This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Intersections of middle-α\alpha Cantor sets with a fixed translation

Yan Huang College of Mathematics and Statistics, Chongqing University, 401331, Chongqing, P.R.China [email protected]  and  Derong Kong College of Mathematics and Statistics, Chongqing University, 401331, Chongqing, P.R.China [email protected]
Abstract.

For λ(0,1/3]\lambda\in(0,1/3] let CλC_{\lambda} be the middle-(12λ)(1-2\lambda) Cantor set in \mathbb{R}. Given t[1,1]t\in[-1,1], excluding the trivial case we show that

Λ(t):={λ(0,1/3]:Cλ(Cλ+t)}\Lambda(t):=\left\{\lambda\in(0,1/3]:C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset\right\}

is a topological Cantor set with zero Lebesgue measure and full Hausdorff dimension. In particular, we calculate the local dimension of Λ(t)\Lambda(t), which reveals a dimensional variation principle. Furthermore, for any β[0,1]\beta\in[0,1] we show that the level set

Λβ(t):={λΛ(t):dimH(Cλ(Cλ+t))=dimP(Cλ(Cλ+t))=βlog2logλ}\Lambda_{\beta}(t):=\left\{\lambda\in\Lambda(t):\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))=\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t))=\beta\frac{\log 2}{-\log\lambda}\right\}

has equal Hausdorff and packing dimension (βlogβ(1β)log1β2)/log3(-\beta\log\beta-(1-\beta)\log\frac{1-\beta}{2})/\log 3. We also show that the set of λΛ(t)\lambda\in\Lambda(t) for which dimH(Cλ(Cλ+t))dimP(Cλ(Cλ+t))\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))\neq\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t)) has full Hausdorff dimension.

Key words and phrases:
Intersection; Cantor set; Hausdorff dimension; Packing dimension; Level set; Digit frequency
2010 Mathematics Subject Classification:
Primary:28A78, 37A10; Secondary: 28D10, 28A80, 37B10

1. Introduction

Intersections of Cantor sets on the real line appear in the setting of homoclinic bifurcations in dynamical systems (cf. [4]). Moreira and Yoccoz [5] studied the stable intersections of regular Cantor sets, and gave an affirmative answer to Palis’ conjecture. Intersections of Cantor sets also appear in number theory. Hall [9] proved that any real number can be written as the sum of two numbers whose continued fractional coefficients are at most 44, and from this it follows that the Lagrange spectrum contains a whole half-line. Note that the middle-α\alpha Cantor set is an affine Cantor set, which minimizes the Hausdorff dimension with a given thickness (cf. [12, 16]). Motivated by the above works there is a great interest in the study of intersections of middle-α\alpha Cantor set with its translations. Kraft [13] gave a complete description when the intersection of middle-α\alpha Cantor set with its translation is a single point. Li and Xiao [14] calculated the Hausdorff and packing dimensions of the intersection of middle-α\alpha Cantor set with its translation for α1/3\alpha\geq 1/3. When α(0,1/3)\alpha\in(0,1/3), Zou, Lu and Li [19] determined when the intersection of middle-α\alpha Cantor set with its translation is a self-similar set under the condition that the translation has a unique coding. Recently, Baker and the second author [2] proved that for α(0,1/3)\alpha\in(0,1/3) it is possible that the intersection of middle-α\alpha Cantor set with its translation contains only Liouville numbers.

For λ(0,1/2)\lambda\in(0,{1/2}) let CλC_{\lambda} be the middle-α\alpha Cantor set with α=12λ\alpha=1-2\lambda. Then CλC_{\lambda} is a self-similar set generated by the iterated function system (IFS): {gi(x)=λx+i(1λ):i=0,1}.\left\{g_{i}(x)=\lambda x+i(1-\lambda):i=0,1\right\}. In other words, CλC_{\lambda} is the unique nonempty compact set satisfying Cλ=g0(Cλ)g1(Cλ)C_{\lambda}=g_{0}(C_{\lambda})\cup g_{1}(C_{\lambda}). So,

(1.1) Cλ={(1λ)n=1inλn1:in{0,1}n1}.C_{\lambda}=\left\{(1-\lambda)\sum_{n=1}^{\infty}i_{n}\lambda^{n-1}:i_{n}\in\{0,1\}\leavevmode\nobreak\ \forall n\geq 1\right\}.

Observe that Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset if and only if tCλCλt\in C_{\lambda}-C_{\lambda}. By (1.1) it follows that

(1.2) Eλ:=CλCλ={(1λ)n=1inλn1:in{1,0,1}n1}.E_{\lambda}:=C_{\lambda}-C_{\lambda}=\left\{(1-\lambda)\sum_{n=1}^{\infty}{i_{n}}\lambda^{n-1}:{i_{n}}\in\{-1,0,1\}\leavevmode\nobreak\ \forall n\geq 1\right\}.

Clearly, if λ(0,1/3)\lambda\in(0,1/3), then EλE_{\lambda} is a Cantor set having zero Lebesgue measure. And each tEλt\in E_{\lambda} has a unique coding (in){1,0,1}{(i_{n})}\in\left\{-1,0,1\right\}^{\mathbb{N}} such that t=(1λ)n=1inλn1.t=(1-\lambda)\sum_{n=1}^{\infty}{i_{n}}\lambda^{n-1}. Li and Xiao [14, Theorem 3.4] gave the Hausdorff and packing dimensions of Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t):

(1.3) dimH(Cλ(Cλ+t))=log2logλlim infn#{1jn:ij=0}n,dimP(Cλ(Cλ+t))=log2logλlim supn#{1jn:ij=0}n,\begin{split}&\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))=\frac{\log 2}{-\log\lambda}\,\liminf_{n\to\infty}\frac{\#\{1\leq j\leq n:i_{j}=0\}}{n},\\ &\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t))=\frac{\log 2}{-\log\lambda}\,\limsup_{n\to\infty}\frac{\#\{1\leq j\leq n:i_{j}=0\}}{n},\end{split}

where #A\#A denotes the cardinality of a set AA. If λ=1/3\lambda=1/3, then except for a countable set of points in EλE_{\lambda} having two different codings, all other tts in EλE_{\lambda} have a unique coding; and the dimension formulae (1.3) still hold. If λ(1/3,1/2)\lambda\in(1/3,1/2), then Eλ=[1,1]E_{\lambda}=[-1,1], and it is well known that Lebesgue almost every t[1,1]t\in[-1,1] has a continuum of codings (cf. [17]). In this case the dimension formulae (1.3) fail for typical t[1,1]t\in[-1,1], but we still have the dimension formulae (1.3) if tt has a unique coding (see [11]).

Refer to caption
Figure 1. The fourth level approximation of the master set Γ\Gamma which consists of all vectors (λ,t)(0,1/3]×[0,1](\lambda,t)\in(0,1/3]\times[0,1] such that Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset. Each curve corresponds to a unique coding (in){1,0,1}(i_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}} via the equation t=(1λ)n=1inλn1t=(1-\lambda)\sum_{n=1}^{\infty}i_{n}\lambda^{n-1}. For any (λ,t)Γ(\lambda,t)\in\Gamma the vertical fiber is Eλ[0,1]E_{\lambda}\cap[0,1], and the horizontal fiber is Λ(t)\Lambda(t).

Let Γ~:={(λ,t)(0,1/2)×[1,1]:Cλ(Cλ+t)}\tilde{\Gamma}:=\left\{(\lambda,t)\in(0,1/2)\times[-1,1]:C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset\right\} be the master set defined by the intersections of Cantor sets. Since for any λ(1/3,1/2)\lambda\in(1/3,1/2) and t[1,1]t\in[-1,1] the intersection Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t) is always non-empty, and Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset if and only if Cλ(Cλt)C_{\lambda}\cap(C_{\lambda}-t)\neq\emptyset, it is then interesting to consider the subset (see Figure 1)

Γ:={(λ,t)(0,13]×[0,1]:Cλ(Cλ+t)}={(λ,t)(0,13]×[0,1]:tEλ},\Gamma:=\left\{(\lambda,t)\in(0,\frac{1}{3}]\times[0,1]:C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset\right\}=\left\{(\lambda,t){\in(0,\frac{1}{3}]\times[0,1]}:t\in E_{\lambda}\right\},

where the second equality holds because Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset if and only tCλCλ=Eλt\in C_{\lambda}-C_{\lambda}=E_{\lambda}. Observe that for λ(0,1/3]\lambda\in(0,1/3] the vertical fiber Γ(λ)={t[0,1]:tEλ}=Eλ[0,1]\Gamma(\lambda)=\left\{t\in[0,1]:t\in E_{\lambda}\right\}=E_{\lambda}\cap[0,1] is a Cantor set having Hausdorff dimension log3/logλ-\log 3/\log\lambda. Since EλE_{\lambda} is a self-similar set, a lot is known about this vertical fiber Γ(λ)\Gamma(\lambda) (cf. [10]). On the other hand, for any t[0,1]t\in[0,1] let

(1.4) Λ(t):={λ(0,13]:Cλ(Cλ+t)}={λ(0,13]:tEλ}\Lambda(t):=\left\{\lambda\in(0,\frac{1}{3}]:C_{\lambda}\cap(C_{\lambda}+t)\neq\emptyset\right\}=\left\{\lambda\in(0,\frac{1}{3}]:t\in E_{\lambda}\right\}

be a horizontal fiber of Γ\Gamma. By (1.2) it follows that Λ(0)=Λ(1)=(0,1/3]\Lambda(0)=\Lambda(1)=(0,1/3], and Λ(1/3)={1/3}\Lambda(1/3)=\{1/3\}. So it is interesting to study Λ(t)\Lambda(t) for t(0,1){1/3}t\in(0,1)\setminus\{1/3\}.

Our first result shows that Λ(t)\Lambda(t) is a topological Cantor set, which is a non-empty compact set having neither interior nor isolated points.

Theorem 1.1.

Let t(0,1){1/3}t\in(0,1)\setminus\{1/3\}.

  1. (i)

    The set Λ(t)\Lambda(t) is a topological Cantor set with minΛ(t)=min{t,1t2}{\min}\Lambda(t)=\min\{t,\frac{1-t}{2}\} and maxΛ(t)=1/3{\max}\Lambda(t)=1/3;

  2. (ii)

    Λ(t)\Lambda(t) is a Lebesgue null set having full Hausdorff dimension;

  3. (iii)

    For any λΛ(t)\lambda\in\Lambda(t) we have

    limδ0+dimH(Λ(t)(λδ,λ+δ))=log3logλ.\lim_{\delta\to 0^{+}}\dim_{H}(\Lambda(t)\cap(\lambda-\delta,\lambda+\delta))=\frac{\log 3}{-\log\lambda}.
Remark 1.2.

Note that EλE_{\lambda} is a self-similar set having Hausdorff dimension log3/logλ-\log 3/\log\lambda. Then Theorem 1.1 (iii) shows that the local dimension of Λ(t)\Lambda(t) at λ\lambda is the same as the local dimension of EλE_{\lambda} at tt. In view of Figure 1 it follows that the local dimensions of Γ\Gamma at any point (λ,t)Γ(\lambda,t){\in\Gamma} through the horizontal and the vertical fibers are the same; this can be viewed as a dimensional ‘variation principle’ for the set Γ\Gamma.

Note by Theorem 1.1 (i) that Λ(t)\Lambda(t) is a topological Cantor set. Then it can be obtained by successively removing a sequence of open intervals from the closed interval [minΛ(t),1/3][\min\Lambda(t),1/3]. A geometrical construction of Λ(1/2)\Lambda(1/2) is plotted in Figure 2 (left). By Theorem 1.1 (iii) it follows that

dimH(Λ(t)(0,λ])=supγΛ(t)(0,λ)log3logγλ(0,1/3].\dim_{H}(\Lambda(t)\cap(0,\lambda])=\sup_{\gamma\in\Lambda(t)\cap(0,\lambda)}\frac{\log 3}{-\log\gamma}\qquad\forall\lambda\in(0,1/3].

Therefore, the dimension function ψt:λdimH(Λ(t)(0,λ])\psi_{t}:\lambda\mapsto\dim_{H}(\Lambda(t)\cap(0,\lambda]), which describes the distribution of Λ(t)\Lambda(t), is a Cádlág function (see Figure 2, right). It is locally constant almost everywhere, left continuous with right-hand limits everywhere, and thus it has countably infinitely many discontinuities; and it has no downward jumps.

14\frac{1}{4}13\frac{1}{3}1(1)211(-1)^{2}1^{\infty}1(1)0(1)1(-1)0(-1)^{\infty}1(1)011(-1)01^{\infty}1(1)1(1)1(-1)1(-1)^{\infty}
ψ12(λ)\psi_{\frac{1}{2}}(\lambda)0.790.790.250.25λ\lambda0.2690.2690.2780.2780.3150.3150.3190.31913\frac{1}{3}11
Figure 2. Left: the geometrical construction of Λ(1/2)\Lambda(1/2). Right: the graph of ψ1/2:λdimH(Λ(1/2)(0,λ])\psi_{1/2}:\lambda\mapsto\dim_{H}(\Lambda(1/2)\cap(0,\lambda]) for λ(minΛ(1/2),1/3]=(1/4,1/3]\lambda\in(\min\Lambda(1/2),1/3]=(1/4,1/3].

Observe by (1.3) that the dimension of Cλ(Cλ+t)C_{\lambda}\cap(C_{\lambda}+t) is determined by the frequency of digit zero in the coding of tt in base λ\lambda. Then for λ(0,1/3]\lambda\in(0,1/3] the vertical fiber Γ(λ)\Gamma(\lambda) can be partitioned as

Γ(λ)=Γnot(λ)β[0,1]Γβ(λ),\Gamma(\lambda)=\Gamma_{not}(\lambda)\cup\bigcup_{\beta\in[0,1]}\Gamma_{\beta}(\lambda),

where

Γnot(λ)\displaystyle\Gamma_{not}(\lambda) :={t[0,1]:dimH(Cλ(Cλ+t))dimP(Cλ(Cλ+t))},\displaystyle:=\left\{t\in[0,1]:\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))\neq\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t))\right\},
Γβ(λ)\displaystyle\Gamma_{\beta}(\lambda) :={t[0,1]:dimH(Cλ(Cλ+t))=dimP(Cλ(Cλ+t))=βlog2logλ}.\displaystyle:=\left\{t\in[0,1]:\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))=\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t))=\beta\frac{\log 2}{-\log\lambda}\right\}.

Li and Xiao [14, Theorem 4.3] showed that

dimHΓβ(λ)=dimPΓβ(λ)=h(1β2,β,1β2)logλ,\dim_{H}\Gamma_{\beta}(\lambda)=\dim_{P}\Gamma_{\beta}(\lambda)=\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{-\log\lambda},

where for a probability vector (p1,p2,p3)(p_{1},p_{2},p_{3})

(1.5) h(p1,p2,p3):=i=13pilogpi.{h(p_{1},p_{2},p_{3}):=-\sum_{i=1}^{3}p_{i}\log p_{i}}.

Here we adopt the convention 0log0=00\log 0=0. Furthermore, an application of [3] gives that dimHΓnot(λ)=log3/logλ\dim_{H}\Gamma_{not}(\lambda)=-\log 3/\log\lambda.

Inspired by the works of [3] and [14] we consider the level sets of the horizontal fiber Λ(t)\Lambda(t). Given t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}, for β[0,1]\beta\in[0,1] let

Λβ(t):={λΛ(t):dimH(Cλ(Cλ+t))=dimP(Cλ(Cλ+t))=βlog2logλ}.\Lambda_{\beta}(t):=\left\{\lambda\in\Lambda(t):\dim_{H}\big{(}C_{\lambda}\cap(C_{\lambda}+t)\big{)}=\dim_{P}\big{(}C_{\lambda}\cap(C_{\lambda}+t)\big{)}=\beta\;\frac{\log 2}{-\log\lambda}\right\}.

Then the horizontal fiber Λ(t)\Lambda(t) can be partitioned as

Λ(t)=Λnot(t)β[0,1]Λβ(t),\Lambda(t)=\Lambda_{not}(t)\cup\bigcup_{\beta\in[0,1]}\Lambda_{\beta}(t),

where

Λnot(t)\displaystyle\Lambda_{not}(t) :={λΛ(t):dimH(Cλ(Cλ+t))dimP(Cλ(Cλ+t))}.\displaystyle:=\left\{\lambda\in\Lambda(t):\dim_{H}\big{(}C_{\lambda}\cap(C_{\lambda}+t)\big{)}\neq\dim_{P}\big{(}C_{\lambda}\cap(C_{\lambda}+t)\big{)}\right\}.
Theorem 1.3.

For any t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} and β[0,1]\beta\in[0,1] the sets Λnot(t)\Lambda_{not}(t) and Λβ(t)\Lambda_{\beta}(t) are both dense in Λ(t)\Lambda(t). Furthermore,

dimHΛnot(t)=1anddimHΛβ(t)=dimPΛβ(t)=h(1β2,β,1β2)log3.\dim_{H}\Lambda_{not}(t)=1\quad\textrm{and}\quad\dim_{H}\Lambda_{\beta}(t)=\dim_{P}\Lambda_{\beta}(t)=\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3}.
Remark 1.4.

Our proof of Theorem 1.3 can be adapted to showing that for any t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}

Λfin(t)={λΛ(t):#Cλ(Cλ+t)<+}\Lambda_{fin}(t)={\left\{\lambda\in\Lambda(t):\#C_{\lambda}\cap(C_{\lambda}+t)<+\infty\right\}}

has the same Hausdorff dimension as Λ0(t)\Lambda_{0}(t), that is dimHΛfin(t)=log2/log3\dim_{H}\Lambda_{fin}(t)=\log 2/\log 3.

The rest of the paper is organized as follows. In the next section we define the coding map Φt\Phi_{t} which maps each λΛ(t)\lambda\in\Lambda(t) to its coding of tt in base λ\lambda, and show that Φt\Phi_{t} is continuous and piecewise monotonic in Λ(t)\Lambda(t). Based on this map Φt\Phi_{t} we show in Section 3 that Λ(t)\Lambda(t) is a topological Cantor set, and it has full Hausdorff dimension. In Section 4 we calculate the local dimension of Λ(t)\Lambda(t), and prove Theorem 1.1. Motivated by the works of non-normal numbers we show in Section 5 that Λnot(t)\Lambda_{not}(t) is a dense subset of Λ(t)\Lambda(t) with full Hausdorff dimension. Finally, in Section 6 we calculate the dimension of Λβ(t)\Lambda_{\beta}(t) and prove Theorem 1.3.

2. Preliminaries

In this section we will define a map Φt\Phi_{t} which maps Λ(t)\Lambda(t) to the symbolic space {1,0,1}\{-1,0,1\}^{\mathbb{N}}. First we recall some terminology from symbolic dynamics (cf. [15]). Let {1,0,1}\left\{-1,0,1\right\}^{\mathbb{N}} be the set of all infinite sequences over the alphabet {1,0,1}\left\{-1,0,1\right\}. By a word we mean a finite string of digits over {1,0,1}\left\{-1,0,1\right\}. Denote by {1,0,1}\left\{-1,0,1\right\}^{*} the set of all finite words including the empty word ϵ\epsilon. For two words 𝐜=c1cm\mathbf{c}=c_{1}\ldots c_{m} and 𝐝=d1dn\mathbf{d}=d_{1}\ldots d_{n} we write 𝐜𝐝=c1cmd1dn\mathbf{cd}=c_{1}\ldots c_{m}d_{1}\ldots d_{n} for their concatenation. In particular, for any kk\in\mathbb{N} we denote by 𝐜k\mathbf{c}^{k} the kk-fold concatenation of 𝐜\mathbf{c} with itself, and by 𝐜\mathbf{c}^{\infty} the periodic sequence which is obtained by the infinite concatenation of 𝐜\mathbf{c} with itself. For a word 𝐜=c1cm{1,0,1}\mathbf{c}=c_{1}\ldots c_{m}\in\left\{-1,0,1\right\}^{*} with m1m\geq 1, if cm<1c_{m}<1 we write 𝐜+:=c1cm1(cm+1)\mathbf{c}^{+}:=c_{1}\ldots c_{m-1}(c_{m}+1); and if cm>1c_{m}>-1, we write 𝐜:=c1cm1(cm1)\mathbf{c}^{-}:=c_{1}\ldots c_{m-1}(c_{m}-1). Therefore, 𝐜+\mathbf{c}^{+} and 𝐜\mathbf{c}^{-} are both words over the alphabet {1,0,1}\left\{-1,0,1\right\}. Throughout the paper we will use lexicographical order ,,\prec,\preccurlyeq,\succ or \succcurlyeq between sequences in {1,0,1}\left\{-1,0,1\right\}^{\mathbb{N}}. For example, we say (in)(jn)(i_{n})\succ(j_{n}) if i1>j1i_{1}>j_{1}, or there exists nn\in\mathbb{N} such that i1in=j1jni_{1}\ldots i_{n}=j_{1}\ldots j_{n} and in+1>jn+1i_{n+1}>j_{n+1}. And we write (in)(jn)(i_{n})\succcurlyeq(j_{n}) if (in)(jn)(i_{n})\succ(j_{n}) or (in)=(jn)(i_{n})=(j_{n}). Similarly, we say (in)(jn)(i_{n})\prec(j_{n}) if (jn)(in)(j_{n})\succ(i_{n}), and say (in)(jn)(i_{n})\preccurlyeq(j_{n}) if (jn)(in)(j_{n})\succcurlyeq(i_{n}). For two infinite sequences 𝐜=(cn),𝐝=(dn){1,0,1}{\mathbf{c}}=(c_{n}),{\mathbf{d}}=(d_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}} with 𝐜𝐝{\mathbf{c}}\prec{\mathbf{d}} we write

(𝐜,𝐝):={(in){1,0,1}:𝐜(in)𝐝},[𝐜,𝐝]:={(in){1,0,1}:𝐜(in)𝐝}.({\mathbf{c}},{\mathbf{d}}):=\left\{(i_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}}:{\mathbf{c}}\prec(i_{n})\prec{\mathbf{d}}\right\},\quad[{\mathbf{c}},{\mathbf{d}}]:=\left\{(i_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}}:{\mathbf{c}}\preccurlyeq(i_{n})\preccurlyeq{\mathbf{d}}\right\}.

Similarly, we set

(𝐜,𝐝]:={(in){1,0,1}:𝐜(in)𝐝},[𝐜,𝐝):={(in){1,0.1}:𝐜(in)𝐝}.({\mathbf{c}},{\mathbf{d}}]:=\left\{(i_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}}:{\mathbf{c}}\prec(i_{n})\preccurlyeq{\mathbf{d}}\right\},\quad[{\mathbf{c}},{\mathbf{d}}):=\left\{(i_{n})\in\left\{-1,0.1\right\}^{\mathbb{N}}:{\mathbf{c}}\preccurlyeq(i_{n})\prec{\mathbf{d}}\right\}.

For λ(0,1/3]\lambda\in(0,1/3] we note by (1.2) that EλE_{\lambda} is a self-similar set generated by the IFS {gi(x)=λx+i(1λ):i=1,0,1}\left\{g_{i}(x)=\lambda x+i(1-\lambda):i=-1,0,1\right\}. This induces a map πλ\pi_{\lambda} defined by

πλ:{1,0,1}Eλ;(in)(1λ)n=1inλn1.\pi_{\lambda}:\left\{-1,0,1\right\}^{\mathbb{N}}\to E_{\lambda};\quad(i_{n})\mapsto(1-\lambda)\sum\limits_{n=1}^{\infty}i_{n}\lambda^{n-1}.

It is clear that the map πλ\pi_{\lambda} is bijective if λ(0,1/3)\lambda\in(0,1/3); and the map πλ\pi_{\lambda} is bijective up to a countable set if λ=1/3\lambda=1/3. Now, based on πλ\pi_{\lambda} we define the master map Π\Pi by

(2.1) Π:{1,0,1}×(0,1/3][1,1];((in),λ)πλ((in))=(1λ)n=1inλn1.\Pi:\{-1,0,1\}^{\mathbb{N}}\times(0,1/3]\to[-1,1];\quad((i_{n}),\lambda)\mapsto\pi_{\lambda}((i_{n}))=(1-\lambda)\sum_{n=1}^{\infty}i_{n}\lambda^{n-1}.

Note that the symbolic space {1,0,1}\left\{-1,0,1\right\}^{\mathbb{N}} becomes a compact metric space under the metric ρ\rho defined by

ρ((in),(jn))=31inf{n1:injn}.\rho((i_{n}),(j_{n}))=3^{1-\inf\left\{n\geq 1:i_{n}\neq j_{n}\right\}}.

First we show that Π\Pi is continuous under the product topology induced by the metric ρ\rho on {1,0,1}\left\{-1,0,1\right\}^{\mathbb{N}} and the Euclidean metric |||\cdot| on \mathbb{R}.

Lemma 2.1.

The map Π:{1,0,1}×(0,1/3][1,1]\Pi:\left\{-1,0,1\right\}^{\mathbb{N}}\times(0,1/3]\to[-1,1] is continuous and onto.

Proof.

Note that Π({1,0,1}×{1/3})=[1,1]\Pi(\left\{-1,0,1\right\}^{\mathbb{N}}\times\left\{1/3\right\})=[-1,1]. It suffices to prove the continuity of Π\Pi, which follows from the following observation: for any two ((in),λ1),((jn),λ2){1,0,1}×(0,1/3]((i_{n}),\lambda_{1}),((j_{n}),\lambda_{2})\in\left\{-1,0,1\right\}^{\mathbb{N}}\times(0,1/3] with k=inf{n1:injn}k=\inf\left\{n\geq 1:i_{n}\neq j_{n}\right\}, by (2.1) it follows that

|Π((in),λ1)Π((jn),λ2)|\displaystyle|\Pi((i_{n}),\lambda_{1})-\Pi((j_{n}),\lambda_{2})| |Π((in),λ1)Π((in),λ2)|+|Π((in),λ2)Π((jn),λ2)|\displaystyle\leq|\Pi((i_{n}),\lambda_{1})-\Pi((i_{n}),\lambda_{2})|+|\Pi((i_{n}),\lambda_{2})-\Pi((j_{n}),\lambda_{2})|
supλ(0,1/3]|Π2((in),λ)||λ1λ2|+|(1λ2)n=1(injn)λ2n1|\displaystyle\leq\sup_{\lambda\in(0,1/3]}|\Pi_{2}((i_{n}),\lambda)|\cdot|\lambda_{1}-\lambda_{2}|+\left|(1-\lambda_{2})\sum_{n=1}^{\infty}(i_{n}-j_{n})\lambda_{2}^{n-1}\right|
2|λ1λ2|+|(1λ2)n=k2λ2n1|\displaystyle\leq 2|\lambda_{1}-\lambda_{2}|+\left|(1-\lambda_{2})\sum_{n=k}^{\infty}2\lambda_{2}^{n-1}\right|
2|λ1λ2|+2ρ((in),(jn)),\displaystyle\leq 2|\lambda_{1}-\lambda_{2}|+2\rho((i_{n}),(j_{n})),

where the second inequality follows by the mean value theorem that

(2.2) Π2((in),λ):=Π((in),λ)λ=n=1inn(n1nλ)λn2,\Pi_{2}((i_{n}),\lambda):=\frac{\partial\Pi((i_{n}),\lambda)}{\partial\lambda}=\sum_{n=1}^{\infty}i_{n}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2},

and the third inequality follows by |Π2((in),λ)|1+n=2n(n1nλ)λn2=2.\left|\Pi_{2}((i_{n}),\lambda)\right|\leq 1+\sum_{n=2}^{\infty}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2}=2.

Next we show that Π\Pi is monotonic in its first variable.

Lemma 2.2.

Given λ(0,1/3]\lambda\in(0,1/3], the function Π(,λ)\Pi(\cdot,\lambda) is increasing in {1,0,1}\left\{-1,0,1\right\}^{\mathbb{N}} with respect to the lexicographical order. In particular, if λ(0,1/3)\lambda\in(0,1/3), the function Π(,λ)\Pi(\cdot,\lambda) is strictly increasing.

Proof.

Take (in),(jn){1,0,1}(i_{n}),(j_{n})\in\{-1,0,1\}^{\mathbb{N}} with (in)(jn)(i_{n}){\prec}(j_{n}). Then there exists mm\in\mathbb{N} such that in=jni_{n}=j_{n} for all n<mn<m, and im<jmi_{m}<j_{m}. By (2.1) this implies

Π((jn),λ)Π((in),λ)\displaystyle\Pi((j_{n}),\lambda)-\Pi((i_{n}),\lambda) =(1λ)n=m(jnin)λn1\displaystyle=(1-\lambda)\sum_{n=m}^{\infty}(j_{n}-i_{n})\lambda^{n-1}
(1λ)λm1(1λ)n=m+12λn1\displaystyle\geq(1-\lambda)\lambda^{m-1}-(1-\lambda)\sum_{n=m+1}^{\infty}2\lambda^{n-1}
=(1λ)λm12λm0,\displaystyle=(1-\lambda)\lambda^{m-1}-2\lambda^{m}\geq 0,

where the last inequality follows by λ(0,1/3]\lambda\in(0,1/3]; and this inequality is strict if λ(0,1/3)\lambda\in(0,1/3). ∎

Refer to caption
00^{\infty}0001001^{\infty}19\frac{1}{9}01(1)001(-1)0^{\infty}427\frac{4}{27}0101^{\infty}13\frac{1}{3}11^{\infty}11
Figure 3. Left: the graph of the functions Π((in),)\Pi((i_{n}),\cdot) for (in)(0,1)(i_{n})\in(0^{\infty},1^{\infty}). Right: the piecewise monotonicity of Π((in),)\Pi((i_{n}),\cdot) for (in)(0,1)(i_{n})\in(0^{\infty},1^{\infty}), where the number above the sequence (in)(i_{n}) denotes t=Π((in),1/3)t=\Pi((i_{n}),1/3).

However, Π\Pi is not always monotonic with respect to its second variable (see Figure 3, left), which complicates our proofs in many places of the paper. Note that the symbolic space {1,0,1}\left\{-1,0,1\right\}^{\mathbb{N}} is symmetric, and Π((in),)\Pi((i_{n}),\cdot) and Π((in),)\Pi((-i_{n}),\cdot) have opposite monotonicity. Moreover, Π(0,λ)0\Pi(0^{\infty},\lambda)\equiv 0 and Π(1,λ)1\Pi(1^{\infty},\lambda)\equiv 1. So it suffices to consider the piecewise monotonicity of Π((in),)\Pi((i_{n}),\cdot) for (in)(0,1)(i_{n})\in(0^{\infty},1^{\infty}), which will be divided into four subintervals (see Figure 3, right):

(0,001],(001,01(1)0),[01(1)0,01]and(01,1).(0^{\infty},001^{\infty}],\quad(001^{\infty},01(-1)0^{\infty}),\quad[01(-1)0^{\infty},01^{\infty}]\quad\textrm{{and}}\quad(01^{\infty},1^{\infty}).
Lemma 2.3.

Let (in)(0,1)(i_{n})\in(0^{\infty},1^{\infty}).

  1. (i)

    If (in)(0,001](i_{n})\in(0^{\infty},001^{\infty}], then Π((in),)\Pi((i_{n}),\cdot) is strictly increasing in (0,1/3](0,1/3];

  2. (ii)

    If (in)(001,01(1)0)(i_{n})\in(001^{\infty},01(-1)0^{\infty}), then Π((in),)\Pi((i_{n}),\cdot) is strictly concave in (0,1/3](0,1/3]. Furthermore, there exists a unique λ(in)[1/4,1/3)\lambda_{(i_{n})}\in[{1}/{4},{1}/{3}) such that Π((in),)\Pi((i_{n}),\cdot) is strictly increasing in (0,λ(in)](0,\lambda_{(i_{n})}] and strictly decreasing in [λ(in),1/3][\lambda_{(i_{n})},{1}/{3}];

  3. (iii)

    If (in)[01(1)0,01](i_{n})\in[01(-1)0^{\infty},01^{\infty}], then Π((in),)\Pi((i_{n}),\cdot) is strictly increasing in (0,1/3](0,1/3];

  4. (iv)

    If (in)(01,1)(i_{n})\in(01^{\infty},1^{\infty}), then Π((in),)\Pi((i_{n}),\cdot) is strictly decreasing in (0,1/3](0,1/3].

Proof.

For (i) we take (in)(0,001](i_{n})\in(0^{\infty},001^{\infty}]. Then there exists k3k\geq 3 such that i1ik=0k11i_{1}\ldots i_{k}=0^{k-1}1. By (2.2) it follows that

Π2((in),λ)\displaystyle\Pi_{2}((i_{n}),\lambda) k(k1kλ)λk2n=k+1n(n1nλ)λn2\displaystyle\geq k\left(\frac{k-1}{k}-\lambda\right)\lambda^{k-2}-\sum_{n=k+1}^{\infty}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2}
=λk2(k12kλ)>0,\displaystyle=\lambda^{k-2}(k-1-2k\lambda)>0,

where the last inequality follows by λ(0,1/3)\lambda\in(0,1/3) and k3k\geq 3. This proves (i).

Next we consider (ii). Take (in)(001,01(1)0)(i_{n})\in(001^{\infty},01(-1)0^{\infty}). Then 01(1)(in)01(1)001(-1)^{\infty}\preccurlyeq(i_{n})\prec 01(-1)0^{\infty}, and thus i1i2i3=01(1)i_{1}i_{2}i_{3}=01(-1) and i4i50i_{4}i_{5}\ldots\prec 0^{\infty}. By (2.2) it follows that

(2.3) Π2((in),λ)=2(12λ)3(23λ)λ+n=4inn(n1nλ)λn2=14λ+3λ2+n=4inn(n1nλ)λn2,\begin{split}\Pi_{2}((i_{n}),\lambda)&=2\left(\frac{1}{2}-\lambda\right)-3\left(\frac{2}{3}-\lambda\right)\lambda+\sum_{n=4}^{\infty}i_{n}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2}\\ &=1-4\lambda+3\lambda^{2}+\sum_{n=4}^{\infty}i_{n}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2},\end{split}

and therefore

(2.4) Π2((in),λ)λ=6λ4+n=4in(n1)[(n2)nλ]λn3<6λ4<0.\frac{\partial\Pi_{2}((i_{n}),\lambda)}{\partial\lambda}=6\lambda-4+\sum_{n=4}^{\infty}i_{n}(n-1)[(n-2)-n\lambda]\lambda^{n-3}<6\lambda-4<0.

So, Π((in),)\Pi((i_{n}),\cdot) is strictly concave in (0,1/3](0,1/3]. Observe by (2.3) that Π2((in),λ)14λ>0\Pi_{2}((i_{n}),\lambda)\geq 1-4\lambda>0 for any λ(0,1/4)\lambda\in(0,1/4), and Π2((in),1/3)<0\Pi_{2}((i_{n}),1/3)<0 since i4i50i_{4}i_{5}\cdots\prec 0^{\infty}. So by (2.4) there exists a unique λ(in)[1/4,1/3)\lambda_{(i_{n})}\in[1/4,1/3) such that Π((in),)\Pi((i_{n}),\cdot) is strictly increasing in (0,λ(in)](0,\lambda_{(i_{n})}] and strictly decreasing in [λ(in),1/3][\lambda_{(i_{n})},1/3].

For (iii) we take (in)[01(1)0,01](i_{n})\in[01(-1)0^{\infty},01^{\infty}]. Then i1i2=01i_{1}i_{2}=01. If i3=1i_{3}=-1, then i4i50i_{4}i_{5}\ldots\succeq 0^{\infty}. By (2.2) we obtain that Π2((in),λ)14λ+3λ2>0\Pi_{2}((i_{n}),\lambda){\geq}1-4\lambda+3\lambda^{2}>0 for any λ(0,1/3)\lambda\in(0,1/3); and thus Π((in),)\Pi((i_{n}),\cdot) is strictly increasing in (0,1/3](0,1/3]. If i3{0,1}i_{3}\in\left\{0,1\right\}, then by (2.2) it follows that

Π2((in),λ)Π(010(1),λ)=2(12λ)n=4n(n1nλ)λn2=12λ3λ2>0\displaystyle\Pi_{2}((i_{n}),\lambda)\geq{\Pi(010(-1)^{\infty},\lambda)}=2\left(\frac{1}{2}-\lambda\right)-\sum_{n=4}^{\infty}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2}=1-2\lambda-3\lambda^{2}>0

for all λ(0,1/3)\lambda\in(0,1/3). This proves (iii).

Finally we consider (iv). Take (in)(01,1)(i_{n})\in(01^{\infty},1^{\infty}). Then 1(1)(in)11(-1)^{\infty}\preccurlyeq(i_{n})\prec 1^{\infty}, which gives i1=1i_{1}=1. By (2.2) it follows that

Π2((in),λ)\displaystyle\Pi_{2}((i_{n}),\lambda) =1+n=2inn(n1nλ)λn2<1+n=2n(n1nλ)λn2=0,\displaystyle=-1+\sum_{n=2}^{\infty}i_{n}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2}<-1+\sum_{n=2}^{\infty}n\left(\frac{n-1}{n}-\lambda\right)\lambda^{n-2}=0,

which proves (iv). ∎

Remark 2.4.

From the proof of Lemma 2.3 (ii) it follows that the critical value λ(in)\lambda_{(i_{n})} is the unique zero in [1/4,1/3)[1/4,1/3) of (2.3). This implies that the map (in)λ(in)(i_{n})\mapsto\lambda_{(i_{n})} is continuous and strictly increasing in (001,01(1)0]=[01(1),01(1)0](001^{\infty},01(-1)0^{\infty}]=[01(-1)^{\infty},01(-1)0^{\infty}] with λ01(1)=1/4\lambda_{01(-1)^{\infty}}=1/4 and λ01(1)0=1/3\lambda_{01(-1)0^{\infty}}=1/3.

Given t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}, by (1.4) it follows that

Λ(t)={λ(0,1/3]:Π((in),λ)=t for some (in)(0,1)}.\Lambda(t)=\left\{\lambda\in(0,1/3]:\Pi((i_{n}),\lambda)=t\textrm{ for some }(i_{n})\in(0^{\infty},1^{\infty})\right\}.

Note by Lemma 2.2 that each λΛ(t){1/3}\lambda\in\Lambda(t)\setminus\left\{1/3\right\} corresponds to a unique coding (in)(i_{n}) satisfying Π((in),λ)=t\Pi((i_{n}),\lambda)=t, while for λ=1/3\lambda=1/3 there might be two codings (in)(i_{n}) satisfying Π((in),λ)=t\Pi((i_{n}),\lambda)=t, one ends with (1)(-1)^{\infty} and the other ends with 11^{\infty}. Now we define the map

(2.5) Φt:Λ(t)(0,1);λ(in)withΠ((in),λ)=t,\Phi_{t}:\Lambda(t)\to(0^{\infty},1^{\infty});\quad{\lambda\mapsto(i_{n})\quad\textrm{with}\quad\Pi((i_{n}),\lambda)=t,}

where for λ=1/3\lambda=1/3 we set

{Φt(1/3) does not end with 1 if t(0,1/9][4/27,1/3),Φt(1/3) does not end with (1) if t(1/9,4/27)(1/3,1).\left\{\begin{array}[]{lll}\Phi_{t}(1/3)\textrm{ does not end with }1^{\infty}&\textrm{ if }&t\in(0,1/9]\cup[4/27,1/3),\\ \Phi_{t}(1/3)\textrm{ does not end with }(-1)^{\infty}&\textrm{ if }&t\in(1/9,4/27)\cup(1/3,1).\end{array}\right.

So, if t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3), then Φt(1/3)\Phi_{t}(1/3) is the greedy triadic coding of tt; and if t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1), then Φt(1/3)\Phi_{t}(1/3) is the lazy triadic coding of tt. Note that the definition of Φt(1/3)\Phi_{t}(1/3) depends on the monotonicity of Π(Φt(1/3),)\Pi(\Phi_{t}(1/3),\cdot) (see Figure 3, right).

In the remaining part of this section we will show that Φt\Phi_{t} is continuous and piecewise monotonic, which will be vital in our study of Λ(t)\Lambda(t) and its level sets.

Lemma 2.5.

For any t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} the map Φt\Phi_{t} is continuous in Λ(t)\Lambda(t).

Proof.

The proof is similar to that of [18, Lemma 2.2]. For completeness we sketch its main idea. Take λΛ(t)\lambda_{*}\in\Lambda(t). Suppose on the contrary that Φt\Phi_{t} is not continuous at λ\lambda_{*}. Then there exist a large NN\in\mathbb{N} and a sequence (λk)Λ(t)(\lambda_{k})\subset\Lambda(t) such that

(2.6) limkλk=λandρ(Φt(λk),Φt(λ))3N+1k1.\lim_{k\to\infty}\lambda_{k}=\lambda_{*}\quad\textrm{and}\quad{{\rho(\Phi_{t}(\lambda_{k}),\Phi_{t}(\lambda_{*}))}\geq 3^{-N+1}\quad\forall k\geq 1}.

Write Φt(λk)=(in(k))\Phi_{t}(\lambda_{k})=(i_{n}^{(k)}) and Φt(λ)=(in)\Phi_{t}(\lambda_{*})=(i_{n}^{*}). By (2.6) it follows that i1(k)iN(k)i1iNi_{1}^{(k)}\ldots i_{N}^{(k)}\neq i_{1}^{*}\ldots i_{N}^{*} for all k1k\geq 1. Since ({1,0,1},ρ)(\left\{-1,0,1\right\}^{\mathbb{N}},\rho) is a compact metric space, there exists a subsequence (kj)(k_{j})\subset\mathbb{N} such that limj(in(kj))\lim_{j\to\infty}(i_{n}^{(k_{j})}) exists, say (in){1,0,1}(i_{n}^{\prime})\in\left\{-1,0,1\right\}^{\mathbb{N}}. Then

(2.7) i1iNi1iN.i_{1}^{\prime}\ldots i_{N}^{\prime}\neq i_{1}^{*}\ldots i_{N}^{*}.

Note that

(2.8) Π((in(kj)),λkj)=t=Π((in),λ)j1.\Pi((i_{n}^{(k_{j})}),\lambda_{k_{j}})=t=\Pi((i_{n}^{*}),\lambda_{*})\quad\forall j\geq 1.

Letting jj\to\infty in (2.8), by using (2.6) and Lemma 2.1 it follows that

(2.9) Π((in),λ)=t=Π((in),λ).\Pi((i_{n}^{\prime}),\lambda_{*})=t=\Pi((i_{n}^{*}),\lambda_{*}).

If λ(0,1/3)\lambda_{*}\in(0,1/3), then by (2.9) and Lemma 2.2 it follows that (in)=(in)(i_{n}^{\prime})=(i_{n}^{*}), leading to a contradiction with (2.7). If λ=1/3\lambda_{*}=1/3, then we consider the following two cases.

Case (I). t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3). Then (in)=Φt(1/3)(0,001][01(1)0,01)(i_{n}^{*})=\Phi_{t}(1/3)\in(0^{\infty},001^{\infty}]\cup[01(-1)0^{\infty},01^{\infty}). By Lemma 2.3 it follows that Π((in),)\Pi((i_{n}^{*}),\cdot) is strictly increasing in (0,1/3](0,1/3]. So by (2.8) and Lemma 2.2 it follows that (in(kj))(in)(i_{n}^{(k_{j})})\succcurlyeq(i_{n}^{*}) for all j1,j\geq 1, and thus (in)(in)(i_{n}^{\prime})\succcurlyeq(i_{n}^{*}). Since (in)=Φt(1/3)(i_{n}^{*})=\Phi_{t}(1/3) is the greedy triadic coding of tt, we must have (in)=(in)(i_{n}^{\prime})=(i_{n}^{*}), contradicting to (2.7).

Case (II). t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Then (in)=Φt(1/3)(001,01(1)0)(01,1)(i_{n}^{*})=\Phi_{t}(1/3)\in(001^{\infty},01(-1)0^{\infty})\cup(01^{\infty},1^{\infty}). Then by Lemma 2.3 there exists δ>0\delta>0 such that Π((in),)\Pi((i_{n}^{*}),\cdot) is strictly decreasing in (1/3δ,1/3](1/3-\delta,1/3]. So by (2.8) and Lemma 2.2 it follows that (in(kj))(in)(i_{n}^{(k_{j})})\preccurlyeq(i_{n}^{*}) for all j1,j\geq 1, and therefore (in)(in)(i_{n}^{\prime})\preccurlyeq(i_{n}^{*}). Since (in)(i_{n}^{*}) is the lazy triadic coding of tt, we must have (in)=(in)(i_{n}^{\prime})=(i_{n}^{*}), again leading to a contradiction with (2.7).

Hence, Φt\Phi_{t} is continuous at λ\lambda_{*}. Since λΛ(t)\lambda_{*}\in\Lambda(t) was arbitrary, Φ(t)\Phi(t) is continuous in Λ(t)\Lambda(t). ∎

We will end this section by showing that Φt\Phi_{t} is piecewise monotonic.

Proposition 2.6 (Key proposition).

Let t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}.

  1. (i)

    If t(0,1/9]t\in(0,{1/9}], then Φt\Phi_{t} is strictly decreasing in Λ(t)\Lambda(t);

  2. (ii)

    If t(1/9,4/27)t\in(1/9,4/27), then there exist a unique τ=τ(t)[1/4,1/3)\tau{=\tau(t)}\in[1/4,1/3) such that Φt\Phi_{t} is strictly decreasing in (0,τ]Λ(t)(0,\tau]\cap\Lambda(t) and strictly increasing in [τ,1/3]Λ(t)[\tau,1/3]\cap\Lambda(t);

  3. (iii)

    If t[4/27,1/3)t\in[{4}/{27},{1}/{3}), then Φt\Phi_{t} is strictly decreasing in Λ(t)\Lambda(t);

  4. (iv)

    If t(1/3,1)t\in({1}/{3},1), then Φt\Phi_{t} is strictly increasing in Λ(t)\Lambda(t).

The proof of Proposition 2.6 will be split into several lemmas. First we consider (iii) and (iv).

Lemma 2.7.
  1. (i)

    If t[4/27,1/3)t\in[{4}/{27},{1}/{3}), then Φt\Phi_{t} is strictly decreasing in Λ(t)\Lambda(t);

  2. (ii)

    If t(1/3,1)t\in({1}/{3},1), then Φt\Phi_{t} is strictly increasing in Λ(t)\Lambda(t).

Proof.

In view of Lemma 2.3, the proof of (ii) is very similar to (i). Here we only prove (i). Take t[4/27,1/3)t\in[4/27,1/3). Then Φt(1/3)[01(1)0,01)\Phi_{t}(1/3)\in[01(-1)0^{\infty},01^{\infty}). By Lemma 2.3 (iii) it follows that for any λΛ(t){1/3}\lambda\in\Lambda(t)\setminus\left\{1/3\right\}

Π(Φt(λ),λ)=t=Π(Φt(1/3),1/3)>Π(Φt(1/3),λ),\Pi(\Phi_{t}(\lambda),\lambda)=t=\Pi(\Phi_{t}(1/3),1/3)>\Pi(\Phi_{t}(1/3),\lambda),

which, together with Lemma 2.2, implies Φt(λ)Φt(1/3)\Phi_{t}(\lambda)\succ\Phi_{t}(1/3). Furthermore, note that Φt(λ)01\Phi_{t}(\lambda)\preccurlyeq 01^{\infty} for any λΛ(t){1/3}\lambda\in\Lambda(t)\setminus\left\{1/3\right\}, since otherwise t=Π(Φt(λ),λ)Π(1(1),λ)=12λ>1/3t=\Pi(\Phi_{t}(\lambda),\lambda)\geq\Pi(1(-1)^{\infty},\lambda)=1-2\lambda>1/3, a contradiction. So, Φt(λ)[01(1)0,01]\Phi_{t}(\lambda)\in[01(-1)0^{\infty},01^{\infty}{]} for all λΛ(t)\lambda\in\Lambda(t). By Lemma 2.3 (iii) it follows that for any λ1,λ2Λ(t)\lambda_{1},\lambda_{2}\in\Lambda(t) with λ1<λ2\lambda_{1}<\lambda_{2}

Π(Φt(λ1),λ1)=t=Π(Φt(λ2),λ2)>Π(Φt(λ2),λ1),\Pi(\Phi_{t}(\lambda_{1}),\lambda_{1})=t=\Pi(\Phi_{t}(\lambda_{2}),\lambda_{2})>\Pi(\Phi_{t}(\lambda_{2}),\lambda_{1}),

which implies Φt(λ1)Φt(λ2)\Phi_{t}(\lambda_{1})\succ\Phi_{t}(\lambda_{2}). This completes the proof. ∎

In the following we consider t(0,4/27)t\in(0,4/27). Note by Lemma 2.3 (ii) that Π((in),)\Pi((i_{n}),\cdot) is not globally monotonic in (0,1/3](0,1/3] for (in)[01(1),01(1)0)(i_{n})\in[01(-1)^{\infty},01(-1)0^{\infty}), which complicates our proofs of Proposition 2.6 (i) and (ii).

Lemma 2.8.

Let t(0,4/27)t\in(0,4/27), and let λ=λ(t)\lambda_{\diamond}=\lambda_{\diamond}(t) be the unique root in (0,1/3)(0,1/3) of the equation λ(1λ)2=t\lambda_{\diamond}(1-\lambda_{\diamond})^{2}=t. Then Φt\Phi_{t} is strictly decreasing in (0,λ]Λ(t)(0,\lambda_{\diamond}]\cap\Lambda(t).

Proof.

The proof is similar to Lemma 2.7. Since t=λ(1λ)2=Π(01(1)0,λ)t=\lambda_{\diamond}(1-\lambda_{\diamond})^{2}=\Pi(01(-1)0^{\infty},\lambda_{\diamond}), by Lemma 2.3 (iii) it follows that for any λ(0,λ]Λ(t)\lambda\in(0,\lambda_{\diamond}]\cap\Lambda(t)

Π(Φt(λ),λ)=t=Π(01(1)0,λ)Π(01(1)0,λ),\Pi(\Phi_{t}(\lambda),\lambda)=t=\Pi(01(-1)0^{\infty},\lambda_{\diamond})\geq\Pi(01(-1)0^{\infty},\lambda),

which gives Φt(λ)01(1)0\Phi_{t}(\lambda)\succcurlyeq 01(-1)0^{\infty}. Furthermore, Φt(λ)01\Phi_{t}(\lambda)\preccurlyeq 01^{\infty} since t<1/3t<1/3. Therefore, Φt(λ)[01(1)0,01]\Phi_{t}(\lambda)\in[01(-1)0^{\infty},01^{\infty}] for any λ(0,λ]Λ(t)\lambda\in(0,\lambda_{\diamond}]\cap\Lambda(t). By the same argument as in the proof of Lemma 2.7 (i) one can prove that Φt\Phi_{t} is strictly decreasing in (0,λ]Λ(t)(0,\lambda_{\diamond}]\cap\Lambda(t). ∎

Now we are ready to prove Proposition 2.6 (i). Note by Lemma 2.3 (ii) that for any (in)(001,01(1)0)(i_{n})\in(001^{\infty},01(-1)0^{\infty}) there exists a unique λ(in)[1/4,1/3)\lambda_{(i_{n})}\in[1/4,1/3) such that Π((in),)\Pi((i_{n}),\cdot) is strictly increasing in (0,λ(in)](0,\lambda_{(i_{n})}] and strictly decreasing in [λ(in),1/3][\lambda_{(i_{n})},1/3].

Lemma 2.9.

Let t(0,1/9]t\in(0,1/9]. Then Φt\Phi_{t} is strictly decreasing in Λ(t)\Lambda(t).

Proof.

First we show that Φt\Phi_{t} is strictly decreasing in [t,1/3]Λ(t)[\sqrt{t},1/3]\cap\Lambda(t). Observe that t=(t)2=Π(001,t)t=(\sqrt{t})^{2}=\Pi(001^{\infty},\sqrt{t}). By the same argument as in the proof of Lemma 2.8 we can prove that Φt(λ)(0,001]\Phi_{t}(\lambda)\in(0^{\infty},001^{\infty}] for any λ[t,1/3]Λ(t)\lambda\in[\sqrt{t},1/3]\cap\Lambda(t), and then by Lemma 2.3 (i) it follows that Φt\Phi_{t} is strictly decreasing in [t,1/3]Λ(t)[\sqrt{t},1/3]\cap\Lambda(t). Note by Lemma 2.2 that Π(01(1)0,λ)=t=Π(001,t)<Π(01(1)0,t).\Pi(01(-1)0^{\infty},\lambda_{\diamond})=t=\Pi(001^{\infty},\sqrt{t})<\Pi(01(-1)0^{\infty},\sqrt{t}). Then by Lemma 2.3 (iii) it follows that λ<t\lambda_{\diamond}<\sqrt{t}. So, by Lemma 2.8 it suffices to prove that Φt\Phi_{t} is strictly decreasing in (λ,t)Λ(t)(\lambda_{\diamond},\sqrt{t})\cap\Lambda(t). Note that Π(01(1)0,λ)=t=Π(001,t)\Pi(01(-1)0^{\infty},\lambda_{\diamond})=t=\Pi(001^{\infty},\sqrt{t}). Then by Lemma 2.3 it follows that for any λ(λ,t)Λ(t)\lambda\in(\lambda_{\diamond},\sqrt{t})\cap\Lambda(t)

Π(001,λ)<Π(001,t)=t=Π(Φt(λ),λ)=Π(01(1)0,λ)<Π(01(1)0,λ),\Pi(001^{\infty},\lambda)<\Pi(001^{\infty},\sqrt{t})=t=\Pi(\Phi_{t}(\lambda),\lambda)=\Pi(01(-1)0^{\infty},\lambda_{\diamond})<\Pi(01(-1)0^{\infty},\lambda),

which implies

(2.10) Φt(λ)(001,01(1)0).\Phi_{t}(\lambda)\in(001^{\infty},01(-1)0^{\infty}).

Now we claim that λ<λΦt(λ)\lambda<\lambda_{\Phi_{t}(\lambda)} for all λ(λ,t)Λ(t)\lambda\in(\lambda_{\diamond},\sqrt{t})\cap\Lambda(t). Suppose on the contrary that λλΦt(λ)\lambda\geq\lambda_{\Phi_{t}(\lambda)}. Then by the definition of λΦt(λ)\lambda_{\Phi_{t}(\lambda)} it follows that for any λ(λ,t)Λ(t)\lambda\in(\lambda_{\diamond},\sqrt{t})\cap\Lambda(t)

Π(Φt(λ),t)<Π(Φt(λ),λ)=t=Π(001,t),\Pi(\Phi_{t}(\lambda),\sqrt{t})<\Pi(\Phi_{t}(\lambda),\lambda)=t=\Pi(001^{\infty},\sqrt{t}),

which yields Φt(λ)001\Phi_{t}(\lambda)\prec 001^{\infty}, leading to a contradiction with (2.10). This proves the claim.

Therefore, for any λ1,λ2(λ,t)Λ(t)\lambda_{1},\lambda_{2}\in(\lambda_{\diamond},\sqrt{t})\cap\Lambda(t) with λ1<λ2\lambda_{1}<\lambda_{2}

Π(Φt(λ1),λ1)=t=Π(Φt(λ2),λ2)>Π(Φt(λ2),λ1),\Pi(\Phi_{t}(\lambda_{1}),\lambda_{1})=t=\Pi(\Phi_{t}(\lambda_{2}),\lambda_{2})>\Pi(\Phi_{t}(\lambda_{2}),\lambda_{1}),

where the inequality follows by λ1<λ2<λΦt(λ2)\lambda_{1}<\lambda_{2}<\lambda_{\Phi_{t}({\lambda_{2}})}. This gives Φt(λ1)Φt(λ2)\Phi_{t}(\lambda_{1})\succ\Phi_{t}(\lambda_{2}), completing the proof. ∎

In the following it remains to prove Proposition 2.6 (ii). First we consider t(1/9,1/8]t\in(1/9,1/8].

Lemma 2.10.

Let t(1/9,1/8]t\in(1/9,1/8]. Then Φt\Phi_{t} is strictly decreasing in (0,1/4]Λ(t)(0,1/4]\cap\Lambda(t) and strictly increasing in [1/4,1/3]Λ(t)[1/4,1/3]\cap\Lambda(t).

Proof.

Note that Π(01(1)0,λ)=t1/8<9/64=Π(01(1)0,1/4).\Pi(01(-1)0^{\infty},\lambda_{\diamond})=t\leq{1}/{8}<{9}/{64}=\Pi(01(-1)0^{\infty},{1}/{4}). Then by Lemma 2.3 (iii) it follows that λ=λ(t)<1/4\lambda_{\diamond}=\lambda_{\diamond}(t)<1/4 for all t(1/9,1/8]t\in(1/9,1/8]. So, by Lemma 2.8 it suffices to prove that Φt\Phi_{t} is strictly decreasing in (λ,1/4]Λ(t)(\lambda_{\diamond},1/4]\cap\Lambda(t) and strictly increasing in [1/4,1/3]Λ(t)[1/4,1/3]\cap\Lambda(t). Note that Π(01(1)0,λ)=t>1/9=Π(001,1/3)\Pi(01(-1)0^{\infty},\lambda_{\diamond})=t>1/9=\Pi(001^{\infty},1/3). Then by Lemma 2.3 it follows that for any λ(λ,1/3)Λ(t)\lambda\in(\lambda_{\diamond},1/3)\cap\Lambda(t)

Π(001,λ)Π(001,1/3)<Π(Φt(λ),λ)=t=Π(01(1)0,λ)<Π(01(1)0,λ).\Pi(001^{\infty},\lambda)\leq\Pi(001^{\infty},1/3)<\Pi(\Phi_{t}(\lambda),\lambda)=t=\Pi(01(-1)0^{\infty},\lambda_{\diamond})<\Pi(01(-1)0^{\infty},\lambda).

This implies that

(2.11) Φt(λ)(001,01(1)0)=[01(1),01(1)0).\Phi_{t}(\lambda)\in(001^{\infty},01(-1)0^{\infty})=[01(-1)^{\infty},01(-1)0^{\infty}).

So, by Lemma 2.3 (ii) it follows that for any λ1,λ2Λ(t)(λ,1/4]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(\lambda_{\diamond},1/4] with λ1<λ2\lambda_{1}<\lambda_{2}

Π(Φt(λ1),λ1)=t=Π(Φt(λ2),λ2)>Π(Φt(λ2),λ1),\Pi(\Phi_{t}(\lambda_{1}),\lambda_{1})=t=\Pi(\Phi_{t}(\lambda_{2}),\lambda_{2})>\Pi(\Phi_{t}(\lambda_{2}),\lambda_{1}),

which gives Φt(λ1)Φt(λ2)\Phi_{t}(\lambda_{1})\succ\Phi_{t}(\lambda_{2}).

Next we show that Φt\Phi_{t} is strictly increasing in [1/4,1/3]Λ(t)[1/4,1/3]\cap\Lambda(t). We claim that λ>λΦt(λ)\lambda>\lambda_{\Phi_{t}(\lambda)} in this case. Suppose on the contrary that λλΦt(λ)\lambda\leq\lambda_{\Phi_{t}(\lambda)} for some λ(1/4,1/3)Λ(t)\lambda\in(1/4,1/3)\cap\Lambda(t). Then

Π(Φt(λ),1/4)<Π(Φt(λ),λ)=t1/8=Π(01(1),1/4),\Pi(\Phi_{t}(\lambda),1/4)<\Pi(\Phi_{t}(\lambda),\lambda)=t\leq 1/8=\Pi(01(-1)^{\infty},1/4),

which implies Φt(λ)01(1)\Phi_{t}(\lambda)\prec 01(-1)^{\infty}, leading to a contradiction with (2.11). This proves the claim, and then it follows that for any λ1,λ2(1/4,1/3)Λ(t)\lambda_{1},\lambda_{2}\in(1/4,1/3)\cap\Lambda(t) with λ1<λ2\lambda_{1}<\lambda_{2}

Π(Φt(λ2),λ2)=t=Π(Φt(λ1),λ1)>Π(Φt(λ1),λ2),\Pi(\Phi_{t}(\lambda_{2}),\lambda_{2})=t=\Pi(\Phi_{t}(\lambda_{1}),\lambda_{1})>\Pi(\Phi_{t}(\lambda_{1}),\lambda_{2}),

where the inequality follows by λ2>λ1>λΦt(λ1)\lambda_{2}>\lambda_{1}>\lambda_{\Phi_{t}(\lambda_{1})}. This gives Φt(λ2)Φt(λ1)\Phi_{t}(\lambda_{2})\succ\Phi_{t}(\lambda_{1}). ∎

To prove Proposition 2.6 (ii) for t(1/8,4/27)t\in(1/8,4/27) we need two lemmas on the critical value λ(in)\lambda_{(i_{n})}.

Lemma 2.11.

The map ϕ:(in)Π((in),λ(in))\phi:(i_{n})\mapsto\Pi((i_{n}),\lambda_{(i_{n})}) is strictly increasing and continuous in the interval [01(1),01(1)0)[01(-1)^{\infty},01(-1)0^{\infty}).

Proof.

Note by Remark 2.4 that (in)λ(in)(i_{n})\mapsto\lambda_{(i_{n})} is continuous. Then the continuity of ϕ\phi follows by Lemma 2.1. And the monotonicity of ϕ\phi follows by Lemma 2.2 that for any (in),(jn)[01(1),01(1)0)(i_{n}),(j_{n})\in[01(-1)^{\infty},01(-1)0^{\infty}) with (in)(jn)(i_{n})\prec(j_{n})

Π((in),λ(in))<Π((jn),λ(in))Π((jn),λ(jn)),\Pi((i_{n}),\lambda_{(i_{n})})<\Pi((j_{n}),\lambda_{(i_{n})})\leq\Pi((j_{n}),\lambda_{(j_{n})}),

where the last inequality follows by Lemma 2.3 (ii) that Π((jn),)\Pi((j_{n}),\cdot) attains its maximum value at λ(jn)[1/4,1/3)\lambda_{(j_{n})}\in[1/4,1/3). ∎

Lemma 2.12.

Let t(1/8,4/27)t\in(1/8,4/27). Then there exists a unique τ=τ(t)(1/4,1/3)Λ(t)\tau=\tau(t)\in(1/4,1/3)\cap\Lambda(t) such that λΦt(τ)=τ\lambda_{\Phi_{t}(\tau)}=\tau. Furthermore, the map tτ(t)t\mapsto\tau(t) is strictly increasing.

Proof.

Note by Remark 2.4 that λ01(1)=1/4\lambda_{01(-1)^{\infty}}=1/4 and λ01(1)0=1/3\lambda_{01(-1)0^{\infty}}=1/3. Then

ϕ(01(1))=Π(01(1),14)=18,ϕ(01(1)0)=Π(01(1)0,13)=427.\phi(01(-1)^{\infty})=\Pi\left(01(-1)^{\infty},\frac{1}{4}\right)=\frac{1}{8},\quad\phi(01(-1)0^{\infty})=\Pi\left(01(-1)0^{\infty},\frac{1}{3}\right)=\frac{4}{27}.

So, by Lemma 2.11 it follows that ϕ\phi bijectively maps (01(1),01(1)0)(01(-1)^{\infty},01(-1)0^{\infty}) to (1/8,4/27)(1/8,4/27). Since t(1/8,4/27)t\in(1/8,4/27), by Lemma 2.11 there exists a unique (jn)(01(1),01(1)0)(j_{n})\in(01(-1)^{\infty},01(-1)0^{\infty}) such that

(2.12) t=Π((jn),λ(jn)).t=\Pi((j_{n}),\lambda_{(j_{n})}).

Observe by Remark 2.4 that the map (in)λ(in)(i_{n})\mapsto\lambda_{(i_{n})} is strictly increasing, λ01(1)=1/4\lambda_{01(-1)^{\infty}}=1/4 and λ01(1)0=1/3\lambda_{01(-1)0^{\infty}}=1/3. Then by (2.12) it follows that τ:=λ(jn)(1/4,1/3)Λ(t)\tau:=\lambda_{(j_{n})}\in(1/4,1/3)\cap\Lambda(t) and (jn)=Φt(τ)(j_{n})=\Phi_{t}(\tau). Thus, λΦt(τ)=λ(jn)=τ\lambda_{\Phi_{t}(\tau)}=\lambda_{(j_{n})}=\tau.

Next we prove that the map tτ(t)t\mapsto\tau(t) is strictly increasing. Take t1,t2(1/8,4/27)t_{1},t_{2}\in(1/8,4/27) with t1<t2t_{1}<t_{2}. Write τi=τ(ti)\tau_{i}=\tau(t_{i}) for i=1,2i=1,2. Since Π(Φt1(τ1),τ1)=t1<t2=Π(Φt2(τ2),τ2),\Pi(\Phi_{t_{1}}(\tau_{1}),\tau_{1})=t_{1}<t_{2}=\Pi(\Phi_{t_{2}}(\tau_{2}),\tau_{2}), by Lemma 2.11 we have Φt1(τ1)Φt2(τ2)\Phi_{t_{1}}(\tau_{1})\prec\Phi_{t_{2}}(\tau_{2}). Hence, by Remark 2.4 it follows that

τ1=λΦt1(τ1)<λΦt2(τ2)=τ2\tau_{1}=\lambda_{\Phi_{t_{1}}(\tau_{1})}<\lambda_{\Phi_{t_{2}}(\tau_{2})}=\tau_{2}

as desired. ∎

Lemma 2.13.

Let t(1/8,4/27)t\in(1/8,4/27). Then Φt\Phi_{t} is strictly decreasing in (0,τ]Λ(t)(0,\tau]\cap\Lambda(t) and strictly increasing in [τ,1/3]Λ(t)[\tau,1/3]\cap\Lambda(t), where τ=τ(t)\tau=\tau(t) is defined as in Lemma 2.12.

Proof.

Note by the proof of Lemma 2.12 that Φt(τ)(01(1),01(1)0)\Phi_{t}(\tau)\in(01(-1)^{\infty},01(-1)0^{\infty}) for any t(1/8,4/27)t\in(1/8,4/27). Then by Lemma 2.2 it follows that Π(01(1)0,λ)=t=Π(Φt(τ),τ)<Π(01(1)0,τ),\Pi(01(-1)0^{\infty},\lambda_{\diamond})=t=\Pi(\Phi_{t}(\tau),\tau)<\Pi(01(-1)0^{\infty},\tau), which implies λ<τ\lambda_{\diamond}<\tau by Lemma 2.3 (iii). So, by Lemma 2.8 it suffices to prove that Φt\Phi_{t} is strictly decreasing in (λ,τ]Λ(t)(\lambda_{\diamond},\tau]\cap\Lambda(t) and strictly increasing in [τ,1/3]Λ(t)[\tau,1/3]\cap\Lambda(t). First we claim that λλΦt(λ)\lambda\leq\lambda_{\Phi_{t}(\lambda)} for all λ(λ,τ]Λ(t)\lambda\in(\lambda_{\diamond},\tau]\cap\Lambda(t). Note that for λ(λ,τ]Λ(t)\lambda\in(\lambda_{\diamond},\tau]\cap\Lambda(t)

Π(Φt(λ),λ)=t=Π(Φt(τ),τ)Π(Φt(τ),λ),\Pi(\Phi_{t}(\lambda),\lambda)=t=\Pi(\Phi_{t}(\tau),\tau)\geq\Pi(\Phi_{t}(\tau),\lambda),

which gives Φt(λ)Φt(τ)\Phi_{t}(\lambda)\succcurlyeq\Phi_{t}(\tau). Since the map (in)λ(in)(i_{n})\mapsto\lambda_{(i_{n})} is strictly increasing, by Lemma 2.12 we conclude that λΦt(λ)λΦt(τ)=τλ\lambda_{\Phi_{t}(\lambda)}\geq\lambda_{\Phi_{t}(\tau)}=\tau\geq\lambda, proving the claim. Therefore, for any λ1,λ2(λ,τ]Λ(t)\lambda_{1},\lambda_{2}\in(\lambda_{\diamond},\tau]\cap\Lambda(t) with λ1<λ2\lambda_{1}<\lambda_{2}

Π(Φt(λ1),λ1)=t=Π(Φt(λ2),λ2)>Π(Φt(λ2),λ1),\Pi(\Phi_{t}(\lambda_{1}),\lambda_{1})=t=\Pi(\Phi_{t}(\lambda_{2}),\lambda_{2})>\Pi(\Phi_{t}(\lambda_{2}),\lambda_{1}),

which yields Φt(λ1)Φt(λ2)\Phi_{t}(\lambda_{1})\succ\Phi_{t}(\lambda_{2}).

Next we prove that Φt\Phi_{t} is strictly increasing in [τ,1/3]Λ(t)[\tau,1/3]\cap\Lambda(t). We claim that λλΦt(λ)\lambda\geq\lambda_{\Phi_{t}(\lambda)} in this case. Suppose on the contrary that λ<λΦt(λ)\lambda<\lambda_{\Phi_{t}(\lambda)} for some λ[τ,1/3]Λ(t)\lambda\in[\tau,1/3]\cap\Lambda(t). Then

Π(Φt(τ),τ)=t=Π(Φt(λ),λ)Π(Φt(λ),τ),\Pi(\Phi_{t}(\tau),\tau)=t=\Pi(\Phi_{t}(\lambda),\lambda)\geq\Pi(\Phi_{t}(\lambda),\tau),

which implies that Φt(τ)Φt(λ)\Phi_{t}(\tau)\succcurlyeq\Phi_{t}(\lambda). Since the map (in)λ(in)(i_{n})\mapsto\lambda_{(i_{n})} is strictly increasing, by Lemma 2.12 it follows that λΦt(λ)λΦt(τ)=τλ\lambda_{\Phi_{t}(\lambda)}\leq\lambda_{\Phi_{t}(\tau)}=\tau\leq\lambda, leading to a contradiction. This proves the claim, and then it follows that for any λ1,λ2[τ,1/3]Λ(t)\lambda_{1},\lambda_{2}\in[\tau,1/3]\cap\Lambda(t) with λ1<λ2\lambda_{1}<\lambda_{2}

Π(Φt(λ2),λ2)=t=Π(Φt(λ1),λ1)>Π(Φt(λ1),λ2),\Pi(\Phi_{t}(\lambda_{2}),\lambda_{2})=t=\Pi(\Phi_{t}(\lambda_{1}),\lambda_{1})>\Pi(\Phi_{t}(\lambda_{1}),\lambda_{2}),

which gives Φt(λ2)Φt(λ1)\Phi_{t}(\lambda_{2})\succ\Phi_{t}(\lambda_{1}). This completes the proof. ∎

Proof of Proposition 2.6.

The proposition follows by Lemmas 2.7, 2.9, 2.10 and 2.13. ∎

By the proof of Proposition 2.6 (i) and (ii) it follows that

(2.13) t<λ(t)<t13 if 0<t19,t<λ(t)<τ(t)<13 if 19<t<427.t<\lambda_{\diamond}(t)<\sqrt{t}\leq\frac{1}{3}\leavevmode\nobreak\ \textrm{ if }0<t\leq\frac{1}{9},\qquad t<\lambda_{\diamond}(t)<\tau(t)<\frac{1}{3}\leavevmode\nobreak\ \textrm{ if }\frac{1}{9}<t<\frac{4}{27}.

Here τ(t)=1/4\tau(t)=1/4 for any t(1/9,1/8]t\in(1/9,1/8], and τ(t)\tau(t) is defined as in Lemma 2.12 for t(1/8,4/27)t\in(1/8,4/27).

3. Topology and Hausdorff dimension of Λ(t)\Lambda(t)

In this section we will show that Λ(t)\Lambda(t) is a topological Cantor set (Proposition 3.1) and it has full Hausdorff dimension (Corollary 3.7).

3.1. Topology of Λ(t)\Lambda(t)

Recall that a topological Cantor set in \mathbb{R} is a non-empty perfect set with no interior points.

Proposition 3.1.

For any t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} the set Λ(t)\Lambda(t) is a topological Cantor set with

minΛ(t)=min{t,1t2}andmaxΛ(t)=13.\min\Lambda(t)=\min\left\{t,\frac{1-t}{2}\right\}\quad\textrm{and}\quad\max\Lambda(t)=\frac{1}{3}.

First we determine the extreme points of Λ(t)\Lambda(t).

Lemma 3.2.

For any t(0,1){1/3}t\in(0,1)\setminus\{1/3\} we have minΛ(t)=min{t,1t2}\min\Lambda(t)=\min\{t,\frac{1-t}{2}\} and max(Λ(t))=1/3\max(\Lambda(t))=1/3.

Proof.

Note that Eλ=[1,1]E_{\lambda}=[-1,1] for λ=1/3\lambda=1/3. This implies that maxΛ(t)=1/3\max\Lambda(t)=1/3 for any t[1,1]t\in[-1,1]. For the minimum value of Λ(t)\Lambda(t) we consider two cases: (I) t(0,1/3)t\in(0,1/3); (II) t(1/3,1)t\in(1/3,1).

(I) t(0,1/3)t\in(0,1/3). Then Φt(λ)(0,01]\Phi_{t}(\lambda)\in(0^{\infty},01^{\infty}] for any λ(0,1/3]Λ(t)\lambda\in(0,1/3]\cap\Lambda(t). By Lemmas 2.7 (i) and 2.8 it follows that the minimum value λ=minΛ(t)\lambda_{*}=\min\Lambda(t) satisfies Π(01,λ)=t.\Pi(01^{\infty},\lambda_{*})=t. So, minΛ(t)=λ=t\min\Lambda(t)=\lambda_{*}=t.

(II) t(1/3,1)t\in(1/3,1). Then Φt(λ)[1(1),1]\Phi_{t}(\lambda)\in[1(-1)^{\infty},1^{\infty}] for any λΛ(t)\lambda\in\Lambda(t). Then by Lemma 2.7 (ii) it follows that λ=minΛ(t)\lambda_{*}=\min\Lambda(t) satisfies Π(1(1),λ)=t\Pi(1(-1)^{\infty},\lambda_{*})=t, which implies that t=12λt=1-2\lambda_{*}. Hence, minΛ(t)=λ=1t2\min\Lambda(t)=\lambda_{*}=\frac{1-t}{2}. ∎

Next we show that Λ(t)\Lambda(t) is a topological Cantor set.

Lemma 3.3.

For any t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}, Λ(t)\Lambda(t) is a non-empty perfect set.

Proof.

By Lemma 3.2 it suffices to prove that Λ(t)\Lambda(t) is closed and has no isolated points. First we prove the closeness of Λ(t)\Lambda(t). Let (λj)Λ(t)(\lambda_{j})\subset\Lambda(t) with limjλj=λ0\lim_{j\to\infty}\lambda_{j}=\lambda_{0}. Suppose on the contrary that λ0Λ(t)\lambda_{0}\notin\Lambda(t), i.e., tEλ0t\notin E_{\lambda_{0}}. Since Eλ0E_{\lambda_{0}} is compact, we have dist(t,Eλ0):=inf{|xt|:xEλ0}>0.dist(t,E_{\lambda_{0}}):=\inf\left\{|x-t|:x\in E_{\lambda_{0}}\right\}>0. Note that Eλ0=n=1Eλ0(n)E_{\lambda_{0}}=\bigcap_{n=1}^{\infty}E_{\lambda_{0}}(n), where for λ(0,1/3]\lambda\in(0,1/3]

(3.1) Eλ(n):=i1in{1,0,1}ngi1gin([1,1])E_{\lambda}(n):=\bigcup_{i_{1}\ldots i_{n}\in\left\{-1,0,1\right\}^{n}}g_{i_{1}}\circ\cdots\circ g_{i_{n}}([-1,1])

with gi(x)=λx+i(1λ)g_{i}(x)=\lambda x+i(1-\lambda) for i=1,0,1i=-1,0,1. Since Eλ0(n)Eλ0(n+1)E_{\lambda_{0}}(n)\supset E_{\lambda_{0}}(n+1) for all n1n\geq 1, there exists NN\in\mathbb{N} such that

(3.2) d0:=dist(t,Eλ0(N))>0.d_{0}:=dist(t,E_{\lambda_{0}}(N))>0.

Note that limjλj=λ0\lim_{j\to\infty}\lambda_{j}=\lambda_{0}, and by (3.1) each Eλ(N)E_{\lambda}(N) is the union of 3N3^{N} pairwise disjoint intervals of equal length 2λN2\lambda^{N}. Then Eλj(N)E_{\lambda_{j}}(N) converges to Eλ0(N)E_{\lambda_{0}}(N) under the Hausdorff metric dHd_{H} as jj\to\infty. So there exists a large jj\in\mathbb{N} such that

dist(t,Eλ0(N))dH(Eλj(N),Eλ0(N))d02,dist(t,E_{\lambda_{0}}(N))\leq d_{H}(E_{\lambda_{j}}(N),E_{\lambda_{0}}(N))\leq\frac{d_{0}}{2},

where the first inequality follows by tEλjEλj(N)t\in E_{\lambda_{j}}\subset E_{\lambda_{j}}(N). This leads to a contradiction with (3.2). So, λ0Λ(t)\lambda_{0}\in\Lambda(t), and thus Λ(t)\Lambda(t) is closed.

Next we prove that Λ(t)\Lambda(t) has no isolated points. Take λΛ(t)\lambda\in\Lambda(t) and let (in)=Φt(λ)(i_{n})=\Phi_{t}(\lambda). Then there exists a subsequence (nj)(n_{j})\subset\mathbb{N} such that inj{1,0}i_{n_{j}}\in\left\{-1,0\right\} for all j1j\geq 1, or inj{0,1}i_{n_{j}}\in\left\{0,1\right\} for all j1j\geq 1. Without lose of generality we assume that n1n_{1} is sufficiently large, and inj{1,0}i_{n_{j}}\in\left\{-1,0\right\} for all j1j\geq 1. For any j1j\geq 1 we define λj(0,1/3](λδ,λ+δ)\lambda_{j}\in(0,1/3]\cap(\lambda-\delta,\lambda+\delta) for some small δ>0\delta>0, such that Φt(λj)=i1inj1(inj+1)0.\Phi_{t}(\lambda_{j})=i_{1}\ldots i_{n_{j}-1}(i_{n_{j}}+1)0^{\infty}. Then it is clear that (λj)Λ(t)(\lambda_{j})\subset\Lambda(t) and λjλ\lambda_{j}\to\lambda as jj\to\infty. Hence, λ\lambda is not isolated in Λ(t)\Lambda(t). ∎

Proof of Proposition 3.1.

By Lemmas 3.2 and 3.3 it suffices to prove that Λ(t)\Lambda(t) has no interior points. Take λ1,λ2Λ(t)\lambda_{1},\lambda_{2}\in\Lambda(t) with λ1<λ2\lambda_{1}<\lambda_{2}. It suffices to prove (λ1,λ2)Λ(t)(\lambda_{1},\lambda_{2})\setminus\Lambda(t)\neq\emptyset. By Proposition 2.6 there exists λ^(λ1,λ2)\hat{\lambda}\in(\lambda_{1},\lambda_{2}) such that Φt\Phi_{t} is strictly monotonic in (λ^,λ2)(\hat{\lambda},\lambda_{2}). Without lose of generality we may assume that Φt\Phi_{t} is strictly increasing in (λ^,λ2)(\hat{\lambda},\lambda_{2}). Write (in)=Φt(λ^)(i_{n})=\Phi_{t}(\hat{\lambda}) and (jn)=Φt(λ2)(j_{n})=\Phi_{t}(\lambda_{2}). Then (in)(jn)(i_{n})\prec(j_{n}). So there exists NN\in\mathbb{N} such that i1iN1=j1jN1i_{1}\ldots i_{N-1}=j_{1}\ldots j_{N-1} and iN<jNi_{N}<j_{N}. Suppose jNiN=1j_{N}-i_{N}=1, since otherwise we can choose a larger λ^\hat{\lambda}. Let

𝐜=i1iN1and𝐝=j1jN(1).{\mathbf{c}}=i_{1}\ldots i_{N}1^{\infty}\quad\textrm{and}\quad{\mathbf{d}}=j_{1}\ldots j_{N}(-1)^{\infty}.

Then by Lemma 2.2 it follows that

(3.3) Π(𝐜,λ2)<Π(𝐝,λ2)Π((jn),λ2)=t=Π((in),λ^)Π(𝐜,λ^)<Π(𝐝,λ^).\Pi({\mathbf{c}},\lambda_{2})<\Pi({\mathbf{d}},\lambda_{2})\leq\Pi((j_{n}),\lambda_{2})=t=\Pi((i_{n}),\hat{\lambda})\leq\Pi({\mathbf{c}},\hat{\lambda})<\Pi({\mathbf{d}},\hat{\lambda}).

Denote the open interval by Iλ:=(Π(𝐜,λ),Π(𝐝,λ))I_{\lambda}:=(\Pi({\mathbf{c}},\lambda),\Pi({\mathbf{d}},\lambda)). Observe that the map λcl(Iλ)\lambda\mapsto cl(I_{\lambda}) is continuous with respect to the Hausdorff metric dHd_{H}. Then (3.3) implies that tIλt\in I_{\lambda} for some λ(λ^,λ2)(λ1,λ2)\lambda\in(\hat{\lambda},\lambda_{2})\subset(\lambda_{1},\lambda_{2}). Since IλEλ=I_{\lambda}\cap E_{\lambda}=\emptyset, we have tEλt\notin E_{\lambda}, i.e., λΛ(t)\lambda\notin\Lambda(t). So, (λ1,λ2)Λ(t)(\lambda_{1},\lambda_{2})\setminus\Lambda(t)\neq\emptyset, completing the proof. ∎

3.2. Hausdorff dimension of Λ(t)\Lambda(t)

Now we turn to prove that Λ(t)\Lambda(t) has full Hausdorff dimension, which can be deduced from the following result.

Proposition 3.4.

For any t(0,1){1/3}t\in(0,1)\setminus\{1/3\} we have

limδ0+dimH(Λ(t)(1/3δ,1/3+δ))=1.{\lim_{\delta\to 0^{+}}\dim_{H}\big{(}\Lambda(t)\cap(1/3-\delta,1/3+\delta)\big{)}=1.}

Our strategy to prove Proposition 3.4 is to construct a sequence of subsets of Λ(t)(1/3δ,1/3+δ)\Lambda(t)\cap(1/3-\delta,1/3+\delta) whose Hausdorff dimension can be arbitrarily close to one. In view of Φt(1/3)\Phi_{t}(1/3) defined in (2.5), we consider two cases: t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3) and t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1).

First we consider t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3). Then Φt(1/3)(0,001][01(1)0,01)\Phi_{t}(1/3)\in(0^{\infty},001^{\infty}]\cup[01(-1)0^{\infty},01^{\infty}), and Φt(1/3)\Phi_{t}(1/3) does not end with 11^{\infty}. So there exists a subsequence {nj}4\{n_{j}\}\subset\mathbb{N}_{\geq 4} such that xnj<1x_{n_{j}}<1 for all j1j\geq 1. Note by Proposition 2.6 (i) and (iii) that Φt\Phi_{t} is strictly decreasing in Λ(t)\Lambda(t). Then for each j1j\geq 1 there exists a unique ηj(0,1/3)\eta_{j}\in(0,1/3) such that

t=Π(x1xnj+1,ηj).t=\Pi(x_{1}\ldots x_{n_{j}}^{+}1^{\infty},\eta_{j}).

Accordingly, for k1k\geq 1 we let

Δk,j+(t):={λΛ(t):Φt(λ)=x1xnj+d1d2 with dik1i1}.\Delta^{+}_{k,j}(t):=\{\lambda\in\Lambda(t):\Phi_{t}(\lambda)=x_{1}\dots x_{n_{j}}^{+}d_{1}d_{2}\dots\textrm{ with }d_{ik}\neq-1\leavevmode\nobreak\ \forall i\geq 1\}.

Then by Proposition 2.6 (i) and (iii) it follows that

(3.4) Δk,j+(t)Λ(t)(ηj,1/3)k1; and ηj1/3 as j.\Delta^{+}_{k,j}(t)\subset\Lambda(t)\cap(\eta_{j},1/3)\leavevmode\nobreak\ \forall k\geq 1;\quad\textrm{ and }\quad\eta_{j}\nearrow 1/3\leavevmode\nobreak\ \textrm{ {as} }j\to\infty.
Lemma 3.5.

Let t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3). Then for any k,jk,j\in\mathbb{N} there exists a constant C>0C>0 such that

|πηj(Φt(λ1))πηj(Φt(λ2))|C|λ1λ2||\pi_{\eta_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\eta_{j}}(\Phi_{t}(\lambda_{2}))|\leq C|\lambda_{1}-\lambda_{2}|

for any λ1,λ2Δk,j+(t)\lambda_{1},\lambda_{2}\in\Delta^{+}_{k,j}(t).

Proof.

Let λ1,λ2Δk,j+(t)\lambda_{1},\lambda_{2}\in\Delta^{+}_{k,j}(t) with λ1<λ2\lambda_{1}<\lambda_{2}. Write (an)=Φt(λ1)(a_{n})=\Phi_{t}(\lambda_{1}) and (bn)=Φt(λ2)(b_{n})=\Phi_{t}(\lambda_{2}). Since Φt\Phi_{t} is strictly decreasing in [ηj,1/3]Λ(t)[\eta_{j},1/3]\cap\Lambda(t), we have (an)(bn)(a_{n})\succ(b_{n}); and then there exists a N>njN>n_{j} such that a1aN1=b1bN1a_{1}\cdots a_{N-1}=b_{1}\cdots b_{N-1} and aN>bNa_{N}>b_{N}. So,

(3.5) |πηj(Φt(λ1))πηj(Φt(λ2))|=|(1ηj)(n=Nanηjn1n=Nbnηjn1)|(1ηj)n=N2ηjn1=2ηjN1.\begin{split}|\pi_{\eta_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\eta_{j}}(\Phi_{t}(\lambda_{2}))|&=\left|(1-\eta_{j})\left(\sum_{n=N}^{\infty}a_{n}\eta_{j}^{n-1}-\sum_{n=N}^{\infty}b_{n}\eta_{j}^{n-1}\right)\right|\\ &\leq(1-\eta_{j})\sum_{n=N}^{\infty}2\eta_{j}^{n-1}=2\eta_{j}^{N-1}.\end{split}

On the other hand, by Lemma 2.2 it follows that

(1λ1)n=1anλ1n1=t=(1λ2)n=1bnλ2n1(1λ2)(n=1Nanλ2n1n=N+1λ2n1),(1-\lambda_{1})\sum_{n=1}^{\infty}a_{n}\lambda_{1}^{n-1}=t=(1-\lambda_{2})\sum_{n=1}^{\infty}b_{n}\lambda_{2}^{n-1}\leq(1-\lambda_{2})\left(\sum_{n=1}^{N}a_{n}\lambda_{2}^{n-1}-\sum_{n=N+1}^{\infty}\lambda_{2}^{n-1}\right),

which implies

(3.6) (1λ1)n=N+1(an+1)λ1n1(1λ2)(n=1Nanλ2n1n=N+1λ2n1)(1λ1)(n=1Nanλ1n1n=N+1λ1n1)=Π(a1aN(1),λ2)Π(a1aN(1),λ1)2(λ2λ1),\begin{split}(1-\lambda_{1})\sum_{n=N+1}^{\infty}(a_{n}+1)\lambda_{1}^{n-1}&\leq(1-\lambda_{2})\left(\sum_{n=1}^{N}a_{n}\lambda_{2}^{n-1}-\sum_{n=N+1}^{\infty}\lambda_{2}^{n-1}\right)\\ &\qquad-(1-\lambda_{1})\left(\sum_{n=1}^{N}a_{n}\lambda_{1}^{n-1}-\sum_{n=N+1}^{\infty}\lambda_{1}^{n-1}\right)\\ &=\Pi(a_{1}\ldots a_{N}(-1)^{\infty},\lambda_{2})-\Pi(a_{1}\ldots a_{N}(-1)^{\infty},\lambda_{1})\\ &\leq 2(\lambda_{2}-\lambda_{1}),\end{split}

where the last inequality follows by (2.2) that |Π2((in),λ)|2\left|\Pi_{2}((i_{n}),\lambda)\right|\leq 2 for any (in)(0,1)(i_{n})\in(0^{\infty},1^{\infty}) and λ(0,1/3]\lambda\in(0,1/3]. Note by the definition of Δk,j+(t)\Delta_{k,j}^{+}(t) that aN+1aN+2((1)k10)a_{N+1}a_{N+2}\cdots\succcurlyeq((-1)^{k-1}0)^{\infty}. Then (aN+1+1)(aN+2+1)(0k11)(a_{N+1}+1)(a_{N+2}+1)\cdots\succcurlyeq(0^{k-1}1)^{\infty}. So, by (3.6) and using λ1(ηj,1/3)\lambda_{1}\in(\eta_{j},1/3) it follows that

2(λ2λ1)>(1λ1)λ1N+k1>23ηjN+k1.2(\lambda_{2}-\lambda_{1})>(1-\lambda_{1})\lambda_{1}^{N+k-1}>\frac{2}{3}\eta_{j}^{N+k-1}.

This, together with (3.5), implies that

|πηj(Φt(λ1))πηj(Φt(λ2))|6ηjk|λ1λ2|{|\pi_{\eta_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\eta_{j}}(\Phi_{t}(\lambda_{2}))|}\leq\frac{6}{\eta_{j}^{k}}|\lambda_{1}-\lambda_{2}|

as required. ∎

Next we consider t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Then Φt(1/3)(001,01(1)0)(01,1)\Phi_{t}(1/3)\in(001^{\infty},01(-1)0^{\infty})\cup(01^{\infty},1^{\infty}), and it does not end with (1)(-1)^{\infty}. So there exists a subsequence {nj}\{n_{j}\}\subset\mathbb{N} such that xnj>1x_{n_{j}}>-1 for any j1j\geq 1. By Proposition 2.6 (ii) and (iv) there exists δ>0\delta>0 such that Φt\Phi_{t} is strictly increasing in Λ(t)(1/3δ,1/3]\Lambda(t)\cap(1/3-\delta,1/3]. So, without loss of generality, by deleting the first finitely many terms of {nj}\left\{n_{j}\right\}, we can assume that for any j1j\geq 1 the equation

t=Π(x1xnj(1),γj)t=\Pi(x_{1}\ldots x_{n_{j}}^{-}(-1)^{\infty},\gamma_{j})

determines a unique γj(1/3δ,1/3)\gamma_{j}\in(1/3-\delta,1/3). Note by Lemma 2.3 (ii) that if x1xnj(1)(001,01(1)0)x_{1}\ldots x_{n_{j}}^{-}(-1)^{\infty}\in(001^{\infty},01(-1)0^{\infty}), the above equation may determine two different γj\gamma_{j}s in (0,1/3)(0,1/3), but only one is in (1/3δ,1/3)(1/3-\delta,1/3). Accordingly, for k1k\geq 1 we set

Δk,j(t):={λΛ(t)(1/3δ,1/3):Φt(λ)=x1xnjd1d2 with dik1i1}.\Delta^{-}_{k,j}(t):=\{\lambda\in\Lambda(t)\cap(1/3-\delta,1/3):\Phi_{t}(\lambda)=x_{1}\dots x_{n_{j}}^{-}d_{1}d_{2}\dots\textrm{ with }d_{ik}\neq-1\leavevmode\nobreak\ \forall i\geq 1\}.

Then by Proposition 2.6 (ii) and (iv) it follows that

(3.7) Δk,j(t)Λ(t)(γj,1/3)k1; and γj1/3 as j.\Delta_{k,j}^{-}(t)\subset\Lambda(t)\cap(\gamma_{j},1/3)\leavevmode\nobreak\ \forall k\geq 1;\quad\textrm{ and }\quad\gamma_{j}\nearrow 1/3\leavevmode\nobreak\ \textrm{ as }j\to\infty.
Lemma 3.6.

Let t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Then for any k,jk,j\in\mathbb{N} there exists a constant C>0C>0 such that

|πγj(Φt(λ1))πγj(Φt(λ2))|C|λ1λ2|{|\pi_{\gamma_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\gamma_{j}}(\Phi_{t}(\lambda_{2}))|\leq C|\lambda_{1}-\lambda_{2}|}

for any λ1,λ2Δk,j(t)\lambda_{1},\lambda_{2}\in\Delta^{-}_{k,j}(t).

Proof.

Note that Φt\Phi_{t} is strictly increasing in [γj,1/3]Λ(t)[\gamma_{j},1/3]\cap\Lambda(t). Then by a similar argument as in the proof of Lemma 3.5 one can verify that |πγj(Φt(λ1))πγj(Φt(λ2))|6γjk|λ1λ2||\pi_{\gamma_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\gamma_{j}}(\Phi_{t}(\lambda_{2}))|\leq\frac{6}{\gamma_{j}^{k}}|\lambda_{1}-\lambda_{2}| for any λ1,λ2Δk,j(t).\lambda_{1},\lambda_{2}\in\Delta_{k,j}^{-}(t).

Proof of Proposition 3.4.

Take t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}. Since the proof for t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1) is similar, we only consider t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3). By (3.4) and Lemma 3.5 it follows that

(3.8) dimH(Λ(t)(ηj,1/3))dimHΔk,j+(t)dimHπηj(Φt(Δk,j+(t)))\dim_{H}(\Lambda(t)\cap(\eta_{j},1/3))\geq\dim_{H}\Delta_{k,j}^{+}(t)\geq\dim_{H}\pi_{\eta_{j}}(\Phi_{t}(\Delta_{k,j}^{+}(t)))

for all k,jk,j\in\mathbb{N}. Note by the definition of Δk,j+(t)\Delta_{k,j}^{+}(t) that Φt(Δk,j+(t))\Phi_{t}(\Delta_{k,j}^{+}(t)) consists of all sequences (in){1,0,1}(i_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}} with a prefix i1inj=x1xnj+i_{1}\ldots i_{n_{j}}=x_{1}\ldots x_{n_{j}}^{+} and inj+mk1i_{n_{j}+mk}\neq-1 for all m1m\geq 1. So, by using ηj(0,1/3)\eta_{j}\in(0,1/3) and (3.8) we obtain that

(3.9) dimH(Λ(t)(ηj,1/3))(k1)log3+log2klogηjlog3logηjas k.\dim_{H}(\Lambda(t)\cap(\eta_{j},1/3))\geq\frac{(k-1)\log 3+\log 2}{-k\log\eta_{j}}\to\frac{\log 3}{-\log\eta_{j}}{\quad\textrm{as }k\to\infty.}

Hence, by (3.4) and (3.9) it follows that

limδ0+dimH(Λ(t)(1/3δ,1/3+δ))limjdimH(Λ(t)(ηj,1/3))limjlog3logηj=1.\lim_{\delta\to 0^{+}}\dim_{H}(\Lambda(t)\cap(1/3-\delta,1/3+\delta))\geq\lim_{j\to\infty}\dim_{H}(\Lambda(t)\cap(\eta_{j},1/3))\geq\lim_{j\to\infty}\frac{\log 3}{-\log\eta_{j}}=1.

The reverse inequality is obvious, since dimH(Λ(t)(1/3δ,1/3+δ))1\dim_{H}(\Lambda(t)\cap(1/3-\delta,1/3+\delta))\leq 1 for any δ>0\delta>0. ∎

The following corollary follows directly from Proposition 3.4.

Corollary 3.7.

For any t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} we have dimHΛ(t)=1\dim_{H}\Lambda(t)=1.

4. Proof of Theorem 1.1

In this section we will determine the local dimension of Λ(t)\Lambda(t), and prove Theorem 1.1.

Proposition 4.1.

Let t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}. Then for any λΛ(t)\lambda\in\Lambda(t)

(4.1) limδ0+dimH(Λ(t)(λδ,λ+δ))=log3logλ.\lim_{\delta\to 0^{+}}\dim_{H}\big{(}\Lambda(t)\cap(\lambda-\delta,\lambda+\delta)\big{)}=\frac{\log 3}{-\log\lambda}.

Note by Proposition 3.4 that (4.1) holds for λ=1/3\lambda=1/3. So, in the following we only need to prove (4.1) for λΛ(t){1/3}\lambda\in\Lambda(t)\setminus\left\{1/3\right\}, which will be split into two subsections.

4.1. A lower bound on the local dimension of Λ(t)\Lambda(t)

Take λΛ(t){1/3}\lambda_{*}\in\Lambda(t)\setminus\{1/3\} and let (xi)=Φt(λ)(x_{i})=\Phi_{t}(\lambda_{*}) be the unique coding of tt defined as in (2.5), i.e., t=Π((xi),λ)t=\Pi((x_{i}),\lambda_{*}). We will prove in this subsection that

limδ0+dimH(Λ(t)(λδ,λ+δ))log3logλ.\lim_{\delta\to 0^{+}}\dim_{H}\big{(}\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta)\big{)}\geq\frac{\log 3}{-\log\lambda_{*}}.

For this we consider two cases: (I) (xi)(x_{i}) does not end with 11^{\infty}; (II) (xi)(x_{i}) ends with 11^{\infty}.

Case (I). (xi)=Φt(λ)(x_{i})=\Phi_{t}(\lambda_{*}) does not end with 11^{\infty}. Then there exists a subsequence (nj)(n_{j})\subset{\mathbb{N}} such that xnj<1x_{n_{j}}<1 for all j1j\geq 1. By Proposition 2.6 there exists a δ>0\delta>0 such that (λδ,λ+δ)(0,1/3)(\lambda_{*}-\delta,\lambda_{*}+\delta)\subset(0,1/3), and Φt\Phi_{t} is monotonic in (λδ,λ)Λ(t)(\lambda_{*}-\delta,\lambda_{*})\cap\Lambda(t) and (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), respectively. Furthermore, if Φt\Phi_{t} is strictly decreasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then so is Φt\Phi_{t} in (λδ,λ+δ)Λ(t)(\lambda_{*}-\delta,\lambda_{*}+\delta)\cap\Lambda(t). By deleting the first finitely many terms from (nj)(n_{j}) we can assume that for any j1j\geq 1 the equation

(4.2) t=Π(x1xnj+1,ηj)t=\Pi(x_{1}\ldots x_{n_{j}}^{+}1^{\infty},\eta_{j})

determines a unique root ηj(λδ,λ)\eta_{j}\in(\lambda_{*}-\delta,\lambda_{*}). Accordingly, for k1k\geq 1 we set

Δk,j+(λ,t):={λΛ(t)(λδ,λ):Φt(λ)=x1xnj+d1d2 with dik1i1}.\Delta_{k,j}^{+}(\lambda_{*},t):=\left\{\lambda\in\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}):\Phi_{t}(\lambda)=x_{1}\ldots x_{n_{j}}^{+}d_{1}d_{2}\ldots\textrm{ with }d_{ik}\neq{-1}\leavevmode\nobreak\ \forall i\geq 1\right\}.

Then by Proposition 2.6 it follows that

(4.3) Δk,j+(λ,t)(ηj,λ)Λ(t)k1;andηjλ as j.\Delta_{k,j}^{+}(\lambda_{*},t)\subset(\eta_{j},\lambda_{*})\cap\Lambda(t)\leavevmode\nobreak\ \forall k\geq 1;\quad\textrm{and}\quad\eta_{j}\nearrow\lambda_{*}\leavevmode\nobreak\ \textrm{ {as} }j\to\infty.

If Φt\Phi_{t} is strictly increasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then we can assume that for any j1j\geq 1 (4.2) determines a unique η~j(λ,λ+δ)\tilde{\eta}_{j}\in(\lambda_{*},\lambda_{*}+\delta). Accordingly, for k1k\geq 1 we let

Δ~k,j+(λ,t):={λΛ(t)(λ,λ+δ):Φt(λ)=x1xnj+d1d2 with dik1i1}.\tilde{\Delta}_{k,j}^{+}(\lambda_{*},t):=\left\{\lambda\in\Lambda(t)\cap(\lambda_{*},\lambda_{*}+\delta):\Phi_{t}(\lambda)=x_{1}\ldots x_{n_{j}}^{+}d_{1}d_{2}\ldots\textrm{ with }d_{ik}\neq{-1}\leavevmode\nobreak\ \forall i\geq 1\right\}.

Therefore,

(4.4) Δ~k,j+(λ,t)(λ,η~j)Λ(t)k1;andη~jλ as j.\tilde{\Delta}_{k,j}^{+}(\lambda_{*},t)\subset(\lambda_{*},\tilde{\eta}_{j})\cap\Lambda(t)\leavevmode\nobreak\ \forall k\geq 1;\quad\textrm{and}\quad\tilde{\eta}_{j}\searrow\lambda_{*}\leavevmode\nobreak\ \textrm{ {as} }j\to\infty.
Lemma 4.2.

Let t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} and λΛ(t){1/3}\lambda_{*}\in\Lambda(t)\setminus\left\{1/3\right\}. Suppose Φt(λ)\Phi_{t}(\lambda_{*}) does not end with 11^{\infty}.

  1. (i)

    If Φt\Phi_{t} is strictly decreasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then for any k,jk,j\in\mathbb{N} there exists C1>0C_{1}>0 such that

    |πηj(Φt(λ1))πηj(Φt(λ2))|C1|λ1λ2||\pi_{\eta_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\eta_{j}}(\Phi_{t}(\lambda_{2}))|\leq C_{1}|\lambda_{1}-\lambda_{2}|

    for any λ1,λ2Δk,j+(λ,t)\lambda_{1},\lambda_{2}\in\Delta_{k,j}^{+}(\lambda_{*},t).

  2. (ii)

    If Φt\Phi_{t} is strictly increasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then for any k,jk,j\in\mathbb{N} there exists C2>0C_{2}>0 such that

    |πλ(Φt(λ1))πλ(Φt(λ2))|C2|λ1λ2||\pi_{\lambda_{*}}(\Phi_{t}(\lambda_{1}))-\pi_{\lambda_{*}}(\Phi_{t}(\lambda_{2}))|\leq C_{2}|\lambda_{1}-\lambda_{2}|

    for any λ1,λ2Δ~k,j+(λ,t)\lambda_{1},\lambda_{2}\in\tilde{\Delta}_{k,j}^{+}(\lambda_{*},t).

Proof.

Since the proofs of (i) and (ii) are similar, we only prove (i). Suppose Φt\Phi_{t} is strictly decreasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t). Then so is Φt\Phi_{t} in [ηj,λ]Λ(t)[\eta_{j},\lambda_{*}]\cap\Lambda(t) for any j1j\geq 1. By a similar argument as in the proof of Lemma 3.5 one can verify that for any λ1,λ2Δk,j+(λ,t)\lambda_{1},\lambda_{2}\in\Delta_{k,j}^{+}(\lambda_{*},t)

|πηj(Φt(λ1))πηj(Φt(λ2))|6ηjk|λ1λ2|,|\pi_{\eta_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\eta_{j}}(\Phi_{t}(\lambda_{2}))|\leq\frac{6}{\eta_{j}^{k}}|\lambda_{1}-\lambda_{2}|,

proving (i). ∎

Case (II). (xi)=Φt(λ)(x_{i})=\Phi_{t}(\lambda_{*}) ends with 11^{\infty}. Then there exists a subsequence (nj)(n_{j})\subset\mathbb{N} such that xnj>1x_{n_{j}}>-1 for all j1j\geq 1. The proof is similar to Case (I). By Proposition 2.6 there exists a δ>0\delta>0 such that (λδ,λ+δ)(0,1/3)(\lambda_{*}-\delta,\lambda_{*}+\delta)\subset(0,1/3), and Φt\Phi_{t} is monotonic in (λδ,λ)Λ(t)(\lambda_{*}-\delta,\lambda_{*})\cap\Lambda(t) and (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), respectively. Furthermore, if Φt\Phi_{t} is strictly decreasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then Φt\Phi_{t} is also strictly decreasing in (λδ,λ+δ)Λ(t)(\lambda_{*}-\delta,\lambda_{*}+\delta)\cap\Lambda(t). So, by deleting the first finitely many terms from (nj)(n_{j}) we can assume that for any j1j\geq 1 the equation

(4.5) t=Π(x1xnj(1),γj)t=\Pi(x_{1}\ldots x_{n_{j}}^{-}(-1)^{\infty},\gamma_{j})

determines a unique root γj(λ,λ+δ)\gamma_{j}\in(\lambda_{*},\lambda_{*}+\delta). Accordingly, for k1k\geq 1 let

Δk,j(λ,t):={λΛ(t)(λ,λ+δ):Φt(λ)=x1xnjd1d2 with dik1i1}.\Delta_{k,j}^{-}(\lambda_{*},t):=\left\{\lambda\in\Lambda(t)\cap(\lambda_{*},\lambda_{*}+\delta):\Phi_{t}(\lambda)=x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots\textrm{ with }d_{ik}\neq{-1}\leavevmode\nobreak\ \forall i\geq 1\right\}.

Then by Proposition 2.6 it follows that

(4.6) Δk,j(λ,t)(λ,γj)Λ(t)k1;andγjλ as j.{\Delta_{k,j}^{-}(\lambda_{*},t)}\subset(\lambda_{*},\gamma_{j})\cap\Lambda(t)\leavevmode\nobreak\ \forall k\geq 1;\quad\textrm{and}\quad\gamma_{j}\searrow\lambda_{*}\leavevmode\nobreak\ \textrm{ {as} }j\to\infty.

If Φt\Phi_{t} is strictly increasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then we can assume that for any j1j\geq 1 (4.5) determines a unique γ~j(λδ,λ)\tilde{\gamma}_{j}\in(\lambda_{*}-\delta,\lambda_{*}). Accordingly, for k1k\geq 1 we set

Δ~k,j(λ,t):={λΛ(t)(λδ,λ):Φt(λ)=x1xnjd1d2 with dik1i1}.\tilde{\Delta}_{k,j}^{-}(\lambda_{*},t):=\left\{\lambda\in\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}):\Phi_{t}(\lambda)=x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots\textrm{ with }d_{ik}\neq{-1}\leavevmode\nobreak\ \forall i\geq 1\right\}.

Therefore,

(4.7) Δ~k,j(λ,t)(γ~j,λ)Λ(t)k1;andγ~jλ as j.{\tilde{\Delta}_{k,j}^{-}(\lambda_{*},t)\subset(\tilde{\gamma}_{j},\lambda_{*})\cap\Lambda(t)\leavevmode\nobreak\ \forall k\geq 1;\quad\textrm{and}\quad\tilde{\gamma}_{j}\nearrow\lambda_{*}\leavevmode\nobreak\ \textrm{ {as} }j\to\infty.}

By a similar augment as in the proof of Lemma 3.5 we have the following Lipschitz property.

Lemma 4.3.

Let t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} and λΛ(t){1/3}\lambda_{*}\in\Lambda(t)\setminus\left\{1/3\right\}. Suppose Φt(λ)\Phi_{t}(\lambda_{*}) ends with 11^{\infty}.

  1. (i)

    If Φt\Phi_{t} is strictly decreasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then for any k,jk,j\in\mathbb{N} there exists C1>0C_{1}>0 such that

    |πλ(Φt(λ1))πλ(Φt(λ2))|C1|λ1λ2||\pi_{\lambda_{*}}(\Phi_{t}(\lambda_{1}))-\pi_{\lambda_{*}}(\Phi_{t}(\lambda_{2}))|\leq C_{1}|\lambda_{1}-\lambda_{2}|

    for any λ1,λ2Δk,j(λ,t)\lambda_{1},\lambda_{2}\in\Delta_{k,j}^{-}(\lambda_{*},t).

  2. (ii)

    If Φt\Phi_{t} is strictly increasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then for any k,jk,j\in\mathbb{N} there exists C2>0C_{2}>0 such that

    |πγ~j(Φt(λ1))πγ~j(Φt(λ2))|C2|λ1λ2||\pi_{\tilde{\gamma}_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\tilde{\gamma}_{j}}(\Phi_{t}(\lambda_{2}))|\leq C_{2}|\lambda_{1}-\lambda_{2}|

    for any λ1,λ2Δ~k,j(λ,t)\lambda_{1},\lambda_{2}\in\tilde{\Delta}_{k,j}^{-}(\lambda_{*},t).

Proof of Proposition 4.1 (a lower bound).

Let t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\} and λΛ(t){1/3}\lambda_{*}\in\Lambda(t)\setminus\left\{1/3\right\}. If Φt(λ)\Phi_{t}(\lambda_{*}) does not end with 11^{\infty} and Φt\Phi_{t} is strictly decreasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t) for some δ>0\delta>0, then by (4.3) and Lemma 4.2 (i) it follows that for any j1j\geq 1,

dimH(Λ(t)(λδ,λ+δ))\displaystyle\dim_{H}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta)) dimHπηj(Φt(Δk,j+(λ,t)))\displaystyle\geq\dim_{H}\pi_{\eta_{j}}(\Phi_{t}(\Delta_{k,j}^{+}(\lambda_{*},t)))
(k1)log3+log2klogηjlog3logηjas k.\displaystyle\geq\frac{(k-1)\log 3+\log 2}{-k\log\eta_{j}}\to\frac{\log 3}{-\log\eta_{j}}{\quad\textrm{as }k\to\infty}.

Since ηjλ\eta_{j}\nearrow\lambda_{*} as jj\to\infty by (4.3), we conclude that

(4.8) limδ0+dimH(Λ(t)(λδ,λ+δ))limjlog3logηj=log3logλ.\lim_{\delta\to 0^{+}}\dim_{H}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta))\geq\lim_{j\to\infty}\frac{\log 3}{{-\log\eta_{j}}}=\frac{\log 3}{-\log\lambda_{*}}.

Similarly, if Φt(λ)\Phi_{t}(\lambda_{*}) does not end with 11^{\infty} and Φt\Phi_{t} is strictly increasing in (λ,λ+δ)Λ(t)(\lambda_{*},\lambda_{*}+\delta)\cap\Lambda(t), then by (4.4), Lemma 4.2 (ii) and the same argument as above we can prove (4.8). Moreover, if Φt(λ)\Phi_{t}(\lambda_{*}) ends with 11^{\infty}, then (4.8) can be proved by a similar argument as above together with (4.6), (4.7) and Lemma 4.3. ∎

4.2. An upper bound on the local dimension of Λ(t)\Lambda(t)

Now we turn to prove that

limδ0+dimH(Λ(t)(λδ,λ+δ))log3logλλΛ(t){1/3}.\lim_{\delta\to 0^{+}}\dim_{H}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta))\leq\frac{\log 3}{-\log\lambda_{*}}\quad\forall\lambda_{*}\in\Lambda(t)\setminus\left\{1/3\right\}.

In view of our proof of Proposition 2.6 we consider t(0,1/9]t\in(0,1/9], t(1/9,4/27)t\in(1/9,4/27) and t[4/27,1/3)(1/3,1)t\in[4/27,1/3)\cup(1/3,1), separately.

Lemma 4.4.

Let t[4/27,1/3)(1/3,1)t\in[4/27,1/3)\cup(1/3,1). Then for any θ(minΛ(t),1/3)\theta\in(\min\Lambda(t),1/3) there exists C>0C>0 such that

|πθ(Φt(λ1))πθ(Φt(λ2))|C|λ2λ1||\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C|\lambda_{2}-\lambda_{1}|

for any λ1,λ2Λ(t)(0,θ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(0,\theta].

Proof.

First we consider t[4/27,1/3)t\in[4/27,1/3). Take θ(minΛ(t),1/3)\theta\in(\min\Lambda(t),1/3). By the proof of Lemma 2.7 it follows that Φt(λ)[01(1)0,01]\Phi_{t}(\lambda)\in[01(-1)0^{\infty},01^{\infty}] for any λΛ(t)(0,θ]\lambda\in\Lambda(t)\cap(0,\theta]. Furthermore, by the proof of Lemma 2.3 (iii) we obtain that

(4.9) Π2((in),λ)min{14λ+3λ2,12λ3λ2}14θ+3θ2=:C1>0\begin{split}\Pi_{2}((i_{n}),\lambda)&\geq\min\left\{1-4\lambda+3\lambda^{2},1-2\lambda-3\lambda^{2}\right\}\geq 1-4\theta+3\theta^{2}=:C_{1}>0\end{split}

for any (in)[01(1)0,01](i_{n})\in[01(-1)0^{\infty},01^{\infty}] and λΛ(t)(0,θ]\lambda\in\Lambda(t)\cap(0,\theta].

Now take λ1,λ2Λ(t)(0,θ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(0,\theta] with λ1<λ2\lambda_{1}<\lambda_{2}. Then (in):=Φt(λ1)Φt(λ2)=:(jn)(i_{n}):=\Phi_{t}(\lambda_{1})\succ\Phi_{t}(\lambda_{2})=:(j_{n}) by Lemma 2.7. So there exists N3N\in\mathbb{N}_{\geq 3} such that i1iN1=j1jN1i_{1}\ldots i_{N-1}=j_{1}\ldots j_{N-1} and iN>jNi_{N}>j_{N}. Thus,

(4.10) |πθ(Φt(λ1))πθ(Φt(λ2))|=(1θ)n=N(injn)θn1(1θ)θN1(1θ)n=N+12θn1=(13θ)θN1.\begin{split}|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|&=(1-\theta)\sum_{n=N}^{\infty}(i_{n}-j_{n})\theta^{n-1}\\ &\geq(1-\theta)\theta^{N-1}-(1-\theta)\sum_{n=N+1}^{\infty}2\theta^{n-1}=(1-3\theta)\theta^{N-1}.\end{split}

On the other hand, note that (1λ1)n=1inλ1n1=t=(1λ2)n=1jnλ2n1.(1-\lambda_{1})\sum_{n=1}^{\infty}i_{n}\lambda_{1}^{n-1}=t=(1-\lambda_{2})\sum_{n=1}^{\infty}j_{n}\lambda_{2}^{n-1}. Then by (4.9) it follows that

(1λ1)n=N(in1)λ1n1(1λ2)n=N(jn1)λ2n1\displaystyle\quad(1-\lambda_{1})\sum_{n=N}^{\infty}(i_{n}-1)\lambda_{1}^{n-1}-(1-\lambda_{2})\sum_{n=N}^{\infty}(j_{n}-1)\lambda_{2}^{n-1}
=((1λ2)n=1N1jnλ2n1+(1λ2)n=Nλ2n1)\displaystyle=\left((1-\lambda_{2})\sum_{n=1}^{N-1}j_{n}\lambda_{2}^{n-1}+(1-\lambda_{2})\sum_{n=N}^{\infty}\lambda_{2}^{n-1}\right)
((1λ1)n=1N1jnλ1n1+(1λ1)n=Nλ1n1)\displaystyle\qquad-\left((1-\lambda_{1})\sum_{n=1}^{N-1}j_{n}\lambda_{1}^{n-1}+(1-\lambda_{1})\sum_{n=N}^{\infty}\lambda_{1}^{n-1}\right)
=Π(j1jN11,λ2)Π(j1jN11,λ1)\displaystyle=\Pi(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{2})-\Pi(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{1})
=Π2(j1jN11,λ)(λ2λ1)C1(λ2λ1)\displaystyle=\Pi_{2}(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{*})(\lambda_{2}-\lambda_{1})\geq C_{1}(\lambda_{2}-\lambda_{1})

for some λ[λ1,λ2]\lambda_{*}\in[\lambda_{1},\lambda_{2}], where the third equality follows by the mean value theorem. So,

(4.11) λ2λ11C1[(1λ1)n=N2λ1n1+(1λ2)n=N2λ2n1]2C1(λ1N1+λ2N1)4C1θN1.\begin{split}\lambda_{2}-\lambda_{1}&\leq\frac{1}{C_{1}}\left[(1-\lambda_{1})\sum_{n=N}^{\infty}2\lambda_{1}^{n-1}+(1-\lambda_{2})\sum_{n=N}^{\infty}2\lambda_{2}^{n-1}\right]\\ &\leq\frac{2}{C_{1}}(\lambda_{1}^{N-1}+\lambda_{2}^{N-1})\leq\frac{4}{C_{1}}\theta^{N-1}.\end{split}

Hence, by (4.10) and (4.11) we conclude that

|πθ(Φt(λ1))πθ(Φt(λ2))|C1(13θ)4|λ1λ2||\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq\frac{C_{1}(1-3\theta)}{4}{|\lambda_{1}-\lambda_{2}|}

as required.

Next we consider t(1/3,1)t\in(1/3,1). Then by the proof of Lemma 2.7 there exists kk\in\mathbb{N} such that Φt(λ)[1(1),1k(1)]\Phi_{t}(\lambda)\in[1(-1)^{\infty},1^{k}(-1)^{\infty}] for any λΛ(t)(0,θ]\lambda\in\Lambda(t)\cap(0,\theta]. Since minΛ(t)=(1t)/2\min\Lambda(t)=(1-t)/2, by (2.2) it follows that

|Π2((in),λ)||Π2(1k(1),λ)|=2kλk12k(1t2)k1=:C2>0.|\Pi_{2}((i_{n}),\lambda)|\geq|\Pi_{2}(1^{k}(-1)^{\infty},\lambda)|=2k\lambda^{k-1}\geq 2k\left(\frac{1-t}{2}\right)^{k-1}=:C_{2}>0.

By a similar argument as above one can prove that for any λ1,λ2Λ(t)(0,θ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(0,\theta]

|πθ(Φt(λ1))πθ(Φt(λ2))|C2(13θ)4|λ1λ2|,|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq\frac{C_{2}(1-3\theta)}{4}|\lambda_{1}-\lambda_{2}|,

completing the proof. ∎

Recall from Lemma 2.8 that λ=λ(t)(0,1/3)\lambda_{\diamond}=\lambda_{\diamond}(t)\in(0,1/3) satisfies λ(1λ)2=t\lambda_{\diamond}(1-\lambda_{\diamond})^{2}=t. Furthermore, by (2.13) we have t<λ(t)<t1/3t<\lambda_{\diamond}(t)<\sqrt{t}\leq 1/3 for all t(0,1/9]t\in(0,1/9].

Lemma 4.5.

Let t(0,1/9]t\in(0,1/9].

  1. (i)

    For any θ[t,λ]\theta\in[t,\lambda_{\diamond}] there exists C>0C>0 such that for any λ1,λ2Λ(t)(0,λ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(0,\lambda_{\diamond}]

    |πθ(Φt(λ1))πθ(Φt(λ2))|C|λ2λ1|;|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C|\lambda_{2}-\lambda_{1}|;
  2. (ii)

    For any θ(λ,t)\theta\in(\lambda_{\diamond},\sqrt{t}) there exists C>0C^{\prime}>0 such that for any λ1,λ2Λ(t)(λ,t)\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(\lambda_{\diamond},\sqrt{t})

    |πθ(Φt(λ1))πθ(Φt(λ2))|C|λ1λ2|;|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C^{\prime}|\lambda_{1}-\lambda_{2}|;
  3. (iii)

    For any θ[t,1/3)\theta\in[\sqrt{t},1/3) there exists C′′>0C^{\prime\prime}>0 such that for any λ1,λ2Λ(t)[t,θ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap[\sqrt{t},\theta]

    |πθ(Φt(λ1))πθ(Φt(λ2))|C′′|λ2λ1|.|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C^{\prime\prime}|\lambda_{2}-\lambda_{1}|.
Proof.

For (i), note by the proof of Lemma 2.8 that Φt(λ)[01(1)0,01]\Phi_{t}(\lambda)\in[01(-1)0^{\infty},01^{\infty}] for any λΛ(t)(0,λ]\lambda\in\Lambda(t)\cap(0,\lambda_{\diamond}]. Then by (4.9) it follows that Π2((in),λ)14λ+3λ2>0\Pi_{2}((i_{n}),\lambda)\geq 1-4\lambda_{\diamond}+3\lambda_{\diamond}^{2}>0 for all (in)[01(1)0,01](i_{n})\in[01(-1)0^{\infty},01^{\infty}] and λ(0,λ]\lambda\in(0,\lambda_{\diamond}]. So, (i) follows by the same argument as in the proof of Lemma 4.4.

For (ii), note by (2.10) that for any λΛ(t)(λ,t)\lambda\in\Lambda(t)\cap(\lambda_{\diamond},\sqrt{t}) we have Φt(λ)(001,01(1)0)\Phi_{t}(\lambda)\in(001^{\infty},01(-1)0^{\infty}), and the proof of Lemma 2.9 yields that λ<λΦt(λ)\lambda<\lambda_{\Phi_{t}(\lambda)}. Then Π2(Φt(λ),λ)>0\Pi_{2}(\Phi_{t}(\lambda),\lambda)>0 for all λΛ(t)(λ,t)\lambda\in\Lambda(t)\cap(\lambda_{\diamond},\sqrt{t}). Furthermore, observe by Lemma 2.3 that Π2(Φt(λ),λ)=Π2(01(1)0,λ)>0\Pi_{2}(\Phi_{t}(\lambda_{\diamond}),\lambda_{\diamond})=\Pi_{2}(01(-1)0^{\infty},\lambda_{\diamond})>0 and Π2(Φt(t),t)=Π2(001,t)>0\Pi_{2}(\Phi_{t}(\sqrt{t}),\sqrt{t})=\Pi_{2}(001^{\infty},\sqrt{t})>0. Since the map tΠ2(Φt(λ),λ)t\mapsto\Pi_{2}(\Phi_{t}(\lambda),\lambda) is continuous by Lemma 2.5 and Λ(t)\Lambda(t) is compact by Proposition 3.1, it follows that

C1:=infλ[λ,t]Λ(t)Π2(Φt(λ),λ)=minλ[λ,t]Λ(t)Π2(Φt(λ),λ)>0.C_{1}:=\inf_{\lambda\in[\lambda_{\diamond},\sqrt{t}]\cap\Lambda(t)}\Pi_{2}(\Phi_{t}(\lambda),\lambda)=\min_{\lambda\in[\lambda_{\diamond},\sqrt{t}]\cap\Lambda(t)}\Pi_{2}(\Phi_{t}(\lambda),\lambda)>0.

Now take λ1,λ2Λ(t)(λ,t)\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(\lambda_{\diamond},\sqrt{t}) with λ1<λ2\lambda_{1}<\lambda_{2}. Then by Lemma 2.9 we have (in):=Φt(λ1)Φt(λ2)=(jn)(i_{n}):=\Phi_{t}(\lambda_{1})\succ\Phi_{t}(\lambda_{2})=(j_{n}). So, there exists N4N\in\mathbb{N}_{\geq 4} such that i1iN1=j1jN1i_{1}\ldots i_{N-1}=j_{1}\ldots j_{N-1} and iN>jNi_{N}>j_{N}. By the same argument as in the proof of Lemma 4.4 one can show that

|πθ(Φt(λ1))πθ(Φt(λ2))|(13θ)θN1,|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq(1-3\theta)\theta^{N-1},

and there exists λ[λ1,λ2]\lambda_{*}\in[\lambda_{1},\lambda_{2}] such that

(1λ1)n=N(in1)λ1n1(1λ2)n=N(jn1)λ2n1\displaystyle(1-\lambda_{1})\sum_{n=N}^{\infty}(i_{n}-1)\lambda_{1}^{n-1}-(1-\lambda_{2})\sum_{n=N}^{\infty}(j_{n}-1)\lambda_{2}^{n-1}
=\displaystyle= Π(j1jN11,λ2)Π(j1jN11,λ1)\displaystyle\Pi(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{2})-\Pi(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{1})
=\displaystyle= Π2(j1jN11,λ)(λ2λ1)\displaystyle\Pi_{2}(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{*})(\lambda_{2}-\lambda_{1})
\displaystyle\geq Π2(j1jN11,λ2)(λ2λ1)\displaystyle\Pi_{2}(j_{1}\ldots j_{N-1}1^{\infty},\lambda_{2})(\lambda_{2}-\lambda_{1})
\displaystyle\geq Π2(Φt(λ2),λ2)(λ2λ1)C1(λ2λ1),\displaystyle\Pi_{2}(\Phi_{t}(\lambda_{2}),\lambda_{2})(\lambda_{2}-\lambda_{1})\geq C_{1}(\lambda_{2}-\lambda_{1}),

where the first inequality follows by the concavity of Π(j1jN11,)\Pi(j_{1}\ldots j_{N-1}1^{\infty},\cdot) and the second inequality follows by Lemma 2.2. Therefore, one can deduce from this that

|πθ(Φt(λ1))πθ(Φt(λ2))|C1(13θ)4|λ1λ2|,|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq\frac{C_{1}(1-3\theta)}{4}|\lambda_{1}-\lambda_{2}|,

establishing (ii).

For (iii), by the proof of Lemma 2.9 it follows that Φt(λ)[Φt(1/3),Φt(t)](0,001]\Phi_{t}(\lambda)\in[\Phi_{t}(1/3),\Phi_{t}(\sqrt{t})]\subset(0^{\infty},001^{\infty}] for all λΛ(t)[t,1/3].\lambda\in\Lambda(t)\cap[\sqrt{t},1/3]. So, by the proof of Lemma 2.3 (i) there exists k3k\in\mathbb{N}_{\geq 3} such that

Π2((in),λ)\displaystyle\Pi_{2}((i_{n}),\lambda) Π2(Φt(1/3),λ)λk2(k12kλ)minλ[t,θ]λk1(k12kλ)=:C2>0.\displaystyle\geq\Pi_{2}(\Phi_{t}(1/3),\lambda)\geq\lambda^{k-2}(k-1-2k\lambda)\geq\min_{\lambda\in[\sqrt{t},\theta]}\lambda^{k-1}(k-1-2k\lambda){=:C_{2}>0}.

for all (in)[Φt(1/3),Φt(t)](i_{n})\in[\Phi_{t}(1/3),\Phi_{t}(\sqrt{t})] and λ[t,θ]\lambda\in[\sqrt{t},\theta]. Thus (iii) follows by the same argument as in the proof of Lemma 4.4.∎

Note by the proof of Proposition 2.6 (ii) that τ=τ(t)[1/4,1/3)\tau=\tau(t)\in[1/4,1/3) for t(1/9,4/27)t\in(1/9,4/27). Furthermore, by (2.13) we have t<λ(t)<τ(t)<1/3t<\lambda_{\diamond}(t)<\tau(t)<1/3 for all t(1/9,4/27)t\in(1/9,4/27).

Lemma 4.6.

Let t(1/9,4/27)t\in(1/9,4/27).

  1. (i)

    For any θ[t,λ]\theta\in[t,\lambda_{\diamond}] there exists C>0C>0 such that for any λ1,λ2Λ(t)(0,λ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap(0,\lambda_{\diamond}]

    |πθ(Φt(λ1))πθ(Φt(λ2))|C|λ2λ1|;|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C|\lambda_{2}-\lambda_{1}|;
  2. (ii)

    For any θ(λ,τ)\theta\in(\lambda_{\diamond},\tau) there exists C>0C^{\prime}>0 such that for any λ1,λ2Λ(t)[λ,θ]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap[\lambda_{\diamond},\theta]

    |πθ(Φt(λ1))πθ(Φt(λ2))|C|λ2λ1|;|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C^{\prime}|\lambda_{2}-\lambda_{1}|;
  3. (iii)

    For any θ(τ,1/3)\theta\in(\tau,1/3) there exists C′′>0C^{\prime\prime}>0 such that for any λ1,λ2Λ(t)[θ,1/3]\lambda_{1},\lambda_{2}\in\Lambda(t)\cap[\theta,1/3]

    |πθ(Φt(λ1))πθ(Φt(λ2))|C′′|λ2λ1|.|\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C^{\prime\prime}|\lambda_{2}-\lambda_{1}|.
Proof.

The proof is similar to that for Lemma 4.5. More precisely, (i) follows by the same argument as in the proof of Lemma 4.5 (i). In view of the proofs of Lemmas 2.10 and 2.13, (ii) and (iii) follow by a similar argument as in the proof of Lemma 4.5 (ii). ∎

Proof of Proposition 4.1 (an upper bound).

Let λΛ(t){1/3}\lambda_{*}\in\Lambda(t)\setminus\left\{1/3\right\}. We consider the following two cases.

Case I. t[4/27,1/3)(1/3,1)t\in[4/27,1/3)\cup(1/3,1). Then by Lemma 4.4 it follows that for any δ(0,1/3λ)\delta\in(0,1/3-\lambda_{*}),

dimH(Λ(t)(λδ,λ+δ))dimHπλ+δ(Φt(Λ(t)(λδ,λ+δ)))log3log(λ+δ),\dim_{H}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta))\leq\dim_{H}\pi_{\lambda_{*}+\delta}(\Phi_{t}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta)))\leq\frac{\log 3}{-\log(\lambda_{*}+\delta)},

which implies

(4.12) limδ0+dimH(Λ(t)(λδ,λ+δ))log3logλ\lim_{\delta\to 0^{+}}\dim_{H}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta))\leq\frac{\log 3}{-\log\lambda_{*}}

as desired.

Case II. t(0,4/27)t\in(0,4/27). Then by Lemmas 4.5 and 4.6 it follows that for any δ(0,1/3λ)\delta\in(0,1/3-\lambda_{*})

dimH(Λ(t)(λδ,λ))log3logλanddimH(Λ(t)(λ,λ+δ))log3log(λ+δ).\dim_{H}(\Lambda(t)\cap(\lambda_{*}-\delta,\lambda_{*}))\leq\frac{\log 3}{-\log\lambda_{*}}\quad\textrm{and}\quad\dim_{H}(\Lambda(t)\cap(\lambda_{*},\lambda_{*}+\delta))\leq\frac{\log 3}{-\log(\lambda_{*}+\delta)}.

Letting δ0+\delta\to 0^{+} we also obtain (4.12). ∎

Proof of Theorem 1.1.

By Proposition 3.1, Corollary 3.7 and Proposition 4.1 it suffices to prove that Λ(t)\Lambda(t) has zero Lebesgue measure for all t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}. Note by Proposition 4.1 that for each λΛ(t){1/3}\lambda\in\Lambda(t)\setminus\left\{1/3\right\} there exists δλ>0\delta_{\lambda}>0 such that dimH(Λ(t)(λδλ,λ+δλ))<1\dim_{H}(\Lambda(t)\cap(\lambda-\delta_{\lambda},\lambda+\delta_{\lambda}))<1, and thus Λ(t)(λδλ,λ+δλ)\Lambda(t)\cap(\lambda-\delta_{\lambda},\lambda+\delta_{\lambda}) has zero Lebesgue measure. Since by Proposition 3.1 that Λ(t)\Lambda(t) is compact, for any n4n\in\mathbb{N}_{\geq 4} the segment Λ(t)(0,1/31/n]\Lambda(t)\cap(0,1/3-1/n] can be covered by finitely many open intervals, say {(λiδλi,λi+δλi):i=1,,N}\left\{(\lambda_{i}-\delta_{\lambda_{i}},\lambda_{i}+\delta_{\lambda_{i}}):i=1,\ldots,N\right\}. This implies that Λ(t)(0,1/31/n]\Lambda(t)\cap(0,1/3-1/n] has zero Lebesgue measure for all n4n\geq 4. Therefore, Λ(t)={1/3}n=4(Λ(t)(0,1/31/n])\Lambda(t)=\left\{1/3\right\}\cup\bigcup_{n=4}^{\infty}(\Lambda(t)\cap(0,1/3-1/n]) is a Lebesgue null set. ∎

5. Intersections with different Hausdorff and packing dimensions

In this section we consider the set

Λnot(t):={λΛ(t):dimH(Cλ(Cλ+t))dimP(Cλ(Cλ+t))},\Lambda_{not}(t):=\{\lambda\in\Lambda(t):\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))\neq\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t))\},

and show that it has full Hausdorff dimension. Our proof is motivated by the work of [1] to construct subsets of Λnot(t)\Lambda_{not}(t) with Hausdorff dimension arbitrarily close to 11. Recall by (1.3) that

dimH(Cλ(Cλ+t))=log2logλfreq¯0(Φt(λ)),dimP(Cλ(Cλ+t))=log2logλfreq¯0(Φt(λ)),\dim_{H}(C_{\lambda}\cap(C_{\lambda}+t))=\frac{\log 2}{-\log\lambda}\underline{freq}_{0}(\Phi_{t}(\lambda)),\quad\dim_{P}(C_{\lambda}\cap(C_{\lambda}+t))=\frac{\log 2}{-\log\lambda}\overline{freq}_{0}(\Phi_{t}(\lambda)),

where for (in){1,0,1}(i_{n})\in\left\{-1,0,1\right\}^{\mathbb{N}} we denote

freq¯0((in)):=lim infn#{1kn:ik=0}n,freq¯0((in)):=lim supn#{1kn:ik=0}n.\underline{freq}_{0}((i_{n})):=\liminf_{n\to\infty}\frac{\#\{1\leq k\leq n:i_{k}=0\}}{n},\quad\overline{freq}_{0}((i_{n})):=\limsup_{n\to\infty}\frac{\#\{1\leq k\leq n:i_{k}=0\}}{n}.

Then Λnot(t)\Lambda_{not}(t) can be rewritten as

(5.1) Λnot(t)={λΛ(t):freq¯0(Φt(λ))freq¯0(Φt(λ))}.{\Lambda_{not}(t)=\left\{\lambda\in\Lambda(t):\underline{freq}_{0}(\Phi_{t}(\lambda))\neq\overline{freq}_{0}(\Phi_{t}(\lambda))\right\}.}
Proposition 5.1.

For any t(0,1){1/3}t\in(0,1)\setminus\{1/3\} we have dimHΛnot(t)=1\dim_{H}\Lambda_{not}(t)=1.

Similar to the proof of Proposition 3.4, we consider two cases: t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3) and t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Note by Proposition 2.6 that the map Φt\Phi_{t} is strictly monotonic for t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3) but piecewise monotonic for t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Since the proofs of the two cases are similar, in the following we only consider t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). By Proposition 2.6 it follows that there exists a small δ>0\delta>0 such that Φt\Phi_{t} is strictly increasing in Λ(t)[1/3δ,1/3]\Lambda(t)\cap[1/3-\delta,1/3]. Let (xi)=Φt(1/3)(x_{i})=\Phi_{t}(1/3). Then (xi)(x_{i}) does not end with (1)(-1)^{\infty}. So there exists a subsequence {nj}\{n_{j}\}\subset\mathbb{N} such that xnj>1x_{n_{j}}>-1 for all j1j\geq 1. By deleting the first finitely many terms from (nj)(n_{j}) we may assume that for each j1j\geq 1 the equation

t=Π(x1xnj(1),γj)t=\Pi(x_{1}\ldots x_{n_{j}}^{-}(-1)^{\infty},\gamma_{j})

determines a unique γj(1/3δ,1/3)\gamma_{j}\in(1/3-\delta,1/3). Clearly, γj1/3\gamma_{j}\nearrow 1/3 as jj\to\infty.

Now, for qq\in\mathbb{N} let Σq,j(t)\Sigma_{q,j}(t) consists of all λΛ(t)(1/3δ,1/3)\lambda\in\Lambda(t)\cap(1/3-\delta,1/3) such that

(5.2) Φt(λ)=x1xnjd1d2=x1xnjdr0+1dr0+2dr0+3q110dr1+1dr1+2dr1+23q111100drm1+1drm1+2drm1+2m13q12m02m1drm+1drm+2drm+2m3q12m+102m,\begin{split}\Phi_{t}(\lambda)=\leavevmode\nobreak\ &x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots\\ =\leavevmode\nobreak\ &x_{1}\ldots x_{n_{j}}^{-}\\ &d_{r_{0}+1}d_{r_{0}+2}\ldots d_{r_{0}+3q}110\\ &d_{r_{1}+1}d_{r_{1}+2}\ldots d_{r_{1}+2\cdot 3q}111100\\ &\cdots\\ &d_{r_{m-1}+1}d_{r_{m-1}+2}\ldots d_{r_{m-1}+2^{m-1}\cdot 3q}1^{2^{m}}0^{2^{m-1}}\\ &d_{r_{m}+1}d_{r_{m}+2}\ldots d_{r_{m}+2^{m}\cdot 3q}1^{2^{m+1}}0^{2^{m}}\\ &\cdots,\end{split}

where

rm:=3(q+1)(1+2++2m1)=3(q+1)(2m1)anddrm+kq1r_{m}:=3(q+1)(1+2+\cdots+2^{m-1})=3(q+1)(2^{m}-1)\quad\textrm{and}\quad d_{r_{m}+kq}\neq-1

for all k{1,,2m3}k\in\left\{1,\ldots,{2^{m}\cdot 3}\right\} and m0m\geq 0. Here we point out that r0=0r_{0}=0. Then by Proposition 2.6 it follows that Σq,j(t)Λ(t)(γj,1/3)\Sigma_{q,j}(t)\subset\Lambda(t)\cap(\gamma_{j},1/3) for all q1.q\geq 1. In the following we show that Σq,j(t)\Sigma_{q,j}(t) is a subset of Λnot(t)\Lambda_{not}(t).

Lemma 5.2.

Let t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Then

Σq,j(t)Λnot(t)(γj,1/3)q,j.\Sigma_{q,j}(t)\subset\Lambda_{not}(t)\cap(\gamma_{j},1/3)\quad\forall q,j\in\mathbb{N}.
Proof.

Take λΣq,j(t)\lambda\in\Sigma_{q,j}(t). Then Φt(λ)=x1xnjd1d2\Phi_{t}(\lambda)=x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots is defined as in (5.2). By (5.1) it suffices to prove that the frequency of digit zero in the sequence (di)(d_{i}) does not exist. For nn\in\mathbb{N} let N0((di),n)N_{0}((d_{i}),n) be the number of zeros in the word d1dnd_{1}\ldots d_{n}. Then

N0((di),rm)=ξm((di))+(1+2++2m1)=ξm((di))+2m1,{N_{0}((d_{i}),r_{m})=\xi_{m}((d_{i}))+(1+2+\cdots+2^{m-1})=\xi_{m}((d_{i}))+2^{m}-1,}

where ξm((di))\xi_{m}((d_{i})) denotes the number of zeros in the word

dr0+1dr0+2dr0+3qdr1+1dr1+2dr1+23qdrm1+1drm1+2drm1+2m13q.{d_{r_{0}+1}d_{r_{0}+2}\ldots d_{r_{0}+3q}\;d_{r_{1}+1}d_{r_{1}+2}\ldots d_{r_{1}+2\cdot 3q}\;\cdots\;d_{r_{m-1}+1}d_{r_{m-1}+2}\ldots d_{r_{m-1}+2^{m-1}\cdot 3q}.}

This implies that

(5.3) limmN0((di),rm)rm=limmξm((di))+2m13(q+1)(2m1)=13(q+1)(1+limmξm((di))2m).\lim_{m\to\infty}\frac{N_{0}((d_{i}),r_{m})}{r_{m}}=\lim_{m\to\infty}\frac{\xi_{m}((d_{i}))+2^{m}-1}{3(q+1)(2^{m}-1)}=\frac{1}{3(q+1)}\left(1+\lim_{m\to\infty}\frac{\xi_{m}((d_{i}))}{2^{m}}\right).

Similarly, for m:=rm2m1\ell_{m}:=r_{m}-2^{m-1} we have

N0((di),m)=ξm((di))+(1+2++2m2)=ξm((di))+2m11,N_{0}((d_{i}),\ell_{m})=\xi_{m}((d_{i}))+(1+2+\cdots+2^{m-2})=\xi_{m}((d_{i}))+2^{m-1}-1,

and thus

(5.4) limmN0((di),m)m=limmξm((di))+2m113(q+1)(2m1)2m1=16q+5(1+2limmξ((di),m)2m).\begin{split}\lim_{m\to\infty}\frac{N_{0}((d_{i}),\ell_{m})}{\ell_{m}}&=\lim_{m\to\infty}\frac{\xi_{m}((d_{i}))+2^{m-1}-1}{3(q+1)(2^{m}-1)-2^{m-1}}\\ &=\frac{1}{6q+5}\left(1+2\lim_{m\to\infty}\frac{\xi((d_{i}),m)}{2^{m}}\right).\end{split}

Combining (5.3) with (5.4), if the limit limmξm((di))2m\lim_{m\to\infty}\frac{\xi_{m}((d_{i}))}{2^{m}} does not exist, then both limits limmN0((di),rm)rm\lim_{m\to\infty}\frac{N_{0}((d_{i}),r_{m})}{r_{m}} and limmN0((di),m)m\lim_{m\to\infty}\frac{N_{0}((d_{i}),\ell_{m})}{\ell_{m}} do not exist, and thus the frequency of digit zero in (di)(d_{i}) does not exist. If the limit limmξm((di))2m\lim_{m\to\infty}\frac{\xi_{m}((d_{i}))}{2^{m}} exists, call this limit ζ\zeta, then since ξm((di))3q(1+2++2m1)=3q(2m1)\xi_{m}((d_{i}))\leq 3q(1+2+\ldots+2^{m-1})=3q(2^{m}-1), we have ζ3q\zeta\leq 3q. Therefore, by (5.3) and (5.4) it follows that

limmN0((di),rm)rm=ζ+13(q+1)>2ζ+16q+5=limmN0((di),m)m,\lim_{m\to\infty}\frac{N_{0}((d_{i}),r_{m})}{r_{m}}=\frac{\zeta+1}{3(q+1)}>\frac{2\zeta+1}{6q+5}=\lim_{m\to\infty}\frac{N_{0}((d_{i}),\ell_{m})}{\ell_{m}},

which again implies that the frequency of digit zero in (di)(d_{i}) does not exist. So, λΛnot(t)\lambda\in\Lambda_{not}(t), completing the proof. ∎

Next we give a lower bound for the Huasdorff dimension of Σq,j(t)\Sigma_{q,j}(t).

Lemma 5.3.

Let t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Then for any q,jq,j\in\mathbb{N} we have

dimHΣq,j(t)(q1)log3+log2(q+1)logγj.dim_{H}\Sigma_{q,j}(t)\geq\frac{(q-1)\log 3+\log 2}{-(q+1)\log\gamma_{j}}.
Proof.

Note by Lemma 5.2 that Σq,j(t)Λnot(t)(γj,1/3)\Sigma_{q,j}(t)\subset\Lambda_{not}(t)\cap(\gamma_{j},1/3). Then for any λΣq,j(t)\lambda\in\Sigma_{q,j}(t) the sequence Φt(λ)\Phi_{t}(\lambda) begins with x1xnjx_{1}\ldots x_{n_{j}}^{-} and the tail sequence does not contain qq consecutive (1)(-1)s. Then by the same argument as in the proof of Lemma 3.6 there exists C>0C>0 such that

|πγj(Φt(λ1))πγj(Φt(λ2))|C|λ1λ2||\pi_{\gamma_{j}}(\Phi_{t}(\lambda_{1}))-\pi_{\gamma_{j}}(\Phi_{t}(\lambda_{2}))|\leq C|\lambda_{1}-\lambda_{2}|

for any λ1,λ2Σq,j(t)\lambda_{1},\lambda_{2}\in\Sigma_{q,j}(t). This implies that dimHΣq,j(t)dimHπγj(Φt(Σq,j(t)))\dim_{H}\Sigma_{q,j}(t)\geq\dim_{H}\pi_{\gamma_{j}}(\Phi_{t}(\Sigma_{q,j}(t))). So it suffices to prove

(5.5) dimHπγj(Φt(Σq,j(t)))(q1)log3+log2(q+1)logγj.\dim_{H}\pi_{\gamma_{j}}(\Phi_{t}(\Sigma_{q,j}(t)))\geq\frac{(q-1)\log 3+\log 2}{-(q+1)\log\gamma_{j}}.

Observe by (5.2) that

(5.6) dimHπγj(Φt(Σq,j(t)))=dimHπγj(m=0Em(q)),\dim_{H}\pi_{\gamma_{j}}(\Phi_{t}(\Sigma_{q,j}(t)))=\dim_{H}\pi_{\gamma_{j}}{\left(\prod_{m=0}^{\infty}E_{m}(q)\right)},

where

Em(q):=({1,0,1}q1×{0,1})32m×{12m+102m}.{E_{m}(q)}:=\left(\left\{-1,0,1\right\}^{q-1}\times\left\{0,1\right\}\right)^{3\cdot 2^{m}}\times\left\{1^{2^{m+1}}0^{2^{m}}\right\}.

Note that each word in Em(q)E_{m}(q) has length 3(q+1)2m3(q+1)2^{m}, and #Em(q)=(3q12)32m\#E_{m}(q)=(3^{q-1}\cdot 2)^{3\cdot 2^{m}}. Furthermore, m=0Em(q)\prod_{m=0}^{\infty}E_{m}(q) is the set of infinite sequences by concatenating words from each Em(q)E_{m}(q). So πγj(m=0Em(q))\pi_{\gamma_{j}}(\prod_{m=0}^{\infty}E_{m}(q)) is a homogeneous Moran set satisfying the strong separation condition. Hence, by [8, Theorem 2.1] it follows that

dimHπγj(m=0Em(q))\displaystyle\dim_{H}\pi_{\gamma_{j}}{\left({\prod_{m=0}^{\infty}E_{m}(q)}\right)} lim infmlog=0m1(3q12)32l=0m13(q+1)2llogγj\displaystyle\geq\liminf_{m\to\infty}\frac{\log\prod_{\ell=0}^{m-1}(3^{q-1}\cdot 2)^{3\cdot 2^{\ell}}}{-{\sum_{l=0}^{m-1}3(q+1)2^{l}}\log\gamma_{j}}
=lim infm=0m132log(3q12)3(q+1)(2m1)logγj\displaystyle=\liminf_{m\to\infty}\frac{\sum_{\ell=0}^{m-1}3\cdot 2^{\ell}\log(3^{q-1}\cdot 2)}{-3(q+1)(2^{m}-1)\log\gamma_{j}}
=lim infm3(2m1)log(3q12)3(q+1)(2m1)logγj=(q1)log3+log2(q+1)logγj.\displaystyle=\liminf_{m\to\infty}\frac{3(2^{m}-1)\log(3^{q-1}\cdot 2)}{-3(q+1)(2^{m}-1)\log\gamma_{j}}=\frac{(q-1)\log 3+\log 2}{-(q+1)\log\gamma_{j}}.

This, together with (5.6), proves (5.5). ∎

Proof of Proposition 5.1.

Take t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}. Since the proof for t(0,1/9][4/27,1/3)t\in(0,1/9]\cup[4/27,1/3) is analogous, we only consider for t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). By Lemmas 5.2 and 5.3 it follows that for any qq\in{\mathbb{N}}

dimHΛnot(t)dimHΣq,j(t)(q1)log3+log2(q+1)logγj(q1)log3+log2(q+1)log3as j.\dim_{H}\Lambda_{not}(t)\geq\dim_{H}\Sigma_{q,j}(t)\geq\frac{(q-1)\log 3+\log 2}{-(q+1)\log\gamma_{j}}\to\frac{(q-1)\log 3+\log 2}{(q+1)\log 3}\quad\textrm{as }j\to\infty.

Letting qq\to\infty we obtain dimHΛnot(t)1\dim_{H}\Lambda_{not}(t)\geq 1. Since the reverse inequality is obvious, this proves dimHΛnot(t)=1\dim_{H}\Lambda_{not}(t)=1. ∎

6. Proof of Theorem 1.3

In this section we consider the level set

Λβ(t):={λΛ(t):dimH(Cλ(Cλ+t))=dimP(Cλ(Cλ+t))=βlog2logλ}\Lambda_{\beta}(t):=\left\{\lambda\in\Lambda(t):\dim_{H}\big{(}C_{\lambda}\cap(C_{\lambda}+t)\big{)}=\dim_{P}\big{(}C_{\lambda}\cap(C_{\lambda}+t)\big{)}=\beta\frac{\log 2}{-\log\lambda}\right\}

for β[0,1]\beta\in[0,1], and prove Theorem 1.3. Recall from (1.5) the entropy function h(p1,p2,p3)=i=13pilogpih(p_{1},p_{2},p_{3})=-\sum_{i=1}^{3}p_{i}\log p_{i} for a probability vector (p1,p2,p3)(p_{1},p_{2},p_{3}).

Proposition 6.1.

Let t(0,1){1/3}t\in(0,1)\setminus\left\{1/3\right\}. Then for any β[0,1]\beta\in[0,1]

dimHΛβ(t)=dimPΛβ(t)=h(1β2,β,1β2)log3.\dim_{H}\Lambda_{\beta}(t)=\dim_{P}\Lambda_{\beta}(t)=\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3}.

It is worth mentioning that the dimension of Λβ(t)\Lambda_{\beta}(t) is independent of tt. Since the proof for t(0,1/9](4/27,1/3)t\in(0,1/9]\cup(4/27,1/3) is similar, we only consider t(1/9,4/27)(1/3,1)t\in(1/9,4/27)\cup(1/3,1). Then (xi)=Φt(1/3)(x_{i})=\Phi_{t}(1/3) does not end with (1)(-1)^{\infty}. So there exists a subsequence (nj)(n_{j})\subset\mathbb{N} such that xnj>1x_{n_{j}}>-1 for all j1j\geq 1. By Proposition 2.6 there exists δ>0\delta>0 such that Φt\Phi_{t} is strictly increasing in Λ(t)(1/3δ,1/3)\Lambda(t)\cap(1/3-\delta,1/3). By deleting the first finitely many terms from (nj)(n_{j}) we may assume that for each j1j\geq 1 the equation

t=πγj(x1xnj(1))t=\pi_{\gamma_{j}}(x_{1}\ldots x_{n_{j}}^{-}(-1)^{\infty})

determines a unique γj(1/3δ,1/3)\gamma_{j}\in(1/3-\delta,1/3). Then by Lemma 2.5 it follows that γj1/3\gamma_{j}\nearrow 1/3 as jj\to\infty.

Given β[0,1]\beta\in[0,1], we first prove the lower bound

dimHΛβ(t)h(1β2,β,1β2)log3.\dim_{H}\Lambda_{\beta}(t)\geq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3}.

For k,jk,j\in{\mathbb{N}} let k,j(t,β)\mathcal{F}_{k,j}^{-}(t,\beta) consist of all λΛ(t)(1/3δ,1/3)\lambda\in\Lambda(t)\cap(1/3-\delta,1/3) such that

Φt(λ)=x1xnjd1d2\Phi_{t}(\lambda)=x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots

satisfying

(6.1) dnk+1dnk+k(1)kn0andfreq0((di)):=freq¯0((di))=freq¯0((di))=β.d_{nk+1}\ldots d_{nk+k}\neq(-1)^{k}\;\;{\forall n\geq 0}\quad\textrm{and}\quad{freq_{0}((d_{i})):=\underline{freq}_{0}((d_{i}))=\overline{freq}_{0}((d_{i}))=\beta}.

Then by Proposition 2.6 it follows that for each jj\in{\mathbb{N}},

(6.2) k,j(t,β)Λβ(t)(γj,1/3)k1.\mathcal{F}_{k,j}^{-}(t,\beta)\subset\Lambda_{\beta}(t)\cap(\gamma_{j},1/3)\quad\forall k\geq 1.

Note that for any sequence (ci)Φt(k,j(t,β))(c_{i})\in\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta)) the tail sequence cnj+1cnj+2c_{n_{j}+1}c_{n_{j}+2}\ldots does not contain 2k12k-1 consecutive (1)(-1)s. Then by the same argument as in the proof of Lemma 3.5 it follows that

(6.3) dimHk,j(t,β)dimHπγj(Φt(k,j(t,β))).\dim_{H}\mathcal{F}_{k,j}^{-}(t,\beta)\geq\dim_{H}\pi_{\gamma_{j}}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta))).

So it is necessary to consider a lower bound of dimHπγj(Φt(k,j(t,β)))\dim_{H}\pi_{\gamma_{j}}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta))).

To do this, for each k,jk,j\in\mathbb{N} we construct a measure μ^k,j\hat{\mu}_{k,j} on the tree

𝐓k,j(t):={x1xnjd1d2:dnk+1dnk+k(1)kn0}.{\mathbf{T}_{k,j}(t):=\left\{x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots:d_{nk+1}\ldots d_{nk+k}\neq(-1)^{k}\leavevmode\nobreak\ \forall n\geq 0\right\}}.

Let (p1,p0,p1)=(θk,12θk,θk)(p_{-1},p_{0},p_{1})=(\theta_{k},1-2\theta_{k},\theta_{k}) be a probability vector with θk[0,1/2]\theta_{k}\in[0,1/2] satisfying

(6.4) 12θk1(θk)k=β.\frac{1-2\theta_{k}}{1-(\theta_{k})^{k}}=\beta.

Then θk(1β)/2\theta_{k}\to(1-\beta)/2 as kk\to\infty. For each cylinder set of the tree 𝐓k,j(t)\mathbf{T}_{k,j}(t) we set μ^0([x1xnj])=1,\hat{\mu}_{0}([x_{1}\ldots x_{n_{j}}^{-}])=1, and for n1n\geq 1, we let

μ^n([x1xnjd1dnk])=i=0n1pdik+1pdik+2pdik+k1p1k.\hat{\mu}_{n}([x_{1}\ldots x_{n_{j}}^{-}d_{1}\ldots d_{nk}])=\prod_{i=0}^{n-1}\frac{p_{d_{ik+1}}p_{d_{ik+2}}\cdots p_{d_{ik+k}}}{1-p_{-1}^{k}}.

By Kolmogorov’s extension theorem (cf. [6]) there exists a unique probability measure μ^=μ^k,j\hat{\mu}=\hat{\mu}_{k,j} on the tree 𝐓k,j(t)\mathbf{T}_{k,j}(t) satisfying μ^([x1xnjd1dnk])=μ^n([x1xnjd1dnk])\hat{\mu}([x_{1}\ldots x_{n_{j}}^{-}d_{1}\ldots d_{nk}])=\hat{\mu}_{n}([x_{1}\ldots x_{n_{j}}^{-}d_{1}\ldots d_{nk}]) for any n0.n\geq 0.

Lemma 6.2.

μ^(Φt(k,j(t,β)))=1.\hat{\mu}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta)))=1.

Proof.

Note that Φt(k,j(t,β))𝐓k,j(t)\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta))\subset\mathbf{T}_{k,j}(t). By (6.1) it suffices to prove that for μ^\hat{\mu}-a.e. (ci)𝐓k,j(t)(c_{i})\in\mathbf{T}_{k,j}(t) we have freq0((ci))=βfreq_{0}((c_{i}))=\beta. Note that c1cnj=x1xnjc_{1}\ldots c_{n_{j}}=x_{1}\ldots x_{n_{j}}^{-} is fixed, and the choice of each block cnj+nk+1cnj+nk+kc_{n_{j}+nk+1}\ldots c_{n_{j}+nk+k} is independent and identical distributed for all n0n\geq 0 according to our definition of μ^\hat{\mu}. So, by the law of large numbers it follows that for μ^\hat{\mu}-a.e. (ci)𝐓k,j(t)(c_{i})\in\mathbf{T}_{k,j}(t)

freq0((ci))\displaystyle{freq_{0}((c_{i}))} =limn#{i[1,n]:ci=0}n\displaystyle=\lim_{n\to\infty}\frac{\#\left\{i\in[1,n]:c_{i}=0\right\}}{n}
=limn#{i[nj+1,nj+nk]:ci=0}nk\displaystyle=\lim_{n\to\infty}\frac{\#\left\{i\in[n_{j}+1,n_{j}+nk]:c_{i}=0\right\}}{nk}
=d1dk(1)k#{i[1,k]:di=0}kμ^([x1xnjd1dk])\displaystyle=\sum_{d_{1}\ldots d_{k}\neq(-1)^{k}}\frac{\#\left\{i\in[1,k]:d_{i}=0\right\}}{k}\hat{\mu}([x_{1}\ldots x_{n_{j}}d_{1}\ldots d_{k}])
==1kk(k)2k(θk)k(12θk)1(θk)k,\displaystyle=\sum_{\ell=1}^{k}\frac{\ell}{k}\binom{k}{\ell}2^{k-\ell}\frac{(\theta_{k})^{k-\ell}(1-2\theta_{k})^{\ell}}{1-(\theta_{k})^{k}},

where the last equality follows since the number of blocks d1dk{1,0,1}k{(1)k}d_{1}\ldots d_{k}\in\left\{-1,0,1\right\}^{k}\setminus\left\{(-1)^{k}\right\} with precisely (1)\ell(\geq 1) zeros is (k)2k\binom{k}{\ell}2^{k-\ell}. Rearranging the above summation and by (6.4) we conclude that

freq0((ci))=11(θk)k=1k(k1)!(1)!(k)!(2θk)k(12θk)=12θk1(θk)k=β,{freq_{0}((c_{i}))}=\frac{1}{1-(\theta_{k})^{k}}\sum_{\ell=1}^{k}\frac{(k-1)!}{(\ell-1)!(k-\ell)!}(2\theta_{k})^{k-\ell}(1-2\theta_{k})^{\ell}=\frac{1-2\theta_{k}}{1-(\theta_{k})^{k}}=\beta,

completing the proof. ∎

By the same argument as in the proof of Lemma 6.2 one can verify that for μ^\hat{\mu}-a.e. (ci)𝐓k,j(t)(c_{i})\in\mathbf{T}_{k,j}(t) the frequencies of digits 11 and 1-1 in (ci)(c_{i}) are given respectively by

(6.5) freq1((ci))=θk1(θk)k1β2andfreq1((ci))=θk(θk)k1(θk)k1β2freq_{1}((c_{i}))=\frac{\theta_{k}}{1-(\theta_{k})^{k}}\to\frac{1-\beta}{2}\quad\textrm{and}\quad freq_{-1}((c_{i}))=\frac{\theta_{k}-(\theta_{k})^{k}}{1-(\theta_{k})^{k}}\to\frac{1-\beta}{2}

as kk\to\infty, where the limits follow by limkθk=(1β)/2\lim_{k\to\infty}\theta_{k}=(1-\beta)/2.

Proof of Proposition 6.1 (a lower bound).

Note by Lemma 6.2 the set πγj(Φt(k,j(t,β)))\pi_{\gamma_{j}}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta))) has full μ:=μ^πγj1\mu:=\hat{\mu}\circ\pi_{\gamma_{j}}^{-1} measure. Then for μ\mu-a.e. y=πγj(x1xnjd1d2)πγj(Φt(k,j(t,β)))y=\pi_{\gamma_{j}}(x_{1}\ldots x_{n_{j}}^{-}d_{1}d_{2}\ldots)\in\pi_{\gamma_{j}}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta)))

lim infr0+logμ(B(y,r))logr\displaystyle\liminf_{r\to 0^{+}}\frac{\log\mu(B(y,r))}{\log r} =lim infnlogμ^([x1xnjd1dnk])logγjnj+nk\displaystyle=\liminf_{n\to\infty}\frac{\log\hat{\mu}([x_{1}\ldots x_{n_{j}}^{-}d_{1}\ldots d_{nk}])}{\log\gamma_{j}^{n_{j}+nk}}
=lim infnlogi=1nkpdilog(1p1k)n(nj+nk)logγj\displaystyle=\liminf_{n\to\infty}\frac{\log\prod_{i=1}^{nk}p_{d_{i}}-\log(1-p_{-1}^{k})^{n}}{(n_{j}+nk)\log\gamma_{j}}
=lim infns=1,0,1Ns(nk)logpsnlog(1p1k)nklogγj,\displaystyle=\liminf_{n\to\infty}\frac{\sum_{s=-1,0,1}N_{s}(nk)\log{p_{s}}-n\log(1-p_{-1}^{k})}{nk\log\gamma_{j}},

where Ns(nk)N_{s}(nk) denotes the number of digit ss in the block d1dnkd_{1}\ldots d_{nk}. Therefore, by Lemma 6.2 and (6.5) it follows that for μ\mu-a.e. yπγj(Φt(k,j(t,β)))y\in\pi_{\gamma_{j}}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta)))

lim infr0+logμ(B(y,r))logr\displaystyle\liminf_{r\to 0^{+}}\frac{\log\mu(B(y,r))}{\log r} =θk(θk)k1(θk)klogθk+βlog(12θk)+θk1(θk)klogθklogγjlog(1(θk)k)klogγj\displaystyle=\frac{\frac{\theta_{k}-(\theta_{k})^{k}}{1-(\theta_{k})^{k}}\log\theta_{k}+\beta\log(1-2\theta_{k})+\frac{\theta_{k}}{1-(\theta_{k})^{k}}\log\theta_{k}}{\log\gamma_{j}}{-\frac{\log(1-(\theta_{k})^{k})}{k\log\gamma_{j}}}
1β2log1β2+βlogβ+1β2log1β2logγj=h(1β2,β,1β2)logγj\displaystyle\to\quad\frac{\frac{1-\beta}{2}\log\frac{1-\beta}{2}+\beta\log\beta+\frac{1-\beta}{2}\log\frac{1-\beta}{2}}{\log\gamma_{j}}=\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{-\log\gamma_{j}}

as kk\to\infty. Then by Billingsley’s Lemma (cf. [7]) it follows that

dimHπγj(Φt(k,j(t,β)))h(1β2,β,1β2)logγjj1.\dim_{H}\pi_{\gamma_{j}}(\Phi_{t}(\mathcal{F}_{k,j}^{-}(t,\beta)))\geq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{-\log\gamma_{j}}\quad{\forall j\geq 1.}

This, together with (6.2) and (6.3), implies

dimH(Λβ(t)(γj,1/3))h(1β2,β,1β2)logγjj1.\dim_{H}(\Lambda_{\beta}(t)\cap(\gamma_{j},1/3))\geq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{-\log\gamma_{j}}\quad\forall j\geq 1.

Since γj1/3\gamma_{j}\nearrow 1/3 as jj\to\infty, we conclude that dimHΛβ(t)h(1β2,β,1β2)/log3.\dim_{H}\Lambda_{\beta}(t)\geq{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}/{\log 3}.

Next we consider the upper bound.

Lemma 6.3.

Let t[4/27,1/3)(1/3,1)t\in[4/27,1/3)\cup(1/3,1) and β[0,1]\beta\in[0,1]. Then

dimPΛβ(t)h(1β2,β,1β2)log3.\dim_{P}\Lambda_{\beta}(t)\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3}.
Proof.

By the same argument as in the proof of Lemma 4.4 it follows that for any θ(t,1/3)\theta\in(t,1/3) there exists C>0C>0, such that |πθ(Φt(λ1))πθ(Φt(λ2))|C|λ1λ2||\pi_{\theta}(\Phi_{t}(\lambda_{1}))-\pi_{\theta}(\Phi_{t}(\lambda_{2}))|\geq C|\lambda_{1}-\lambda_{2}| for any λ1,λ2Λβ(t)(0,θ]\lambda_{1},\lambda_{2}\in\Lambda_{\beta}(t)\cap(0,\theta]. This implies that

dimP(Λβ(t)(0,θ])dimPπθ(Φθ(Λβ(t)))dimPπ1/3(Φt(Λβ(t))).\dim_{P}(\Lambda_{\beta}(t)\cap(0,\theta])\leq\dim_{P}{\pi_{\theta}}(\Phi_{\theta}(\Lambda_{\beta}(t)))\leq\dim_{P}\pi_{1/3}(\Phi_{t}(\Lambda_{\beta}(t))).

By the countable stability of packing dimension we obtain

(6.6) dimPΛβ(t)dimPπ1/3(Φt(Λβ(t))).\dim_{P}\Lambda_{\beta}(t)\leq\dim_{P}\pi_{1/3}(\Phi_{t}(\Lambda_{\beta}(t))).

Define a Bernoulli measure ν^\hat{\nu} on the symbolic space {1,0,1}\{-1,0,1\}^{\mathbb{N}} such that

ν^([d1dn])=i=1npdin0,\hat{\nu}([d_{1}\ldots d_{n}])=\prod_{i=1}^{n}p_{d_{i}}\quad\forall n\geq 0,

where p1=p1=(1β)/2p_{-1}=p_{1}=(1-\beta)/2 and p0=βp_{0}=\beta. Let ν=ν^π1/31\nu=\hat{\nu}\circ\pi_{1/3}^{-1}. Note that for each (di)Φt(Λβ(t))(d_{i})\in\Phi_{t}(\Lambda_{\beta}(t)) we have freq0((di))=βfreq_{0}((d_{i}))=\beta. Then for any yπ1/3(Φt(Λβ(t)))y\in\pi_{1/3}(\Phi_{t}(\Lambda_{\beta}(t))) with (ci)=Φt(1/3)(c_{i})=\Phi_{t}(1/3)

lim supr0+logν(B(y,r))logr\displaystyle\limsup_{r\to 0^{+}}\frac{\log\nu(B(y,r))}{\log r} =lim supnlogi=1npcilog3N+n=1log3lim supni=1nlogpcin\displaystyle=\limsup_{n\to\infty}\frac{\log\prod_{i=1}^{n}p_{c_{i}}}{-\log 3^{N+n}}=\frac{1}{-\log 3}\limsup_{n\to\infty}\frac{\sum_{i=1}^{n}\log p_{c_{i}}}{n}
=1log3lim supn1n(N0(n)logβ+(nN0(n))log1β2)\displaystyle=\frac{1}{-\log 3}\limsup_{n\to\infty}\frac{1}{n}\left(N_{0}(n)\log\beta+(n-N_{0}(n))\log\frac{1-\beta}{2}\right)
=1log3(βlogβ+(1β)log1β2)=h(1β2,β,1β2)log3,\displaystyle=\frac{1}{-\log 3}\left(\beta\log\beta+(1-\beta)\log\frac{1-\beta}{2}\right)=\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3},

where N0(n)N_{0}(n) denotes the number of digit zero in the block c1cnc_{1}\ldots c_{n}. So, by [7, Proposition 2.3] and (6.6) it follows that

dimPΛβ(t)dimPπ1/3(Φt(Λβ(t)))h(1β2,β,1β2)log3,\dim_{P}\Lambda_{\beta}(t)\leq\dim_{P}\pi_{1/3}(\Phi_{t}(\Lambda_{\beta}(t)))\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3},

completing the proof. ∎

Proof of Proposition 6.1 (an upper bound).

By Lemma 6.3 it suffices to consider t(0,4/27)t\in(0,4/27). If t(0,1/9]t\in(0,1/9], then by Lemma 4.5 and the same argument as in the proof of Lemma 6.3 it follows that

dimP(Λβ(t)(0,λ])h(1β2,β,1β2)logλh(1β2,β,1β2)log3,dimP(Λβ(t)(λ,t))h(1β2,β,1β2)logth(1β2,β,1β2)log3dimP(Λβ(t)[t,1/3])h(1β2,β,1β2)log3.\begin{split}\dim_{P}(\Lambda_{\beta}(t)\cap(0,\lambda_{\diamond}])&\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{-\log\lambda_{\diamond}}\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3},\\ \dim_{P}(\Lambda_{\beta}(t)\cap(\lambda_{\diamond},\sqrt{t}))&\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{-\log\sqrt{t}}\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3}\\ \dim_{P}(\Lambda_{\beta}(t)\cap[\sqrt{t},1/3])&\leq\frac{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}{\log 3}.\end{split}

This implies dimPΛβ(t)h(1β2,β,1β2)/log3\dim_{P}\Lambda_{\beta}(t)\leq{h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})}/{\log 3} as desired.

Similarly, if t(1/9,4/27)t\in(1/9,4/27), then by Lemma 4.6 and the same argument as in the proof of Lemma 6.3 we can also prove dimPΛβ(t)h(1β2,β,1β2)/log3.\dim_{P}\Lambda_{\beta}(t)\leq h(\frac{1-\beta}{2},\beta,\frac{1-\beta}{2})/\log 3.

Proof of Theorem 1.3.

By Propositions 5.1 and 6.1 it suffices to prove that for any β[0,1]\beta\in[0,1] both Λnot(t)\Lambda_{not}(t) and Λβ(t)\Lambda_{\beta}(t) are dense in Λ(t)\Lambda(t). Since the proofs are similar, we only prove it for Λβ(t)\Lambda_{\beta}(t). Take λΛ(t)\lambda_{*}\in\Lambda(t) and δ>0\delta>0. Then we can always find λΛ(t)\lambda\in\Lambda(t) such that Φt(λ)\Phi_{t}(\lambda) has a long common prefix with Φt(λ)\Phi_{t}(\lambda_{*}), and the tail sequence of Φt(λ)\Phi_{t}(\lambda) has digit zero frequency equaling β\beta. In other words, λΛβ(t)(λδ,λ+δ)\lambda\in\Lambda_{\beta}(t)\cap(\lambda_{*}-\delta,\lambda_{*}+\delta). So, Λβ(t)\Lambda_{\beta}(t) is dense in Λ(t)\Lambda(t). ∎

Acknowledgements

The second author was supported by NSFC No. 11971079.

References

  • [1] S. Albeverio, M. Pratsiovytyi, and G. Torbin. Topological and fractal properties of real numbers which are not normal. Bull. Sci. Math., 129(8):615–630, 2005.
  • [2] S. Baker and D. Kong. Unique expansions and intersections of Cantor sets. Nonlinearity, 30(4):1497–1512, 2017.
  • [3] L. Barreira and J. Schmeling. Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math., 116:29–70, 2000.
  • [4] C. G. T. de A. Moreira. Stable intersections of Cantor sets and homoclinic bifurcations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(6):741–781, 1996.
  • [5] C. G. T. de A. Moreira and J.-C. Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2), 154(1):45–96, 2001.
  • [6] R. Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA, second edition, 1996.
  • [7] K. Falconer. Techniques in fractal geometry. John Wiley & Sons Ltd., Chichester, 1997.
  • [8] D. Feng, Z. Wen, and J. Wu. Some dimensional results for homogeneous Moran sets. Sci. China Ser. A, 40(5):475–482, 1997.
  • [9] M. Hall, Jr. On the sum and product of continued fractions. Ann. of Math. (2), 48:966–993, 1947.
  • [10] J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713–747, 1981.
  • [11] D. Kong, W. Li, and F. M. Dekking. Intersections of homogeneous Cantor sets and beta-expansions. Nonlinearity, 23(11):2815–2834, 2010.
  • [12] R. Kraft. Intersections of thick Cantor sets. Mem. Amer. Math. Soc., 97(468):vi+119, 1992.
  • [13] R. L. Kraft. One point intersections of middle-α\alpha Cantor sets. Ergodic Theory Dynam. Systems, 14(3):537–549, 1994.
  • [14] W. Li and D. Xiao. On the intersection of translation of middle-α\alpha Cantor sets. In Fractals and beyond (Valletta, 1998), pages 137–148. World Sci. Publ., River Edge, NJ, 1998.
  • [15] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995.
  • [16] J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors.
  • [17] N. Sidorov. Almost every number has a continuum of β\beta-expansions. Amer. Math. Monthly, 110(9):838–842, 2003.
  • [18] Z. Wang, K. Jiang, D. Kong, and W. Li. On a class of self-similar sets which contain finitely many common points. arXiv:2109.10014., 2021.
  • [19] Y. Zou, J. Lu, and W. Li. Self-similar structure on the intersection of middle-(12β)(1-2\beta) Cantor sets with β(1/3,1/2)\beta\in(1/3,1/2). Nonlinearity, 21(12):2899–2910, 2008.