This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Intersection patterns and incidence theorems

Thang Pham and Semin Yoo University of Science, Vietnam National University, Hanoi, Vietnam [email protected] School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea [email protected]
Abstract.

Let AA and BB be sets in a finite vector space. In this paper, we study the magnitude of the set Af(B)A\cap f(B), where ff runs through a set of transformations. More precisely, we will focus on the cases that the set of transformations is given by orthogonal matrices or orthogonal projections. One of the most important contributions of this paper is to show that if A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} satisfy some natural conditions then, for almost every gO(d)g\in O(d), there are at least qd\gg q^{d} elements z𝔽qdz\in\mathbb{F}_{q}^{d} such that

|A(g(B)+z)||A||B|qd.|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{d}}.

This infers that |AgB|qd|A-gB|\gg q^{d} for almost every gO(d)g\in O(d). In the flavor of expanding functions, with |A||B||A|\leq|B|, we also show that the image AgBA-gB grows exponentially. In two dimensions, the result simply says that if |A|=qx|A|=q^{x} and |B|=qy|B|=q^{y}, as long as 0<xy<20<x\leq y<2, then for almost every gO(2)g\in O(2), we can always find ϵ=ϵ(x,y)>0\epsilon=\epsilon(x,y)>0 such that |AgB||B|1+ϵ|A-gB|\gg|B|^{1+\epsilon}. To prove these results, we need to develop new and robust incidence bounds between points and rigid motions by using a number of techniques including algebraic methods and discrete Fourier analysis. Our results are essentially sharp in odd dimensions.

Key words and phrases:
Intersection, Group action, Rigid motion, Incidences, Distances
2020 Mathematics Subject Classification:
52C10, 42B05, 11T23

1. Introduction

Let AA and BB be compact sets in d\mathbb{R}^{d}. One of the fundamental problems in Geometric Measure Theory is to study the relations between the Hausdorff dimensions of AA, BB, and Af(B)A\cap f(B), where ff runs through a set of transformations.

This study has a long history in the literature. A classical theorem due to Mattila [18, Theorem 13.11] or [19, Theorem 7.4] states that for Borel sets AA and BB in d\mathbb{R}^{d} of Hausdorff dimension sAs_{A} and sBs_{B} with

sA+sB>dandsB>d+12s_{A}+s_{B}>d~{}\mbox{and}~{}s_{B}>\frac{d+1}{2}

and assume in addition that the Hausdorff measures satisfy sA(A)>0\mathcal{H}^{s_{A}}(A)>0 and sB(B)>0\mathcal{H}^{s_{B}}(B)>0, then, for almost every gO(d)g\in O(d), one has

d({zd:dimH(A(zgB))sA+sBd})>0.\mathcal{L}^{d}\left(\left\{z\in\mathbb{R}^{d}\colon\dim_{H}(A\cap(z-gB))\geq s_{A}+s_{B}-d\right\}\right)>0.

This result means that for almost every gO(d)g\in O(d), the set of zzs such that dimH(A(zgB))sA+sBd\dim_{H}(A\cap(z-gB))\geq s_{A}+s_{B}-d has positive Lebesgue measure. This has been extended for other sets of transformations, for instance, the group generated by the orthogonal group and the homotheties [12, 17], the set of translations restricted on Cantor sets [1, Chapter 1], and the set of orthogonal projections [21]. A number of variants and applications can be found in a series of papers [1, 4, 5, 7, 22] and references therein.

Let 𝔽q\mathbb{F}_{q} be a finite field of order qq, where qq is a prime power. In this paper, we introduce the finite field analog of this type of questions and study the primary properties with an emphasis on the group of orthogonal matrices and the set of orthogonal projections. More precisely, we consider the following three main questions in this paper.

Question 1.1.

Given A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} and gO(d)g\in O(d), under what conditions on AA, BB, and gg can we have

(1.1) |A(g(B)+z)||A||B|qd|A\cap(g(B)+z)|\geq\frac{|A||B|}{q^{d}}

or a stronger form

(1.2) |A(g(B)+z)||A||B|qd|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{d}}

for almost every z𝔽qdz\in\mathbb{F}_{q}^{d}?

Question 1.2.

Given P𝔽q2dP\subset\mathbb{F}_{q}^{2d} and gO(d)g\in O(d), under what conditions on PP and gg can we have

|Sg(P)|:=|{xgy:(x,y)P}|qd?|S_{g}(P)|:=|\{x-gy\colon(x,y)\in P\}|\gg q^{d}?
Question 1.3.

Let A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} and mm be a positive integer.

  1. (1)

    If |A|,|B|>qm|A|,|B|>q^{m}, then under what conditions on AA and BB can we have

    |πW(A)πW(B)|qm|\pi_{W}(A)\cap\pi_{W}(B)|\gg q^{m}

    for almost every WG(d,m)W\in G(d,m)?

  2. (2)

    If |B|<qm<|A||B|<q^{m}<|A|, then under what conditions on AA and BB can we have

    |πW(A)πW(B)||B||\pi_{W}(A)\cap\pi_{W}(B)|\gg|B|

    for almost every WG(d,m)W\in G(d,m)?

Here πW(X)\pi_{W}(X) denotes the orthogonal projection of XX onto WW.

Main ideas (sketch): This paper presents more than twenty new theorems on these three questions, for the reader’s convenience, we want to briefly explain the main steps at the beginning. Our study of the three above questions relies mainly on incidence theorems. While an incidence bound between points and affine subspaces due to Pham, Phuong, and Vinh [25] is sufficient to prove sharp results on 1.3, we need to develop incidence theorems between points and rigid-motions for the first two questions. In 2\mathbb{R}^{2}, such an incidence structure has been studied intensively in the breakthrough solution of the Erdős distinct distances problem [6, 8]. In this paper, we present the reverse direction, namely, from the distance problem to incidence theorems. This strategy allows us to take advantage of recent developments on the distance topic, as a consequence, we are able to establish a complete picture in any dimensions over finite fields. Our paper provides two types of incidence results: over arbitrary fields 𝔽q\mathbb{F}_{q} and over prime fields 𝔽p\mathbb{F}_{p}. The method we use is the discrete Fourier analysis in which estimates on the following sum

m=m|A^(m)|2|B^(m)|2 for any A,B𝔽qd,\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}~{}\text{ for any }A,B\subset\mathbb{F}_{q}^{d},

play the crucial role. While we use results from the Restriction theory due to Chapman, Erdogan, Hart, Iosevich, and Koh [2], and Iosevich, Koh, Lee, Pham, and Shen [10] to bound this sum effectively over arbitrary finite fields, the proofs of better estimates over prime fields are based on the recent L2L^{2} distance estimate due to Murphy, Petridis, Pham, Rudnev, and Stevens [24] which was proved by using algebraic methods and Rudnev’s point-plane incidence bound [26]. This presents surprising applications of the Erdős-Falconer distance problem. We would like to emphasize here that the approach we use to bound the above sum over prime fields is also one of the novelties of this paper, and that sum will have more applications in other topics.

1.1. Intersection patterns I

Let us recall the first question. See 1.1

We note that for any gO(d)g\in O(d), we have

z𝔽qd|A(g(B)+z)|=|A||B|.\sum_{z\in\mathbb{F}_{q}^{d}}|A\cap(g(B)+z)|=|A||B|.

Thus, there always exists z𝔽qdz\in\mathbb{F}_{q}^{d} such that |A(g(B)+z)||A||B|qd|A\cap(g(B)+z)|\geq\frac{|A||B|}{q^{d}}.

Let us start with some examples.

Example 1: Let AA be a subspace of dimension kk with 1k<d1\leq k<d, A=BA=B, and 𝚂𝚝𝚊𝚋(A)\mathtt{Stab}(A) be the set of matrices gO(d)g\in O(d) such that gA=AgA=A. It is well-known that |𝚂𝚝𝚊𝚋(A)||O(dk)|q(dk2)|\mathtt{Stab}(A)|\sim|O(d-k)|\sim q^{\binom{d-k}{2}}. For any g𝚂𝚝𝚊𝚋(A)g\in\mathtt{Stab}(A), we have

|A(gB+z)|={0ifzA|A|ifzA.|A\cap(gB+z)|=\begin{cases}0~{}&\mbox{if}~{}z\not\in A\\ |A|~{}&\mbox{if}~{}z\in A\end{cases}.

Example 2: In 𝔽qd\mathbb{F}_{q}^{d} with dd odd, given 0<c<10<c<1, for each gO(d)g\in O(d), there exist A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} with |A|=|B|=cqd+12|A|=|B|=cq^{\frac{d+1}{2}} and |AgB|2cqd|A-gB|\leq 2cq^{d}. To see this, let A=𝔽qd12×{0}d12×XA=\mathbb{F}_{q}^{\frac{d-1}{2}}\times\{0\}^{\frac{d-1}{2}}\times X where XX is an arithmetic progression of size cqcq and B=g1(𝔽qd12×{0}d12×X)B=g^{-1}\left(\mathbb{F}_{q}^{\frac{d-1}{2}}\times\{0\}^{\frac{d-1}{2}}\times X\right). It is clear that the number of zz such that A(gB+z)A\cap(gB+z)\neq\emptyset is at most |AgB|qd1|XX|2cqd|A-gB|\leq q^{d-1}|X-X|\leq 2cq^{d}.

These two examples suggest that if we want

|A(g(B)+z)||A||B|qd,|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{d}},

for almost every z𝔽qdz\in\mathbb{F}_{q}^{d}, then AA and BB cannot be small and gg cannot be chosen arbitrary in O(d)O(d). Our first theorem describes this phenomenon in detail.

Theorem 1.4.

Let AA and BB be sets in 𝔽qd\mathbb{F}_{q}^{d}. Then there exists EO(d)E\subset O(d) with

|E||O(d1)|q2d|A||B|,|E|\ll\frac{|O(d-1)|q^{2d}}{|A||B|},

such that for any gO(d)Eg\in O(d)\setminus E, there are at least qd\gg q^{d} elements zz satisfying

|A(g(B)+z)||A||B|qd.|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{d}}.

This theorem is valid in the range |A||B|qd+1|A||B|\gg q^{d+1}, since

|O(d1)|q2d|A||B||O(d)|when|A||B|qd+1.\frac{|O(d-1)|q^{2d}}{|A||B|}\ll|O(d)|~{}~{}\mbox{when}~{}~{}|A||B|\gg q^{d+1}.

The condition |A||B|qd+1|A||B|\gg q^{d+1} is sharp in odd dimensions for comparable sets AA and BB. A construction will be provided in Section 5. When one set is of small size, we can hope for a better estimate, and the next theorem presents such a result.

Theorem 1.5.

Let AA and BB be sets in 𝔽qd\mathbb{F}_{q}^{d}. Assume in addition either (d3d\geq 3 odd) or (d2mod4,q3mod4d\equiv 2\mod 4,q\equiv 3\mod 4). Then there exists EO(d)E\subset O(d) such that for any gO(d)Eg\in O(d)\setminus E, there are at least qd\gg q^{d} elements zz satisfying

|A(g(B)+z)||A||B|qd.|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{d}}.

In particular,

  1. (1)

    If |A|<qd12|A|<q^{\frac{d-1}{2}}, then one has |E|q(d2+d)/2|A||B||E|\ll\frac{q^{(d^{2}+d)/2}}{|A||B|}.

  2. (2)

    If qd12|A|qd+12q^{\frac{d-1}{2}}\leq|A|\leq q^{\frac{d+1}{2}}, then one has |E|q(d2+1)/2|B||E|\ll\frac{q^{(d^{2}+1)/2}}{|B|}.

In Theorem 1.5, the roles of AA and BB are symmetric. In a reduced form, the theorem says that if |A||B||A|\leq|B|, |B|qd+12|B|\gg q^{\frac{d+1}{2}}, and |A||B|qd|A||B|\gg q^{d}, then

|A(g(B)+z)||A||B|qd.|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{d}}.

Our proof involves a number of results from Restriction theory in which the conditions on dd and qq are necessary. We do not know if it is still true for the case d2mod4d\equiv 2\mod 4 and q1mod4q\equiv 1\mod 4, so it is left as an open question.

The sharpness construction of Theorem 1.4 can be modified to show that these two statements are also optimal in odd dimensions. In even dimensions, there is no evidence to believe that the above theorems are sharp. In the next theorem, we present an improvement in two dimensions.

Theorem 1.6.

Assume that q3mod4q\equiv 3\mod{4}. Let AA and BB be sets in 𝔽q2\mathbb{F}_{q}^{2} with |A||B||A|\leq|B|. Then there exists EO(2)E\subset O(2) with

|E|q3|A|1/2|B||E|\ll\frac{q^{3}}{|A|^{1/2}|B|}

such that for any gO(2)Eg\in O(2)\setminus E, there are at least q2\gg q^{2} elements zz satisfying

|A(g(B)+z)||A||B|q2.|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{2}}.
Remark 1.7.

Note that this theorem is stronger than Theorem 1.5 in the range |A|q|A|\geq q. When |A||B||A|\geq|B| we can switch between the roles of AA and BB to obtain a similar result, namely, there exists EO(2)E\subset O(2) with

|E|q3|A||B|1/2|E|\ll\frac{q^{3}}{|A||B|^{1/2}}

such that for any gO(2)Eg\in O(2)\setminus E, there are at least q2\gg q^{2} elements zz satisfying

|A(g(B)+z)||A||B|q2.|A\cap(g(B)+z)|\sim\frac{|A||B|}{q^{2}}.

If our sets lie on the plane over a prime field 𝔽p\mathbb{F}_{p}, then further improvements can be made.

Theorem 1.8 (Medium𝐀\mathbf{\mbox{\bf Medium}~{}A}).

Assume that p3mod4p\equiv 3\mod{4}. Let AA and BB be sets in 𝔽p2\mathbb{F}_{p}^{2} with |A||B||A|\leq|B|. Then there exists EO(2)E\subset O(2) such that for any gO(2)Eg\in O(2)\setminus E, there are at least p2\gg p^{2} elements zz satisfying

|A(g(B)+z)||A||B|p2.|A\cap(g(B)+z)|\sim\frac{|A||B|}{p^{2}}.

In particular,

  1. (1)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then |E|p59/24|A|2/3|B|1/2.|E|\ll\frac{p^{59/24}}{|A|^{2/3}|B|^{1/2}}.

  2. (2)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then |E|p9/4|A|1/2|B|1/2.|E|\ll\frac{p^{9/4}}{|A|^{1/2}|B|^{1/2}}.

Theorem 1.9 (Large𝐁\mathbf{\mbox{\bf Large}~{}B}).

Assume that p3mod4p\equiv 3\mod{4}. Let AA and BB be sets in 𝔽p2\mathbb{F}_{p}^{2} with |A||B||A|\leq|B|. Then there exists EO(2)E\subset O(2) such that for any gO(2)Eg\in O(2)\setminus E, there are at least p2\gg p^{2} elements zz satisfying

|A(g(B)+z)||A||B|p2.|A\cap(g(B)+z)|\sim\frac{|A||B|}{p^{2}}.

In particular,

  1. (1)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and |B|>p4/3|B|>p^{4/3}, then |E|p17/6|A|2/3|B|3/4.|E|\ll\frac{p^{17/6}}{|A|^{2/3}|B|^{3/4}}.

  2. (2)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and |B|>p4/3|B|>p^{4/3}, then |E|p21/8|A|1/2|B|3/4.|E|\ll\frac{p^{21/8}}{|A|^{1/2}|B|^{3/4}}.

Remark 1.10.

We do not believe the results in even dimensions are optimal, but proving improvements is outside the realm of methods of this paper.

Remark 1.11.

In the above two theorems, the sets AA and BB cannot be both small since, otherwise, it might lead to a contradiction from the inequalities that p2|AgB||B|2p^{2}\ll|A-gB|\ll|B|^{2}. To compare to the theorems over arbitrary finite fields, we include the following table.

|A|p12|A|\leq p^{\frac{1}{2}} p12<|A|p34p^{\frac{1}{2}}<|A|\leq p^{\frac{3}{4}} p34<|A|pp^{\frac{3}{4}}<|A|\leq p p<|A|p54p<|A|\leq p^{\frac{5}{4}} p54<|A|p43p^{\frac{5}{4}}<|A|\leq p^{\frac{4}{3}}
|B|p34|B|\leq p^{\frac{3}{4}} \diagup \diagup \diagup \diagup \diagup
p34<|B|pp^{\frac{3}{4}}<|B|\leq p \diagup \diagup \diagup \diagup \diagup
p<|B|p54p<|B|\leq p^{\frac{5}{4}} \diagup \diagup 𝚞𝚗𝚔𝚗𝚘𝚠𝚗\mathtt{unknown} \varnothing \diagup
p54<|B|p43p^{\frac{5}{4}}<|B|\leq p^{\frac{4}{3}} \diagup 𝚞𝚗𝚔𝚗𝚘𝚠𝚗\mathtt{unknown} 𝚞𝚗𝚔𝚗𝚘𝚠𝚗\mathtt{unknown} \surd \surd
p43<|B|p^{\frac{4}{3}}<|B| \varnothing \varnothing \varnothing |B|3<p2|A|2|B|^{3}<p^{2}|A|^{2} |B|<p32|B|<p^{\frac{3}{2}}
Table 1. In this table, by ``"``\surd" we mean better result, by ``"``\varnothing" we mean weaker result, by ``f(|A|,|B|)"``f(|A|,|B|)" we mean better result under the condition f(|A|,|B|)f(|A|,|B|), by “𝚞𝚗𝚔𝚗𝚘𝚠𝚗\mathtt{unknown}" we mean there is no non-trivial result in this range yet, and by ``"``\diagup" we mean invalid range corresponding to |B||A||B|\leq|A| or |A||B|p2|A||B|\ll p^{2}.

1.2. Intersection patterns II

For gO(d)g\in O(d), define the map Sg:𝔽q2d𝔽qdS_{g}\colon\mathbb{F}_{q}^{2d}\to\mathbb{F}_{q}^{d} by

Sg(x,y)=xgy.S_{g}(x,y)=x-gy.

The results in the previous subsection say that if P=A×BP=A\times B with A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} and |A||B||A||B| is larger than a certain threshold, then for almost every gO(d)g\in O(d), one has |Sg(P)|qd|S_{g}(P)|\gg q^{d}.

In this subsection, we present a result for general sets P𝔽q2dP\subset\mathbb{F}_{q}^{2d}. With the same approach, we have the following theorem.

Theorem 1.12.

Given P𝔽q2dP\subset\mathbb{F}_{q}^{2d}, there exists EO(d)E\subset O(d) with |E|q2d|O(d1)|/|P||E|\ll q^{2d}|O(d-1)|/|P| such that, for all gO(d)Eg\in O(d)\setminus E, we have |Sg(P)|qd|S_{g}(P)|\gg q^{d}.

Remark 1.13.

We always have |Sg(P)|qd|P||S_{g}(P)|q^{d}\geq|P|, since for each zSg(P)z\in S_{g}(P) and for each x𝔽qdx\in\mathbb{F}_{q}^{d}, there is at most one y𝔽qdy\in\mathbb{F}_{q}^{d} such that (x,y)P(x,y)\in P. Thus, |Sg(P)||P|qd|S_{g}(P)|\geq|P|q^{-d} for all gO(d)g\in O(d).

1.3. Incidences between points and rigid motions

We now move to incidence theorems.

Let PP be a set of points in 𝔽qd×𝔽qd\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d} and RR be a set of rigid motions in 𝔽qd\mathbb{F}_{q}^{d}, i.e. maps of the form gx+zgx+z with gO(d)g\in O(d) and z𝔽qdz\in\mathbb{F}_{q}^{d}. We define the incidence I(P,R)I(P,R) as follows:

I(P,R)=#{(x,y,g,z)P×R:x=gy+z}.I(P,R)=\#\{(x,y,g,z)\in P\times R\colon x=gy+z\}.

We first provide a universal incidence bound.

Theorem 1.14.

Let P𝔽qd×𝔽qdP\subset\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d}. Then we have

|I(P,R)|P||R|qd|q(d2d+2)/4|P||R|.\left|I(P,R)-\frac{|P||R|}{q^{d}}\right|\ll q^{(d^{2}-d+2)/4}\sqrt{|P||R|}.

In this theorem and the next ones, the quantities |P||R|/qd|P||R|/q^{d} and q(d2d+2)/4|P||R|q^{(d^{2}-d+2)/4}\sqrt{|P||R|} are referred to the main and error terms, respectively.

Under some additional conditions on dd and qq, if one set is of pretty small size compared to the other, then we can prove stronger incidence bounds.

Theorem 1.15.

Let P=A×BP=A\times B for A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d}. Assume in addition that either (d3d\geq 3 odd) or (d2mod4d\equiv 2\mod 4 and q3mod4q\equiv 3\mod 4).

  1. (1)

    If |A|<qd12|A|<q^{\frac{d-1}{2}}, then

    |I(P,R)|P||R|qd|q(d2d)/4|P||R|.\left|I(P,R)-\frac{|P||R|}{q^{d}}\right|\ll q^{(d^{2}-d)/4}\sqrt{|P||R|}.
  2. (2)

    If qd12|A|qd+12q^{\frac{d-1}{2}}\leq|A|\leq q^{\frac{d+1}{2}}, then

    |I(P,R)|P||R|qd|q(d22d+1)/4|P||R||A|.\left|I(P,R)-\frac{|P||R|}{q^{d}}\right|\ll q^{(d^{2}-2d+1)/4}\sqrt{|P||R||A|}.

In terms of applications (Theorem 1.4 and Theorem 1.5), one can expect that these two incidence theorems are sharp in odd dimensions. However, this is not true for even dimensions, and the next theorems present improvements in two dimensions.

Theorem 1.16.

Assume that q3mod4q\equiv 3\mod 4. Let P=A×BP=A\times B for A,B𝔽q2A,B\subset\mathbb{F}_{q}^{2}. Then we have

|I(P,R)|P||R|q2|q1/2|P|1/2|R|1/2min(|A|1/4,|B|1/4).\left|I(P,R)-\frac{|P||R|}{q^{2}}\right|\ll q^{1/2}|P|^{1/2}|R|^{1/2}\min\big{(}|A|^{1/4},|B|^{1/4}\big{)}.

A direct computation shows that this incidence theorem is better than the previous in the range |A|q|A|\geq q.

In the plane over prime fields, we have the following three major improvements corresponding to three cases: |A|pand|B|p4/3|A|\leq p~{}\mbox{and}~{}|B|\leq p^{4/3}, |A|pand|B|p4/3|A|\geq p~{}\mbox{and}~{}|B|\leq p^{4/3}, and |B|>p4/3|B|>p^{4/3}, respectively.

Theorem 1.17 (|𝐀|𝐩and|𝐁|𝐩𝟒/𝟑\mathbf{|A|\leq p~{}\mbox{\bf and}~{}|B|\leq p^{4/3}}).

Assume that p3mod4p\equiv 3\mod{4}. Let P=A×BP=A\times B for A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B|. The following hold.

  1. (1)

    If p3/4|A|pp^{3/4}\leq|A|\leq p and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then

    |I(P,R)|P||R|p2|p1/16|P|3/4|R|1/2|A|1/12.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{1/16}|P|^{3/4}|R|^{1/2}|A|^{1/12}.
  2. (2)

    If |A|p|A|\leq p and p|B|p5/4p\leq|B|\leq p^{5/4}, then

    |I(P,R)|P||R|p2|p3|P|1/2|R|1/2(1p5+|P|1/3|A|1/3p17/3)1/2.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{3}|P|^{1/2}|R|^{1/2}\left(\frac{1}{p^{5}}+\frac{|P|^{1/3}|A|^{1/3}}{p^{17/3}}\right)^{1/2}.
  3. (3)

    If |A|p|A|\leq p and |B|p|B|\leq p, then

    |I(P,R)|P||R|p2|p3|P|1/2|R|1/2(1p5+|P|2/3p6)1/2.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{3}|P|^{1/2}|R|^{1/2}\left(\frac{1}{p^{5}}+\frac{|P|^{2/3}}{p^{6}}\right)^{1/2}.
Theorem 1.18 (|𝐀|𝐩and|𝐁|𝐩𝟒/𝟑\mathbf{|A|\geq p~{}\mbox{\bf and}~{}|B|\leq p^{4/3}}).

Assume that p3mod4p\equiv 3\mod{4}. Let P=A×BP=A\times B for A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B|. The following hold.

  1. (1)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p|B|p5/4p\leq|B|\leq p^{5/4}, then

    |I(P,R)|P||R|p2|p1/3|P|2/3|R|1/2.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{1/3}|P|^{2/3}|R|^{1/2}.
  2. (2)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then

    |I(P,R)|P||R|p2|p11/48|P|2/3|R|1/2|B|1/12.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{11/48}|P|^{2/3}|R|^{1/2}|B|^{1/12}.
  3. (3)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then

    |I(P,R)|P||R|p2|p1/8|P|3/4|R|1/2.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{1/8}|P|^{3/4}|R|^{1/2}.
Theorem 1.19 (|𝐁|>𝐩𝟒/𝟑\mathbf{|B|>p^{4/3}}).

Assume that p3mod4p\equiv 3\mod{4}. Let P=A×BP=A\times B for A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B|. The following hold.

  1. (1)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and |B|>p4/3|B|>p^{4/3}, then

    |I(P,R)|P||R|p2|p5/12|P|5/8|R|1/2|A|1/24.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{5/12}|P|^{5/8}|R|^{1/2}|A|^{1/24}.
  2. (2)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and |B|>p4/3|B|>p^{4/3}, then

    |I(P,R)|P||R|p2|p5/16|P|5/8|R|1/2|A|1/8.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{5/16}|P|^{5/8}|R|^{1/2}|A|^{1/8}.

We now include a comparison to the results in 𝔽q2\mathbb{F}_{q}^{2} offered by Theorem 1.15 and Theorem 1.16.

|A|p12|A|\leq p^{\frac{1}{2}} p12<|A|p34p^{\frac{1}{2}}<|A|\leq p^{\frac{3}{4}} p34<|A|pp^{\frac{3}{4}}<|A|\leq p p<|A|p54p<|A|\leq p^{\frac{5}{4}} p54<|A|p43p^{\frac{5}{4}}<|A|\leq p^{\frac{4}{3}}
|B|p34|B|\leq p^{\frac{3}{4}} == \surd \diagup \diagup \diagup
p34<|B|pp^{\frac{3}{4}}<|B|\leq p == |A|3>|B|2|A|^{3}>|B|^{2} \surd \diagup \diagup
p<|B|p54p<|B|\leq p^{\frac{5}{4}} \varnothing |A|>(p|B|)13|A|>(p|B|)^{\frac{1}{3}} \surd \surd \diagup
p54<|B|p43p^{\frac{5}{4}}<|B|\leq p^{\frac{4}{3}} \varnothing \varnothing |B|<p34|A|23|B|<p^{\frac{3}{4}}|A|^{\frac{2}{3}} \surd \surd
p43<|B|p^{\frac{4}{3}}<|B| \varnothing \varnothing \varnothing |B|3<p2|A|2|B|^{3}<p^{2}|A|^{2} |B|<p32|B|<p^{\frac{3}{2}}
Table 2. In this table, by ``="``=" we mean the same result, by ``"``\surd" we mean better result, by ``"``\varnothing" we mean weaker result, by ``f(|A|,|B|)"``f(|A|,|B|)" we mean better result under the condition f(|A|,|B|)f(|A|,|B|), and by ``"``\diagup" we mean invalid range corresponding to |B||A||B|\leq|A|.
Remark 1.20.

The incidence theorems in two dimensions offer both the upper and lower bounds which depend simultaneously on the exponents of pp, |P||P|, and |R||R|. Hence, it is very difficult to come up with a conjecture that is sharp for most ranges.

1.4. Growth estimates under orthogonal matrices

For A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d}, we have seen that there exists a set EO(d)E\subset O(d) such that for all gO(d)Eg\in O(d)\setminus E, one has |AgB|qd|A-gB|\gg q^{d}. In this subsection, we represent this type of results in the language of expanding functions, namely, assume |A||B||A|\leq|B|, we want to have a weaker conclusion of the form |AgB||B|1+ϵ|A-gB|\gg|B|^{1+\epsilon} for a given ϵ>0\epsilon>0. Note that in this setting, we can obtain non-trivial results for small sets AA and BB. With the same proof, we have the following theorems.

Theorem 1.21.

Let ϵ>0\epsilon>0. Given A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} with |A||B||A|\leq|B| and |B|1+ϵ<qd/2|B|^{1+\epsilon}<q^{d}/2, there exists EO(d)E\subset O(d) with

|E||O(d1)|qd|B|ϵ|A||E|\ll\frac{|O(d-1)|q^{d}|B|^{\epsilon}}{|A|}

such that for all gO(d)Eg\in O(d)\setminus E, we have

|AgB||B|1+ϵ.|A-gB|\gg|B|^{1+\epsilon}.
Theorem 1.22.

Let ϵ>0\epsilon>0. Assume either (d3d\geq 3 odd) or (d2mod4,q3mod4d\equiv 2\mod 4,q\equiv 3\mod 4). Given A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} with |A||B||A|\leq|B| and |B|1+ϵ<qd/2|B|^{1+\epsilon}<q^{d}/2, there exists EO(d)E\subset O(d) such that for all gO(d)Eg\in O(d)\setminus E, we have

|AgB||B|1+ϵ.|A-gB|\gg|B|^{1+\epsilon}.

In particular,

  1. (1)

    If |A|<qd12|A|<q^{\frac{d-1}{2}}, then one has |E|qd2d2|B|ϵ|A||E|\ll\frac{q^{\frac{d^{2}-d}{2}}|B|^{\epsilon}}{|A|}.

  2. (2)

    If qd12|A|qd+12q^{\frac{d-1}{2}}\leq|A|\leq q^{\frac{d+1}{2}}, then one has |E|qd22d+12|B|ϵ|E|\ll q^{\frac{d^{2}-2d+1}{2}}|B|^{\epsilon}.

The two above theorems say that when the sizes of AA and BB belong to certain ranges, then the image AgBA-gB grows exponentially for almost every gO(d)g\in O(d). However, in two dimensions, the statement is much more beautiful: if |A|=qx|A|=q^{x} and |B|=qy|B|=q^{y}, as long as 0<xy<20<x\leq y<2, then for almost every gO(2)g\in O(2), we can always find ϵ=ϵ(x,y)>0\epsilon=\epsilon(x,y)>0 such that |AgB||B|1+ϵ|A-gB|\gg|B|^{1+\epsilon}.

Theorem 1.23.

Let ϵ>0\epsilon>0. Assume that q3mod4q\equiv 3\mod{4}. Given A,B𝔽q2A,B\subset\mathbb{F}_{q}^{2} with |A||B||A|\leq|B| and |B|1+ϵ<q2/2|B|^{1+\epsilon}<q^{2}/2, there exists EO(2)E\subset O(2) with

|E|q|B|ϵ|A|1/2|E|\ll\frac{q|B|^{\epsilon}}{|A|^{1/2}}

such that for all gO(2)Eg\in O(2)\setminus E, we have

|AgB||B|1+ϵ.|A-gB|\gg|B|^{1+\epsilon}.

In this paper, we do not compute the exponent ϵ(x,y)\epsilon(x,y) explicitly in terms of xx and yy, but it can be improved when we replace 𝔽q\mathbb{F}_{q} by 𝔽p\mathbb{F}_{p}. The ranges of improvements are the same as those indicated in Table 2.

Theorem 1.24 (Small AA).

Let ϵ>0\epsilon>0. Assume that p3mod4p\equiv 3\mod{4}. Given A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B| and |B|1+ϵ<p2/2|B|^{1+\epsilon}<p^{2}/2, there exists EO(2)E\subset O(2) such that for all gO(2)Eg\in O(2)\setminus E, we have

|AgB||B|1+ϵ.|A-gB|\gg|B|^{1+\epsilon}.

In particular,

  1. (1)

    If p3/4|A|pp^{3/4}\leq|A|\leq p and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then |E|p1/8|B|1/2+ϵ|A|1/3|E|\ll\frac{p^{1/8}|B|^{1/2+\epsilon}}{|A|^{1/3}}.

  2. (2)

    If |A|p|A|\leq p and p|B|p5/4p\leq|B|\leq p^{5/4}, then |E|p|B|ϵ+p1/3|B|ϵ|P|1/3|A|1/3|A||E|\ll\frac{p|B|^{\epsilon}+p^{1/3}|B|^{\epsilon}|P|^{1/3}|A|^{1/3}}{|A|}.

  3. (3)

    If |A|p|A|\leq p and |B|p|B|\leq p, then |E||B|ϵ|P|2/3|A||E|\ll\frac{|B|^{\epsilon}|P|^{2/3}}{|A|}.

Theorem 1.25 (Medium AA).

Let ϵ>0\epsilon>0. Assume that p3mod4p\equiv 3\mod{4}. Given A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B| and |B|1+ϵ<p2/2|B|^{1+\epsilon}<p^{2}/2, there exists EO(2)E\subset O(2) such that for all gO(2)Eg\in O(2)\setminus E, we have

|AgB||B|1+ϵ.|A-gB|\gg|B|^{1+\epsilon}.

In particular,

  1. (1)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p|B|p5/4p\leq|B|\leq p^{5/4}, then |E|p2/3|B|1/3+ϵ|A|2/3|E|\ll\frac{p^{2/3}|B|^{1/3+\epsilon}}{|A|^{2/3}}.

  2. (2)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then |E|p11/24|B|1/2+ϵ|A|2/3|E|\ll\frac{p^{11/24}|B|^{1/2+\epsilon}}{|A|^{2/3}}.

  3. (3)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then |E|p1/4|B|1/2+ϵ|A|1/2|E|\ll\frac{p^{1/4}|B|^{1/2+\epsilon}}{|A|^{1/2}}.

Theorem 1.26 (Large BB).

Let ϵ>0\epsilon>0. Assume that p3mod4p\equiv 3\mod{4}. Given A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B| and |B|1+ϵ<p2/2|B|^{1+\epsilon}<p^{2}/2, there exists EO(2)E\subset O(2) such that for all gO(2)Eg\in O(2)\setminus E, we have

|AgB||B|1+ϵ.|A-gB|\gg|B|^{1+\epsilon}.

In particular,

  1. (1)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and |B|>p4/3|B|>p^{4/3}, then |E|p5/6|B|1/4+ϵ|A|2/3|E|\ll\frac{p^{5/6}|B|^{1/4+\epsilon}}{|A|^{2/3}}.

  2. (2)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and |B|>p4/3|B|>p^{4/3}, then |E|p5/8|B|1/4+ϵ|A|1/2|E|\ll\frac{p^{5/8}|B|^{1/4+\epsilon}}{|A|^{1/2}}.

1.5. Intersection pattern III

For a finite set EdE\subset\mathbb{R}^{d} and a subspace VV of d\mathbb{R}^{d}, the orthogonal projection of EE onto VV is defined by

(1.3) πV(E):={xV:(x+V)E},\pi_{V}(E):=\left\{x\in V\colon(x+V^{\perp})\cap E\neq\emptyset\right\},

where VV^{\perp} denotes the orthogonal complement of VV.

In 𝔽qd\mathbb{F}_{q}^{d} or vector spaces over arbitrary finite fields, due to the fact that there exist null-vectors, i.e. vectors vv with vv=0v\cdot v=0, the orthogonal projection of EE onto VV is defined by

πV(E):={x+V:(x+V)E,x𝔽pd}.\pi_{V}(E):=\{x+V^{\perp}\colon(x+V^{\perp})\cap E\neq\emptyset,~{}x\in\mathbb{F}_{p}^{d}\}.

The elements of πV(E)\pi_{V}(E) are (dm)(d-m)-dimensional affine planes of 𝔽qd\mathbb{F}_{q}^{d} when dimV=mV=m. We also note that as in the Euclidean we have the property that

dim(V)+dim(V)=d,\dim(V)+\dim(V^{\perp})=d,

for all subspaces V𝔽qdV\subset\mathbb{F}_{q}^{d}.

Chen [3] proved the following result.

Theorem 1.27.

[3, Theorem 1.2.] Let E𝔽qdE\subset\mathbb{F}_{q}^{d}.

  1. (1)

    For any N<|E|2N<\frac{|E|}{2},

    |{WG(d,m):|πW(E)|N}|4q(dm)mmN.|\{W\in G(d,m)\colon|\pi_{W}(E)|\leq N\}|\leq 4q^{(d-m)m-m}N.
  2. (2)

    For any δ(0,1)\delta\in(0,1),

    |{WG(d,m):|πW(E)|δqm}|2(δ1δ)qm(dm)+m|E|1.|\{W\in G(d,m)\colon|\pi_{W}(E)|\leq\delta q^{m}\}|\leq 2\left(\frac{\delta}{1-\delta}\right)q^{m(d-m)+m}|E|^{-1}.
Corollary 1.28.

[3, Corollary 1.3.] Let E𝔽qdE\subset\mathbb{F}_{q}^{d} with |E|=qs|E|=q^{s}.

  1. (1)

    If sms\leq m and t(0,s]t\in(0,s], then

    |{WG(d,m):|πW(E)|qt/10}|12qm(dm1)+t.|\{W\in G(d,m)\colon|\pi_{W}(E)|\leq q^{t}/10\}|\leq\frac{1}{2}q^{m(d-m-1)+t}.
  2. (2)

    If s>ms>m, then

    |{WG(d,m):|πW(E)|qm/10}|12qm(dm+1)s.|\{W\in G(d,m)\colon|\pi_{W}(E)|\leq q^{m}/10\}|\leq\frac{1}{2}q^{m(d-m+1)-s}.
  3. (3)

    If s>2ms>2m, then

    {WG(d,m):|πW(E)|qm}4q(dm)(m+1)s.\{W\in G(d,m)\colon|\pi_{W}(E)|\neq q^{m}\}\leq 4q^{(d-m)(m+1)-s}.

As mentioned earlier, we study the following question.

Question 1.29.

Let A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} and mm be a positive integer.

  1. (1)

    If |A|,|B|>qm|A|,|B|>q^{m}, then under what conditions on AA and BB can we have

    |πW(A)πW(B)|qm|\pi_{W}(A)\cap\pi_{W}(B)|\gg q^{m}

    for almost every WG(d,m)W\in G(d,m)?

  2. (2)

    If |B|<qm<|A||B|<q^{m}<|A|, then under what conditions on AA and BB can we have

    |πW(A)πW(B)||B||\pi_{W}(A)\cap\pi_{W}(B)|\gg|B|

    for almost every WG(d,m)W\in G(d,m)?

The next theorem provides a partial optimal solution to this question.

Theorem 1.30.

Let A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} and mm be a positive integer.

  1. (1)

    If |A|,|B|>qm|A|,|B|>q^{m}, then there are at least qm(dm)\gg q^{m(d-m)} subspaces WG(d,m)W\in G(d,m) such that

    |πW(A)πW(B)|qm.|\pi_{W}(A)\cap\pi_{W}(B)|\gg q^{m}.
  2. (2)

    If |A|,|B|>q2m|A|,|B|>q^{2m}, then there there are at least qm(dm)\gg q^{m(d-m)} subspaces WG(d,m)W\in G(d,m) such that

    |πW(A)πW(B)|=qm.|\pi_{W}(A)\cap\pi_{W}(B)|=q^{m}.
  3. (3)

    Let md/2m\geq d/2. If |A|>100qm|A|>100q^{m}, |B|<qm/2|B|<q^{m}/2, and |A||B|>160q2m|A||B|>160q^{2m}, then there there are at least qm(dm)\gg q^{m(d-m)} subspaces WG(d,m)W\in G(d,m) such that

    |πW(A)πW(B)||B|.|\pi_{W}(A)\cap\pi_{W}(B)|\gg|B|.

We now discuss the sharpness of this theorem. In the first statement, it is clear that the condition |A|,|B|>qm|A|,|B|>q^{m} can not be replaced by |A|,|B|>qmϵ|A|,|B|>q^{m-\epsilon} for any ϵ>0\epsilon>0. The second statement is sharp when d=2d=2 and m=1m=1. To see this, let KK be a Kakeya set in 𝔽q2\mathbb{F}_{q}^{2} of size q212+q\frac{q^{2}-1}{2}+q, i.e. a set contains a full line in all directions, such an example can be found in [23]. Set A=B=𝔽q2KA=B=\mathbb{F}_{q}^{2}\setminus K. It is clear that |πW(A)|,|πW(B)|q|\pi_{W}(A)|,|\pi_{W}(B)|\neq q for all directions WW. The third statement is also sharp in 𝔽q2\mathbb{F}_{q}^{2} in the following sense: for any ϵ>0\epsilon>0 and any positive constant cc, there exist A,B𝔽q2A,B\subset\mathbb{F}_{q}^{2}, |A||B|=q2ϵ|A||B|=q^{2-\epsilon}, and there are at most cqm(dm)cq^{m(d-m)} subspaces WG(d,m)W\in G(d,m) such that |πW(A)πW(B)||B||\pi_{W}(A)\cap\pi_{W}(B)|\gg|B|. This is a long construction, so we omit it here and present it in detail in Section 8. When m>1m>1, we do not have any examples for its sharpness.

To keep this paper not too long, we do not want to make a full comparison between the results in this paper and those in the fractal. There is one crucial point we have to mention here that while Theorem 1.4, Theorem 1.5, and Theorem 1.12 are directly in line with Mattila’s results in [18, Theorem 13.11] and [20], we are not aware of any results in the continuous setting that are similar to those in 𝔽q2\mathbb{F}_{q}^{2} or 𝔽p2\mathbb{F}_{p}^{2}. This suggests that there might be room for improvements in 2\mathbb{R}^{2}.

2. Preliminaries-key lemmas

Let f:𝔽qnf\colon\mathbb{F}_{q}^{n}\to\mathbb{C} be a complex valued function. The Fourier transform f^\widehat{f} of ff is defined by

f^(m):=qnx𝔽qnχ(mx)f(x),\widehat{f}(m):=q^{-n}\sum_{x\in\mathbb{F}_{q}^{n}}\chi(-m\cdot x)f(x),

here, we denote by χ\chi a non-trivial additive character of 𝔽q\mathbb{F}_{q}. Note that χ\chi satisfies the following orthogonality property

α𝔽qnχ(βα)={0ifβ(0,,0),qnifβ=(0,,0).\sum_{\alpha\in\mathbb{F}_{q}^{n}}\chi(\beta\cdot\alpha)=\left\{\begin{array}[]{ll}0&\mbox{if}\quad\beta\neq(0,\ldots,0),\\ q^{n}&\mbox{if}\quad\beta=(0,\ldots,0).\end{array}\right.

We also have the Fourier inversion formula as follows

f(x)=m𝔽qnχ(mx)f^(m).f(x)=\sum_{m\in\mathbb{F}_{q}^{n}}\chi(m\cdot x)\widehat{f}(m).

With these notations in hand, the Plancherel theorem states that

m𝔽qn|f^(m)|2=qnx𝔽qn|f(x)|2.\sum_{m\in\mathbb{F}_{q}^{n}}|\widehat{f}(m)|^{2}=q^{-n}\sum_{x\in\mathbb{F}_{q}^{n}}|f(x)|^{2}.

In this paper, we denote the quadratic character of 𝔽q\mathbb{F}_{q} by η\eta, precisely, for s0s\neq 0, η(s)=1\eta(s)=1 if ss is a square and 1-1 otherwise. The convention that η(0)=0\eta(0)=0 will be also used in this paper.

This section is devoted to proving upper bounds of the following sum

m=m|A^(m)|2|B^(m)|2 for any A,B𝔽qd,\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}~{}\text{ for any }A,B\subset\mathbb{F}_{q}^{d},

which is the key step in our proofs of incidence theorems.

2.1. Results over arbitrary finite fields

We first start with a direct application of the Plancherel theorem.

Theorem 2.1.

Let A,BA,B be sets in 𝔽qd\mathbb{F}_{q}^{d}. Then we have

m=m|A^(m)|2|B^(m)|2|A||B|q2d.\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq\frac{|A||B|}{q^{2d}}.

To improve this result, we need to recall a number of lemmas in the literature.

For any j0j\neq 0, let SjS_{j} be the sphere centered at the origin of radius jj defined as follows:

Sj:={x𝔽qd:x12++xd2=j}.S_{j}:=\{x\in\mathbb{F}_{q}^{d}\colon x_{1}^{2}+\cdots+x_{d}^{2}=j\}.

The next lemma provides the precise form of the Fourier decay of SjS_{j} for any j𝔽qj\in\mathbb{F}_{q}. A proof can be found in [9] or [13].

Lemma 2.2.

For any j𝔽qj\in\mathbb{F}_{q}, we have

Sj^(m)=q1δ0(m)+qd1ηd(1)G1d(η,χ)r𝔽qηd(r)χ(jr+m4r),\widehat{S_{j}}(m)=q^{-1}\delta_{0}(m)+q^{-d-1}\eta^{d}(-1)G_{1}^{d}(\eta,\chi)\sum_{r\in{\mathbb{F}}_{q}^{*}}\eta^{d}(r)\chi\Big{(}jr+\frac{\|m\|}{4r}\Big{)},

where η\eta is the quadratic character, and δ0(m)=1\delta_{0}(m)=1 if m=(0,,0)m=(0,\ldots,0) and δ0(m)=0\delta_{0}(m)=0 otherwise.

Moreover, for m,m𝔽qdm,m^{\prime}\in\mathbb{F}_{q}^{d}, we have

j𝔽qSj^(m)Sj(m)^¯=δ0(m)δ(m)q+1qd+1s𝔽qχ(s(mm)).\sum_{j\in\mathbb{F}_{q}}\widehat{S_{j}}(m)\overline{\widehat{S_{j}(m^{\prime})}}=\frac{\delta_{0}(m)\delta(m^{\prime})}{q}+\frac{1}{q^{d+1}}\sum_{s\in\mathbb{F}_{q}^{*}}\chi(s(||m||-||m^{\prime}||)).

For A𝔽qdA\subset\mathbb{F}_{q}^{d}, define

M(A)=maxj0mSj|A^(m)|2,andM(A)=maxj𝔽qmSj|A^(m)|2.M^{*}(A)=\max_{j\neq 0}\sum_{m\in S_{j}}|\widehat{A}(m)|^{2},~{}\mbox{and}~{}M(A)=\max_{j\in\mathbb{F}_{q}}\sum_{m\in S_{j}}|\widehat{A}(m)|^{2}.

We recall the following result from [13], which is known as the finite field analog of the spherical average in the classical Falconer distance problem [16, Chapter 3].

Theorem 2.3.

Let A𝔽qdA\subset\mathbb{F}_{q}^{d}. We have

  1. (1)

    If d=2d=2, then M(A)q3|A|3/2M^{*}(A)\ll q^{-3}|A|^{3/2}.

  2. (2)

    If d4d\geq 4 even, then M(A)min{|A|qd,|A|qd+1+|A|2q3d+12}M^{*}(A)\ll\min\left\{\frac{|A|}{q^{d}},~{}\frac{|A|}{q^{d+1}}+\frac{|A|^{2}}{q^{\frac{3d+1}{2}}}\right\}.

  3. (3)

    If d3d\geq 3 odd, then M(A)min{|A|qd,|A|qd+1+|A|2q3d+12}M(A)\ll\min\left\{\frac{|A|}{q^{d}},~{}\frac{|A|}{q^{d+1}}+\frac{|A|^{2}}{q^{\frac{3d+1}{2}}}\right\}.

In some specific dimensions, a stronger estimate was proved in [10] for the sphere of zero radius.

Theorem 2.4.

Let A𝔽qdA\subset\mathbb{F}_{q}^{d}. Assume d2mod4d\equiv 2\mod{4} and q3mod4q\equiv 3\mod{4}, then we have

mS0|A^(m)|2|A|qd+1+|A|2q3d+22.\sum_{m\in S_{0}}|\widehat{A}(m)|^{2}\ll\frac{|A|}{q^{d+1}}+\frac{|A|^{2}}{q^{\frac{3d+2}{2}}}.

We are now ready to improve Theorem 2.1.

Theorem 2.5.

Let A,BA,B be sets in 𝔽qd\mathbb{F}_{q}^{d}. Assume that either (d3d\geq 3 odd) or (d2mod4d\equiv 2\mod 4 and q3mod4q\equiv 3\mod 4), then the following hold.

  1. (1)

    If |A|qd12|A|\leq q^{\frac{d-1}{2}}, then

    m=m|A^(m)|2|B^(m)|2|A||B|q2d+1.\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq\frac{|A||B|}{q^{2d+1}}.
  2. (2)

    If qd12|A|qd+12q^{\frac{d-1}{2}}\leq|A|\leq q^{\frac{d+1}{2}}, then

    m=m|A^(m)|2|B^(m)|2|A|2|B|q5d+12.\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq\frac{|A|^{2}|B|}{q^{\frac{5d+1}{2}}}.
Proof.

The proof follows directly from Theorem 2.3 and Theorem 2.4. More precisely,

m=m|A^(m)|2|B^(m)|2maxt𝔽qmSt|A^(m)|2m𝔽qd|B^(m)|2maxt𝔽qmSt|A^(m)|2|B|qd.\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq\max_{t\in\mathbb{F}_{q}}\sum_{m\in S_{t}}|\widehat{A}(m)|^{2}\cdot\sum_{m^{\prime}\in\mathbb{F}_{q}^{d}}|\widehat{B}(m^{\prime})|^{2}\leq\max_{t\in\mathbb{F}_{q}}\sum_{m\in S_{t}}|\widehat{A}(m)|^{2}\cdot\frac{|B|}{q^{d}}.

This completes the proof. ∎

In two dimensions, we can obtain a better estimate as follows.

Theorem 2.6.

Let A,BA,B be sets in 𝔽q2\mathbb{F}_{q}^{2}. Assume in addition that q3mod4q\equiv 3\mod 4, then we have

m=m|A^(m)|2|B^(m)|2|A||B|q5min{|A|1/2,|B|1/2}.\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\ll\frac{|A||B|}{q^{5}}\cdot\min\{|A|^{1/2},|B|^{1/2}\}.
Proof.

We note that when q3mod4q\equiv 3\mod{4}, the circle of radius zero contains only one point which is (0,0)(0,0), so

|A^(0,0)|2|B^(0,0)|2=|A|2|B|2q8.|\widehat{A}(0,0)|^{2}|\widehat{B}(0,0)|^{2}=\frac{|A|^{2}|B|^{2}}{q^{8}}.

Applying Theorem 2.3, as above, one has

m=m0|A^(m)|2|B^(m)|2M(A)m|B^(m)|2|A|3/2|B|q5,\sum_{||m||=||m^{\prime}||\neq 0}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq M^{*}(A)\sum_{m}|\widehat{B}(m)|^{2}\ll\frac{|A|^{3/2}|B|}{q^{5}},

and

m=m0|A^(m)|2|B^(m)|2M(B)m|A^(m)|2|A||B|3/2q5.\sum_{||m||=||m^{\prime}||\neq 0}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq M^{*}(B)\sum_{m}|\widehat{A}(m)|^{2}\leq\frac{|A||B|^{3/2}}{q^{5}}.

Thus, the theorem follows. ∎

2.2. Results over prime fields

To improve Theorem 2.6 over prime fields, we need to introduce the following notation.

For P𝔽q2dP\subset\mathbb{F}_{q}^{2d}. Define

N(P):=#{(x,y,u,v)P×P:xu=yv}.N(P):=\#\{(x,y,u,v)\in P\times P\colon||x-u||=||y-v||\}.

The following picture describes the case P=A×BP=A\times B.

[Uncaptioned image]

We note that N(A×B)N(A\times B) counts the number of pairs in A×AA\times A and B×BB\times B of the same distance. This quantity is not the same as the L2L^{2} distance estimate of the set A×BA\times B.

While the sum m=m|A^(m)|2|B^(m)|2\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2} can be bounded directly over arbitrary finite fields, the strategy over prime fields is different. More precisely, we will use a double counting argument to bound N(P)N(P). The first bound is proved in the next theorem which presents a connection between the sum and the magnitude of N(P)N(P). The second bound (Theorem 2.8, Corollary 2.9) for N(P)N(P) is due to Murphy, Petridis, Pham, Rudnev, and Stevens [24] which was proved by using algebraic methods and Rudnev’s point-plane incidence bound [26].

Theorem 2.7.

Let P=A×BP=A\times B for A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d}. Then we have

N(P)=|P|2qq3d1mm|A^(m)|2|B^(m)|2+q3dm=m|A^(m)|2|B^(m)|2.N(P)=\frac{|P|^{2}}{q}-q^{3d-1}\sum_{||m||\neq||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}+q^{3d}\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}.
Proof.

For any j𝔽qj\in\mathbb{F}_{q} and A𝔽qdA\subset\mathbb{F}_{q}^{d}, we define

νA(j):=#{(x,y)A×A:xy=j}.\nu_{A}(j):=\#\{(x,y)\in A\times A\colon||x-y||=j\}.

Therefore, for any j0j\neq 0, we have

νA(j)\displaystyle\nu_{A}(j) =x,y𝔽qdA(x)A(y)Sj(xy)=x,y𝔽qdA(x)A(y)m𝔽qdSj^(m)χ(m(xy))\displaystyle=\sum_{x,y\in\mathbb{F}_{q}^{d}}A(x)A(y)S_{j}(x-y)=\sum_{x,y\in\mathbb{F}_{q}^{d}}A(x)A(y)\sum_{m\in\mathbb{F}_{q}^{d}}\widehat{S_{j}}(m)\chi(m(x-y))
=q2dm𝔽qdSj^(m)|A^(m)|2.\displaystyle=q^{2d}\sum_{m\in\mathbb{F}_{q}^{d}}\widehat{S_{j}}(m)|\widehat{A}(m)|^{2}.

Thus,

N(P)=t𝔽qνA(t)νB(t)=q4dm,m|A^(m)|2|B^(m)|2t𝔽qSt^(m)St^(m).N(P)=\sum_{t\in\mathbb{F}_{q}}\nu_{A}(t)\nu_{B}(t)=q^{4d}\sum_{m,m^{\prime}}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\sum_{t\in\mathbb{F}_{q}}\widehat{S_{t}}(m)\widehat{S_{t}}(m^{\prime}).

Lemma 2.2 tells us that

t𝔽qSt^(m)St^¯(m)=δ0(m)δ0(m)q+1qd+1s𝔽qχ(s(mm)).\sum_{t\in\mathbb{F}_{q}}\widehat{S_{t}}(m)\overline{\widehat{S_{t}}}(m^{\prime})=\frac{\delta_{0}(m)\delta_{0}(m^{\prime})}{q}+\frac{1}{q^{d+1}}\sum_{s\in\mathbb{F}_{q}^{*}}\chi(s(||m||-||m^{\prime}||)).

Therefore,

N(P)\displaystyle N(P) =|A|2|B|2q+q3d1m,m|A^(m)|2|B^(m)|2s0χ(s(mm))\displaystyle=\frac{|A|^{2}|B|^{2}}{q}+q^{3d-1}\sum_{m,m^{\prime}}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\sum_{s\neq 0}\chi(s(||m||-||m^{\prime}||))
=|A|2|B|2qq3d1mm|A^(m)|2|B^(m)|2+q3dm=m|A^(m)|2|B^(m)|2.\displaystyle=\frac{|A|^{2}|B|^{2}}{q}-q^{3d-1}\sum_{||m||\neq||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}+q^{3d}\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}.

This completes the proof. ∎

Theorem 2.8.

For A𝔽p2A\subset\mathbb{F}_{p}^{2}, p3mod4p\equiv 3\mod{4} with |A|p4/3|A|\ll p^{4/3}, and P=A×AP=A\times A, we have

N(P)=#{(x,y,z,w)A4:xy=zw}|A|4p+Cmin{p2/3|A|8/3+p1/4|A|3,|A|10/3},N(P)=\#\{(x,y,z,w)\in A^{4}\colon||x-y||=||z-w||\}\leq\frac{|A|^{4}}{p}+C\min\left\{p^{2/3}|A|^{8/3}+p^{1/4}|A|^{3},|A|^{10/3}\right\},

for some large constant C>0C>0.

Corollary 2.9.

For A𝔽p2A\subset\mathbb{F}_{p}^{2}, p3mod4p\equiv 3\mod{4} with |A|p4/3|A|\ll p^{4/3}, and P=A×AP=A\times A, there exists a large constant CC such that the following hold.

  1. (1)

    If |A|p|A|\leq p, then N(P)C|A|10/3N(P)\leq C|A|^{10/3}.

  2. (2)

    If p|A|p5/4p\leq|A|\leq p^{5/4}, then N(P)p1|A|4+Cp2/3|A|8/3N(P)\leq p^{-1}|A|^{4}+Cp^{2/3}|A|^{8/3}.

  3. (3)

    If p5/4|A|p3/2p^{5/4}\leq|A|\leq p^{3/2}, then N(P)p1|A|4+Cp1/4|A|3N(P)\leq p^{-1}|A|^{4}+Cp^{1/4}|A|^{3}.

Remark 2.10.

We want to add a remark here that [24, Theorem 4] presents a bound on the number of isosceles triangles in AA. This implies the bound for N(P)N(P) as stated in Theorem 2.8 since N(P)N(P) is at most the number of isosceles triangles times the size of AA by the Cauchy-Schwarz inequality.

Theorem 2.11.

Let A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} with |A||B||A|\leq|B| and p3mod4p\equiv 3\mod 4. Define

IA,B:=p6m=m|A^(m)|2|B^(m)|2.I_{A,B}:=p^{6}\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}.

Then the following hold.

  1. (1)

    If |A|p|A|\leq p and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then IA,Bp1/8(p|A|2+|A|10/3)1/2|B|3/2I_{A,B}\ll p^{1/8}(p|A|^{2}+|A|^{10/3})^{1/2}|B|^{3/2}.

  2. (2)

    If |A|p|A|\leq p and p|B|p5/4p\leq|B|\leq p^{5/4}, IA,B(p|A|2+|A|10/3)1/2p1/3|B|4/3I_{A,B}\ll(p|A|^{2}+|A|^{10/3})^{1/2}\cdot p^{1/3}|B|^{4/3}.

  3. (3)

    If |A|p|A|\leq p and |B|p|B|\leq p, then IA,B(p|A|2+|A|10/3)1/2(p|B|2+|B|10/3)1/2I_{A,B}\leq(p|A|^{2}+|A|^{10/3})^{1/2}\cdot(p|B|^{2}+|B|^{10/3})^{1/2}.

  4. (4)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p|B|p5/4p\leq|B|\leq p^{5/4}, then IA,Bp2/3|A|4/3|B|4/3I_{A,B}\ll p^{2/3}|A|^{4/3}|B|^{4/3}.

  5. (5)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then IA,Bp11/24|A|4/3|B|3/2I_{A,B}\ll p^{11/24}|A|^{4/3}|B|^{3/2}.

  6. (6)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then IA,Bp1/4|A|3/2|B|3/2.I_{A,B}\ll p^{1/4}|A|^{3/2}|B|^{3/2}.

  7. (7)

    If |A|p|A|\leq p and |B|>p4/3|B|>p^{4/3}, then IA,Bp1/2(p|A|2+|A|10/3)1/2|B|5/4I_{A,B}\ll p^{1/2}(p|A|^{2}+|A|^{10/3})^{1/2}|B|^{5/4}.

  8. (8)

    If p|A|p5/4p\leq|A|\leq p^{5/4} and |B|>p4/3|B|>p^{4/3}, then IA,Bp5/6|A|4/3|B|5/4I_{A,B}\ll p^{5/6}|A|^{4/3}|B|^{5/4}.

  9. (9)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3} and |B|>p4/3|B|>p^{4/3}, then IA,Bp5/8|A|3/2|B|5/4I_{A,B}\ll p^{5/8}|A|^{3/2}|B|^{5/4}.

To see how good this theorem is, we need to compare with the results obtained by Theorem 2.5 and Theorem 2.6. More precisely, the two theorems give

IA,B{q|A|3/2|B|if|A|qq1/2|A|2|B|ifq12|A|<qq|A||B|if|A|<q12.I_{A,B}\ll\begin{cases}q|A|^{3/2}|B|&~{}~{}\mbox{if}~{}|A|\geq q\\ q^{1/2}|A|^{2}|B|&~{}~{}\mbox{if}~{}q^{\frac{1}{2}}\leq|A|<q\\ q|A||B|&~{}~{}\mbox{if}~{}|A|<q^{\frac{1}{2}}\end{cases}.

The following table gives the information we need.

|A|p12|A|\leq p^{\frac{1}{2}} p12<|A|p34p^{\frac{1}{2}}<|A|\leq p^{\frac{3}{4}} p34<|A|pp^{\frac{3}{4}}<|A|\leq p p<|A|p54p<|A|\leq p^{\frac{5}{4}} p54<|A|p43p^{\frac{5}{4}}<|A|\leq p^{\frac{4}{3}}
|B|p34|B|\leq p^{\frac{3}{4}} == \surd \diagup \diagup \diagup
p34<|B|pp^{\frac{3}{4}}<|B|\leq p \varnothing |A|3>|B|2|A|^{3}>|B|^{2} \surd \diagup \diagup
p<|B|p54p<|B|\leq p^{\frac{5}{4}} \varnothing |A|>(p|B|)13|A|>(p|B|)^{\frac{1}{3}} \surd \surd \diagup
p54<|B|p43p^{\frac{5}{4}}<|B|\leq p^{\frac{4}{3}} \varnothing \varnothing |B|<p34|A|23|B|<p^{\frac{3}{4}}|A|^{\frac{2}{3}} \surd \surd
p43<|B|p^{\frac{4}{3}}<|B| \varnothing \varnothing \varnothing |B|3<p2|A|2|B|^{3}<p^{2}|A|^{2} |B|<p32|B|<p^{\frac{3}{2}}
Table 3. In this table, by ``="``=" we mean the same result, by ``"``\surd" we mean better result, by ``"``\varnothing" we mean weaker result, by ``f(|A|,|B|)"``f(|A|,|B|)" we mean better result under the condition f(|A|,|B|)f(|A|,|B|), and by ``"``\diagup" we mean invalid range corresponding to |B||A||B|\leq|A|.
Proof.

We have

IA,B\displaystyle I_{A,B} =p6t𝔽pm,mSt|A^(m)|2|B^(m)|2=p6t𝔽p(mSt|A^(m)|2)(mSt|B^(m)|2)\displaystyle=p^{6}\sum_{t\in\mathbb{F}_{p}}\sum_{m,m^{\prime}\in S_{t}}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}=p^{6}\sum_{t\in\mathbb{F}_{p}}\left(\sum_{m\in S_{t}}|\widehat{A}(m)|^{2}\right)\cdot\left(\sum_{m^{\prime}\in S_{t}}|\widehat{B}(m^{\prime})|^{2}\right)
p6(t𝔽pm,mSt|A^(m)|2|A^(m)|2)1/2(t𝔽pm,mSt|B^(m)|2|B^(m)|2)1/2\displaystyle\leq p^{6}\left(\sum_{t\in\mathbb{F}_{p}}\sum_{m,m^{\prime}\in S_{t}}|\widehat{A}(m)|^{2}|\widehat{A}(m^{\prime})|^{2}\right)^{1/2}\cdot\left(\sum_{t\in\mathbb{F}_{p}}\sum_{m,m^{\prime}\in S_{t}}|\widehat{B}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\right)^{1/2}
=IA,A1/2IB,B1/2.\displaystyle=I_{A,A}^{1/2}\cdot I_{B,B}^{1/2}.

From Theorem 2.7, one has

IA,A=N(A×A)+p5mm|A^(m)|2|A^(m)|2|A|4p,I_{A,A}=N(A\times A)+p^{5}\sum_{||m||\neq||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{A}(m^{\prime})|^{2}-\frac{|A|^{4}}{p},

and

IB,B=N(B×B)+p5mm|B^(m)|2|B^(m)|2|B|4p.I_{B,B}=N(B\times B)+p^{5}\sum_{||m||\neq||m^{\prime}||}|\widehat{B}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}-\frac{|B|^{4}}{p}.

By the Plancherel, we know that

p5mm|A^(m)|2|A^(m)|2p|A|2,p5mm|B^(m)|2|B^(m)|2p|B|2.p^{5}\sum_{||m||\neq||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{A}(m^{\prime})|^{2}\leq p|A|^{2},~{}p^{5}\sum_{||m||\neq||m^{\prime}||}|\widehat{B}(m)|^{2}|\widehat{B}(m^{\prime})|^{2}\leq p|B|^{2}.

Hence,

  1. (1)

    If |A|p|A|\leq p, then Corollary 2.9 gives IA,Ap|A|2+|A|10/3.I_{A,A}\ll p|A|^{2}+|A|^{10/3}.

  2. (2)

    If p|A|p5/4p\leq|A|\leq p^{5/4}, then Corollary 2.9 gives IA,Ap|A|2+p2/3|A|8/3p2/3|A|8/3.I_{A,A}\ll p|A|^{2}+p^{2/3}|A|^{8/3}\ll p^{2/3}|A|^{8/3}.

  3. (3)

    If p5/4|A|p4/3p^{5/4}\leq|A|\leq p^{4/3}, then Corollary 2.9 gives IA,Ap|A|2+p1/4|A|3p1/4|A|3I_{A,A}\ll p|A|^{2}+p^{1/4}|A|^{3}\ll p^{1/4}|A|^{3}.

The sum IB,BI_{B,B} is estimated in the same way, namely,

  1. (1)

    If |B|p|B|\leq p, then Corollary 2.9 gives IB,Bp|B|2+|B|10/3.I_{B,B}\ll p|B|^{2}+|B|^{10/3}.

  2. (2)

    If p|B|p5/4p\leq|B|\leq p^{5/4}, then Corollary 2.9 gives IB,Bp|B|2+p2/3|B|8/3p2/3|B|8/3.I_{B,B}\ll p|B|^{2}+p^{2/3}|B|^{8/3}\ll p^{2/3}|B|^{8/3}.

  3. (3)

    If p5/4|B|p4/3p^{5/4}\leq|B|\leq p^{4/3}, then Corollary 2.9 gives IB,Bp|B|2+p1/4|B|3p1/4|B|3I_{B,B}\ll p|B|^{2}+p^{1/4}|B|^{3}\ll p^{1/4}|B|^{3}.

When |B|>p4/3|B|>p^{4/3}, we use Theorem 2.6 to get that IB,Bp|B|5/2I_{B,B}\ll p|B|^{5/2}.

Combining these estimates gives us the desired result. ∎

2.3. An extension for general sets

In this subsection, we want to bound the sum

(2.1) (m,m)(0,0),m=m|P^(m,m)|2,\displaystyle\sum_{\begin{subarray}{c}(m,m^{\prime})\neq(0,0),\\ ||m||=||m^{\prime}||\end{subarray}}|\widehat{P}(m,m^{\prime})|^{2},

where PP is a general set in 𝔽q2d\mathbb{F}_{q}^{2d}.

Theorem 2.12.

Let P𝔽qd×𝔽qdP\subset\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d}. We have

q3d1(q1)(m,m)(0,0),m=m|P^(m,m)|2qd|P|.q^{3d-1}(q-1)\sum_{\begin{subarray}{c}(m,m^{\prime})\neq(0,0),\\ ||m||=||m^{\prime}||\end{subarray}}|\widehat{P}(m,m^{\prime})|^{2}\ll q^{d}|P|.

To prove this result, as in the prime field case, we use a double counting argument to bound N(P)N(P). To prove a connection between N(P)N(P) and the sum 2.1, a number of results on exponential sums are needed.

For each a𝔽q{0}a\in\mathbb{F}_{q}\setminus\{0\}, the Gauss sum 𝒢a\mathcal{G}_{a} is defined by

𝒢a=t𝔽q{0}η(t)χ(at).\mathcal{G}_{a}=\sum_{t\in\mathbb{F}_{q}\setminus\{0\}}\eta(t)\chi(at).

The next lemma presents the explicit form the Gauss sum which can be found in [15, Theorem 5.15].

Lemma 2.13.

Let 𝔽q\mathbb{F}_{q} be a finite field of order q=pq=p^{\ell}, where pp is an odd prime and .\ell\in{\mathbb{N}}. We have

𝒢1={(1)1q12ifp1mod4(1)1iq12ifp3mod4.\mathcal{G}_{1}=\left\{\begin{array}[]{ll}{(-1)}^{\ell-1}q^{\frac{1}{2}}&\mbox{if}\quad p\equiv 1\mod 4\\ {(-1)}^{\ell-1}i^{\ell}q^{\frac{1}{2}}&\mbox{if}\quad p\equiv 3\mod 4.\end{array}\right.

We also need the following simple lemma, its proof can be found in [14].

Lemma 2.14.

For β𝔽qk\beta\in\mathbb{F}_{q}^{k} and s𝔽q{0}s\in\mathbb{F}_{q}\setminus\{0\}, we have

α𝔽qkχ(sαα+βα)=ηk(s)𝒢1kχ(β4s).\sum_{\alpha\in\mathbb{F}_{q}^{k}}\chi(s\alpha\cdot\alpha+\beta\cdot\alpha)=\eta^{k}(s)\mathcal{G}_{1}^{k}\chi\left(\frac{\|\beta\|}{-4s}\right).

Let V𝔽q2dV\subset\mathbb{F}_{q}^{2d} be the variety defined by

x12++xd2y12yd2=0.x_{1}^{2}+\cdots+x_{d}^{2}-y_{1}^{2}-\cdots-y_{d}^{2}=0.

The Fourier transform of VV can be computed explicitly in the following lemma.

Lemma 2.15.

Let (m,m)𝔽q2d(m,m^{\prime})\in\mathbb{F}_{q}^{2d}.

  1. (1)

    If (m,m)=(0,0)(m,m^{\prime})=(0,0), then

    V^(m,m)=1q+qd(q1)q2d+1.\widehat{V}(m,m^{\prime})=\frac{1}{q}+\frac{q^{d}(q-1)}{q^{2d+1}}.
  2. (2)

    If (m,m)(0,0)(m,m^{\prime})\neq(0,0) and m=m||m||=||m^{\prime}||, then

    V^(m,m)=qd(q1)q2d+1.\widehat{V}(m,m^{\prime})=\frac{q^{d}(q-1)}{q^{2d+1}}.
  3. (3)

    If (m,m)(0,0)(m,m^{\prime})\neq(0,0) and mm||m||\neq||m^{\prime}||, then

    V^(m,m)=1qd+1.\widehat{V}(m,m^{\prime})=\frac{-1}{q^{d+1}}.
Proof.

By Lemma 2.14, we have

V^(m,m)=1q2dV(x,y)χ(xmym)\displaystyle\widehat{V}(m,m^{\prime})=\frac{1}{q^{2d}}V(x,y)\chi(-x\cdot m-y\cdot m^{\prime})
=1q2d+1x,y𝔽qds𝔽qχ(s(x12++xd2y12yd2))χ(x1m1xdmd)χ(y1m1ydmd)\displaystyle=\frac{1}{q^{2d+1}}\sum_{x,y\in\mathbb{F}_{q}^{d}}\sum_{s\in\mathbb{F}_{q}}\chi(s(x_{1}^{2}+\cdots+x_{d}^{2}-y_{1}^{2}-\cdots-y_{d}^{2}))\chi(-x_{1}m_{1}-\cdots-x_{d}m_{d})\chi(-y_{1}m_{1}^{\prime}-\cdots-y_{d}m_{d}^{\prime})
=1q2d+1x,yχ(xm)χ(ym)+1q2d+1𝒢12dηd(1)s0χ(14s(mm)).\displaystyle=\frac{1}{q^{2d+1}}\sum_{x,y}\chi(-x\cdot m)\chi(-y\cdot m^{\prime})+\frac{1}{q^{2d+1}}\mathcal{G}_{1}^{2d}\eta^{d}(-1)\sum_{s\neq 0}\chi\left(\frac{1}{4s}(||m||-||m^{\prime}||)\right).

By Lemma 2.13, we have 𝒢12dηd(1)=qd\mathcal{G}_{1}^{2d}\eta^{d}(-1)=q^{d}. Thus, the lemma follows from the orthogonality of the character χ\chi. ∎

In the following, we compute N(P)N(P) explicitly which is helpful to estimate the sum 2.1.

Lemma 2.16.

For P𝔽qd×𝔽qdP\subset\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d}, we have

N(P)=(1q+q1qd+1)|P|2+q3d1(q1)(m,m)(0,0),m=m|P^(m,m)|2q3d1mm|P^(m,m)|2.N(P)=\left(\frac{1}{q}+\frac{q-1}{q^{d+1}}\right)|P|^{2}+q^{3d-1}(q-1)\sum_{\begin{subarray}{c}(m,m^{\prime})\neq(0,0),\\ ||m||=||m^{\prime}||\end{subarray}}|\widehat{P}(m,m^{\prime})|^{2}-q^{3d-1}\sum_{||m||\neq||m^{\prime}||}|\widehat{P}(m,m^{\prime})|^{2}.
Proof.

We have

N(P)=x,u,y,vP(x,u)P(y,v)V(xy,uv)\displaystyle N(P)=\sum_{x,u,y,v}P(x,u)P(y,v)V(x-y,u-v)
=x,u,y,vP(x,u)P(y,v)m,mV^(m,m)χ((xy)m+(uv)m)\displaystyle=\sum_{x,u,y,v}P(x,u)P(y,v)\sum_{m,m^{\prime}}\widehat{V}(m,m^{\prime})\chi((x-y)m+(u-v)m^{\prime})
=q4dm,mV^(m,m)|P^(m,m)|2.\displaystyle=q^{4d}\sum_{m,m^{\prime}}\widehat{V}(m,m^{\prime})|\widehat{P}(m,m^{\prime})|^{2}.

By Lemma 2.15, we obtain

N(P)=(1q+q1qd+1)|P|2+q3d1(q1)(m,m)(0,0),m=m|P^(m,m)|2q3d1mm|P^(m,m)|2,N(P)=\left(\frac{1}{q}+\frac{q-1}{q^{d+1}}\right)|P|^{2}+q^{3d-1}(q-1)\sum_{\begin{subarray}{c}(m,m^{\prime})\neq(0,0),\\ ||m||=||m^{\prime}||\end{subarray}}|\widehat{P}(m,m^{\prime})|^{2}-q^{3d-1}\sum_{||m||\neq||m^{\prime}||}|\widehat{P}(m,m^{\prime})|^{2},

and the lemma follows. ∎

We now bound N(P)N(P) by a different argument.

Theorem 2.17.

For P𝔽qd×𝔽qdP\subset\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d}. We have

|N(P)|P|2q|qd|P|.\left|N(P)-\frac{|P|^{2}}{q}\right|\ll q^{d}|P|.
Remark 2.18.

This theorem is sharp in odd dimensions. More precisely, it cannot be improved to the form

N(P)|P|2q+qdϵ|P|,N(P)\ll\frac{|P|^{2}}{q}+q^{d-\epsilon}|P|,

for any ϵ>0\epsilon>0. Since otherwise, it would say that any set A𝔽qdA\subset\mathbb{F}_{q}^{d} with |A|qd+12ϵ2|A|\gg q^{\frac{d+1}{2}-\frac{\epsilon}{2}} has at least q\gg q distances. This is not possible due to examples in [9, 11].

Proof.

To prove this lemma, we start with the following observation that

xu=yv||x-u||=||y-v||

can be written as

2xu+2yv=y+vxu.-2x\cdot u+2y\cdot v=||y||+||v||-||x||-||u||.

We now write N(P)N(P) as follows

N(P)\displaystyle N(P) =1qs𝔽q(x,y)P,(u,v)Pχ(s(2xu+2yvyv+x+u))\displaystyle=\frac{1}{q}\sum_{s\in\mathbb{F}_{q}}\sum_{\begin{subarray}{c}(x,y)\in P,\\ (u,v)\in P\end{subarray}}\chi\left(s(-2x\cdot u+2y\cdot v-||y||-||v||+||x||+||u||)\right)
=|P|2q+1qs0(x,y)P,(u,v)Pχ(s(2xu+2yvyv+x+u))\displaystyle=\frac{|P|^{2}}{q}+\frac{1}{q}\sum_{s\neq 0}\sum_{\begin{subarray}{c}(x,y)\in P,\\ (u,v)\in P\end{subarray}}\chi\left(s(-2x\cdot u+2y\cdot v-||y||-||v||+||x||+||u||)\right)
=|P|2q+1qs0(x,y,xy)P(u,v)Pχ(s((x,y)(2u,2v)yv+x+u))\displaystyle=\frac{|P|^{2}}{q}+\frac{1}{q}\sum_{s\neq 0}\sum_{\begin{subarray}{c}(x,y,||x||-||y||)\in P^{\prime}\\ (u,v)\in P\end{subarray}}\chi(s((x,y)\cdot(-2u,2v)-||y||-||v||+||x||+||u||))
=|P|2q+𝙴𝚛𝚛𝚘𝚛,\displaystyle=\frac{|P|^{2}}{q}+\mathtt{Error},

here P:={(x,y,||x||||y||):(x,y)P}𝔽q2d+1.P^{\prime}:=\{(x,y,||x||-||y||)\colon(x,y)\in P\}\subset\mathbb{F}_{q}^{2d+1}. We now estimate the term 𝙴𝚛𝚛𝚘𝚛\mathtt{Error}.

𝙴𝚛𝚛𝚘𝚛2|P|q2(x,y,t)𝔽q2d+1s,s0(u,v)P,(u,v)Pχ(s(2xu+2yvyv+x+u))\displaystyle\mathtt{Error}^{2}\leq\frac{|P|}{q^{2}}\sum_{(x,y,t)\in\mathbb{F}_{q}^{2d+1}}\sum_{s,s^{\prime}\neq 0}\sum_{\begin{subarray}{c}(u,v)\in P,\\ (u^{\prime},v^{\prime})\in P\end{subarray}}\chi\left(s(-2x\cdot u+2y\cdot v-||y||-||v||+||x||+||u||)\right)
χ(s(2xu2yv+y+vxu))\displaystyle\cdot\chi\left(s^{\prime}(2x\cdot u^{\prime}-2y\cdot v^{\prime}+||y||+||v^{\prime}||-||x||-||u^{\prime}||)\right)
=|P|q2(x,y,t)𝔽q2d+1s,s0(u,v)P,(u,v)Pχ(x(2su+2su))χ(y(2sv2sv))χ(t(ss))\displaystyle=\frac{|P|}{q^{2}}\sum_{(x,y,t)\in\mathbb{F}_{q}^{2d+1}}\sum_{s,s^{\prime}\neq 0}\sum_{\begin{subarray}{c}(u,v)\in P,\\ (u^{\prime},v^{\prime})\in P\end{subarray}}\chi(x\cdot(-2su+2s^{\prime}u^{\prime}))\cdot\chi(y\cdot(2sv-2s^{\prime}v^{\prime}))\cdot\chi(t(s-s^{\prime}))
χ(s(uv)s(uv))\displaystyle\cdot\chi(s(||u||-||v||)-s^{\prime}(||u^{\prime}||-||v^{\prime}||))
|P|2q2d.\displaystyle\leq|P|^{2}q^{2d}.

In other words, we obtain

N(P)|P|2q+qd|P|.N(P)\leq\frac{|P|^{2}}{q}+q^{d}|P|.

This completes the proof. ∎

With Lemma 2.16 and Theorem 2.17 in hand, we are ready to prove Theorem 2.12.

Proof of Theorem 2.12.

Indeed, one has

q3d1(q1)(m,m)(0,0),m=m|P^(m,m)|2=N(P)|P|2qq1qd+1|P|2+q3d1mm|P^(m,m)|2.\displaystyle q^{3d-1}(q-1)\sum_{\begin{subarray}{c}(m,m^{\prime})\neq(0,0),\\ ||m||=||m^{\prime}||\end{subarray}}|\widehat{P}(m,m^{\prime})|^{2}=N(P)-\frac{|P|^{2}}{q}-\frac{q-1}{q^{d+1}}|P|^{2}+q^{3d-1}\sum_{||m||\neq||m^{\prime}||}|\widehat{P}(m,m^{\prime})|^{2}.

By Plancherel theorem, we have

mm|P^(m,m)|2|P|q2d.\sum_{||m||\neq||m^{\prime}||}|\widehat{P}(m,m^{\prime})|^{2}\leq\frac{|P|}{q^{2d}}.

So, the theorem follows directly from Theorem 2.17. ∎

3. Warm-up incidence theorems

In this section, we present direct incidence bounds which can be proved by using the Cauchy-Schwarz inequality and the results on N(P)N(P) from the previous setion.

Theorem 3.1.

Let PP be a set of points in 𝔽qd×𝔽qd\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d} and RR be a set of rigid motions in 𝔽qd\mathbb{F}_{q}^{d}. Then we have

I(P,R)|R|1/2|O(d1)|1/2(|P|2q+Cqd|P|)1/2+|R|.I(P,R)\ll|R|^{1/2}|O(d-1)|^{1/2}\left(\frac{|P|^{2}}{q}+Cq^{d}|P|\right)^{1/2}+|R|.
Proof.

For each rRr\in R, denote I(P,r)I(P,r) by i(r)i(r). Then, it is clear that

(3.1) I(P,R)=rRi(r)|R|1/2(rRi(r)2)1/2.I(P,R)=\sum_{r\in R}i(r)\leq|R|^{1/2}\left(\sum_{r\in R}i(r)^{2}\right)^{1/2}.

We observe that, for each rRr\in R, i(r)2i(r)^{2} counts the number of pairs (a1,b1),(a2,b2)P(a_{1},b_{1}),(a_{2},b_{2})\in P on rr. This infers a1a2=b1b2||a_{1}-a_{2}||=||b_{1}-b_{2}||. Thus, the sum rRi(r)2\sum_{r\in R}i(r)^{2} can be bounded by

|O(d1)|N(P)+I(P,R),|O(d-1)|N(P)+I(P,R),

where we used the fact that the stabilizer of a non-zero element is at most |O(d1)||O(d-1)|, and the term I(P,R)I(P,R) comes from pairs (a1,b1),(a2,b2)P(a_{1},b_{1}),(a_{2},b_{2})\in P with a1=a2a_{1}=a_{2} and b1=b2b_{1}=b_{2}. Therefore,

rRi(r)2|O(d1)|N(P)+I(P,R).\sum_{r\in R}i(r)^{2}\ll|O(d-1)|N(P)+I(P,R).

Using Theorem 2.17, the theorem follows. ∎

If we use the trivial bound N(P)|P|2N(P)\leq|P|^{2}, then the next theorem is obtained.

Theorem 3.2.

Let PP be a set of points in 𝔽qd×𝔽qd\mathbb{F}_{q}^{d}\times\mathbb{F}_{q}^{d} and RR be a set of rigid motions in 𝔽qd\mathbb{F}_{q}^{d}. Then we have

I(P,R)|P||R|1/2|O(d1)|1/2+|R|.I(P,R)\ll|P||R|^{1/2}|O(d-1)|^{1/2}+|R|.

Compared to Theorem 1.14 and Theorem 1.15, these two incidence theorems only give weaker upper bounds and tell us nothing about the lower bounds.

In two dimensions over prime fields, if P=A×BP=A\times B with |A|,|B|p|A|,|B|\leq p, then Corollary 2.9 says that N(P)|A|5/3|B|5/3N(P)\ll|A|^{5/3}|B|^{5/3}. As above, the next theorem is a direct consequence.

Theorem 3.3.

Let P=A×BP=A\times B with A,B𝔽p2A,B\subset\mathbb{F}_{p}^{2} and p3mod4p\equiv 3\mod 4. Assume that |A|,|B|p|A|,|B|\leq p, then we have

I(P,R)|P|5/6|R|1/2+|R|.I(P,R)\ll|P|^{5/6}|R|^{1/2}+|R|.

In particular, if |P|=|R|=N|P|=|R|=N then

I(P,R)N4/3.I(P,R)\ll N^{4/3}.

4. Incidence theorems: proofs

Let us present a framework that will work for most cases.

We have

I(P,R)=(x,y)P,(g,z)R1x=gy+z=1qdm𝔽qd(x,y)P,(g,z)Rχ(m(xgyz))\displaystyle I(P,R)=\sum_{\begin{subarray}{c}(x,y)\in P,\\ (g,z)\in R\end{subarray}}1_{x=gy+z}=\frac{1}{q^{d}}\sum_{m\in\mathbb{F}_{q}^{d}}\sum_{\begin{subarray}{c}(x,y)\in P,\\ (g,z)\in R\end{subarray}}\chi\left(m\cdot(x-gy-z)\right)
=|P||R|qd+1qdm𝔽qd{0}(x,y)P,(g,z)Rχ(m(xgyz))\displaystyle=\frac{|P||R|}{q^{d}}+\frac{1}{q^{d}}\sum_{m\in\mathbb{F}_{q}^{d}\setminus\{0\}}\sum_{\begin{subarray}{c}(x,y)\in P,\\ (g,z)\in R\end{subarray}}\chi(m\cdot(x-gy-z))
=|P||R|qd+qdm0(g,z)RP^(m,gm)χ(mz)=:I+II,\displaystyle=\frac{|P||R|}{q^{d}}+q^{d}\sum_{m\neq 0}\sum_{(g,z)\in R}\widehat{P}(-m,gm)\chi(-mz)=:I+II,

where P^(u,v)=q4d(x,y)Pχ(xuyv)\widehat{P}(u,v)=q^{-4d}\sum_{(x,y)\in P}\chi(-xu-yv). We next bound the second term. By the Cauchy-Schwarz inequality, we have

II\displaystyle II qd|R|1/2((g,z)O(d)×𝔽qdm1,m20P^(m1,gm1)P^(m2,gm2)¯χ(z(m1+m2)))1/2\displaystyle\leq q^{d}|R|^{1/2}\left(\sum_{(g,z)\in O(d)\times\mathbb{F}_{q}^{d}}\sum_{m_{1},m_{2}\neq 0}\widehat{P}(-m_{1},gm_{1})\overline{\widehat{P}(-m_{2},gm_{2})}\chi(z(-m_{1}+m_{2}))\right)^{1/2}
=qd|R|1/2(qdgO(d)m0|P^(m,gm)|2)1/2\displaystyle=q^{d}|R|^{1/2}\left(q^{d}\sum_{g\in O(d)}\sum_{m\neq 0}|\widehat{P}(m,-gm)|^{2}\right)^{1/2}
=q3d2|R|1/2(gO(d)m0|P^(m,gm)|2)1/2.\displaystyle=q^{\frac{3d}{2}}|R|^{1/2}\left(\sum_{g\in O(d)}\sum_{m\neq 0}|\widehat{P}(m,-gm)|^{2}\right)^{1/2}.

We now consider two cases.

Case 11: If PP is a general set in 𝔽q2d\mathbb{F}_{q}^{2d}, then we have

gO(d)m0|P^(m,gm)|2|O(d1)|(m,m)(0,0),m=m|P^(m,m)|2,\sum_{g\in O(d)}\sum_{m\neq 0}|\widehat{P}(m,-gm)|^{2}\leq|O(d-1)|\sum_{\begin{subarray}{c}(m,m^{\prime})\neq(0,0),\\ ||m||=||m^{\prime}||\end{subarray}}|\widehat{P}(m,m^{\prime})|^{2},

where we used the fact that the stabilizer of a non-zero element in 𝔽qd\mathbb{F}_{q}^{d} is at most |O(d1)||O(d-1)|. From here, we apply Theorem 2.12 to obtain Theorem 1.14.

Case 22: If PP is of the structure A×BA\times B, where A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d}, then

P^(m,gm)=A^(m)B^(gm).\widehat{P}(m,-gm)=\widehat{A}(m)\widehat{B}(-gm).

Thus,

gO(d)m0|P^(m,gm)|2=gO(d)m0|A^(m)|2|B^(gm)|2\displaystyle\sum_{g\in O(d)}\sum_{m\neq 0}|\widehat{P}(m,-gm)|^{2}=\sum_{g\in O(d)}\sum_{m\neq 0}|\widehat{A}(m)|^{2}|\widehat{B}(-gm)|^{2}
|O(d1)|m0|A^(m)|2m0,m=m|B^(m)|2\displaystyle\leq|O(d-1)|\sum_{m\neq 0}|\widehat{A}(m)|^{2}\sum_{\begin{subarray}{c}m^{\prime}\neq 0,\\ ||m^{\prime}||=||m||\end{subarray}}|\widehat{B}(m^{\prime})|^{2}
|O(d1)|m=m|A^(m)|2|B^(m)|2,\displaystyle\leq|O(d-1)|\sum_{||m||=||m^{\prime}||}|\widehat{A}(m)|^{2}|\widehat{B}(m^{\prime})|^{2},

where we again used the fact that the stabilizer of a non-zero element in 𝔽qd\mathbb{F}_{q}^{d} is at most |O(d1)||O(d-1)|.

To prove these two statements, we need to bound the sum gO(2),m0|P^(m,gm)|2\sum_{\begin{subarray}{c}g\in O(2),\\ m\neq 0\end{subarray}}|\widehat{P}(m,-gm)|^{2} in a different way. More precisely,

gO(2),m0|P^(m,gm)|2=1p8gO(d),m0x1,y1,x2,y2P(x1,y1)P(x2,y2)χ(m(x1gy1x2+gy2))\displaystyle\sum_{\begin{subarray}{c}g\in O(2),\\ m\neq 0\end{subarray}}|\widehat{P}(m,-gm)|^{2}=\frac{1}{p^{8}}\sum_{\begin{subarray}{c}g\in O(d),\\ m\neq 0\end{subarray}}\sum_{x_{1},y_{1},x_{2},y_{2}}P(x_{1},y_{1})P(x_{2},y_{2})\chi(m(x_{1}-gy_{1}-x_{2}+gy_{2}))
=1p8(p2gO(2)x1,x2,y1,y2P(x1,y1)P(x2,y2)1x1x2=g(y1y2)|O(2)||P|2).\displaystyle=\frac{1}{p^{8}}\left(p^{2}\sum_{g\in O(2)}\sum_{x_{1},x_{2},y_{1},y_{2}}P(x_{1},y_{1})P(x_{2},y_{2})1_{x_{1}-x_{2}=g(y_{1}-y_{2})}-|O(2)||P|^{2}\right).

Moreover,

gO(2)x1,x2,y1,y2P(x1,y1)P(x2,y2)1x1x2=g(y1y2)|O(2)||P|+|N(P)|.\displaystyle\sum_{g\in O(2)}\sum_{x_{1},x_{2},y_{1},y_{2}}P(x_{1},y_{1})P(x_{2},y_{2})1_{x_{1}-x_{2}=g(y_{1}-y_{2})}\leq|O(2)||P|+|N(P)|.

The first approach is equivalent to bound N(P)N(P) by using Theorem 2.7 and Theorem 2.11.

If |A|p|A|\leq p and p|B|p5/4p\leq|B|\leq p^{5/4}, then Theorem 2.11 tells us that

IA,B(p|A|2+|A|10/3)1/2p1/3|B|4/3.I_{A,B}\ll(p|A|^{2}+|A|^{10/3})^{1/2}\cdot p^{1/3}|B|^{4/3}.

As a consequence, one has

N(P)|A|2|B|2p+(p|A|2+|A|10/3)1/2p1/3|B|4/3.N(P)\leq\frac{|A|^{2}|B|^{2}}{p}+(p|A|^{2}+|A|^{10/3})^{1/2}\cdot p^{1/3}|B|^{4/3}.

However, when |A|p|A|\leq p and p|B|p5/4p\leq|B|\leq p^{5/4}, by the Cauchy-Schwarz inequality, a better upper bound can be obtained. Indeed, using Corollary 2.9, we have

N(P)N(A×A)1/2N(B×B)1/2p1/3|A|5/3|B|4/3.N(P)\leq N(A\times A)^{1/2}N(B\times B)^{1/2}\ll p^{1/3}|A|^{5/3}|B|^{4/3}.

Together with the above estimates, we obtain

gO(2),m0|P^(m,gm)|2|P|p5+|P|4/3|A|1/3p17/3.\sum_{\begin{subarray}{c}g\in O(2),\\ m\neq 0\end{subarray}}|\widehat{P}(m,-gm)|^{2}\leq\frac{|P|}{p^{5}}+\frac{|P|^{4/3}|A|^{1/3}}{p^{17/3}}.

This gives

|I(P,R)|P||R|p2|p3|P|1/2|R|1/2(1p5+|P|1/3|A|1/3p17/3)1/2.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{3}|P|^{1/2}|R|^{1/2}\left(\frac{1}{p^{5}}+\frac{|P|^{1/3}|A|^{1/3}}{p^{17/3}}\right)^{1/2}.

Similarly, if |A|p|A|\leq p and |B|p|B|\leq p, we have

N(P)|A|5/3|B|5/3,N(P)\ll|A|^{5/3}|B|^{5/3},

and

gO(2),m0|P^(m,gm)|2\displaystyle\sum_{\begin{subarray}{c}g\in O(2),\\ m\neq 0\end{subarray}}|\widehat{P}(m,-gm)|^{2} |P|p5+|P|5/3p6.\displaystyle\ll\frac{|P|}{p^{5}}+\frac{|P|^{5/3}}{p^{6}}.

Hence,

|I(P,R)|P||R|p2|p3|P|1/2|R|1/2(1p5+|P|2/3p6)1/2.\left|I(P,R)-\frac{|P||R|}{p^{2}}\right|\ll p^{3}|P|^{1/2}|R|^{1/2}\left(\frac{1}{p^{5}}+\frac{|P|^{2/3}}{p^{6}}\right)^{1/2}.

Sharpness of Theorem 1.14 and Theorem 1.15 in odd dimensions:

We first show that Theorem 1.14 is sharp up to a constant factor.

Let XX be an arithmetic progression in 𝔽q\mathbb{F}_{q}, and let v1,,vd12v_{1},\ldots,v_{\frac{d-1}{2}} be (v1)/2(v-1)/2 vectors in 𝔽qd1×{0}\mathbb{F}_{q}^{d-1}\times\{0\} such that vivj=0v_{i}\cdot v_{j}=0 for all 1ij(d1)/21\leq i\leq j\leq(d-1)/2. The existence of such vectors can be found in Lemma 5.1 in [9] when (d=4k+1d=4k+1) or (d=4k+3d=4k+3 with q3mod4q\equiv 3\mod 4). Define

A=B=𝔽qv1++𝔽qvd12+Xed,A=B=\mathbb{F}_{q}\cdot v_{1}+\cdots+\mathbb{F}_{q}\cdot v_{\frac{d-1}{2}}+X\cdot e_{d},

here ed=(0,,0,1)e_{d}=(0,\ldots,0,1). Set P=A×BP=A\times B. The number of quadruples (x,y,u,v)A×A×B×B(x,y,u,v)\in A\times A\times B\times B such that xy=uv||x-y||=||u-v||, is at least a constant times |X|2q2d1|X|^{2}q^{2d-1}, say, |X|2q2d1/2|X|^{2}q^{2d-1}/2. For each (g,z)O(d)×𝔽qd(g,z)\in O(d)\times\mathbb{F}_{q}^{d}, let i(g,z)=#{(u,v)A×B:gu+z=v}i(g,z)=\#\{(u,v)\in A\times B\colon gu+z=v\}. Define 𝒬=(g,z)i(g,z)2\mathcal{Q}=\sum_{(g,z)}i(g,z)^{2}. So, 𝒬|X|2q2d1|O(d1)|/2\mathcal{Q}\geq|X|^{2}q^{2d-1}|O(d-1)|/2.

We call gg 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k}, 0k(d1)/20\leq k\leq(d-1)/2, if the rank of the system

{v1,,v(d1)/2,ed,gv1,,gv(d1)/2}\left\{v_{1},\ldots,v_{(d-1)/2},e_{d},gv_{1},\ldots,gv_{(d-1)/2}\right\}

is dkd-k.

For any pair (g,z)(g,z), where gg is 𝐭𝐲𝐩𝐞𝟎\mathbf{type-0}, the number of (u,v)A×B(u,v)\in A\times B such that gu+z=vgu+z=v is at most |X||X|.

For 0<k(d1)/20<k\leq(d-1)/2, if gg is 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k}, then, assume,

gv1,,gvk𝚂𝚙𝚊𝚗(gvk+1,,gvd12,v1,,vd12,ed).gv_{1},\ldots,gv_{k}\in\mathtt{Span}(gv_{k+1},\ldots,gv_{\frac{d-1}{2}},v_{1},\ldots,v_{\frac{d-1}{2}},e_{d}).

Let N(k)N(k) be the contribution to 𝒬\mathcal{Q} of pairs (g,z)(g,z) such that gg is 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k}. We have N(k)N(k) is at most the number of 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k} ggs times |A|2|A|^{2}. For each kk, to count the number of 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k} ggs, we observe that vi=0||v_{i}||=0, so gvi=0||gv_{i}||=0. The number of elements of norm zero in 𝚂𝚙𝚊𝚗(gvk+1,,gvd12,v1,,vd12,ed)\mathtt{Span}(gv_{k+1},\ldots,gv_{\frac{d-1}{2}},v_{1},\ldots,v_{\frac{d-1}{2}},e_{d}) is at most qdkq^{d-k}. So, the total number of 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k} ggs such that

gv1𝚂𝚙𝚊𝚗(gvk+1,,gvd12,v1,,vd12,ed)gv_{1}\in\mathtt{Span}(gv_{k+1},\ldots,gv_{\frac{d-1}{2}},v_{1},\ldots,v_{\frac{d-1}{2}},e_{d})

is at most qdk|O(d1)|q^{d-k}|O(d-1)|, which is, of course, larger than the number of gg satisfying

gv1,,gvk𝚂𝚙𝚊𝚗(gvk+1,,gvd12,v1,,vd12,ed).gv_{1},\ldots,gv_{k}\in\mathtt{Span}(gv_{k+1},\ldots,gv_{\frac{d-1}{2}},v_{1},\ldots,v_{\frac{d-1}{2}},e_{d}).

Summing over all k1k\geq 1 and the corresponding 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k} ggs, the contribution to 𝒬\mathcal{Q} is at most |X|2qd1qdk|O(d1)||X|2qd|O(d)|qk|X|^{2}q^{d-1}q^{d-k}|O(d-1)|\leq|X|^{2}q^{d}|O(d)|q^{-k}. So, the pairs (g,z)(g,z), where gg is 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k} and k1k\geq 1, contribute at most |X|2qd1|O(d1)|\ll|X|^{2}q^{d-1}|O(d-1)| which is much smaller than 𝒬/2\mathcal{Q}/2. Thus, we can say that the contribution of 𝒬\mathcal{Q} mainly comes from 𝐭𝐲𝐩𝐞𝟎\mathbf{type-0} ggs.

Let RR be the set of pairs (g,z)O(d)×𝔽qd(g,z)\in O(d)\times\mathbb{F}_{q}^{d} such that i(g,z)2i(g,z)\geq 2 and gg is 𝐭𝐲𝐩𝐞𝟎\mathbf{type-0}.

Whenever |X|=cq|X|=cq, 0<c<10<c<1, by a direct computation, Theorem 1.14 shows that

I(P,R)Cqd2d+24|P||R|=Cqd2+d4|X||R|C|X||O(d)|qd,I(P,R)\leq Cq^{\frac{d^{2}-d+2}{4}}\sqrt{|P||R|}=Cq^{\frac{d^{2}+d}{4}}|X|\sqrt{|R|}\leq C|X||O(d)|q^{d},

for some positive constant CC. This gives 𝒬C|X|2|O(d)|qd\mathcal{Q}\leq C|X|^{2}|O(d)|q^{d}. This matches the lower bound of |X|2qd|O(d)|/2|X|^{2}q^{d}|O(d)|/2 up to a constant factor.

We note that this example can also be used to show the sharpness of Theorem 1.15(2) in the same way.

For the sharpness of Theorem 1.15(1), let X𝔽qX\subset\mathbb{F}_{q} with |X|=cq|X|=cq, 0<c<10<c<1. Set

A=Xv1++Xvd12,B=Xv1++Xvd12+Xed,A=X\cdot v_{1}+\cdots+X\cdot v_{\frac{d-1}{2}},~{}B=X\cdot v_{1}+\cdots+X\cdot v_{\frac{d-1}{2}}+X\cdot e_{d},

where ed=(0,,0,1)e_{d}=(0,\ldots,0,1). Since any vector in AgBA-gB is of the form

g(x1v1++xd12vd12)+y1v1++yd12vd12xd+12ged,-g(x_{1}v_{1}+\cdots+x_{\frac{d-1}{2}}v_{\frac{d-1}{2}})+y_{1}v_{1}+\cdots+y_{\frac{d-1}{2}}v_{\frac{d-1}{2}}-x_{\frac{d+1}{2}}ge_{d},

where xi,yiXx_{i},y_{i}\in X, we have |AgB||X|dcdqd|A-gB|\leq|X|^{d}\leq c^{d}q^{d} for all gO(d)g\in O(d). Let RR be the set of (g,z)(g,z) such that zAgBz\in A-gB. Then, we have |R|cdqd|O(d)||R|\leq c^{d}q^{d}|O(d)|. Theorem 1.15(1) gives

I(P,R)Cqd2d4|P||R|Ccdqd2+d2,I(P,R)\leq Cq^{\frac{d^{2}-d}{4}}\sqrt{|P||R|}\leq Cc^{d}q^{\frac{d^{2}+d}{2}},

for some positive constant CC.

On the other hand, by the definitions of AA, BB, and RR, we have

I(P,R)=|O(d)||P|=cdqd|O(d)|=cdqd2+d2.I(P,R)=|O(d)||P|=c^{d}q^{d}|O(d)|=c^{d}q^{\frac{d^{2}+d}{2}}.

This matches the incidence bound up to a constant factor.

5. Intersection pattern I: proofs

In this section, we prove Theorem 1.4, Theorem 1.5, and Theorem 1.6.

Proof of Theorem 1.4.

Set

E1\displaystyle E_{1} ={gO(d):#{z𝔽qd:|A(g(B)+z)||A||B|2qd}cqd}\displaystyle=\left\{g\in O(d)\colon\#\{z\in\mathbb{F}_{q}^{d}\colon|A\cap(g(B)+z)|\leq\frac{|A||B|}{2q^{d}}\}\geq cq^{d}\right\}
E2\displaystyle E_{2} ={gO(d):#{z𝔽qd:|A(g(B)+z)|3|A||B|2qd}cqd}\displaystyle=\left\{g\in O(d)\colon\#\{z\in\mathbb{F}_{q}^{d}\colon|A\cap(g(B)+z)|\geq\frac{3|A||B|}{2q^{d}}\}\geq cq^{d}\right\}

for some c(0,1)c\in(0,1).

We first show that |E1||O(d1)|q2dc|A||B||E_{1}|\ll\frac{|O(d-1)|q^{2d}}{c|A||B|}. Indeed, let R1R_{1} be the set of pairs (g,z)(g,z) with gE1g\in E_{1} and |A(g(B)+z)||A||B|/2qd|A\cap(g(B)+z)|\leq|A||B|/2q^{d}. It is clear that I(A×B,R1)|A||B||R1|2qdI(A\times B,R_{1})\leq\frac{|A||B||R_{1}|}{2q^{d}}. On the other hand, Theorem 1.14 also tells us that

I(A×B,R1)|A||B||R1|qdC|O(d1)|1/2qd/2|A||B||R1|,I(A\times B,R_{1})\geq\frac{|A||B||R_{1}|}{q^{d}}-C|O(d-1)|^{1/2}q^{d/2}\sqrt{|A||B||R_{1}|},

for some positive constant CC. Thus, we have

|R1|4C2|O(d1)|q3d|A||B|.|R_{1}|\leq\frac{4C^{2}|O(d-1)|q^{3d}}{|A||B|}.

Together this with |R1|c|E1|qd|R_{1}|\geq c|E_{1}|q^{d} implies the desired conclusion.

Similarly, for E2E_{2}, let R2R_{2} be the set of pairs (g,z)(g,z) with gE2g\in E_{2} and |A(g(B)+z)|3|A||B|/2qd|A\cap(g(B)+z)|\geq 3|A||B|/2q^{d}. Then, I(A×B,R2)3|A||B||R2|2qdI(A\times B,R_{2})\geq\frac{3|A||B||R_{2}|}{2q^{d}}. By Theorem 1.14 again, we obtain

I(A×B,R2)|A||B||R2|qd+C|O(d1)|1/2qd/2|A||B||R2|,I(A\times B,R_{2})\leq\frac{|A||B||R_{2}|}{q^{d}}+C|O(d-1)|^{1/2}q^{d/2}\sqrt{|A||B||R_{2}|},

and thus

|R2|4C2|O(d1)|q3d|A||B|.|R_{2}|\leq\frac{4C^{2}|O(d-1)|q^{3d}}{|A||B|}.

The fact |R2|c|E2|qd|R_{2}|\geq c|E_{2}|q^{d} implies our desired result |E2||O(d1)|q2dc|A||B||E_{2}|\ll\frac{|O(d-1)|q^{2d}}{c|A||B|}.

Next, note that for any gO(d)(E1E2)g\in O(d)\setminus(E_{1}\cup E_{2}), by setting c=1/4c=1/4, we have

#{z𝔽qd:|A(g(B)+z)||A||B|2qd}34qd\displaystyle\#\{z\in\mathbb{F}_{q}^{d}\colon|A\cap(g(B)+z)|\geq\frac{|A||B|}{2q^{d}}\}\geq\frac{3}{4}q^{d}
#{z𝔽qd:|A(g(B)+z)|3|A||B|2qd}34qd,\displaystyle\#\{z\in\mathbb{F}_{q}^{d}\colon|A\cap(g(B)+z)|\leq\frac{3|A||B|}{2q^{d}}\}\geq\frac{3}{4}q^{d},

implying that there at least qd/2\geq q^{d}/2 elements zz satisfying

|A||B|2qd#{z𝔽qd:|A(g(B)+z)|}3|A||B|2qd.\frac{|A||B|}{2q^{d}}\leq\#\{z\in\mathbb{F}_{q}^{d}\colon|A\cap(g(B)+z)|\}\leq\frac{3|A||B|}{2q^{d}}.

Proof of Theorem 1.5.

We consider the case when |A|<qd12|A|<q^{\frac{d-1}{2}}, since other cases can be treated in the same way. We use the same notations as in Theorem 1.4. By Theorem 1.15, there exists C>0C>0 such that

I(A×B,R1)|A||B||R1|qdCq(d2d)/4|A||B||R1|,I(A\times B,R_{1})\geq\frac{|A||B||R_{1}|}{q^{d}}-Cq^{(d^{2}-d)/4}\sqrt{|A||B||R_{1}|},

and

I(A×B,R2)|A||B||R2|qd+Cq(d2d)/4|A||B||R2|.I(A\times B,R_{2})\leq\frac{|A||B||R_{2}|}{q^{d}}+Cq^{(d^{2}-d)/4}\sqrt{|A||B||R_{2}|}.

This, together with |R1|c|E1|qd|R_{1}|\geq c|E_{1}|q^{d} and |R2|c|E2|qd|R_{2}|\geq c|E_{2}|q^{d}, implies that

|E1|,|E2|q(d2+d)/2|A||B|.|E_{1}|,|E_{2}|\ll\frac{q^{(d^{2}+d)/2}}{|A||B|}.

As similar to the proof of Theorem 1.4, the theorem follows. ∎

Proof of Theorem 1.6.

We use the same notations as in Theorem 1.4 for d=2d=2. By Theorem 1.16, there exists C>0C>0 such that

I(A×B,R1)|A||B||R1|q2Cq1/2|A||B||R1||A|1/4,I(A\times B,R_{1})\geq\frac{|A||B||R_{1}|}{q^{2}}-Cq^{1/2}\sqrt{|A||B||R_{1}|}|A|^{1/4},

and

I(A×B,R2)|A||B||R2|q2+Cq1/2|A||B||R2||A|1/4.I(A\times B,R_{2})\leq\frac{|A||B||R_{2}|}{q^{2}}+Cq^{1/2}\sqrt{|A||B||R_{2}}||A|^{1/4}.

This, together with |R1|c|E1|q2|R_{1}|\geq c|E_{1}|q^{2} and |R2|c|E2|q2|R_{2}|\geq c|E_{2}|q^{2}, gives that

|E1|,|E2|q3|A|1/2|B|.|E_{1}|,|E_{2}|\ll\frac{q^{3}}{|A|^{1/2}|B|}.

As similar to the proof of Theorem 1.4, the theorem follows. ∎

Using Theorem 1.18 and Theorem 1.19 respectively, the proofs of Theorem 1.8 and Theorem 1.9 can be obtained by the same way.

Sharpness of Theorem 1.4 and Theorem 1.5:

The constructions we present here are similar to those in the previous section. For the reader’s convenience, we reproduce the details here.

It follows from the proof of Theorem 1.4 that for any 0<c<10<c<1, there exists C=C(c)C=C(c) such that if |A||B|Cqd+1|A||B|\geq Cq^{d+1}, then there are at least (1c)|O(d)|qd(1-c)|O(d)|q^{d} pairs (g,z)O(d)×𝔽qd(g,z)\in O(d)\times\mathbb{F}_{q}^{d} such that

(5.1) |A||B|2qd|A(g(B)+z)|3|A||B|2qd.\frac{|A||B|}{2q^{d}}\leq|A\cap(g(B)+z)|\leq\frac{3|A||B|}{2q^{d}}.

We now show that this result is sharp in the sense that for 0<c<10<c<1 small enough, say, 8c<1/9(1c)8c<1/9(1-c), there exist A,B𝔽qdA,B\subset\mathbb{F}_{q}^{d} with |A|=|B|=|X|qd12|A|=|B|=|X|q^{\frac{d-1}{2}}, cq<|X|<1/9(1c)qcq<|X|<1/9(1-c)q, such that the number of pairs (g,z)O(d)×𝔽qd(g,z)\in O(d)\times\mathbb{F}_{q}^{d} satisfying 5.1 is at most (1c)|O(d)|qd(1-c)|O(d)|q^{d}.

To be precise, let XX be an arithmetic progression in 𝔽q\mathbb{F}_{q}, and let v1,,vd12v_{1},\ldots,v_{\frac{d-1}{2}} be (v1)/2(v-1)/2 vectors in 𝔽qd1×{0}\mathbb{F}_{q}^{d-1}\times\{0\} such that vivj=0v_{i}\cdot v_{j}=0 for all 1ij(d1)/21\leq i\leq j\leq(d-1)/2. The existence of such vectors can be found in Lemma 5.1 in [9] when (d=4k+1d=4k+1) or (d=4k+3d=4k+3 with q3mod4q\equiv 3\mod 4). Define

A=B=𝔽qv1++𝔽qvd12+Xed,A=B=\mathbb{F}_{q}\cdot v_{1}+\cdots+\mathbb{F}_{q}\cdot v_{\frac{d-1}{2}}+X\cdot e_{d},

here ed=(0,,0,1)e_{d}=(0,\ldots,0,1).

We first note that the distance between two points in AA or BB is of the form (xx)2(x-x^{\prime})^{2}. By a direct computation and the fact that XX is an arithmetic progression, the number of quadruples (x,y,u,v)A×A×A×A(x,y,u,v)\in A\times A\times A\times A such that xy=uv||x-y||=||u-v||, is at least a constant times |X|3q2d2|X|^{3}q^{2d-2}, say, |X|3q2d2/2|X|^{3}q^{2d-2}/2. For each (g,z)O(d)×𝔽qd(g,z)\in O(d)\times\mathbb{F}_{q}^{d}, let i(g,z)=#{(u,v)A×B:gu+z=v}i(g,z)=\#\{(u,v)\in A\times B\colon gu+z=v\}. Define 𝒬=(g,z)i(g,z)2\mathcal{Q}=\sum_{(g,z)}i(g,z)^{2}. So, 𝒬|X|3q2d2|O(d1)|/2\mathcal{Q}\geq|X|^{3}q^{2d-2}|O(d-1)|/2.

We note that |A|=|B|=|X|qd12|A|=|B|=|X|q^{\frac{d-1}{2}}. If there were at least (1c)|O(d)|qd(1-c)|O(d)|q^{d} pairs (g,z)O(d)×𝔽qd(g,z)\in O(d)\times\mathbb{F}_{q}^{d} satisfying 5.1, then we would bound 𝒬\mathcal{Q} in a different way, which leads to a bound that much smaller than |X|3|O(d1)|q2d1|X|^{3}|O(d-1)|q^{2d-1}, so we have a contradiction.

Choose (1c)|O(d)|qd(1-c)|O(d)|q^{d} pairs (g,z)(g,z) satisfying 5.1. The contribution of these pairs is at most 9(1c)4|O(d)|qd|X|4q2\frac{9(1-c)}{4}|O(d)|q^{d}\frac{|X|^{4}}{q^{2}} to 𝒬\mathcal{Q}.

The number of remaining pairs (g,z)(g,z) is at most c|O(d)|qdc|O(d)|q^{d}. We now compute the contribution of these pairs to 𝒬\mathcal{Q}. As before, we call gg 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k}, 0k(d1)/20\leq k\leq(d-1)/2, if the rank of the system {v1,,v(d1)/2,ed,gv1,,gv(d1)/2}\{v_{1},\ldots,v_{(d-1)/2},e_{d},gv_{1},\ldots,gv_{(d-1)/2}\} is dkd-k.

For any pair (g,z)(g,z), where gg is 𝐭𝐲𝐩𝐞𝟎\mathbf{type-0}, the number of (u,v)A×B(u,v)\in A\times B such that gu+z=vgu+z=v is at most |X||X|. Thus, the contribution of pairs with 𝐭𝐲𝐩𝐞𝟎\mathbf{type-0} ggs is at most c|O(d)|qd|X|2c|O(d)|q^{d}|X|^{2}.

As before, the contribution to 𝒬\mathcal{Q} of 𝐭𝐲𝐩𝐞𝐤\mathbf{type-k} ggs, with k1k\geq 1, is at most |X|2qd1qdk|O(d1)||X|2qd|O(d)|qk|X|^{2}q^{d-1}q^{d-k}|O(d-1)|\leq|X|^{2}q^{d}|O(d)|q^{-k}. In other words, we have

𝒬9(1c)4|O(d)|qd|X|4q2+c|O(d)|qd|X|2+k=1d12|X|2|O(d)|qd1qk\displaystyle\mathcal{Q}\leq\frac{9(1-c)}{4}|O(d)|q^{d}\frac{|X|^{4}}{q^{2}}+c|O(d)|q^{d}|X|^{2}+\sum_{k=1}^{\frac{d-1}{2}}|X|^{2}|O(d)|q^{d}\frac{1}{q^{k}}
=9(1c)4|O(d)|qd|X|4q2+2c|O(d)|qd|X|2,\displaystyle=\frac{9(1-c)}{4}|O(d)|q^{d}\frac{|X|^{4}}{q^{2}}+2c|O(d)|q^{d}|X|^{2},

when qq is large enough. By choosing cc small enough, we see that 𝒬<|X|3q2d2|O(d1)|/2\mathcal{Q}<|X|^{3}q^{2d-2}|O(d-1)|/2, a contradiction.

The second statement of Theorem 1.5 is valid in the range |B|qd+12|B|\gg q^{\frac{d+1}{2}}. This is also sharp in odd dimensions by the above construction, since we can choose |A|=|B|<qd+12|A|=|B|<q^{\frac{d+1}{2}} and the conclusion fails.

The first statement of Theorem 1.5 is valid in the range |A||B|qd|A||B|\gg q^{d}. To see its sharpness, we construct two sets AA and BB with |A|=cd12qd12|A|=c^{\frac{d-1}{2}}q^{\frac{d-1}{2}}, |B|=cd+12qd+12|B|=c^{\frac{d+1}{2}}q^{\frac{d+1}{2}}, and the number of zz in 𝔽qd\mathbb{F}_{q}^{d} such that A(gB+z)A\cap(gB+z)\neq\emptyset is at most |AgB|cdqd|A-gB|\leq c^{d}q^{d} for any gO(d)g\in O(d). Let v1,,vd12v_{1},\ldots,v_{\frac{d-1}{2}} are linearly independent vectors in 𝔽qd1×{0}\mathbb{F}_{q}^{d-1}\times\{0\}. Let X𝔽qX\subset\mathbb{F}_{q} with |X|=cq|X|=cq. Set

A=Xv1++Xvd12,B=Xv1++Xvd12+Xed,A=X\cdot v_{1}+\cdots+X\cdot v_{\frac{d-1}{2}},~{}B=X\cdot v_{1}+\cdots+X\cdot v_{\frac{d-1}{2}}+X\cdot e_{d},

where ed=(0,,0,1)e_{d}=(0,\ldots,0,1). Since any vector in AgBA-gB is of the form

g(x1v1++xd12vd12)+y1v1++yd12vd12xd+12ged,-g(x_{1}v_{1}+\cdots+x_{\frac{d-1}{2}}v_{\frac{d-1}{2}})+y_{1}v_{1}+\cdots+y_{\frac{d-1}{2}}v_{\frac{d-1}{2}}-x_{\frac{d+1}{2}}ge_{d},

where xi,yiXx_{i},y_{i}\in X, we have |AgB||X|dcdqd,|A-gB|\leq|X|^{d}\leq c^{d}q^{d}, for all gO(d)g\in O(d).

6. Intersection pattern II: proofs

In this section, we prove Theorem 1.12.

Proof of Theorem 1.12.

Let EE be the set of gg in O(d)O(d) such that |Sg(P)|<qd/2|S_{g}(P)|<q^{d}/2 and R={(g,Sg(P)):gE}R=\{(g,S_{g}(P))\colon g\in E\}. By Theorem 1.14, we first observe that

I(P,R)|P||R|qd+|O(d1)|1/2qd/2|P|1/2|R|1/2.I(P,R)\leq\frac{|P||R|}{q^{d}}+|O(d-1)|^{1/2}q^{d/2}|P|^{1/2}|R|^{1/2}.

Note that |R|<|E|qd/2|R|<|E|q^{d}/2 and I(P,R)=|P||E|I(P,R)=|P||E|. This infers

|P||E|qd|O(d1)|1/2|P|1/2|E|1/2.|P||E|\leq q^{d}|O(d-1)|^{1/2}|P|^{1/2}|E|^{1/2}.

So,

|E|q2d|O(d1)||P|,|E|\ll\frac{q^{2d}|O(d-1)|}{|P|},

as desired. ∎

7. Growth estimates under orthogonal matrices: proofs

Proof of Theorem 1.21.

Set P=A×BP=A\times B. Let λ=|B|1+ϵ\lambda=|B|^{1+\epsilon}. Define

E={gO(d):|AgB|λ}.E=\{g\in O(d)\colon|A-gB|\leq\lambda\}.

Set R={(g,z):zAgB,gE}R=\{(g,z)\colon z\in A-gB,g\in E\}. We observe that I(P,R)=|P||E|I(P,R)=|P||E|. Applying Theorem 1.14, one has a constant C>0C>0 such that

|P||E|=I(P,R)|P||R|qd+C|O(d1)|qd/2|P|1/2|R|1/2.|P||E|=I(P,R)\leq\frac{|P||R|}{q^{d}}+C\sqrt{|O(d-1)|}q^{d/2}|P|^{1/2}|R|^{1/2}.

Using the fact that |R|λ|E||R|\leq\lambda|E| with λ<qd/2\lambda<q^{d}/2, we have

|P||E|2C|O(d1)|qd/2|P|1/2|R|1/2.\frac{|P||E|}{2}\leq C\sqrt{|O(d-1)|}q^{d/2}|P|^{1/2}|R|^{1/2}.

This implies

|E||O(d1)|λqd|A||B|.|E|\ll\frac{|O(d-1)|\lambda q^{d}}{|A||B|}.

This completes the proof. ∎

Proof of Theorem 1.22.

We use the same notations as in Theorem 1.21, and assume that |A|<qd12|A|<q^{\frac{d-1}{2}}, since the other case can be proved similarly. By Theorem 1.15, one has a constant C>0C>0 such that

|P||E|=I(P,R)|P||R|qd+Cq(d2d)/4|P|1/2|R|1/2.|P||E|=I(P,R)\leq\frac{|P||R|}{q^{d}}+Cq^{(d^{2}-d)/4}|P|^{1/2}|R|^{1/2}.

Using the fact that |R|λ|E||R|\leq\lambda|E| with λ<qd/2\lambda<q^{d}/2, we have

|P||E|2Cλq(d2d)/4.\frac{\sqrt{|P||E|}}{2}\leq C\sqrt{\lambda}q^{(d^{2}-d)/4}.

This implies

|E|λq(d2d)/2|A||B|,|E|\ll\frac{\lambda q^{(d^{2}-d)/2}}{|A||B|},

as desired. ∎

Proof of Theorem 1.23.

We use the same notations as in Theorem 1.21 for d=2d=2. Applying Theorem 1.16, there exists a constant C>0C>0 such that

|P||E|=I(P,R)|P||R|q2+Cq1/2|P|1/2|R|1/2|A|1/4.|P||E|=I(P,R)\leq\frac{|P||R|}{q^{2}}+Cq^{1/2}|P|^{1/2}|R|^{1/2}|A|^{1/4}.

Using the fact that |R|λ|E||R|\leq\lambda|E| with λ<qd/2\lambda<q^{d}/2, we have

|P||E|2Cq1/2λ1/2|A|1/4.\frac{\sqrt{|P||E|}}{2}\leq Cq^{1/2}\lambda^{1/2}|A|^{1/4}.

This implies

|E|λq|A|1/2|B|,|E|\ll\frac{\lambda q}{|A|^{1/2}|B|},

as desired. ∎

Theorem 1.24 (1) and (2), Theorem 1.25, and Theorem 1.26 are proved by the same approach using Theorem 1.17, Theorem 1.18, and Theorem 1.19, respectively.

For Theorem 1.24 (3), the same proof implies that if |A|p|A|\leq p and |B|p|B|\leq p, then |E|p|B|ϵ+|B|ϵ|P|2/3|A||E|\ll\frac{p|B|^{\epsilon}+|B|^{\epsilon}|P|^{2/3}}{|A|}. However, if we use Theorem 3.3, then we are able to get rid of the term p|B|ϵp|B|^{\epsilon}.

8. Intersection pattern III: proofs

In this section, we prove Theorem 1.30. Let us start by introducing the necessary theorem.

Theorem 8.1.

[25, Theorem 1.6] Let 𝒦\mathcal{K} be the set of kk-planes and let \mathcal{H} be the set of hh-planes in 𝔽qd\mathbb{F}_{q}^{d} with h2k+1h\geq 2k+1. Then the number of incidences between 𝒦\mathcal{K} and \mathcal{H} satisfies

|I(𝒦,)|𝒦|||q(dh)(k+1)|ck(1+o(1))q(dh)h+k(2hdk+1)2|𝒦|||,\left|I(\mathcal{K},\mathcal{H})-\frac{|\mathcal{K}||\mathcal{H}|}{q^{(d-h)(k+1)}}\right|\leq\sqrt{c_{k}(1+o(1))}q^{\frac{(d-h)h+k(2h-d-k+1)}{2}}\sqrt{|\mathcal{K}||\mathcal{H}}|,

where ck=(2k+1)(kk/2)c_{k}=(2k+1)\binom{k}{\lfloor k/2\rfloor}.

See 1.30

Proof of Theorem 1.30.

We proceed as follows.

  1. (1)

    By applying Theorem 1.27(2), we have

    #{WG(d,m):|πW(E)|δqm}2δ1δqm(dm+1)s,\#\{W\in G(d,m)\colon|\pi_{W}(E)|\leq\delta q^{m}\}\leq 2\frac{\delta}{1-\delta}q^{m(d-m+1)-s},

    for any E𝔽qdE\subset\mathbb{F}_{q}^{d} with |E|=qs|E|=q^{s} and m<s<dm<s<d. Set δ=34\delta=\frac{3}{4}. Then, the number of mm-dimensional subspaces WG(d,m)W\in G(d,m) such that |πW(A)|34qm|\pi_{W}(A)|\leq\frac{3}{4}q^{m} is at most 6q(dm+1)ms6q^{(d-m+1)m-s}, where |A|=qs|A|=q^{s} for some s>ms>m. The same happens for the set BB. This implies that there are at most 12q(dm+1)ms12q^{(d-m+1)m-s} mm-dimensional subspaces WG(d,m)W\in G(d,m) such that |πW(A)|34qm|\pi_{W}(A)|\leq\frac{3}{4}q^{m} or |πW(B)|34qm|\pi_{W}(B)|\leq\frac{3}{4}q^{m}, where qs=min{|A|,|B|}q^{s}=\min\{|A|,|B|\}. That is, there are at least (1+o(1))qm(dm)(112qms)(1+o(1))q^{m(d-m)}(1-12q^{m-s}) mm-dimensional subspaces WG(d,m)W\in G(d,m) such that |πW(A)|>34qm|\pi_{W}(A)|>\frac{3}{4}q^{m} and |πW(B)|>34qm|\pi_{W}(B)|>\frac{3}{4}q^{m}. We note that

    |πW(A)πW(B)|\displaystyle|\pi_{W}(A)\cap\pi_{W}(B)| =|πW(A)|+|πW(B)||πW(A)πW(B)|\displaystyle=|\pi_{W}(A)|+|\pi_{W}(B)|-|\pi_{W}(A)\cup\pi_{W}(B)|
    >34qm+34qm|πW(A)πW(B)|\displaystyle>\frac{3}{4}q^{m}+\frac{3}{4}q^{m}-|\pi_{W}(A)\cup\pi_{W}(B)|
    12qm.\displaystyle\geq\frac{1}{2}q^{m}.

    The second inequality is from |πW(A)πW(B)|qm|\pi_{W}(A)\cup\pi_{W}(B)|\leq q^{m} since the dimension of WW is mm. Therefore, there are at least (1+o(1))qm(dm)(112qms)(1+o(1))q^{m(d-m)}(1-12q^{m-s}) mm-dimensional subspaces WG(d,m)W\in G(d,m) such that

    |πW(A)πW(B)|qm.|\pi_{W}(A)\cap\pi_{W}(B)|\gg q^{m}.

    This completes the proof of Theorem 1.30(1).

  2. (2)

    To prove the second part, we need to count the number of WG(d,m)W\in G(d,m) such that

    |πW(A)πW(B)|qm,|\pi_{W}(A)\cap\pi_{W}(B)|\neq q^{m},

    if |A|,|B|>q2m|A|,|B|>q^{2m}. To do this, we first count the number of WG(d,m)W\in G(d,m) such that |πW(A)|qm|\pi_{W}(A)|\neq q^{m}. Let X:={WG(d,m):|πW(A)|qm}X:=\{W\in G(d,m)\colon|\pi_{W}(A)|\neq q^{m}\} and Y:={WG(d,m):|πW(B)|qm}Y:=\{W\in G(d,m)\colon|\pi_{W}(B)|\neq q^{m}\}. By Corollary 1.28(3), we have that

    |X|=#{WG(d,m):|πW(A)|qm}4qm(dm+2)s,|X|=\#\{W\in G(d,m)\colon|\pi_{W}(A)|\neq q^{m}\}\leq 4q^{m(d-m+2)-s},

    for |A|=qs|A|=q^{s} with s>2ms>2m. Similarly, |Y|4q(dm)(m+2)t|Y|\leq 4q^{(d-m)(m+2)-t} for |B|=qt|B|=q^{t} with t>2mt>2m. Thus, it suffices to show that |XY|=#{WG(d,m):|πW(A)πW(B)|qm}|X\cup Y|=\#\{W\in G(d,m)\colon|\pi_{W}(A)\cap\pi_{W}(B)|\neq q^{m}\} is smaller than the total number of mm-subspaces. Since s,t>2ms,t>2m, we have

    |X|4q(dm)(m+2)s=o(qm(dm))and|Y|4q(dm)(m+2)t=o(qm(dm)),|X|\leq 4q^{(d-m)(m+2)-s}=o(q^{m(d-m)})\quad\text{and}\quad|Y|\leq 4q^{(d-m)(m+2)-t}=o(q^{m(d-m)}),

    which gives our desired result.

  3. (3)

    Lastly, we prove the third part. By Corollary 1.28(1) and Corollary 1.28(2), we have

    #{W:|πW(A)|qm/10}12|A|qm(dm+1)and#{W:|πW(B)||B|/10}12|B|qm(dm1).\#\{W\colon|\pi_{W}(A)|\leq q^{m}/10\}\leq\frac{1}{2|A|}q^{m(d-m+1)}\quad\text{and}\quad\#\{W\colon|\pi_{W}(B)|\leq|B|/10\}\leq\frac{1}{2}|B|q^{m(d-m-1)}.

    Since |A||B|>2q2m|A||B|>2q^{2m}, we also have that

    12|A|qm(dm+1)14|B|qm(dm1).\frac{1}{2|A|}q^{m(d-m+1)}\leq\frac{1}{4}|B|q^{m(d-m-1)}.

    Thus, this, together with |B|<qm/2|B|<q^{m}/2, implies that the number of mm-dimensional subspaces WW such that

    |πW(A)|>qm/10,and|πW(B)|>|B|/10|\pi_{W}(A)|>q^{m}/10,\quad\text{and}\quad|\pi_{W}(B)|>|B|/10

    is at least (1+o(1))qm(dm)|B|qm(dm1)/4|B|qm(dm1)/2>(1+o(1))qm(dm)/2(1+o(1))q^{m(d-m)}-|B|q^{m(d-m-1)}/4-|B|q^{m(d-m-1)}/2>(1+o(1))q^{m(d-m)}/2. From now on, we omit the term 1+o(1)1+o(1) and consider that qq is sufficiently large. We denote the set of these mm-dimensional subspaces WW by DD. Then we have |D|>qm(dm)/2|D|>q^{m(d-m)}/2.

    Let DDD^{\prime}\subset D be the set of WDW\in D such that the number of (dm)(d-m)-dimensional affine planes in πW(B)\pi_{W}(B) such that each contains at least |A|/(100qm)|A|/(100q^{m}) points from AA is at least |B|/100|B|/100. If |D||D|/2|D^{\prime}|\geq|D|/2, then we are done.

    Otherwise, by abuse of notation, we can assume that for any WDW\in D, there are at least |B|/10|B|/100=9|B|/100>|B|/20|B|/10-|B|/100=9|B|/100>|B|/20 (dm)(d-m)-dimensional affine planes in πW(B)\pi_{W}(B) such that each contains at most |A|/(100qm)|A|/(100q^{m}) points from AA. For each WDW\in D, let VWV_{W} be the subset of πW(B)\pi_{W}(B) such that each contains at most |A|/(100qm)|A|/(100q^{m}) points from AA, and V=WDVWV=\cup_{W\in D}V_{W}. It is clear that |V||D||VW|>qm(dm)|B|/40|V|\geq|D||V_{W}|>q^{m(d-m)}|B|/40.

    Using the incidence bound in Theorem 8.1, note that

    |I(V,A)|V||A|qm|qm(dm)2|V||A|.\left|I(V,A)-\frac{|V||A|}{q^{m}}\right|\leq q^{\frac{m(d-m)}{2}}\sqrt{|V||A|}.

    Since |V||A|4q(dm)m+2m|V||A|\geq 4q^{(d-m)m+2m}, then one has

    I(V,A)|V||A|2qm=qm(dm1)|A||B|80.I(V,A)\geq\frac{|V||A|}{2q^{m}}=q^{m(d-m-1)}\frac{|A||B|}{80}.

    This means that there are at least qm(dm)\gg q^{m(d-m)} subspaces WDW\in D such that

    I(VW,A)|A||B|40qm,I(V_{W},A)\geq\frac{|A||B|}{40q^{m}},

    since |D||D| is at most qm(dm)q^{m(d-m)} which is the total number of all mm-subspaces.

    For each such WW, let MM be the number of mm-dimensional affine planes in VWV_{W} such that each contains at least one point from AA. Note that

    M|A|100qmI(VW,A).\frac{M|A|}{100q^{m}}\geq I(V_{W},A).

    This implies that M5|B|2M\geq\frac{5|B|}{2}. Since |πW(A)πW(B)|M|\pi_{W}(A)\cap\pi_{W}(B)|\geq M, we have

    |πW(A)πW(B)||B|.|\pi_{W}(A)\cap\pi_{W}(B)|\gg|B|.

    This completes the proof.

As mentioned in the introduction, the following lemma is on the sharpness of Theorem 1.30(3). This construction is similar to Example 4.1 in [21] in the continuous.

Lemma 8.2.

Assume q=p2q=p^{2}. For any 0<c<10<c<1, there exist sets A,B𝔽q2A,B\subset\mathbb{F}_{q}^{2} with |A||B|=cq2|A||B|=cq^{2} and LG(2,1)L\subset G(2,1) with |L|(1c)q|L|\geq(1-c)q such that

πW(A)πW(B)=for anyWL.\pi_{W}(A)\cap\pi_{W}(B)=\emptyset\;\;\;\text{for any}~{}W\in L.
Proof.

Let A1A_{1} be the union of cpcp disjoint cosets of 𝔽p\mathbb{F}_{p}. Then |A1|=cq|A_{1}|=cq. Let B=A2=𝔽pB^{\prime}=A_{2}=\mathbb{F}_{p}.

Let F:𝔽q2(𝔽q×{0})𝔽q2F\colon\mathbb{F}_{q}^{2}\setminus(\mathbb{F}_{q}\times\{0\})\to\mathbb{F}_{q}^{2} defined by

F(x,y):=(xy,1y).F(x,y):=\left(\frac{x}{y},\frac{1}{y}\right).

Set

A=F1(A1×A2)andB=(B)×{0}.A=F^{-1}(A_{1}\times A_{2})~{}\mbox{and}~{}B=(-B^{\prime})\times\{0\}.

It is clear that |A||B|=cq2|A||B|=cq^{2}. We now construct LG(2,1)L\subset G(2,1) arbitrary large such that

πW(A)πW(B)=for anyWL.\pi_{W}(A)\cap\pi_{W}(B)=\emptyset\;\;\;\text{for any}~{}W\in L.

We denote the line of the form

𝔽q(b1)+(c0)\mathbb{F}_{q}\cdot\begin{pmatrix}-b\\ 1\end{pmatrix}+\begin{pmatrix}c\\ 0\end{pmatrix}

by (b,c)\ell(-b,c).

Set C=A1+BA2C=A_{1}+B^{\prime}A_{2}. We first observe that if (x,y)(b,c)(x,y)\in\ell(-b,c) with bBb\in B^{\prime} and cCc\in C, then x+yb=cx+yb=c. This gives

A1×A2bBcC(b,c).A_{1}\times A_{2}\subset\bigcap_{b\in B^{\prime}}\bigcup_{c\in C}\ell(-b,c).

For any (e1,e2)(e_{1},e_{2}) on the unit circle with e20e_{2}\neq 0, we have

F(𝔽q(e1e2)+(b0))=(b,e1/e2).F\left(\mathbb{F}_{q}^{*}\cdot\begin{pmatrix}e_{1}\\ e_{2}\end{pmatrix}+\begin{pmatrix}b\\ 0\end{pmatrix}\right)=\ell(b,e_{1}/e_{2}).

Set E={(e1,e2):e12+e22=1,e1/e2C}.E=\{(e_{1},e_{2})\colon e_{1}^{2}+e_{2}^{2}=1,~{}e_{1}/e_{2}\in C\}. Then

A=F1(A1×A2)bB(e1,e2)E(𝔽q(e1e2)+(b0)).A=F^{-1}(A_{1}\times A_{2})\subset\bigcap_{b\in B^{\prime}}\bigcup_{(e_{1},e_{2})\in E}\left(\mathbb{F}_{q}^{*}\cdot\begin{pmatrix}e_{1}\\ e_{2}\end{pmatrix}+\begin{pmatrix}b\\ 0\end{pmatrix}\right).

Since |C|=cq|C|=cq, we have |E|cq|E|\leq cq. Define

L:=G(2,1){W:WE}.L:=G(2,1)\setminus\{W^{\perp}\colon W\in E\}.

Here we identify each point (e1,e2)(e_{1},e_{2}) on the unit circle with the line containing it and the origin. So |L|q|E|(1c)q|L|\geq q-|E|\geq(1-c)q. By a direct computation, one can check that

πW(A)πW(B)=for anyWL.\pi_{W}(A)\cap\pi_{W}(B)=\emptyset\;\;\;\text{for any}~{}W\in L.

This completes the proof. ∎

9. Acknowledgements

T. Pham would like to thank the Vietnam Institute for Advanced Study in Mathematics (VIASM) for the hospitality and for the excellent working condition. S. Yoo was supported by the KIAS Individual Grant (CG082701) at Korea Institute for Advanced Study.

References

  • [1] C. J. Bishop, and Y. Peres. Fractals in probability and analysis, Vol. 162. Cambridge University Press, 2017.
  • [2] J. Chapman, M. B. Erdoğan, D Hart, A. Iosevich, and D. Koh. Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates, Mathematische Zeitschrift, 271(1-2)(2012): 63–93.
  • [3] C. Chen, Projections in vector spaces over finite fields, Annales Academiæ Scientiarum Fennicæ Mathematica, 43(2018), 171–185.
  • [4] C. Donoven, and K. Falconer, Codimension formulae for the intersection of fractal subsets of Cantor spaces, Proceedings of the American Mathematical Society, 144(2)(2016), 651–663.
  • [5] M. Elekes, T. Keleti, and A. Máthé, Self-similar and self-affine sets: measure of the intersection of two copies, Ergodic Theory and Dynamical Systems, 30(2)(2010), 399–440.
  • [6] G. Elekes, and M. Sharir, Incidences in three dimensions and distinct distances in the plane, Combin. Probab. Comput., 20(4)(2011), 571–608.
  • [7] S. Eswarathasan, A. Iosevich, and K. Taylor, Intersections of sets and Fourier analysis, Journal d’Analyse Mathématique, 128(2016): 159–178.
  • [8] L. Guth, and N. H. Katz. On the Erdős distinct distances problem in the plane, Annals of mathematics (2015): 155–190.
  • [9] D. Hart, A. Iosevich, D. Koh, and M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Transactions of the American Mathematical Society, 363(6)(2011), 3255–3275.
  • [10] A. Iosevich, D. Koh, S. Lee, T. Pham, and C. Y. Shen, On restriction estimates for the zero radius sphere over finite fields, Canadian Journal of Mathematics, 73(3)(2021), 769–786.
  • [11] A. Iosevich, D. Koh, and F. Rakhmonov, The quotient set of the quadratic distance set over finite fields, arXiv:2301.12021 (2023).
  • [12] J.–P. Kahane, Sur la dimension des intersections [On the dimension of intersections] Aspects of Mathematics and its Applications, North-Holland Math. Library, 34(1986), 419–430.
  • [13] D. Koh, and H.S. Sun, Distance sets of two subsets of vector spaces over finite fields, Proceedings of the American Mathematical Society, 143(4)(2015): 1679–1692.
  • [14] D. Koh, S. Lee, and T. Pham, On the finite field cone restriction conjecture in four dimensions and applications in incidence geometry, International Mathematics Research Notices, 21(2022), 17079–17111.
  • [15] R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, (1997).
  • [16] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proceeding of London Mathematical Society, 4(3)(1954), 257–302.
  • [17] P. Mattila, Hausdorff dimension and capacities of intersections of sets in n-space, Acta Math., 152(1984), 77–105.
  • [18] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Volume 44, 1995.
  • [19] P. Mattila, Fourier analysis and Hausdorff dimension, Cambridge University Press, Volume 150, 2015.
  • [20] P. Mattila, Hausdorff dimension and projections related to intersections, Publicacions Matemàtiques, 66(1)(2022), 305–323.
  • [21] P. Mattila, and T. Orponen, Hausdorff dimension, intersections of projections and exceptional plane sections, Proceedings of the American Mathematical Society, 144(8)(2016), 3419–3430.
  • [22] C. G. T. de A. Moreira, and J-C. Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimensions, Annals of Mathematics (2001): 45–96.
  • [23] A. Maschietti, Kakeya sets in finite affine spaces, Journal of Combinatorial Theory Series A, 118(1) (2011): 228–230.
  • [24] B. Murphy, G. Petridis, T. Pham, M. Rudnev, and S. Stevens, On the pinned distances problem over finite fields, Journal of London Mathematical Society, 105(1)(2022): 469–499.
  • [25] N. D. Phuong, T. Pham, and L. A. Vinh, Incidences between planes over finite fields, Proceedings of the American Mathematical Society, 147(5)(2019): 2185–2196.
  • [26] M. Rudnev, On the number of incidences between points and planes in three dimensions, Combinatorica, 38(2018): 219–254.