{2}(\Omega) satisfying

(2.7) m0>0s.t.|R(x,0)|m0a.e.xΩ.\exists m_{0}>0\ \text{s.t.}\ |R(x,0)|\geq m_{0}\quad a.e.\ x\in\Omega.

Assume

(2.8) T0<T,T_{0}<T,

where T0T_{0} is defined by (2.4), and there exists a function uu satisfying (2.6) in the class

uk=12Hk(0,T;H2k(Ω)).u\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega)).

Then, there exists a constant C>0C>0 independent of ff and uu such that

fL2(Ω)Ck=01tkuL2(Σ+).\|f\|_{L^{2}(\Omega)}\leq C\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}.

2.2. Inverse coefficient problems

We consider the initial boundary value problem

(2.9) {Pu+p(x,t)u=0inQ,u=gonΣ,u(,0)=αonΩ,\displaystyle\begin{cases}Pu+p(x,t)u=0\quad&\text{in}\ Q,\\ u=g\quad&\text{on}\ \Sigma_{-},\\ u(\cdot,0)=\alpha\quad&\text{on}\ \Omega,\end{cases}

where pW1,(0,T;L(Ω))p\in W^{1,\infty}(0,T;L^{\infty}(\Omega)), gk=12Hk(0,T;H32k(Ω))\displaystyle g\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{\frac{3}{2}-k}(\partial\Omega)), and αH1(Ω)\alpha\in H^{1}(\Omega) satisfying the compatibility conditions. In the following two subsections, we present two nonlinear inverse coefficient problems.

2.2.1. Zeroth-order coefficient

Given A0A^{0}, AA, gg, and α\alpha, we consider the inverse coefficient problem to determine the time-independent zeroth-order coefficient p=p(x)p=p(x) in Ω\Omega by observation data on Σ+\Sigma_{+}.

For a fixed M>0M>0, define the conditional set

D(M):={pL(Ω)pL(Ω)M}.D(M):=\{p\in L^{\infty}(\Omega)\mid\|p\|_{L^{\infty}(\Omega)}\leq M\}.
Theorem 2.12.

Let M>0M>0 be fixed, A0C1(Q¯)L(Ω×(0,))A^{0}\in C^{1}(\overline{Q})\cap L^{\infty}(\Omega\times(0,\infty))satisfying min(x,t)Q¯A0(x,t)>0\displaystyle\min_{(x,t)\in\overline{Q}}A^{0}(x,t)>0, and AC2(Q¯;d)A\in C^{2}(\overline{Q};\mathbb{R}^{d}) satisfying (2.1), (2.2), and (2.5). Let piD(M)p_{i}\in D(M) for i=1,2i=1,2, gk=12Hk(0,T;H32k(Ω))\displaystyle g\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{\frac{3}{2}-k}(\partial\Omega)), and αH1(Ω)\alpha\in H^{1}(\Omega) satisfying

(2.10) m0>0s.t.|α(x)|m0a.e.xΩ.\exists m_{0}>0\ \text{s.t.}\ |\alpha(x)|\geq m_{0}\quad a.e.\ x\in\Omega.

Assume T0<TT_{0}<T, where T0T_{0} is defined by (2.4), and for i=1,2i=1,2 there exist functions uiu_{i} satisfying (2.9) with p=pip=p_{i} in the class

uik=12Hk(0,T;H2k(Ω))u_{i}\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega))

such that

u2H1(0,T;L(Ω))andu2H1(0,T;L(Ω))M.u_{2}\in H^{1}(0,T;L^{\infty}(\Omega))\ \text{and}\ \|u_{2}\|_{H^{1}(0,T;L^{\infty}(\Omega))}\leq M.

Then, there exists a constant C>0C>0 independent of piD(M)p_{i}\in D(M) for i=1,2i=1,2 such that

p1p2L2(Ω)Ck=01tku1tku2L2(Σ+).\|p_{1}-p_{2}\|_{L^{2}(\Omega)}\leq C\sum_{k=0}^{1}\|\partial_{t}^{k}u_{1}-\partial_{t}^{k}u_{2}\|_{L^{2}(\Sigma_{+})}.

2.2.2. First-order coefficients

We consider (2.9) with the time-independent principal coefficients A0A^{0} and AA, more precisely, with A0C1(Ω¯)A^{0}\in C^{1}(\overline{\Omega}) and AC2(Ω¯;d)A\in C^{2}(\overline{\Omega};\mathbb{R}^{d}). Given pp, finitely many initial values α\alpha, and boundary values gg, we consider the inverse coefficient problem to determine the time-independent coefficients A0A^{0} and AA simultaneously by finitely many observation data on Σ+\Sigma_{+}.

Let ρ>0\rho>0 be fixed. We will assume that the unknown coefficients A0A^{0} and AA satisfy the following condition:

(2.11) (maxxΩ¯A0(x))(maxxΩ¯φ0(x))ρ<T,\frac{\displaystyle\Big{(}\max_{x\in\overline{\Omega}}A^{0}(x)\Big{)}\Big{(}\max_{x\in\overline{\Omega}}\varphi_{0}(x)\Big{)}}{\rho}<T,

where φ0\varphi_{0} is defined by (2.3).

For AC2(Ω¯;d)A\in C^{2}(\overline{\Omega};\mathbb{R}^{d}), set

Γ+,A:={xΩA(x)ν(x)>0}\Gamma_{+,A}:=\{x\in\partial\Omega\mid A(x)\cdot\nu(x)>0\}

and Γ,A:=ΩΓ+,A\Gamma_{-,A}:=\partial\Omega\setminus\Gamma_{+,A}.

For fixed M>0M>0, ρ>0\rho>0, and a subset ΓΩ\Gamma\subset\partial\Omega, define the conditional set

D(M,ρ,Γ)\displaystyle D(M,\rho,\Gamma)
:={(A0,A)C1(Ω¯)×C2(Ω¯;d)|{A0C1(Ω¯)+AC2(Ω¯;d)M,minxΩ¯A0(x)ρ,minxΩ¯|A(x)|ρ,(2.2),(2.11),andΓ+,AΓhold.}.\displaystyle:=\left\{(A^{0},A)\in C^{1}(\overline{\Omega})\times C^{2}(\overline{\Omega};\mathbb{R}^{d})\middle|\begin{cases}\|A^{0}\|_{C^{1}(\overline{\Omega})}+\|A\|_{C^{2}(\overline{\Omega};\mathbb{R}^{d})}\leq M,\\ \displaystyle\min_{x\in\overline{\Omega}}A^{0}(x)\geq\rho,\ \min_{x\in\overline{\Omega}}|A(x)|\geq\rho,\\ \eqref{finiteness},\ \eqref{time2},\ \text{and}\ \Gamma_{+,A}\subset\Gamma\ \text{hold}.\end{cases}\right\}.
Theorem 2.13.

Let M>0M>0, ρ>0\rho>0, ΓΩ\Gamma\subset\partial\Omega be a subset, and (Ai0,Ai)D(M,ρ,Γ)(A^{0}_{i},A_{i})\in D(M,\rho,\Gamma) for i=1,2i=1,2. Let pW1,(0,T;L(Ω))p\in W^{1,\infty}(0,T;L^{\infty}(\Omega)), gmk=12Hk(0,T;H32k(Ω))\displaystyle g_{m}\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{\frac{3}{2}-k}(\partial\Omega)), and αmW1,(Ω)\alpha_{m}\in W^{1,\infty}(\Omega) for m=1,,d+1m=1,\ldots,d+1 satisfying

(2.12) m0>0s.t.|p(x,0)||det(α1(x)αd+1(x)α1(x)αd+1(x))|m0a.e.xΩ.\exists m_{0}>0\ \text{s.t.}\ |p(x,0)|\left|\det\begin{pmatrix}\alpha_{1}(x)&\cdots&\alpha_{d+1}(x)\\ \nabla\alpha_{1}(x)&\cdots&\nabla\alpha_{d+1}(x)\end{pmatrix}\right|\geq m_{0}\quad a.e.\ x\in\Omega.

Assume that for i=1,2i=1,2 and m=1,,d+1m=1,\ldots,d+1 there exist functions ui,mu_{i,m} satisfying (2.9) with P=Pi:=Ai0t+AiP=P_{i}:=A^{0}_{i}\partial_{t}+A_{i}\cdot\nabla, g=gmg=g_{m}, and α=αm\alpha=\alpha_{m} in the class

ui,mk=12Hk(0,T;W2k,(Ω))u_{i,m}\in\bigcap_{k=1}^{2}H^{k}(0,T;W^{2-k,\infty}(\Omega))

such that for all m=1,,d+1m=1,\ldots,d+1,

k=12u2,mHk(0,T;W2k,(Ω))M.\sum_{k=1}^{2}\|u_{2,m}\|_{H^{k}(0,T;W^{2-k,\infty}(\Omega))}\leq M.

Then, there exists a constant C>0C>0 independent of (Ai0,Ai)D(M,ρ,Γ)(A_{i}^{0},A_{i})\in D(M,\rho,\Gamma) for i=1,2i=1,2 such that

μ=0dA1μA2μL2(Ω)Cm=1d+1u1,mu2,mH1(0,T;L2(Γ)).\sum_{\mu=0}^{d}\|A_{1}^{\mu}-A_{2}^{\mu}\|_{L^{2}(\Omega)}\leq C\sum_{m=1}^{d+1}\|u_{1,m}-u_{2,m}\|_{H^{1}(0,T;L^{2}(\Gamma))}.

3. Carleman estimate and energy estimates

In this section, we introduce the Carleman estimate and energy estimates needed to prove the main results.

3.1. Carleman estimate

In this subsection, we prove the global Carleman estimate for the operator P+p(x,t)P+p(x,t)\cdot, where pL(Q)p\in L^{\infty}(Q). In section 3.1.1, we present the general statement for the Carleman estimate assuming the existence of a suitable weight function φ\varphi satisfying some sufficient conditions. In section 3.1.2, we construct such a weight function satisfying the sufficient conditions using φ0\varphi_{0} defined by (2.3).

3.1.1. General statements

To obtain the local in time Carleman estimate, we first assume the existence of a function φH2(Q)\varphi\in H^{2}(Q) satisfying

(3.1) δ>0s.t.Pφ(x,t)δa.e.(x,t)Q.\exists\delta>0\ \text{s.t.}\ P\varphi(x,t)\geq\delta\quad\text{a.e.}\ (x,t)\in Q.
Proposition 3.1.

Let A0C1(Q¯)A^{0}\in C^{1}(\overline{Q}) satisfying min(x,t)Q¯A0(x,t)>0\displaystyle\min_{(x,t)\in\overline{Q}}A^{0}(x,t)>0, AC1(Q¯;d)A\in C^{1}(\overline{Q};\mathbb{R}^{d}), and pL(Q)p\in L^{\infty}(Q). Assume that there exists a function φH2(Q)\varphi\in H^{2}(Q) satisfying (3.1). Then, there exist constants s>0s_{*}>0 and C>0C>0 such that

(3.2) s2Qe2sφ|u|2𝑑x𝑑t+sΩe2sφ(x,0)|u(x,0)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|u|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|u(x,0)|^{2}dx
CQe2sφ|(P+p(x,t))u|2𝑑x𝑑t+CsΣ+e2sφ|u|2𝑑S𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}|(P+p(x,t))u|^{2}dxdt+Cs\int_{\Sigma_{+}}e^{2s\varphi}|u|^{2}dSdt
+CsΩe2sφ(x,T)|u(x,T)|2𝑑x\displaystyle\quad+Cs\int_{\Omega}e^{2s\varphi(x,T)}|u(x,T)|^{2}dx

holds for all s>ss>s_{*} and uk=01Hk(0,T;H1k(Ω))\displaystyle u\in\bigcap_{k=0}^{1}H^{k}(0,T;H^{1-k}(\Omega)), where dSdS denotes the area element of Ω\partial\Omega.

Proof.

It suffices to prove Proposition 3.1 when p0p\equiv 0 due to the sufficiently large parameter ss. Let z:=esφuz:=e^{s\varphi}u and Psz:=esφP(esφz)P_{s}z:=e^{s\varphi}P(e^{-s\varphi}z) for s>0s>0. Then, we obtain

Psz=PzsPφz,P_{s}z=Pz-sP\varphi z,

which implies

PszL2(Q)2=PzL2(Q)2+2(Pz,sPφz)L2(Q)+sPφzL2(Q)2\displaystyle\|P_{s}z\|_{L^{2}(Q)}^{2}=\|Pz\|_{L^{2}(Q)}^{2}+2(Pz,-sP\varphi z)_{L^{2}(Q)}+\|sP\varphi z\|_{L^{2}(Q)}^{2}
sPφzL2(Q)2+2(Pz,sPφz)L2(Q)\displaystyle\geq\|sP\varphi z\|_{L^{2}(Q)}^{2}+2(Pz,-sP\varphi z)_{L^{2}(Q)}
=s2Q|Pφ|2|z|2𝑑x𝑑tsQPφ(A0t(|z|2)+A(|z|2))𝑑x𝑑t\displaystyle=s^{2}\int_{Q}|P\varphi|^{2}|z|^{2}dxdt-s\int_{Q}P\varphi\Big{(}A^{0}\partial_{t}(|z|^{2})+A\cdot\nabla(|z|^{2})\Big{)}dxdt
s2Qδ2|z|2𝑑x𝑑t+sQ[t((Pφ)A0)+((Pφ)A)]|z|2𝑑x𝑑t,\displaystyle\geq s^{2}\int_{Q}\delta^{2}|z|^{2}dxdt+s\int_{Q}\Big{[}\partial_{t}((P\varphi)A^{0})+\nabla\cdot((P\varphi)A)\Big{]}|z|^{2}dxdt-\mathcal{B},

by our assumption (3.1), where

:=sΩ[(Pφ)A0|z|2]t=0t=T𝑑x+sΩ×(0,T)Pφ(A(x,t)ν(x))|z|2𝑑S𝑑t.\mathcal{B}:=s\int_{\Omega}\Big{[}(P\varphi)A^{0}|z|^{2}\Big{]}_{t=0}^{t=T}dx+s\int_{\partial\Omega\times(0,T)}P\varphi(A(x,t)\cdot\nu(x))|z|^{2}dSdt.

Therefore, there exists C>0C>0 such that

CQs2[1+O(1s)]|z|2𝑑x𝑑tPszL2(Q)2+C\int_{Q}s^{2}\Big{[}1+O\left(\frac{1}{s}\right)\Big{]}|z|^{2}dxdt\leq\|P_{s}z\|_{L^{2}(Q)}^{2}+\mathcal{B}

as s+s\to+\infty. By choosing s>0s>0 large enough, we complete the proof. ∎

3.1.2. Realization of weight functions

We construct the weight function φC(Q¯)H2(Q)\varphi\in C(\overline{Q})\cap H^{2}(Q) depending on the vector field generated by the coefficients AA, and satisfying (3.1)\eqref{A.1}.

Lemma 3.2.

Let A0C(Q¯)L(Ω×(0,))A^{0}\in C(\overline{Q})\cap L^{\infty}(\Omega\times(0,\infty)) satisfying min(x,t)Q¯A0(x,t)>0\displaystyle\min_{(x,t)\in\overline{Q}}A^{0}(x,t)>0, and AC2(Q¯;d)A\in C^{2}(\overline{Q};\mathbb{R}^{d}) be given functions satisfying (2.1), (2.2), and (2.5). Then, for an arbitrary real number β>0\beta>0 independent of TT satisfying

(3.3) 0<β<ρsupxΩ,t>0A0(x,t),0<\beta<\frac{\rho}{\displaystyle\sup_{x\in\Omega,t>0}A^{0}(x,t)},

the function φ\varphi defined by

(3.4) φ(x,t):=φ0(x)βt,(x,t)Q¯,\varphi(x,t):=\varphi_{0}(x)-\beta t,\quad(x,t)\in\overline{Q},

with φ0\varphi_{0} defined by (2.3), is in the class φC(Q¯)H2(Q)\varphi\in C(\overline{Q})\cap H^{2}(Q) and satisfies (3.1).

Proof.

It is obvious that φC(Q¯)H2(Q)\varphi\in C(\overline{Q})\cap H^{2}(Q) by Lemma 2.8. We prove that φ\varphi defined by (3.4) satisfies (3.1). It follows that

(3.5) Pφ(x,t)\displaystyle P\varphi(x,t) =A(x,t)φ0(x)βA0(x,t)\displaystyle=A(x,t)\cdot\nabla\varphi_{0}(x)-\beta A^{0}(x,t)
A(x,t)φ0(x)βsupxΩ,t>0A0(x,t).\displaystyle\geq A(x,t)\cdot\nabla\varphi_{0}(x)-\beta\displaystyle\sup_{x\in\Omega,t>0}A^{0}(x,t).

For a fixed xΩx\in\Omega, let cx:[σ(x),σ+(x)]Ω¯c_{x}:[\sigma_{-}(x),\sigma_{+}(x)]\to\overline{\Omega} be the maximal integral curve with cx(0)=xc_{x}(0)=x of A(,0)A(\cdot,0). For a sufficiently small η[σ(x),σ+(x)]\eta\in[\sigma_{-}(x),\sigma_{+}(x)], we set xη:=cx(η)x_{\eta}:=c_{x}(\eta). Because we can verify

{ddσ(cx(σ+η))=cx(σ+η)=A(cx(σ+η),0),cx(0+η)=xη,\begin{cases}\dfrac{d}{d\sigma}\big{(}c_{x}(\sigma+\eta)\big{)}=c^{\prime}_{x}(\sigma+\eta)=A(c_{x}(\sigma+\eta),0),\\ c_{x}(0+\eta)=x_{\eta},\end{cases}

we have cxη(σ)=cx(σ+η)c_{x_{\eta}}(\sigma)=c_{x}(\sigma+\eta) by the uniqueness of the solution to the initial problem of the ordinary differential equation. Hence, σ(xη)=σ(x)η\sigma_{-}(x_{\eta})=\sigma_{-}(x)-\eta holds. Therefore, we obtain

φ0(cx(η))=φ0(xη)=σ(xη)0|cxη(σ)|𝑑σ=σ(x)η0|cx(σ+η)|𝑑σ=σ(x)η|cx(σ)|𝑑σ.\varphi_{0}(c_{x}(\eta))=\varphi_{0}(x_{\eta})=\int_{\sigma_{-}(x_{\eta})}^{0}|c_{x_{\eta}}^{\prime}(\sigma)|d\sigma=\int_{\sigma_{-}(x)-\eta}^{0}|c_{x}^{\prime}(\sigma+\eta)|d\sigma=\int_{\sigma_{-}(x)}^{\eta}|c_{x}^{\prime}(\sigma)|d\sigma.

Differentiating both sides with respect to η\eta and substituting η=0\eta=0 yield

cx(0)φ0(cx(0))=|cx(0)|=|A(x,0)|.c_{x}^{\prime}(0)\cdot\nabla\varphi_{0}(c_{x}(0))=|c_{x}^{\prime}(0)|=|A(x,0)|.

Therefore, by (2.5), Proposition 2.10, and (2.1), we obtain

(3.6) A(x,t)φ0(x)\displaystyle A(x,t)\cdot\nabla\varphi_{0}(x) =A(x,0)φ0(x)e0tϕ(x,s)𝑑s\displaystyle=A(x,0)\cdot\nabla\varphi_{0}(x)e^{\int_{0}^{t}\phi(x,s)ds}
=cx(0)φ0(cx(0))e0tϕ(x,s)𝑑s\displaystyle=c_{x}^{\prime}(0)\cdot\nabla\varphi_{0}(c_{x}(0))e^{\int_{0}^{t}\phi(x,s)ds}
=|A(x,0)|e0tϕ(x,s)𝑑s\displaystyle=|A(x,0)|e^{\int_{0}^{t}\phi(x,s)ds}
=|A(x,t)|ρ.\displaystyle=|A(x,t)|\geq\rho.

Applying (3.6) to (3.5) yields

Pφ(x,t)ρβsupxΩ,t>0A0(x,t)>0P\varphi(x,t)\geq\rho-\beta\displaystyle\sup_{x\in\Omega,t>0}A^{0}(x,t)>0

for almost all (x,t)Q(x,t)\in Q.

3.2. Energy estimates

The following Lemma 3.3 is the energy estimate for the first-order hyperbolic equations with the time-dependent principal part needed to prove Theorem 2.11 and Theorem 2.12. Moreover, we describe Lemma 3.4, which is the energy estimate for first-order hyperbolic equations with time-independent principal part needed to prove Theorem 2.13. Their proofs are presented in Appendix.

For a positive function A0C1(Q¯)A^{0}\in C^{1}(\overline{Q}) and uk=12Hk(0,T;H2k(Ω))\displaystyle u\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega)), we define the quantity

E(t):=Ω(A0(x,t)|tu(x,t)|2+|u(x,t)|2)𝑑x,t[0,T].E(t):=\int_{\Omega}\big{(}A^{0}(x,t)|\partial_{t}u(x,t)|^{2}+|u(x,t)|^{2}\Big{)}dx,\quad t\in[0,T].
Lemma 3.3.

Let A0C1(Q¯)A^{0}\in C^{1}(\overline{Q}) satisfying min(x,t)Q¯A0(x,t)>0\displaystyle\min_{(x,t)\in\overline{Q}}A^{0}(x,t)>0, AC1(Q¯;d)A\in C^{1}(\overline{Q};\mathbb{R}^{d}), pW1,(0,T;L(Ω))p\in W^{1,\infty}(0,T;L^{\infty}(\Omega)), RH1(0,T;L(Ω))R\in H^{1}(0,T;L^{\infty}(\Omega)), and fL2(Ω)f\in L^{2}(\Omega). Then, there exists a constant C>0C>0 independent of uu and ff such that

(3.7) E(t)C(tAuL2(Q)2+fL2(Ω)2)E(t)\leq C\Big{(}\|\partial_{t}A\cdot\nabla u\|_{L^{2}(Q)}^{2}+\|f\|_{L^{2}(\Omega)}^{2}\Big{)}

holds for all t[0,T]t\in[0,T] and uk=12Hk(0,T;H2k(Ω))\displaystyle u\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega)) satisfying (2.6)\eqref{boundary}.

Moreover, if we assume (2.5), then there exists a constant C>0C>0 independent of uu and ff such that

(3.8) E(t)CfL2(Ω)2E(t)\leq C\|f\|_{L^{2}(\Omega)}^{2}

holds for all t[0,T]t\in[0,T] and uk=12Hk(0,T;H2k(Ω))\displaystyle u\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega)) satisfying (2.6).

Lemma 3.4.

Let \ell\in\mathbb{N} be a fixed number, A0C1(Ω¯)A^{0}\in C^{1}(\overline{\Omega}) satisfying minxΩ¯A0(x)>0\displaystyle\min_{x\in\overline{\Omega}}A^{0}(x)>0, AC1(Ω¯;d)A\in C^{1}(\overline{\Omega};\mathbb{R}^{d}), pW1,(0,T;L(Ω))p\in W^{1,\infty}(0,T;L^{\infty}(\Omega)), RH1(0,T;L(Ω;))R\in H^{1}(0,T;L^{\infty}(\Omega;\mathbb{R}^{\ell})), and FL2(Ω;)F\in L^{2}(\Omega;\mathbb{R}^{\ell}). Let us consider the initial boundary value problem

(3.9) {A0(x)tu+A(x)u+p(x,t)u=R(x,t)F(x)inQ,u=0onΓ,A×(0,T),u(,0)=0onΩ.\displaystyle\begin{cases}A^{0}(x)\partial_{t}u+A(x)\cdot\nabla u+p(x,t)u=R(x,t)\cdot F(x)\quad&\text{in}\ Q,\\ u=0\quad&\text{on}\ \Gamma_{-,A}\times(0,T),\\ u(\cdot,0)=0\quad&\text{on}\ \Omega.\end{cases}

Then, there exists a constant C>0C>0 independent of uu and FF such that

(3.10) E(t)CFL2(Ω;))2E(t)\leq C\|F\|_{L^{2}(\Omega;\mathbb{R}^{\ell}))}^{2}

holds for all t[0,T]t\in[0,T] and uk=12Hk(0,T;H2k(Ω))\displaystyle u\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega)) satisfying (3.9).

4. Proofs of main results

Using several estimates introduced in section 3, we prove the three main theorems in the subsequently sections.

4.1. Proof of Theorem 2.11

Proof of Theorem 2.11.

By our assumption (2.8), we can take 0<β<ρsupxΩ,t>0A0(x,t)0<\beta<\dfrac{\rho}{\displaystyle\sup_{x\in\Omega,t>0}A^{0}(x,t)} independent of TT satisfying

(T0<)maxxΩ¯φ0(x)β<T.(T_{0}<)\frac{\displaystyle\max_{x\in\overline{\Omega}}\varphi_{0}(x)}{\beta}<T.

Then, there exists κ>0\kappa>0 such that

(4.1) maxxΩ¯φ0(x)βT<κ.\max_{x\in\overline{\Omega}}\varphi_{0}(x)-\beta T<-\kappa.

Henceforth, by C>0C>0 we denote a generic constant independent of uu which may change from line to line, unless specified otherwise. Applying the Carleman estimate (3.2) of Proposition 3.1 to tuk=01Hk(0,T;H1k(Ω))\displaystyle\partial_{t}u\in\bigcap_{k=0}^{1}H^{k}(0,T;H^{1-k}(\Omega)) yields

(4.2) s2Qe2sφ|tu|2𝑑x𝑑t+sΩe2sφ(x,0)|R(x,0)f(x)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}u|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R(x,0)f(x)|^{2}dx
CQe2sφ|(P+p(x,t))tu|2𝑑x𝑑t+CsΣ+e2sφ|tu|2𝑑S𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}|(P+p(x,t))\partial_{t}u|^{2}dxdt+Cs\int_{\Sigma_{+}}e^{2s\varphi}|\partial_{t}u|^{2}dSdt
+CsΩe2sφ(x,T)|tu(x,T)|2𝑑x.\displaystyle\quad+Cs\int_{\Omega}e^{2s\varphi(x,T)}|\partial_{t}u(x,T)|^{2}dx.

Since we obtain

(P+p(x,t))tu\displaystyle(P+p(x,t))\partial_{t}u =t(A0(x,t)tu+A(x,t)u+p(x,t)u)\displaystyle=\partial_{t}\Big{(}A^{0}(x,t)\partial_{t}u+A(x,t)\cdot\nabla u+p(x,t)u\Big{)}
tA0(x,t)tutA(x,t)utp(x,t)u\displaystyle\quad-\partial_{t}A^{0}(x,t)\partial_{t}u-\partial_{t}A(x,t)\cdot\nabla u-\partial_{t}p(x,t)u
=tR(x,t)f(x)tA0(x,t)tutA(x,t)utp(x,t)u,\displaystyle=\partial_{t}R(x,t)f(x)-\partial_{t}A^{0}(x,t)\partial_{t}u-\partial_{t}A(x,t)\cdot\nabla u-\partial_{t}p(x,t)u,

we have

(4.3) |(P+p(x,t))tu|2\displaystyle|(P+p(x,t))\partial_{t}u|^{2} C(|tRf|2+|tu|2+|tA(x,t)u|2+|u|2)\displaystyle\leq C\Big{(}|\partial_{t}Rf|^{2}+|\partial_{t}u|^{2}+|\partial_{t}A(x,t)\cdot\nabla u|^{2}+|u|^{2}\Big{)}
C(|tRf|2+|tu|2+|A(x,t)u|2+|u|2),\displaystyle\leq C\Big{(}|\partial_{t}Rf|^{2}+|\partial_{t}u|^{2}+|A(x,t)\cdot\nabla u|^{2}+|u|^{2}\Big{)},

where we used the assumption (2.5) to obtain the second inequality. Therefore, applying the equation in (2.6) to the above estimate (4.3) yields

(4.4) |(P+p(x,t))tu|2C(|tRf|2+|Rf|2+|tu|2+|u|2).|(P+p(x,t))\partial_{t}u|^{2}\leq C\Big{(}|\partial_{t}Rf|^{2}+|Rf|^{2}+|\partial_{t}u|^{2}+|u|^{2}\Big{)}.

Furthermore, applying (4.1) and the energy estimate (3.8) of Lemma 3.3 yields

(4.5) sΩe2sφ(x,T)|tu(x,T)|2𝑑x\displaystyle s\int_{\Omega}e^{2s\varphi(x,T)}|\partial_{t}u(x,T)|^{2}dx Cse2κsΩA0(x,T)|tu(x,T)|2𝑑x\displaystyle\leq Cse^{-2\kappa s}\int_{\Omega}A^{0}(x,T)|\partial_{t}u(x,T)|^{2}dx
Cse2κsfL2(Ω)2.\displaystyle\leq Cse^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}.

Applying (4.4) and (4.5) to (4.2) and choosing s>ss>s_{*} large enough yield

(4.6) s2Qe2sφ|tu|2𝑑x𝑑t+sΩe2sφ(x,0)|R(x,0)f(x)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}u|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R(x,0)f(x)|^{2}dx
CQe2sφ(k=01|tkR|2)|f|2𝑑x𝑑t+CQe2sφ|u|2𝑑x𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}\Big{(}\sum_{k=0}^{1}|\partial_{t}^{k}R|^{2}\Big{)}|f|^{2}dxdt+C\int_{Q}e^{2s\varphi}|u|^{2}dxdt
+CsΣ+e2sφ|tu|2𝑑S𝑑t+Cse2κsfL2(Ω)2.\displaystyle\quad+Cs\int_{\Sigma_{+}}e^{2s\varphi}|\partial_{t}u|^{2}dSdt+Cse^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}.

In regard to the left-hand side of (4.6), using (2.7), for some C>0C>0 we obtain

(4.7) s2Qe2sφ|tu|2𝑑x𝑑t+sΩe2sφ(x,0)|R(x,0)f(x)|2𝑑xCsesφ0fL2(Ω)2.s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}u|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R(x,0)f(x)|^{2}dx\geq Cs\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}^{2}.

In regard to right-hand side of (4.6), applying the Carleman estimate (3.2) of Proposition 3.1 to uk=12Hk(0,T;H2k(Ω))\displaystyle u\in\bigcap_{k=1}^{2}H^{k}(0,T;H^{2-k}(\Omega)) and then using (4.1) and the energy estimate (3.8) yield

(4.8) Qe2sφ|u|2𝑑x𝑑t\displaystyle\int_{Q}e^{2s\varphi}|u|^{2}dxdt
Cs2Qe2sφ|Rf|2𝑑x𝑑t+CsΣ+e2sφ|u|2𝑑S𝑑t\displaystyle\leq\frac{C}{s^{2}}\int_{Q}e^{2s\varphi}|Rf|^{2}dxdt+\frac{C}{s}\int_{\Sigma_{+}}e^{2s\varphi}|u|^{2}dSdt
+CsΩe2sφ(x,T)|u(x,T)|2𝑑x\displaystyle\quad+\frac{C}{s}\int_{\Omega}e^{2s\varphi(x,T)}|u(x,T)|^{2}dx
Cs2Qe2sφ|Rf|2𝑑x𝑑t+CsΣ+e2sφ|u|2𝑑S𝑑t+Cse2κsfL2(Ω)2.\displaystyle\leq\frac{C}{s^{2}}\int_{Q}e^{2s\varphi}|Rf|^{2}dxdt+\frac{C}{s}\int_{\Sigma_{+}}e^{2s\varphi}|u|^{2}dSdt+\frac{C}{s}e^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}.

Applying (4.7) and (4.8) to (4.6) and choosing sufficiently large s>ss>s_{*} yield

sesφ0fL2(Ω)\displaystyle s\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}
CQe2sφ(k=01|tkR|2)|f|2𝑑x𝑑t+CsΣ+e2sφ|u|2𝑑S𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}\Big{(}\sum_{k=0}^{1}|\partial_{t}^{k}R|^{2}\Big{)}|f|^{2}dxdt+\frac{C}{s}\int_{\Sigma_{+}}e^{2s\varphi}|u|^{2}dSdt
+CseCstuL2(Σ+)2+Cse2κsfL2(Ω)2\displaystyle\quad+Cse^{Cs}\|\partial_{t}u\|_{L^{2}(\Sigma_{+})}^{2}+Cse^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}
CQe2sφ(k=01|tkR|2)|f|2𝑑x𝑑t+CseCsk=01tkuL2(Σ+)2\displaystyle\leq C\int_{Q}e^{2s\varphi}\Big{(}\sum_{k=0}^{1}|\partial_{t}^{k}R|^{2}\Big{)}|f|^{2}dxdt+Cse^{Cs}\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}^{2}
+Cse2κsfL2(Ω)2\displaystyle\quad+Cse^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}
=CΩ(0Te2s(φ0(x)φ(x,t))(k=01tkR(,t)L(Ω)2)𝑑t)e2sφ0|f|2𝑑x\displaystyle=C\int_{\Omega}\left(\int_{0}^{T}e^{-2s(\varphi_{0}(x)-\varphi(x,t))}\Big{(}\sum_{k=0}^{1}\|\partial_{t}^{k}R(\cdot,t)\|_{L^{\infty}(\Omega)}^{2}\Big{)}dt\right)e^{2s\varphi_{0}}|f|^{2}dx
+CseCsk=01tkuL2(Σ+)2+Cse2κsfL2(Ω)2\displaystyle\quad+Cse^{Cs}\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}^{2}+Cse^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}
=CΩ(0Te2βts(k=01tkR(,t)L(Ω)2)𝑑t)e2sφ0|f|2𝑑x\displaystyle=C\int_{\Omega}\left(\int_{0}^{T}e^{-2\beta ts}\Big{(}\sum_{k=0}^{1}\|\partial_{t}^{k}R(\cdot,t)\|_{L^{\infty}(\Omega)}^{2}\Big{)}dt\right)e^{2s\varphi_{0}}|f|^{2}dx
+CseCsk=01tkuL2(Σ+)2+Cse2κsfL2(Ω)2\displaystyle\quad+Cse^{Cs}\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}^{2}+Cse^{-2\kappa s}\|f\|_{L^{2}(\Omega)}^{2}
o(1)esφ0fL2(Ω)2+CseCsk=01tkuL2(Σ+)2+Cse2κsesφ0fL2(Ω)2\displaystyle\leq o(1)\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}^{2}+Cse^{Cs}\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}^{2}+Cse^{-2\kappa s}\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}^{2}
=o(1)esφ0fL2(Ω)2+CseCsk=01tkuL2(Σ+)2\displaystyle=o(1)\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}^{2}+Cse^{Cs}\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}^{2}

as s+s\to+\infty by the Lebesgue dominated convergence theorem. Choosing s>ss>s_{*} large enough yields

esφ0fL2(Ω)CeCsk=01tkuL2(Σ+).\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}\leq Ce^{Cs}\sum_{k=0}^{1}\|\partial_{t}^{k}u\|_{L^{2}(\Sigma_{+})}.

Since φ0(x)0\varphi_{0}(x)\geq 0 for all xΩ¯x\in\overline{\Omega}, esφ0fL2(Ω)fL2(Ω)\|e^{s\varphi_{0}}f\|_{L^{2}(\Omega)}\geq\|f\|_{L^{2}(\Omega)} holds. Then, we complete the proof. ∎

4.2. Proof of Theorem 2.12

Proof of Theorem 2.12.

We show that Theorem 2.12 comes down to Theorem 2.11. Setting

v:=u1u2,R:=u2,f:=p1p2,v:=u_{1}-u_{2},\quad R:=-u_{2},\quad f:=p_{1}-p_{2},

we obtain

{Pv+p1(x)v=R(x,t)f(x)inQ,v=0onΣ,v(,0)=0onΩ,\displaystyle\begin{cases}Pv+p_{1}(x)v=R(x,t)f(x)\quad&\text{in}\ Q,\\ v=0\quad&\text{on}\ \Sigma_{-},\\ v(\cdot,0)=0\quad&\text{on}\ \Omega,\end{cases}

and (2.7) is satisfied due to the assumption (2.10). Therefore, by Theorem 2.11, the proof is completed. ∎

4.3. Proof of Theorem 2.13

Proof of Theorem 2.13.

By our assumption (2.11), we can take 0<β<ρmaxxΩ¯A10(x)0<\beta<\dfrac{\rho}{\displaystyle\max_{x\in\overline{\Omega}}A^{0}_{1}(x)} independent of TT satisfying

(maxxΩ¯A10(x))(maxxΩ¯φ0(x))ρ<maxxΩ¯φ0(x)β<T.\frac{\displaystyle\Big{(}\max_{x\in\overline{\Omega}}A^{0}_{1}(x)\Big{)}\Big{(}\max_{x\in\overline{\Omega}}\varphi_{0}(x)\Big{)}}{\rho}<\frac{\displaystyle\max_{x\in\overline{\Omega}}\varphi_{0}(x)}{\beta}<T.

Then, there exists κ>0\kappa>0 such that

(4.9) maxxΩ¯φ0(x)βT<κ.\max_{x\in\overline{\Omega}}\varphi_{0}(x)-\beta T<-\kappa.

Henceforth, by C>0C>0 we denote a generic constant independent of uu which may change from line to line, unless specified otherwise. For m=1,,d+1m=1,\ldots,d+1, setting

vm:=u1,mu2,m,f1:=A10A20,f2:=A1A2,v_{m}:=u_{1,m}-u_{2,m},\quad f_{1}:=A^{0}_{1}-A^{0}_{2},\quad f_{2}:=A_{1}-A_{2},

and

F:=(f1f2)L2(Ω;d+1),\displaystyle F:=\begin{pmatrix}f_{1}\\ f_{2}\end{pmatrix}\in L^{2}(\Omega;\mathbb{R}^{d+1}),
Rm:=(tu2,mx1u2,mxdu2,m)H1(0,T;L(Ω;d+1)).\displaystyle R_{m}:=\begin{pmatrix}-\partial_{t}u_{2,m}&-\partial_{x^{1}}u_{2,m}&\cdots&-\partial_{x^{d}}u_{2,m}\end{pmatrix}\in H^{1}(0,T;L^{\infty}(\Omega;\mathbb{R}^{d+1})).

Thus, we obtain

{P1vm+p(x,t)vm=Rm(x,t)F(x)inQ,vm=0onΣ,vm(,0)=0onΩ,\displaystyle\begin{cases}P_{1}v_{m}+p(x,t)v_{m}=R_{m}(x,t)F(x)\quad&\text{in}\ Q,\\ v_{m}=0\quad&\text{on}\ \Sigma_{-},\\ v_{m}(\cdot,0)=0\quad&\text{on}\ \Omega,\end{cases}

where the product in the right-hand side of the equation is a product of matrices. Applying the Carleman estimate (3.2) of Proposition 3.1 with P=P1P=P_{1} to

tvmk=01Hk(0,T;W1k,(Ω))k=01Hk(0,T;H1k(Ω))\partial_{t}v_{m}\in\bigcap_{k=0}^{1}H^{k}(0,T;W^{1-k,\infty}(\Omega))\subset\bigcap_{k=0}^{1}H^{k}(0,T;H^{1-k}(\Omega))

yields

s2Qe2sφ|tvm|2𝑑x𝑑t+sΩe2sφ(x,0)|Rm(x,0)F(x)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}v_{m}|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R_{m}(x,0)F(x)|^{2}dx
CQe2sφ|(P1+p(x,t))tvm|2𝑑x𝑑t+CsΓ+,A1×(0,T)e2sφ|tvm|2𝑑S𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}|(P_{1}+p(x,t))\partial_{t}v_{m}|^{2}dxdt+Cs\int_{\Gamma_{+,A_{1}}\times(0,T)}e^{2s\varphi}|\partial_{t}v_{m}|^{2}dSdt
+CsΩe2sφ(x,T)|tvm(x,T)|2𝑑x.\displaystyle\quad+Cs\int_{\Omega}e^{2s\varphi(x,T)}|\partial_{t}v_{m}(x,T)|^{2}dx.

Summing up with respect to m=1,,d+1m=1,\ldots,d+1 yields

(4.10) s2Qe2sφ|tv|2𝑑x𝑑t+sΩe2sφ(x,0)|R(x,0)F(x)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}v|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R(x,0)F(x)|^{2}dx
CQe2sφ|(P1+p(x,t))tv|2𝑑x𝑑t+CsΓ+,A1×(0,T)e2sφ|tv|2𝑑S𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}|(P_{1}+p(x,t))\partial_{t}v|^{2}dxdt+Cs\int_{\Gamma_{+,A_{1}}\times(0,T)}e^{2s\varphi}|\partial_{t}v|^{2}dSdt
+CsΩe2sφ(x,T)|tv(x,T)|2𝑑x,\displaystyle\quad+Cs\int_{\Omega}e^{2s\varphi(x,T)}|\partial_{t}v(x,T)|^{2}dx,

where we define

v:=(v1vd+1),R:=(R1Rd+1),(P1+p(x,t))tv:=((P1+p(x,t))tv1(P1+p(x,t))tvd+1).v:=\begin{pmatrix}v_{1}\\ \vdots\\ v_{d+1}\end{pmatrix},\quad R:=\begin{pmatrix}R_{1}\\ \vdots\\ R_{d+1}\end{pmatrix},\quad(P_{1}+p(x,t))\partial_{t}v:=\begin{pmatrix}(P_{1}+p(x,t))\partial_{t}v_{1}\\ \vdots\\ (P_{1}+p(x,t))\partial_{t}v_{d+1}\end{pmatrix}.

Since we obtain

(P1+p(x,t))tvm\displaystyle(P_{1}+p(x,t))\partial_{t}v_{m} =t(A10(x)tvm+A1(x)vm+p(x,t)vm)tp(x,t)vm\displaystyle=\partial_{t}\Big{(}A^{0}_{1}(x)\partial_{t}v_{m}+A_{1}(x)\cdot\nabla v_{m}+p(x,t)v_{m}\Big{)}-\partial_{t}p(x,t)v_{m}
=t(RmF)tp(x,t)vm\displaystyle=\partial_{t}(R_{m}F)-\partial_{t}p(x,t)v_{m}

for each m=1,,d+1m=1,\ldots,d+1, we have

(4.11) |(P1+p(x,t))tv|2C(|tRF|2+|v|2).|(P_{1}+p(x,t))\partial_{t}v|^{2}\leq C\Big{(}|\partial_{t}RF|^{2}+|v|^{2}\Big{)}.

Furthermore, applying (4.9) and the energy estimate (3.10) of Lemma 3.4 for m=1,,d+1m=1,\ldots,d+1 yields

sΩe2sφ(x,T)|tvm(x,T)|2𝑑x\displaystyle s\int_{\Omega}e^{2s\varphi(x,T)}|\partial_{t}v_{m}(x,T)|^{2}dx Cse2κsΩA10(x,T)|tvm(x,T)|2𝑑x\displaystyle\leq Cse^{-2\kappa s}\int_{\Omega}A^{0}_{1}(x,T)|\partial_{t}v_{m}(x,T)|^{2}dx
Cse2κsFL2(Ω;d+1)2,\displaystyle\leq Cse^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2},

which implies

(4.12) sΩe2sφ(x,T)|tv(x,T)|2𝑑xCse2κsFL2(Ω;d+1)2.s\int_{\Omega}e^{2s\varphi(x,T)}|\partial_{t}v(x,T)|^{2}dx\leq Cse^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}.

Applying (4.11) and (4.12) to (4.10) and choosing s>ss>s_{*} large enough yield

(4.13) s2Qe2sφ|tv|2𝑑x𝑑t+sΩe2sφ(x,0)|R(x,0)F(x)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}v|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R(x,0)F(x)|^{2}dx
CQe2sφ|tRF|2𝑑x𝑑t+CQe2sφ|v|2𝑑x𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}|\partial_{t}RF|^{2}dxdt+C\int_{Q}e^{2s\varphi}|v|^{2}dxdt
+CsΓ×(0,T)e2sφ|tv|2𝑑S𝑑t+Cse2κsFL2(Ω;d+1)2.\displaystyle\quad+Cs\int_{\Gamma\times(0,T)}e^{2s\varphi}|\partial_{t}v|^{2}dSdt+Cse^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}.

In regard to the left-hand side of (4.13), we obtain

(4.14) s2Qe2sφ|tv|2𝑑x𝑑t+sΩe2sφ(x,0)|R(x,0)F(x)|2𝑑x\displaystyle s^{2}\int_{Q}e^{2s\varphi}|\partial_{t}v|^{2}dxdt+s\int_{\Omega}e^{2s\varphi(x,0)}|R(x,0)F(x)|^{2}dx
Csesφ0FL2(Ω;d+1)2\displaystyle\geq Cs\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}

for some C>0C>0 by (2.12). Indeed, by minxΩ¯A20(x)ρ>0\displaystyle\min_{x\in\overline{\Omega}}A^{0}_{2}(x)\geq\rho>0, it follows that

|detR(x,0)|\displaystyle|\det R(x,0)| =|det(tu2,1(x,0)tu2,d+1(x,0)u2,1(x,0)u2,d+1(x,0))|\displaystyle=\left|\det\begin{pmatrix}\partial_{t}u_{2,1}(x,0)&\cdots&\partial_{t}u_{2,d+1}(x,0)\\ \nabla u_{2,1}(x,0)&\cdots&\nabla u_{2,d+1}(x,0)\end{pmatrix}\right|
C|det(A2α1+p(x,0)α1A2αd+1+p(x,0)αd+1α1αd+1)|\displaystyle\geq C\left|\det\begin{pmatrix}A_{2}\cdot\nabla\alpha_{1}+p(x,0)\alpha_{1}&\cdots&A_{2}\cdot\nabla\alpha_{d+1}+p(x,0)\alpha_{d+1}\\ \nabla\alpha_{1}&\cdots&\nabla\alpha_{d+1}\end{pmatrix}\right|
=C|det(p(x,0)α1p(x,0)αd+1α1αd+1)|\displaystyle=C\left|\det\begin{pmatrix}p(x,0)\alpha_{1}&\cdots&p(x,0)\alpha_{d+1}\\ \nabla\alpha_{1}&\cdots&\nabla\alpha_{d+1}\end{pmatrix}\right|
=C|p(x,0)||det(α1(x)αd+1(x)α1(x)αd+1(x))|m0a.e.xΩ.\displaystyle=C|p(x,0)|\left|\det\begin{pmatrix}\alpha_{1}(x)&\cdots&\alpha_{d+1}(x)\\ \nabla\alpha_{1}(x)&\cdots&\nabla\alpha_{d+1}(x)\end{pmatrix}\right|\geq m_{0}\quad\text{a.e.}\ x\in\Omega.

In regard to the right-hand side of (4.13), applying the Carleman estimate (3.2) of Proposition 3.1 to vmk=12Hk(0,T;W2k,(Ω))\displaystyle v_{m}\in\bigcap_{k=1}^{2}H^{k}(0,T;W^{2-k,\infty}(\Omega)) for each m=1,,d+1m=1,\ldots,d+1 and then using (4.9) and the energy estimate (3.10) of Lemma 3.4 yield

(4.15) Qe2sφ|v|2𝑑x𝑑t\displaystyle\int_{Q}e^{2s\varphi}|v|^{2}dxdt
Cs2Qe2sφ|Rf|2𝑑x𝑑t+CsΓ+,A1×(0,T)e2sφ|v|2𝑑S𝑑t\displaystyle\leq\frac{C}{s^{2}}\int_{Q}e^{2s\varphi}|Rf|^{2}dxdt+\frac{C}{s}\int_{\Gamma_{+,A_{1}}\times(0,T)}e^{2s\varphi}|v|^{2}dSdt
+CsΩe2sφ(x,T)|v(x,T)|2𝑑x\displaystyle\quad+\frac{C}{s}\int_{\Omega}e^{2s\varphi(x,T)}|v(x,T)|^{2}dx
Cs2Qe2sφ|Rf|2𝑑x𝑑t+CsΓ×(0,T)e2sφ|v|2𝑑S𝑑t\displaystyle\leq\frac{C}{s^{2}}\int_{Q}e^{2s\varphi}|Rf|^{2}dxdt+\frac{C}{s}\int_{\Gamma\times(0,T)}e^{2s\varphi}|v|^{2}dSdt
+Cse2κsFL2(Ω;d+1)2.\displaystyle\quad+\frac{C}{s}e^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}.

Applying (4.14) and (4.15) to (4.13) and choosing sufficiently large s>ss>s_{*} yield

sesφ0FL2(Ω;d+1)2\displaystyle s\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}
CQe2sφ|tRF|2𝑑x𝑑t+Cs2Qe2sφ|Rf|2𝑑x𝑑t+CsΓ×(0,T)e2sφ|v|2𝑑S𝑑t\displaystyle\leq C\int_{Q}e^{2s\varphi}|\partial_{t}RF|^{2}dxdt+\frac{C}{s^{2}}\int_{Q}e^{2s\varphi}|Rf|^{2}dxdt+\frac{C}{s}\int_{\Gamma\times(0,T)}e^{2s\varphi}|v|^{2}dSdt
+CsΓ×(0,T)e2sφ|tv|2𝑑S𝑑t+Cse2κsFL2(Ω;d+1)2\displaystyle\quad+Cs\int_{\Gamma\times(0,T)}e^{2s\varphi}|\partial_{t}v|^{2}dSdt+Cse^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}
CQe2sφ(k=01|tkRF|2)𝑑x𝑑t+CseCsvH1(0,T;L2(Γ;d+1))\displaystyle\leq C\int_{Q}e^{2s\varphi}\Big{(}\sum_{k=0}^{1}|\partial_{t}^{k}RF|^{2}\Big{)}dxdt+Cse^{Cs}\|v\|_{H^{1}(0,T;L^{2}(\Gamma;\mathbb{R}^{d+1}))}
+Cse2κsFL2(Ω;d+1)2\displaystyle\quad+Cse^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}
=CΩ(0Te2βts(k=01tkR(,t)L(Ω;(d+1)×(d+1))2)𝑑t)e2sφ0|F|2𝑑x\displaystyle=C\int_{\Omega}\left(\int_{0}^{T}e^{-2\beta ts}\Big{(}\sum_{k=0}^{1}\|\partial_{t}^{k}R(\cdot,t)\|_{L^{\infty}(\Omega;\mathbb{R}^{(d+1)\times(d+1)})}^{2}\Big{)}dt\right)e^{2s\varphi_{0}}|F|^{2}dx
+CseCsvH1(0,T;L2(Γ;d+1))2+Cse2κsFL2(Ω;d+1)2\displaystyle\quad+Cse^{Cs}\|v\|_{H^{1}(0,T;L^{2}(\Gamma;\mathbb{R}^{d+1}))}^{2}+Cse^{-2\kappa s}\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}
o(1)esφ0FL2(Ω;d+1)2+CseCsvH1(0,T;L2(Γ;d+1))2+Cse2κsesφ0FL2(Ω;d+1)2\displaystyle\leq o(1)\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}+Cse^{Cs}\|v\|_{H^{1}(0,T;L^{2}(\Gamma;\mathbb{R}^{d+1}))}^{2}+Cse^{-2\kappa s}\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}
=o(1)esφ0FL2(Ω;d+1)2+CseCsvH1(0,T;L2(Γ;d+1))2\displaystyle=o(1)\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}+Cse^{Cs}\|v\|_{H^{1}(0,T;L^{2}(\Gamma;\mathbb{R}^{d+1}))}^{2}

as s+s\to+\infty by the Lebesgue dominated convergence theorem. Choosing s>ss>s_{*} large enough yields

esφ0FL2(Ω;d+1)2CeCsvH1(0,T;L2(Γ;d+1))2\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}\leq Ce^{Cs}\|v\|_{H^{1}(0,T;L^{2}(\Gamma;\mathbb{R}^{d+1}))}^{2}

Since φ0(x)0\varphi_{0}(x)\geq 0 for all xΩ¯x\in\overline{\Omega}, esφ0FL2(Ω;d+1)2FL2(Ω;d+1)2\|e^{s\varphi_{0}}F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2}\geq\|F\|_{L^{2}(\Omega;\mathbb{R}^{d+1})}^{2} holds. Then, we complete the proof. ∎

5. Appendix

In Appendix, we prove Proposition 2.10, Lemma 3.3, and Lemma 3.4.

5.1. Proof of Proposition 2.10

Proof of Proposition 2.10.

When d2d\geq 2, we note that there exists a vector-valued function A(x,t)0A_{\perp}(x,t)\neq 0 for each (x,t)Q¯(x,t)\in\overline{Q} such that

A(x,t)A(x,t)=0A(x,t)\cdot A_{\perp}(x,t)=0

due to (2.1). Applying (2.5) to ξ=A(x,t)\xi=A_{\perp}(x,t) yields

(x,t)Q¯,tA(x,t)A(x,t)=0,\forall(x,t)\in\overline{Q},\ \partial_{t}A(x,t)\cdot A_{\perp}(x,t)=0,

which implies that there exists a function ϕC1(Q¯)\phi\in C^{1}(\overline{Q}) such that

(x,t)Q¯,tA(x,t)=ϕ(x,t)A(x,t).\forall(x,t)\in\overline{Q},\quad\partial_{t}A(x,t)=\phi(x,t)A(x,t).

Therefore, A(x,t)A(x,t) is represented by

A(x,t)=A(x,0)e0tϕ(x,s)𝑑s.A(x,t)=A(x,0)e^{\int_{0}^{t}\phi(x,s)ds}.

When d=1d=1, noting Remark 2.9, setting

ϕ(x,t):=tA(x,t)A(x,t)\phi(x,t):=\frac{\partial_{t}A(x,t)}{A(x,t)}

completes the proof. ∎

5.2. Proof of Lemma 3.3

Proof of Lemma 3.3.

Differentiating the equation in (2.6) with respect to tt yields

A0(x,t)t2u+tA0(x,t)tu+A(x,t)tu\displaystyle A^{0}(x,t)\partial_{t}^{2}u+\partial_{t}A^{0}(x,t)\partial_{t}u+A(x,t)\cdot\nabla\partial_{t}u
+tA(x,t)u+p(x,t)tu+tp(x,t)u\displaystyle+\partial_{t}A(x,t)\cdot\nabla u+p(x,t)\partial_{t}u+\partial_{t}p(x,t)u =tR(x,t)f(x).\displaystyle=\partial_{t}R(x,t)f(x).

Multiplying 2tu2\partial_{t}u to the above equality and integrating over Ω\Omega yield

ΩA0(x,t)t(|tu|2)dx+Ω2tA0(x,t)|tu|2dx+ΩA(x,t)(|tu|2)dx\displaystyle\int_{\Omega}A^{0}(x,t)\partial_{t}(|\partial_{t}u|^{2})dx+\int_{\Omega}2\partial_{t}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}A(x,t)\cdot\nabla(|\partial_{t}u|^{2})dx
+Ω2tu(tA(x,t)u)dx+Ω2p(x,t)|tu|2𝑑x+Ω2tp(x,t)utudx\displaystyle\quad+\int_{\Omega}2\partial_{t}u(\partial_{t}A(x,t)\cdot\nabla u)dx+\int_{\Omega}2p(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}2\partial_{t}p(x,t)u\partial_{t}udx
=Ω2tutR(x,t)f(x)dx.\displaystyle=\int_{\Omega}2\partial_{t}u\partial_{t}R(x,t)f(x)dx.

Integration by parts yields

ddtΩA0(x,t)|tu|2𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx
=Ω(tA0(x,t)+2p(x,t))|tu|2𝑑x+Ω(A(x,t))|tu|2𝑑x\displaystyle=-\int_{\Omega}(\partial_{t}A^{0}(x,t)+2p(x,t))|\partial_{t}u|^{2}dx+\int_{\Omega}(\nabla\cdot A(x,t))|\partial_{t}u|^{2}dx
Ω2tu(tA(x,t)u)dxΩ2tp(x,t)utudx+Ω2tutRfdx\displaystyle\quad-\int_{\Omega}2\partial_{t}u(\partial_{t}A(x,t)\cdot\nabla u)dx-\int_{\Omega}2\partial_{t}p(x,t)u\partial_{t}udx+\int_{\Omega}2\partial_{t}u\partial_{t}Rfdx
Ω(A(x,t)ν)|tu|2𝑑S\displaystyle\quad-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS
C(ΩA0(x,t)|tu|2𝑑x+Ω|u|2𝑑x+Ω|tA(x,t)u|2𝑑x+Ω|tRf|2𝑑x)\displaystyle\leq C\left(\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}A(x,t)\cdot\nabla u|^{2}dx+\int_{\Omega}|\partial_{t}Rf|^{2}dx\right)
Ω(A(x,t)ν)|tu|2𝑑S.\displaystyle\quad-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS.

Adding ddtΩ|u|2𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}|u|^{2}dx to the both sides of the above estimate, we obtain

(5.1) ddt(ΩA0(x,t)|tu|2𝑑x+Ω|u|2𝑑x)\displaystyle\frac{d}{dt}\left(\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx\right)
C(ΩA0(x,t)|tu|2dx+Ω|u|2dx+Ω|tA(x,t)u|2dx\displaystyle\leq C\bigg{(}\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}A(x,t)\cdot\nabla u|^{2}dx
+Ω|tRf|2dx)+Ω2|u||tu|dxΩ(A(x,t)ν)|tu|2dS\displaystyle\quad+\int_{\Omega}|\partial_{t}Rf|^{2}dx\bigg{)}+\int_{\Omega}2|u||\partial_{t}u|dx-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS
C(ΩA0(x,t)|tu|2dx+Ω|u|2dx+Ω|tA(x,t)u|2dx\displaystyle\leq C\bigg{(}\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}A(x,t)\cdot\nabla u|^{2}dx
+Ω|tRf|2dx)Ω(A(x,t)ν)|tu|2dS,\displaystyle\quad+\int_{\Omega}|\partial_{t}Rf|^{2}dx\bigg{)}-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS,

which implies

ddt(eCtΩ(A0(x,t)|tu|2+|u|2)𝑑x)\displaystyle\frac{d}{dt}\left(e^{-Ct}\int_{\Omega}\Big{(}A^{0}(x,t)|\partial_{t}u|^{2}+|u|^{2}\Big{)}dx\right)
eCt(CΩ(|tA(x,t)u|2+|tRf|2)𝑑xΩ(A(x,t)ν)|tu|2𝑑S).\displaystyle\leq e^{-Ct}\left(C\int_{\Omega}\Big{(}|\partial_{t}A(x,t)\cdot\nabla u|^{2}+|\partial_{t}Rf|^{2}\Big{)}dx-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS\right).

Integrating over (0,t)(0,t) for tTt\leq T yields

E(t)C(E(0)+Q|tA(x,t)u|2𝑑x𝑑t+Ω|f|2𝑑x).E(t)\leq C\left(E(0)+\int_{Q}|\partial_{t}A(x,t)\cdot\nabla u|^{2}dxdt+\int_{\Omega}|f|^{2}dx\right).

Since, using the equation (2.6), we obtain

(5.2) E(0)CΩ|f|2𝑑x,E(0)\leq C\int_{\Omega}|f|^{2}dx,

we prove (3.7).

Moreover, if we assume the assumption (2.5), then there exists C>0C>0 such that for all (x,t)Q¯(x,t)\in\overline{Q},

|tA(x,t)u|2C|A(x,t)u|2.|\partial_{t}A(x,t)\cdot\nabla u|^{2}\leq C|A(x,t)\cdot\nabla u|^{2}.

Therefore, applying the above inequality to (5.1) and using the equation in (2.6) yield

ddt(ΩA0(x,t)|tu|2𝑑x+Ω|u|2𝑑x)\displaystyle\frac{d}{dt}\left(\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx\right)
C(ΩA0(x,t)|tu|2𝑑x+Ω|u|2𝑑x+Ω|tRf|2𝑑x+Ω|Rf|2𝑑x)\displaystyle\leq C\left(\int_{\Omega}A^{0}(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}Rf|^{2}dx+\int_{\Omega}|Rf|^{2}dx\right)
Ω(A(x,t)ν)|tu|2𝑑S,\displaystyle\quad-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS,

which implies

ddt(eCtΩ(A0(x,t)|tu|2+|u|2)𝑑x)\displaystyle\frac{d}{dt}\left(e^{-Ct}\int_{\Omega}\Big{(}A^{0}(x,t)|\partial_{t}u|^{2}+|u|^{2}\Big{)}dx\right)
eCt(CΩ(k=01|tkR|2)|f|2𝑑xΩ(A(x,t)ν)|tu|2𝑑S).\displaystyle\leq e^{-Ct}\left(C\int_{\Omega}\Big{(}\sum_{k=0}^{1}|\partial_{t}^{k}R|^{2}\Big{)}|f|^{2}dx-\int_{\partial\Omega}(A(x,t)\cdot\nu)|\partial_{t}u|^{2}dS\right).

Integrating over (0,t)(0,t) for tTt\leq T yields

E(t)C(E(0)+Ω|f|2𝑑x).E(t)\leq C\left(E(0)+\int_{\Omega}|f|^{2}dx\right).

By (5.2), we complete the proof. ∎

5.3. Proof of Lemma 3.4

Proof of Lemma 3.4.

Differentiating the equation with respect to tt yields

A0(x)t2u+A(x)tu+p(x,t)tu+tp(x,t)u=tR(x,t)F(x).A^{0}(x)\partial_{t}^{2}u+A(x)\cdot\nabla\partial_{t}u+p(x,t)\partial_{t}u+\partial_{t}p(x,t)u=\partial_{t}R(x,t)\cdot F(x).

Multiplying 2tu2\partial_{t}u to the above equation and integrating over Ω\Omega yield

ΩA0(x)t(|tu|2)dx+ΩA(x)(|tu|2)dx\displaystyle\int_{\Omega}A^{0}(x)\partial_{t}(|\partial_{t}u|^{2})dx+\int_{\Omega}A(x)\cdot\nabla(|\partial_{t}u|^{2})dx
+Ω2p(x,t)|tu|2𝑑x+Ω2tp(x,t)utudx\displaystyle+\int_{\Omega}2p(x,t)|\partial_{t}u|^{2}dx+\int_{\Omega}2\partial_{t}p(x,t)u\partial_{t}udx =Ω2tutR(x,t)F(x)dx.\displaystyle=\int_{\Omega}2\partial_{t}u\partial_{t}R(x,t)\cdot F(x)dx.

Integration by parts yields

ddtΩA0(x)|tu|2𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}A^{0}(x)|\partial_{t}u|^{2}dx
=Ω(A(x)2p(x,t))|tu|2𝑑xΩ2tp(x,t)utudx+Ω2tutRFdx\displaystyle=\int_{\Omega}(\nabla\cdot A(x)-2p(x,t))|\partial_{t}u|^{2}dx-\int_{\Omega}2\partial_{t}p(x,t)u\partial_{t}udx+\int_{\Omega}2\partial_{t}u\partial_{t}R\cdot Fdx
Ω(A(x)ν)|tu|2𝑑S\displaystyle\quad-\int_{\partial\Omega}(A(x)\cdot\nu)|\partial_{t}u|^{2}dS
C(ΩA0(x)|tu|2𝑑x+Ω|u|2𝑑x+Ω|tRF|2𝑑x)Ω(A(x)ν)|tu|2𝑑S.\displaystyle\leq C\left(\int_{\Omega}A^{0}(x)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}R\cdot F|^{2}dx\right)-\int_{\partial\Omega}(A(x)\cdot\nu)|\partial_{t}u|^{2}dS.

Adding ddtΩ|u|2𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}|u|^{2}dx to the both sides of the above estimate, we obtain

ddt(ΩA0(x)|tu|2𝑑x+Ω|u|2𝑑x)\displaystyle\frac{d}{dt}\left(\int_{\Omega}A^{0}(x)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx\right)
C(ΩA0(x)|tu|2𝑑x+Ω|u|2𝑑x+Ω|tRF|2𝑑x)+Ω2|u||tu|𝑑x\displaystyle\leq C\left(\int_{\Omega}A^{0}(x)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}R\cdot F|^{2}dx\right)+\int_{\Omega}2|u||\partial_{t}u|dx
Ω(A(x)ν)|tu|2𝑑S\displaystyle\quad-\int_{\partial\Omega}(A(x)\cdot\nu)|\partial_{t}u|^{2}dS
C(ΩA0(x)|tu|2𝑑x+Ω|u|2𝑑x+Ω|tRF|2𝑑x)Ω(A(x)ν)|tu|2𝑑S,\displaystyle\leq C\left(\int_{\Omega}A^{0}(x)|\partial_{t}u|^{2}dx+\int_{\Omega}|u|^{2}dx+\int_{\Omega}|\partial_{t}R\cdot F|^{2}dx\right)-\int_{\partial\Omega}(A(x)\cdot\nu)|\partial_{t}u|^{2}dS,

which implies

ddt(eCtΩ(A0(x)|tu|2+|u|2)𝑑x)\displaystyle\frac{d}{dt}\left(e^{-Ct}\int_{\Omega}\Big{(}A^{0}(x)|\partial_{t}u|^{2}+|u|^{2}\Big{)}dx\right)
eCt(CΩ|tRF|2𝑑xΩ(A(x)ν)|tu|2𝑑S).\displaystyle\leq e^{-Ct}\left(C\int_{\Omega}|\partial_{t}R\cdot F|^{2}dx-\int_{\partial\Omega}(A(x)\cdot\nu)|\partial_{t}u|^{2}dS\right).

Integrating over (0,t)(0,t) for tTt\leq T yields

E(t)C(E(0)+Ω|F|2𝑑x).E(t)\leq C\left(E(0)+\int_{\Omega}|F|^{2}dx\right).

Since, using the equation in (3.9), we obtain

E(0)CΩ|F|2𝑑x,E(0)\leq C\int_{\Omega}|F|^{2}dx,

we prove (3.10). ∎

Acknowledgment

This work was supported in part by Grant-in-Aid for JSPS Fellows Grant Number JP20J11497, and Istituto Nazionale di Alta Matematica (INδ\deltaAM), through the GNAMPA Research Project 2020. Istituto Nazionale di Alta Matematica (INδ\deltaAM), through the GNAMPA Research Project 2020, titled “Problemi inversi e di controllo per equazioni di evoluzione e loro applicazioni”, coordinated by the first author. Moreover, this research was performed in the framework of the French-German-Italian Laboratoire International Associé (LIA), named COPDESC, on Applied Analysis, issued by CNRS, MPI, and INδ\deltaAM, during the INδ\deltaAM Intensive Period-2019, “Shape optimization, control and inverse problems for PDEs”, held in Napoli in May-June-July 2019.

This paper owes much to the thoughtful and helpful comments of Professor Piermarco Cannarsa (University of Rome “Tor Vergata”) and Professor Masahiro Yamamoto (The University of Tokyo). In particular, we thank Prof. Cannarsa to have suggested to us that the inequality (2.5) imply a precise exponential structure for the coefficient A(x,t)A(x,t) (that we showed in Proposition 2.10). Moreover, we are extremely grateful to Prof. Yamamoto to have fully read a draft of this paper and to have given us a lot of pieces of advice to make it more clear and readable.

References

  • [1] C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.
  • [2] M. Bellassoued and M. Yamamoto. Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems. Springer Japan, Tokyo, 2017.
  • [3] A. Bressan. Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem. Oxford lecture series in mathematics and its applications. Oxford University Press, 2000.
  • [4] A. L. Bukhgeim and M. V. Klibanov. Global uniqueness of class of multidimensional inverse problems. Soviet Math. Dokl., 24(2):244–247, 1981.
  • [5] P. Cannarsa, G. Floridia, F. Gölgeleyen, and M. Yamamoto. Inverse coefficient problems for a transport equation by local Carleman estimate. Inverse Problems, 35(10):22pp, 2019.
  • [6] P. Cannarsa, G. Floridia, and M. Yamamoto. Observability inequalities for transport equations through Carleman estimates. Springer INdAM Series, 32:69–87, 2019.
  • [7] P. Cannarsa, P. Martinez, and J. Vancostenoble. Global Carleman Estimates for Degenerate Parabolic Operators with Applications, volume 239. Memoirs of the American Mathematical Society, Providence, 2016.
  • [8] T. Carleman. Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys., 2B:1–9, 1939.
  • [9] F. W. Chaves-Silva, L. Rosier, and E. Zuazua. Null controllability of a system of viscoelasticity with a moving control. Journal des Mathematiques Pures et Appliquees, 101(2):198–222, 2014.
  • [10] C. Esteve and E. Zuazua. The inverse problem for Hamilton–Jacobi equations and semiconcave envelopes. SIAM J. Math. Anal., 52(6):5627–5657, 2020.
  • [11] L. C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edition, 2010.
  • [12] G Floridia and H. Takase. Observability inequalities for degenerate transport equations. to appear in Journal of Evolution Equations.
  • [13] X. Fu, Q. Lü, and X. Zhang. Carleman Estimates for Second Order Hyperbolic Operators and Applications. Springer, Cham, 2019.
  • [14] A. V. Fursikov and O. Y. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series - Seoul National University, Research Institute of Mathematics, Global Analysis Research Center. Seoul National University, 1996.
  • [15] P. Gaitan and H. Ouzzane. Inverse problem for a free transport equation using Carleman estimates. Applicable Analysis, 93(5):1073–1086, 2014.
  • [16] F. Gölgeleyen and M. Yamamoto. Stability for some inverse problems for transport equations. SIAM J. Math. Anal., 48(4):2319–2344, 2016.
  • [17] H. Holden, F. S. Priuli, and N. H. Risebro. On an inverse problem for scalar conservation laws. Inverse Problems, 30:35pp, 2014.
  • [18] X. Huang, O. Yu. Imanuvilov, and M. Yamamoto. Stability for inverse source problems by Carleman estimates. Inverse Problems, 36:20pp, 2020.
  • [19] V. Isakov. Inverse Problems for Partial Differential Equations. Springer International Publishing, Cham, 3rd edition, 2017.
  • [20] D. Jiang, Y. Liu, and M. Yamamoto. Inverse source problem for the hyperbolic equation with a time-dependent principal part. Journal of Differential Equations, 262(1):653–681, 2017.
  • [21] F. John. Partial Differential Equations. Springer-Verlag New York Inc., New York, 3rd edition, 1978.
  • [22] S. I. Kabanikhin, D. V. Klychinskiy, I. M. Kulikov, N. S. Novikov, and M. A. Shishlenin. Direct and inverse problems for conservation laws. Continuum mechanics, applied mathematics and scientific computing: Godunov’s legacy, pages 217–222, 2020.
  • [23] H. Kang and K. Tanuma. Inverse problems for scalar conservation laws. Inverse Problems, 21:1047–1059, 2005.
  • [24] A. Katchalov, Y. Kurylev, and M. Lassas. Inverse Boundary Spectral Problems. CRC Press, 2001.
  • [25] M. V. Klibanov. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. Journal of Inverse and Ill-Posed Problems, 21(4):477–560, 2013.
  • [26] M. V. Klibanov and S. E. Pamyatnykh. Lipschitz stability of a non-standard problem for the non-stationary transport equation via a Carleman estimate. Inverse Problems, 22(3):881–890, 2006.
  • [27] M. V. Klibanov and S. E. Pamyatnykh. Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate. Journal of Mathematical Analysis and Applications, 343(1):352–365, 2008.
  • [28] M. V. Klibanov and M. Yamamoto. Exact controllability for the time dependent transport equation. SIAM J. Control Optim., 46(6):2071–2195, 2007.
  • [29] R-Y. Lai and Q. Li. Parameter reconstructions for general transport equation. SIAM J. Math. Anal., 52(3):2734–2758, 2020.
  • [30] M. M. Lavrentiev, V. G. Romanov, and S. P. Shishatskij. Ill-posed Problems of Mathematical Physics and Analysis. American Mathematical Society, 1980.
  • [31] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Communications in Partial Differential Equations, 20(1-2):335–356, 1995.
  • [32] M. Machida and M. Yamamoto. Global Lipschitz stability in determining coefficients of the radiative transport equation. Inverse Problems, 30(3):16pp, 2014.
  • [33] M. Machida and M. Yamamoto. Global Lipschitz stability for inverse problems for radiative transport equations. arXiv:2009.042771, page 17pp, 2020.
  • [34] A. Porretta and E. Zuazua. Null controllability of viscous Hamilton–Jacobi equations. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 29(3):301–333, 2012.
  • [35] J. Rauch. Hyperbolic Partial Differential Equation and Geometric Optics. American Mathematical Society, Providence, 2012.
  • [36] H. Ringström. The Cauchy Problem in General Relativity. ESI lectures in mathematics and physics. European Mathematical Society, Zürich, 2009.
  • [37] V. A. Sharafutdinov. Integral Geometry of Tensor Fields. Inverse and ill-posed problems series. VSP, 1994.
  • [38] H. Takase. Inverse source problem for a system of wave equations on a Lorentzian manifold. Communications in Partial Differential Equations, 45(10):1414–1434, 2020.
  • [39] M. E. Taylor. Partial Differential Equations III. Springer, New York, 2011.
  • [40] M. Yamamoto. Carleman estimates for parabolic equations and applications. Inverse Problems, 25(12):75pp, 2009.
  • [41] J. Yu, Y. Liu, and M. Yamamoto. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction. Inverse Problems, 34(4), 2018.