This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

prop@alttheorem \newaliascntlem@alttheorem \newaliascntcoroll@alttheorem \newaliascntdefi@alttheorem \newaliascntquest@alttheorem \newaliascntfact@alttheorem \newaliascntrem@alttheorem \newaliascntexa@alttheorem

Intrinsically Lipschitz graphs on semidirect products of groups

Daniela Di Donato
Abstract.

In the metric spaces, we give some equivalent conditions of intrinsically Lipschitz maps introduce by Franchi, Serapioni and Serra Cassano in subRiemannian Carnot groups. Unlike what happens in the Carnot groups, in our context intrinsic dilation do not exist but we can prove the same results using the Lipschitz property of the projection maps.

Key words and phrases:
Lipschitz graphs, Lie group, metric group, left-invariant distance
Mathematics Subject Classification:
53C17, 26A16, 51F30, 54E35.

0. Introduction

The notion of intrinsically Lipschitz maps was introduced by Franchi, Serapioni and Serra Cassano [FSSC01, FSSC03b, FSSC03a] (see also [SC16, FS16]) in the context of Heisenberg groups and then in the more general Carnot groups in order to give a good notion of rectifiable sets inside these particular metric spaces. This is because Ambrosio and Kirchheim [AK00] show that the classical definition using Lipschitz maps given by Federer [Fed69] does not work in subRiemannian Carnot groups [ABB19, BLU07, CDPT07].

Recently, Le Donne and the author generalize the concept of intrinsically Lipschitz maps in metric spaces [DDLD22]. The difference between the two approaches is that Franchi, Serapioni and Serra Cassano study the properties of intrinsically Lipschitz maps; while we study the ”sections” or rather the properties of the graphs that are intrinsic Lipschitz.

In a similar way of Euclidean case, Franchi, Serapioni and Serra Cassano introduce a suitable definition of intrinsic cones which is deep different to Euclidean cones and then they say that a map φ\varphi is intrinsic Lipschitz if for any pgraph(φ)p\in\mbox{graph}(\varphi) it is possible to consider an intrinsic cone 𝒞\mathcal{C} with vertex on pp such that

𝒞graph(φ)=.\mathcal{C}\cap\mbox{graph}(\varphi)=\emptyset.

Roughly speaking, in the new approach studied in [DDLD22] a section ψ\psi is such that graph(φ)=ψ(Y)X\mbox{graph}(\varphi)=\psi(Y)\subset X where XX is a metric space and YY is a topological space. We prove some relevant properties as the Ahlfors regularity, the Ascoli-Arzelá Theorem, the Extension theorem, etc. in the context of metric spaces. Following this idea, the author introduce other two natural definitions: intrinsically Hölder sections [DD22a] and intrinsically quasi-isometric sections [DD22b] in metric spaces.

The purpose of this note is to give some equivalent conditions of intrinsically Lipschitz maps in the context of metric groups. More precisely, the main results are Proposition 2.1, Theorem 2.1 and Proposition 3. These results are proved by Franchi and Serapioni [FS16] in the context of Carnot groups; they use the properties given by the intrinsic dilations structure that do not exist in metric groups.

In particular, the term metric group means that we are considering a topological group equipped with a left-invariant distance that induces the topology. In particular, when considering a metric Lie group, the distance would induce the manifold topology.

We shall considering groups that have the structure of semidirect product of two groups. That is we consider groups of the form G=NHG=N\rtimes H where NN and HH are two groups and HH acts on NN by automorphisms. Equivalently, the subgroup NN is normal within NHN\rtimes H, and NH={1}N\cap H=\{1\}.

Another difference between metric groups and more specific Carnot groups is that, in the first setting, the projection map πN:NHN\pi_{N}:N\rtimes H\to N is Lipschitz at 11, i.e.,

(1) d(1,πN(g))Kd(1,g),gG.d(1,\pi_{N}(g))\leq Kd(1,g),\qquad\forall g\in G.

On the other hand, if G=NHG=N\rtimes H is a metric group this is not true (see Remark 6.2 in [DDLD22]) but this Lipschitz property of the projection gives some good properties in order to obtain the same statements in this more general case where the intrinsic dilations structure does not exist.

Acknowledgements. Part of this research was done while the author was visiting prof. Le Donne at the University of Fribourg. The excellent work atmosphere is acknowledged.

1. Notation

1.1. Intrinsic graphs

Let NHN\rtimes H be a semidirect product of groups. Given a subset ENE\subset N and a map φ:ENH\varphi:E\subset N\to H we call the intrinsic graphing map of φ\varphi the map Φ:ENNH\Phi:E\subset N\to N\rtimes H defined as

(2) Φ(n):=nφ(n),nE.\Phi(n):=n\cdot\varphi(n),\quad\forall n\in E.

Moreover, we call the set

Γφ:={nφ(n)|nE}=Φ(E),\Gamma_{\varphi}:=\{n\cdot\varphi(n)\,|\,n\in E\}=\Phi(E),

the intrinsic graph of φ\varphi, which in other words is the graph of the intrinsic graphing function Φ\Phi.

A subset SNHS\subset N\rtimes H is called an intrinsic graph, or an intrinsic (N,H)(N,H)-graph, if the structure of semidirect product is not clear, if there is φ:ENH\varphi:E\subset N\to H such that S=ΓφS=\Gamma_{\varphi}. Clearly, we have that S=Φ(E)S=\Phi(E) is equivalent to S=ΓφS=\Gamma_{\varphi}. If φ:NH\varphi:N\to H is defined on whole of NN, we say that S=ΓφS=\Gamma_{\varphi} is an entire intrinsic graph.

By uniqueness of the components along NN and HH, if S=ΓφS=\Gamma_{\varphi} then φ\varphi is uniquely determined among all functions from NN to HH. Indeed, the set EE equals πN(S)\pi_{N}(S) and for all nNn\in N we have that φ(n)=πH(n).\varphi(n)=\pi_{H}(n).

Proposition \theprop@alt.

The concept of intrinsic graph is preserved by left translation: For every qGq\in G, a set SNHS\subseteq N\rtimes H is an intrinsic graph if and only if qSqS is an intrinsic graph. More precisely, for each qGq\in G and φ:ENH\varphi:E\subset N\to H, if we consider the set

(3) Eq:={nN:πN(q1n)E}E_{q}:=\{n\in N\,:\,\pi_{N}(q^{-1}n)\in E\}

and the map φq:EqH\varphi_{q}:E_{q}\to H defined as

(4) φq(n):=(πH(q1n))1φ(πN(q1n)), for all nEq,\varphi_{q}(n):=(\pi_{H}(q^{-1}n))^{-1}\varphi(\pi_{N}(q^{-1}n)),\quad\mbox{ for all }n\in E_{q},

then

Lq(Γφ)=Γφq.L_{q}(\Gamma_{\varphi})=\Gamma_{\varphi_{q}}.
Proof.

Fix qGq\in G, then

Γφq\displaystyle\Gamma_{\varphi_{q}} ={nφq(n):nEq}\displaystyle=\{n\varphi_{q}(n)\,:\,n\in E_{q}\}
={n(πH(q1n))1φ(πN(q1n)):nEq}\displaystyle=\{n(\pi_{H}(q^{-1}n))^{-1}\varphi(\pi_{N}(q^{-1}n))\,:\,n\in E_{q}\}
={n[n1qπN(q1n)]φ(πN(q1n)):πN(q1n)E}\displaystyle=\{n[n^{-1}q\pi_{N}(q^{-1}n)]\varphi(\pi_{N}(q^{-1}n))\,:\,\pi_{N}(q^{-1}n)\in E\}
=Lq(Γφ),\displaystyle=L_{q}(\Gamma_{\varphi}),

as desired. ∎

We observe that if qΓφq\in\Gamma_{\varphi} then φq1(1)=1\varphi_{q^{-1}}(1)=1 and, from the continuity of the projections πN\pi_{N} and πH\pi_{H}, it follows that the continuity of a function is preserved by translations. Precisely given qGq\in G and φ:NH\varphi:N\to H, then the translated function φq\varphi_{q} is continuous in nNn\in N if and only if the function φ\varphi is continuous in the corresponding point πN(q1n)\pi_{N}(q^{-1}n). Moreover, for any p,qGp,q\in G it follows that

(φp)q=φqp(\varphi_{p})_{q}=\varphi_{q\cdot p}

indeed, by Proposition 1.1, Γ(φp)q=Lq(Γφp)=Lq(Lp(Γφ))=Lqp(Γφ).\Gamma_{(\varphi_{p})_{q}}=L_{q}(\Gamma_{\varphi_{p}})=L_{q}(L_{p}(\Gamma_{\varphi}))=L_{q\cdot p}(\Gamma_{\varphi}). Consequently, (φp)p1=φp1p=φ.(\varphi_{p})_{p^{-1}}=\varphi_{p^{-1}\cdot p}=\varphi.

Remark \therem@alt.

Let (G=NH,d)(G=N\rtimes H,d) be a metric group and let φ:NH\varphi:N\to H be a continuous map. Then,

dist(p,Γφ)d(1,πH(p)1φ(πN(p))),pG,{\rm dist}(p,\Gamma_{\varphi})\leq d(1,\pi_{H}(p)^{-1}\varphi(\pi_{N}(p))),\quad\forall p\in G,

where dist(p,Γφ):=inf{d(p,q):qΓφ}.{\rm dist}(p,\Gamma_{\varphi}):=\inf\{d(p,q)\,:\,q\in\Gamma_{\varphi}\}. This follows by left invariance of dd; indeed, for any pGp\in G we have that

dist(p,Γφ)d(p,πN(p)φ(πN(p)))=d(πH(p),φ(πN(p)))=d(1,πH(p)1φ(πN(p))).\displaystyle{\rm dist}(p,\Gamma_{\varphi})\leq d(p,\pi_{N}(p)\varphi(\pi_{N}(p)))=d(\pi_{H}(p),\varphi(\pi_{N}(p)))=d(1,\pi_{H}(p)^{-1}\varphi(\pi_{N}(p))).

1.2. Intrinsically Lipschitz maps: History

Regarding Carnot groups, different notions of rectifiability have been proposed in the literature:

  1. (1)

    Rectifiability using images of Lipschitz maps defined on subsets of d\mathbb{R}^{d};

  2. (2)

    Lipschitz image rectifiability, using homogeneous subgroups;

  3. (3)

    Intrinsic Lipschitz graphs rectifiability;

  4. (4)

    Rectifiability using intrinsic C1C^{1} surfaces.

The first approach (1) is a general metric space approach, given by Federer in [Fed69]. He states that a dd-dimensional rectifiable set in a Carnot group 𝔾\mathbb{G} is essentially covered by the images of Lipschitz maps from d\mathbb{R}^{d} to a Carnot group 𝔾\mathbb{G}. Unfortunately, this definition is too restrictive because often there are only rectifiable sets of measure zero (see [AK00, Mag04]).

Another metric space approach but more fruitful than (1)(1) in the setting of groups is given by Pauls [Pau04] (see (2)). It is called Lipschitz image (LI) rectifiability. Pauls considers images in 𝔾\mathbb{G} of Lipschitz maps defined not on d\mathbb{R}^{d} but on subset of homogeneous subgroups of 𝔾.\mathbb{G}.

Intrinsic Lipschitz graphs (iLG) rectifiability (3)(3) and the notion of intrinsic C1C^{1} surfaces (4)(4) were both introduced by Franchi, Serapioni, Serra Cassano. In this paper we focus our attemption on the concept (3)(3) which we will introduce in the next section. Moreover, the notion (4)(4) adapting to groups De Giorgi’s classical technique valid in Euclidean spaces to show that the boundary of a finite perimeter set can be seen as a countable union of C1C^{1} regular surfaces. A set SS is a dd-codimensional intrinsic C1C^{1} surface (4)(4) if there exists a continuous function f:𝔾df:\mathbb{G}\to\mathbb{R}^{d} such that, locally,

S={p𝔾:f(p)=0},S=\{p\in\mathbb{G}:f(p)=0\},

and the horizontal jacobian of ff has maximum rank, locally.

The approaches (2)(2) and (3)(3) are natural counterparts of the notions of rectifiability in Euclidean spaces, where their equivalence is trivial. Hence it is surprising that the connection between iLG and LI rectifiability is poorly understood already in Carnot groups of step 2.

In [ALD20], Antonelli and Le Donne prove that these two definitions are different in general; their example is for a Carnot group of step 33. The paper [DDFO21] makes progress towards the implication iLGs are LI rectifiable in n\mathbb{H}^{n}. We proved that C1,αC^{1,\alpha}-surfaces are LI rectifiable, where C1,αC^{1,\alpha}-surfaces are intrinsic C1C^{1} ones whose horizontal normal is α\alpha-Hölder continuous.

1.3. Intrinsically Lipschitz maps: Definition

Let (G=NH,d)(G=N\rtimes H,d) be a metric group. For a map ψ:NH\psi:N\to H we say that ψ\psi is an intrinsically Lipschitz map in the FSSC sense if exists K>0K>0 such that

(5) d(1,πH(x1x))Kd(1,πN(x1x)),x,xΓψ.d(1,\pi_{H}(x^{-1}x^{\prime}))\leq Kd(1,\pi_{N}(x^{-1}x^{\prime})),\qquad\forall x,x^{\prime}\in\Gamma_{\psi}.

Regarding the bibliography, the reader can read [ASCV06, ADDDLD20, BCSC15, BSC10a, BSC10b, CMPSC14, Cor20, CM20, DD20a, DD20b, FMS14, FSSC11, JNGV20, Mag13, MV12, Vit20].

The idea of this paper is to generalize some properties proved in Carnot groups in metric groups using the additional hypothesis that the projection map πN:NHN\pi_{N}:N\rtimes H\to N is Lipschitz at 1G1_{G} (see (1)). In order to do this, we conclude this section give some equivalent conditions of this fact.

Proposition \theprop@alt ([DDLD22]).

Let (G=NH,d)(G=N\rtimes H,d) be a metric group. The following conditions are equivalent:

  1. (1)

    there is C1>0C_{1}>0 such that πH:NHH\pi_{H}:N\rtimes H\to H is a C1C_{1}-Lipschitz map, i.e.,

    d(πH(g),πH(p))C1d(g,p),g,pG;d(\pi_{H}(g),\pi_{H}(p))\leq C_{1}d(g,p),\quad\forall g,p\in G;
  2. (2)

    there is C2>0C_{2}>0 such that

    d(1,πH(g))+d(1,πN(g))C2d(1,g),gG;d(1,\pi_{H}(g))+d(1,\pi_{N}(g))\leq C_{2}d(1,g),\quad\forall g\in G;
  3. (3)

    there is C3>0C_{3}>0 such that πN\pi_{N} is C3C_{3}-Lipschitz at 11, i.e.,

    d(1,πN(g))C3d(1,g),gG;d(1,\pi_{N}(g))\leq C_{3}d(1,g),\quad\forall g\in G;
  4. (4)

    there is C4>0C_{4}>0 such that

    d(1,πH(g))C4d(1,g),gG;d(1,\pi_{H}(g))\leq C_{4}d(1,g),\quad\forall g\in G;
  5. (5)

    there is C5>0C_{5}>0 such that

    d(1,πN(g))C5dist(g1,H),gG;d(1,\pi_{N}(g))\leq C_{5}{\rm dist}(g^{-1},H),\quad\forall g\in G;

2. Intrinsic cones

2.1. Intrinsic cones

In this section, we present two definitions of cone which generalize the ones given by Franchi, Serapioni and Serra Cassano in the context of Carnot groups. The reader can see [SC16, FS16] and their references. In particular, Definition 2.1 is more general than Definition 2.1 because it does not require that HH is a complemented subgroup. Proposition 2.1 states that the equivalence of these two definitions when πH\pi_{H} is a Lipschitz map.

Definition \thedefi@alt (Intrinsic cone).

Let (G,d)(G,d) be a metric group and let HH be a subgroup of G.G. The cones XH(α)X_{H}(\alpha) with axis HH, vertex 11, opening α[0,1]\alpha\in[0,1] are defined as

XH(α)={gG:dist(g1,H)αd(1,g)}.X_{H}(\alpha)=\{g\in G\,:\,{\rm dist}(g^{-1},H)\leq\alpha d(1,g)\}.

where dist(g,H):=inf{d(1,gq):qH}(g,H):=\inf\{d(1,gq)\,:\,q\in H\}. For any pG,p\in G, pXH(α)p\cdot X_{H}(\alpha) is the cone with base N,N, axis H,H, vertex p,p, opening α.\alpha.

Remark \therem@alt.

Notice that G=XH(1)G=X_{H}(1) and XH(0)=H.X_{H}(0)=H.

Definition \thedefi@alt (Intrinsic cone).

Let (NH,d)(N\rtimes H,d) be a metric group, qNHq\in N\rtimes H and α0\alpha\geq 0. We define the cones CN,H(α)C_{N,H}(\alpha) with base N,N, axis H,H, vertex 1,1, opening α\alpha as following

CN,H(α):={pG:d(1,πN(p))αd(1,πH(p))},C_{N,H}(\alpha):=\{p\in G\,:\,d(1,\pi_{N}(p))\leq\alpha d(1,\pi_{H}(p))\},

and pCN,H(α)p\cdot C_{N,H}(\alpha) is the cone with base N,N, axis H,H, vertex p,p, opening α.\alpha.

Remark \therem@alt.

Notice that H=CN,H(0),H=C_{N,H}(0), NH=α>0CN,H(α)¯N\rtimes H=\overline{\cup_{\alpha>0}C_{N,H}(\alpha)} and CN,H(α1)CN,H(α2)C_{N,H}(\alpha_{1})\subset C_{N,H}(\alpha_{2}) for α1<α2.\alpha_{1}<\alpha_{2}.

Remark \therem@alt.

Let pCN,H(α)p\in C_{N,H}(\alpha) and kk\in\mathbb{N} with k2.k\geq 2. Then pkCN,H(k2+k(α1)).p^{k}\in C_{N,H}(k^{2}+k(\alpha-1)). Indeed, for p=nhp=nh with hHh\in H and nNn\in N, an explicit computation gives that

πH(pk)=hkandπN(pk)=nj=1k1Chj(n),\pi_{H}(p^{k})=h^{k}\quad\mbox{and}\quad\pi_{N}(p^{k})=n\prod_{j=1}^{k-1}C_{h^{j}}(n),

and, consequently,

d(1,πN(pk))kd(1,n)+2j=1k1jd(1,h)[k2+k(α1)]d(1,h),d(1,\pi_{N}(p^{k}))\leq kd(1,n)+2\sum_{j=1}^{k-1}jd(1,h)\leq[k^{2}+k(\alpha-1)]d(1,h),

i.e., pkCN,H(k2+k(α1)),p^{k}\in C_{N,H}(k^{2}+k(\alpha-1)), as wished.

Before to investigate regarding the equivalence between these two definitions we present a result which we will use in Section 3:

Proposition \theprop@alt ([DDLD22]).

Let G=NHG=N\cdot H be a metric group such that πN\pi_{N} is kk-Lipschitz at 11. Let ψ:NH\psi:N\to H, nNn\in N and p=nφ(n).p=n\varphi(n). Then the following statements are equivalent:

  1. (1)

    φ\varphi is intrinsically LL-Lipschitz at point nNn\in N with respect to dd and with constant L>0;L>0;

  2. (2)

    for all L^(k+1)L,\hat{L}\geq(k+1)L, it holds

    pXH(1/L^)Γφ=,p\cdot X_{H}(1/\hat{L})\cap\Gamma_{\varphi}=\emptyset,

    where pXH(α)p\cdot X_{H}(\alpha) is the cone with axis H,H, vertex p,p, opening α\alpha defined as the translation of

    XH(α)={gG:dist(1,gH)<αd(1,g)}X_{H}(\alpha)=\{g\in G\,:\,{\rm dist}(1,gH)<\alpha d(1,g)\}

    where dist(1,gH):=inf{d(1,gq):qH}(1,gH):=\inf\{d(1,gq)\,:\,q\in H\}.

Locally, the intrinsic cone pCN,H(β)p\cdot C_{N,H}(\beta) is equivalent to pXH(α)p\cdot X_{H}(\alpha) when πH\pi_{H} is a Lipschitz map:

Proposition \theprop@alt.

Assume that (G=NH,d)(G=N\rtimes H,d) is a metric group, pGp\in G and πH:GH\pi_{H}:G\to H is a CC-Lipschitz map. Then, for any 0<α1<1C+10<\alpha_{1}<\frac{1}{C+1} there is β1>0\beta_{1}>0 such that locally

pXH(α1)pCN,H(β1),p\cdot X_{H}(\alpha_{1})\subset p\cdot C_{N,H}(\beta_{1}),

and for any 0<β2<1C0<\beta_{2}<\frac{1}{C} there is α2(0,1)\alpha_{2}\in(0,1) such that locally

pCN,H(β2)pXH(α2).p\cdot C_{N,H}(\beta_{2})\subset p\cdot X_{H}(\alpha_{2}).
Proof.

It is enough to prove the claim with p=1p=1 because of the left translation of the distance d.d.

We prove the first inclusion. Let gXH(α1),g\in X_{H}(\alpha_{1}), i.e., dist(g1,H)α1d(1,g).\mbox{dist}(g^{-1},H)\leq\alpha_{1}d(1,g). Using Proposition 1.3 (5) and noting C5=C+1,C_{5}=C+1, we have that

d(1,πN(g))\displaystyle d(1,\pi_{N}(g)) C5dist(g1,H)α1C5d(1,g)α1(C+1)(d(1,πN(g))+d(1,πH(g))).\displaystyle\leq C_{5}{\rm dist}(g^{-1},H)\leq\alpha_{1}C_{5}d(1,g)\leq\alpha_{1}(C+1)(d(1,\pi_{N}(g))+d(1,\pi_{H}(g))).

Hence we can choose β1\beta_{1} so that β1α1(C+1)1α1(C+1).\beta_{1}\geq\frac{\alpha_{1}(C+1)}{1-\alpha_{1}(C+1)}. Consequently, gCN,H(β1),g\in C_{N,H}(\beta_{1}), as desired.

Now we prove the second inclusion. Let gCN,H(β2),g\in C_{N,H}(\beta_{2}), i.e., d(1,πN(g))β2d(1,πH(g)).d(1,\pi_{N}(g))\leq\beta_{2}d(1,\pi_{H}(g)). Then, by Proposition 1.3 (4)

dist(g1,H)\displaystyle\mbox{dist}(g^{-1},H) d(g1,πH(g1))=d(1,n1)=d(1,n)β2d(1,πH(g))β2Cd(1,g).\displaystyle\leq d(g^{-1},\pi_{H}(g^{-1}))=d(1,n^{-1})=d(1,n)\leq\beta_{2}d(1,\pi_{H}(g))\leq\beta_{2}Cd(1,g).

Hence, if we choose α2=β2C\alpha_{2}=\beta_{2}C, we obtain that gXH(α2)g\in X_{H}(\alpha_{2}) and the proof is complete. ∎

A corollary of Proposition 2.1 is the following result

Proposition \theprop@alt.

Let (G=NH,d)(G=N\rtimes H,d) be a metric group with πH:GH\pi_{H}:G\to H Lipschitz map. Let φ:NH\varphi:N\to H, mNm\in N and p=mφ(m).p=m\varphi(m). Then the following statements are equivalent:

  1. (1)

    φ\varphi is intrinsically LL-Lipschitz at point mNm\in N with respect to dd and with constant L>0;L>0;

  2. (2)

    there is α(0,1)\alpha\in(0,1) such that

    pCN,H(α)Γφ={p}.p\cdot C_{N,H}(\alpha)\cap\Gamma_{\varphi}=\{p\}.
Proof.

It is enough to combine Proposition 2.1 and Proposition 2.1. ∎

2.2. Intrinsic right and left cones

Notice that

G=NH if and only if G=HN,G=N\rtimes H\mbox{ if and only if }G=H\ltimes N,

it is natural to consider left and right cones as in [ACM12] where the authors consider them in the context of Heisenberg groups. Here we introduce these cones and then we study some properties and their link. As in Definition 2.1, the left cone is

CN,H(α)CN,H(α)={pG=NH:d(1,πN(p))αd(1,πH(p))}.C^{\ell}_{N,H}(\alpha)\equiv C_{N,H}(\alpha)=\{p\in G=N\rtimes H\,:\,d(1,\pi_{N}(p))\leq\alpha d(1,\pi_{H}(p))\}.

on the other hand, the right cone CN,Hr(α)C^{r}_{N,H}(\alpha) with base N,N, axis H,H, vertex 1,1, opening α\alpha is defined as following

(6) CN,Hr(α):={pG=HN:d(1,π~N(p))αd(1,π~H(p))},C^{r}_{N,H}(\alpha):=\{p\in G=H\ltimes N\,:\,d(1,\tilde{\pi}_{N}(p))\leq\alpha d(1,\tilde{\pi}_{H}(p))\},

where π~N:HNN\tilde{\pi}_{N}:H\ltimes N\to N and π~H:HNH\tilde{\pi}_{H}:H\ltimes N\to H are the natural projections on GG considering the splitting HN.H\ltimes N. The right cones with vertex pGp\in G are defined by left translation, i.e., pCN,Hr(α)p\cdot C^{r}_{N,H}(\alpha) is the cone with base N,N, axis H,H, vertex p,p, opening α.\alpha.

The left and right cones are comparable in the following sense:

Proposition \theprop@alt.

Let (G=NH,d)(G=N\rtimes H,d) be a metric group. For any pGp\in G and α,β0,\alpha,\beta\geq 0, it holds

pCN,H(α)\displaystyle p\cdot C^{\ell}_{N,H}(\alpha) pCN,Hr(α+2),\displaystyle\subset p\cdot C^{r}_{N,H}(\alpha+2),
pCN,Hr(β)\displaystyle p\cdot C^{r}_{N,H}(\beta) pCN,H(β+2).\displaystyle\subset p\cdot C^{\ell}_{N,H}(\beta+2).
Proof.

Pick α0.\alpha\geq 0. By left translation invariant, it is sufficient to show that

(7) CN,H(α)CN,Hr(α+2)CN,H(α+4).C^{\ell}_{N,H}(\alpha)\subset C^{r}_{N,H}(\alpha+2)\subset C^{\ell}_{N,H}(\alpha+4).

We begin observing a simple property of the projections. Let pG.p\in G. By uniqueness of the components along NN and H,H, we know that p=nhNHp=nh\in N\rtimes H with nNn\in N and hH.h\in H. On the other hand, because G=HNG=H\ltimes N we have that p=mp=\ell m with mNm\in N and H.\ell\in H. Hence,

nh=m,nh=\ell m,

and so, by uniqueness of the components along NN and H,H, we deduce that

nh=πN(m)πH(m)=πN(m1)πH(m1)=C(m).nh=\pi_{N}(\ell m)\pi_{H}(\ell m)=\pi_{N}(\ell m\ell^{-1}\ell)\pi_{H}(\ell m\ell^{-1}\ell)=C_{\ell}(m)\ell.

That means h=h=\ell and n=Ch(m).n=C_{h}(m).

Now, we prove the first inclusion in (7). Let pGp\in G as above and such that pCN,H(α).p\in C^{\ell}_{N,H}(\alpha). Then, by definition of the left cone we have d(1,n)αd(1,h)d(1,n)\leq\alpha d(1,h) and, consequently,

d(1,m)\displaystyle d(1,m) =d(1,h1Ch(m)h)d(1,Ch(m))+2d(1,h)=d(1,n)+2d(1,h)(α+2)d(1,h),\displaystyle=d(1,h^{-1}C_{h}(m)h)\leq d(1,C_{h}(m))+2d(1,h)=d(1,n)+2d(1,h)\leq(\alpha+2)d(1,h),

i.e. pCN,Hr(α+2),p\in C^{r}_{N,H}(\alpha+2), as desired. In a similar way, it is possible to show the second inclusion in (7).

Remark \therem@alt.

We underline that the projections in (6) are different with respect to the projections π\pi given by the splitting G=NH.G=N\rtimes H. On the other hand, as proved in the last proposition, when NN is normal,

π~H=πH.\tilde{\pi}_{H}=\pi_{H}.
Remark \therem@alt.

Let α0.\alpha\geq 0. Then, CN,H(α)=(CN,Hr(α))1.C^{\ell}_{N,H}(\alpha)=(C^{r}_{N,H}(\alpha))^{-1}. Indeed,

nhCN,H(α)\displaystyle nh\in C^{\ell}_{N,H}(\alpha) d(1,n)αd(1,h)d(1,n1)αd(1,h1)\displaystyle\Longleftrightarrow\,d(1,n)\leq\alpha d(1,h)\,\Longleftrightarrow\,d(1,n^{-1})\leq\alpha d(1,h^{-1})
h1n1CN,Hr(α)(nh)1CN,Hr(α).\displaystyle\Longleftrightarrow\,h^{-1}n^{-1}\in C^{r}_{N,H}(\alpha)\,\Longleftrightarrow\,(nh)^{-1}\in C^{r}_{N,H}(\alpha).

2.3. 1-codimensional intrinsically Lipschitz maps

Let G=NHG=N\rtimes H be a metric Lie group with HH 1-dimensional. Then there is V𝔤V\in\mathfrak{g} such that H={exp(tV):t}.H=\{\exp(tV)\,:\,t\in\mathbb{R}\}.

Denote by SG+(N,H)S^{+}_{G}(N,H) and SG(N,H)S^{-}_{G}(N,H) the halfspaces

SG+(N,H):={gG:πH(g)=exp(tV),with t0},\displaystyle S^{+}_{G}(N,H):=\{g\in G\,:\,\pi_{H}(g)=\exp(tV),\mbox{with }t\geq 0\},
SG(N,H):={gG:πH(g)=exp(tV),with t0}.\displaystyle S^{-}_{G}(N,H):=\{g\in G\,:\,\pi_{H}(g)=\exp(tV),\mbox{with }t\leq 0\}.

Let pNHp\in N\rtimes H and α0\alpha\geq 0 and we consider the intrinsic cone pCN,H(α)p\cdot C_{N,H}(\alpha) with 1-dimensional axis HH as in Definition 2.1. Then we denote

pCN,H+(α):=(pCN,H(α))SG+(N,H),\displaystyle p\cdot C^{+}_{N,H}(\alpha):=(p\cdot C_{N,H}(\alpha))\cap S^{+}_{G}(N,H),
pCN,H(α):=(pCN,H(α))SG(N,H).\displaystyle p\cdot C^{-}_{N,H}(\alpha):=(p\cdot C_{N,H}(\alpha))\cap S^{-}_{G}(N,H).

We can characterize HH-valued intrinsically Lipschitz functions using the fact that subgraphs and supergraphs contain half cones. Precisely, for φ:NH\varphi:N\to H, with φ(n)=exp(f(n)V)\varphi(n)=\exp(f(n)V) and f:Nf:N\to\mathbb{R}, we define the supergraph Eφ+E^{+}_{\varphi} and the subgraph EφE^{-}_{\varphi} of φ\varphi as

Eφ+:={nexp(tV)G:nN,t>f(n)},\displaystyle E^{+}_{\varphi}:=\{n\exp(tV)\in G\,:\,n\in N,t>f(n)\},
Eφ:={nexp(tV)G:nN,t<f(n)}.\displaystyle E^{-}_{\varphi}:=\{n\exp(tV)\in G\,:\,n\in N,t<f(n)\}.

Notice that if φ\varphi is a continuous map, then

Eφ+¯={nexp(tV):nN,tf(n)},Eφ¯={nexp(tV):nN,tf(n)}\displaystyle\overline{E^{+}_{\varphi}}=\{n\exp(tV)\,:\,n\in N,t\geq f(n)\},\quad\overline{E^{-}_{\varphi}}=\{n\exp(tV)\,:\,n\in N,t\leq f(n)\}

and

Eφ+=Eφ=Γφ.\displaystyle\partial E^{+}_{\varphi}=\partial E^{-}_{\varphi}=\Gamma_{\varphi}.

Moreover, any point pΓφp\in\Gamma_{\varphi} is both the limit of a sequence (ph)hEφ(p_{h})_{h}\subset E^{-}_{\varphi} and of a sequence (qh)hEφ+.(q_{h})_{h}\subset E^{+}_{\varphi}. Indeed, if p=nφ(n)=nexp(f(n)V),p=n\varphi(n)=n\cdot\exp(f(n)V), it is enough to choose

ph=nexp((f(n)1h)V),andqh=nexp((f(n)+1h)V).\displaystyle p_{h}=n\exp\left(\left(f(n)-\frac{1}{h}\right)V\right),\quad\mbox{and}\quad q_{h}=n\exp\left(\left(f(n)+\frac{1}{h}\right)V\right).

We present a "sort" of right-invariant property of the intrinsic cones:

Proposition \theprop@alt.

Let G=NHG=N\rtimes H be a metric Lie group with HH 1-dimensional. Then for any α>0,\alpha>0, it holds

phCN,H+(α)pCN,H+(β),pG,h=exp(tV)H, with t>0,\displaystyle ph\cdot C^{+}_{N,H}(\alpha)\subset p\cdot C^{+}_{N,H}(\beta),\quad\forall p\in G,h=\exp(tV)\in H,\mbox{ with }t>0,
phCN,H(α)pCN,H(β),pG,h=exp(tV)H, with t<0,\displaystyle ph\cdot C^{-}_{N,H}(\alpha)\subset p\cdot C^{-}_{N,H}(\beta),\quad\forall p\in G,h=\exp(tV)\in H,\mbox{ with }t<0,

for βα+2.\beta\geq\alpha+2.

Proof.

Fix α>0.\alpha>0. By left translation invariant and Remark 2.1, it is sufficient to show that

hCN,H+(α)CN,H+(α+2), for all h=exp(tV)H, with t>0.\displaystyle h\cdot C^{+}_{N,H}(\alpha)\subset C^{+}_{N,H}(\alpha+2),\quad\mbox{ for all }h=\exp(tV)\in H,\mbox{ with }t>0.

Let p=mCN,H+(α),p=m\ell\in C^{+}_{N,H}(\alpha), we want to prove that hpCN,H+(α+2).hp\in C^{+}_{N,H}(\alpha+2).

Using the fact that NN is normal, it follows that

πN(hp)=Ch(m),πH(hp)=h.\pi_{N}(hp)=C_{h}(m),\quad\pi_{H}(hp)=h\ell.

Moreover, by definition of CN,H+(α),C^{+}_{N,H}(\alpha), we have that d(1,m)αd(1,)d(1,m)\leq\alpha d(1,\ell) and so

(8) d(1,Ch(m))2d(1,h)+d(1,m)(2+α)[d(1,h)+d(1,)].d(1,C_{h}(m))\leq 2d(1,h)+d(1,m)\leq(2+\alpha)[d(1,h)+d(1,\ell)].

Finally, observing that

h=exp(tV)exp(sV)=exp((t+s)V),h\ell=\exp(tV)\exp(sV)=\exp((t+s)V),

with s,t>0s,t>0 by hypothesis, we get that d(1,h)+d(1,)=d(1,h).d(1,h)+d(1,\ell)=d(1,h\ell). Putting together this fact and (8) we obtain the thesis.

Now we are able to prove the main result of this paper:

Theorem 2.1.

Let G=NHG=N\rtimes H be a metric group with HH 1-dimensional and πH:GH\pi_{H}:G\to H Lipschitz. Let φ:NH\varphi:N\to H be a continuous map and L>0L>0. Then the following statements are equivalent:

  1. (1)

    φ\varphi is intrinsically LL-Lipschitz;

  2. (2)

    for all mN,m\in N, it holds

    (9) mφ(m)CN,H+(1/L)Eφ+¯, and mφ(m)CN,H(1/L)Eφ¯.m\varphi(m)\cdot C^{+}_{N,H}(1/L)\subset\overline{E^{+}_{\varphi}},\quad\mbox{ and }\quad m\varphi(m)\cdot C^{-}_{N,H}(1/L)\subset\overline{E^{-}_{\varphi}}.
Proof.

(1)(2).(1)\Rightarrow(2). By contradiction, we assume that mφ(m)CN,H+(1/L)Eφ+¯.m\varphi(m)\cdot C^{+}_{N,H}(1/L)\nsubseteq\overline{E^{+}_{\varphi}}. That means that there is nNn\in N and tt\in\mathbb{R} such that

nexp(tV)(mφ(m)CN,H+(1/L))Eφ.n\exp(tV)\in(m\varphi(m)\cdot C^{+}_{N,H}(1/L))\cap E^{-}_{\varphi}.

Now, by nexp(tV)mφ(m)CN,H+(1/L)n\exp(tV)\in m\varphi(m)\cdot C^{+}_{N,H}(1/L) and notice that d(1,exp(tV))=|t|,d(1,\exp(tV))=|t|, we have that nexp(sV)mφ(m)CN,H+(1/L)n\exp(sV)\in m\varphi(m)\cdot C^{+}_{N,H}(1/L) for any sts\geq t and, by nexp(tV)Eφ,n\exp(tV)\in E^{-}_{\varphi}, we get that t<f(n).t<f(n). As a consequence, for s=f(n)>ts=f(n)>t we obtain a contradiction because

nexp(f(n)V)(mφ(m)CN,H+(1/L))Γφ(mφ(m)CN,H(1/L))Γφ={mφ(m)},n\exp(f(n)V)\in(m\varphi(m)\cdot C^{+}_{N,H}(1/L))\cap\Gamma_{\varphi}\subset(m\varphi(m)\cdot C_{N,H}(1/L))\cap\Gamma_{\varphi}=\{m\varphi(m)\},

where in the last equality we used Corollary 2.1.

(2)(1).(2)\Rightarrow(1). For all 0<α<1/L0<\alpha<1/L, it follows that

mφ(m)CN,H(α)\displaystyle m\varphi(m)\cdot C_{N,H}(\alpha) =(mφ(m)CN,H+(α))(mφ(m)CN,H(α))\displaystyle=(m\varphi(m)\cdot C^{+}_{N,H}(\alpha))\cup(m\varphi(m)\cdot C^{-}_{N,H}(\alpha))
Eφ+Eφ{mφ(m)}\displaystyle\subset E^{+}_{\varphi}\cup E^{-}_{\varphi}\cup\{m\varphi(m)\}

and, consequently, mφ(m)CN,H(α)Γφ={mφ(m)}.m\varphi(m)\cdot C_{N,H}(\alpha)\cap\Gamma_{\varphi}=\{m\varphi(m)\}. Hence, by Corollary 2.1, we obtain the thesis. ∎

3. Intrinsically Lipschitz maps: equivalent analytic conditions

In this section, we give some equivalent conditions of intrinsically Lipschitz maps in the context of metric groups with semi-direct splitting. More precisely, the main result is Proposition 3 which follows from the following statement:

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) be a metric group. Let φ:NH\varphi:N\to H, mNm\in N and p=mφ(m).p=m\varphi(m). Then the following statements are equivalent:

  1. (1)

    it holds

    d(1,φp1(n))Ld(1,n),nEp1,d(1,\varphi_{p^{-1}}(n))\leq Ld(1,n),\quad\forall n\in E_{p^{-1}},

    where the map φq:EqH\varphi_{q}:E_{q}\to H is defined as (4);

  2. (2)

    it holds

    d(φ(m),φ(n))Ld(1,πN(p1q)),nNwith q=nφ(n)Γφ.d(\varphi(m),\varphi(n))\leq Ld(1,\pi_{N}(p^{-1}q)),\quad\forall n\in N\,\,\mbox{with }q=n\varphi(n)\in\Gamma_{\varphi}.
  3. (3)

    it holds

    d(φ(πN(p)),φ(πN(pn)))Ld(1,n),nN.d(\varphi(\pi_{N}(p)),\varphi(\pi_{N}(pn)))\leq Ld(1,n),\quad\forall n\in N.
  4. (4)

    there is L~>0\tilde{L}>0 such that

    d(1,q)L~d(1,πN(q)),qΓφp1.d(1,q)\leq\tilde{L}d(1,\pi_{N}(q)),\quad\forall q\in\Gamma_{\varphi_{p^{-1}}}.
  5. (5)

    there is L¯>0\bar{L}>0 such that

    d(p,q)L¯d(1,πN(p1q)),qΓφ.d(p,q)\leq\bar{L}d(1,\pi_{N}(p^{-1}q)),\quad\forall q\in\Gamma_{\varphi}.
  6. (6)

    for all L^L,\hat{L}\geq L, it holds

    pCN,H(1/L^)Γφ=.p\cdot C_{N,H}(1/\hat{L})\cap\Gamma_{\varphi}=\emptyset.
Proof.

(1)(2).(1)\Leftrightarrow(2). The algebraic expression of the translated function φp1\varphi_{p^{-1}} is more explicit thanks to the fact that NN is normal. More precisely,

(10) φp1(n1)=(πH(pn1))1φ(πN(pn1))=φ(m)1φ(mCφ(m)(n1)),n1N\varphi_{p^{-1}}(n_{1})=(\pi_{H}(pn_{1}))^{-1}\varphi(\pi_{N}(pn_{1}))=\varphi(m)^{-1}\varphi\left(mC_{\varphi(m)}(n_{1})\right),\quad\forall n_{1}\in N

and so, if we put n=mCφ(m)(n1)n=mC_{\varphi(m)}(n_{1}) and observing that πN(p1q)=πN(p1n)\pi_{N}(p^{-1}q)=\pi_{N}(p^{-1}n), we obtain the equivalence between (1)(1) and (2)(2).

(1)(3).(1)\Leftrightarrow(3). Since NN is a normal subgroup, it follows πH(mφ(m))=πH(mφ(m)n)=φ(m),\pi_{H}(m\varphi(m))=\pi_{H}(m\varphi(m)n)=\varphi(m), for all nN.n\in N. Therefore, by left invariance of dd and φp1(1)=1\varphi_{p^{-1}}(1)=1 we have that

d(φ(πN(p)),φ(πN(pn)))\displaystyle d(\varphi(\pi_{N}(p)),\varphi(\pi_{N}(pn))) =d((πH(p))1φ(m),(πH(pn))1φ(πN(pn)))=d(1,φp1(n)),\displaystyle=d((\pi_{H}(p))^{-1}\varphi(m),(\pi_{H}(pn))^{-1}\varphi(\pi_{N}(pn)))=d(1,\varphi_{p^{-1}}(n)),

and so the equivalence of this two statements is true.

(1)(4).(1)\Leftrightarrow(4). The equivalence follows immediately from triangle inequality.

(2)(5).(2)\Leftrightarrow(5). The implication (2)(5)(2)\Rightarrow(5) follows from the left invariant property of dd and triangular inequality; indeed, recall that πN(p1q)=φ(m)1m1nφ(m)=Cφ(m)1(m1n)\pi_{N}(p^{-1}q)=\varphi(m)^{-1}m^{-1}n\varphi(m)=C_{\varphi(m)^{-1}}(m^{-1}n)

d(nφ(n),mφ(m))\displaystyle d(n\varphi(n),m\varphi(m)) =d(φ(n),n1mφ(m))\displaystyle=d(\varphi(n),n^{-1}m\varphi(m))
=d(φ(m)1φ(n),Cφ(m)1(n1m))\displaystyle=d(\varphi(m)^{-1}\varphi(n),C_{\varphi(m)^{-1}}(n^{-1}m))
d(φ(m),φ(n))+d(1,Cφ(m)1(m1n))\displaystyle\leq d(\varphi(m),\varphi(n))+d(1,C_{\varphi(m)^{-1}}(m^{-1}n))
(1+L)d(1,Cφ(m)1(m1n)),\displaystyle\leq(1+L)d(1,C_{\varphi(m)^{-1}}(m^{-1}n)),

for every nNn\in N. On the other hand, the implication (5)(2)(5)\Rightarrow(2) holds because

d(φ(n),φ(m))\displaystyle d(\varphi(n),\varphi(m)) =d(nφ(n),nφ(m))\displaystyle=d(n\varphi(n),n\varphi(m))
d(nφ(n),mφ(m))+d(mφ(m),nφ(m))\displaystyle\leq d(n\varphi(n),m\varphi(m))+d(m\varphi(m),n\varphi(m))
=d(nφ(n),mφ(m))+d(Cφ(m)1(n1m),Cφ(m)1(n1n))\displaystyle=d(n\varphi(n),m\varphi(m))+d(C_{\varphi(m)^{-1}}(n^{-1}m),C_{\varphi(m)^{-1}}(n^{-1}n))
(1+L¯)d(1,Cφ(m)1(m1n)),\displaystyle\leq(1+\bar{L})d(1,C_{\varphi(m)^{-1}}(m^{-1}n)),

for every nN,n\in N, as desired.

(1)(6).(1)\Leftrightarrow(6). The equivalence follows observing that

pCN,H(1/L^)Γφ={p}CN,H(1/L^)Γφp1={1}.p\cdot C_{N,H}(1/\hat{L})\cap\Gamma_{\varphi}=\{p\}\quad\Leftrightarrow\quad C_{N,H}(1/\hat{L})\cap\Gamma_{\varphi_{p^{-1}}}=\{1\}.

where φp1\varphi_{p^{-1}} is defined as in (4). Indeed, by left invariant property

Lp1(pCN,H(1/L^)Γφ)=CN,H(1/L^)Γφp1.L_{p^{-1}}\left(p\cdot C_{N,H}(1/\hat{L})\cap\Gamma_{\varphi}\right)=C_{N,H}(1/\hat{L})\cap\Gamma_{\varphi_{p^{-1}}}.

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) be a metric group such that πN\pi_{N} is kk-Lipschitz at 11. Let φ:NH\varphi:N\to H, mNm\in N and p=mφ(m).p=m\varphi(m). Then the following statements are equivalent:

  1. (1)

    φ\varphi is intrinsically LL-Lipschitz at point nNn\in N with respect to dd and with constant L>0;L>0;

  2. (2)

    it holds one of the inequality in Proposition 3.

Proof.

It is enough to combine Proposition 2.1 and Proposition 3. ∎

The following result gives a relationship between intrinsically Lipschitz maps and the Lipschitz property of πH.\pi_{H}.

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) be a metric group and let α(0,1).\alpha\in(0,1). Assume also that φ:NH\varphi:N\to H is an intrinsically Lipschitz map with intrinsically Lipschitz constant not larger than α.\alpha. Then, for any fixed qΓφq\in\Gamma_{\varphi} the projection πH|Γφq1B(1,r)\pi_{H}|_{\Gamma_{\varphi_{q^{-1}}}\cap B(1,r)} is a α1α\frac{\alpha}{1-\alpha}-Lipschitz map.

Proof.

Fix qΓφ.q\in\Gamma_{\varphi}. We would like to show that

(11) d(πH(p),πH(g))α1αd(p,g), for all p,gΓφq1B(1,r).d(\pi_{H}(p),\pi_{H}(g))\leq\frac{\alpha}{1-\alpha}d(p,g),\quad\mbox{ for all }p,g\in\Gamma_{\varphi_{q^{-1}}}\cap B(1,r).

By Proposition 1.3 (4), we can prove (11) with g=1.g=1. Hence

d(1,πH(p))\displaystyle d(1,\pi_{H}(p)) =d(1,φq1(πN(p)))αd(1,πN(p))α(d(1,p)+d(p,πN(p)))\displaystyle=d(1,\varphi_{q^{-1}}(\pi_{N}(p)))\leq\alpha d(1,\pi_{N}(p))\leq\alpha(d(1,p)+d(p,\pi_{N}(p)))
α(d(1,p)+d(1,πH(p))),\displaystyle\leq\alpha(d(1,p)+d(1,\pi_{H}(p))),

which gives (11), as desired. ∎

We conclude this section noting that, as in Euclidean setting, pointwise limits of intrinsic Lipschitz functions are intrinsic Lipschitz.

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) be a metric group. Let φh:NH\varphi_{h}:N\to H be intrinsically LL-Lipschitz for hh\in\mathbb{N} such that

limhφh(m)=φ(m),\lim_{h\to\infty}\varphi_{h}(m)=\varphi(m),

for all mNm\in N with φ:NH.\varphi:N\to H. Then φ\varphi is intrinsic L-Lipschitz.

Proof.

The statement follows from the following computation

d(φ(n),φ(m))\displaystyle d(\varphi(n),\varphi(m)) d(φ(n),φh(n))+d(φh(n),φh(m))+d(φh(m),φ(m))\displaystyle\leq d(\varphi(n),\varphi_{h}(n))+d(\varphi_{h}(n),\varphi_{h}(m))+d(\varphi_{h}(m),\varphi(m))
2ϵ+Ld(1,Cφh(m)1(m1n))\displaystyle\leq 2\epsilon+Ld(1,C_{\varphi_{h}(m)^{-1}}(m^{-1}n))
2ϵ+2Ld(φ(m),φh(m))+Ld(1,Cφ(m)1(m1n))\displaystyle\leq 2\epsilon+2Ld(\varphi(m),\varphi_{h}(m))+Ld(1,C_{\varphi(m)^{-1}}(m^{-1}n))
(2+2L)ϵ+Ld(1,Cφ(m)1(m1n)).\displaystyle\leq(2+2L)\epsilon+Ld(1,C_{\varphi(m)^{-1}}(m^{-1}n)).

4. Intrinsically Lipschitz vs. metric Lipschitz functions

It is well know that intrinsically Lipschitz maps are not metric Lipschitz maps and viceversa. In this section we present some particular case when there is a link between these two notions. In particular, the main result is Proposition 4.2.

4.1. dφd_{\varphi} quasi-distance

We fix a metric group (NH,d)(N\rtimes H,d) with semidirect structure given by subgroups NN and HH with NN normal. We consider the projections:

πN:NHN and πH:NHH.\pi_{N}:N\rtimes H\to N\qquad\text{ and }\qquad\pi_{H}:N\rtimes H\to H.

Given a function φ:ENH\varphi:E\subset N\to H, we define the function dφ:E×E+d_{\varphi}:E\times E\to\mathbb{R}^{+} as

(12) dφ(n1,n2):=12(d(1,πN(q11q2))+d(1,πN(q21q1))),for all n1,n2E,d_{\varphi}(n_{1},n_{2}):=\frac{1}{2}\left(d(1,\pi_{N}(q_{1}^{-1}q_{2}))+d(1,\pi_{N}(q_{2}^{-1}q_{1}))\right),\quad\mbox{for all }n_{1},n_{2}\in E,

where qi:=niφ(ni)q_{i}:=n_{i}\varphi(n_{i}) for i=1,2.i=1,2. Notice that the points qiq_{i} are arbitrary elements of the graph Γφ\Gamma_{\varphi} of φ\varphi (see (2)).

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) as above and let φ:ENH\varphi:E\subset N\to H be a function. Assume that φ\varphi is locally intrinsically LL-Lipschitz and that πH:GH\pi_{H}:G\to H is a CC-Lipschitz map. Then the map dφd_{\varphi}, as in (12), is a quasi-distance on every relatively compact subset of EE.

Proof.

It is easy to see that dφd_{\varphi} is symmetric and n1=n2n_{1}=n_{2} yields dφ(n1,n1)=0.d_{\varphi}(n_{1},n_{1})=0. Hence, we just need to check the weaker triangular inequality, i.e.,

(13) dφ(n1,n2)C(1+L)(dφ(n1,n3)+dφ(n3,n2)),d_{\varphi}(n_{1},n_{2})\leq C(1+L)\left(d_{\varphi}(n_{1},n_{3})+d_{\varphi}(n_{3},n_{2})\right),

for all n1,n2,n3EE.n_{1},n_{2},n_{3}\in E^{\prime}\Subset E.

Fix EEE^{\prime}\Subset E and let n1,n2,n3En_{1},n_{2},n_{3}\in E^{\prime} such that qi=niφ(ni)Γφq_{i}=n_{i}\varphi(n_{i})\in\Gamma_{\varphi} for i=1,2,3.i=1,2,3. Using the Lipschitz property of πH\pi_{H} (see Proposition 1.3 (3)) and the triangular inequality, we obtain that

C1d(1,πN(q11q2))\displaystyle C^{-1}d(1,\pi_{N}(q_{1}^{-1}q_{2})) d(1,q11q2)d(q1,q3)+d(q3,q2)\displaystyle\leq d(1,q_{1}^{-1}q_{2})\leq d(q_{1},q_{3})+d(q_{3},q_{2})
d(1,πN(q11q3))+d(1,πH(q11q3))+d(1,πN(q31q2))+d(1,πH(q31q2)),\displaystyle\leq d(1,\pi_{N}(q_{1}^{-1}q_{3}))+d(1,\pi_{H}(q_{1}^{-1}q_{3}))+d(1,\pi_{N}(q_{3}^{-1}q_{2}))+d(1,\pi_{H}(q_{3}^{-1}q_{2})),

and so, since φ\varphi is an intrinsically Lipschitz map, it follows that

C1d(1,πN(q11q2))\displaystyle C^{-1}d(1,\pi_{N}(q_{1}^{-1}q_{2})) (1+L)(d(1,πN(q11q3))+d(1,πN(q31q2))).\displaystyle\leq(1+L)\left(d(1,\pi_{N}(q_{1}^{-1}q_{3}))+d(1,\pi_{N}(q_{3}^{-1}q_{2}))\right).

In a similar way, we conclude that

C1d(1,πN(q21q1))\displaystyle C^{-1}d(1,\pi_{N}(q_{2}^{-1}q_{1})) (1+L)(d(1,πN(q21q3))+d(1,πN(q31q1))),\displaystyle\leq(1+L)\left(d(1,\pi_{N}(q_{2}^{-1}q_{3}))+d(1,\pi_{N}(q_{3}^{-1}q_{1}))\right),

and, consequently, putting together the last two inequalities, (13) holds. ∎

Proposition \theprop@alt.

Under the same assumptions of Proposition 4.1, we have that dφd_{\varphi} is equivalent to the metric dd restricted to the graph map Γφ\Gamma_{\varphi}.

Proof.

We would like to show that there are c1,c2>0c_{1},c_{2}>0 such that

(14) c1dφ(n1,n2)d(q1,q2)c2dφ(n1,n2),c_{1}d_{\varphi}(n_{1},n_{2})\leq d(q_{1},q_{2})\leq c_{2}\,d_{\varphi}(n_{1},n_{2}),

for every n1,n2EEn_{1},n_{2}\in E^{\prime}\Subset E with qi=niφ(ni)Γφq_{i}=n_{i}\varphi(n_{i})\in\Gamma_{\varphi} for i=1,2.i=1,2.

Fix EEE^{\prime}\Subset E. Using the fact that the splitting is locally CC-Lipschitz at 11, we obtain that

C1d(1,πN(q11q2))\displaystyle C^{-1}d(1,\pi_{N}(q_{1}^{-1}q_{2})) d(1,q11q2),for all n1,n2E,\displaystyle\leq d(1,q_{1}^{-1}q_{2}),\quad\mbox{for all }n_{1},n_{2}\in E^{\prime},

where qi=niφ(ni)Γφq_{i}=n_{i}\varphi(n_{i})\in\Gamma_{\varphi} for i=1,2.i=1,2. Consequently, the left hand side of (14) is satisfied with c1=2C1.c_{1}=2C^{-1}.

On the other side, by the intrinsically LL-Lipschitz property of φ\varphi and Proposition 3 (5), it follows that

d(q1,q2)(1+L)d(1,πN(q11q2)),for all n1,n2E,d(q_{1},q_{2})\leq(1+L)d(1,\pi_{N}(q_{1}^{-1}q_{2})),\quad\mbox{for all }n_{1},n_{2}\in E^{\prime},

where qi=niφ(ni)Γφq_{i}=n_{i}\varphi(n_{i})\in\Gamma_{\varphi} for i=1,2.i=1,2. Hence, the left hand side of (14) is satisfied with c2=L+1c_{2}=L+1 and the proof is concluded. ∎

4.2. Intrinsically Lipschitz vs. metric Lipschitz functions

It is a natural question to ask if intrinsically Lipschitz functions are metric Lipschitz functions provided that appropriate choices of the metrics in the domain or in the target spaces are made. The answer is almost always negative already in the particular case of the Carnot groups (see [FS16, Remark 3.1.6], [AS09, Example 3.24]). However, something relevant can be stated in metric groups:

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) be a metric group and let φ:NH\varphi:N\to H be an intrinsically Lipschitz function with graphing function

Φ:(N,dφ)(NH,d),Φ(n):=nφ(n),nN,\Phi:(N,d_{\varphi})\to(N\rtimes H,d),\quad\Phi(n):=n\varphi(n),\forall n\in N,

where dφd_{\varphi} is defined as in (12). If we also assume that πH:NHH\pi_{H}:N\rtimes H\to H is a locally Lipschitz map then, the graph map Φ\Phi is a metric Lipschitz function from (N,dφ)(N,d_{\varphi}) to (NH,d).(N\rtimes H,d).

Proof.

It is enough to combine Proposition 4.1 and Proposition 4.1. ∎

Proposition \theprop@alt.

Under the same assumptions of Proposition 4.2, it follows that φ\varphi is a metric Lipschitz function from (N,dφ)(N,d_{\varphi}) to (H,d).(H,d).

Proof.

Notice that

πN(Φ(n)1Φ(m))\displaystyle\pi_{N}(\Phi(n)^{-1}\Phi(m)) =πN(φ(n)1n1mφ(n)Nφ(n)1φ(m)H)=φ(n)1n1mφ(n),\displaystyle=\pi_{N}(\underbrace{\varphi(n)^{-1}n^{-1}m\varphi(n)}_{\in N}\underbrace{\varphi(n)^{-1}\varphi(m)}_{\in H})=\varphi(n)^{-1}n^{-1}m\varphi(n),
πH(Φ(n)1Φ(m))\displaystyle\pi_{H}(\Phi(n)^{-1}\Phi(m)) =φ(n)1φ(m),\displaystyle=\varphi(n)^{-1}\varphi(m),

for any n,mNn,m\in N. Hence, by Proposition 3 (2), we have that

d(φ(n),φ(m))Ld(1,φ(n)1n1mφ(n))2Ldφ(n,m),n,mN,\displaystyle d(\varphi(n),\varphi(m))\leq Ld(1,\varphi(n)^{-1}n^{-1}m\varphi(n))\leq 2Ld_{\varphi}(n,m),\quad\forall n,m\in N,

as desired. ∎

We stress that in general it is impossible to find a uniqueunique quasi distance independent of φ:MW\varphi:M\to W working for all the intrinsic Lipschitz functions. On the other hand, this is true exactly when the codomain WW is a normal subgroup:

Proposition \theprop@alt.

Let (MW,d)(M\ltimes W,d) be a metric group and let φ:MW\varphi:M\to W be a function. Then the following are equivalent:

  1. (1)

    φ\varphi is an intrinsically L-Lipschitz function;

  2. (2)

    the map graph Φ:(M,d)(MW,d)\Phi:(M,d)\to(M\ltimes W,d) is a metric L~\tilde{L}-Lipschitz function.

Proof.

(1)(2).(1)\Rightarrow(2). Fix p=mφ(m)MW.p=m\varphi(m)\in M\ltimes W. The algebraic expression of the translated function φp1\varphi_{p^{-1}} defined in (4) is more explicit thanks to the fact that WW is normal. More precisely, noting that

πW(mφ(m)a)=πL(maMa1φ(m)aW)=Ca1(φ(m)),πM(mφ(m)a)=ma,aM,\pi_{W}(m\varphi(m)a)=\pi_{L}(\underbrace{ma}_{\in M}\underbrace{a^{-1}\varphi(m)a}_{\in W})=C_{a^{-1}}(\varphi(m)),\quad\pi_{M}(m\varphi(m)a)=ma,\quad\forall a\in M,

and so we have that

φp1(a)=Ca1(φ(m)1)φ(ma),aM.\varphi_{p^{-1}}(a)=C_{a^{-1}}(\varphi(m)^{-1})\varphi(ma),\quad\forall a\in M.

As a consequence, if we put a=m1kMa=m^{-1}k\in M by the simply fact

Φ(m)1Φ(k)=aa1φ(m)1aφ(ma)=aφp1(a),\displaystyle\Phi(m)^{-1}\Phi(k)=aa^{-1}\varphi(m)^{-1}a\varphi(ma)=a\varphi_{p^{-1}}(a),

we obtain that

d(1,Φ(m)1Φ(k))d(1,aφp1(a))(1+L)d(1,a)=(1+L)d(m,k),\displaystyle d(1,\Phi(m)^{-1}\Phi(k))\leq d(1,a\varphi_{p^{-1}}(a))\leq(1+L)d(1,a)=(1+L)d(m,k),

as desired.

(2)(1).(2)\Rightarrow(1). Fix p=mφ(m)MW.p=m\varphi(m)\in M\ltimes W. If we consider a=m1kM,a=m^{-1}k\in M, it follows that

d(1,φp1(a))\displaystyle d(1,\varphi_{p^{-1}}(a)) =d(1,Ck1m(φ(m)1)φ(k))\displaystyle=d(1,C_{k^{-1}m}(\varphi(m)^{-1})\varphi(k))
d(1,k1m)+d(1,Φ(m)1Φ(k))\displaystyle\leq d(1,k^{-1}m)+d(1,\Phi(m)^{-1}\Phi(k))
(1+L~)d(1,a),\displaystyle\leq(1+\tilde{L})d(1,a),

i.e., by the arbitrariness of kk, φ\varphi is intrinsically Lipschitz at point mMm\in M.

Remark \therem@alt.

Proposition 4.2 could be false when WW is not normal subgroup. An example of this fact is shown in [FS16] in the context of Carnot groups.

Remark \therem@alt.

Under the same assumptions of Proposition 4.2, i.e. if   WW is a normal subgroup, the quasi distance dφd_{\varphi} defined as in (12) does not depend of a map φ.\varphi. Indeed, recall that πM\pi_{M} is a homomorphism, then

πM(Φ(k)1Φ(m))=k1m,\displaystyle\pi_{M}(\Phi(k)^{-1}\Phi(m))=k^{-1}m,

and so

dφ(m,k)=d(m,k),k,mM.d_{\varphi}(m,k)=d(m,k),\quad\forall k,m\in M.

5. Intrinsic graph as a subgroup

In this section, we present some explicit computations about intrinsically Lipschitz graphs when they are subgroups of a metric group. This section is inspired by the notion of intrinsic linear map in Carnot groups noting that here we don’t have the homogeneous structure given by the intrinsic dilations.

5.1. When NN is a normal subgroup

Proposition \theprop@alt.

Let (NH,d)(N\rtimes H,d) be a metric group and let φ:NH\varphi:N\to H such that its graph Γφ\Gamma_{\varphi} is a subgroup of G.G. Then, for any n,mNn,m\in N it holds

  1. (1)

    Φ(n)1Φ(m)=Cφ(n)1(n1m)φ(n)1φ(m);\Phi(n)^{-1}\Phi(m)=C_{\varphi(n)^{-1}}(n^{-1}m)\varphi(n)^{-1}\varphi(m);

  2. (2)

    Φ(n)Φ(m)1=nCφ(n)φ(m)1(m1)φ(n)φ(m)1;\Phi(n)\Phi(m)^{-1}=nC_{\varphi(n)\varphi(m)^{-1}}(m^{-1})\varphi(n)\varphi(m)^{-1};

  3. (3)

    Φ(n)Φ(m)=nCφ(n)(m)φ(n)φ(m);\Phi(n)\Phi(m)=nC_{\varphi(n)}(m)\varphi(n)\varphi(m);

  4. (4)

    (Φ(n)Φ(m))1=Cφ(m)1(m1)C(φ(n)φ(m))1(n1)(φ(n)φ(m))1;(\Phi(n)\Phi(m))^{-1}=C_{\varphi(m)^{-1}}(m^{-1})C_{(\varphi(n)\varphi(m))^{-1}}(n^{-1})(\varphi(n)\varphi(m))^{-1};

  5. (5)

    φ(nm)=φ(n)φ(Cφ(n)1(m)).\varphi(nm)=\varphi(n)\varphi(C_{\varphi(n)^{-1}}(m)).

Moreover,

(a):

φ(Cφ(n)1(n1m))=φ(n)1φ(m);\varphi(C_{\varphi(n)^{-1}}(n^{-1}m))=\varphi(n)^{-1}\varphi(m);

(b):

φ(nCφ(n)φ(m)1(m1))=φ(n)φ(m)1;\varphi(nC_{\varphi(n)\varphi(m)^{-1}}(m^{-1}))=\varphi(n)\varphi(m)^{-1};

(c):

φ(nCφ(n)(m))=φ(n)φ(m);\varphi(nC_{\varphi(n)}(m))=\varphi(n)\varphi(m);

(d):

φ(Cφ(m)1(m1)C(φ(n)φ(m))1(n1))=(φ(n)φ(m))1.\varphi\left(C_{\varphi(m)^{-1}}(m^{-1})C_{(\varphi(n)\varphi(m))^{-1}}(n^{-1})\right)=(\varphi(n)\varphi(m))^{-1}.

Proof.

Since Γφ\Gamma_{\varphi} is a subgroup of G,G, we have that for every n,mNn,m\in N

Φ(n)1Φ(m)=Φ(k),\Phi(n)^{-1}\Phi(m)=\Phi(k),

for some kNk\in N and, consequently, the equalities (1)(a)(1)-(a) hold noting that

k\displaystyle k =πN(Φ(n)1Φ(m))=πN(φ(n)1n1mφ(n)Nφ(n)1φ(m)H)=Cφ(n)1(n1m),\displaystyle=\pi_{N}(\Phi(n)^{-1}\Phi(m))=\pi_{N}(\underbrace{\varphi(n)^{-1}n^{-1}m\varphi(n)}_{\in N}\underbrace{\varphi(n)^{-1}\varphi(m)}_{\in H})=C_{\varphi(n)^{-1}}(n^{-1}m),
φ(k)\displaystyle\varphi(k) =φ(Cφ(n)1(n1m))=πH(Φ(n)1Φ(m))=φ(n)1φ(m).\displaystyle=\varphi(C_{\varphi(n)^{-1}}(n^{-1}m))=\pi_{H}(\Phi(n)^{-1}\Phi(m))=\varphi(n)^{-1}\varphi(m).

In a similar way, it is possible to show the equalities (2)(3)(4)(2)-(3)-(4) and consequently (b)(b) and (c).(c).

To prove the equality (5),(5), we observe that for any nNn\in N and hHh\in H there is a unique mNm\in N such that

n=πN(hm).n=\pi_{N}(hm).

More precisely, m:=πN(h1n).m:=\pi_{N}(h^{-1}n). Indeed,

πN(hπN(h1n))=πN(hCh1(n))=Ch(Ch1(n))=n,\displaystyle\pi_{N}(h\pi_{N}(h^{-1}n))=\pi_{N}(hC_{h^{-1}}(n))=C_{h}(C_{h^{-1}}(n))=n,

as desired. Moreover mm is unique because if

πN(h1m1)=πN(h1m2)\pi_{N}(h^{-1}m_{1})=\pi_{N}(h^{-1}m_{2})

then, recall that πN(h1m1hh1)=Ch1(m1)\pi_{N}(h^{-1}m_{1}hh^{-1})=C_{h^{-1}}(m_{1}), we get that Ch1(m1)=Ch1(m2)C_{h^{-1}}(m_{1})=C_{h^{-1}}(m_{2}) and so m1=m2.m_{1}=m_{2}. Now, for any n,kNn,k\in N if we put

m=πN(φ(n)k),m=\pi_{N}(\varphi(n)k),

by the equality (c)(c) it follows

φ(nm)=φ(nπN(φ(n)k))=φ(n)φ(k)=φ(n)φ(πN(φ(n)1m))=φ(n)φ(Cφ(n)1(m)),\displaystyle\varphi(nm)=\varphi(n\pi_{N}(\varphi(n)k))=\varphi(n)\varphi(k)=\varphi(n)\varphi(\pi_{N}(\varphi(n)^{-1}m))=\varphi(n)\varphi(C_{\varphi(n)^{-1}}(m)),

i.e. (5)(5) is true and the proof is achieved. ∎

Corollary \thecoroll@alt.

Let k.k\in\mathbb{N}. Under the same assumption of Proposition 5.1, if there is C>0C>0 such that

d(1,φ(n))Cd(1,nk),nN,d(1,\varphi(n))\leq Cd(1,n^{k}),\quad\forall n\in N,

then φ\varphi is intrinsically CkCk-Lipschitz.

Proof.

It is enough to combine Proposition 5.1 (a) and Proposition 3 (2). ∎

Corollary \thecoroll@alt.

Let k.k\in\mathbb{N}. Under the same assumption of Proposition 5.1, if there is C>0C>0 such that

d(1,φ(n))Cd(1,nk),nN,d(1,\varphi(n))\leq Cd(1,n^{k}),\quad\forall n\in N,

then φ\varphi is intrinsically CkCk-Lipschitz.

Proof.

It is enough to combine Proposition 5.1 (a) and Proposition 3 (2). ∎

5.2. When HH is a normal subgroup

Proposition \theprop@alt.

Let (NH,d)(N\ltimes H,d) be a metric group and let φ:NH\varphi:N\to H such that its graph Γφ\Gamma_{\varphi} is a subgroup of G.G. Then, for any n,mNn,m\in N it holds

  1. (1)

    Φ(n)1Φ(m)=n1mCm1n(φ(n)1)φ(m);\Phi(n)^{-1}\Phi(m)=n^{-1}mC_{m^{-1}n}(\varphi(n)^{-1})\varphi(m);

  2. (2)

    Φ(n)Φ(m)1=nm1Cm(φ(n)φ(m)1);\Phi(n)\Phi(m)^{-1}=nm^{-1}C_{m}(\varphi(n)\varphi(m)^{-1});

  3. (3)

    Φ(n)Φ(m)=nmCm1(φ(n))φ(m);\Phi(n)\Phi(m)=nmC_{m^{-1}}(\varphi(n))\varphi(m);

  4. (4)

    (Φ(n)Φ(m))1=(nm)1Cnm(φ(m)1)Cn(φ(n)1).(\Phi(n)\Phi(m))^{-1}=(nm)^{-1}C_{nm}(\varphi(m)^{-1})C_{n}(\varphi(n)^{-1}).

Moreover,

(a):

φ(n1m)=Cm1n(φ(n)1)φ(m);\varphi(n^{-1}m)=C_{m^{-1}n}(\varphi(n)^{-1})\varphi(m);

(b):

φ(nm1)=Cm(φ(n)φ(m)1);\varphi(nm^{-1})=C_{m}(\varphi(n)\varphi(m)^{-1});

(c):

φ(nm)=Cm1(φ(n))φ(m);\varphi(nm)=C_{m^{-1}}(\varphi(n))\varphi(m);

(d):

φ((nm)1)=Cnm(φ(m)1)Cn(φ(n)1).\varphi\left((nm)^{-1}\right)=C_{nm}(\varphi(m)^{-1})C_{n}(\varphi(n)^{-1}).

Proof.

Since Γφ\Gamma_{\varphi} is a subgroup of G,G, we have that for every n,mNn,m\in N

Φ(n)1Φ(m)=Φ(k),\Phi(n)^{-1}\Phi(m)=\Phi(k),

for some kNk\in N and, consequently, the equalities (1)(a)(1)-(a) hold noting that

k\displaystyle k =πN(Φ(n)1Φ(m))=πN(n1mNm1nφ(n)1n1mφ(m)H)=n1m,\displaystyle=\pi_{N}(\Phi(n)^{-1}\Phi(m))=\pi_{N}(\underbrace{n^{-1}m}_{\in N}\underbrace{m^{-1}n\varphi(n)^{-1}n^{-1}m\varphi(m)}_{\in H})=n^{-1}m,
φ(k)\displaystyle\varphi(k) =φ(n1m)=πH(Φ(n)1Φ(m))=Cm1n(φ(n))φ(m).\displaystyle=\varphi(n^{-1}m)=\pi_{H}(\Phi(n)^{-1}\Phi(m))=C_{m^{-1}n}(\varphi(n))\varphi(m).

In a similar way, it is possible to show the other equalities (2)(3)(4)(2)-(3)-(4) and consequently (b)(c)(d).(b)-(c)-(d).

References

  • [ABB19] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive introduction to sub-Riemannian geometry. Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, 181:762, 2019.
  • [ACM12] G. Arena, A. O. Caruso, and R. Monti. Regularity properties of HH-convex sets. J. Geom. Anal., 22(2):583–602, 2012.
  • [ADDDLD20] Gioacchino Antonelli, Daniela Di Donato, Sebastiano Don, and Enrico Le Donne. Characterizations of uniformly differentiable co-horizontal intrinsic graphs in Carnot groups. 2020. accepted to Annales de l’Institut Fourier, available at https://arxiv.org/abs/2005.11390.
  • [AK00] Luigi Ambrosio and Bernd Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318(3):527–555, 2000.
  • [ALD20] Gioacchino Antonelli and Enrico Le Donne. Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces. Nonlinear Anal., 200:111983, 30, 2020.
  • [AS09] Gabriella Arena and Raul Serapioni. Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs. Calc. Var. Partial Differential Equations, 35(4):517–536, 2009.
  • [ASCV06] Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone. Intrinsic regular hypersurfaces in Heisenberg groups. J. Geom. Anal., 16(2):187–232, 2006.
  • [BCSC15] F. Bigolin, L. Caravenna, and F. Serra Cassano. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 32(5):925–963, 2015.
  • [BLU07] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.
  • [BSC10a] Francesco Bigolin and Francesco Serra Cassano. Distributional solutions of Burgers’ equation and intrinsic regular graphs in Heisenberg groups. J. Math. Anal. Appl., 366(2):561–568, 2010.
  • [BSC10b] Francesco Bigolin and Francesco Serra Cassano. Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs. Adv. Calc. Var., 3(1):69–97, 2010.
  • [CDPT07] Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
  • [CM20] Francesca Corni and Valentino Magnani. Area formula for regular submanifolds of low codimension in Heisenberg groups. 2020. Preprint, available at https://arxiv.org/abs/2002.01433.
  • [CMPSC14] Giovanna Citti, Maria Manfredini, Andrea Pinamonti, and Francesco Serra Cassano. Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group. Calc. Var. Partial Differ. Equ., 49:1279–1308, 2014.
  • [Cor20] Francesca Corni. Intrinsic regular surfaces of low codimension in Heisenberg groups. 2020. Accepted paper on Ann. Acad. Sci. Fenn. Math.
  • [DD20a] Daniela Di Donato. Intrinsic differentiability and intrinsic regular surfaces in Carnot groups. Accepted paper in Potential Anal., 2020.
  • [DD20b] Daniela Di Donato. Intrinsic Lipschitz graphs in Carnot groups of step 2. Ann. Acad. Sci. Fenn. Math, pages 1–51, 2020.
  • [DD22a] Daniela Di Donato. Intrinsically Hölder sections in metric spaces. preprint, 2022.
  • [DD22b] Daniela Di Donato. Intrinsically quasi-isometric sections in metric spaces. preprint, 2022.
  • [DDFO21] Daniela Di Donato, Katrin Fassler, and Tuomas Orponen. Metric rectifiability of H-regular surfaces with Holder continuous horizontal normal. Accepted to International Mathematics Research Notices, 2021.
  • [DDLD22] Daniela Di Donato and Enrico Le Donne. Intrinsically Lipschitz sections and applications to metric groups. preprint, 2022.
  • [Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
  • [FMS14] Bruno Franchi, Marco Marchi, and Raul Serapioni. Differentiability and approximate differentiability for intrinsic lipschitz functions in carnot groups and a rademarcher theorem. Anal. Geom. Metr. Spaces, 2(3):258–281, 2014.
  • [FS16] Bruno Franchi and Raul Paolo Serapioni. Intrinsic Lipschitz graphs within Carnot groups. J. Geom. Anal., 26(3):1946–1994, 2016.
  • [FSSC01] B. Franchi, R. Serapioni, and F. Serra Cassano. Rectifiability and perimeter in the Heisenberg group. Math. Ann., 321(3):479–531, 2001.
  • [FSSC03a] B. Franchi, R. Serapioni, and F. Serra Cassano. Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Comm. Anal. Geom., 11(5):909–944, 2003.
  • [FSSC03b] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. On the structure of finite perimeter sets in step 2 Carnot groups. The Journal of Geometric Analysis, 13(3):421–466, 2003.
  • [FSSC11] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Differentiability of intrinsic Lipschitz functions within Heisenberg groups. J. Geom. Anal., 21(4):1044–1084, 2011.
  • [JNGV20] Antoine Julia, Sebastiano Nicolussi Golo, and Davide Vittone. Area of intrinsic graphs and coarea formula in Carnot groups. 2020. Preprint, available at https://arxiv.org/abs/1811.05457.
  • [Mag04] Valentino Magnani. Unrectifiability and rigidity in stratified groups. Arch. Math., 83(6):568–576, 2004.
  • [Mag13] Valentino Magnani. Towards differential calculus in stratified groups. J. Aust. Math. Soc., 95(1):76–128, 2013.
  • [MV12] Roberto Monti and Davide Vittone. Sets with finite \mathbb{H}-perimeter and controlled normal. Math. Z., 270(1-2):351–367, 2012.
  • [Pau04] S.D. Pauls. A notion of rectifiability modeled on Carnot groups. Indiana Univ. Math. J., 53(1):49–81, 2004.
  • [SC16] Francesco Serra Cassano. Some topics of geometric measure theory in Carnot groups. In Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Ser. Lect. Math., pages 1–121. Eur. Math. Soc., Zürich, 2016.
  • [Vit20] Davide Vittone. Lipschitz graphs and currents in Heisenberg groups. 2020. Preprint, available at https://arxiv.org/abs/2007.14286.