This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Interface Dynamics in a Two-phase Tumor Growth Model

Inwon Kim University of California, Los Angeles
Box 951555, Los Angeles, CA 90095, USA
[email protected]
 and  Jiajun Tong University of California, Los Angeles
Box 951555, Los Angeles, CA 90095, USA
[email protected]
Abstract.

We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.

1. Introduction

In this paper, we study free boundary dynamics arising in a model of avascular tumor growth which is adapted from [1].

1.1. A two-species model of tumor growth

Consider two species of cells in 2\mathbb{R}^{2}, one being actively growing tumor cell and the other being inactive normal cell. Spatial densities of tumor and normal cells, each denoted by mm and nn, satisfy

(1.1) tmdiv(μmp)=\displaystyle\partial_{t}m-\mathrm{div}\,(\mu m\nabla p)= mG(p),\displaystyle\;mG(p),
(1.2) tndiv(νnp)=\displaystyle\partial_{t}n-\mathrm{div}\,(\nu n\nabla p)=  0,\displaystyle\;0,
(1.3) m+n\displaystyle m+n\leq  1.\displaystyle\;1.

Here μ,ν>0\mu,\nu>0 denote mobilities of the tumor and normal cells. pp is the pressure generated by the cells, serving as a Lagrange multiplier for the constraint m+n1m+n\leq 1. It satisfies

(1.4) div((μm+νn)p)=mG(p)\displaystyle-\mathrm{div}\,((\mu m+\nu n)\nabla p)=mG(p)  if m+n=1,\displaystyle\quad\mbox{ if }m+n=1,
(1.5) p=0\displaystyle p=0  if m+n<1.\displaystyle\quad\mbox{ if }m+n<1.

In (1.1) and (1.4), G(p)G(p) represents pressure-dependent proliferation rate of the tumor cell. In the spirit of [1], we assume that

  1. (1)

    GC1[0,+)G\in C^{1}[0,+\infty).

  2. (2)

    G(p)G(p) is decreasing.

  3. (3)

    G(0)>0G(0)>0 and G(pM)=0G(p_{M})=0 for some pM>0p_{M}>0.

In short, (1.1)-(1.5) models the scenario where the tumor keeps growing and where two species of cells migrate with different mobilities, according to the Darcy’s law [2], under the pressure they generate together.

Mathematical analysis of strongly-coupled competitive systems such as (1.1)-(1.5) can be challenging [3, 4, 5, 6, 7, 8]. To the best of our knowledge, existing analyses of such problems are carried out either in one space dimension or with equal mobility of the two species. In contrast, it is suggested in [1] that the cells moving with different mobilities is an important feature of the model (1.1)-(1.5). Indeed, the numerical results in [1] show that when μ<ν\mu<\nu, certain radially symmetric solution is stable, while when μ>ν\mu>\nu a Saffman-Taylor type instability [9] can occur.

1.2. A free boundary problem

In this paper, we study (1.1)-(1.5) with the restriction that mm and nn are segregated and fully saturated in their regions. Namely, we assume that m=χΩm=\chi_{\Omega} and n=χΩ~\Ωn=\chi_{\tilde{\Omega}\backslash\Omega}, where ΩΩ~\Omega\subset\subset\tilde{\Omega} are two time-varying bounded domains. This gives rise to a free boundary problem that concerns dynamics of both γ:=Ω\gamma:=\partial\Omega and γ~:=Ω~\tilde{\gamma}:=\partial\tilde{\Omega}.

First, the equation for pp reduces to

(1.6) div((μχΩ+νχΩ~\Ω)p)=χΩG(p)\displaystyle-\mathrm{div}\,((\mu\chi_{\Omega}+\nu\chi_{\tilde{\Omega}\backslash\Omega})\nabla p)=\chi_{\Omega}G(p) in Ω~,p|Ω~=0,\displaystyle\quad\mbox{in }\tilde{\Omega},\quad p|_{\partial\tilde{\Omega}}=0,
(1.7) p=0\displaystyle p=0 in Ω~c.\displaystyle\quad\mbox{in }\tilde{\Omega}^{c}.

Then the motion law of the free boundaries are given as follows. From (1.1), we may derive the normal velocity for γ\gamma:

(1.8) Vn,γ=μpσΩ.V_{n,\gamma}=-\mu\frac{\partial p}{\partial\sigma_{\Omega}}.

Here σΩ\sigma_{\Omega} denotes the outward normal of γ\gamma with respect to Ω\Omega. Similarly, the normal speed of γ~\tilde{\gamma} is given by (1.2):

(1.9) Vn,γ~=νpσΩ~,V_{n,\tilde{\gamma}}=-\nu\frac{\partial p}{\partial\sigma_{\tilde{\Omega}}},

where σΩ~\sigma_{\tilde{\Omega}} denotes outward normal of γ~\tilde{\gamma} with respect to Ω~\tilde{\Omega}.

Our main result is the local-in-time well-posedness of the free boundary problem (1.6)-(1.9). Inspired by the numerical results in [1], we assume μ<ν\mu<\nu for the well-posedness. Interestingly, we will illustrate later that even with this assumption, instabilities may still occur along γ\gamma without further geometric assumptions on Ω\Omega and Ω~\tilde{\Omega} (see Remark 2.5). We thus need to restrict ourselves to the case where the initial configuration is nearly radial (see Figure 1). More precise statement of our main results can be found in Theorem 2.1 and Theorem 2.2 in Section 2.3.

1.3. Related works and our approach

The evolution of the inner interface γ\gamma is similar to the 2-D Muskat problem [10, 11] with viscosity jump [12, 13], which is concerned with a close-to-flat interface between two fluids driven by the Darcy’s law. In the case when the more viscous fluid is pushed towards the less viscous one, [12] establishes global well-posedness for small initial data; in the opposite case, ill-posedness is shown. With generalized Rayleigh-Taylor condition [14], [13] formulates similar result on the well-posedness in a more general setup allowing density-viscosity jumps. Note that these rigorous results agree very well with [9] and the aforementioned numerical results in [1]. They are obtained by exploring the inherent parabolicity in the interface motion with complex analysis [12] and functional analytic [13] approaches. However, it is not clear if these approaches can be directly applied here as our model involves a geometry-dependent source term, whose support touches γ\gamma.

Notably there is a lot more literature concerning the Muskat problem with density jump [15, 16, 17, 18, 19] or density-viscosity jumps [20, 21, 22, 23, 13]. In both of these cases, the smoothing mechanism is essentially provided by the fact that a heavier fluid sits below a lighter one, where the gravity naturally damps the oscillation of the interface. In contrast, the smoothing mechanism is much less explicit when there is only jump in the viscosity across the interface [12, 13].

Motion of the outer interface γ~\tilde{\gamma} is reminiscent of the free boundary arising in the one-phase Hele-Shaw problem [24], where a blob of fluid is injected into a Hele-Shaw cell or a porous medium and expands according to the Darcy’s law. Despite its similarity with the Muskat problem in some aspects, it admits a few other treatments. We direct the readers to [25, 26, 27, 28, 29, 30] and the references therein. Once again, in our problem, the presence of the source term depending nonlocally on γ~\tilde{\gamma} and γ\gamma may hinder direct applications of these approaches.

In this paper, we study the dynamics of both interfaces γ\gamma and γ~\tilde{\gamma} in a unified framework, adapted from the study of contour equations in the Muskat problem [21, 22]. We first reduce (1.6)-(1.9), which involves an elliptic equation for pp in a time-varying domain, partially into contour equations for the interface configurations and quantities along them; see (2.16), (2.17), (2.33) and (2.34). A key step in this reduction is to represent the transporting velocity over Ω~\tilde{\Omega} as a sum of three parts, which arise from the discontinuity of the cell mobilities across γ\gamma, the zero Dirichlet boundary condition of pp along γ~\tilde{\gamma}, and the source term in Ω\Omega, respectively; see (2.12) and also (2.3). Then by linearizing these contour equations around radially symmetric configurations, we show their parabolic nature under suitable conditions (c.f., Section 2.4). In particular, the interfaces can smooth themselves according to a fractional-heat-type equation with source terms. After deriving good estimates for these source terms, we prove well-posedness of the interface motion by a fixed-point argument. Smallness of the geometric deviation of γ\gamma and γ~\tilde{\gamma} from radially symmetric configurations helps close the estimates needed in this argument. See Section 2 for more details.

1.4. Difficulties arising from the source term

This problem features a geometry-dependent source term χΩG(p)\chi_{\Omega}G(p) in (1.6) that is supported up to the inner interface. It may be tempting to think of it as an innocuous regular term, but in fact, it changes the dynamics in a crucial way compared to the related problems discussed above.

Firstly, on the technical level, the source term seems to prevent the complex analysis approach in [12] from being applied here. Secondly, the parabolicity of γ\gamma relies on the fact that the cell with lower mobility is displacing the other species, i.e., (μν)pσΩ|γ>0(\mu-\nu)\frac{\partial p}{\partial\sigma_{\Omega}}|_{\gamma}>0 (c.f., (1.8) and Remark 2.4), in line with the classic Saffman-Taylor condition [9]. Since χΩG(p)\chi_{\Omega}G(p) depends on the domain geometry, one can manufacture such Ω\Omega and Ω~\tilde{\Omega}, so that the tumor is pushed by the normal tissue along some part of γ\gamma under the assumption μ<ν\mu<\nu. This is possible even and both γ\gamma and γ~\tilde{\gamma} are required to be graphs of functions over 𝕋\mathbb{T} in the polar coordinate; see Remark 2.5. In this sense, simply assuming μ<ν\mu<\nu is not enough for proving well-posedness, and it is reasonable to additionally require that γ\gamma and γ~\tilde{\gamma} are close to concentric circles (see Figure 1). Then characterization of the parabolicity of γ\gamma is based on a good understanding of pp. In Section 3, we apply elliptic regularity theory to justify that given the domain geometry close to a radially symmetric one, the corresponding pp should not be far away from a radially solution. That would be sufficient to guarantee parabolicity in the motion of γ\gamma as μ<ν\mu<\nu. Furthermore, these elliptic estimates together with the results in Section 4 and Section 5 will help justify that such parabolicity can be characterized by a fractional heat operator with exponent 12\frac{1}{2}, which plays a central role in our analysis. See Section 2.4 and Section 8.

The source term also poses new difficulty in studying global well-posedness and stability properties near the radially symmteric solutions. Indeed, as the tumor grows larger, the pressure becomes more sensitive to the interface geometry. We demonstrate this by a scaling argument. Suppose at given time T>0T>0, Ω\Omega and Ω~\tilde{\Omega} are close to two concentric discs, and Ω~\tilde{\Omega} has radius of order R1R\gg 1. Define pR(x,t):=p(Rx,R(tT))p_{R}(x,t):=p(Rx,R(t-T)) and let Ω~R\tilde{\Omega}_{R} and ΩR\Omega_{R} denote the corresponding dilated version of Ω~\tilde{\Omega} and Ω\Omega according to the scaling. Then (1.6) becomes

(1.10) div((μχΩR+νχΩ~R\ΩR)pR)=χΩRR2G(pR),-\mathrm{div}\,((\mu\chi_{\Omega_{R}}+\nu\chi_{\tilde{\Omega}_{R}\backslash\Omega_{R}})\nabla p_{R})=\chi_{\Omega_{R}}R^{2}G(p_{R}),

with zero boundary data on Ω~R\partial\tilde{\Omega}_{R}, while the boundary motion laws (1.8) and (1.9) remain the same. In this new problem, the proliferation rate R2G()R^{2}G(\cdot) can have a large magnitude where pRp_{R} is small and it is sensitive to the pressure. This results in concentration of the source term near the inner interface and a steep growth of pRp_{R} there. On the other hand, the total mass of the normal tissue is preserved due to (1.2), and thus Ω~R\ΩR\tilde{\Omega}_{R}\backslash\Omega_{R} is extremely thin as R1R\gg 1. So in the rescaled problem the source term is close to both the inner and outer interfaces. It is then conceivable that pRp_{R} will be highly sensitive to the domain geometry in the sense that even when the domain is pretty close to being radial, pRp_{R} may be highly oscillatory and far from being radially symmetric. Therefore, because of the source term, nonlinear stability of the interface configurations around radially symmetric ones becomes a much more subtle issue when it comes to long time asymptotics.

1.5. Acknowledgement

This work is partially supported by National Science Foundation under Award DMS-1900804.

2. Interface Motion in an Almost Radially Symmetric Geometry

In this section, we will derive equations for the moving interfaces γ\gamma and γ~\tilde{\gamma} in the case when they are close to concentric circles. Our main result will be established in terms of these equations. Parabolicity of these equations will be revealed, which plays a key role in proving the well-posedness.

2.1. Problem reformulation

Define a potential φ\varphi to be

(2.1) φ:=μp in Ω,φ:=νp in Ωc.\varphi:=\mu p\mbox{ in }\Omega,\quad\varphi:=\nu p\mbox{ in }\Omega^{c}.

So φ\varphi solves

Δφ=G(p)χΩin Ω~\γ,φ|γ~=0,-\Delta\varphi=G(p)\chi_{\Omega}\quad\mbox{in }\tilde{\Omega}\backslash\gamma,\quad\varphi|_{\tilde{\gamma}}=0,

and φ0\varphi\equiv 0 on Ω~c\tilde{\Omega}^{c}. When μν\mu\not=\nu, φ\varphi has discontinuity across γ\gamma, denoted by

[φ]γ(x):=φ|γ,Ω(x)φ|γ,Ωc(x),xγ.[\varphi]_{\gamma}(x):=\varphi|_{\gamma,\Omega}(x)-\varphi|_{\gamma,\Omega^{c}}(x),\quad x\in\gamma.

(1.8) and (1.9) yield that each cell phase is transported by the velocity field u=φu=-\nabla\varphi. It has discontinuity across γ\gamma in the tangential component, but not in its normal component.

Let Γ\Gamma denote the fundamental solution of the Laplace’s equation in 2\mathbb{R}^{2},

Γ(x):=12πln|x|.\Gamma(x):=-\frac{1}{2\pi}\ln|x|.

Let 𝒟γ\mathcal{D}_{\gamma} denote the double layer potential operator associated with γ\gamma. Namely, with a boundary potential ψ\psi defined on γ\gamma, we define 𝒟γψ\mathcal{D}_{\gamma}\psi on 2\mathbb{R}^{2} to be

(2.2) 𝒟γψ(x):=γσyy(Γ(xy))ψ(y)dy.\mathcal{D}_{\gamma}\psi(x):=\int_{\gamma}\sigma_{y}\cdot\nabla_{y}(\Gamma(x-y))\psi(y)\,dy.

Note that here the gradient is taken with respect to yy. It is well-known that for γ\gamma and ψ\psi sufficiently smooth, say C1,α(𝕋)C^{1,\alpha}(\mathbb{T}), [𝒟γψ]γ=ψ[\mathcal{D}_{\gamma}\psi]_{\gamma}=-\psi. Then φ\varphi admits the following representation

(2.3) φ=𝒟γ[φ]𝒟γ~ϕ+Γgin Ω~\γ.\varphi=-\mathcal{D}_{\gamma}[\varphi]-\mathcal{D}_{\tilde{\gamma}}\phi+\Gamma*g\quad\mbox{in }\tilde{\Omega}\backslash\gamma.

where ϕ\phi is some boundary potential defined along γ~\tilde{\gamma} to be determined in order for the boundary condition φ|γ~=0\varphi|_{\tilde{\gamma}}=0, and where

(2.4) g=G(p)χΩ=G(μ1φ)χΩ0.g=G(p)\chi_{\Omega}=G(\mu^{-1}\varphi)\chi_{\Omega}\geq 0.

Assume C1,α(𝕋)C^{1,\alpha}(\mathbb{T})-regularity of γ\gamma and [φ][\varphi]. Then the representation (2.3) along γ\gamma takes the average of φ\varphi on two sides of γ\gamma, i.e.,

(𝒟γ[φ]𝒟γ~ϕ+Γg)|γ=12(φ|γ,Ω+φ|γ,Ωc)=μ+ν2p=μ+ν2(μν)[φ].\left.\left(-\mathcal{D}_{\gamma}[\varphi]-\mathcal{D}_{\tilde{\gamma}}\phi+\Gamma*g\right)\right|_{\gamma}=\frac{1}{2}(\varphi|_{\gamma,\Omega}+\varphi|_{\gamma,\Omega^{c}})=\frac{\mu+\nu}{2}p=\frac{\mu+\nu}{2(\mu-\nu)}[\varphi].

This implies

(2.5) [φ]=2A(𝒟γ[φ]𝒟γ~ϕ+Γg)|γ,[\varphi]=2A(-\mathcal{D}_{\gamma}[\varphi]-\mathcal{D}_{\tilde{\gamma}}\phi+\Gamma*g)|_{\gamma},

where

A=μνμ+ν.A=\frac{\mu-\nu}{\mu+\nu}.

On the other hand, the zero Dirichlet boundary condition of φ\varphi along γ~\tilde{\gamma} requires that

limxγ~(θ)xΩ~(𝒟γ~ϕ)(x)=(𝒟γ[φ]Γg)|γ~(θ).\lim_{x\to\tilde{\gamma}(\theta)\atop x\in\tilde{\Omega}}(-\mathcal{D}_{\tilde{\gamma}}\phi)(x)=(\mathcal{D}_{\gamma}[\varphi]-\Gamma*g)|_{\tilde{\gamma}(\theta)}.

Assuming C1,α(𝕋)C^{1,\alpha}(\mathbb{T})-regularity of γ~\tilde{\gamma} and ϕ\phi, by the property of the double layer potential, ϕ\phi should solve

(𝒟γ~ϕ)|γ~+12ϕ=(𝒟γ[φ]Γg)|γ~-(\mathcal{D}_{\tilde{\gamma}}\phi)|_{\tilde{\gamma}}+\frac{1}{2}\phi=(\mathcal{D}_{\gamma}[\varphi]-\Gamma*g)|_{\tilde{\gamma}}

along γ~\tilde{\gamma}, i.e.,

(2.6) ϕ=2(𝒟γ~ϕ+𝒟γ[φ]Γg)|γ~.\phi=2(\mathcal{D}_{\tilde{\gamma}}\phi+\mathcal{D}_{\gamma}[\varphi]-\Gamma*g)|_{\tilde{\gamma}}.

Finally, (1.8) and (1.9) become

(2.7) Vn,γ=φσΩ,Vn,γ~=φσΩ~.V_{n,\gamma}=-\frac{\partial\varphi}{\partial\sigma_{\Omega}},\quad V_{n,\tilde{\gamma}}=-\frac{\partial\varphi}{\partial\sigma_{\tilde{\Omega}}}.

(2.3)-(2.7) readily form a closed system.

Refer to caption
Figure 1. An illustration of the geometry. The grey region represents the domain of the tumor cells, while the white region surrounding it is occupied by the normal cells. The solid curves γ\gamma and γ~\tilde{\gamma} are moving boundaries of the domains. The dashed circles indicate that γ\gamma and γ~\tilde{\gamma} are close to two concentric circles with radii rr and RR, respectively. γ\gamma and γ~\tilde{\gamma} are parameterized in the polar coordinate as functions of θ𝕋=/(2π)\theta\in\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z}).

2.2. Derivation of contour equations

We consider the case when γ\gamma and γ~\tilde{\gamma} are close to two concentric circles centered at the origin, with some radii r<Rr<R, respectively. See Figure 1. We parameterize γ\gamma and γ~\tilde{\gamma} using the polar coordinate,

(2.8) γ(θ,t)=\displaystyle\gamma(\theta,t)= f(θ,t)(cosθ,sinθ),\displaystyle\;f(\theta,t)(\cos\theta,\sin\theta),
(2.9) γ~(θ,t)=\displaystyle\tilde{\gamma}(\theta,t)= F(θ,t)(cosθ,sinθ),\displaystyle\;F(\theta,t)(\cos\theta,\sin\theta),

where θ𝕋=/(2π)=[π,π)\theta\in\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})=[-\pi,\pi). Then [φ][\varphi] and ϕ\phi can be naturally understood as functions of θ𝕋\theta\in\mathbb{T}. Next we shall derive equations for γ\gamma and γ~\tilde{\gamma} (or equivalently, for ff and FF).

Note that σΩ(θ)=γ(θ)/|γ(θ)|\sigma_{\Omega}(\theta)=-\gamma^{\prime}(\theta)^{\perp}/|\gamma^{\prime}(\theta)|, where vv^{\perp} denote a vector v2v\in\mathbb{R}^{2} rotated counter-clockwise by π/2\pi/2. By (2.2), all xΩ~\γx\in\tilde{\Omega}\backslash\gamma,

(2.10) 𝒟γ[φ]=12π𝕋(xγ(θ))(γ(θ))|xγ(θ)|2[φ](θ)dθ.\mathcal{D}_{\gamma}[\varphi]=\frac{1}{2\pi}\int_{\mathbb{T}}\frac{(x-\gamma(\theta^{\prime}))\cdot(-\gamma^{\prime}(\theta^{\prime}))^{\perp}}{|x-\gamma(\theta^{\prime})|^{2}}[\varphi](\theta^{\prime})\,d\theta^{\prime}.

By assuming [φ]C1(𝕋)[\varphi]\in C^{1}(\mathbb{T}),

(2.11) 𝒟γ[φ]=12π𝕋θ((xγ(θ))|xγ(θ)|2)[φ](θ)dθ=12π𝕋(xγ(θ))|xγ(θ)|2[φ](θ)dθ.\begin{split}\nabla\mathcal{D}_{\gamma}[\varphi]=&\;\frac{1}{2\pi}\int_{\mathbb{T}}\frac{\partial}{\partial\theta^{\prime}}\left(-\frac{(x-\gamma(\theta^{\prime}))^{\perp}}{|x-\gamma(\theta^{\prime})|^{2}}\right)[\varphi](\theta^{\prime})\,d\theta^{\prime}\\ =&\;\frac{1}{2\pi}\int_{\mathbb{T}}\frac{(x-\gamma(\theta^{\prime}))^{\perp}}{|x-\gamma(\theta^{\prime})|^{2}}[\varphi]^{\prime}(\theta^{\prime})\,d\theta^{\prime}.\end{split}

which is a Birkhoff-Rott-type integral [31]. Hence, by (2.3), for xΩ~\γx\in\tilde{\Omega}\backslash\gamma,

(2.12) u(x)=φ(x)=12π𝕋(xγ(θ))|xγ(θ)|2[φ](θ)dθ+12π𝕋(xγ~(θ))|xγ~(θ)|2ϕ(θ)dθ(Γg).u(x)=-\nabla\varphi(x)=\frac{1}{2\pi}\int_{\mathbb{T}}\frac{(x-\gamma(\theta^{\prime}))^{\perp}}{|x-\gamma(\theta^{\prime})|^{2}}[\varphi]^{\prime}(\theta^{\prime})\,d\theta^{\prime}+\frac{1}{2\pi}\int_{\mathbb{T}}\frac{(x-\tilde{\gamma}(\theta^{\prime}))^{\perp}}{|x-\tilde{\gamma}(\theta^{\prime})|^{2}}\phi^{\prime}(\theta^{\prime})\,d\theta^{\prime}-\nabla(\Gamma*g).

On the other hand, by (2.7) and (2.8),

(2.13) tf=u(γ(θ))σΩ(θ)|γ(θ)|f(θ)=1fu(γ(θ))γ(θ).\partial_{t}f=u(\gamma(\theta))\cdot\sigma_{\Omega}(\theta)\cdot\frac{|\gamma^{\prime}(\theta)|}{f(\theta)}=-\frac{1}{f}\cdot u(\gamma(\theta))\cdot\gamma^{\prime}(\theta)^{\perp}.

Although u(γ(θ))u(\gamma(\theta)) here should be understood as the limit of (2.12) when letting xγ(θ)x\rightarrow\gamma(\theta) from the inside of γ\gamma, it is safe to simply take x=γ(θ)x=\gamma(\theta) since the normal component of uu does not have discontinuity across γ\gamma. Define

(2.14) 𝒦γψ:=\displaystyle\mathcal{K}_{\gamma}\psi:= 12πp.v.𝕋γ(θ)γ(θ)|γ(θ)γ(θ)|2ψ(θ)dθ,\displaystyle\;\frac{1}{2\pi}\mathrm{p.v.}\int_{\mathbb{T}}\frac{\gamma(\theta)-\gamma(\theta^{\prime})}{|\gamma(\theta)-\gamma(\theta^{\prime})|^{2}}\cdot\psi(\theta^{\prime})\,d\theta^{\prime},
(2.15) 𝒦γ,γ~ψ(θ):=\displaystyle\mathcal{K}_{\gamma,\tilde{\gamma}}\psi(\theta):= 12π𝕋γ(θ)γ~(θ)|γ(θ)γ~(θ)|2ψ(θ)dθ.\displaystyle\;\frac{1}{2\pi}\int_{\mathbb{T}}\frac{\gamma(\theta)-\tilde{\gamma}(\theta^{\prime})}{|\gamma(\theta)-\tilde{\gamma}(\theta^{\prime})|^{2}}\cdot\psi(\theta^{\prime})\,d\theta^{\prime}.

Let 𝒦γ~,γψ(θ)\mathcal{K}_{\tilde{\gamma},\gamma}\psi(\theta) be defined symmetrically by interchanging γ\gamma and γ~\tilde{\gamma} in (2.15). Thanks to (2.11) and (2.12), (2.13) can be rewritten as

(2.16) tf=1fγ(θ)𝒦γ[φ]1fγ(θ)𝒦γ,γ~ϕ+1f(Γg)|γγ(θ).\partial_{t}f=-\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}-\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}+\frac{1}{f}\nabla(\Gamma*g)|_{\gamma}\cdot\gamma^{\prime}(\theta)^{\perp}.

Similarly,

(2.17) tF=1Fγ~(θ)𝒦γ~ϕ1Fγ~(θ)𝒦γ~,γ[φ]+1F(Γg)|γ~γ~(θ).\partial_{t}F=-\frac{1}{F}\tilde{\gamma}^{\prime}(\theta)\cdot\mathcal{K}_{\tilde{\gamma}}\phi^{\prime}-\frac{1}{F}\tilde{\gamma}^{\prime}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}+\frac{1}{F}\nabla(\Gamma*g)|_{\tilde{\gamma}}\cdot\tilde{\gamma}^{\prime}(\theta)^{\perp}.

These equations are coupled with initial conditions

(2.18) f(t=0)=f0(θ),F(t=0)=F0(θ).f(t=0)=f_{0}(\theta),\quad F(t=0)=F_{0}(\theta).

For future use, we introduce

(2.19) h(θ,t)=f(θ,t)r1,H(θ,t)=F(θ,t)R1.h(\theta,t)=\frac{f(\theta,t)}{r}-1,\quad H(\theta,t)=\frac{F(\theta,t)}{R}-1.

They are relative deviations of γ\gamma and γ~\tilde{\gamma} from radially symmetric configurations.

2.3. Main results

We first introduce Wk1p,p(𝕋)W^{k-\frac{1}{p},p}(\mathbb{T})-space for k+k\in\mathbb{Z}_{+} and p(1,)p\in(1,\infty) [32, § 2.12.2]. Let {et(Δ)1/2}t0\{e^{-t(-\Delta)^{1/2}}\}_{t\geq 0} denote the Poisson semi-group on 𝕋\mathbb{T} with generator (Δ)1/2-(-\Delta)^{1/2}. For fLp(𝕋)f\in L^{p}(\mathbb{T}), let

(2.20) fW˙k1p,p(𝕋):=et(Δ)1/2fLp[0,)W˙k,p(𝕋).\|f\|_{\dot{W}^{k-\frac{1}{p},p}(\mathbb{T})}:=\left\|e^{-t(-\Delta)^{1/2}}f\right\|_{L^{p}_{[0,\infty)}\dot{W}^{k,p}(\mathbb{T})}.

We say fWk1p,p(𝕋)f\in W^{k-\frac{1}{p},p}(\mathbb{T}) if and only if fLp(𝕋)f\in L^{p}(\mathbb{T}) such that fW˙k1p,p(𝕋)<+\|f\|_{\dot{W}^{k-\frac{1}{p},p}(\mathbb{T})}<+\infty.

Our main results are as follows.

Theorem 2.1.

Suppose 0<μ<ν0<\mu<\nu. Let GG satisfy the assumptions in Section 1. Suppose f0,F0W21p,p(𝕋)f_{0},F_{0}\in W^{2-\frac{1}{p},p}(\mathbb{T}) for some p(2,)p\in(2,\infty). Let

(2.21) r=12π𝕋f0(θ)dθ,R=12π𝕋F0(θ)dθ.r=\frac{1}{2\pi}\int_{\mathbb{T}}f_{0}(\theta)\,d\theta,\quad R=\frac{1}{2\pi}\int_{\mathbb{T}}F_{0}(\theta)\,d\theta.

With pp_{*} be defined by (3.8), let cc_{*} and c~\tilde{c}_{*} be negative constants

(2.22) c=12πrBrG(p(X))dX,c~=rRc,c_{*}=-\frac{1}{2\pi r}\int_{B_{r}}G(p_{*}(X))\,dX,\quad\tilde{c}_{*}=\frac{r}{R}c_{*},

which corresponds to negative speeds of concentric circular interfaces with radii rr and RR respectively (see e.g., (3.13)). Take δ\delta such that

(2.23) Rr100RδRr10R,\frac{R-r}{100R}\leq\delta\leq\frac{R-r}{10R},

Define h0h_{0} and H0H_{0} as in (2.19).

Suppose h0h_{0} and H0H_{0} satisfy that, with α=12p\alpha=1-\frac{2}{p} and for some ε>0\varepsilon>0,

(2.24) M:=δ1(h0L(𝕋)+H0L(𝕋))+δαε(h0W˙21p,p(𝕋)+H0W˙21p,p(𝕋))M,M:=\delta^{-1}(\|h_{0}\|_{L^{\infty}(\mathbb{T})}+\|H_{0}\|_{L^{\infty}(\mathbb{T})})+\delta^{\alpha-\varepsilon}\left(\|h_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\right)\leq M_{*},

where MM_{*} is a small constant depending on pp, ε\varepsilon, μ\mu, ν\nu, R/|c~|R/|\tilde{c}_{*}|, GG and δR2\delta R^{2}, but not directly on δ\delta. Then there exists T>0T>0 depending on the above quantities and additionally on δ\delta, such that the system (2.16)-(2.18) admits a strong solution

(2.25) f,FC[0,T]C1,α(𝕋)Lp[0,T]W2,p(𝕋),f,F\in C_{[0,T]}C^{1,\alpha}(\mathbb{T})\cap L^{p}_{[0,T]}W^{2,p}(\mathbb{T}),

with tf,tFC[0,T]Cα(𝕋)\partial_{t}f,\partial_{t}F\in C_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T}) for any α<min{14,α}\alpha^{\prime\prime}<\min\{\frac{1}{4},\alpha\}. The solution satisfies that, with hh and HH defined in (2.19),

(2.26) δ1(hC[0,T]L+HC[0,T]L)+δαε(hC[0,T]C˙1,α+HC[0,T]C˙1,α)C(p,G)M,\delta^{-1}(\|h\|_{C_{[0,T]}L^{\infty}}+\|H\|_{C_{[0,T]}L^{\infty}})+\delta^{\alpha-\varepsilon}\left(\|h\|_{C_{[0,T]}\dot{C}^{1,\alpha}}+\|H\|_{C_{[0,T]}\dot{C}^{1,\alpha}}\right)\leq C(p,G)M,
(2.27) δαε(thLp[0,T]W˙1,p+tHLp[0,T]W˙1,p)C(p,μ,ν,G)M,\delta^{\alpha-\varepsilon}\left(\|\partial_{t}h\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|\partial_{t}H\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}\right)\leq C(p,\mu,\nu,G)M,

and

(2.28) δαε(hLp[0,T]W˙2,p+HLp[0,T]W˙2,p)C(p,μ,ν,R/|c~|,G)M.\delta^{\alpha-\varepsilon}\left(\|h\|_{L^{p}_{[0,T]}\dot{W}^{2,p}}+\|H\|_{L^{p}_{[0,T]}\dot{W}^{2,p}}\right)\leq C(p,\mu,\nu,R/|\tilde{c}_{*}|,G)M.
Remark 2.1.

In the claim tf,tFC[0,T]Cα(𝕋)\partial_{t}f,\partial_{t}F\in C_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T}) (α<min{14,α})(\alpha^{\prime\prime}<\min\{\frac{1}{4},\alpha\}), we did not pursue the optimal range of the Hölder exponent α\alpha^{\prime\prime}.

Remark 2.2.

We use δ\delta to characterize the relative thinness of the gap between γ\gamma and γ~\tilde{\gamma}. Note that requiring δ1(h0L+H0L)1\delta^{-1}(\|h_{0}\|_{L^{\infty}}+\|H_{0}\|_{L^{\infty}})\ll 1 in (2.24) seems very natural, as otherwise the two interfaces may touch or cross each other. It is worthwhile to remark that the right hand side of (2.24) does not deteriorate as δ\delta becomes smaller, in the sense that if all the model parameters and RR are fixed and we let rRr\to R (so that δ0\delta\to 0), then the right hand side does not decrease to 0. Though δ\delta also shows up on the right hand side in the form of δR2\delta R^{2}, it will be clear later (see (8.43) in the proof of Theorem 2.1) that MM_{*} increases as δR2\delta R^{2} decreases.

In contrast, the smallness of TT has to depend on δ\delta directly: when δ1\delta\ll 1, we may need T1T\ll 1.

Remark 2.3.

In the 2-D Muskat problem, W˙1,\dot{W}^{1,\infty} and H˙3/2\dot{H}^{3/2} are considered to be critical and scaling-invariant semi-norms [22]. Although our problem does not admit any scaling law, considering its similarity with the Muskat problem, it seems to be the best thing one can do to prove well-posedness with initial data being small in W1,(𝕋)W^{1,\infty}(\mathbb{T})- or H3/2(𝕋)H^{3/2}(\mathbb{T})-norms. We note that in Theorem 2.1, the condition (2.24) on the initial data is proposed in the way that, by interpolation, C1,βC^{1,\beta^{\prime}}-semi-norms of h0h_{0} and H0H_{0} are small for some β>0\beta^{\prime}>0 depending on pp and ε\varepsilon (see (8.25) and (8.31)). In other words, although we are not able to prove well-posedness of our problem with smallness in the “critical” spaces, partly because of the source term, we manage to do that in all the “sub-critical” cases, which can be arbitrarily close to the “critical” one — note that p>2p>2 and ε>0\varepsilon>0 are arbitrary.

Thanks to the estimates for the local solution, one can apply Theorem 2.1 iteratively and show that local solutions exist for an arbitrary time period T~>0\tilde{T}>0 as long as h0h_{0} and H0H_{0} are correspondingly sufficiently small.

Corollary 2.1.

Under the assumptions of Theorem 2.1, for any T~>0\tilde{T}>0, if h0,H0W21p,p(𝕋)h_{0},H_{0}\in W^{2-\frac{1}{p},p}(\mathbb{T}) satisfy M1M\ll 1, where the smallness depends on pp, ε\varepsilon, μ\mu, ν\nu, GG, rr, RR and T~\tilde{T}, the local strong solution exists up to time T~\tilde{T}.

Uniqueness of local solutions can be shown if GG is more regular.

Theorem 2.2.

Under the assumptions of Theorem 2.1, if in addition, GC1,1[0,+)G\in C^{1,1}[0,+\infty), then the solution is unique.

2.4. Parabolic nature of the interface motion and scheme of the proof

To elucidate the hidden parabolicity of (2.16)-(2.18), we linearize it around the radially symmetric configurations.

It is convenient to first derive equations for [φ][\varphi]^{\prime} and ϕ\phi^{\prime} by taking derivative in (2.5) and (2.6). Assuming γ,[φ]C1(𝕋)\gamma,[\varphi]\in C^{1}(\mathbb{T}), we have

(2.29) ddθ(𝒟γ[φ])|γ=γ(θ)𝒦γ[φ].\frac{d}{d\theta}(\mathcal{D}_{\gamma}[\varphi])|_{\gamma}=-\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}.

Indeed, by integration by parts,

(2.30) (𝒟γ[φ])|γ=12πp.v.𝕋θ[arg((γ(θ)γ(θ))1+i(γ(θ)γ(θ))2)][φ](θ)dθ=12ππ[φ](θ)+12π𝕋arg((γ(θ)γ(θ))1+i(γ(θ)γ(θ))2)[φ](θ)dθ.\begin{split}(\mathcal{D}_{\gamma}[\varphi])|_{\gamma}=&\;-\frac{1}{2\pi}\mathrm{p.v.}\int_{\mathbb{T}}\partial_{\theta^{\prime}}[\mathrm{arg}((\gamma(\theta)-\gamma(\theta^{\prime}))_{1}+i(\gamma(\theta)-\gamma(\theta^{\prime}))_{2})]\cdot[\varphi](\theta^{\prime})\,d\theta^{\prime}\\ =&\;-\frac{1}{2\pi}\cdot\pi[\varphi](\theta)+\frac{1}{2\pi}\int_{\mathbb{T}}\mathrm{arg}((\gamma(\theta)-\gamma(\theta^{\prime}))_{1}+i(\gamma(\theta)-\gamma(\theta^{\prime}))_{2})\cdot[\varphi]^{\prime}(\theta^{\prime})\,d\theta^{\prime}.\end{split}

Here the argument is defined such that its values at θ=±π\theta=\pm\pi coincide. In the last equality, we need the assumption γC1(𝕋)\gamma\in C^{1}(\mathbb{T}). Hence, using the fact that [φ]C1(𝕋)[\varphi]\in C^{1}(\mathbb{T}),

(2.31) ddθ(𝒟γ[φ])|γ=12[φ]+12πddθ𝕋arg((γ(θ)γ(θ))1+i(γ(θ)γ(θ))2)[φ](θ)dθ=12πp.v.𝕋ddθ(arg((γ(θ)γ(θ))1+i(γ(θ)γ(θ))2))[φ](θ)dθ,\begin{split}\frac{d}{d\theta}(\mathcal{D}_{\gamma}[\varphi])|_{\gamma}=&\;-\frac{1}{2}[\varphi]^{\prime}+\frac{1}{2\pi}\frac{d}{d\theta}\int_{\mathbb{T}}\mathrm{arg}((\gamma(\theta)-\gamma(\theta^{\prime}))_{1}+i(\gamma(\theta)-\gamma(\theta^{\prime}))_{2})\cdot[\varphi]^{\prime}(\theta^{\prime})\,d\theta^{\prime}\\ =&\;\frac{1}{2\pi}\mathrm{p.v.}\int_{\mathbb{T}}\frac{d}{d\theta}\left(\mathrm{arg}((\gamma(\theta)-\gamma(\theta^{\prime}))_{1}+i(\gamma(\theta)-\gamma(\theta^{\prime}))_{2})\right)\cdot[\varphi]^{\prime}(\theta^{\prime})\,d\theta^{\prime},\end{split}

This justifies (2.29). Next let

(2.32) er:=(cosθ,sinθ),eθ:=(sinθ,cosθ).e_{r}:=(\cos\theta,\sin\theta),\quad e_{\theta}:=(-\sin\theta,\cos\theta).

Then [φ][\varphi]^{\prime} and ϕ\phi^{\prime} satisfy

(2.33) [φ]=\displaystyle[\varphi]^{\prime}=  2A((f(θ)er+f(θ)eθ)(Γg)|γ+γ(θ)𝒦γ[φ]+γ(θ)𝒦γ,γ~ϕ),\displaystyle\;2A\left((f^{\prime}(\theta)e_{r}+f(\theta)e_{\theta})\cdot\nabla(\Gamma*g)|_{\gamma}+\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}+\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\right),
(2.34) ϕ=\displaystyle\phi^{\prime}= 2((F(θ)er+F(θ)eθ)(Γg)|γ~+γ~(θ)𝒦γ~ϕ+γ~(θ)𝒦γ~,γ[φ]).\displaystyle\;-2\left((F^{\prime}(\theta)e_{r}+F(\theta)e_{\theta})\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}+\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma}}\phi^{\prime}+\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\right).

Now we shall linearize the equations (2.16), (2.17), (2.33) and (2.34) around the radially symmetric configurations, i.e., frf\equiv r, FRF\equiv R, and [φ]=ϕ0[\varphi]^{\prime}=\phi^{\prime}\equiv 0. The following discussion is only formal and gives an overview of the analysis carried out in the rest of the paper. Let us begin by collecting a few facts that will be justified in later sections.

  • It will be clear in Section 4 and Section 7 that

    (2.35) er(Γg)|γc and er(Γg)|γ~c~:=crR.e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}\approx c_{*}\quad\mbox{ and }\quad e_{r}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\approx\tilde{c}_{*}:=\frac{c_{*}r}{R}.

    Here cc_{*} and c~\tilde{c}_{*} are constants defined in (2.22).

  • Let \mathcal{H} be the Hilbert transform on 𝕋\mathbb{T} [33], i.e.,

    (2.36) f(θ):=12πp.v.𝕋cot(θθ2)f(θ)dθ.\mathcal{H}f(\theta):=\frac{1}{2\pi}\mathrm{p.v.}\int_{\mathbb{T}}\cot\left(\frac{\theta-\theta^{\prime}}{2}\right)f(\theta^{\prime})\,d\theta^{\prime}.

    Then in Section 5 we shall show

    (2.37) γ𝒦γ12 and γ~𝒦γ~12.\gamma^{\prime}\cdot\mathcal{K}_{\gamma}\approx\frac{1}{2}\mathcal{H}\quad\mbox{ and }\quad\tilde{\gamma}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}}\approx\frac{1}{2}\mathcal{H}.
  • Define 𝒮\mathcal{S} to be a smoothing operator on 𝕋\mathbb{T} with a Poisson kernel,

    (2.38) 𝒮ψ(θ)=12πPrRψ(θ)=12π𝕋1(rR)21+(rR)22(rR)cosξψ(θξ)dξ.\mathcal{S}\psi(\theta)=\frac{1}{2\pi}P_{\frac{r}{R}}*\psi(\theta)=\frac{1}{2\pi}\int_{\mathbb{T}}\frac{1-\left(\frac{r}{R}\right)^{2}}{1+\left(\frac{r}{R}\right)^{2}-2\left(\frac{r}{R}\right)\cos\xi}\psi(\theta-\xi)\,d\xi.

    The notation PrRP_{\frac{r}{R}} will be introduced in Section 6. Then in Section 6 we shall see

    (2.39) γ𝒦γ,γ~ϕ12𝒮ϕ,\displaystyle\gamma^{\prime}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\approx\frac{1}{2}\mathcal{H}\mathcal{S}\phi^{\prime}, γ𝒦γ,γ~ϕ12𝒮ϕ,\displaystyle\gamma^{\prime\perp}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\approx\frac{1}{2}\mathcal{S}\phi^{\prime},
    (2.40) γ~𝒦γ~,γ[φ]12𝒮[φ],\displaystyle\tilde{\gamma}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\approx\frac{1}{2}\mathcal{H}\mathcal{S}[\varphi]^{\prime}, γ~𝒦γ~,γ[φ]12𝒮[φ].\displaystyle\tilde{\gamma}^{\prime\perp}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\approx-\frac{1}{2}\mathcal{S}[\varphi]^{\prime}.
  • The remaining terms in (2.16), (2.17), (2.33) and (2.34) and the error made above are considered to be smaller or more regular, which will be omitted at this moment.

Putting these facts together, the linearized system can be written as

(2.41) tf+c=\displaystyle\partial_{t}f+c_{*}= 12r([φ]+𝒮ϕ),\displaystyle\;-\frac{1}{2r}\mathcal{H}([\varphi]^{\prime}+\mathcal{S}\phi^{\prime}),
(2.42) tF+crR=\displaystyle\partial_{t}F+\frac{c_{*}r}{R}= 12R(ϕ+𝒮[φ]).\displaystyle\;-\frac{1}{2R}\mathcal{H}(\phi^{\prime}+\mathcal{S}[\varphi]^{\prime}).
(2.43) [φ]=\displaystyle[\varphi]^{\prime}=  2Acf+A𝒮ϕ,\displaystyle\;2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime},
(2.44) ϕ=\displaystyle\phi^{\prime}= 2crRF+𝒮[φ].\displaystyle\;-\frac{2c_{*}r}{R}F^{\prime}+\mathcal{S}[\varphi]^{\prime}.

See Section 7 and Section 8 for the complete equations.

Combining (2.43) and (2.41), we obtain

(2.45) tf+c=Acr(Δ)1/2f1+A2r𝒮ϕ.\partial_{t}f+c_{*}=-\frac{Ac_{*}}{r}(-\Delta)^{1/2}f-\frac{1+A}{2r}\mathcal{H}\mathcal{S}\phi^{\prime}.

(2.45) is a fractional heat equation only when Ac>0Ac_{*}>0. Note that the last term in (2.45) and all those omitted ones are supposed to be small or regular source terms. Since c<0c_{*}<0, it is natural to believe that the motion of γ\gamma can be well-posed only when A<0A<0, i.e, μ<ν\mu<\nu.

Similarly, by combining (2.42) with (2.44),

(2.46) tF+crR=crR2(Δ)1/2F1R𝒮[φ].\partial_{t}F+\frac{c_{*}r}{R}=\frac{c_{*}r}{R^{2}}(-\Delta)^{1/2}F-\frac{1}{R}\mathcal{H}\mathcal{S}[\varphi]^{\prime}.

Note that it shows the smoothing of the outer interface not to depend on AA, but only on the fact that cr2R<0\frac{c_{*}r^{2}}{R}<0.

Remark 2.4.

The above formal derivation may be localized as long as the interfaces are locally graphs. By doing so we may be able to show that the local parabolicity condition for the motion of γ\gamma is (μν)pσΩ|γ>0(\mu-\nu)\frac{\partial p}{\partial\sigma_{\Omega}}|_{\gamma}>0, while it is pσΩ~|γ~<0\frac{\partial p}{\partial\sigma_{\tilde{\Omega}}}|_{\tilde{\gamma}}<0 for the motion of γ~\tilde{\gamma}. The former condition implies that when the less mobile cells are locally pushing the other one, we expect well-posedness in the motion of that local segment of γ\gamma. This is in the same spirit as the Saffman-Taylor condition [9] (see also the condition for well-posedness in [12]), and it is formulated in a more general setting in [13]. The parabolicity condition pσΩ~|γ~<0\frac{\partial p}{\partial\sigma_{\tilde{\Omega}}}|_{\tilde{\gamma}}<0 indicates that γ~\tilde{\gamma} may stay regular when it is pushed towards the vacuum, but otherwise it may lose regularity. This fact echoes with many well-posedness and ill-posedness results on a variety of free boundary problems arising in, for instance, one-phase Hele-Shaw problems [25, 26, 27, 28, 29, 30] and porous medium equations [34, 35, 36, 37, 38].

In our problem, under the assumption of the almost radial symmetry, the parabolicity condition (μν)c>0(\mu-\nu)c_{*}>0 derived for (2.45) is an approximation of (μν)pσΩ|γ>0(\mu-\nu)\frac{\partial p}{\partial\sigma_{\Omega}}|_{\gamma}>0, while the condition cr2R<0\frac{c_{*}r^{2}}{R}<0 corresponding to (2.46) is an approximation of pσΩ~|γ~<0\frac{\partial p}{\partial\sigma_{\tilde{\Omega}}}|_{\tilde{\gamma}}<0.

Remark 2.5.
Refer to caption
Figure 2. A possible example exhibiting ill-posedness of motion of γ\gamma when μ<ν\mu<\nu. Here Ω\Omega consists of a big chuck and a thin branch; the latter is expected to move towards right. Along a part of γ\gamma, more mobile normal cells are pushing less mobile tumor cells, i.e., (μν)pσΩ|γ<0(\mu-\nu)\frac{\partial p}{\partial\sigma_{\Omega}}|_{\gamma}<0, making the local evolution of γ\gamma ill-posed. Note that both Ω\Omega and Ω~\tilde{\Omega} are star-shaped with respect to the origin, denoted by OO, so γ\gamma and γ~\tilde{\gamma} are still graphs of functions of θ\theta in the polar coordinate at this moment.

From the above discussion, we can tell that μ<ν\mu<\nu is not sufficient for the parabolicity of the motion of γ\gamma, since the domain geometry determines how γ\gamma moves in a nontrivial way. Even if both Ω\Omega and Ω~\tilde{\Omega} are assumed to be star-shaped with respect to the same point, which means γ\gamma and γ~\tilde{\gamma} can be realized as graphs of functions of θ\theta in the polar coordinate, we can still manufacture such domain so that the parabolicity fails along some portion of γ\gamma. A possible example is shown in Figure 2, where both Ω\Omega and Ω~\tilde{\Omega} are star-shaped with respect to the origin, denoted by OO in the figure. The tumor domain Ω\Omega consists of a big chunk and a thin branch, where the branch is so thin that it does not significantly affect pp. Then it is conceivable that the thin branch will be pushed towards right under the expansion of the big chunk. So along the part of γ\gamma where the thin branch faces the main body of Ω\Omega, the more mobile normal cells are pushing the less mobile tumor cells (since μ<ν\mu<\nu), which potentially gives rise to ill-posedness of the motion of γ\gamma locally.

Given this, in order to guarantee well-posedness of the motion of γ\gamma, it is then reasonable to assume γ\gamma and γ~\tilde{\gamma} are close to concentric circles, in which case the tumor cells should be always pushing the normal ones.

The parabolicity of (2.45) and (2.46) is sufficient to prove existence of local solutions in Section 8, and then uniqueness in Section 9. The proof of the local existence uses two layers of fixed-point arguments. We sketch it as follows.

  1. (1)

    Fix a pair of interface dynamics ff and FF.

  2. (2)

    First we need to solve for [φ][\varphi]^{\prime} and ϕ\phi^{\prime} associated with the domain defined by ff and FF. To do that, in Section 7, we apply a fixed-point argument to static equations (7.1) and (7.2) (or equivalently, (2.33) and (2.34)) with the variable ([φ],ϕ)([\varphi]^{\prime},\phi^{\prime}). In this argument, we need estimates for the remainder terms that are omitted in (2.43) and (2.44), which turn out to be small.

  3. (3)

    Once [φ][\varphi]^{\prime} and ϕ\phi^{\prime} are well-defined and their estimates are derived, we use them to bound 𝒮ϕ\mathcal{H}\mathcal{S}\phi^{\prime} and 𝒮[φ]\mathcal{H}\mathcal{S}[\varphi]^{\prime} in (2.45) and (2.46) as well as all the remainder terms omitted there (see (8.1) and (8.2) for the complete equations). They altogether will be put as the source terms in some fractional heat equations similar to (2.45) and (2.46) in order to construct a new pair of interface dynamics, f~\tilde{f} and F~\tilde{F}. See (8.32)-(8.34). We then show in Section 8 that the map (f,F)(f~,F~)(f,F)\mapsto(\tilde{f},\tilde{F}) has a fixed-point, which is a local solution.

  4. (4)

    In this process, bounds for all the remainder terms will rely on estimates derived in Sections 3-6. See Section 2.5 for what are exactly covered in them.

The proof of the uniqueness boils down to showing that [φ][\varphi]^{\prime}, ϕ\phi^{\prime} and all the remainder terms above depend in a Lipschitz manner on the interface configurations. Indeed, what we prove is a stability-type estimate for ff and FF based on that of the fractional heat equation. We carry out this idea in Section 9 with a twist in order to slightly reduce complexity of the proof.

2.5. Organization of the paper

In Section 3, we first study the pressure pp in an almost radially symmetric geometry by elliptic regularity theory. In Section 4, we derive estimates concerning gradients of the growth potential Γg\Gamma*g (c.f., (2.3) and (2.4)) restricted to inner and outer interfaces. Section 5 is devoted to proving estimates for singular integral operators 𝒦γ\mathcal{K}_{\gamma} and 𝒦γ~\mathcal{K}_{\tilde{\gamma}}, while Section 6 establishes estimates for integral operators 𝒦γ,γ~\mathcal{K}_{\gamma,\tilde{\gamma}} and 𝒦γ~,γ\mathcal{K}_{\tilde{\gamma},\gamma}. Section 7 shows well-definedness of [φ][\varphi] and ϕ\phi as well as their estimates. Finally, we prove existence of the local solution in Section 8, and uniqueness in Section 9. Some auxiliary estimates and non-essential lengthy proofs are collected in Appendices.

3. Pressure in an Almost Radially Symmetric Geometry

In this section, we focus on the elliptic equation (1.6) and (1.7) for the pressure pp in Ω~\tilde{\Omega}. The goal is to quantify the fact that if Ω\Omega and Ω~\tilde{\Omega} are close to two concentric discs then pp should be almost radially symmetric.

3.1. Geometric preliminaries

First we introduce a diffeomorphism to transform the physical domain into a reference domain that is perfectly radially symmetric. Given δ\delta satisfying (2.23), define a cut-off function ηδC0([0,+))\eta_{\delta}\in C_{0}^{\infty}([0,+\infty)), such that ηδ[0,1]\eta_{\delta}\in[0,1] is only supported on [12δ,1+2δ][1-2\delta,1+2\delta], ηδ=1\eta_{\delta}=1 on [1δ,1+δ][1-\delta,1+\delta], and for some universal constant CC,

(3.1) δ|ηδ|+δ2|ηδ|C.\delta|\eta_{\delta}^{\prime}|+\delta^{2}|\eta_{\delta}^{\prime\prime}|\leq C.

Let X=(ρcosω,ρsinω)2X=(\rho\cos\omega,\rho\sin\omega)\in\mathbb{R}^{2} be a point in the reference coordinate, with ρ=|X|\rho=|X|. Define

(3.2) x(X)=[1+h(ω)ηδ(ρr)+H(ω)ηδ(ρR)]X=:ζ(X)X.x(X)=\left[1+h(\omega)\eta_{\delta}\left(\frac{\rho}{r}\right)+H(\omega)\eta_{\delta}\left(\frac{\rho}{R}\right)\right]X=:\zeta(X)X.

where hh and HH are given in (2.19). In other words, xx deforms the reference domain in the radial direction only in annuli around Br\partial B_{r} and BR\partial B_{R}. It depends only on γ\gamma in the annulus Br(1+2δ)\Br(12δ)B_{r(1+2\delta)}\backslash B_{r(1-2\delta)}, and only on γ~\tilde{\gamma} in BR\BR(12δ)B_{R}\backslash B_{R(1-2\delta)}; x(X)=Xx(X)=X elsewhere. We may also write ζ(X)\zeta(X) as ζ(ρ,ω)\zeta(\rho,\omega). We know that x(X)x(X) is a diffeomorphism from 2\mathbb{R}^{2} to itself provided that ζ(ρ,ω)ρ\zeta(\rho,\omega)\rho is strictly increasing in ρ\rho for all ω𝕋\omega\in\mathbb{T}. This is true if oscillations of γ\gamma and γ~\tilde{\gamma} in the radial direction are small with respect to the gap between them, i.e.,

(3.3) δ1(hL(𝕋)+HL(𝕋))1.\delta^{-1}(\|h\|_{L^{\infty}(\mathbb{T})}+\|H\|_{L^{\infty}(\mathbb{T})})\ll 1.

Under this assumption, it is clear that x(X)x(X) maps BrB_{r}, BRB_{R}, Br\partial B_{r} and BR\partial B_{R} to Ω\Omega, Ω~\tilde{\Omega}, γ\gamma and γ~\tilde{\gamma}, respectively. We denote its inverse to be X(x)X(x).

3.2. Pressure in the reference coordinate

Define

(3.4) p~(X):=p(x(X)).\tilde{p}(X):=p(x(X)).

By (1.6), p~\tilde{p} in the XX-coordinate satisfies

(3.5) XkxiXk(aXjxiXjp~)=G(p~)χBrin BR,p~|BR=0.-\frac{\partial X_{k}}{\partial x_{i}}\nabla_{X_{k}}\left(a\frac{\partial X_{j}}{\partial x_{i}}\nabla_{X_{j}}\tilde{p}\right)=G(\tilde{p})\chi_{B_{r}}\quad\mbox{in }B_{R},\quad\tilde{p}|_{\partial B_{R}}=0.

Here the summation convention applies to repeated indices. We also used the notations

(3.6) a(X)=μχBr(X)+νχBR\Br(X)a(X)=\mu\chi_{B_{r}}(X)+\nu\chi_{B_{R}\backslash B_{r}}(X)

and

(3.7) Xkxi=(Xx)ki=[(xX)1]ki,\frac{\partial X_{k}}{\partial x_{i}}=\left(\frac{\partial X}{\partial x}\right)_{ki}=\left[\left(\frac{\partial x}{\partial X}\right)^{-1}\right]_{ki},

which are both functions in XX. We may write a=a(ρ)a=a(\rho).

In order to show p~\tilde{p} is almost radially symmetric, we shall compare it with a radially symmetric solution pp_{*} defined as follows.

Lemma 3.1.

Let pp_{*} be the H1H^{1}-weak solution of

(3.8) Xi(aXip)=G(p)χBrin BR,p|BR=0.-\nabla_{X_{i}}\left(a\nabla_{X_{i}}p_{*}\right)=G(p_{*})\chi_{B_{r}}\quad\mbox{in }B_{R},\quad p_{*}|_{\partial B_{R}}=0.

Then

  1. (1)

    pp_{*} is radially symmetric, i.e., p=p(ρ)p_{*}=p_{*}(\rho), and pW1,(BR)p_{*}\in W^{1,\infty}(B_{R}).

  2. (2)

    p[0,pM]p_{*}\in[0,p_{M}] and pp_{*} is decreasing in ρ\rho.

  3. (3)

    In B¯R\Br\overline{B}_{R}\backslash B_{r},

    (3.9) p(ρ)=ln(ρR)12πνBrG(p)dx.p_{*}(\rho)=-\ln\left(\frac{\rho}{R}\right)\cdot\frac{1}{2\pi\nu}\int_{B_{r}}G(p_{*})\,dx.
  4. (4)

    For ρ[0,r]\rho\in[0,r],

    (3.10) BρG(p)dxCρ2min{1,μ1/2r1},\int_{B_{\rho}}G(p_{*})\,dx\leq C\rho^{2}\min\left\{1,\mu^{1/2}r^{-1}\right\},

    where CC only depends on GG.

  5. (5)

    For ρ[0,r]\rho\in[0,r^{-}],

    (3.11) |p|(ρ)Cmin{μ1ρ,μ1/2}.|\nabla p_{*}|(\rho)\leq C\min\left\{\mu^{-1}\rho,\mu^{-1/2}\right\}.

    For ρ[r+,R]\rho\in[r^{+},R],

    (3.12) |p|(ρ)Cρ1min{ν1r2,μ1/2ν1r}.|\nabla p_{*}|(\rho)\leq C\rho^{-1}\min\left\{\nu^{-1}r^{2},\mu^{1/2}\nu^{-1}r\right\}.

    Here the constants CC only depend on GG. Note that p\nabla p_{*} has discontinuity across Br\partial B_{r}, so we use |p|(r±)|\nabla p_{*}|(r^{\pm}) to distinguish the gradients taken from two sides of Br\partial B_{r}.

Proof.

The radial symmetry of pp_{*} can be justified by a symmetrization argument in the variational formulation of (3.8). W1,W^{1,\infty}-regularity of pp_{*} follows from [39]. The fact that p[0,pM]p_{*}\in[0,p_{M}] and monotonicity of pp_{*} follows from the maximum principle. (3.9) is obvious since pp_{*} is harmonic in B¯R\Br\overline{B}_{R}\backslash B_{r}.

The first bounds in (3.10)-(3.12) follow from the trivial fact |G|C|G|\leq C and

(3.13) |p|(ρ)=|ρp(ρ)|=12πa(ρ)ρBρBrG(p)dx.|\nabla p_{*}|(\rho)=|\partial_{\rho}p_{*}(\rho)|=\frac{1}{2\pi a(\rho)\rho}\int_{B_{\rho}\cap B_{r}}G(p_{*})\,dx.

To show the second bounds in (3.11) and (3.12), define 𝒢\mathcal{G} to be the anti-derivative of GG with 𝒢(0)=0\mathcal{G}(0)=0. Obviously, 𝒢0\mathcal{G}\geq 0 on [0,pM][0,p_{M}], attaining its maximum at pMp_{M}. Since in the polar coordinate, pp_{*} solves μρ(ρρp)=ρG(p)-\mu\partial_{\rho}(\rho\partial_{\rho}p_{*})=\rho G(p_{*}) on [0,r)[0,r), by multiplying with ρ1ρp\rho^{-1}\partial_{\rho}p_{*},

(3.14) μρ1|ρp|2+μρp2ρp+G(p)ρp=0.\mu\rho^{-1}|\partial_{\rho}p_{*}|^{2}+\mu\partial_{\rho}p_{*}\partial^{2}_{\rho}p_{*}+G(p_{*})\partial_{\rho}p_{*}=0.

Taking integral in ρ\rho from 0 to τ[0,r]\tau\in[0,r^{-}] yields

(3.15) μ0τρ1|ρp|2dρ+μ2|ρp(τ)|2+𝒢(p(τ))=𝒢(p(0)).\mu\int_{0}^{\tau}\rho^{-1}|\partial_{\rho}p_{*}|^{2}\,d\rho+\frac{\mu}{2}|\partial_{\rho}p_{*}(\tau)|^{2}+\mathcal{G}(p_{*}(\tau))=\mathcal{G}(p_{*}(0)).

Hence,

(3.16) ρpL(Br)22μ1𝒢(pM).\|\partial_{\rho}p_{*}\|_{L^{\infty}(B_{r})}^{2}\leq 2\mu^{-1}\mathcal{G}(p_{M}).

By the nature of discontinuity of ρp\partial_{\rho}p_{*} across Br\partial B_{r}, a(ρ)ρpa(\rho)\partial_{\rho}p_{*} is continuous at ρ=r\rho=r. Hence, for ρ[r+,R]\rho\in[r^{+},R], ρp(ρ)=μrνρρp|ρ=r\partial_{\rho}p_{*}(\rho)=\frac{\mu r}{\nu\rho}\partial_{\rho}p_{*}|_{\rho=r_{-}}. This gives the second bound in (3.12). Finally, the second bound in (3.10) follow from (3.12), (3.13) and the fact that G(p(ρ))G(p_{*}(\rho)) is increasing in ρ\rho. MM \square

In order to derive a bound for (p~p)(\tilde{p}-p_{*}), we need estimates concerning x(X)x(X) and its inverse. Denote

(3.17) m0:=\displaystyle m_{0}:= δ1hL(𝕋)+hL(𝕋),\displaystyle\;\delta^{-1}\|h\|_{L^{\infty}(\mathbb{T})}+\|h^{\prime}\|_{L^{\infty}(\mathbb{T})},
(3.18) M0:=\displaystyle M_{0}:= δ1HL(𝕋)+HL(𝕋).\displaystyle\;\delta^{-1}\|H\|_{L^{\infty}(\mathbb{T})}+\|H^{\prime}\|_{L^{\infty}(\mathbb{T})}.
Lemma 3.2.

Suppose h,HW1,(𝕋)h,H\in W^{1,\infty}(\mathbb{T}) satisfy that m0+M01m_{0}+M_{0}\ll 1. Then

(3.19) XxIdL(Br(1+2δ)\Br(12δ))\displaystyle\left\|\frac{\partial X}{\partial x}-Id\right\|_{L^{\infty}(B_{r(1+2\delta)}\backslash B_{r(1-2\delta)})}\leq Cm0,\displaystyle\;Cm_{0},
(3.20) XxIdL(BR\BR(12δ))\displaystyle\left\|\frac{\partial X}{\partial x}-Id\right\|_{L^{\infty}(B_{R}\backslash B_{R(1-2\delta)})}\leq CM0,\displaystyle\;CM_{0},

and

(3.21) XkXkxiL(Br(1+2δ)\Br(12δ))\displaystyle\left\|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{i}}\right\|_{L^{\infty}(B_{r(1+2\delta)}\backslash B_{r(1-2\delta)})}\leq C(δr)1m0,\displaystyle\;C(\delta r)^{-1}m_{0},
(3.22) XkXkxiL(BR\BR(12δ))\displaystyle\left\|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{i}}\right\|_{L^{\infty}(B_{R}\backslash B_{R(1-2\delta)})}\leq C(δR)1M0.\displaystyle\;C(\delta R)^{-1}M_{0}.

The constants CC are all universal.

Proof.

The proof is a straightforward calculation. By (3.2),

(3.23) xX=ζId+Xζ.\frac{\partial x}{\partial X}=\zeta\cdot Id+X\otimes\nabla\zeta.

Its inverse is given by

(3.24) Xx=(ζ2+ζρρζ)1((ζ+ρρζ)IdXζ)=ζ1Id(ζ2+ζρρζ)1Xζ.\begin{split}\frac{\partial X}{\partial x}=&\;(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta)^{-1}((\zeta+\rho\partial_{\rho}\zeta)Id-X\otimes\nabla\zeta)\\ =&\;\zeta^{-1}Id-(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta)^{-1}X\otimes\nabla\zeta.\end{split}

On the other hand, since Xk(XkxixiXj)=Xkδkj=0\nabla_{X_{k}}(\frac{\partial X_{k}}{\partial x_{i}}\cdot\frac{\partial x_{i}}{\partial X_{j}})=\nabla_{X_{k}}\delta_{kj}=0, we deduce that

(3.25) Xk(Xkxl)=XjxlXkxiXk(xiXj)=Xjxl(ζ2+ζρρζ)1((ζ+ρρζ)δkiXk(ζ)i)Xk(ζδij+XiXjζ)=Xjxl(ζ2+ζρρζ)1Xj(ζ2+ζρρζ).\begin{split}&\;\nabla_{X_{k}}\left(\frac{\partial X_{k}}{\partial x_{l}}\right)\\ =&\;-\frac{\partial X_{j}}{\partial x_{l}}\frac{\partial X_{k}}{\partial x_{i}}\cdot\nabla_{X_{k}}\left(\frac{\partial x_{i}}{\partial X_{j}}\right)\\ =&\;-\frac{\partial X_{j}}{\partial x_{l}}\cdot(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta)^{-1}((\zeta+\rho\partial_{\rho}\zeta)\delta_{ki}-X_{k}(\nabla\zeta)_{i})\cdot\nabla_{X_{k}}(\zeta\delta_{ij}+X_{i}\nabla_{X_{j}}\zeta)\\ =&\;-\frac{\partial X_{j}}{\partial x_{l}}(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta)^{-1}\nabla_{X_{j}}(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta).\end{split}

By (3.2),

(3.26) ζ1=\displaystyle\zeta-1= hηδ(ρr)+Hηδ(ρR),\displaystyle\;h\eta_{\delta}\left(\frac{\rho}{r}\right)+H\eta_{\delta}\left(\frac{\rho}{R}\right),
(3.27) ρρζ=\displaystyle\rho\partial_{\rho}\zeta= h(ω)ρrηδ(ρr)+H(ω)ρRηδ(ρR).\displaystyle\;h(\omega)\cdot\frac{\rho}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)+H(\omega)\cdot\frac{\rho}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right).

Thanks to the smallness of m0m_{0} and M0M_{0},

(3.28) |ζ1|+|(ζ2+ζρρζ)1|1.|\zeta-1|+|(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta)-1|\ll 1.

Hence, by the last line in (3.24),

(3.29) |XxId|C(|1ζ|+ρ|ζ|),\left|\frac{\partial X}{\partial x}-Id\right|\leq C(|1-\zeta|+\rho|\nabla\zeta|),

We calculate

(3.30) ζ=[h(ω)1rηδ(ρr)+H(ω)1Rηδ(ρR)]er+[h(ω)ηδ(ρr)+H(ω)ηδ(ρR)]ρ1eθ,\begin{split}\nabla\zeta=&\;\left[h(\omega)\cdot\frac{1}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)+H(\omega)\cdot\frac{1}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right)\right]e_{r}\\ &\;+\left[h^{\prime}(\omega)\cdot\eta_{\delta}\left(\frac{\rho}{r}\right)+H^{\prime}(\omega)\cdot\eta_{\delta}\left(\frac{\rho}{R}\right)\right]\rho^{-1}e_{\theta},\end{split}

where ere_{r} and eθe_{\theta} are defined in (2.32). Then (3.19) and (3.20) follow easily.

Similarly, (3.25) implies that

(3.31) |Xk(Xkxl)|C|(ζ2+ζρρζ)|C(|ζ|+|(ρρζ)|).\left|\nabla_{X_{k}}\left(\frac{\partial X_{k}}{\partial x_{l}}\right)\right|\leq C|\nabla(\zeta^{2}+\zeta\rho\partial_{\rho}\zeta)|\leq C(|\nabla\zeta|+|\nabla(\rho\partial_{\rho}\zeta)|).

Then (3.21) and (3.22) follow from (3.30) and the calculation

(3.32) (ρρζ)=[h(ω)ρr2ηδ(ρr)+H(ω)ρR2ηδ(ρR)]er+[h(ω)1rηδ(ρr)+H(ω)1Rηδ(ρR)]er+[h(ω)ρrηδ(ρr)+H(ω)ρRηδ(ρR)]ρ1eθ.\begin{split}\nabla(\rho\partial_{\rho}\zeta)=&\;\left[h(\omega)\cdot\frac{\rho}{r^{2}}\eta_{\delta}^{\prime\prime}\left(\frac{\rho}{r}\right)+H(\omega)\cdot\frac{\rho}{R^{2}}\eta_{\delta}^{\prime\prime}\left(\frac{\rho}{R}\right)\right]\cdot e_{r}\\ &\;+\left[h(\omega)\cdot\frac{1}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)+H(\omega)\cdot\frac{1}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right)\right]\cdot e_{r}\\ &\;+\left[h^{\prime}(\omega)\cdot\frac{\rho}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)+H^{\prime}(\omega)\cdot\frac{\rho}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right)\right]\cdot\rho^{-1}e_{\theta}.\end{split}

MM \square

By (3.5) and (3.8), (p~p)(\tilde{p}-p_{*}) solves

(3.33) Xk(aXkxiXjxiXj(p~p))+c(p~p)=Xk[a(XkxiXjxiδkj)Xjp]XkXkxiaXjxiXjp~,\begin{split}-\nabla_{X_{k}}&\left(a\frac{\partial X_{k}}{\partial x_{i}}\frac{\partial X_{j}}{\partial x_{i}}\nabla_{X_{j}}(\tilde{p}-p_{*})\right)+c(\tilde{p}-p_{*})\\ &\;=\nabla_{X_{k}}\left[a\left(\frac{\partial X_{k}}{\partial x_{i}}\frac{\partial X_{j}}{\partial x_{i}}-\delta_{kj}\right)\nabla_{X_{j}}p_{*}\right]-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{i}}\cdot a\frac{\partial X_{j}}{\partial x_{i}}\nabla_{X_{j}}\tilde{p},\end{split}

in the reference coordinate with boundary condition (p~p)|BR=0(\tilde{p}-p_{*})|_{\partial B_{R}}=0. Here

(3.34) c(X):=G(p~)G(p)p~pχBr0c(X):=-\frac{G(\tilde{p})-G(p_{*})}{\tilde{p}-p_{*}}\chi_{B_{r}}\geq 0

due to the assumptions on GG. Then we can prove stability of the pressure with respect to the domain geometry around the radially symmetric case.

Lemma 3.3.

Under the assumptions of Lemma 3.2,

(3.35) (p~p)L2(BR)C(m0+M0)(δR2)1/2,\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\leq C(m_{0}+M_{0})(\delta R^{2})^{1/2},

where C=C(μ,ν,G)C=C(\mu,\nu,G).

Proof.

We take inner product of (p~p)(\tilde{p}-p_{*}) and (3.33) and integrate by parts,

(3.36) BRa|XjxiXj(p~p)|2dX+Brc|p~p|2dX=BRXk(p~p)a(XkxiXjxiδkj)XjpdXBR(p~p)XkXkxiaXjxi[Xj(p~p)+Xjp]dX.\begin{split}&\;\int_{B_{R}}a\left|\frac{\partial X_{j}}{\partial x_{i}}\nabla_{X_{j}}(\tilde{p}-p_{*})\right|^{2}\,dX+\int_{B_{r}}c|\tilde{p}-p_{*}|^{2}\,dX\\ =&\;-\int_{B_{R}}\nabla_{X_{k}}(\tilde{p}-p_{*})\cdot a\left(\frac{\partial X_{k}}{\partial x_{i}}\frac{\partial X_{j}}{\partial x_{i}}-\delta_{kj}\right)\nabla_{X_{j}}p_{*}\,dX\\ &\;-\int_{B_{R}}(\tilde{p}-p_{*})\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{i}}\cdot a\frac{\partial X_{j}}{\partial x_{i}}[\nabla_{X_{j}}(\tilde{p}-p_{*})+\nabla_{X_{j}}p_{*}]\,dX.\end{split}

By the definition of aa in (3.6), the assumptions on GG, Lemma 3.2 and Hölder’s inequality,

(3.37) (p~p)L2(BR)2C[m0(δr2)1/2+M0(δR2)1/2](p~p)L2(BR)pL(BR)+C(δr)1m0p~pL2(Br(1+2δ)\Br(12δ))(p~p)L2(BR)+C(δR)1M0p~pL2(BR\BR(12δ))(p~p)L2(BR)+C(δr)1m0p~pL2(Br(1+2δ)\Br(12δ))(δr2)1/2pL(BR)+C(δR)1M0p~pL2(BR\BR(12δ))(δR2)1/2pL(BR),\begin{split}&\;\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}^{2}\\ \leq&\;C[m_{0}(\delta r^{2})^{1/2}+M_{0}(\delta R^{2})^{1/2}]\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\|\nabla p_{*}\|_{L^{\infty}(B_{R})}\\ &\;+C(\delta r)^{-1}m_{0}\cdot\|\tilde{p}-p_{*}\|_{L^{2}(B_{r(1+2\delta)}\backslash B_{r(1-2\delta)})}\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\\ &\;+C(\delta R)^{-1}M_{0}\cdot\|\tilde{p}-p_{*}\|_{L^{2}(B_{R}\backslash B_{R(1-2\delta)})}\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\\ &\;+C(\delta r)^{-1}m_{0}\cdot\|\tilde{p}-p_{*}\|_{L^{2}(B_{r(1+2\delta)}\backslash B_{r(1-2\delta)})}\cdot(\delta r^{2})^{1/2}\|\nabla p_{*}\|_{L^{\infty}(B_{R})}\\ &\;+C(\delta R)^{-1}M_{0}\cdot\|\tilde{p}-p_{*}\|_{L^{2}(B_{R}\backslash B_{R(1-2\delta)})}\cdot(\delta R^{2})^{1/2}\|\nabla p_{*}\|_{L^{\infty}(B_{R})},\end{split}

where C=C(μ,ν,G)C=C(\mu,\nu,G). We proceed in two different cases.

Case 1.

If R/2r<RR/2\leq r<R, by (2.23) and Poincaré inequality on thin domains,

(3.38) p~pL2(BR\Br(12δ))C(Rr(12δ))(p~p)L2(BR)C(δr)(p~p)L2(BR).\begin{split}\|\tilde{p}-p_{*}\|_{L^{2}(B_{R}\backslash B_{r(1-2\delta)})}\leq&\;C(R-r(1-2\delta))\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\\ \leq&\;C(\delta r)\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}.\end{split}

Combining this with (3.37) yields

(3.39) (p~p)L2(BR)2C(m0+M0)(δR2)1/2(p~p)L2(BR)pL(BR)+C(m0+M0)(p~p)L2(BR)2.\begin{split}&\;\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}^{2}\\ \leq&\;C(m_{0}+M_{0})(\delta R^{2})^{1/2}\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\|\nabla p_{*}\|_{L^{\infty}(B_{R})}\\ &\;+C(m_{0}+M_{0})\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}^{2}.\end{split}

By Young’s inequality, smallness of m0m_{0} and M0M_{0} and Lemma 3.1, the desired estimate follows.

Case 2.

If otherwise r<R/2r<R/2, by (2.23), δC\delta\geq C for some universal constant C>0C>0. We shall first derive a bound for p~pL(BR)\|\tilde{p}-p_{*}\|_{L^{\infty}(B_{R})}.

Recall that pp solves (1.6) and (1.7). Taking inner product of (1.6) and pp, we find that

(3.40) pL2(Ω~)2CΩG(p)pdxC|Ω|Cr2,\|\nabla p\|_{L^{2}(\tilde{\Omega})}^{2}\leq C\int_{\Omega}G(p)p\,dx\leq C|\Omega|\leq Cr^{2},

where C=C(μ,ν,G)C=C(\mu,\nu,G). Hence, by Lemma 3.2, in the reference coordinate,

(3.41) XjxiXjp~L2(BR)Cr.\left\|\frac{\partial X_{j}}{\partial x_{i}}\nabla_{X_{j}}\tilde{p}\right\|_{L^{2}(B_{R})}\leq Cr.

Now consider (3.33). By boundedness of weak solutions [40, Theorem 8.16],

(3.42) p~pL(BR)C(R1/2a(XkxiXjxiδkj)XjpL4(BR)+RXkXkxiaXjxiXjp~L2(BR)).\begin{split}&\;\|\tilde{p}-p_{*}\|_{L^{\infty}(B_{R})}\\ \leq&\;C\left(R^{1/2}\left\|a\left(\frac{\partial X_{k}}{\partial x_{i}}\frac{\partial X_{j}}{\partial x_{i}}-\delta_{kj}\right)\nabla_{X_{j}}p_{*}\right\|_{L^{4}(B_{R})}+R\left\|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{i}}\cdot a\frac{\partial X_{j}}{\partial x_{i}}\nabla_{X_{j}}\tilde{p}\right\|_{L^{2}(B_{R})}\right).\end{split}

Applying Lemma 3.1, Lemma 3.2, (3.41) and the fact δC\delta\geq C,

(3.43) p~pL(BR)CR1/2(m0(δr2)1/4+M0(δR2)1/4)pL(BR)+CR(m0(δr)1+M0(δR)1)rC(m0+M0)(δR2)1/2,\begin{split}&\;\|\tilde{p}-p_{*}\|_{L^{\infty}(B_{R})}\\ \leq&\;CR^{1/2}(m_{0}(\delta r^{2})^{1/4}+M_{0}(\delta R^{2})^{1/4})\|\nabla p_{*}\|_{L^{\infty}(B_{R})}\\ &\;+CR(m_{0}(\delta r)^{-1}+M_{0}(\delta R)^{-1})\cdot r\\ \leq&\;C(m_{0}+M_{0})(\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,G)C=C(\mu,\nu,G).

With this estimate and Lemma 3.1, (3.37) becomes

(3.44) (p~p)L2(BR)2C(m0+M0)(δR2)1/2(p~p)L2(BR)pL(BR)+C(m0+M0)p~pL(BR)(p~p)L2(BR)+C(m0+M0)p~pL(BR)(δR2)1/2pL(BR)C(m0+M0)(δR2)1/2(p~p)L2(BR)+C(m0+M0)2δR2.\begin{split}&\;\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}^{2}\\ \leq&\;C(m_{0}+M_{0})(\delta R^{2})^{1/2}\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\|\nabla p_{*}\|_{L^{\infty}(B_{R})}\\ &\;+C(m_{0}+M_{0})\|\tilde{p}-p_{*}\|_{L^{\infty}(B_{R})}\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\\ &\;+C(m_{0}+M_{0})\|\tilde{p}-p_{*}\|_{L^{\infty}(B_{R})}\cdot(\delta R^{2})^{1/2}\|\nabla p_{*}\|_{L^{\infty}(B_{R})}\\ \leq&\;C(m_{0}+M_{0})(\delta R^{2})^{1/2}\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\\ &\;+C(m_{0}+M_{0})^{2}\delta R^{2}.\end{split}

Then the desired estimate follows from Young’s inequality.

MM \square

Remark 3.1.

The above estimate involves δR2\delta R^{2}. If δ1(hL+HL)1\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\ll 1, by (2.23), there exist universal constants 0<c1<c20<c_{1}<c_{2}, such that

c1|Ω~0\Ω0|δR2c2|Ω~0\Ω0|.c_{1}|\tilde{\Omega}_{0}\backslash\Omega_{0}|\leq\delta R^{2}\leq c_{2}|\tilde{\Omega}_{0}\backslash\Omega_{0}|.

It is noteworthy that |Ω~t\Ωt||\tilde{\Omega}_{t}\backslash\Omega_{t}| is constant in time provided that γ\gamma and γ~\tilde{\gamma} have sufficient regularity. This is because the transporting velocity field φ-\nabla\varphi in Ω~t\Ωt\tilde{\Omega}_{t}\backslash\Omega_{t} is divergence-free.

3.3. More stability results

For later use, further stability results are presented here for the interface velocities and the pressure, with respect to the interface configurations.

Fix 0<r<R0<r<R and take δ\delta as in (2.23). Given two pairs of interface configurations (γ1,γ~1)(\gamma_{1},\tilde{\gamma}_{1}) and (γ2,γ~2)(\gamma_{2},\tilde{\gamma}_{2}), let (h1,H1),(h2,H2)(h_{1},H_{1}),(h_{2},H_{2}) be defined as in (2.8)-(2.19). As in (3.17) and (3.18), we define m0,im_{0,i} and M0,iM_{0,i} that correspond to hih_{i} and HiH_{i} (i=1,2)(i=1,2). We additionally introduce for some α(0,1)\alpha\in(0,1),

(3.45) mα,i:=\displaystyle m_{\alpha,i}:= δ1hiL+δαhiC˙α,\displaystyle\;\delta^{-1}\|h_{i}\|_{L^{\infty}}+\delta^{\alpha}\|h_{i}^{\prime}\|_{\dot{C}^{\alpha}},
(3.46) Mα,i:=\displaystyle M_{\alpha,i}:= δ1HiL+δαHiC˙α.\displaystyle\;\delta^{-1}\|H_{i}\|_{L^{\infty}}+\delta^{\alpha}\|H_{i}^{\prime}\|_{\dot{C}^{\alpha}}.

Also denote

(3.47) Δm0:=\displaystyle\Delta m_{0}:= δ1h1h2L(𝕋)+h1h2L(𝕋),\displaystyle\;\delta^{-1}\|h_{1}-h_{2}\|_{L^{\infty}(\mathbb{T})}+\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}(\mathbb{T})},
(3.48) ΔM0:=\displaystyle\Delta M_{0}:= δ1H1H2L(𝕋)+H1H2L(𝕋),\displaystyle\;\delta^{-1}\|H_{1}-H_{2}\|_{L^{\infty}(\mathbb{T})}+\|H_{1}^{\prime}-H_{2}^{\prime}\|_{L^{\infty}(\mathbb{T})},
(3.49) Δmα:=\displaystyle\Delta m_{\alpha}:= δ1h1h2L(𝕋)+δαh1h2C˙α(𝕋),\displaystyle\;\delta^{-1}\|h_{1}-h_{2}\|_{L^{\infty}(\mathbb{T})}+\delta^{\alpha}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\alpha}(\mathbb{T})},
(3.50) ΔMα:=\displaystyle\Delta M_{\alpha}:= δ1H1H2L(𝕋)+δαH1H2C˙α(𝕋).\displaystyle\;\delta^{-1}\|H_{1}-H_{2}\|_{L^{\infty}(\mathbb{T})}+\delta^{\alpha}\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\alpha}(\mathbb{T})}.

Then we can show

Lemma 3.4.

Suppose (h1,H1),(h2,H2)C1,α(𝕋)×C1,α(𝕋)(h_{1},H_{1}),(h_{2},H_{2})\in C^{1,\alpha}(\mathbb{T})\times C^{1,\alpha}(\mathbb{T}) for some α(0,14)\alpha\in(0,\frac{1}{4}), satisfying that for i=1,2i=1,2, mα,i+Mα,i1m_{\alpha,i}+M_{\alpha,i}\ll 1. Then

(3.51) th1th2Cα(𝕋)+tH1tH2Cα(𝕋)C(Δmα+ΔMα),\|\partial_{t}h_{1}-\partial_{t}h_{2}\|_{C^{\alpha}(\mathbb{T})}+\|\partial_{t}H_{1}-\partial_{t}H_{2}\|_{C^{\alpha}(\mathbb{T})}\leq C_{*}(\Delta m_{\alpha}+\Delta M_{\alpha}),

where C=C(α,μ,ν,r,R,G)C_{*}=C_{*}(\alpha,\mu,\nu,r,R,G). Here thi\partial_{t}h_{i} and tHi\partial_{t}H_{i} are the interface velocities in the radial direction, normalized by rr and RR respectively (see (2.13).)

Let pip_{i} (i=1,2)(i=1,2) denote the pressure solving (1.6) and (1.7) on the physical domain that is determined by γi\gamma_{i} and γ~i\tilde{\gamma}_{i}, while p~i\tilde{p}_{i} denotes its pull back into the reference coordinate as in (3.4). An important intermediate result in proving Lemma 3.4 is the following lemma on C1,αC^{1,\alpha}-bound for (p~1p~2)(\tilde{p}_{1}-\tilde{p}_{2}), which will be also used when proving uniqueness of the local solution in Section 9.

Lemma 3.5.

Under the assumption of Lemma 3.4,

(3.52) p~1p~2L(BR)C(Δm0+ΔM0),\|\tilde{p}_{1}-\tilde{p}_{2}\|_{L^{\infty}(B_{R})}\leq C_{*}(\Delta m_{0}+\Delta M_{0}),

and

(3.53) p~1p~2C1,α(Br¯)+p~1p~2C1,α(BR\Br¯)C(Δmα+ΔMα),\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\leq C_{*}(\Delta m_{\alpha}+\Delta M_{\alpha}),

where C=C(α,μ,ν,r,R,G)C_{*}=C_{*}(\alpha,\mu,\nu,r,R,G).

Their proofs involve lengthy calculation, while they are relatively independent from the rest of the paper. So we leave them to Appendix B.

4. Gradient Estimates for Γg\Gamma*g along Interfaces

In this section, we shall derive estimates concerning er(Γg)e_{r}\cdot\nabla(\Gamma*g) and eθ(Γg)e_{\theta}\cdot\nabla(\Gamma*g) along γ\gamma and γ~\tilde{\gamma}, where er=(cosθ,sinθ)e_{r}=(\cos\theta,\sin\theta) and eθ=(sinθ,cosθ)e_{\theta}=(-\sin\theta,\cos\theta). Aiming at greater generality, instead of working with gg defined in (2.4), here we shall assume g:=g0(X(x))g:=g_{0}(X(x)) for some g0g_{0} defined in the reference coordinate and supported on B(1+4δ)r¯\overline{B_{(1+4\delta)r}}, where X(x)X(x) is the inverse of x(X)x(X) defined by (3.2). We remark that the support is a slightly larger than the one corresponding to (2.4) (Br¯\overline{B_{r}} in that case). The motivation for this will be clear in Section 9. Also note that B(1+4δ)r¯B(12δ)R\overline{B_{(1+4\delta)r}}\subset B_{(1-2\delta)R}.

4.1. Preliminaries

We introduce Poisson kernel PP on the 2-D unit disc and its conjugate QQ:

(4.1) P(s,ξ)=\displaystyle P(s,\xi)= 1s21+s22scosξ,\displaystyle\;\frac{1-s^{2}}{1+s^{2}-2s\cos\xi},
(4.2) Q(s,ξ)=\displaystyle Q(s,\xi)= 2ssinξ1+s22scosξ.\displaystyle\;\frac{2s\sin\xi}{1+s^{2}-2s\cos\xi}.

Elementary estimates for them as well as their derivatives are collected in Lemma A.1. Define

(4.3) K(s,ξ):=\displaystyle K(s,\xi):= 2s2sinξ1+s22scosξ=sQ(s,ξ),\displaystyle\;\frac{2s^{2}\sin\xi}{1+s^{2}-2s\cos\xi}=sQ(s,\xi),
(4.4) J(s,ξ):=\displaystyle J(s,\xi):= 2(scosξ1)s1+s22scosξ=s(1+P(s,ξ)).\displaystyle\;\frac{2(s\cos\xi-1)s}{1+s^{2}-2s\cos\xi}=-s(1+P(s,\xi)).

See (4.43) and (4.44) for the motivation of defining these kernels. They have the following properties.

Lemma 4.1.

Let zi[0,2]z_{i}\in[0,2] (i=1,2,3,4)(i=1,2,3,4). Suppose for some w[0,2]w\in[0,2] and ξ𝕋\xi\in\mathbb{T}, |ziw|c(|ξ|+|1w|)|z_{i}-w|\leq c(|\xi|+|1-w|). Here cc is some universal small constant, whose smallness will be clear in the proof. Then

(4.5) |K(zi,ξ)|C|zi|(1+w22wcosξ)1/2,|K(z_{i},\xi)|\leq\frac{C|z_{i}|}{(1+w^{2}-2w\cos\xi)^{1/2}},
(4.6) |Ks(zi,ξ)|+|Kξ(zi,ξ)|C1+w22wcosξ,\left|\frac{\partial K}{\partial s}(z_{i},\xi)\right|+\left|\frac{\partial K}{\partial\xi}(z_{i},\xi)\right|\leq\frac{C}{1+w^{2}-2w\cos\xi},
(4.7) |K(z1,ξ)K(z2,ξ)|C|z1z2|1+w22wcosξ,|K(z_{1},\xi)-K(z_{2},\xi)|\leq\frac{C|z_{1}-z_{2}|}{1+w^{2}-2w\cos\xi},
(4.8) |Ks(z1,ξ)Ks(z2,ξ)|+|Kξ(z1,ξ)Kξ(z2,ξ)|C|z1z2|(1+w22wcosξ)3/2,\left|\frac{\partial K}{\partial s}(z_{1},\xi)-\frac{\partial K}{\partial s}(z_{2},\xi)\right|+\left|\frac{\partial K}{\partial\xi}(z_{1},\xi)-\frac{\partial K}{\partial\xi}(z_{2},\xi)\right|\leq\frac{C|z_{1}-z_{2}|}{(1+w^{2}-2w\cos\xi)^{3/2}},

and

(4.9) |Ks(z1,ξ)Ks(z2,ξ)Ks(z3,ξ)+Ks(z4,ξ)|C|z1z2z3+z4|(1+w22wcosξ)3/2+C(|z1z2|+|z3z4|)(|z1z3|+|z2z4|)(1+w22wcosξ)2.\begin{split}&\;\left|\frac{\partial K}{\partial s}(z_{1},\xi)-\frac{\partial K}{\partial s}(z_{2},\xi)-\frac{\partial K}{\partial s}(z_{3},\xi)+\frac{\partial K}{\partial s}(z_{4},\xi)\right|\\ \leq&\;\frac{C|z_{1}-z_{2}-z_{3}+z_{4}|}{(1+w^{2}-2w\cos\xi)^{3/2}}+\frac{C(|z_{1}-z_{2}|+|z_{3}-z_{4}|)(|z_{1}-z_{3}|+|z_{2}-z_{4}|)}{(1+w^{2}-2w\cos\xi)^{2}}.\end{split}

Here CC are all universal constants. These estimates also hold if KK is replaced by JJ.

Proof.

We derive that

(4.10) |1+zi22zicosξ1+w22wcosξ1||ziw|+2|wcosξ|1+w22wcosξ|ziw|.\left|\frac{1+z_{i}^{2}-2z_{i}\cos\xi}{1+w^{2}-2w\cos\xi}-1\right|\leq\frac{|z_{i}-w|+2|w-\cos\xi|}{1+w^{2}-2w\cos\xi}|z_{i}-w|.

When cc is suitably small, the right hand side is bounded by 12\frac{1}{2}. This implies that (1+zi22zicosξ)(1+z_{i}^{2}-2z_{i}\cos\xi) are comparable with (1+w22wcosξ)(1+w^{2}-2w\cos\xi), and thus they are comparable with each other. Then (4.5) and (4.6) follow from Lemma A.1 and the assumption zi[0,2]z_{i}\in[0,2]. Using the same facts, we can also derive that

(4.11) |K(z1,ξ)K(z2,ξ)|=|2sinξ(z1z2)[z1(1z2cosξ)+z2(1z1cosξ)](1+z122z1cosξ)(1+z222z2cosξ)|C|z1z2|1+w22wcosξ.\begin{split}|K(z_{1},\xi)-K(z_{2},\xi)|=&\;\left|\frac{2\sin\xi(z_{1}-z_{2})[z_{1}(1-z_{2}\cos\xi)+z_{2}(1-z_{1}\cos\xi)]}{(1+z_{1}^{2}-2z_{1}\cos\xi)(1+z_{2}^{2}-2z_{2}\cos\xi)}\right|\\ \leq&\;\frac{C|z_{1}-z_{2}|}{1+w^{2}-2w\cos\xi}.\end{split}

Moreover, by Lemma A.1,

(4.12) Ks=\displaystyle\frac{\partial K}{\partial s}= Q+ssQ=Q+2ssinξ(1s2)(1+s22scosξ)2=Q(1+P),\displaystyle\;Q+s\partial_{s}Q=Q+\frac{2s\sin\xi(1-s^{2})}{(1+s^{2}-2s\cos\xi)^{2}}=Q(1+P),
(4.13) Kξ=\displaystyle\frac{\partial K}{\partial\xi}= sξQ=s2sP=KtanξQK.\displaystyle\;s\partial_{\xi}Q=s^{2}\partial_{s}P=\frac{K}{\tan\xi}-QK.

Then (4.8) and (4.9) follow from

(4.14) P(z1,ξ)P(z2,ξ)=\displaystyle P(z_{1},\xi)-P(z_{2},\xi)=  2(z1z2)(1z1)(1z2)(1cosξ)(1+z1z2)(1+z122z1cosξ)(1+z222z2cosξ),\displaystyle\;2(z_{1}-z_{2})\cdot\frac{(1-z_{1})(1-z_{2})-(1-\cos\xi)(1+z_{1}z_{2})}{(1+z_{1}^{2}-2z_{1}\cos\xi)(1+z_{2}^{2}-2z_{2}\cos\xi)},
(4.15) Q(z1,ξ)Q(z2,ξ)=\displaystyle Q(z_{1},\xi)-Q(z_{2},\xi)=  2(z1z2)sinξ((1z1)+z1(1z2))(1+z122z1cosξ)(1+z222z2cosξ),\displaystyle\;2(z_{1}-z_{2})\cdot\frac{\sin\xi((1-z_{1})+z_{1}(1-z_{2}))}{(1+z_{1}^{2}-2z_{1}\cos\xi)(1+z_{2}^{2}-2z_{2}\cos\xi)},

and Lemma A.1 by a direct calculation as in (4.11).

The estimates for JJ can be justified similarly. Indeed,

(4.16) J(z1,ξ)J(z2,ξ)=2(z1z2)z1z2sin2ξ(1z1cosξ)(1z2cosξ)(1+z122z1cosξ)(1+z222z2cosξ),J(z_{1},\xi)-J(z_{2},\xi)=2(z_{1}-z_{2})\cdot\frac{z_{1}z_{2}\sin^{2}\xi-(1-z_{1}\cos\xi)(1-z_{2}\cos\xi)}{(1+z_{1}^{2}-2z_{1}\cos\xi)(1+z_{2}^{2}-2z_{2}\cos\xi)},

and

(4.17) Js=\displaystyle\frac{\partial J}{\partial s}= (1+P)ssP=1PQtanξ+Q2,\displaystyle\;-(1+P)-s\partial_{s}P=-1-P-\frac{Q}{\tan\xi}+Q^{2},
(4.18) Jξ=\displaystyle\frac{\partial J}{\partial\xi}= sξP=s2sQ=PK.\displaystyle\;-s\partial_{\xi}P=s^{2}\partial_{s}Q=PK.

MM \square

Suppose the inner interface γ\gamma and the outer interface γ~\tilde{\gamma} are defined by hh and HH through (2.8)-(2.19), respectively. Let ηδ\eta_{\delta} be defined as in the beginning of Section 3. With ρ=rw\rho=rw, let

(4.19) b~(w,θ,ξ):=\displaystyle\tilde{b}(w,\theta,\xi):= w(1+h(θ+ξ)ηδ(w))1+h(θ),\displaystyle\;\frac{w(1+h(\theta+\xi)\eta_{\delta}(w))}{1+h(\theta)},
(4.20) B~(w,θ,ξ):=\displaystyle\tilde{B}(w,\theta,\xi):= rRw(1+h(θ+ξ)ηδ(w))1+H(θ).\displaystyle\;\frac{r}{R}\cdot\frac{w(1+h(\theta+\xi)\eta_{\delta}(w))}{1+H(\theta)}.

Additionally, we define

(4.21) b(w,θ):=\displaystyle b(w,\theta):= b~(w,θ,0)=w(1+h(θ)ηδ(w))1+h(θ),\displaystyle\;\tilde{b}(w,\theta,0)=\frac{w(1+h(\theta)\eta_{\delta}(w))}{1+h(\theta)},
(4.22) B(w,θ):=\displaystyle B(w,\theta):= B~(w,θ,0)=rRw(1+h(θ)ηδ(w))1+H(θ).\displaystyle\;\tilde{B}(w,\theta,0)=\frac{r}{R}\cdot\frac{w(1+h(\theta)\eta_{\delta}(w))}{1+H(\theta)}.

The motivation of introducing these quantities will be clear later in (4.43) and (4.44). In what follows, we will work with several different configurations of interfaces, determined by hih_{i} and HiH_{i} (i=1,2)(i=1,2), respectively. We define the corresponding quantities b~i\tilde{b}_{i}, B~i\tilde{B}_{i}, bib_{i} and BiB_{i} as above, with hh and HH replaced by hih_{i} and HiH_{i}.

Recall that m0,im_{0,i} and M0,iM_{0,i} are defined in (3.17) and (3.18), while Δm0\Delta m_{0} and ΔM0\Delta M_{0} are defined in (3.47) and (3.48). It is straightforward to show that

Lemma 4.2.

Suppose hi,HiW1,(𝕋)h_{i},H_{i}\in W^{1,\infty}(\mathbb{T}) (i=1,2)(i=1,2), with m0,i+M0,i1m_{0,i}+M_{0,i}\ll 1. Then with CC being universal constants, for all w[0,1+4δ]w\in[0,1+4\delta] and ξ𝕋\xi\in\mathbb{T},

(4.23) |b~ibi|\displaystyle|\tilde{b}_{i}-b_{i}|\leq C|ηδ||ξ|hiL,\displaystyle\;C|\eta_{\delta}||\xi|\|h_{i}^{\prime}\|_{L^{\infty}},
(4.24) |b~1b~2|\displaystyle|\tilde{b}_{1}-\tilde{b}_{2}|\leq C(|ηδ||ξ|+δ|1ηδ|)Δm0C(|ξ|+|1w|)Δm0,\displaystyle\;C(|\eta_{\delta}||\xi|+\delta|1-\eta_{\delta}|)\Delta m_{0}\leq C(|\xi|+|1-w|)\Delta m_{0},
(4.25) |b1b2|\displaystyle|b_{1}-b_{2}|\leq C|1ηδ|h1h2LC|1w|Δm0,\displaystyle\;C|1-\eta_{\delta}|\|h_{1}-h_{2}\|_{L^{\infty}}\leq C|1-w|\Delta m_{0},
(4.26) |b~1b1b~2+b2|\displaystyle|\tilde{b}_{1}-b_{1}-\tilde{b}_{2}+b_{2}|\leq C|ηδ||ξ|Δm0,\displaystyle\;C|\eta_{\delta}||\xi|\Delta m_{0},
(4.27) |B~iBi|\displaystyle|\tilde{B}_{i}-B_{i}|\leq CrR|ηδ||ξ|hiL,\displaystyle\;\frac{Cr}{R}|\eta_{\delta}||\xi|\|h_{i}^{\prime}\|_{L^{\infty}},
(4.28) |B~1B~2|+|B1B2|\displaystyle|\tilde{B}_{1}-\tilde{B}_{2}|+|B_{1}-B_{2}|\leq CrR(|ηδ|h1h2L+H1H2L)CrδR(Δm0+ΔM0),\displaystyle\;\frac{Cr}{R}(|\eta_{\delta}|\|h_{1}-h_{2}\|_{L^{\infty}}+\|H_{1}-H_{2}\|_{L^{\infty}})\leq\frac{Cr\delta}{R}(\Delta m_{0}+\Delta M_{0}),
(4.29) |B~1B1B~2+B2|\displaystyle|\tilde{B}_{1}-B_{1}-\tilde{B}_{2}+B_{2}|\leq CrR|ηδ||ξ|(h1h2L+h2LH1H2L),\displaystyle\;\frac{Cr}{R}|\eta_{\delta}||\xi|(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|H_{1}-H_{2}\|_{L^{\infty}}),
(4.30) |B~iθBiθ|\displaystyle\left|\frac{\partial\tilde{B}_{i}}{\partial\theta}-\frac{\partial B_{i}}{\partial\theta}\right|\leq CrR|ηδ|(hiL+HiLhiL|ξ|)CrR|ηδ|hiL,\displaystyle\;\frac{Cr}{R}|\eta_{\delta}|(\|h_{i}^{\prime}\|_{L^{\infty}}+\|H_{i}^{\prime}\|_{L^{\infty}}\|h_{i}^{\prime}\|_{L^{\infty}}|\xi|)\leq\frac{Cr}{R}|\eta_{\delta}|\|h_{i}^{\prime}\|_{L^{\infty}},
(4.31) |B1θB2θ|\displaystyle\left|\frac{\partial B_{1}}{\partial\theta}-\frac{\partial B_{2}}{\partial\theta}\right|\leq CrR(Δm0+ΔM0),\displaystyle\;\frac{Cr}{R}(\Delta m_{0}+\Delta M_{0}),

and

(4.32) |B~1θB1θB~2θ+B2θ|CrR|ηδ|(h1h2L+h2LH1H2L+H1H2Lh1L|ξ|).\begin{split}&\;\left|\frac{\partial\tilde{B}_{1}}{\partial\theta}-\frac{\partial B_{1}}{\partial\theta}-\frac{\partial\tilde{B}_{2}}{\partial\theta}+\frac{\partial B_{2}}{\partial\theta}\right|\\ \leq&\;\frac{Cr}{R}|\eta_{\delta}|(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|H_{1}-H_{2}\|_{L^{\infty}}+\|H_{1}^{\prime}-H_{2}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime}\|_{L^{\infty}}|\xi|).\end{split}

If in addition, hiC1,β(𝕋)h_{i}\in C^{1,\beta}(\mathbb{T}) for some β(0,1)\beta\in(0,1), then

(4.33) |b~iθbiθ|\displaystyle\left|\frac{\partial\tilde{b}_{i}}{\partial\theta}-\frac{\partial b_{i}}{\partial\theta}\right|\leq C|ηδ|(hiC˙β|ξ|β+hiL2|ξ|)C|ηδ|hiC˙β|ξ|β,\displaystyle\;C|\eta_{\delta}|(\|h_{i}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}+\|h_{i}^{\prime}\|_{L^{\infty}}^{2}|\xi|)\leq C|\eta_{\delta}|\|h_{i}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta},
(4.34) |b1θb2θ|\displaystyle\left|\frac{\partial b_{1}}{\partial\theta}-\frac{\partial b_{2}}{\partial\theta}\right|\leq C|1ηδ|(h1h2L+h2Lh1h2L)C|1ηδ|Δm0,\displaystyle\;C|1-\eta_{\delta}|(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}-h_{2}\|_{L^{\infty}})\leq C|1-\eta_{\delta}|\Delta m_{0},

and

(4.35) |b~1θb1θb~2θ+b2θ|C|ηδ||ξ|β(h1h2C˙β+h2C˙βh1h2L).\left|\frac{\partial\tilde{b}_{1}}{\partial\theta}-\frac{\partial b_{1}}{\partial\theta}-\frac{\partial\tilde{b}_{2}}{\partial\theta}+\frac{\partial b_{2}}{\partial\theta}\right|\leq C|\eta_{\delta}||\xi|^{\beta}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|h_{1}-h_{2}\|_{L^{\infty}}).

Here all the constants CC are universal.

Proof.

These estimates follow directly from (4.19)-(4.22) and

(4.36) b~iθ=\displaystyle\frac{\partial\tilde{b}_{i}}{\partial\theta}= whi(θ+ξ)ηδ(w)(1+hi(θ))hi(θ)w(1+hi(θ+ξ)ηδ(w))(1+hi(θ))2,\displaystyle\;\frac{wh_{i}^{\prime}(\theta+\xi)\eta_{\delta}(w)(1+h_{i}(\theta))-h_{i}^{\prime}(\theta)w(1+h_{i}(\theta+\xi)\eta_{\delta}(w))}{(1+h_{i}(\theta))^{2}},
(4.37) biθ=\displaystyle\frac{\partial b_{i}}{\partial\theta}= whi(θ)(ηδ(w)1)(1+hi(θ))2,\displaystyle\;\frac{wh_{i}^{\prime}(\theta)(\eta_{\delta}(w)-1)}{(1+h_{i}(\theta))^{2}},
(4.38) B~iθ=\displaystyle\frac{\partial\tilde{B}_{i}}{\partial\theta}= rRwhi(θ+ξ)ηδ(w)(1+Hi(θ))Hi(θ)w(1+hi(θ+ξ)ηδ(w))(1+Hi(θ))2,\displaystyle\;\frac{r}{R}\cdot\frac{wh_{i}^{\prime}(\theta+\xi)\eta_{\delta}(w)(1+H_{i}(\theta))-H_{i}^{\prime}(\theta)w(1+h_{i}(\theta+\xi)\eta_{\delta}(w))}{(1+H_{i}(\theta))^{2}},
(4.39) Biθ=\displaystyle\frac{\partial B_{i}}{\partial\theta}= rRwhi(θ)ηδ(w)(1+Hi(θ))Hi(θ)w(1+hi(θ)ηδ(w))(1+Hi(θ))2.\displaystyle\;\frac{r}{R}\cdot\frac{wh_{i}^{\prime}(\theta)\eta_{\delta}(w)(1+H_{i}(\theta))-H_{i}^{\prime}(\theta)w(1+h_{i}(\theta)\eta_{\delta}(w))}{(1+H_{i}(\theta))^{2}}.

We omit the details. MM \square

Remark 4.1.

Taking h1=H1=0h_{1}=H_{1}=0 (or h2=H2=0h_{2}=H_{2}=0), we find by (4.24), (4.25) and (4.28) that

(4.40) |b~iw|+|biw|\displaystyle|\tilde{b}_{i}-w|+|b_{i}-w|\leq C(|ξ|+|1w|)m0,i,\displaystyle\;C(|\xi|+|1-w|)m_{0,i},
(4.41) |B~irwR|+|BirwR|\displaystyle\left|\tilde{B}_{i}-\frac{rw}{R}\right|+\left|B_{i}-\frac{rw}{R}\right|\leq CrδR(m0,i+M0,i)C(|ξ|+|1rwR|)(m0,i+M0,i).\displaystyle\;\frac{Cr\delta}{R}(m_{0,i}+M_{0,i})\leq C\left(|\xi|+\left|1-\frac{rw}{R}\right|\right)(m_{0,i}+M_{0,i}).

Here we used the fact that |1rwR|Cδ|1-\frac{rw}{R}|\geq C\delta for all w[0,1+4δ]w\in[0,1+4\delta] (c.f. (2.23)). If m0,i+M0,im_{0,i}+M_{0,i} is assumed to be suitably small, b~i(w,θ,ξ)\tilde{b}_{i}(w,\theta,\xi) and bi(w,θ)b_{i}(w,\theta) satisfy the assumption of Lemma 4.1, while B~i(w,θ,ξ)\tilde{B}_{i}(w,\theta,\xi) and Bi(w,θ)B_{i}(w,\theta) satisfy the assumption of Lemma 4.1 with ww there replaced by rwR\frac{rw}{R}.

4.2. Estimates along γ\gamma

Let x=f(θ)(cosθ,sinθ)γx=f(\theta)(\cos\theta,\sin\theta)\in\gamma. With abuse of notations, let y=x((ρcos(θ+ξ),ρsin(θ+ξ)))y=x((\rho\cos(\theta+\xi),\rho\sin(\theta+\xi))) be an arbitrary point in 2\mathbb{R}^{2}, where the map xx is defined in (3.2). Then

(4.42) eθ(Γg)=12πΩ~(yx)eθ|xy|2g0(X(y))dy=12π𝕋dξ0r(1+4δ)|y|sinξg0(ρ,θ+ξ)f(θ)2+|y|22|y|f(θ)cosξ|y|ρ|y|dρ=14π𝕋dξ0r(1+4δ)2(|y|f(θ))2sinξ1+(|y|f(θ))22|y|f(θ)cosξ|y|ρg0(ρ,θ+ξ)dρ.\begin{split}e_{\theta}\cdot\nabla(\Gamma*g)=&\;\frac{1}{2\pi}\int_{\tilde{\Omega}}\frac{(y-x)\cdot e_{\theta}}{|x-y|^{2}}g_{0}(X(y))\,dy\\ =&\;\frac{1}{2\pi}\int_{\mathbb{T}}d\xi\int_{0}^{r(1+4\delta)}\frac{|y|\sin\xi\cdot g_{0}(\rho,\theta+\xi)}{f(\theta)^{2}+|y|^{2}-2|y|f(\theta)\cos\xi}\cdot\frac{\partial|y|}{\partial\rho}|y|\,d\rho\\ =&\;\frac{1}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{r(1+4\delta)}\frac{2\left(\frac{|y|}{f(\theta)}\right)^{2}\sin\xi}{1+\left(\frac{|y|}{f(\theta)}\right)^{2}-2\frac{|y|}{f(\theta)}\cos\xi}\cdot\frac{\partial|y|}{\partial\rho}g_{0}(\rho,\theta+\xi)\,d\rho.\end{split}

For w[0,1+4δ]w\in[0,1+4\delta], |y|=|y(ρ,θ+ξ)|=rw[1+h(θ+ξ)ηδ(w)]|y|=|y(\rho,\theta+\xi)|=rw[1+h(\theta+\xi)\eta_{\delta}(w)]. Note that the third term in (3.2) does not show up since ρ=rwR(12δ)\rho=rw\leq R(1-2\delta). Then (4.42) becomes

(4.43) (eθ(Γg))γ(θ)=r4π𝕋dξ01+4δK(b~,ξ)|y|ρg0(rw,θ+ξ)dw.(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}=\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}K(\tilde{b},\xi)\cdot\frac{\partial|y|}{\partial\rho}g_{0}(rw,\theta+\xi)\,dw.

Similarly,

(4.44) (er(Γg))γ(θ)=r4π𝕋dξ01+4δJ(b~,ξ)|y|ρg0(rw,θ+ξ)dw.(e_{r}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}=\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}J(\tilde{b},\xi)\cdot\frac{\partial|y|}{\partial\rho}g_{0}(rw,\theta+\xi)\,dw.

We first show

Lemma 4.3.

Suppose for i=1,2i=1,2, hiW1,(𝕋)h_{i}\in W^{1,\infty}(\mathbb{T}) such that m0,i1m_{0,i}\ll 1. Let Δm0\Delta m_{0} be defined in (3.47). Let xi(X)x_{i}(X) be the map (3.2) determined by hih_{i} (HH is irrelevant in this context, and one may take H=0H=0 in (3.2) without loss of generality.) Let Xi(x)X_{i}(x) be its inverse. Define gi=g0(Xi(x))g_{i}=g_{0}(X_{i}(x)). Then

(4.45) (eθ(Γg1))γ1(θ)(eθ(Γg2))γ2(θ)L(𝕋)Crδ|lnδ|Δm0g0L,\|(e_{\theta}\cdot\nabla(\Gamma*g_{1}))_{\gamma_{1}(\theta)}-(e_{\theta}\cdot\nabla(\Gamma*g_{2}))_{\gamma_{2}(\theta)}\|_{L^{\infty}(\mathbb{T})}\leq Cr\delta|\ln\delta|\Delta m_{0}\|g_{0}\|_{L^{\infty}},

where CC is a universal constant.

In addition, (er(Γg1))γ1(θ)(er(Γg2))γ2(θ)L(𝕋)\|(e_{r}\cdot\nabla(\Gamma*g_{1}))_{\gamma_{1}(\theta)}-(e_{r}\cdot\nabla(\Gamma*g_{2}))_{\gamma_{2}(\theta)}\|_{L^{\infty}(\mathbb{T})} satisfies an identical estimate.

Proof.

Let yi=xi(ρ,θ+ξ)y_{i}=x_{i}(\rho,\theta+\xi), with |yi|=ρ[1+hi(θ+ξ)ηδ(ρ/r)]|y_{i}|=\rho[1+h_{i}(\theta+\xi)\eta_{\delta}(\rho/r)]. We calculate

(4.46) |yi|ρ(ρ,θ+ξ)1=hi(θ+ξ)(ηδ(w)+wηδ(w)).\frac{\partial|y_{i}|}{\partial\rho}(\rho,\theta+\xi)-1=h_{i}(\theta+\xi)(\eta_{\delta}(w)+w\eta_{\delta}^{\prime}(w)).

By Lemma 4.1, Lemma 4.2 and Remark 4.1,

(4.47) |𝕋dξ01+4δ(K(b~1,ξ)K(b~2,ξ))|y1|ρg0(rw,θ+ξ)dw|CΔm0g0L𝕋dξ01+4δ|ηδ||ξ|+|1ηδ|δ1+w22wcosξdwCδ|lnδ|Δm0g0L.\begin{split}&\;\left|\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}(K(\tilde{b}_{1},\xi)-K(\tilde{b}_{2},\xi))\cdot\frac{\partial|y_{1}|}{\partial\rho}g_{0}(rw,\theta+\xi)\,dw\right|\\ \leq&\;C\Delta m_{0}\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\frac{|\eta_{\delta}||\xi|+|1-\eta_{\delta}|\delta}{1+w^{2}-2w\cos\xi}\,dw\\ \leq&\;C\delta|\ln\delta|\Delta m_{0}\|g_{0}\|_{L^{\infty}}.\end{split}

On the other hand, by (4.46),

(4.48) |𝕋dξ01+4δK(b~2,ξ)(|y1|ρ|y2|ρ)g0(rw,θ+ξ)dw|C𝕋dξ12δ1+2δ1|1w|+|ξ|h1h2Lδ1g0LdwCδ|lnδ|Δm0g0L.\begin{split}&\;\left|\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}K(\tilde{b}_{2},\xi)\cdot\left(\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right)g_{0}(rw,\theta+\xi)\,dw\right|\\ \leq&\;C\int_{\mathbb{T}}d\xi\int_{1-2\delta}^{1+2\delta}\frac{1}{|1-w|+|\xi|}\cdot\|h_{1}-h_{2}\|_{L^{\infty}}\delta^{-1}\|g_{0}\|_{L^{\infty}}\,dw\\ \leq&\;C\delta|\ln\delta|\Delta m_{0}\|g_{0}\|_{L^{\infty}}.\end{split}

Combining these estimates with (4.43) yields (4.45). The estimate concerning (er(Γgi))γi(θ)(e_{r}\cdot\nabla(\Gamma*g_{i}))_{\gamma_{i}(\theta)} can be justified in the same way. MM \square

Lemma 4.4.

Let hW1,(𝕋)h\in W^{1,\infty}(\mathbb{T}) such that m01m_{0}\ll 1, which defines the map xx in (3.2) and g=g0(X(x))g=g_{0}(X(x)). Then

(4.49) (eθ(Γg))γ(θ)L(𝕋)+(er(Γg))γ(θ)cg0L(𝕋)Cr(m0δ|lnδ|g0L(B(1+4δ)r)+eθg0L2(Br(1+4δ))),\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}\|_{L^{\infty}(\mathbb{T})}+\|(e_{r}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}-c_{g_{0}}\|_{L^{\infty}(\mathbb{T})}\\ \leq&\;Cr(m_{0}\delta|\ln\delta|\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}+\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{r(1+4\delta)})}),\end{split}

where CC is a universal constant and

(4.50) cg0:=12πrBrg0(X)dX.c_{g_{0}}:=-\frac{1}{2\pi r}\int_{B_{r}}g_{0}(X)\,dX.
Proof.

We first derive an LL^{\infty}-estimate of

(4.51) (eθ(Γg0))Br=r4π𝕋dξ01+4δK(w,ξ)g0(rw,θ+ξ)dw,(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}=\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}K(w,\xi)g_{0}(rw,\theta+\xi)\,dw,

which corresponds to the case h=0h=0. Define g¯0(rw)=(2π)1𝕋g0(rw,ξ)dξ\bar{g}_{0}(rw)=(2\pi)^{-1}\int_{\mathbb{T}}g_{0}(rw,\xi)\,d\xi. Since K(w,)K(w,\cdot) is an odd kernel, by Hölder’s inequality and Sobolev embedding,

(4.52) |(eθ(Γg0))Br|=r4π|𝕋dξ01+4δK(w,ξ)(g0(rw,θ+ξ)g¯0(rw))dw|Cr01+4δ1|1w|+|ξ|L1ξ(𝕋)g0(rw,)g¯0(rw)Lξ(𝕋)dwCr01+4δ(1+|ln|1w||)θg0(rw,)L2(𝕋)dwCr1+|ln|1w||L2([0,1+4δ])(01+4δreθg0L2(Brw)2dw)1/2Creθg0L2(Br(1+4δ)).\begin{split}&\;|(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}|\\ =&\;\frac{r}{4\pi}\left|\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}K(w,\xi)(g_{0}(rw,\theta+\xi)-\bar{g}_{0}(rw))\,dw\right|\\ \leq&\;Cr\int_{0}^{1+4\delta}\left\|\frac{1}{|1-w|+|\xi|}\right\|_{L^{1}_{\xi}(\mathbb{T})}\|g_{0}(rw,\cdot)-\bar{g}_{0}(rw)\|_{L^{\infty}_{\xi}(\mathbb{T})}\,dw\\ \leq&\;Cr\int_{0}^{1+4\delta}(1+|\ln|1-w||)\|\partial_{\theta}g_{0}(rw,\cdot)\|_{L^{2}(\mathbb{T})}\,dw\\ \leq&\;Cr\|1+|\ln|1-w||\|_{L^{2}([0,1+4\delta])}\left(\int_{0}^{1+4\delta}r\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(\partial B_{rw})}^{2}\,dw\right)^{1/2}\\ \leq&\;Cr\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{r(1+4\delta)})}.\end{split}

Now we take in Lemma 4.3 that h1=hh_{1}=h and h2=0h_{2}=0, and derive

(4.53) (eθ(Γg))γ(θ)L(𝕋)(eθ(Γg))γ(θ)(eθ(Γg0))BrL(𝕋)+(eθ(Γg0))BrL(𝕋)Crδ|lnδ|m0g0L+Creθg0L2(Br(1+4δ)).\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}\|_{L^{\infty}(\mathbb{T})}\\ \leq&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}-(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}\|_{L^{\infty}(\mathbb{T})}+\|(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}\|_{L^{\infty}(\mathbb{T})}\\ \leq&\;Cr\delta|\ln\delta|m_{0}\|g_{0}\|_{L^{\infty}}+Cr\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{r(1+4\delta)})}.\end{split}

Next we study

(4.54) (er(Γg0))Br=r4π𝕋dξ01+4δJ(w,ξ)(g0(rw,θ+ξ)g¯0(rw))dw+r4π01+4δ𝕋dξJ(w,ξ)g¯0(rw)dw.\begin{split}&\;(e_{r}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}J(w,\xi)(g_{0}(rw,\theta+\xi)-\bar{g}_{0}(rw))\,dw\\ &\;+\frac{r}{4\pi}\int_{0}^{1+4\delta}\int_{\mathbb{T}}d\xi\,J(w,\xi)\bar{g}_{0}(rw)\,dw.\end{split}

The first term can be bounded exactly as in (4.52). We use the definition of JJ in (4.4) to simplify the second term as

(4.55) r4π01+4δ𝕋dξJ(w,ξ)g¯0(rw)dw=r01wg¯0(rw)dw=12πrBrg0(X)dX.\frac{r}{4\pi}\int_{0}^{1+4\delta}\int_{\mathbb{T}}d\xi\,J(w,\xi)\bar{g}_{0}(rw)\,dw=-r\int_{0}^{1}w\bar{g}_{0}(rw)\,dw=-\frac{1}{2\pi r}\int_{B_{r}}g_{0}(X)\,dX.

Then the desired estimate follows. MM \square

Next we derive W1,pW^{1,p}-estimates for (eθ(Γg))γ(θ)(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)} and (er(Γg))γ(θ)(e_{r}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}.

Lemma 4.5.

Assume h1,h2C1,β(𝕋)h_{1},h_{2}\in C^{1,\beta}(\mathbb{T}) for some β(0,1)\beta\in(0,1), such that m0,i1m_{0,i}\ll 1. Let Δm0\Delta m_{0} be defined in (3.47), and let gi(x)=g0(Xi(x))g_{i}(x)=g_{0}(X_{i}(x)). Then for all p[2,)p\in[2,\infty),

(4.56) (eθ(Γg1))γ1(θ)(eθ(Γg2))γ2(θ)W˙1,p(𝕋)Crg0L(B(1+4δ)r)[(1+δβ(h1C˙β+h2C˙β))Δm0+δβh1h2C˙β]+CrΔm0eθg0L2(B(1+4δ)r).\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g_{1}))_{\gamma_{1}(\theta)}-(e_{\theta}\cdot\nabla(\Gamma*g_{2}))_{\gamma_{2}(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}\left[(1+\delta^{\beta}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}))\Delta m_{0}+\delta^{\beta}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}\right]\\ &\;+Cr\Delta m_{0}\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}.\end{split}

where C=C(p,β)C=C(p,\beta).

Proof.

Let yi=xi(ρ,θ+ξ)y_{i}=x_{i}(\rho,\theta+\xi). We take θ\theta-derivative in (4.43).

(4.57) ddθ(eθ(Γgi))γi(θ)=r4π𝕋dξ01+4δdwθ[K(b~i,ξ)|yi|ρg0(rw,ξ+θ)]=r4π𝕋dξ01+4δdw[Ks(b~i,ξ)b~iθKs(bi,ξ)biθ][|yi|ρg0](rw,ξ+θ)+r4π𝕋dξ01+4δdwKs(bi,ξ)biθ([|yi|ρg0](rw,ξ+θ)[|yi|ρg0](rw,θ))r4π𝕋dξ01+4δdw[Ks(b~i,ξ)b~iξ+Kξ(b~i,ξ)]([|yi|ρg0](rw,ξ+θ)[|yi|ρg0](rw,θ))=:Jθ,1(i)+Jθ,2(i)+Jθ,3(i).\begin{split}&\;\frac{d}{d\theta}(e_{\theta}\cdot\nabla(\Gamma*g_{i}))_{\gamma_{i}(\theta)}\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial}{\partial\theta}\left[K(\tilde{b}_{i},\xi)\cdot\frac{\partial|y_{i}|}{\partial\rho}g_{0}(rw,\xi+\theta)\right]\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\frac{\partial K}{\partial s}(\tilde{b}_{i},\xi)\frac{\partial\tilde{b}_{i}}{\partial\theta}-\frac{\partial K}{\partial s}(b_{i},\xi)\frac{\partial b_{i}}{\partial\theta}\right]\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial K}{\partial s}(b_{i},\xi)\frac{\partial b_{i}}{\partial\theta}\left(\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\\ &\;-\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\frac{\partial K}{\partial s}(\tilde{b}_{i},\xi)\frac{\partial\tilde{b}_{i}}{\partial\xi}+\frac{\partial K}{\partial\xi}(\tilde{b}_{i},\xi)\right]\left(\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\\ =:&\;J_{\theta,1}^{(i)}+J_{\theta,2}^{(i)}+J_{\theta,3}^{(i)}.\end{split}

Here we exchanged the integral with the θ\theta-derivative, which can be justified rigorously by a limiting argument. In Jθ,2(i)J_{\theta,2}^{(i)}, an extra term is inserted without changing its value, since sK(bi,ξ)\partial_{s}K(b_{i},\xi) is odd in ξ\xi. When deriving Jθ,3(i)J_{\theta,3}^{(i)}, we used the fact that

(4.58) θ[|yi|ρg0](rw,ξ+θ)=ξ[|yi|ρg0](rw,ξ+θ)\frac{\partial}{\partial\theta}\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}=\frac{\partial}{\partial\xi}\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}

and then integrated by parts. Note that it is not clear a priori whether these integrands are integrable at (w,ξ)=(1,0)(w,\xi)=(1,0), so we need to write them as principal value integrals in the ww-variable in the first place. Yet, it will be clear in the following that all these integrands are absolutely integrable. For this reason, we omitted the notations for the principal value integral.

We start with bounding Jθ,1(1)Jθ,1(2)J_{\theta,1}^{(1)}-J_{\theta,1}^{(2)}.

(4.59) Jθ,1(1)Jθ,1(2)=r4π𝕋dξ01+4δdw(Ks(b~1,ξ)Ks(b~2,ξ))(b~1θb1θ)[|y1|ρg0](rw,ξ+θ)+r4π𝕋dξ01+4δdwKs(b~2,ξ)(b~1θb1θb~2θ+b2θ)[|y1|ρg0](rw,ξ+θ)+r4π𝕋dξ01+4δdw(Ks(b~1,ξ)Ks(b1,ξ)Ks(b~2,ξ)+Ks(b2,ξ))b1θ[|y1|ρg0](rw,ξ+θ)+r4π𝕋dξ01+4δdw(Ks(b~2,ξ)Ks(b2,ξ))(b1θb2θ)[|y1|ρg0](rw,ξ+θ)+r4π𝕋dξ01+4δdwKs(b~2,ξ)(b~2θb2θ)[(|y1|ρ|y2|ρ)g0](rw,ξ+θ)+r4π𝕋dξ01+4δdw(Ks(b~2,ξ)Ks(b2,ξ))b2θ[(|y1|ρ|y2|ρ)g0](rw,ξ+θ).\begin{split}&\;J_{\theta,1}^{(1)}-J_{\theta,1}^{(2)}\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left(\frac{\partial K}{\partial s}(\tilde{b}_{1},\xi)-\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)\right)\left(\frac{\partial\tilde{b}_{1}}{\partial\theta}-\frac{\partial b_{1}}{\partial\theta}\right)\left[\frac{\partial|y_{1}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)\left(\frac{\partial\tilde{b}_{1}}{\partial\theta}-\frac{\partial b_{1}}{\partial\theta}-\frac{\partial\tilde{b}_{2}}{\partial\theta}+\frac{\partial b_{2}}{\partial\theta}\right)\left[\frac{\partial|y_{1}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left(\frac{\partial K}{\partial s}(\tilde{b}_{1},\xi)-\frac{\partial K}{\partial s}(b_{1},\xi)-\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)+\frac{\partial K}{\partial s}(b_{2},\xi)\right)\frac{\partial b_{1}}{\partial\theta}\left[\frac{\partial|y_{1}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left(\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)-\frac{\partial K}{\partial s}(b_{2},\xi)\right)\left(\frac{\partial b_{1}}{\partial\theta}-\frac{\partial b_{2}}{\partial\theta}\right)\left[\frac{\partial|y_{1}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)\left(\frac{\partial\tilde{b}_{2}}{\partial\theta}-\frac{\partial b_{2}}{\partial\theta}\right)\left[\left(\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right)g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left(\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)-\frac{\partial K}{\partial s}(b_{2},\xi)\right)\frac{\partial b_{2}}{\partial\theta}\left[\left(\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right)g_{0}\right]_{(rw,\xi+\theta)}.\end{split}

By Lemma 4.1, Lemma 4.2, Lemma A.1 and (4.46),

(4.60) |Jθ,1(1)Jθ,1(2)|Crg0L𝕋dξ01+4δdw|b~1b~2|(|1w|+|ξ|)3|ηδ|h1C˙β|ξ|β+Crg0L𝕋dξ01+4δdw|ηδ||ξ|β(h1h2C˙β+h2C˙βh1h2L)(|1w|+|ξ|)2+Crg0L𝕋dξ01+4δdw[|b~1b1b~2+b2|(|1w|+|ξ|)3+(|b~1b1|+|b~2b2|)(|b~1b~2|+|b1b2|)(|1w|+|ξ|)4]h1L|1ηδ|+Crg0L𝕋dξ01+4δdw|b~2b2|(|1w|+|ξ|)3|1ηδ|Δm0+Crg0L𝕋dξ01+4δdw1(|1w|+|ξ|)2|ηδ|h2C˙β|ξ|β|ηδ+wηδ|h1h2L+Crg0L𝕋dξ01+4δdw|b~2b2|(|1w|+|ξ|)3h2L|1ηδ||ηδ+wηδ|h1h2LCrg0L[δβ(h1C˙β+h2C˙β)Δm0+δβh1h2C˙β+(h1L+h2L)Δm0].\begin{split}&\;|J_{\theta,1}^{(1)}-J_{\theta,1}^{(2)}|\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|\tilde{b}_{1}-\tilde{b}_{2}|}{(|1-w|+|\xi|)^{3}}\cdot|\eta_{\delta}|\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}\\ &\;+Cr\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|\eta_{\delta}||\xi|^{\beta}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|h_{1}-h_{2}\|_{L^{\infty}})}{(|1-w|+|\xi|)^{2}}\\ &\;+Cr\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\bigg{[}\frac{|\tilde{b}_{1}-b_{1}-\tilde{b}_{2}+b_{2}|}{(|1-w|+|\xi|)^{3}}\\ &\;\qquad\qquad\qquad+\frac{(|\tilde{b}_{1}-b_{1}|+|\tilde{b}_{2}-b_{2}|)(|\tilde{b}_{1}-\tilde{b}_{2}|+|b_{1}-b_{2}|)}{(|1-w|+|\xi|)^{4}}\bigg{]}\|h_{1}^{\prime}\|_{L^{\infty}}|1-\eta_{\delta}|\\ &\;+Cr\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|\tilde{b}_{2}-b_{2}|}{(|1-w|+|\xi|)^{3}}\cdot|1-\eta_{\delta}|\Delta m_{0}\\ &\;+Cr\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{1}{(|1-w|+|\xi|)^{2}}\cdot|\eta_{\delta}|\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}\cdot|\eta_{\delta}+w\eta_{\delta}^{\prime}|\|h_{1}-h_{2}\|_{L^{\infty}}\\ &\;+Cr\|g_{0}\|_{L^{\infty}}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|\tilde{b}_{2}-b_{2}|}{(|1-w|+|\xi|)^{3}}\cdot\|h_{2}^{\prime}\|_{L^{\infty}}|1-\eta_{\delta}|\cdot|\eta_{\delta}+w\eta_{\delta}^{\prime}|\|h_{1}-h_{2}\|_{L^{\infty}}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\left[\delta^{\beta}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\Delta m_{0}+\delta^{\beta}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\Delta m_{0}\right].\end{split}

In the last inequality, when calculating the integrals, we used the facts that ηδ\eta_{\delta} is supported on [12δ,1+2δ][1-2\delta,1+2\delta] and that ηδ(1ηδ)\eta_{\delta}(1-\eta_{\delta}) is supported on [12δ,1δ][1+δ,1+2δ][1-2\delta,1-\delta]\cup[1+\delta,1+2\delta].

For Jθ,2(i)J_{\theta,2}^{(i)} and Jθ,3(i)J_{\theta,3}^{(i)}, by (4.57),

(4.61) (Jθ,2(1)+Jθ,3(1))(Jθ,3(2)+Jθ,2(2))=r4π𝕋dξ01+4δdw[Ks(b1,ξ)b1θKs(b~1,ξ)b~1ξKξ(b~1,ξ)]([(|y1|ρ|y2|ρ)g0](rw,ξ+θ)[(|y1|ρ|y2|ρ)g0](rw,θ))+r4π𝕋dξ01+4δdw(Ks(b1,ξ)Ks(b2,ξ))b1θ([|y2|ρg0](rw,ξ+θ)[|y2|ρg0](rw,θ))r4π𝕋dξ01+4δdw[(Ks(b~1,ξ)Ks(b~2,ξ))b~1ξ+(Kξ(b~1,ξ)Kξ(b~2,ξ))]([|y2|ρg0](rw,ξ+θ)[|y2|ρg0](rw,θ))+r4π𝕋dξ01+4δdw[Ks(b2,ξ)(b1b2)θKs(b~2,ξ)(b~1b~2)ξ]([|y2|ρg0](rw,ξ+θ)[|y2|ρg0](rw,θ)).\begin{split}&\;(J_{\theta,2}^{(1)}+J_{\theta,3}^{(1)})-(J_{\theta,3}^{(2)}+J_{\theta,2}^{(2)})\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\frac{\partial K}{\partial s}(b_{1},\xi)\frac{\partial b_{1}}{\partial\theta}-\frac{\partial K}{\partial s}(\tilde{b}_{1},\xi)\frac{\partial\tilde{b}_{1}}{\partial\xi}-\frac{\partial K}{\partial\xi}(\tilde{b}_{1},\xi)\right]\\ &\;\qquad\qquad\cdot\left(\left[\left(\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right)g_{0}\right]_{(rw,\xi+\theta)}-\left[\left(\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right)g_{0}\right]_{(rw,\theta)}\right)\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left(\frac{\partial K}{\partial s}(b_{1},\xi)-\frac{\partial K}{\partial s}(b_{2},\xi)\right)\frac{\partial b_{1}}{\partial\theta}\left(\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\\ &\;-\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\left(\frac{\partial K}{\partial s}(\tilde{b}_{1},\xi)-\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)\right)\frac{\partial\tilde{b}_{1}}{\partial\xi}+\left(\frac{\partial K}{\partial\xi}(\tilde{b}_{1},\xi)-\frac{\partial K}{\partial\xi}(\tilde{b}_{2},\xi)\right)\right]\\ &\;\qquad\qquad\cdot\left(\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\frac{\partial K}{\partial s}(b_{2},\xi)\frac{\partial(b_{1}-b_{2})}{\partial\theta}-\frac{\partial K}{\partial s}(\tilde{b}_{2},\xi)\frac{\partial(\tilde{b}_{1}-\tilde{b}_{2})}{\partial\xi}\right]\\ &\;\qquad\qquad\cdot\left(\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right).\end{split}

We derive in a similar manner.

(4.62) |(Jθ,2(1)+Jθ,3(1))(Jθ,2(2)+Jθ,3(2))|Cr𝕋dξ01+4δdw(|1w|+|ξ|)2|ηδ+wηδ|(h1h2L|g0(rw,ξ+θ)g0(rw,θ)|+h1h2C˙β|ξ|βg0L)+Cr𝕋dξ01+4δdw|b1b2|(|1w|+|ξ|)3|1ηδ|h1L(|g0(rw,ξ+θ)g0(rw,θ)|+|ηδ+wηδ||ξ|βh2C˙βg0L)+Cr𝕋dξ01+4δdw|b~1b~2|(|1w|+|ξ|)3(|g0(rw,ξ+θ)g0(rw,θ)|+|ηδ+wηδ||ξ|βh2C˙βg0L)+Cr𝕋dξ01+4δdw(|1w|+|ξ|)2Δm0(|g0(rw,ξ+θ)g0(rw,θ)|+|ηδ+wηδ||ξ|βh2C˙βg0L)Crg0Lδβ1(h1h2C˙β+Δm0h2C˙β)+CrΔm0𝕋dξ01+4δdw|g0(rw,ξ+θ)g0(rw,θ)|(|1w|+|ξ|)2.\begin{split}&\;\left|(J_{\theta,2}^{(1)}+J_{\theta,3}^{(1)})-(J_{\theta,2}^{(2)}+J_{\theta,3}^{(2)})\right|\\ \leq&\;Cr\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\frac{dw}{(|1-w|+|\xi|)^{2}}\cdot|\eta_{\delta}+w\eta_{\delta}^{\prime}|\\ &\;\qquad\qquad\cdot(\|h_{1}-h_{2}\|_{L^{\infty}}|g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)|+\|h_{1}-h_{2}\|_{\dot{C}^{\beta}}|\xi|^{\beta}\|g_{0}\|_{L^{\infty}})\\ &\;+Cr\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|b_{1}-b_{2}|}{(|1-w|+|\xi|)^{3}}\cdot|1-\eta_{\delta}|\|h_{1}^{\prime}\|_{L^{\infty}}\\ &\;\qquad\qquad\cdot(|g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)|+|\eta_{\delta}+w\eta_{\delta}^{\prime}||\xi|^{\beta}\|h_{2}\|_{\dot{C}^{\beta}}\|g_{0}\|_{L^{\infty}})\\ &\;+Cr\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|\tilde{b}_{1}-\tilde{b}_{2}|}{(|1-w|+|\xi|)^{3}}\\ &\;\qquad\qquad\cdot(|g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)|+|\eta_{\delta}+w\eta_{\delta}^{\prime}||\xi|^{\beta}\|h_{2}\|_{\dot{C}^{\beta}}\|g_{0}\|_{L^{\infty}})\\ &\;+Cr\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\frac{dw}{(|1-w|+|\xi|)^{2}}\cdot\Delta m_{0}\\ &\;\qquad\qquad\cdot(|g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)|+|\eta_{\delta}+w\eta_{\delta}^{\prime}||\xi|^{\beta}\|h_{2}\|_{\dot{C}^{\beta}}\|g_{0}\|_{L^{\infty}})\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\delta^{\beta-1}(\|h_{1}-h_{2}\|_{\dot{C}^{\beta}}+\Delta m_{0}\|h_{2}\|_{\dot{C}^{\beta}})\\ &\;+Cr\Delta m_{0}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)|}{(|1-w|+|\xi|)^{2}}.\end{split}

By Minkowski inequality and Hölder’s inequality, with arbitrary s(12,12+1p)s\in(\frac{1}{2},\frac{1}{2}+\frac{1}{p}) (for definiteness, take s=12+12ps=\frac{1}{2}+\frac{1}{2p}),

(4.63) (Jθ,2(1)+Jθ,3(1))(Jθ,2(2)+Jθ,3(2))Lp(𝕋)Crg0LΔm0+CrΔm001+4δdw[𝕋dξg0(rw,ξ+)g0(rw,)Lpθ(𝕋)2|ξ|1+2s]1/2[𝕋|ξ|1+2sdξ(|1w|+|ξ|)4]1/2Crg0LΔm0+CrΔm001+4δdwg0(rw,)B˙sp,2(𝕋)|1w|1sCrg0LΔm0+CrΔm001+4δdwθg0(rw,)L2(𝕋)|1w|1sCrΔm0(g0L+eθg0L2(B(1+4δ)r)).\begin{split}&\;\left\|(J_{\theta,2}^{(1)}+J_{\theta,3}^{(1)})-(J_{\theta,2}^{(2)}+J_{\theta,3}^{(2)})\right\|_{L^{p}(\mathbb{T})}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\Delta m_{0}\\ &\;+Cr\Delta m_{0}\int_{0}^{1+4\delta}dw\left[\int_{\mathbb{T}}d\xi\,\frac{\|g_{0}(rw,\xi+\cdot)-g_{0}(rw,\cdot)\|_{L^{p}_{\theta}(\mathbb{T})}^{2}}{|\xi|^{1+2s}}\right]^{1/2}\left[\int_{\mathbb{T}}\frac{|\xi|^{1+2s}\,d\xi}{(|1-w|+|\xi|)^{4}}\right]^{1/2}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\Delta m_{0}+Cr\Delta m_{0}\int_{0}^{1+4\delta}dw\,\frac{\|g_{0}(rw,\cdot)\|_{\dot{B}^{s}_{p,2}(\mathbb{T})}}{|1-w|^{1-s}}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\Delta m_{0}+Cr\Delta m_{0}\int_{0}^{1+4\delta}dw\,\frac{\|\partial_{\theta}g_{0}(rw,\cdot)\|_{L^{2}(\mathbb{T})}}{|1-w|^{1-s}}\\ \leq&\;Cr\Delta m_{0}(\|g_{0}\|_{L^{\infty}}+\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}).\end{split}

See e.g. [32, §2.5.12 and §2.7.1] for the definition of Bp,2s(𝕋)B_{p,2}^{s}(\mathbb{T})-space and the embedding of H1(𝕋)H^{1}(\mathbb{T}) into it. Combining this with (4.57) and (4.60), we conclude with (4.56). MM \square

Lemma 4.6.

Under the assumptions of Lemma 4.5,

(4.64) (er(Γg1))γ1(θ)(er(Γg2))γ2(θ)W˙1,p(𝕋)Crg0L(B(1+4δ)r)[(1+δβ(h1C˙β+h2C˙β))Δm0+δβh1h2C˙β]+CrΔm0eθg0L2(B(1+4δ)r).\begin{split}&\;\|(e_{r}\cdot\nabla(\Gamma*g_{1}))_{\gamma_{1}(\theta)}-(e_{r}\cdot\nabla(\Gamma*g_{2}))_{\gamma_{2}(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}\left[(1+\delta^{\beta}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}))\Delta m_{0}+\delta^{\beta}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}\right]\\ &\;+Cr\Delta m_{0}\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}.\end{split}

where C=C(p,β)C=C(p,\beta).

Proof.

We proceed as the proof of Lemma 4.5. By (4.44) and integration by parts,

(4.65) ddθ(er(Γgi))γi(θ)=r4π𝕋dξ01+4δ[Js(b~i,ξ)b~iθJs(bi,ξ)biθ][|yi|ρg0](rw,θ+ξ)dw+r4π𝕋dξ01+4δJs(bi,ξ)biθ([|yi|ρg0](rw,θ+ξ)[|yi|ρg0](rw,θ))dwr4π𝕋dξ01+4δ[Js(b~i,ξ)b~iξ+Jξ(b~i,ξ)]([|yi|ρg0](rw,θ+ξ)[|yi|ρg0](rw,θ))dw+r4π𝕋dξ01+4δJs(bi,ξ)biθ[|yi|ρg0](rw,θ)dw=:Jr,1(i)+Jr,2(i)+Jr,3(i)+Jr,4(i).\begin{split}&\;\frac{d}{d\theta}(e_{r}\cdot\nabla(\Gamma*g_{i}))_{\gamma_{i}(\theta)}\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\left[\frac{\partial J}{\partial s}(\tilde{b}_{i},\xi)\frac{\partial\tilde{b}_{i}}{\partial\theta}-\frac{\partial J}{\partial s}(b_{i},\xi)\frac{\partial b_{i}}{\partial\theta}\right]\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta+\xi)}\,dw\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\frac{\partial J}{\partial s}(b_{i},\xi)\frac{\partial b_{i}}{\partial\theta}\left(\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta+\xi)}-\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\,dw\\ &\;-\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\left[\frac{\partial J}{\partial s}(\tilde{b}_{i},\xi)\frac{\partial\tilde{b}_{i}}{\partial\xi}+\frac{\partial J}{\partial\xi}(\tilde{b}_{i},\xi)\right]\left(\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta+\xi)}-\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\,dw\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\frac{\partial J}{\partial s}(b_{i},\xi)\frac{\partial b_{i}}{\partial\theta}\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\,dw\\ =:&\;J_{r,1}^{(i)}+J_{r,2}^{(i)}+J_{r,3}^{(i)}+J_{r,4}^{(i)}.\end{split}

Estimates concerning Jr,1(i)+Jr,2(i)+Jr,3(i)J_{r,1}^{(i)}+J_{r,2}^{(i)}+J_{r,3}^{(i)} can be derived exactly as in Lemma 4.5. It remains to bound Jr,4(1)Jr,4(2)J_{r,4}^{(1)}-J_{r,4}^{(2)}. By Lemma A.1,

(4.66) 𝕋Js(s,ξ)dξ={4π,if s[0,1),0,if s>1.\int_{\mathbb{T}}\frac{\partial J}{\partial s}(s,\xi)\,d\xi=\begin{cases}-4\pi,&\mbox{if }s\in[0,1),\\ 0,&\mbox{if }s>1.\end{cases}

Hence, thanks to Lemma 4.2 and (4.46),

(4.67) |Jr,4(1)Jr,4(2)|=r|01b1θ[|y1|ρg0](rw,θ)b2θ[|y2|ρg0](rw,θ)dw|Crg0L01|b1θb2θ|||y1|ρ|+|b2θ|||y1|ρ|y2|ρ|dwCrg0LΔm0.\begin{split}&\;|J_{r,4}^{(1)}-J_{r,4}^{(2)}|\\ =&\;r\left|\int_{0}^{1}\frac{\partial b_{1}}{\partial\theta}\left[\frac{\partial|y_{1}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}-\frac{\partial b_{2}}{\partial\theta}\left[\frac{\partial|y_{2}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\,dw\right|\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\int_{0}^{1}\left|\frac{\partial b_{1}}{\partial\theta}-\frac{\partial b_{2}}{\partial\theta}\right|\left|\frac{\partial|y_{1}|}{\partial\rho}\right|+\left|\frac{\partial b_{2}}{\partial\theta}\right|\left|\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right|\,dw\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\Delta m_{0}.\end{split}

This completes the proof. MM \square

Lemma 4.7.

Assume hC1,β(𝕋)h\in C^{1,\beta}(\mathbb{T}) for some β(0,1)\beta\in(0,1), such that m01m_{0}\ll 1. Define g(x)=g0(X(x))g(x)=g_{0}(X(x)). Then for all p[2,)p\in[2,\infty),

(4.68) (eθ(Γg))γ(θ)W˙1,p(𝕋)+(er(Γg))γ(θ)W˙1,p(𝕋)Cr(g0L(B(1+4δ)r)mβ+eθg0L2(B(1+4δ)r)).\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}+\|(e_{r}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;Cr(\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}m_{\beta}+\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}).\end{split}

where C=C(p,β)C=C(p,\beta). Here mβm_{\beta} is defined as in (3.45).

Proof.

As in Lemma 4.4, we first study the case with h=0h=0. By (4.57),

(4.69) ddθ(eθ(Γg0))Br=r4π𝕋dξ01+4δdwKξ(w,ξ)(g0(rw,ξ+θ)g0(rw,θ)).\frac{d}{d\theta}(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}=-\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial K}{\partial\xi}(w,\xi)(g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)).

Hence, arguing as in (4.63),

(4.70) (eθ(Γg0))BrW˙1,pCr𝕋dξ01+4δdwg0(rw,ξ+)g0(rw,)Lpθ(𝕋)(|1w|+|ξ|)2Creθg0L2(B(1+4δ)r).\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\|g_{0}(rw,\xi+\cdot)-g_{0}(rw,\cdot)\|_{L^{p}_{\theta}(\mathbb{T})}}{(|1-w|+|\xi|)^{2}}\\ \leq&\;Cr\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}.\end{split}

Now taking h1=hh_{1}=h and h2=0h_{2}=0 in Lemma 4.5, we find that

(4.71) (eθ(Γg))γ(θ)W˙1,p(𝕋)(eθ(Γg))γ(θ)(eθ(Γg0))BrW˙1,p(𝕋)+(eθ(Γg0))BrW˙1,p(𝕋)Crg0L(B(1+4δ)r)(m0+δβhC˙β)+Creθg0L2(B(1+4δ)r).\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\gamma(\theta)}-(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}\|_{\dot{W}^{1,p}(\mathbb{T})}+\|(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{r}}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}(m_{0}+\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}})+Cr\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}.\end{split}

The estimate for (er(Γg))γ(θ)(e_{r}\cdot\nabla(\Gamma*g))_{\gamma(\theta)} can be derived in exactly the same way. MM \square

4.3. Estimates along γ~\tilde{\gamma}

Next, we derive estimates for er(Γg)e_{r}\cdot\nabla(\Gamma*g) and eθ(Γg)e_{\theta}\cdot\nabla(\Gamma*g) along γ~\tilde{\gamma}, with g(x)=g0(X(x))g(x)=g_{0}(X(x)). We calculate as in (4.42) that

(4.72) (eθ(Γg))γ~(θ)=12π𝕋dξ0r(1+4δ)|y|sinξg0(ρ,θ+ξ)F(θ)2+|y|22|y|F(θ)cosξ|y|ρ|y|dρ=r4π𝕋dξ01+4δK(B~,ξ)|y|ρg0(rw,θ+ξ)dw,\begin{split}(e_{\theta}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}=&\;\frac{1}{2\pi}\int_{\mathbb{T}}d\xi\int_{0}^{r(1+4\delta)}\frac{|y|\sin\xi\cdot g_{0}(\rho,\theta+\xi)}{F(\theta)^{2}+|y|^{2}-2|y|F(\theta)\cos\xi}\cdot\frac{\partial|y|}{\partial\rho}|y|\,d\rho\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}K(\tilde{B},\xi)\cdot\frac{\partial|y|}{\partial\rho}g_{0}(rw,\theta+\xi)\,dw,\end{split}

and

(4.73) (er(Γg))γ~(θ)=r4π𝕋dξ01+4δJ(B~,ξ)|y|ρg0(rw,θ+ξ)dw.(e_{r}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}=\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}J(\tilde{B},\xi)\cdot\frac{\partial|y|}{\partial\rho}g_{0}(rw,\theta+\xi)\,dw.

Arguing as in Lemma 4.3, we can show

Lemma 4.8.

Under the assumptions of Lemma 4.3,

(4.74) (eθ(Γg1))γ~1(θ)(eθ(Γg2))γ~2(θ)L(𝕋)Cr2Rδ|lnδ|(Δm0+ΔM0)g0L,\|(e_{\theta}\cdot\nabla(\Gamma*g_{1}))_{\tilde{\gamma}_{1}(\theta)}-(e_{\theta}\cdot\nabla(\Gamma*g_{2}))_{\tilde{\gamma}_{2}(\theta)}\|_{L^{\infty}(\mathbb{T})}\leq\frac{Cr^{2}}{R}\delta|\ln\delta|(\Delta m_{0}+\Delta M_{0})\|g_{0}\|_{L^{\infty}},

where CC is universal. Moreover, (er(Γg1))γ~1(θ)(er(Γg2))γ~2(θ)L(𝕋)\|(e_{r}\cdot\nabla(\Gamma*g_{1}))_{\tilde{\gamma}_{1}(\theta)}-(e_{r}\cdot\nabla(\Gamma*g_{2}))_{\tilde{\gamma}_{2}(\theta)}\|_{L^{\infty}(\mathbb{T})} satisfies the same estimate.

We omit its proof here, but only note that |B~i|CrR|\tilde{B}_{i}|\leq\frac{Cr}{R} and |ln(1(1+4δ)rR)|CrR|lnδ||\ln(1-\frac{(1+4\delta)r}{R})|\leq\frac{Cr}{R}|\ln\delta|.

Then we prove as in Lemma 4.4 that

Lemma 4.9.

Let h,HW1,(𝕋)h,H\in W^{1,\infty}(\mathbb{T}) such that m0,M01m_{0},M_{0}\ll 1, which define the map xx in (3.2) and g=g0(X(x))g=g_{0}(X(x)). Then

(4.75) (eθ(Γg))γ~(θ)L(𝕋)+(er(Γg))γ~(θ)c~g0L(𝕋)Cr2R((m0+M0)δ|lnδ|g0L(B(1+4δ)r)+eθg0L2(Br(1+4δ))),\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}\|_{L^{\infty}(\mathbb{T})}+\|(e_{r}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}-\tilde{c}_{g_{0}}\|_{L^{\infty}(\mathbb{T})}\\ \leq&\;\frac{Cr^{2}}{R}((m_{0}+M_{0})\delta|\ln\delta|\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}+\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{r(1+4\delta)})}),\end{split}

where CC is universal and

(4.76) c~g0:=12πRBr(1+4δ)g0(X)dX.\tilde{c}_{g_{0}}:=-\frac{1}{2\pi R}\int_{B_{r(1+4\delta)}}g_{0}(X)\,dX.
Proof.

Let g¯0\bar{g}_{0} be as in Lemma 4.4. We proceed as in (4.52) by noticing that K(rwR,)K(\frac{rw}{R},\cdot) is an odd kernel.

(4.77) |(eθ(Γg0))BR|=r4π|𝕋dξ01+4δK(rwR,ξ)(g0(rw,θ+ξ)g¯0(rw))dw|Cr01+4δrR|1rwR|+|ξ|L1ξ(𝕋)g0(rw,)g¯0(rw)Lξ(𝕋)dwCr2Reθg0L2(Br(1+4δ)).\begin{split}&\;|(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{R}}|\\ =&\;\frac{r}{4\pi}\left|\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}K\left(\frac{rw}{R},\xi\right)(g_{0}(rw,\theta+\xi)-\bar{g}_{0}(rw))\,dw\right|\\ \leq&\;Cr\int_{0}^{1+4\delta}\left\|\frac{\frac{r}{R}}{|1-\frac{rw}{R}|+|\xi|}\right\|_{L^{1}_{\xi}(\mathbb{T})}\|g_{0}(rw,\cdot)-\bar{g}_{0}(rw)\|_{L^{\infty}_{\xi}(\mathbb{T})}\,dw\\ \leq&\;\frac{Cr^{2}}{R}\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{r(1+4\delta)})}.\end{split}

Combining this and Lemma 4.8 with h1=hh_{1}=h, H1=HH_{1}=H and h2=H2=0h_{2}=H_{2}=0, we argue as in (4.53) to find that (eθ(Γg))γ~(θ)L(𝕋)\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}\|_{L^{\infty}(\mathbb{T})} satisfies the desired bound.

Similarly,

(4.78) (er(Γg0))BR=r4π𝕋dξ01+4δJ(rwR,ξ)(g0(rw,θ+ξ)g¯0(rw))dw+r4π01+4δ𝕋dξJ(rwR,ξ)g¯0(rw)dw.\begin{split}&\;(e_{r}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{R}}\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}J\left(\frac{rw}{R},\xi\right)(g_{0}(rw,\theta+\xi)-\bar{g}_{0}(rw))\,dw\\ &\;+\frac{r}{4\pi}\int_{0}^{1+4\delta}\int_{\mathbb{T}}d\xi\,J\left(\frac{rw}{R},\xi\right)\bar{g}_{0}(rw)\,dw.\end{split}

The first term can be bounded exactly as in (4.77). For the second term, we notice that r(1+4δ)R1\frac{r(1+4\delta)}{R}\leq 1. By (4.4),

(4.79) r4π01+4δ𝕋dξJ(rwR,ξ)g¯0(rw)dw=r2R01+4δwg¯0(rw)dw=12πRBr(1+4δ)g0(X)dX.\begin{split}&\;\frac{r}{4\pi}\int_{0}^{1+4\delta}\int_{\mathbb{T}}d\xi\,J\left(\frac{rw}{R},\xi\right)\bar{g}_{0}(rw)\,dw\\ =&\;-\frac{r^{2}}{R}\int_{0}^{1+4\delta}w\bar{g}_{0}(rw)\,dw=-\frac{1}{2\pi R}\int_{B_{r(1+4\delta)}}g_{0}(X)\,dX.\end{split}

Then the desired estimate follows. MM \square

We shall follow Lemma 4.5 and Lemma 4.6 to prove W1,pW^{1,p}-estimates concerning (eθ(Γg))γ~(θ)(e_{\theta}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)} and (er(Γg))γ~(θ)(e_{r}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}.

Lemma 4.10.

Assume hi,HiW1,(𝕋)h_{i},H_{i}\in W^{1,\infty}(\mathbb{T}) (i=1,2)(i=1,2) such that m0,i+M0,i1m_{0,i}+M_{0,i}\ll 1. Let Δm0\Delta m_{0} and ΔM0\Delta M_{0} be defined in (3.47) and (3.48), respectively. Define gi(x)=g0(Xi(x))g_{i}(x)=g_{0}(X_{i}(x)) as before. Then for all p[2,)p\in[2,\infty),

(4.80) (eθ(Γg1))γ~1(θ)(eθ(Γg2))γ~2(θ)W˙1,p(𝕋)Cr2Rg0L(B(1+4δ)r)(Δm0+(m0,1+m0,2)ΔM0)+Cr2R(Δm0+ΔM0)eθg0L2(B(1+4δ)r),\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g_{1}))_{\tilde{\gamma}_{1}(\theta)}-(e_{\theta}\cdot\nabla(\Gamma*g_{2}))_{\tilde{\gamma}_{2}(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;\frac{Cr^{2}}{R}\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}(\Delta m_{0}+(m_{0,1}+m_{0,2})\Delta M_{0})\\ &\;+\frac{Cr^{2}}{R}(\Delta m_{0}+\Delta M_{0})\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})},\end{split}

where C=C(p)C=C(p).

Proof.

Following (4.57) and (4.72),

(4.81) ddθ(eθ(Γgi))γ~i(θ)=r4π𝕋dξ01+4δdw[Ks(B~i,ξ)B~iθKs(Bi,ξ)Biθ][|yi|ρg0](rw,ξ+θ)+r4π𝕋dξ01+4δdwKs(Bi,ξ)Biθ([|yi|ρg0](rw,ξ+θ)[|yi|ρg0](rw,θ))r4π𝕋dξ01+4δdw[Ks(B~i,ξ)B~iξ+Kξ(B~i,ξ)]([|yi|ρg0](rw,ξ+θ)[|yi|ρg0](rw,θ))=:J~θ,1(i)+J~θ,2(i)+J~θ,3(i).\begin{split}&\;\frac{d}{d\theta}(e_{\theta}\cdot\nabla(\Gamma*g_{i}))_{\tilde{\gamma}_{i}(\theta)}\\ =&\;\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\frac{\partial K}{\partial s}(\tilde{B}_{i},\xi)\frac{\partial\tilde{B}_{i}}{\partial\theta}-\frac{\partial K}{\partial s}(B_{i},\xi)\frac{\partial B_{i}}{\partial\theta}\right]\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}\\ &\;+\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial K}{\partial s}(B_{i},\xi)\frac{\partial B_{i}}{\partial\theta}\left(\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\\ &\;-\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\left[\frac{\partial K}{\partial s}(\tilde{B}_{i},\xi)\frac{\partial\tilde{B}_{i}}{\partial\xi}+\frac{\partial K}{\partial\xi}(\tilde{B}_{i},\xi)\right]\left(\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\xi+\theta)}-\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\right)\\ =:&\;\tilde{J}_{\theta,1}^{(i)}+\tilde{J}_{\theta,2}^{(i)}+\tilde{J}_{\theta,3}^{(i)}.\end{split}

Then we derive as in (4.59) and (4.60) to find that

(4.82) |J~θ,1(1)J~θ,1(2)|Cr2Rg0L(Δm0+ΔM0)(h1L+h2L)+Cr2Rg0Lh1h2L.\begin{split}&\;|\tilde{J}_{\theta,1}^{(1)}-\tilde{J}_{\theta,1}^{(2)}|\\ \leq&\;\frac{Cr^{2}}{R}\|g_{0}\|_{L^{\infty}}(\Delta m_{0}+\Delta M_{0})(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})+\frac{Cr^{2}}{R}\|g_{0}\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}.\end{split}

Here we used the fact that |1rwR|Cδ|1-\frac{rw}{R}|\geq C\delta for all w[0,1+4δ]w\in[0,1+4\delta]. Moreover, as in (4.61) and (4.62),

(4.83) |(J~θ,2(1)+J~θ,3(1))(J~θ,2(2)+J~θ,3(2))|Cr2Rg0L(Δm0+δβ1h2C˙βΔM0)+Cr2R(Δm0+ΔM0)𝕋dξ01+4δdw|g0(rw,ξ+θ)g0(rw,θ)|(|1rwR|+|ξ|)2.\begin{split}&\;\left|(\tilde{J}_{\theta,2}^{(1)}+\tilde{J}_{\theta,3}^{(1)})-(\tilde{J}_{\theta,2}^{(2)}+\tilde{J}_{\theta,3}^{(2)})\right|\\ \leq&\;\frac{Cr^{2}}{R}\|g_{0}\|_{L^{\infty}}(\Delta m_{0}+\delta^{\beta-1}\|h_{2}\|_{\dot{C}^{\beta}}\Delta M_{0})\\ &\;+\frac{Cr^{2}}{R}(\Delta m_{0}+\Delta M_{0})\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{|g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)|}{(|1-\frac{rw}{R}|+|\xi|)^{2}}.\end{split}

We proceed as in (4.63) to obtain that

(4.84) (J~θ,2(1)+J~θ,3(1))(J~θ,2(2)+J~θ,3(2))Lp(𝕋)Cr2Rg0L(Δm0+δβ1h2C˙βΔM0)+Cr2R(Δm0+ΔM0)eθg0L2(B(1+4δ)r).\begin{split}&\;\left\|(\tilde{J}_{\theta,2}^{(1)}+\tilde{J}_{\theta,3}^{(1)})-(\tilde{J}_{\theta,2}^{(2)}+\tilde{J}_{\theta,3}^{(2)})\right\|_{L^{p}(\mathbb{T})}\\ \leq&\;\frac{Cr^{2}}{R}\|g_{0}\|_{L^{\infty}}(\Delta m_{0}+\delta^{\beta-1}\|h_{2}\|_{\dot{C}^{\beta}}\Delta M_{0})\\ &\;+\frac{Cr^{2}}{R}(\Delta m_{0}+\Delta M_{0})\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}.\end{split}

Combining this with (4.81) and (4.82), we prove (4.80). MM \square

Lemma 4.11.

Under the assumptions of Lemma 4.10,

(4.85) (er(Γg1))γ~1(θ)(er(Γg2))γ~2(θ)W˙1,p(𝕋)Cr2R(Δm0+ΔM0)(g0L(B(1+4δ)r)+eθg0L2(B(1+4δ)r)),\begin{split}&\;\|(e_{r}\cdot\nabla(\Gamma*g_{1}))_{\tilde{\gamma}_{1}(\theta)}-(e_{r}\cdot\nabla(\Gamma*g_{2}))_{\tilde{\gamma}_{2}(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;\frac{Cr^{2}}{R}(\Delta m_{0}+\Delta M_{0})(\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}+\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}),\end{split}

where C=C(p)C=C(p).

Proof.

Following the proofs of Lemma 4.6 and Lemma 4.10, we know that it remains to bound J~r,4(1)J~r,4(2)\tilde{J}_{r,4}^{(1)}-\tilde{J}_{r,4}^{(2)}, where

(4.86) J~r,4(i):=r4π𝕋dξ01+4δJs(Bi,ξ)Biθ[|yi|ρg0](rw,θ)dw.\tilde{J}_{r,4}^{(i)}:=\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}\frac{\partial J}{\partial s}(B_{i},\xi)\frac{\partial B_{i}}{\partial\theta}\left[\frac{\partial|y_{i}|}{\partial\rho}g_{0}\right]_{(rw,\theta)}\,dw.

Since for all w[0,1+4δ]w\in[0,1+4\delta] and ξ𝕋\xi\in\mathbb{T}, Bi1B_{i}\leq 1. By Lemma 4.2, (4.46) and (4.66),

(4.87) |J~r,4(1)J~r,4(2)|Crg0L01+4δ|B1θB2θ|||y1|ρ|+|B2θ|||y1|ρ|y2|ρ|dwCr2Rg0L(Δm0+ΔM0).\begin{split}&\;|\tilde{J}_{r,4}^{(1)}-\tilde{J}_{r,4}^{(2)}|\\ \leq&\;Cr\|g_{0}\|_{L^{\infty}}\int_{0}^{1+4\delta}\left|\frac{\partial B_{1}}{\partial\theta}-\frac{\partial B_{2}}{\partial\theta}\right|\left|\frac{\partial|y_{1}|}{\partial\rho}\right|+\left|\frac{\partial B_{2}}{\partial\theta}\right|\left|\frac{\partial|y_{1}|}{\partial\rho}-\frac{\partial|y_{2}|}{\partial\rho}\right|\,dw\\ \leq&\;\frac{Cr^{2}}{R}\|g_{0}\|_{L^{\infty}}(\Delta m_{0}+\Delta M_{0}).\end{split}

Then by Lemma 4.10, (4.85) follows. MM \square

Lemma 4.12.

Assume h,HW1,(𝕋)h,H\in W^{1,\infty}(\mathbb{T}), such that m0+M01m_{0}+M_{0}\ll 1. Define g(x)=g0(X(x))g(x)=g_{0}(X(x)). Then for all p[2,)p\in[2,\infty),

(4.88) (eθ(Γg))γ~(θ)W˙1,p(𝕋)+(er(Γg))γ~(θ)W˙1,p(𝕋)Cr2R((m0+M0)g0L(B(1+4δ)r)+eθg0L2(B(1+4δ)r)),\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}+\|(e_{r}\cdot\nabla(\Gamma*g))_{\tilde{\gamma}(\theta)}\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;\frac{Cr^{2}}{R}((m_{0}+M_{0})\|g_{0}\|_{L^{\infty}(B_{(1+4\delta)r})}+\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}),\end{split}

where C=C(p)C=C(p).

Proof.

We first study the case with h=H=0h=H=0. By (4.81),

(4.89) ddθ(eθ(Γg0))BR=r4π𝕋dξ01+4δdwKξ(rwR,ξ)(g0(rw,ξ+θ)g0(rw,θ)).\begin{split}&\;\frac{d}{d\theta}(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{R}}\\ =&\;-\frac{r}{4\pi}\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{\partial K}{\partial\xi}\left(\frac{rw}{R},\xi\right)(g_{0}(rw,\xi+\theta)-g_{0}(rw,\theta)).\end{split}

Hence, arguing as in (4.63),

(4.90) (eθ(Γg0))BRW˙1,pCr𝕋dξ01+4δdwrRg0(rw,ξ+)g0(rw,)Lpθ(𝕋)(|1rwR|+|ξ|)2Cr2Reθg0L2(B(1+4δ)r).\begin{split}&\;\|(e_{\theta}\cdot\nabla(\Gamma*g_{0}))_{\partial B_{R}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr\int_{\mathbb{T}}d\xi\int_{0}^{1+4\delta}dw\,\frac{r}{R}\cdot\frac{\|g_{0}(rw,\xi+\cdot)-g_{0}(rw,\cdot)\|_{L^{p}_{\theta}(\mathbb{T})}}{(|1-\frac{rw}{R}|+|\xi|)^{2}}\\ \leq&\;\frac{Cr^{2}}{R}\|e_{\theta}\cdot\nabla g_{0}\|_{L^{2}(B_{(1+4\delta)r})}.\end{split}

The rest of the proof is the same as that of Lemma 4.7. MM \square

5. Estimates for Singular Integral Operators 𝒦γ\mathcal{K}_{\gamma} and 𝒦γ~\mathcal{K}_{\tilde{\gamma}}

In this section, we shall derive estimates for singular integrals of type γ(θ)𝒦γψ\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}\psi and γ(θ)𝒦γψ\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\psi (see the definition in (2.14).) Singular integrals involving 𝒦γ~\mathcal{K}_{\tilde{\gamma}} then follow similar estimates.

For convenience, for ξ𝕋\{0}\xi\in\mathbb{T}\backslash\{0\}, denote

(5.1) Δf(θ):=f(θ+ξ)f(θ)2sinξ2,\Delta f(\theta):=\frac{f(\theta+\xi)-f(\theta)}{2\sin\frac{\xi}{2}},

and

(5.2) l(θ,θ+ξ):=(Δf)2f(θ)f(θ+ξ)=(Δh)2(1+h(θ))(1+h(θ+ξ)).l(\theta,\theta+\xi):=\frac{(\Delta f)^{2}}{f(\theta)f(\theta+\xi)}=\frac{(\Delta h)^{2}}{(1+h(\theta))(1+h(\theta+\xi))}.

We first derive a Hölder estimate for γ𝒦γψ\gamma^{\prime\perp}\cdot\mathcal{K}_{\gamma}\psi for future use.

Lemma 5.1.

Fix β(0,1)\beta\in(0,1). Assume hC1,β(𝕋)h\in C^{1,\beta}(\mathbb{T}), such that m01m_{0}\ll 1. Then

(5.3) γ(θ)𝒦γψC˙βChC˙β(ψCβ+ψLhC˙βhL),\|\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}\psi\|_{\dot{C}^{\beta}}\\ \leq C\|h^{\prime}\|_{\dot{C}^{\beta}}(\|\psi\|_{C^{\beta}}+\|\psi\|_{L^{\infty}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|h^{\prime}\|_{L^{\infty}}),

where C=C(β)C=C(\beta).

Proof.

Using γ(θ)=f(θ)(cosθ,sinθ)\gamma(\theta)=f(\theta)(\cos\theta,\sin\theta),

(5.4) 2πγ(θ)𝒦γψ=p.v.𝕋f(θ)2+f(θ)f(θ+ξ)cosξf(θ)f(θ+ξ)sinξf(θ)2+f(θ+ξ)22f(θ)f(θ+ξ)cosξψ(θ+ξ)dξ.2\pi\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}\psi=\mathrm{p.v.}\int_{\mathbb{T}}\frac{-f(\theta)^{2}+f(\theta)f(\theta+\xi)\cos\xi-f^{\prime}(\theta)f(\theta+\xi)\sin\xi}{f(\theta)^{2}+f(\theta+\xi)^{2}-2f(\theta)f(\theta+\xi)\cos\xi}\psi(\theta+\xi)\,d\xi.

With f(θ)=r(1+h(θ))f(\theta)=r(1+h(\theta)), it can be rewritten as

(5.5)  2πγ(θ)𝒦γψ=12𝕋ψdξ12𝕋(f(θ+ξ)f(θ))2(f(θ)f(θ+ξ))2+f(θ)f(θ+ξ)4sin2ξ2ψ(θ+ξ)dξ+p.v.𝕋(f(θ+ξ)f(θ))f(θ+ξ)f(θ)f(θ+ξ)sinξ(f(θ)f(θ+ξ))2+f(θ)f(θ+ξ)4sin2ξ2ψ(θ+ξ)dξ=12𝕋ψdξ12𝕋l(θ,θ+ξ)1+l(θ,θ+ξ)ψ(θ+ξ)dξ+11+h(θ)p.v.𝕋Δh2sinξ2ψ(θ+ξ)1+l(θ,θ+ξ)dξ+11+h(θ)p.v.𝕋h(θ)2tanξ2ψ(θ+ξ)1+l(θ,θ+ξ)dξ=:L0+L1(θ)+L2(θ)+L3(θ).\begin{split}&\;2\pi\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}\psi\\ =&\;-\frac{1}{2}\int_{\mathbb{T}}\psi\,d\xi-\frac{1}{2}\int_{\mathbb{T}}\frac{(f(\theta+\xi)-f(\theta))^{2}}{(f(\theta)-f(\theta+\xi))^{2}+f(\theta)f(\theta+\xi)\cdot 4\sin^{2}\frac{\xi}{2}}\psi(\theta+\xi)\,d\xi\\ &\;+\mathrm{p.v.}\int_{\mathbb{T}}\frac{(f(\theta+\xi)-f(\theta))f(\theta+\xi)-f^{\prime}(\theta)f(\theta+\xi)\sin\xi}{(f(\theta)-f(\theta+\xi))^{2}+f(\theta)f(\theta+\xi)\cdot 4\sin^{2}\frac{\xi}{2}}\psi(\theta+\xi)\,d\xi\\ =&\;-\frac{1}{2}\int_{\mathbb{T}}\psi\,d\xi-\frac{1}{2}\int_{\mathbb{T}}\frac{l(\theta,\theta+\xi)}{1+l(\theta,\theta+\xi)}\psi(\theta+\xi)\,d\xi\\ &\;+\frac{1}{1+h(\theta)}\mathrm{p.v.}\int_{\mathbb{T}}\frac{\Delta h}{2\sin\frac{\xi}{2}}\cdot\frac{\psi(\theta+\xi)}{1+l(\theta,\theta+\xi)}\,d\xi\\ &\;+\frac{1}{1+h(\theta)}\mathrm{p.v.}\int_{\mathbb{T}}-\frac{h^{\prime}(\theta)}{2\tan\frac{\xi}{2}}\cdot\frac{\psi(\theta+\xi)}{1+l(\theta,\theta+\xi)}\,d\xi\\ =:&\;L_{0}+L_{1}(\theta)+L_{2}(\theta)+L_{3}(\theta).\end{split}

Since fgC˙βfC˙βgL+fLgC˙β\|fg\|_{\dot{C}^{\beta}}\leq\|f\|_{\dot{C}^{\beta}}\|g\|_{L^{\infty}}+\|f\|_{L^{\infty}}\|g\|_{\dot{C}^{\beta}},

(5.6) L1C˙βCsupξ𝕋l1+lψ(θ+ξ)C˙βθCsupξ𝕋l1+lC˙βθψL+Csupξ𝕋l1+lLθψC˙β.\begin{split}\|L_{1}\|_{\dot{C}^{\beta}}\leq&\;C\sup_{\xi\in\mathbb{T}}\left\|\frac{l}{1+l}\psi(\theta+\xi)\right\|_{\dot{C}^{\beta}_{\theta}}\\ \leq&\;C\sup_{\xi\in\mathbb{T}}\left\|\frac{l}{1+l}\right\|_{\dot{C}^{\beta}_{\theta}}\|\psi\|_{L^{\infty}}+C\sup_{\xi\in\mathbb{T}}\left\|\frac{l}{1+l}\right\|_{L^{\infty}_{\theta}}\|\psi\|_{\dot{C}^{\beta}}.\end{split}

By the Lipschitz continuity of x1+x\frac{x}{1+x} on [0,+)[0,+\infty) and the smallness of hh,

(5.7) L1C˙βCsupξ𝕋(Δh)2(1+h(θ))(1+h(θ+ξ))C˙βθψL+ChL2ψC˙βC(hC˙βhLψL+hL2ψC˙β).\begin{split}\|L_{1}\|_{\dot{C}^{\beta}}\leq&\;C\sup_{\xi\in\mathbb{T}}\left\|\frac{(\Delta h)^{2}}{(1+h(\theta))(1+h(\theta+\xi))}\right\|_{\dot{C}^{\beta}_{\theta}}\|\psi\|_{L^{\infty}}+C\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{\dot{C}^{\beta}}\\ \leq&\;C(\|h^{\prime}\|_{\dot{C}^{\beta}}\|h^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{\dot{C}^{\beta}}).\end{split}

Here we used

(5.8) ΔhC˙βθ=h(θ+ξ)h(θ)C˙βθ|2sinξ2||12sinξ20ξh(θ+η)C˙βθdη|ChC˙β.\|\Delta h\|_{\dot{C}^{\beta}_{\theta}}=\frac{\|h(\theta+\xi)-h(\theta)\|_{\dot{C}^{\beta}_{\theta}}}{\left|2\sin\frac{\xi}{2}\right|}\leq\left|\frac{1}{2\sin\frac{\xi}{2}}\int_{0}^{\xi}\|h^{\prime}(\theta+\eta)\|_{\dot{C}^{\beta}_{\theta}}\,d\eta\right|\leq C\|h^{\prime}\|_{\dot{C}^{\beta}}.

Take ε𝕋\varepsilon\in\mathbb{T} and ε0\varepsilon\geq 0 without loss of generality. Write

(5.9) (L2+L3)(θ+ε)(L2+L3)(θ)=(11+h(θ+ε)11+h(θ))𝕋Δh(θ+ε)cosξ2h(θ+ε)2sinξ2ψ(θ+ε+ξ)1+l(θ+ε,θ+ε+ξ)dξ+11+h(θ)𝕋Δh(θ+ε)cosξ2h(θ+ε)2sinξ2(ψ(θ+ε+ξ)1+l(θ+ε,θ+ε+ξ)ψ(θ+ξ)1+l(θ,θ+ξ))dξ+11+h(θ)𝕋Δh(θ+ε)Δh(θ)cosξ2(h(θ+ε)h(θ))2sinξ2ψ(θ)1+h(θ)2(1+h(θ))2dξ+11+h(θ)𝕋Δh(θ+ε)Δh(θ)cosξ2(h(θ+ε)h(θ))2sinξ2(ψ(θ+ξ)1+l(θ,θ+ξ)ψ(θ)1+h(θ)2(1+h(θ))2)dξ.\begin{split}&\;(L_{2}+L_{3})(\theta+\varepsilon)-(L_{2}+L_{3})(\theta)\\ =&\;\left(\frac{1}{1+h(\theta+\varepsilon)}-\frac{1}{1+h(\theta)}\right)\int_{\mathbb{T}}\frac{\Delta h(\theta+\varepsilon)-\cos\frac{\xi}{2}h^{\prime}(\theta+\varepsilon)}{2\sin\frac{\xi}{2}}\cdot\frac{\psi(\theta+\varepsilon+\xi)}{1+l(\theta+\varepsilon,\theta+\varepsilon+\xi)}\,d\xi\\ &\;+\frac{1}{1+h(\theta)}\int_{\mathbb{T}}\frac{\Delta h(\theta+\varepsilon)-\cos\frac{\xi}{2}\cdot h^{\prime}(\theta+\varepsilon)}{2\sin\frac{\xi}{2}}\\ &\;\qquad\cdot\left(\frac{\psi(\theta+\varepsilon+\xi)}{1+l(\theta+\varepsilon,\theta+\varepsilon+\xi)}-\frac{\psi(\theta+\xi)}{1+l(\theta,\theta+\xi)}\right)\,d\xi\\ &\;+\frac{1}{1+h(\theta)}\int_{\mathbb{T}}\frac{\Delta h(\theta+\varepsilon)-\Delta h(\theta)-\cos\frac{\xi}{2}(h^{\prime}(\theta+\varepsilon)-h^{\prime}(\theta))}{2\sin\frac{\xi}{2}}\frac{\psi(\theta)}{1+\frac{h^{\prime}(\theta)^{2}}{(1+h(\theta))^{2}}}\,d\xi\\ &\;+\frac{1}{1+h(\theta)}\int_{\mathbb{T}}\frac{\Delta h(\theta+\varepsilon)-\Delta h(\theta)-\cos\frac{\xi}{2}(h^{\prime}(\theta+\varepsilon)-h^{\prime}(\theta))}{2\sin\frac{\xi}{2}}\\ &\;\qquad\cdot\left(\frac{\psi(\theta+\xi)}{1+l(\theta,\theta+\xi)}-\frac{\psi(\theta)}{1+\frac{h^{\prime}(\theta)^{2}}{(1+h(\theta))^{2}}}\right)\,d\xi.\end{split}

We derive that

(5.10) |Δh(θ+ε)cosξ2h(θ+ε)||0ξh(θ+ε+η)h(θ+ε)dη2sinξ2|+|ξsinξ2sinξ2h(θ+ε)|C|ξ|βhC˙β,\begin{split}&\;\left|\Delta h(\theta+\varepsilon)-\cos\frac{\xi}{2}\cdot h^{\prime}(\theta+\varepsilon)\right|\\ \leq&\;\left|\frac{\int_{0}^{\xi}h^{\prime}(\theta+\varepsilon+\eta)-h^{\prime}(\theta+\varepsilon)\,d\eta}{2\sin\frac{\xi}{2}}\right|+\left|\frac{\xi-\sin\xi}{2\sin\frac{\xi}{2}}h^{\prime}(\theta+\varepsilon)\right|\\ \leq&\;C|\xi|^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}},\end{split}

and

(5.11) |Δh(θ+ε)Δh(θ)cosξ2(h(θ+ε)h(θ))||12sinξ20ξh(θ+ε+η)h(θ+η)dη|+|h(θ+ε)h(θ)|CεβhC˙β.\begin{split}&\;\left|\Delta h(\theta+\varepsilon)-\Delta h(\theta)-\cos\frac{\xi}{2}(h^{\prime}(\theta+\varepsilon)-h^{\prime}(\theta))\right|\\ \leq&\;\left|\frac{1}{2\sin\frac{\xi}{2}}\int_{0}^{\xi}h^{\prime}(\theta+\varepsilon+\eta)-h^{\prime}(\theta+\eta)\,d\eta\right|+|h^{\prime}(\theta+\varepsilon)-h^{\prime}(\theta)|\\ \leq&\;C\varepsilon^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}.\end{split}

Thanks to (5.7) and (5.8),

(5.12) |ψ(θ+ε+ξ)1+l(θ+ε,θ+ε+ξ)ψ(θ+ξ)1+l(θ,θ+ξ)|CεβψC˙β+CψL|(Δh(θ+ε))2(1+h(θ+ε))(1+h(θ+ε+ξ))(Δh)2(1+h(θ))(1+h(θ+ξ))|Cεβ(ψC˙β+ψLhC˙βhL),\begin{split}&\;\left|\frac{\psi(\theta+\varepsilon+\xi)}{1+l(\theta+\varepsilon,\theta+\varepsilon+\xi)}-\frac{\psi(\theta+\xi)}{1+l(\theta,\theta+\xi)}\right|\\ \leq&\;C\varepsilon^{\beta}\|\psi\|_{\dot{C}^{\beta}}\\ &\;+C\|\psi\|_{L^{\infty}}\left|\frac{(\Delta h(\theta+\varepsilon))^{2}}{(1+h(\theta+\varepsilon))(1+h(\theta+\varepsilon+\xi))}-\frac{(\Delta h)^{2}}{(1+h(\theta))(1+h(\theta+\xi))}\right|\\ \leq&\;C\varepsilon^{\beta}(\|\psi\|_{\dot{C}^{\beta}}+\|\psi\|_{L^{\infty}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|h^{\prime}\|_{L^{\infty}}),\end{split}

and similarly,

(5.13) |ψ(θ+ξ)1+l(θ,θ+ξ)ψ(θ)1+h(θ)2(1+h(θ))2|C|ξ|β(ψC˙β+ψLhC˙βhL).\left|\frac{\psi(\theta+\xi)}{1+l(\theta,\theta+\xi)}-\frac{\psi(\theta)}{1+\frac{h^{\prime}(\theta)^{2}}{(1+h(\theta))^{2}}}\right|\leq C|\xi|^{\beta}(\|\psi\|_{\dot{C}^{\beta}}+\|\psi\|_{L^{\infty}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|h^{\prime}\|_{L^{\infty}}).

Lastly,

(5.14) |𝕋Δh(θ+ε)Δh(θ)cosξ2(h(θ+ε)h(θ))2sinξ2dξ|=|p.v.𝕋h(θ+ε+ξ)h(θ+ε)h(θ+ξ)+h(θ)4sin2ξ2dξ|=C|h(θ+ε)h(θ)|CεβhC˙β.\begin{split}&\;\left|\int_{\mathbb{T}}\frac{\Delta h(\theta+\varepsilon)-\Delta h(\theta)-\cos\frac{\xi}{2}(h^{\prime}(\theta+\varepsilon)-h^{\prime}(\theta))}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ =&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}\frac{h(\theta+\varepsilon+\xi)-h(\theta+\varepsilon)-h(\theta+\xi)+h(\theta)}{4\sin^{2}\frac{\xi}{2}}\,d\xi\right|\\ =&\;C|\mathcal{H}h^{\prime}(\theta+\varepsilon)-\mathcal{H}h^{\prime}(\theta)|\\ \leq&\;C\varepsilon^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}.\end{split}

Note that Hilbert transform is bounded in Cβ(𝕋)C^{\beta}(\mathbb{T}).

Combining these estimates with (5.9), we obtain that

(5.15) |(L2+L3)(θ+ε)(L2+L3)(θ)|CεβhC˙β(ψCβ+ψLhC˙βhL).\begin{split}&\;|(L_{2}+L_{3})(\theta+\varepsilon)-(L_{2}+L_{3})(\theta)|\\ \leq&\;C\varepsilon^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}(\|\psi\|_{C^{\beta}}+\|\psi\|_{L^{\infty}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|h^{\prime}\|_{L^{\infty}}).\end{split}

Then (5.3) follows from (5.5), (5.7) and (5.15). MM \square

Now we turn to a W˙1,p\dot{W}^{1,p}-estimate of γ𝒦γψ\gamma^{\prime\perp}\cdot\mathcal{K}_{\gamma}\psi.

Lemma 5.2.

Fix p[2,)p\in[2,\infty). Assume hC1,β(𝕋)h\in C^{1,\beta}(\mathbb{T}) for some β(0,1)\beta\in(0,1), such that m01m_{0}\ll 1 with the needed smallness depending on pp. Then

(5.16) γ(θ)𝒦γψW˙1,pChLpψL(1+hC˙β)+C(hLpψC˙β+hLψLp),\begin{split}&\;\|\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}\psi\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}(1+\|h^{\prime}\|_{\dot{C}^{\beta}})+C(\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{\dot{C}^{\beta}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}),\end{split}

where C=C(p,β)C=C(p,\beta).

Proof.

Let CC_{*} and CC_{\dagger} be the constants introduced in Lemma A.2 and Lemma A.4, respectively, both of which only depend on pp. Without loss of generality, we may assume CC1C_{\dagger}\geq C_{*}\geq 1. We also recall that ll is defined in (5.2).

Using the notation in (5.5), we take θ\theta-derivative of L1L_{1} to derive that

(5.17) L1W˙1,pC𝕋hL2|ψ(θ+ξ)|dξLp+C𝕋(hL|Δh|+hL3)ψLdξLpChL2ψLp+ChLhLpψL.\begin{split}\|L_{1}\|_{\dot{W}^{1,p}}\leq&\;C\left\|\int_{\mathbb{T}}\|h^{\prime}\|_{L^{\infty}}^{2}|\psi^{\prime}(\theta+\xi)|\,d\xi\right\|_{L^{p}}+C\left\|\int_{\mathbb{T}}(\|h^{\prime}\|_{L^{\infty}}|\Delta h^{\prime}|+\|h^{\prime}\|_{L^{\infty}}^{3})\|\psi\|_{L^{\infty}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi^{\prime}\|_{L^{p}}+C\|h^{\prime}\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}.\end{split}

Thanks to the smallness of hh, we may assume |l|<1|l|<1. Hence, by Taylor expanding (1+l)1(1+l)^{-1}, we may rewrite L2L_{2} in (5.5) as

(5.18) L2=j=0(1)j(1+h(θ))(j+1)p.v.𝕋(Δh)2j+1(1+h(θ+ξ))jψ(θ+ξ)2sinξ2dξ=:j=0L2,j.\begin{split}L_{2}=&\;\sum_{j=0}^{\infty}(-1)^{j}(1+h(\theta))^{-(j+1)}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi=:\sum_{j=0}^{\infty}L_{2,j}.\end{split}

By virtue of Lemma A.2,

(5.19) p.v.𝕋(Δh)2j+1(1+h(θ+ξ))jψ(θ+ξ)2sinξ2dξLpC2j+3hL2j+1(1+h)jψLpC(C2C2hL2)jhLψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C_{*}^{2j+3}\|h^{\prime}\|_{L^{\infty}}^{2j+1}\|(1+h)^{-j}\psi\|_{L^{p}}\\ \leq&\;C(C_{*}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}\|h^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}.\end{split}

Here C2C_{2} is a universal constant such that (1+h)1LC2\|(1+h)^{-1}\|_{L^{\infty}}\leq C_{2}. Similarly, by Lemma A.4,

(5.20) p.v.𝕋(Δh)2j+1(1+h(θ+ξ))jψ(θ+ξ)2sinξ2dξW˙1,p(2j+2)C2j+2hL2j(((1+h)jψ)LphL+(1+h)jψLhLp)C(j+1)(C2C2hL2)j(jhL2ψLp+hLψLp+ψLhLp).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(2j+2)C_{\dagger}^{2j+2}\|h^{\prime}\|_{L^{\infty}}^{2j}(\|((1+h)^{-j}\psi)^{\prime}\|_{L^{p}}\|h^{\prime}\|_{L^{\infty}}+\|(1+h)^{-j}\psi\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}})\\ \leq&\;C(j+1)(C_{\dagger}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}(j\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{L^{p}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}+\|\psi\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}).\end{split}

Hence, with the assumption CCC_{\dagger}\geq C_{*},

(5.21) L2,jW˙1,p(1+h)(j+1)W˙1,p.v.𝕋(Δh)2j+1(1+h(θ+ξ))jψ(θ+ξ)2sinξ2dξLp+(1+h)(j+1)Lp.v.𝕋(Δh)2j+1(1+h(θ+ξ))jψ(θ+ξ)2sinξ2dξW˙1,pC(j+1)(CC2hL)2j((j+1)hL2ψLp+hLψLp+ψLhLp).\begin{split}&\;\|L_{2,j}\|_{\dot{W}^{1,p}}\\ \leq&\;\|(1+h)^{-(j+1)}\|_{\dot{W}^{1,\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ &\;+\|(1+h)^{-(j+1)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(j+1)(C_{\dagger}C_{2}\|h^{\prime}\|_{L^{\infty}})^{2j}((j+1)\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{L^{p}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}+\|\psi\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}).\end{split}

To this end, by assuming hL1\|h^{\prime}\|_{L^{\infty}}\ll 1, where the smallness depends on pp, we derive from (5.18) that

(5.22) L2W˙1,pC(hLψLp+ψLhLp).\|L_{2}\|_{\dot{W}^{1,p}}\leq C(\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}+\|\psi\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}).

Similarly, we write

(5.23) L3=j=0h(θ)(1h(θ))(j+1)p.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξ=:j=0L3,j.L_{3}=\sum_{j=0}^{\infty}h^{\prime}(\theta)(-1-h(\theta))^{-(j+1)}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi=:\sum_{j=0}^{\infty}L_{3,j}.

In order to bound W˙1,p\dot{W}^{1,p}-semi-norm of L3,jL_{3,j}, we need an LL^{\infty}-bound of the integral above. This is possible thanks to the Hölder regularity of hh^{\prime} and ψ\psi. Indeed, by the mean value theorem,

(5.24) |p.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξ|=|𝕋[(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)h(θ)2j(1+h(θ))jψ(θ)]12tanξ2dξ|C𝕋2j(C1hL)2j1|Δhh(θ)|C2jψL|ξ|1dξ+C𝕋hL2jjC2j+1|h(θ+ξ)h(θ)|ψL|ξ|1dξ+C𝕋hL2jC2j|ψ(θ+ξ)ψ(θ)||ξ|1dξC(2jC12jC2jhL2j1hC˙βψL+C2jhL2jψC˙β).\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right|\\ =&\;\left|\int_{\mathbb{T}}[(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\psi(\theta+\xi)-h^{\prime}(\theta)^{2j}(1+h(\theta))^{-j}\psi(\theta)]\frac{1}{2\tan\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;C\int_{\mathbb{T}}2j(C_{1}\|h^{\prime}\|_{L^{\infty}})^{2j-1}|\Delta h-h^{\prime}(\theta)|\cdot C_{2}^{j}\|\psi\|_{L^{\infty}}|\xi|^{-1}\,d\xi\\ &\;+C\int_{\mathbb{T}}\|h^{\prime}\|_{L^{\infty}}^{2j}\cdot jC_{2}^{j+1}|h(\theta+\xi)-h(\theta)|\cdot\|\psi\|_{L^{\infty}}|\xi|^{-1}\,d\xi\\ &\;+C\int_{\mathbb{T}}\|h^{\prime}\|_{L^{\infty}}^{2j}\cdot C_{2}^{j}|\psi(\theta+\xi)-\psi(\theta)||\xi|^{-1}\,d\xi\\ \leq&\;C(2jC_{1}^{2j}C_{2}^{j}\|h^{\prime}\|_{L^{\infty}}^{2j-1}\|h^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}+C_{2}^{j}\|h^{\prime}\|_{L^{\infty}}^{2j}\|\psi\|_{\dot{C}^{\beta}}).\end{split}

Here C1=π2C_{1}=\frac{\pi}{2} introduced in the proof of Lemma A.2; note that |Δh|C1hL|\Delta h|\leq C_{1}\|h^{\prime}\|_{L^{\infty}}. Arguing as in (5.19)-(5.21),

(5.25) p.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξLpC(C2C2hL2)jψLp,\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\leq C(C_{*}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}\|\psi\|_{L^{p}},
(5.26) p.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξW˙1,pC(2j+1)(C2C2hL2)j(jhLψLp+ψLp+𝟙{j>0}hL1hLpψL).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(2j+1)(C_{\dagger}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}(j\|h^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+\|\psi^{\prime}\|_{L^{p}}+\mathds{1}_{\{j>0\}}\|h^{\prime}\|_{L^{\infty}}^{-1}\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}).\end{split}

and hence,

(5.27) L3,jW˙1,phLp(1+h(θ))(j+1)Lp.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξL+hL(1+h(θ))(j+1)W˙1,p.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξLp+hL(1+h(θ))(j+1)Lp.v.𝕋(Δh)2j(1+h(θ+ξ))jψ(θ+ξ)2tanξ2dξW˙1,pC(C2hL)2j1(jC12jhC˙βψL+hLψC˙β)hLp+C(j+1)(CC2hL)2j((j+1)hL2ψLp+hLψLp+𝟙{j>0}hLpψL).\begin{split}&\;\|L_{3,j}\|_{\dot{W}^{1,p}}\\ \leq&\;\|h^{\prime\prime}\|_{L^{p}}\|(1+h(\theta))^{-(j+1)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{\infty}}\\ &\;+\|h^{\prime}\|_{L^{\infty}}\|(1+h(\theta))^{-(j+1)}\|_{\dot{W}^{1,\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ &\;+\|h^{\prime}\|_{L^{\infty}}\|(1+h(\theta))^{-(j+1)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j}(1+h(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C\cdot(C_{2}\|h^{\prime}\|_{L^{\infty}})^{2j-1}\cdot(jC_{1}^{2j}\|h^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}\|\psi\|_{\dot{C}^{\beta}})\|h^{\prime\prime}\|_{L^{p}}\\ &\;+C\cdot(j+1)(C_{\dagger}C_{2}\|h^{\prime}\|_{L^{\infty}})^{2j}\\ &\;\qquad\cdot((j+1)\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{L^{p}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}+\mathds{1}_{\{j>0\}}\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}).\end{split}

By (5.23), provided that hL1\|h^{\prime}\|_{L^{\infty}}\ll 1,

(5.28) L3W˙1,pC(hLphC˙βψL+hLpψC˙β+hLψLp).\|L_{3}\|_{\dot{W}^{1,p}}\leq C(\|h^{\prime\prime}\|_{L^{p}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}+\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{\dot{C}^{\beta}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}).

Combining (5.17), (5.22) and (5.28), we prove the desired estimate. MM \square

We also prove a W˙1,p\dot{W}^{1,p}-estimate for γ𝒦γψ12ψ\gamma^{\prime}\cdot\mathcal{K}_{\gamma}\psi-\frac{1}{2}\mathcal{H}\psi.

Lemma 5.3.

Under the assumptions of Lemma 5.2,

(5.29) γ(θ)𝒦γψ12ψW˙1,pChLpψL(1+hC˙β)+C(hLhLpψC˙β+hL2ψLp),\begin{split}&\;\left\|\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\psi-\frac{1}{2}\mathcal{H}\psi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}(1+\|h^{\prime}\|_{\dot{C}^{\beta}})+C(\|h^{\prime}\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{\dot{C}^{\beta}}+\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi^{\prime}\|_{L^{p}}),\end{split}

where C=C(p,β)C=C(p,\beta).

Proof.

Using γ(θ)=f(θ)(cosθ,sinθ)\gamma(\theta)=f(\theta)(\cos\theta,\sin\theta), by definition,

(5.30) 2πγ(θ)𝒦γψ=p.v.𝕋f(θ)f(θ)f(θ)f(θ+ξ)cosξf(θ)f(θ+ξ)sinξf(θ)2+f(θ+ξ)22f(θ)f(θ+ξ)cosξψ(θ+ξ)dξ.2\pi\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\psi=\mathrm{p.v.}\int_{\mathbb{T}}\frac{f^{\prime}(\theta)f(\theta)-f^{\prime}(\theta)f(\theta+\xi)\cos\xi-f(\theta)f(\theta+\xi)\sin\xi}{f(\theta)^{2}+f(\theta+\xi)^{2}-2f(\theta)f(\theta+\xi)\cos\xi}\psi(\theta+\xi)\,d\xi.

With f(θ)=r(1+h(θ))f(\theta)=r(1+h(\theta)) and l(θ,θ+ξ)l(\theta,\theta+\xi) defined in (5.2), it can be rewritten as

(5.31)  2πγ(θ)𝒦γψ=f(θ)𝕋f(θ+ξ)2sin2ξ2(f(θ+ξ)f(θ))2+f(θ)f(θ+ξ)4sin2ξ2ψ(θ+ξ)dξf(θ)p.v.𝕋f(θ+ξ)f(θ)(f(θ+ξ)f(θ))2+f(θ)f(θ+ξ)4sin2ξ2ψ(θ+ξ)dξp.v.𝕋f(θ)f(θ+ξ)sinξ(f(θ+ξ)f(θ))2+f(θ)f(θ+ξ)4sin2ξ2ψ(θ+ξ)dξ=h(θ)2(1+h(θ))(𝕋ψdξ𝕋l(θ,θ+ξ)1+l(θ,θ+ξ)ψ(θ+ξ)dξ)h(θ)1+h(θ)p.v.𝕋Δh2sinξ21+l(θ,θ+ξ)ψ(θ+ξ)1+h(θ+ξ)dξ+p.v.𝕋l(θ,θ+ξ)1+l(θ,θ+ξ)ψ(θ+ξ)2tanξ2dξ+πψ=:L~1(θ)+L~2(θ)+L~3(θ)+πψ.\begin{split}&\;2\pi\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\psi\\ =&\;f^{\prime}(\theta)\int_{\mathbb{T}}\frac{f(\theta+\xi)\cdot 2\sin^{2}\frac{\xi}{2}}{(f(\theta+\xi)-f(\theta))^{2}+f(\theta)f(\theta+\xi)\cdot 4\sin^{2}\frac{\xi}{2}}\psi(\theta+\xi)\,d\xi\\ &\;-f^{\prime}(\theta)\mathrm{p.v.}\int_{\mathbb{T}}\frac{f(\theta+\xi)-f(\theta)}{(f(\theta+\xi)-f(\theta))^{2}+f(\theta)f(\theta+\xi)\cdot 4\sin^{2}\frac{\xi}{2}}\psi(\theta+\xi)\,d\xi\\ &\;-\mathrm{p.v.}\int_{\mathbb{T}}\frac{f(\theta)f(\theta+\xi)\sin\xi}{(f(\theta+\xi)-f(\theta))^{2}+f(\theta)f(\theta+\xi)\cdot 4\sin^{2}\frac{\xi}{2}}\psi(\theta+\xi)\,d\xi\\ =&\;\frac{h^{\prime}(\theta)}{2(1+h(\theta))}\left(\int_{\mathbb{T}}\psi\,d\xi-\int_{\mathbb{T}}\frac{l(\theta,\theta+\xi)}{1+l(\theta,\theta+\xi)}\psi(\theta+\xi)\,d\xi\right)\\ &\;-\frac{h^{\prime}(\theta)}{1+h(\theta)}\mathrm{p.v.}\int_{\mathbb{T}}\frac{\frac{\Delta h}{2\sin\frac{\xi}{2}}}{1+l(\theta,\theta+\xi)}\frac{\psi(\theta+\xi)}{1+h(\theta+\xi)}\,d\xi\\ &\;+\mathrm{p.v.}\int_{\mathbb{T}}\frac{l(\theta,\theta+\xi)}{1+l(\theta,\theta+\xi)}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi+\pi\mathcal{H}\psi\\ =:&\;\tilde{L}_{1}(\theta)+\tilde{L}_{2}(\theta)+\tilde{L}_{3}(\theta)+\pi\mathcal{H}\psi.\end{split}

Since

(5.32) L~1=h(θ)1+h(θ)(12𝕋ψdξ+L1),\tilde{L}_{1}=\frac{h^{\prime}(\theta)}{1+h(\theta)}\left(\frac{1}{2}\int_{\mathbb{T}}\psi\,d\xi+L_{1}\right),

we derive by (5.17) that

(5.33) L~1W˙1,pCh1+hW˙1,pψL+ChLL1W˙1,pC(hLpψL+hL3ψLp).\begin{split}\|\tilde{L}_{1}\|_{\dot{W}^{1,p}}\leq&\;C\left\|\frac{h^{\prime}}{1+h}\right\|_{\dot{W}^{1,p}}\|\psi\|_{L^{\infty}}+C\|h^{\prime}\|_{L^{\infty}}\|L_{1}\|_{\dot{W}^{1,p}}\\ \leq&\;C(\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}^{3}\|\psi^{\prime}\|_{L^{p}}).\end{split}

For L~2\tilde{L}_{2},

(5.34) L~2=j=0h(θ)(1h(θ))(j+1)p.v.𝕋(Δh)2j+1(1+h(θ+ξ))(j+1)ψ(θ+ξ)2sinξ2.\tilde{L}_{2}=\sum_{j=0}^{\infty}h^{\prime}(\theta)(-1-h(\theta))^{-(j+1)}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}.

Arguing as in (5.24),

(5.35) p.v.𝕋(Δh)2j+1(1+h(θ+ξ))(j+1)ψ(θ+ξ)2sinξ2dξLC(C2hL2)j((2j+1)C12jhC˙βψL+hLψC˙β).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{\infty}}\\ \leq&\;C(C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}((2j+1)C_{1}^{2j}\|h^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}\|\psi\|_{\dot{C}^{\beta}}).\end{split}

Moreover, by Lemma A.2 and Lemma A.4,

(5.36) p.v.𝕋(Δh)2j+1(1+h(θ+ξ))(j+1)ψ(θ+ξ)2sinξ2dξLpC(C2C2hL2)jhLψL,\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C(C_{*}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}\|h^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{\infty}},\end{split}

and

(5.37) p.v.𝕋(Δh)2j+1(1+h(θ+ξ))(j+1)ψ(θ+ξ)2sinξ2dξW˙1,pC(2j+2)(C2C2hL2)j((j+1)hL2ψL+hLpψL+hLψLp).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+1}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(2j+2)(C_{\dagger}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}((j+1)\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{L^{\infty}}+\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}).\end{split}

Hence,

(5.38) L~2W˙1,pC(hLphC˙βψL+hLhLpψC˙β+hL2ψLp).\|\tilde{L}_{2}\|_{\dot{W}^{1,p}}\leq C(\|h^{\prime\prime}\|_{L^{p}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{\dot{C}^{\beta}}+\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi^{\prime}\|_{L^{p}}).

For L~3\tilde{L}_{3},

(5.39) L~3=j=0(1)j(1+h(θ))(j+1)p.v.𝕋(Δh)2j+2(1+h(θ+ξ))(j+1)ψ(θ+ξ)2tanξ2dξ.\tilde{L}_{3}=\sum_{j=0}^{\infty}(-1)^{j}(1+h(\theta))^{-(j+1)}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+2}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi.

Since

(5.40) p.v.𝕋(Δh)2j+2(1+h(θ+ξ))(j+1)ψ(θ+ξ)2tanξ2dξLpC(C2C2hL2)jhL2ψL,\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+2}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C(C_{*}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{L^{\infty}},\end{split}

and

(5.41) p.v.𝕋(Δh)2j+2(1+h(θ+ξ))(j+1)ψ(θ+ξ)2tanξ2dξW˙1,pC(2j+3)(C2C2hL2)jhL((j+1)hL2ψL+hLψLp+hLpψL),\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h)^{2j+2}(1+h(\theta+\xi))^{-(j+1)}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(2j+3)(C_{\dagger}^{2}C_{2}\|h^{\prime}\|_{L^{\infty}}^{2})^{j}\|h^{\prime}\|_{L^{\infty}}\\ &\;\quad\cdot((j+1)\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}+\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}),\end{split}

we find that

(5.42) L~3W˙1,pC(hLhLpψL+hL2ψLp).\|\tilde{L}_{3}\|_{\dot{W}^{1,p}}\leq C(\|h^{\prime}\|_{L^{\infty}}\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h^{\prime}\|_{L^{\infty}}^{2}\|\psi^{\prime}\|_{L^{p}}).

Combining (5.31), (5.33), (5.38) and (5.42), we obtain (5.29). MM \square

In order to show uniqueness of the solution in Section 9, we need the following three lemmas, which are generalizations of Lemmas 5.1-5.3, respectively.

Lemma 5.4.

Fix β(0,1)\beta\in(0,1). Assume h1,h2C1,β(𝕋)h_{1},h_{2}\in C^{1,\beta}(\mathbb{T}), such that m0,1,m0,21m_{0,1},m_{0,2}\ll 1. Here m0,im_{0,i} are defined for i=1,2i=1,2 as in (3.17). Then

(5.43) γ1(θ)𝒦γ1ψγ2(θ)𝒦γ2ψC˙βCh1h2C1,β(1+h1C˙β+h2C˙β)2ψCβ,\begin{split}&\;\|\gamma^{\prime}_{1}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma_{1}}\psi-\gamma^{\prime}_{2}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma_{2}}\psi\|_{\dot{C}^{\beta}}\\ \leq&\;C\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})^{2}\|\psi\|_{C^{\beta}},\end{split}

where C=C(β)C=C(\beta).

Lemma 5.5.

Fix p[2,)p\in[2,\infty) and β(0,1)\beta\in(0,1). Assume hiC1,βW2,p(𝕋)h_{i}\in C^{1,\beta}\cap W^{2,p}(\mathbb{T}) (i=1,2)(i=1,2), such that m0,i1m_{0,i}\ll 1 with the needed smallness depending only on pp. Then

(5.44) γ1(θ)𝒦γ1ψγ2(θ)𝒦γ2ψW˙1,pCh1h2Lp(1+h1C˙β+h2C˙β)ψCβ+C(h1Lp+h2Lp)h1h2C1,β(1+h1C˙β+h2C˙β)ψCβ+Ch1h2W1,ψLp.\begin{split}&\;\|\gamma_{1}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma_{1}}\psi-\gamma_{2}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma_{2}}\psi\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(1+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|\psi\|_{C^{\beta}}\\ &\;+C(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|\psi\|_{C^{\beta}}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}.\end{split}

where C=C(p,β)C=C(p,\beta).

Lemma 5.6.

Under the assumptions of Lemma 5.5,

(5.45) γ1(θ)𝒦γ1ψγ2(θ)𝒦γ2ψW˙1,pCh1h2Lp|𝕋ψdξ|+Ch1h2LpψCβ(h1C1,β+h2C1,β)(1+h1C1,β+h2C1,β)2+C(h1Lp+h2Lp)ψCβh1h2C1,β(1+h1C1,β+h2C1,β)3+Ch1h2W1,ψLp(h1W1,+h2W1,),\begin{split}&\;\|\gamma_{1}^{\prime}(\theta)\cdot\mathcal{K}_{\gamma_{1}}\psi-\gamma_{2}^{\prime}(\theta)\cdot\mathcal{K}_{\gamma_{2}}\psi\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\left|\int_{\mathbb{T}}\psi\,d\xi\right|\\ &\;+C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\|\psi\|_{C^{\beta}}(\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{2}\\ &\;+C(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\|\psi\|_{C^{\beta}}\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{3}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}(\|h_{1}\|_{W^{1,\infty}}+\|h_{2}\|_{W^{1,\infty}}),\end{split}

where C=C(p,β)C=C(p,\beta).

These estimates can be justified by following similar arguments as those in Lemmas 5.1-5.3. However, since their proofs turn out to be extremely lengthy and somewhat tedious, we shall leave them to Appendix C.

6. Estimates for Integral Operators 𝒦γ,γ~\mathcal{K}_{\gamma,\tilde{\gamma}} and 𝒦γ~,γ\mathcal{K}_{\tilde{\gamma},\gamma}

Recall that the integral operators 𝒦γ,γ~\mathcal{K}_{\gamma,\tilde{\gamma}} and 𝒦γ~,γ\mathcal{K}_{\tilde{\gamma},\gamma} are defined in (2.15), while the Poisson kernel PP on the 2-D unit disc and its conjugate QQ are defined in (4.1) and (4.2). For convenience, we denote

(6.1) PrR:=P(rR,) and QrR:=Q(rR,).P_{\frac{r}{R}}:=P\left(\frac{r}{R},\cdot\right)\quad\mbox{ and }\quad Q_{\frac{r}{R}}:=Q\left(\frac{r}{R},\cdot\right).
Lemma 6.1.

Assume h,HW1,(𝕋)h,H\in W^{1,\infty}(\mathbb{T}), such that δ1(hL+HL)1\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\ll 1. Denote ψ¯=(2π)1𝕋ψ(θ)dθ\bar{\psi}=(2\pi)^{-1}\int_{\mathbb{T}}\psi(\theta)\,d\theta. Then

(6.2) fer(θ)𝒦γ,γ~ψ+14πPrR(ψψ¯)L(𝕋)+feθ(θ)𝒦γ,γ~ψ14πQrR(ψψ¯)L(𝕋)CrRδ1(hL+HL)ψL,\begin{split}&\;\left\|fe_{r}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi+\frac{1}{4\pi}P_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{L^{\infty}(\mathbb{T})}\\ &\;+\left\|fe_{\theta}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi-\frac{1}{4\pi}Q_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{L^{\infty}(\mathbb{T})}\\ \leq&\;\frac{Cr}{R}\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\psi\|_{L^{\infty}},\end{split}

where CC is a universal constant.

Proof.

With θ=θ+ξ\theta^{\prime}=\theta+\xi and D(θ,θ+ξ):=f(θ)/F(θ+ξ)D(\theta,\theta+\xi):=f(\theta)/F(\theta+\xi), we calculate that

(6.3)  2πer(θ)𝒦γ,γ~ψ=𝕋er(θ)(γ(θ)γ~(θ))|γ(θ)γ~(θ)|2ψ(θ)dθ=f(θ)1𝕋[12121D(θ,θ+ξ)21+D(θ,θ+ξ)22D(θ,θ+ξ)cosξ]ψ(θ+ξ)dξ=:f(θ)1(Ir,1+Ir,2),\begin{split}&\;2\pi e_{r}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi\\ =&\;\int_{\mathbb{T}}\frac{e_{r}(\theta)\cdot(\gamma(\theta)-\tilde{\gamma}(\theta^{\prime}))}{|\gamma(\theta)-\tilde{\gamma}(\theta^{\prime})|^{2}}\psi(\theta^{\prime})\,d\theta^{\prime}\\ =&\;f(\theta)^{-1}\int_{\mathbb{T}}\left[\frac{1}{2}-\frac{1}{2}\cdot\frac{1-D(\theta,\theta+\xi)^{2}}{1+D(\theta,\theta+\xi)^{2}-2D(\theta,\theta+\xi)\cos\xi}\right]\psi(\theta+\xi)\,d\xi\\ =:&\;f(\theta)^{-1}(I_{r,1}+I_{r,2}),\end{split}

where

(6.4) Ir,1=\displaystyle I_{r,1}= 12𝕋P(rR,ξ)(ψ(θ+ξ)ψ¯)dξ=12PrR(ψψ¯),\displaystyle\;-\frac{1}{2}\int_{\mathbb{T}}P\left(\frac{r}{R},\xi\right)(\psi(\theta+\xi)-\bar{\psi})\,d\xi=-\frac{1}{2}P_{\frac{r}{R}}*(\psi-\bar{\psi}),
(6.5) Ir,2=\displaystyle I_{r,2}= 12𝕋[P(rR,ξ)P(D,ξ)]ψ(θ+ξ)dξ.\displaystyle\;\frac{1}{2}\int_{\mathbb{T}}\left[P\left(\frac{r}{R},\xi\right)-P(D,\xi)\right]\psi(\theta+\xi)\,d\xi.

Here we used the fact that PrRP_{\frac{r}{R}} is an even function and has integral 2π2\pi on 𝕋\mathbb{T}. Ir,1I_{r,1} is already in the desired shape. For Ir,2I_{r,2}, since

(6.6) |rRD(θ,θ+ξ)|=rR|11+h(θ)1+H(θ+ξ)|CrR(hL+HL),\left|\frac{r}{R}-D(\theta,\theta+\xi)\right|=\frac{r}{R}\left|1-\frac{1+h(\theta)}{1+H(\theta+\xi)}\right|\leq\frac{Cr}{R}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}}),

we may assume that D[0,1Cδ]D\in[0,1-C\delta] for some universal C>0C>0. Hence, by the mean value theorem and Lemma A.1,

(6.7) Ir,2LCrR(hL+HL)ψL𝕋(δ2+ξ2)1dξCrRδ1(hL+HL)ψL.\begin{split}\|I_{r,2}\|_{L^{\infty}}\leq&\;\frac{Cr}{R}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\psi\|_{L^{\infty}}\int_{\mathbb{T}}(\delta^{2}+\xi^{2})^{-1}\,d\xi\\ \leq&\;\frac{Cr}{R}\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\psi\|_{L^{\infty}}.\end{split}

The estimate for fer𝒦γ,γ~ψfe_{r}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi in (6.2) follows.

Similarly, since QrRQ_{\frac{r}{R}} is an odd kernel,

(6.8)  2πeθ(θ)𝒦γ,γ~ψ=f(θ)1𝕋D(θ,θ+ξ)sinξ1+D(θ,θ+ξ)22D(θ,θ+ξ)cosξψ(θ+ξ)dξ.=:f(θ)1(Iθ,1+Iθ,2),\begin{split}&\;2\pi e_{\theta}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi\\ =&\;-f(\theta)^{-1}\int_{\mathbb{T}}\frac{D(\theta,\theta+\xi)\cdot\sin\xi}{1+D(\theta,\theta+\xi)^{2}-2D(\theta,\theta+\xi)\cos\xi}\psi(\theta+\xi)\,d\xi.\\ =:&\;f(\theta)^{-1}(I_{\theta,1}+I_{\theta,2}),\end{split}

where

(6.9) Iθ,1=\displaystyle I_{\theta,1}= 12𝕋Q(rR,ξ)(ψ(θ+ξ)ψ¯)dξ=12QrR(ψψ¯),\displaystyle\;-\frac{1}{2}\int_{\mathbb{T}}Q\left(\frac{r}{R},\xi\right)(\psi(\theta+\xi)-\bar{\psi})\,d\xi=\frac{1}{2}Q_{\frac{r}{R}}*(\psi-\bar{\psi}),
(6.10) Iθ,2=\displaystyle I_{\theta,2}= 12𝕋[Q(rR,ξ)Q(D,ξ)]ψ(θ+ξ)dξ.\displaystyle\;\frac{1}{2}\int_{\mathbb{T}}\left[Q\left(\frac{r}{R},\xi\right)-Q(D,\xi)\right]\psi(\theta+\xi)\,d\xi.

Then the estimate for feθ𝒦γ,γ~ψfe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi in (6.2) can be derived as before. MM \square

Lemma 6.2.

Assume h,HC1,α(𝕋)h,H\in C^{1,\alpha}(\mathbb{T}) for some α(0,1)\alpha\in(0,1), such that m0+M01m_{0}+M_{0}\ll 1. Then for β(0,α1+α)\beta\in(0,\frac{\alpha}{1+\alpha}),

(6.11) fer(θ)𝒦γ,γ~ψ+14πPrR(ψψ¯)C˙β(𝕋)+feθ(θ)𝒦γ,γ~ψ14πQrR(ψψ¯)C˙β(𝕋)CrR(m0+M0)ψC˙β+CrRψL(δ1(hL+HL)+hC˙α+HC˙α),\begin{split}&\;\left\|fe_{r}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi+\frac{1}{4\pi}P_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{C}^{\beta}(\mathbb{T})}\\ &\;+\left\|fe_{\theta}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi-\frac{1}{4\pi}Q_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{C}^{\beta}(\mathbb{T})}\\ \leq&\;\frac{Cr}{R}(m_{0}+M_{0})\|\psi\|_{\dot{C}^{\beta}}\\ &\;+\frac{Cr}{R}\|\psi\|_{L^{\infty}}(\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})+\|h^{\prime}\|_{\dot{C}^{\alpha}}+\|H^{\prime}\|_{\dot{C}^{\alpha}}),\end{split}

where C=C(α,β)C=C(\alpha,\beta).

Proof.

Let Ir,1I_{r,1}, Ir,2I_{r,2}, Iθ,1I_{\theta,1} and Iθ,2I_{\theta,2} be defined as in the proof of Lemma 6.1.

Consider Ir,2I_{r,2}. For θ1,θ2𝕋\theta_{1},\theta_{2}\in\mathbb{T},

(6.12) Ir,2(θ1)Ir,2(θ2)=12𝕋[P(D(θ2,θ2+ξ),ξ)P(D(θ1,θ1+ξ),ξ)](ψ(θ1+ξ)ψ(θ1))dξ+12ψ(θ1)𝕋P(D(θ2,θ2+ξ),ξ)P(D(θ1,θ1+ξ),ξ)dξ12𝕋[P(rR,ξ)P(D(θ2,θ2+ξ),ξ)](ψ(θ2+ξ)ψ(θ1+ξ))dξ=:Ir,2,1+Ir,2,2+Ir,2,3.\begin{split}&\;I_{r,2}(\theta_{1})-I_{r,2}(\theta_{2})\\ =&\;\frac{1}{2}\int_{\mathbb{T}}\left[P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)\right](\psi(\theta_{1}+\xi)-\psi(\theta_{1}))\,d\xi\\ &\;+\frac{1}{2}\psi(\theta_{1})\int_{\mathbb{T}}P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)\,d\xi\\ &\;-\frac{1}{2}\int_{\mathbb{T}}\left[P\left(\frac{r}{R},\xi\right)-P(D(\theta_{2},\theta_{2}+\xi),\xi)\right](\psi(\theta_{2}+\xi)-\psi(\theta_{1}+\xi))\,d\xi\\ =:&\;I_{r,2,1}+I_{r,2,2}+I_{r,2,3}.\end{split}

Following the argument of (6.6) and (6.7),

(6.13) |Ir,2,1|C𝕋1δ2+|ξ|2|f(θ1)F(θ1+ξ)f(θ2)F(θ2+ξ)||ξ|βψC˙βdξCψC˙β𝕋|ξ|βδ2+|ξ|2rR|θ1θ2|β(hC˙β+HC˙β)dξC|θ1θ2|βrR(m0+M0)ψC˙β,\begin{split}|I_{r,2,1}|\leq&\;C\int_{\mathbb{T}}\frac{1}{\delta^{2}+|\xi|^{2}}\cdot\left|\frac{f(\theta_{1})}{F(\theta_{1}+\xi)}-\frac{f(\theta_{2})}{F(\theta_{2}+\xi)}\right|\cdot|\xi|^{\beta}\|\psi\|_{\dot{C}^{\beta}}\,d\xi\\ \leq&\;C\|\psi\|_{\dot{C}^{\beta}}\int_{\mathbb{T}}\frac{|\xi|^{\beta}}{\delta^{2}+|\xi|^{2}}\cdot\frac{r}{R}|\theta_{1}-\theta_{2}|^{\beta}(\|h\|_{\dot{C}^{\beta}}+\|H\|_{\dot{C}^{\beta}})\,d\xi\\ \leq&\;C|\theta_{1}-\theta_{2}|^{\beta}\cdot\frac{r}{R}(m_{0}+M_{0})\|\psi\|_{\dot{C}^{\beta}},\end{split}

and similarly,

(6.14) |Ir,2,3|C|θ1θ2|βrR(m0+M0)ψC˙β.|I_{r,2,3}|\leq C|\theta_{1}-\theta_{2}|^{\beta}\cdot\frac{r}{R}(m_{0}+M_{0})\|\psi\|_{\dot{C}^{\beta}}.

To handle Ir,2,2I_{r,2,2}, we first note that

(6.15) 𝕋P(D(θ2,θ2+ξ),ξ)P(D(θ1,θ1+ξ),ξ)dξ=𝕋P(D(θ2,θ2+ξ),ξ)P(D(θ2,θ2),ξ)P(D(θ1,θ1+ξ),ξ)+P(D(θ1,θ1),ξ)dξ.\begin{split}&\;\int_{\mathbb{T}}P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)\,d\xi\\ =&\;\int_{\mathbb{T}}P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{2},\theta_{2}),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)+P(D(\theta_{1},\theta_{1}),\xi)\,d\xi.\end{split}

We may bound the integrands in (6.15) as follows. By the mean value theorem and Lemma A.1,

(6.16) |P(D(θ2,θ2+ξ),ξ)P(D(θ2,θ2),ξ)P(D(θ1,θ1+ξ),ξ)+P(D(θ1,θ1),ξ)|Cδ2+ξ2(|D(θ2,θ2+ξ)D(θ2,θ2)|+|D(θ1,θ1+ξ)D(θ1,θ1)|)C|ξ|βδ2+ξ2rRHC˙β,\begin{split}&\;|P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{2},\theta_{2}),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)+P(D(\theta_{1},\theta_{1}),\xi)|\\ \leq&\;\frac{C}{\delta^{2}+\xi^{2}}(|D(\theta_{2},\theta_{2}+\xi)-D(\theta_{2},\theta_{2})|+|D(\theta_{1},\theta_{1}+\xi)-D(\theta_{1},\theta_{1})|)\\ \leq&\;\frac{C|\xi|^{\beta^{\prime}}}{\delta^{2}+\xi^{2}}\cdot\frac{r}{R}\|H\|_{\dot{C}^{\beta^{\prime}}},\end{split}

where β(0,1)\beta^{\prime}\in(0,1) is to be determined. Here we used the bound |sP|C(δ2+ξ2)1|\partial_{s}P|\leq C(\delta^{2}+\xi^{2})^{-1} since D1CδD\leq 1-C\delta (see the proof of Lemma 6.1). Alternatively,

(6.17) |P(D(θ2,θ2+ξ),ξ)P(D(θ1,θ1+ξ),ξ)P(D(θ2,θ2),ξ)+P(D(θ1,θ1),ξ)|Cδ2+ξ2(|D(θ2,θ2+ξ)D(θ1,θ1+ξ)|+|D(θ2,θ2)D(θ1,θ1)|)Cδ2+ξ2rR|θ1θ2|(hL+HL).\begin{split}&\;|P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)-P(D(\theta_{2},\theta_{2}),\xi)+P(D(\theta_{1},\theta_{1}),\xi)|\\ \leq&\;\frac{C}{\delta^{2}+\xi^{2}}(|D(\theta_{2},\theta_{2}+\xi)-D(\theta_{1},\theta_{1}+\xi)|+|D(\theta_{2},\theta_{2})-D(\theta_{1},\theta_{1})|)\\ \leq&\;\frac{C}{\delta^{2}+\xi^{2}}\cdot\frac{r}{R}|\theta_{1}-\theta_{2}|(\|h^{\prime}\|_{L^{\infty}}+\|H^{\prime}\|_{L^{\infty}}).\end{split}

If |θ1θ2|δ|\theta_{1}-\theta_{2}|\geq\delta, by (6.15) and (6.16),

(6.18) |𝕋P(D(θ2,θ2+ξ),ξ)P(D(θ1,θ1+ξ),ξ)dξ|CrRHC˙βδββ1|θ1θ2|β.\begin{split}&\;\left|\int_{\mathbb{T}}P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)\,d\xi\right|\\ \leq&\;\frac{Cr}{R}\|H\|_{\dot{C}^{\beta^{\prime}}}\delta^{\beta^{\prime}-\beta-1}|\theta_{1}-\theta_{2}|^{\beta}.\end{split}

Otherwise, if |θ1θ2|δ|\theta_{1}-\theta_{2}|\leq\delta, we deduce by (6.15) and (6.17) that

(6.19) |𝕋P(D(θ2,θ2+ξ),ξ)P(D(θ1,θ1+ξ),ξ)dξ|CrR|θ1θ2|βδβ(hL+HL).\begin{split}&\;\left|\int_{\mathbb{T}}P(D(\theta_{2},\theta_{2}+\xi),\xi)-P(D(\theta_{1},\theta_{1}+\xi),\xi)\,d\xi\right|\\ \leq&\;\frac{Cr}{R}|\theta_{1}-\theta_{2}|^{\beta}\delta^{-\beta}(\|h^{\prime}\|_{L^{\infty}}+\|H^{\prime}\|_{L^{\infty}}).\end{split}

Recall that β<α1+α\beta<\frac{\alpha}{1+\alpha}, so we take β=β(1+α)α\beta^{\prime}=\frac{\beta(1+\alpha)}{\alpha}. Combining these estimates with the definition of Ir,2,2I_{r,2,2} in (6.12), by interpolation inequality,

(6.20) |Ir,2,2|CrR|θ1θ2|βψL(δ1(hL+HL)+hC˙α+HC˙α).|I_{r,2,2}|\leq\frac{Cr}{R}|\theta_{1}-\theta_{2}|^{\beta}\|\psi\|_{L^{\infty}}(\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})+\|h^{\prime}\|_{\dot{C}^{\alpha}}+\|H^{\prime}\|_{\dot{C}^{\alpha}}).

Combining this with (6.12)-(6.14), we obtain that

(6.21) Ir,2C˙βCrR(m0+M0)ψC˙β+CrRψL(δ1(hL+HL)+hC˙α+HC˙α).\|I_{r,2}\|_{\dot{C}^{\beta}}\leq\frac{Cr}{R}(m_{0}+M_{0})\|\psi\|_{\dot{C}^{\beta}}+\frac{Cr}{R}\|\psi\|_{L^{\infty}}(\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})+\|h^{\prime}\|_{\dot{C}^{\alpha}}+\|H^{\prime}\|_{\dot{C}^{\alpha}}).

The estimate for Iθ,2I_{\theta,2} can be derived in the same manner. MM \square

Lemma 6.3.

Assume hW1,(𝕋)h\in W^{1,\infty}(\mathbb{T}) and HW2,p(𝕋)H\in W^{2,p}(\mathbb{T}) for some p(1,)p\in(1,\infty), satisfying that m0+M01m_{0}+M_{0}\ll 1. Then

(6.22) fer(θ)𝒦γ,γ~ψ+14πPrR(ψψ¯)W˙1,p(𝕋)+feθ(θ)𝒦γ,γ~ψ14πQrR(ψψ¯)W˙1,p(𝕋)CrR(HLpψL+(m0+M0)ψLp),\begin{split}&\;\left\|fe_{r}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi+\frac{1}{4\pi}P_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{W}^{1,p}(\mathbb{T})}\\ &\;+\left\|fe_{\theta}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi-\frac{1}{4\pi}Q_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;\frac{Cr}{R}(\|H^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+(m_{0}+M_{0})\|\psi^{\prime}\|_{L^{p}}),\end{split}

where C=C(p)C=C(p).

Proof.

Let Ir,1I_{r,1}, Ir,2I_{r,2}, Iθ,1I_{\theta,1} and Iθ,2I_{\theta,2} be defined as in the proof of Lemma 6.1.

We calculate that

(6.23) Ir,2(θ)=12𝕋[P(rR,ξ)P(D,ξ)]ψ(θ+ξ)dξ12𝕋sP(D,ξ)Dθψ(θ+ξ)dξ.I_{r,2}^{\prime}(\theta)=\frac{1}{2}\int_{\mathbb{T}}\left[P\left(\frac{r}{R},\xi\right)-P(D,\xi)\right]\psi^{\prime}(\theta+\xi)\,d\xi-\frac{1}{2}\int_{\mathbb{T}}\partial_{s}P(D,\xi)\frac{\partial D}{\partial\theta}\psi(\theta+\xi)\,d\xi.

Arguing as in (6.6) and (6.7),

(6.24) 𝕋[P(rR,ξ)P(D,ξ)]ψ(θ+ξ)dξLpCrRδ1(hL+HL)ψLp.\left\|\int_{\mathbb{T}}\left[P\left(\frac{r}{R},\xi\right)-P(D,\xi)\right]\psi^{\prime}(\theta+\xi)\,d\xi\right\|_{L^{p}}\leq\frac{Cr}{R}\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\psi^{\prime}\|_{L^{p}}.

For the second term in Ir,2I_{r,2}^{\prime}, we derive by Lemma A.1 that

(6.25) 𝕋sP(D,ξ)Dθψ(θ+ξ)dξ=f(θ)f(θ)𝕋DsP(D,ξ)ψ(θ+ξ)dξ+𝕋sP(D,ξ)Dξψ(θ+ξ)dξ=f(θ)f(θ)𝕋Q(D,ξ)ξψ(θ+ξ)dξ+𝕋sP(D,ξ)Dξψ(θ+ξ)dξf(θ)f(θ)𝕋sQ(D,ξ)Dξψ(θ+ξ)dξ=:Ir,2,a+Ir,2,b+Ir,2,c.\begin{split}&\;\int_{\mathbb{T}}\partial_{s}P(D,\xi)\frac{\partial D}{\partial\theta}\psi(\theta+\xi)\,d\xi\\ =&\;\frac{f^{\prime}(\theta)}{f(\theta)}\int_{\mathbb{T}}D\partial_{s}P(D,\xi)\psi(\theta+\xi)\,d\xi+\int_{\mathbb{T}}\partial_{s}P(D,\xi)\frac{\partial D}{\partial\xi}\psi(\theta+\xi)\,d\xi\\ =&\;\frac{f^{\prime}(\theta)}{f(\theta)}\int_{\mathbb{T}}\frac{\partial Q(D,\xi)}{\partial\xi}\psi(\theta+\xi)\,d\xi+\int_{\mathbb{T}}\partial_{s}P(D,\xi)\frac{\partial D}{\partial\xi}\psi(\theta+\xi)\,d\xi\\ &\;-\frac{f^{\prime}(\theta)}{f(\theta)}\int_{\mathbb{T}}\partial_{s}Q(D,\xi)\frac{\partial D}{\partial\xi}\psi(\theta+\xi)\,d\xi\\ =:&\;I_{r,2,a}+I_{r,2,b}+I_{r,2,c}.\end{split}

Here Q(D,ξ)ξ\frac{\partial Q(D,\xi)}{\partial\xi} denotes total derivative of Q(D(θ,θ+ξ),ξ)Q(D(\theta,\theta+\xi),\xi) with respect to ξ\xi.

We integrate by parts in I2,r,aI_{2,r,a}. Arguing as in (6.24),

(6.26) Ir,2,aLpChL(𝕋[Q(D,ξ)Q(rR,ξ)]ψ(θ+ξ)dξLp+QrRψLp)CrRhLδ1(hL+HL)ψLp+ChLPrRψLp.\begin{split}\|I_{r,2,a}\|_{L^{p}}\leq&\;C\|h^{\prime}\|_{L^{\infty}}\left(\left\|\int_{\mathbb{T}}\left[Q(D,\xi)-Q\left(\frac{r}{R},\xi\right)\right]\psi^{\prime}(\theta+\xi)\,d\xi\right\|_{L^{p}}+\|Q_{\frac{r}{R}}*\psi^{\prime}\|_{L^{p}}\right)\\ \leq&\;\frac{Cr}{R}\|h^{\prime}\|_{L^{\infty}}\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\psi^{\prime}\|_{L^{p}}+C\|h^{\prime}\|_{L^{\infty}}\|P_{\frac{r}{R}}*\mathcal{H}\psi^{\prime}\|_{L^{p}}.\end{split}

Using the fact that ψ\mathcal{H}\psi^{\prime} has mean zero on 𝕋\mathbb{T}, we derive that

(6.27) PrRψ=𝕋(PrR(ξ)PrR(π))ψ(θξ)dξ.P_{\frac{r}{R}}*\mathcal{H}\psi^{\prime}=\int_{\mathbb{T}}\left(P_{\frac{r}{R}}(\xi)-P_{\frac{r}{R}}(\pi)\right)\mathcal{H}\psi^{\prime}(\theta-\xi)\,d\xi.

By Young’s inequality,

(6.28) PrRψLp𝕋|PrR(ξ)PrR(π)|dξψLpCrRψLp.\|P_{\frac{r}{R}}*\mathcal{H}\psi^{\prime}\|_{L^{p}}\leq\int_{\mathbb{T}}\left|P_{\frac{r}{R}}(\xi)-P_{\frac{r}{R}}(\pi)\right|\,d\xi\cdot\|\mathcal{H}\psi^{\prime}\|_{L^{p}}\leq\frac{Cr}{R}\|\psi^{\prime}\|_{L^{p}}.

Therefore,

(6.29) Ir,2,aLpCrRhLψLp.\|I_{r,2,a}\|_{L^{p}}\leq\frac{Cr}{R}\|h^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}.

Next we deal with Ir,2,bI_{r,2,b}. Since

(6.30) Dξ=DF(θ+ξ)F(θ+ξ),\frac{\partial D}{\partial\xi}=-D\frac{F^{\prime}(\theta+\xi)}{F(\theta+\xi)},

we find by Lemma A.1 that

(6.31) Ir,2,b=𝕋DsP(D,ξ)F(θ+ξ)F(θ+ξ)ψ(ξ+θ)dξ=𝕋[Q(D,ξ)ξsQ(D,ξ)Dξ]FψF(ξ+θ)dξ=𝕋Q(D,ξ)ξFψF(ξ+θ)dξ𝕋DsQ(D,ξ)F2ψF2(ξ+θ)dξ=𝕋Q(D,ξ)ξFψF(ξ+θ)dξ+𝕋P(D,ξ)ξF2ψF2(ξ+θ)dξ𝕋sP(D,ξ)DξF2ψF2(ξ+θ)dξ.\begin{split}I_{r,2,b}=&\;-\int_{\mathbb{T}}D\partial_{s}P(D,\xi)\frac{F^{\prime}(\theta+\xi)}{F(\theta+\xi)}\psi(\xi+\theta)\,d\xi\\ =&\;-\int_{\mathbb{T}}\left[\frac{\partial Q(D,\xi)}{\partial\xi}-\partial_{s}Q(D,\xi)\frac{\partial D}{\partial\xi}\right]\cdot\frac{F^{\prime}\psi}{F}(\xi+\theta)\,d\xi\\ =&\;-\int_{\mathbb{T}}\frac{\partial Q(D,\xi)}{\partial\xi}\cdot\frac{F^{\prime}\psi}{F}(\xi+\theta)\,d\xi-\int_{\mathbb{T}}D\partial_{s}Q(D,\xi)\cdot\frac{F^{\prime 2}\psi}{F^{2}}(\xi+\theta)\,d\xi\\ =&\;-\int_{\mathbb{T}}\frac{\partial Q(D,\xi)}{\partial\xi}\cdot\frac{F^{\prime}\psi}{F}(\xi+\theta)\,d\xi+\int_{\mathbb{T}}\frac{\partial P(D,\xi)}{\partial\xi}\cdot\frac{F^{\prime 2}\psi}{F^{2}}(\xi+\theta)\,d\xi\\ &\;-\int_{\mathbb{T}}\partial_{s}P(D,\xi)\frac{\partial D}{\partial\xi}\cdot\frac{F^{\prime 2}\psi}{F^{2}}(\xi+\theta)\,d\xi.\end{split}

Arguing as in (6.26)-(6.29),

(6.32) 𝕋Q(D,ξ)ξFψF(ξ+θ)dξLp+𝕋P(D,ξ)ξF2ψF2(ξ+θ)dξLpCrRFψFW˙1,p+CrRF2ψF2W˙1,pCrR(HLpψL+HLψLp).\begin{split}&\;\left\|\int_{\mathbb{T}}\frac{\partial Q(D,\xi)}{\partial\xi}\cdot\frac{F^{\prime}\psi}{F}(\xi+\theta)\,d\xi\right\|_{L^{p}}+\left\|\int_{\mathbb{T}}\frac{\partial P(D,\xi)}{\partial\xi}\cdot\frac{F^{\prime 2}\psi}{F^{2}}(\xi+\theta)\,d\xi\right\|_{L^{p}}\\ \leq&\;\frac{Cr}{R}\left\|\frac{F^{\prime}\psi}{F}\right\|_{\dot{W}^{1,p}}+\frac{Cr}{R}\left\|\frac{F^{\prime 2}\psi}{F^{2}}\right\|_{\dot{W}^{1,p}}\\ \leq&\;\frac{Cr}{R}(\|H^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|H^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}).\end{split}

We notice that the last term in (6.31), which has not been bounded, is in a similar form as the original Ir,2,bI_{r,2,b}. Following (6.31) and (6.32), it is not difficult to argue by induction that for all kk\in\mathbb{N},

(6.33) Ir,2,bLpCrR(HLpψL+HLψLp)+𝕋sP(D,ξ)DξF2kψF2k(ξ+θ)dξLpCrR(HLpψL+HLψLp)+CrR𝕋dξδ2+ξ2(HL1HL)2k+1ψLp.\begin{split}&\;\|I_{r,2,b}\|_{L^{p}}\\ \leq&\;\frac{Cr}{R}(\|H^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|H^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})+\left\|\int_{\mathbb{T}}\partial_{s}P(D,\xi)\frac{\partial D}{\partial\xi}\frac{F^{\prime 2k}\psi}{F^{2k}}(\xi+\theta)\,d\xi\right\|_{L^{p}}\\ \leq&\;\frac{Cr}{R}(\|H^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|H^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})+\frac{Cr}{R}\int_{\mathbb{T}}\frac{d\xi}{\delta^{2}+\xi^{2}}\left(\frac{\|H^{\prime}\|_{L^{\infty}}}{1-\|H\|_{L^{\infty}}}\right)^{2k+1}\|\psi\|_{L^{p}}.\end{split}

Here the constants CC are uniformly bounded in kk provided the smallness of HH. Since M01M_{0}\ll 1, we take kk\to\infty and obtain

(6.34) Ir,2,bLpCrR(HLpψL+HLψLp).\|I_{r,2,b}\|_{L^{p}}\leq\frac{Cr}{R}(\|H^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|H^{\prime}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}).

Ir,2,cLp\|I_{r,2,c}\|_{L^{p}} can be estimated in a similar manner, so is Iθ,2Lp\|I^{\prime}_{\theta,2}\|_{L^{p}}. MM \square

Estimates for the operator 𝒦γ~,γ\mathcal{K}_{\tilde{\gamma},\gamma} can be derived in a similar manner.

Lemma 6.4.
  1. (1)

    Under the assumptions of Lemma 6.1,

    (6.35) Fer(θ)𝒦γ~,γψψ¯14πPrR(ψψ¯)L(𝕋)+Feθ(θ)𝒦γ~,γψ14πQrR(ψψ¯)L(𝕋)CrRδ1(hL+HL)ψL,\begin{split}&\;\left\|Fe_{r}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-\bar{\psi}-\frac{1}{4\pi}P_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{L^{\infty}(\mathbb{T})}\\ &\;+\left\|Fe_{\theta}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-\frac{1}{4\pi}Q_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{L^{\infty}(\mathbb{T})}\\ \leq&\;\frac{Cr}{R}\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\psi\|_{L^{\infty}},\end{split}

    where CC is a universal constant.

  2. (2)

    Under the assumptions of Lemma 6.2,

    (6.36) Fer(θ)𝒦γ~,γψ14πPrR(ψψ¯)C˙β(𝕋)+Feθ(θ)𝒦γ~,γψ14πQrR(ψψ¯)C˙β(𝕋)CrR(m0+M0)ψC˙β+CrRψL(δ1(hL+HL)+hC˙α+HC˙α),\begin{split}&\;\left\|Fe_{r}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-\frac{1}{4\pi}P_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{C}^{\beta}(\mathbb{T})}\\ &\;+\left\|Fe_{\theta}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-\frac{1}{4\pi}Q_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{C}^{\beta}(\mathbb{T})}\\ \leq&\;\frac{Cr}{R}(m_{0}+M_{0})\|\psi\|_{\dot{C}^{\beta}}\\ &\;+\frac{Cr}{R}\|\psi\|_{L^{\infty}}(\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})+\|h^{\prime}\|_{\dot{C}^{\alpha}}+\|H^{\prime}\|_{\dot{C}^{\alpha}}),\end{split}

    where C=C(α,β)C=C(\alpha,\beta).

  3. (3)

    Assume hW2,p(𝕋)h\in W^{2,p}(\mathbb{T}) for some p(1,)p\in(1,\infty) and HW1,(𝕋)H\in W^{1,\infty}(\mathbb{T}), satisfying that m0+M01m_{0}+M_{0}\ll 1. Then

    (6.37) Fer(θ)𝒦γ~,γψ14πPrR(ψψ¯)W˙1,p(𝕋)+Feθ(θ)𝒦γ~,γψ14πQrR(ψψ¯)W˙1,p(𝕋)CrR(hLpψL+(m0+M0)ψLp),\begin{split}&\;\left\|Fe_{r}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-\frac{1}{4\pi}P_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{W}^{1,p}(\mathbb{T})}\\ &\;+\left\|Fe_{\theta}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-\frac{1}{4\pi}Q_{\frac{r}{R}}*(\psi-\bar{\psi})\right\|_{\dot{W}^{1,p}(\mathbb{T})}\\ \leq&\;\frac{Cr}{R}(\|h^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+(m_{0}+M_{0})\|\psi^{\prime}\|_{L^{p}}),\end{split}

    where C=C(p)C=C(p).

Proof.

We derive as in Lemma 6.1.

(6.38)  2πF(θ)er(θ)𝒦γ~,γψ2πψ¯=12𝕋P(rR,ξ)(ψ(θ+ξ)ψ¯)dξ+12𝕋[P(f(θ+ξ)F(θ),ξ)P(rR,ξ)]ψ(θ+ξ)dξ,\begin{split}&\;2\pi F(\theta)e_{r}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi-2\pi\bar{\psi}\\ =&\;\frac{1}{2}\int_{\mathbb{T}}P\left(\frac{r}{R},\xi\right)(\psi(\theta+\xi)-\bar{\psi})\,d\xi+\frac{1}{2}\int_{\mathbb{T}}\left[P\left(\frac{f(\theta+\xi)}{F(\theta)},\xi\right)-P\left(\frac{r}{R},\xi\right)\right]\psi(\theta+\xi)\,d\xi,\end{split}

and

(6.39)  2πF(θ)eθ(θ)𝒦γ~,γψ=12𝕋Q(rR,ξ)(ψ(θ+ξ)ψ¯)dξ+12𝕋[Q(rR,ξ)Q(f(θ+ξ)F(θ),ξ)]ψ(θ+ξ)dξ.\begin{split}&\;2\pi F(\theta)e_{\theta}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi\\ =&\;-\frac{1}{2}\int_{\mathbb{T}}Q\left(\frac{r}{R},\xi\right)(\psi(\theta+\xi)-\bar{\psi})\,d\xi+\frac{1}{2}\int_{\mathbb{T}}\left[Q\left(\frac{r}{R},\xi\right)-Q\left(\frac{f(\theta+\xi)}{F(\theta)},\xi\right)\right]\psi(\theta+\xi)\,d\xi.\end{split}

Then the desired estimate can be proved by arguing as in Lemmas 6.1-6.3. MM \square

Lastly, for those convolution terms on the left hand sides of the estimates in Lemmas 6.1-6.4, we have that

Lemma 6.5.

For β(0,1)\beta\in(0,1), we have

(6.40) PrR(ψψ¯)L\displaystyle\|P_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{L^{\infty}}\leq 4πrR+rψψ¯L,\displaystyle\;\frac{4\pi r}{R+r}\|\psi-\bar{\psi}\|_{L^{\infty}},
(6.41) QrR(ψψ¯)L\displaystyle\|Q_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{L^{\infty}}\leq CψC˙β,\displaystyle\;C\|\psi\|_{\dot{C}^{\beta}},

and

(6.42) PrR(ψψ¯)C˙β\displaystyle\|P_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{\dot{C}^{\beta}}\leq 4πrR+rψC˙β,\displaystyle\;\frac{4\pi r}{R+r}\|\psi\|_{\dot{C}^{\beta}},
(6.43) QrR(ψψ¯)C˙β\displaystyle\|Q_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{\dot{C}^{\beta}}\leq CψC˙β.\displaystyle\;C\|\psi\|_{\dot{C}^{\beta}}.

where these two constants CC depend on β\beta. Moreover, for p(1,)p\in(1,\infty),

(6.44) PrR(ψψ¯)W˙1,p\displaystyle\|P_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{\dot{W}^{1,p}}\leq 4πrR+rψLp,\displaystyle\;\frac{4\pi r}{R+r}\|\psi^{\prime}\|_{L^{p}},
(6.45) QrR(ψψ¯)W˙1,p\displaystyle\|Q_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{\dot{W}^{1,p}}\leq CψLp,\displaystyle\;C\|\psi^{\prime}\|_{L^{p}},

where CC depends on pp.

Proof.

Since

(6.46) PrR(ψψ¯)=𝕋(PrR(ξ)PrR(π))(ψ(θξ)ψ¯)dξ,P_{\frac{r}{R}}*(\psi-\bar{\psi})=\int_{\mathbb{T}}(P_{\frac{r}{R}}(\xi)-P_{\frac{r}{R}}(\pi))(\psi(\theta-\xi)-\bar{\psi})\,d\xi,

and PrR(ξ)PrR(π)P_{\frac{r}{R}}(\xi)\geq P_{\frac{r}{R}}(\pi), we have that

(6.47) PrR(ψψ¯)Lψψ¯L𝕋PrR(ξ)PrR(π)dξ=4πrR+rψψ¯L.\|P_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{L^{\infty}}\leq\|\psi-\bar{\psi}\|_{L^{\infty}}\int_{\mathbb{T}}P_{\frac{r}{R}}(\xi)-P_{\frac{r}{R}}(\pi)\,d\xi=\frac{4\pi r}{R+r}\|\psi-\bar{\psi}\|_{L^{\infty}}.

Since QrRQ_{\frac{r}{R}} has integral zero over 𝕋\mathbb{T}, by Lemma A.1,

(6.48) |QrR(ψψ¯)|=|𝕋QrR(ξ)(ψ(θξ)ψ(θ))dξ|CψC˙β𝕋|ξ|βδ+|ξ|dξCψC˙β.|Q_{\frac{r}{R}}*(\psi-\bar{\psi})|=\left|\int_{\mathbb{T}}Q_{\frac{r}{R}}(\xi)(\psi(\theta-\xi)-\psi(\theta))\,d\xi\right|\leq C\|\psi\|_{\dot{C}^{\beta}}\int_{\mathbb{T}}\frac{|\xi|^{\beta}}{\delta+|\xi|}\,d\xi\leq C\|\psi\|_{\dot{C}^{\beta}}.

It is straightforward to derive that for θ1,θ2𝕋\theta_{1},\theta_{2}\in\mathbb{T},

(6.49) |PrR(ψψ¯)(θ1)PrR(ψψ¯)(θ2)|=|𝕋(PrR(ξ)PrR(π))(ψ(θ1ξ)ψ(θ2ξ))dξ|4πrR+rψC˙β|θ1θ2|β.\begin{split}&\;|P_{\frac{r}{R}}*(\psi-\bar{\psi})(\theta_{1})-P_{\frac{r}{R}}*(\psi-\bar{\psi})(\theta_{2})|\\ =&\;\left|\int_{\mathbb{T}}(P_{\frac{r}{R}}(\xi)-P_{\frac{r}{R}}(\pi))(\psi(\theta_{1}-\xi)-\psi(\theta_{2}-\xi))\,d\xi\right|\\ \leq&\;\frac{4\pi r}{R+r}\|\psi\|_{\dot{C}^{\beta}}|\theta_{1}-\theta_{2}|^{\beta}.\end{split}

Moreover, by Young’s inequality,

(6.50) PrR(ψψ¯)W˙1,p=(PrRPrR(π))ψLp4πrR+rψLp.\|P_{\frac{r}{R}}*(\psi-\bar{\psi})\|_{\dot{W}^{1,p}}=\|(P_{\frac{r}{R}}-P_{\frac{r}{R}}(\pi))*\psi^{\prime}\|_{L^{p}}\leq\frac{4\pi r}{R+r}\|\psi^{\prime}\|_{L^{p}}.

The estimates involving QrRQ_{\frac{r}{R}} follows from the fact QrR=PrRQ_{\frac{r}{R}}=\mathcal{H}P_{\frac{r}{R}}. Note that the boundedness of Hilbert transform on Cβ(𝕋)C^{\beta}(\mathbb{T}) can be justified by that of its counterpart on Cβ()C^{\beta}(\mathbb{R}) with some adaptation. MM \square

7. Existence, Uniqueness and Estimates for [φ][\varphi] and ϕ\phi

This section aims at establishing well-definedness, regularity and estimates for [φ]γ[\varphi]_{\gamma} and ϕ\phi. The main approach is to apply a fixed-point argument to static equations (2.33) and (2.34), by using many estimates in Sections 3-6.

With the domain determined by rr, RR, hh and HH, let p~\tilde{p} be defined by (3.4) and (3.5), and let the radially symmetric solution pp_{*} be defined as in (3.8). Recall that cc_{*} and c~\tilde{c}_{*} are defined in (2.22). In fact, c=μ|p(r)|c_{*}=-\mu|\nabla p_{*}(r^{-})| and c~=ν|p(R)|\tilde{c}_{*}=-\nu|\nabla p_{*}(R)|, so their estimates can be found in Lemma 3.1. Also recall that 𝒮ψ:=12πPrRψ\mathcal{S}\psi:=\frac{1}{2\pi}P_{\frac{r}{R}}*\psi defined in (2.38). Then 𝒮ψ=12πQrRψ\mathcal{H}\mathcal{S}\psi=\frac{1}{2\pi}Q_{\frac{r}{R}}*\psi thanks to Lemma A.1.

In the spirit of the linearized equations (2.43) and (2.44), we rewrite (2.33) and (2.34) as

(7.1) [φ]2AcfA𝒮ϕ=\displaystyle[\varphi]^{\prime}-2Ac_{*}f^{\prime}-A\mathcal{S}\phi^{\prime}= [φ],\displaystyle\;\mathcal{R}_{[\varphi]^{\prime}},
(7.2) ϕ+2c~F𝒮[φ]=\displaystyle\phi^{\prime}+2\tilde{c}_{*}F^{\prime}-\mathcal{S}[\varphi]^{\prime}= ϕ,\displaystyle\;\mathcal{R}_{\phi^{\prime}},

where

(7.3) [φ]:= 2Af(θ)(er(Γg)|γc)+2Af(θ)eθ(Γg)|γ+2Aγ(θ)𝒦γ[φ]+2A(γ(θ)𝒦γ,γ~ϕ12𝒮ϕ),\begin{split}\mathcal{R}_{[\varphi]^{\prime}}:=&\;2Af^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}-c_{*})+2Af(\theta)e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\\ &\;+2A\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}+2A\left(\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}-\frac{1}{2}\mathcal{S}\phi^{\prime}\right),\end{split}
(7.4) ϕ:=2F(er(Γg)|γ~c~)2Feθ(Γg)|γ~2γ~(θ)𝒦γ~ϕ2(γ~(θ)𝒦γ~,γ[φ]+12𝒮[φ]).\begin{split}\mathcal{R}_{\phi^{\prime}}:=&\;-2F^{\prime}(e_{r}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}-\tilde{c}_{*})-2Fe_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\\ &\;-2\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma}}\phi^{\prime}-2\left(\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}+\frac{1}{2}\mathcal{S}[\varphi]^{\prime}\right).\end{split}

In what follows, we will need to apply the lemmas in Section 4 with g0=G(p~(X))χBr(X)g_{0}=G(\tilde{p}(X))\chi_{B_{r}}(X). For that purpose, according to (4.50) and (4.76), we define

(7.5) c=12πrBrG(p~(X))dX,c~=rRc.c=-\frac{1}{2\pi r}\int_{B_{r}}G(\tilde{p}(X))\,dX,\quad\tilde{c}=\frac{r}{R}c.

We can show the following relation between cc and cc_{*}.

Lemma 7.1.

Let cc_{*} and cc be defined in (2.22) and (7.5), respectively. Then under the assumption m0+M01m_{0}+M_{0}\ll 1,

(7.6) |cc|Cr(m0+M0)(δR2)1/2,|c-c_{*}|\leq Cr(m_{0}+M_{0})(\delta R^{2})^{1/2},

where C=C(μ,ν,G)C=C(\mu,\nu,G).

Proof.

Thanks to the C1C^{1}-smoothness of GG,

(7.7) |cc|Cr1Br|p~p|dX.|c-c_{*}|\leq Cr^{-1}\int_{B_{r}}|\tilde{p}-p_{*}|\,dX.

If rR/2r\geq R/2, by Lemma 3.3, Hölder’s inequality and Poincaré inequality,

(7.8) |cc|Cp~pL2(BR)CR(p~p)L2(BR)CR(m0+M0)(δR2)1/2.|c-c_{*}|\leq C\|\tilde{p}-p_{*}\|_{L^{2}(B_{R})}\leq CR\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{R})}\leq CR(m_{0}+M_{0})(\delta R^{2})^{1/2}.

Since rr and RR are comparable, the desired estimate follows.

Otherwise, the estimate follows from (3.43). MM \square

Then we turn to prove that the static equations (2.33) and (2.34) have solutions [φ][\varphi]^{\prime} and ϕ\phi^{\prime}.

Proposition 7.1.

Let β(0,1)\beta^{\prime}\in(0,1) and β(0,β1+β)\beta\in(0,\frac{\beta^{\prime}}{1+\beta^{\prime}}). Suppose h,HC1,β(𝕋)h,H\in C^{1,\beta^{\prime}}(\mathbb{T}), such that

(7.9) m0+M0+hC˙β+HC˙β1,m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}}\ll 1,

where the smallness depends on μ\mu, ν\nu, β\beta and β\beta^{\prime}. Then there exist unique [φ],ϕCβ(𝕋)[\varphi]^{\prime},\phi^{\prime}\in C^{\beta}(\mathbb{T}) solving (2.33) and (2.34), or equivalently (7.1)-(7.4). They satisfy that

(7.10) [φ]C˙β+ϕC˙βC|c|r(hC˙β+HC˙β)+Cr2(δβhC˙β+(m0+M0)(1+δR2)1/2)=:N1,β,\begin{split}&\;\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi^{\prime}\|_{\dot{C}^{\beta}}\\ \leq&\;C|c_{*}|r(\|h^{\prime}\|_{\dot{C}^{\beta}}+\|H^{\prime}\|_{\dot{C}^{\beta}})+Cr^{2}(\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+(m_{0}+M_{0})(1+\delta R^{2})^{1/2})\\ =:&\;N_{1,\beta},\end{split}

where C=C(μ,ν,G,β,β)C=C(\mu,\nu,G,\beta,\beta^{\prime}).

Proof.

We will first derive a priori estimates for [φ][\varphi]^{\prime} and ϕ\phi^{\prime}, and then briefly discuss the proof of their existence and uniqueness at the end.

By Lemmas 3.3, 4.4 and 4.7 (with p=(1β)1p=(1-\beta)^{-1}), the C1C^{1}-smoothness of GG and the smallness of hh,

(7.11) f(er(Γg)|γc)C˙β+feθ(Γg)|γC˙βfC˙βer(Γg)|γcL+fLer(Γg)|γW˙1,p+fC˙βeθ(Γg)|γL+fLeθ(Γg)|γW˙1,pCr2hC˙β(m0δ|lnδ|+(p~p)L2(Br))+Cr2(mβ+(p~p)L2(Br))Cr2(mβ+(m0+M0)(δR2)1/2).\begin{split}&\;\|f^{\prime}(e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}-c)\|_{\dot{C}^{\beta}}+\|fe_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{C}^{\beta}}\\ \leq&\;\|f^{\prime}\|_{\dot{C}^{\beta}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}-c\|_{L^{\infty}}+\|f^{\prime}\|_{L^{\infty}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ &\;+\|f\|_{\dot{C}^{\beta}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{L^{\infty}}+\|f\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{2}\|h^{\prime}\|_{\dot{C}^{\beta}}(m_{0}\delta|\ln\delta|+\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{r})})\\ &\;+Cr^{2}(m_{\beta}+\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{r})})\\ \leq&\;Cr^{2}(m_{\beta}+(m_{0}+M_{0})(\delta R^{2})^{1/2}).\end{split}

On the other hand, for β(0,β1+β)\beta\in(0,\frac{\beta^{\prime}}{1+\beta^{\prime}}), by Lemmas 5.1, 6.1, 6.2 and 6.5,

(7.12) γ(θ)𝒦γ[φ]C˙β+γ(θ)𝒦γ,γ~ϕ12𝒮ϕC˙βChC˙β([φ]Cβ+[φ]LhC˙βhL)+f/fC˙βfeθ𝒦γ,γ~ϕL+f/fLfeθ𝒦γ,γ~ϕC˙β+fer𝒦γ,γ~ϕ+12𝒮ϕC˙βChC˙β[φ]C˙β+C(m0+M0+hC˙β+HC˙β)ϕC˙β,\begin{split}&\;\|\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\left\|\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}-\frac{1}{2}\mathcal{S}\phi^{\prime}\right\|_{\dot{C}^{\beta}}\\ \leq&\;C\|h^{\prime}\|_{\dot{C}^{\beta}}(\|[\varphi]^{\prime}\|_{C^{\beta}}+\|[\varphi]^{\prime}\|_{L^{\infty}}\|h^{\prime}\|_{\dot{C}^{\beta}}\|h^{\prime}\|_{L^{\infty}})\\ &\;+\|f^{\prime}/f\|_{\dot{C}^{\beta}}\|fe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{L^{\infty}}+\|f^{\prime}/f\|_{L^{\infty}}\|fe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+\left\|fe_{r}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}+\frac{1}{2}\mathcal{S}\phi^{\prime}\right\|_{\dot{C}^{\beta}}\\ \leq&\;C\|h^{\prime}\|_{\dot{C}^{\beta}}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+C(m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\|\phi^{\prime}\|_{\dot{C}^{\beta}},\end{split}

where C=C(β,β)C=C(\beta,\beta^{\prime}). Hence, by (7.3), Lemma 7.1 and the fact that |A|1|A|\leq 1,

(7.13) [φ]C˙β|A|C(β,β)(m0+M0+hC˙β+HC˙β)ϕC˙β+C(β,β)hC˙β[φ]C˙β+Cr2(mβ+(m0+M0)(δR2)1/2),\begin{split}\|\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{C}^{\beta}}\leq&\;|A|C(\beta,\beta^{\prime})(m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\|\phi^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C(\beta,\beta^{\prime})\|h^{\prime}\|_{\dot{C}^{\beta}}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+Cr^{2}(m_{\beta}+(m_{0}+M_{0})(\delta R^{2})^{1/2}),\end{split}

and thus by (7.1),

(7.14) [φ]C˙β|A|(2rR+r+C(β,β)(m0+M0+hC˙β+HC˙β))ϕC˙β+C(β,β)hC˙β[φ]C˙β+C|c|rhC˙β+Cr2(mβ+(m0+M0)(δR2)1/2),\begin{split}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}\leq&\;|A|\left(\frac{2r}{R+r}+C(\beta,\beta^{\prime})(m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\right)\|\phi^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C(\beta,\beta^{\prime})\|h^{\prime}\|_{\dot{C}^{\beta}}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C|c_{*}|r\|h^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(m_{\beta}+(m_{0}+M_{0})(\delta R^{2})^{1/2}),\end{split}

where C=C(μ,ν,G,β,β)C=C(\mu,\nu,G,\beta,\beta^{\prime}) unless otherwise stated.

Similarly, by Lemmas 3.3, 4.9 and 4.12,

(7.15) F(er(Γg)c~)|γ~C˙β+Feθ(Γg)|γ~C˙βFC˙βer(Γg)|γ~c~L+FLer(Γg)|γ~W˙1,p+FC˙βeθ(Γg)|γ~L+FLeθ(Γg)|γ~W˙1,pCr2(m0+M0)(1+δR2)1/2.\begin{split}&\;\|F^{\prime}(e_{r}\cdot\nabla(\Gamma*g)-\tilde{c})|_{\tilde{\gamma}}\|_{\dot{C}^{\beta}}+\|Fe_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{\dot{C}^{\beta}}\\ \leq&\;\|F^{\prime}\|_{\dot{C}^{\beta}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}-\tilde{c}\|_{L^{\infty}}+\|F^{\prime}\|_{L^{\infty}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{\dot{W}^{1,p}}\\ &\;+\|F\|_{\dot{C}^{\beta}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{L^{\infty}}+\|F\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{2}(m_{0}+M_{0})(1+\delta R^{2})^{1/2}.\end{split}

By Lemmas 5.1, 6.4 and 6.5,

(7.16) γ~(θ)𝒦γ~ϕC˙β+γ~(θ)𝒦γ~,γ[φ]+12𝒮[φ]C˙βCHC˙β(ϕCβ+ϕLHC˙βHL)+F/FC˙βFeθ𝒦γ~,γ[φ]L+F/FLFeθ𝒦γ~,γ[φ]C˙β+Fer𝒦γ~,γ[φ]12𝒮[φ]C˙βCHC˙βϕC˙β+C(m0+M0+hC˙β+HC˙β)[φ]C˙β,\begin{split}&\;\|\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma}}\phi^{\prime}\|_{\dot{C}^{\beta}}+\left\|\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}+\frac{1}{2}\mathcal{S}[\varphi]\right\|_{\dot{C}^{\beta}}\\ \leq&\;C\|H^{\prime}\|_{\dot{C}^{\beta}}(\|\phi^{\prime}\|_{C^{\beta}}+\|\phi^{\prime}\|_{L^{\infty}}\|H^{\prime}\|_{\dot{C}^{\beta}}\|H^{\prime}\|_{L^{\infty}})\\ &\;+\|F^{\prime}/F\|_{\dot{C}^{\beta}}\|Fe_{\theta}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\|_{L^{\infty}}+\|F^{\prime}/F\|_{L^{\infty}}\|Fe_{\theta}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+\left\|Fe_{r}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}-\frac{1}{2}\mathcal{S}[\varphi]^{\prime}\right\|_{\dot{C}^{\beta}}\\ \leq&\;C\|H^{\prime}\|_{\dot{C}^{\beta}}\|\phi^{\prime}\|_{\dot{C}^{\beta}}+C(m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}},\end{split}

where C=C(β,β)C=C(\beta,\beta^{\prime}). Combining them with (7.2), (7.4) and Lemma 7.1, we obtain that

(7.17) ϕC˙βC(β,β)(m0+M0+hC˙β+HC˙β)[φ]C˙β+C(β,β)HC˙βϕC˙β+Cr2(m0+M0)(1+δR2)1/2,\begin{split}\|\mathcal{R}_{\phi^{\prime}}\|_{\dot{C}^{\beta}}\leq&\;C(\beta,\beta^{\prime})(m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C(\beta,\beta^{\prime})\|H^{\prime}\|_{\dot{C}^{\beta}}\|\phi^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

and

(7.18) ϕC˙β(2rR+r+C(β,β)(m0+M0+hC˙β+HC˙β))[φ]C˙β+C(β,β)HC˙βϕC˙β+C|c~|RHC˙β+Cr2(m0+M0)(1+δR2)1/2,\begin{split}\|\phi^{\prime}\|_{\dot{C}^{\beta}}\leq&\;\left(\frac{2r}{R+r}+C(\beta,\beta^{\prime})(m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\right)\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C(\beta,\beta^{\prime})\|H^{\prime}\|_{\dot{C}^{\beta}}\|\phi^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C|\tilde{c}_{*}|R\|H^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,G,β,β)C=C(\mu,\nu,G,\beta,\beta^{\prime}).

Since |A|<1|A|<1 and c~=rRc\tilde{c}_{*}=\frac{r}{R}c_{*}, by the smallness assumption (7.9), we combine (7.14) and (7.18) to obtain (7.10).

Let us briefly explain the proof of existence and uniqueness of [φ][\varphi]^{\prime} and ϕ\phi^{\prime}. Let VV denote the space of Cβ(𝕋)C^{\beta}(\mathbb{T})-functions with mean zero. Take hh and HH satisfying the assumptions. According to (7.1) and (7.2), define a map from V×VV\times V to itself by

(7.19) ([φ],ϕ)(2Acf+A𝒮ϕ+[φ],2c~F+𝒮[φ]+ϕ).([\varphi]^{\prime},\phi^{\prime})\mapsto\left(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime}+\mathcal{R}_{[\varphi]^{\prime}},-2\tilde{c}_{*}F^{\prime}+\mathcal{S}[\varphi]^{\prime}+\mathcal{R}_{\phi^{\prime}}\right).

Thanks to the estimates above, one can easily show that the map is well-defined and it is a contraction mapping provided the smallness of hh and HH. Then the existence and uniqueness of ([φ],ϕ)([\varphi]^{\prime},\phi^{\prime}) follow. MM \square

Proposition 7.2.

Let β(0,1)\beta^{\prime}\in(0,1), β(0,β1+β)\beta\in(0,\frac{\beta^{\prime}}{1+\beta^{\prime}}) and p[2,)p\in[2,\infty). Suppose h,HC1,βW2,p(𝕋)h,H\in C^{1,\beta^{\prime}}\cap W^{2,p}(\mathbb{T}), such that

(7.20) m0+M0+hC˙β+HC˙β1,m_{0}+M_{0}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}}\ll 1,

where the smallness depends on μ\mu, ν\nu, pp, β\beta and β\beta^{\prime}. Then [φ][\varphi]^{\prime} and ϕ\phi^{\prime} obtained in Proposition 7.1 also belong to W1,p(𝕋)W^{1,p}(\mathbb{T}). They satisfy

(7.21) [φ]Lp+ϕLpC|c|r(hLp+HLp)+Cr2(1+hLp+HLp)(δβhC˙β+(m0+M0)(1+δR2)1/2)=:N2,p,\begin{split}&\;\|[\varphi]^{\prime\prime}\|_{L^{p}}+\|\phi^{\prime\prime}\|_{L^{p}}\\ \leq&\;C|c_{*}|r(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})\\ &\;+Cr^{2}(1+\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+(m_{0}+M_{0})(1+\delta R^{2})^{1/2})\\ =:&\;N_{2,p},\end{split}

where C=C(μ,ν,p,G,β,β)C=C(\mu,\nu,p,G,\beta,\beta^{\prime}).

Proof.

The proof is similar to that of Proposition 7.1.

Let cc and c~\tilde{c} be defined as in (7.5). We proceed as before.

(7.22) f(er(Γg)|γc)W˙1,p+feθ(Γg)|γW˙1,pfW˙1,per(Γg)|γcL+fLer(Γg)|γW˙1,p+fLpeθ(Γg)|γL+fLeθ(Γg)|γW˙1,pCr2hLp(m0δ|lnδ|+(p~p)L2(Br))+Cr2(mβ+(p~p)L2(Br))Cr2δβhC˙β+Cr2(1+hLp)(m0+M0)(1+δR2)1/2,\begin{split}&\;\|f^{\prime}(e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}-c)\|_{\dot{W}^{1,p}}+\|fe_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ \leq&\;\|f^{\prime}\|_{\dot{W}^{1,p}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}-c\|_{L^{\infty}}+\|f^{\prime}\|_{L^{\infty}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ &\;+\|f^{\prime}\|_{L^{p}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{L^{\infty}}+\|f\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{2}\|h^{\prime\prime}\|_{L^{p}}(m_{0}\delta|\ln\delta|+\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{r})})\\ &\;+Cr^{2}(m_{\beta}+\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{r})})\\ \leq&\;Cr^{2}\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(1+\|h^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,p,G,β)C=C(\mu,\nu,p,G,\beta), and by Lemma 5.2 and Lemma 6.3,

(7.23) γ(θ)𝒦γ[φ]W˙1,p+γ(θ)𝒦γ,γ~ϕ12𝒮ϕW˙1,pChLp[φ]L(1+hC˙β)+C(hLp[φ]C˙β+hL[φ]Lp)+f/fW˙1,pfeθ𝒦γ,γ~ϕL+f/fLfeθ𝒦γ,γ~ϕW˙1,p+fer𝒦γ,γ~ϕ+12𝒮ϕW˙1,pC(hLp[φ]C˙β+hL[φ]Lp)+ChLpϕC˙β+ChLϕLp+C(HLpϕL+(m0+M0)ϕLp)C(m0+M0)ϕLp+ChL[φ]Lp+C(hLp+HLp)([φ]C˙β+ϕC˙β),\begin{split}&\;\|\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}\|_{\dot{W}^{1,p}}+\left\|\gamma^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}-\frac{1}{2}\mathcal{S}\phi^{\prime}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h^{\prime\prime}\|_{L^{p}}\|[\varphi]^{\prime}\|_{L^{\infty}}(1+\|h^{\prime}\|_{\dot{C}^{\beta}})+C(\|h^{\prime\prime}\|_{L^{p}}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|h^{\prime}\|_{L^{\infty}}\|[\varphi]^{\prime\prime}\|_{L^{p}})\\ &\;+\|f^{\prime}/f\|_{\dot{W}^{1,p}}\|fe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{L^{\infty}}+\|f^{\prime}/f\|_{L^{\infty}}\|fe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{\dot{W}^{1,p}}\\ &\;+\left\|fe_{r}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}+\frac{1}{2}\mathcal{S}\phi^{\prime}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(\|h^{\prime\prime}\|_{L^{p}}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|h^{\prime}\|_{L^{\infty}}\|[\varphi]^{\prime\prime}\|_{L^{p}})\\ &\;+C\|h^{\prime\prime}\|_{L^{p}}\|\phi^{\prime}\|_{\dot{C}^{\beta}}+C\|h^{\prime}\|_{L^{\infty}}\|\phi^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|H^{\prime\prime}\|_{L^{p}}\|\phi^{\prime}\|_{L^{\infty}}+(m_{0}+M_{0})\|\phi^{\prime\prime}\|_{L^{p}})\\ \leq&\;C(m_{0}+M_{0})\|\phi^{\prime\prime}\|_{L^{p}}+C\|h^{\prime}\|_{L^{\infty}}\|[\varphi]^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi^{\prime}\|_{\dot{C}^{\beta}}),\end{split}

where C=C(p,β)C=C(p,\beta). Combining them with (7.1) and (7.3), by Lemma 6.5 and Lemma 7.1

(7.24) [φ]LpC(p,β)(m0+M0)ϕLp+C(p,β)hL[φ]Lp+C(hLp+HLp)([φ]C˙β+ϕC˙β)+Cr2δβhC˙β+Cr2(1+hLp)(m0+M0)(1+δR2)1/2,\begin{split}\|\mathcal{R}_{[\varphi]^{\prime}}^{\prime}\|_{L^{p}}\leq&\;C(p,\beta)(m_{0}+M_{0})\|\phi^{\prime\prime}\|_{L^{p}}+C(p,\beta)\|h^{\prime}\|_{L^{\infty}}\|[\varphi]^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+Cr^{2}\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(1+\|h^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

and thus

(7.25) [φ]Lp(2|A|rR+r+C(p,β)(m0+M0))ϕLp+C(p,β)hL[φ]Lp+C(hLp+HLp)([φ]C˙β+ϕC˙β)+C|c|rhLp+Cr2δβhC˙β+Cr2(1+hLp)(m0+M0)(1+δR2)1/2,\begin{split}&\;\|[\varphi]^{\prime\prime}\|_{L^{p}}\\ \leq&\;\left(\frac{2|A|r}{R+r}+C(p,\beta)(m_{0}+M_{0})\right)\|\phi^{\prime\prime}\|_{L^{p}}+C(p,\beta)\|h^{\prime}\|_{L^{\infty}}\|[\varphi]^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C|c_{*}|r\|h^{\prime\prime}\|_{L^{p}}+Cr^{2}\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(1+\|h^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,p,G,β)C=C(\mu,\nu,p,G,\beta) unless otherwise stated.

Moreover,

(7.26) F(er(Γg)c~)|γ~W˙1,p+Feθ(Γg)|γ~W˙1,pFW˙1,per(Γg)|γ~c~L+FLer(Γg)|γ~W˙1,p+FW˙1,peθ(Γg)|γ~L+FLeθ(Γg)|γ~W˙1,pCr2(1+HLp)(m0+M0)(1+δR2)1/2,\begin{split}&\;\|F^{\prime}(e_{r}\cdot\nabla(\Gamma*g)-\tilde{c})|_{\tilde{\gamma}}\|_{\dot{W}^{1,p}}+\|Fe_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{\dot{W}^{1,p}}\\ \leq&\;\|F^{\prime}\|_{\dot{W}^{1,p}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}-\tilde{c}\|_{L^{\infty}}+\|F^{\prime}\|_{L^{\infty}}\|e_{r}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{\dot{W}^{1,p}}\\ &\;+\|F\|_{\dot{W}^{1,p}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{L^{\infty}}+\|F\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\tilde{\gamma}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{2}(1+\|H^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(p,G,β)C=C(p,G,\beta), and

(7.27) γ~(θ)𝒦γ~ϕW˙1,p+γ~(θ)𝒦γ~,γ[φ]+12𝒮[φ]W˙1,pCHLpϕL(1+HC˙β)+C(HLpϕC˙β+HLϕLp)+F/FW˙1,pFeθ𝒦γ~,γ[φ]L+F/FLFeθ𝒦γ~,γ[φ]W˙1,p+Fer𝒦γ~,γ[φ]12𝒮[φ]W˙1,pC(m0+M0)[φ]Lp+CHLϕLp+C(hLp+HLp)(ϕC˙β+[φ]C˙β),\begin{split}&\;\|\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma}}\phi^{\prime}\|_{\dot{W}^{1,p}}+\left\|\tilde{\gamma}^{\prime}(\theta)^{\perp}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}+\frac{1}{2}\mathcal{S}[\varphi]^{\prime}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C\|H^{\prime\prime}\|_{L^{p}}\|\phi^{\prime}\|_{L^{\infty}}(1+\|H^{\prime}\|_{\dot{C}^{\beta}})+C(\|H^{\prime\prime}\|_{L^{p}}\|\phi^{\prime}\|_{\dot{C}^{\beta}}+\|H^{\prime}\|_{L^{\infty}}\|\phi^{\prime\prime}\|_{L^{p}})\\ &\;+\|F^{\prime}/F\|_{\dot{W}^{1,p}}\|Fe_{\theta}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\|_{L^{\infty}}+\|F^{\prime}/F\|_{L^{\infty}}\|Fe_{\theta}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}\|_{\dot{W}^{1,p}}\\ &\;+\left\|Fe_{r}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}-\frac{1}{2}\mathcal{S}[\varphi]^{\prime}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(m_{0}+M_{0})\|[\varphi]^{\prime\prime}\|_{L^{p}}+C\|H^{\prime}\|_{L^{\infty}}\|\phi^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|\phi^{\prime}\|_{\dot{C}^{\beta}}+\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}),\end{split}

where C=C(p,β)C=C(p,\beta). Hence, by (7.2), (7.4), Lemma 6.5 and Lemma 7.1, with C=C(p,G,β)C=C(p,G,\beta),

(7.28) ϕLpC(p,β)(m0+M0)[φ]Lp+C(p,β)HLϕLp+C(hLp+HLp)(ϕC˙β+[φ]C˙β)+Cr2(1+HLp)(m0+M0)(1+δR2)1/2,\begin{split}\|\mathcal{R}_{\phi^{\prime}}^{\prime}\|_{L^{p}}\leq&\;C(p,\beta)(m_{0}+M_{0})\|[\varphi]^{\prime\prime}\|_{L^{p}}+C(p,\beta)\|H^{\prime}\|_{L^{\infty}}\|\phi^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|\phi^{\prime}\|_{\dot{C}^{\beta}}+\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+Cr^{2}(1+\|H^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

and

(7.29) ϕLp(2rR+r+C(p,β)(m0+M0))[φ]Lp+C(p,β)HLϕLp+C(hLp+HLp)(ϕC˙β+[φ]C˙β)+C|c~|RHLp+Cr2(1+HLp)(m0+M0)(1+δR2)1/2.\begin{split}\|\phi^{\prime\prime}\|_{L^{p}}\leq&\;\left(\frac{2r}{R+r}+C(p,\beta)(m_{0}+M_{0})\right)\|[\varphi]^{\prime\prime}\|_{L^{p}}+C(p,\beta)\|H^{\prime}\|_{L^{\infty}}\|\phi^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|\phi^{\prime}\|_{\dot{C}^{\beta}}+\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C|\tilde{c}_{*}|R\|H^{\prime\prime}\|_{L^{p}}+Cr^{2}(1+\|H^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2}.\end{split}

Since |A|<1|A|<1 and m0+M01m_{0}+M_{0}\ll 1, we combine (7.25) and (7.29) to obtain that

(7.30) [φ]Lp+ϕLpC(hLp+HLp)([φ]C˙β+ϕC˙β)+C|c|r(hLp+HLp)+Cr2δβhC˙β+Cr2(1+hLp+HLp)(m0+M0)(1+δR2)1/2,\begin{split}&\;\|[\varphi]^{\prime\prime}\|_{L^{p}}+\|\phi^{\prime\prime}\|_{L^{p}}\\ \leq&\;C(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi^{\prime}\|_{\dot{C}^{\beta}})+C|c_{*}|r(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})\\ &\;+Cr^{2}\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(1+\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,p,G,β)C=C(\mu,\nu,p,G,\beta). Applying Proposition 7.1 yields the desired estimate.

To prove [φ],ϕW1,p(𝕋)[\varphi]^{\prime},\phi^{\prime}\in W^{1,p}(\mathbb{T}), we simply define V~\tilde{V} to be the space of mean-zero CβW1,p(𝕋)C^{\beta}\cap W^{1,p}(\mathbb{T})-functions. One can show that the map in (7.19) is well-defined from V~×V~\tilde{V}\times\tilde{V} to itself and it is a contraction mapping, provided smallness of hh and HH. MM \square

Lemma 7.2.

Under the assumptions of Proposition 7.2,

(7.31) [φ]C˙β+ϕC˙βC|c|r(hC˙β+HC˙β)2+Cr2(δβhC˙β+(m0+M0)(1+δR2)1/2),\begin{split}&\;\|\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{C}^{\beta}}+\|\mathcal{R}_{\phi^{\prime}}\|_{\dot{C}^{\beta}}\\ \leq&\;C|c_{*}|r(\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})^{2}\\ &\;+Cr^{2}(\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+(m_{0}+M_{0})(1+\delta R^{2})^{1/2}),\end{split}

and

(7.32) [φ]W˙1,p+ϕW˙1,pC|c|r(hLp+HLp)(hC˙β+HC˙β)+Cr2(1+hLp+HLp)(δβhC˙β+(m0+M0)(1+δR2)1/2)=:N~2,p,\begin{split}&\;\|\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{W}^{1,p}}+\|\mathcal{R}_{\phi^{\prime}}\|_{\dot{W}^{1,p}}\\ \leq&\;C|c_{*}|r(\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\|h^{\prime}\|_{\dot{C}^{\beta}}+\|H^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+Cr^{2}(1+\|h^{\prime\prime}\|_{L^{p}}+\|H^{\prime\prime}\|_{L^{p}})(\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+(m_{0}+M_{0})(1+\delta R^{2})^{1/2})\\ =:&\;\tilde{N}_{2,p},\end{split}

where C=C(μ,ν,p,G,β,β)C=C(\mu,\nu,p,G,\beta,\beta^{\prime}).

Proof.

The estimates immediately follow by combining (7.13), (7.17), (7.24) and (7.28) with Proposition 7.1, Proposition 7.2 and Lemma 3.1. MM \square

8. Local Existence

In this section, we prove existence of local solutions of (2.16)-(2.18).

8.1. Preliminaries

Inspired by (2.45) and (2.46), we may rewrite (2.16) and (2.17) as

(8.1) th+cr=\displaystyle\partial_{t}h+\frac{c_{*}}{r}= Acr(Δ)1/2h1+A2r2𝒮ϕ+1rh,\displaystyle\;-\frac{Ac_{*}}{r}(-\Delta)^{1/2}h-\frac{1+A}{2r^{2}}\mathcal{H}\mathcal{S}\phi^{\prime}+\frac{1}{r}\mathcal{R}_{h},
(8.2) tH+c~R=\displaystyle\partial_{t}H+\frac{\tilde{c}_{*}}{R}= c~R(Δ)1/2H1R2𝒮[φ]+1RH,\displaystyle\;\frac{\tilde{c}_{*}}{R}(-\Delta)^{1/2}H-\frac{1}{R^{2}}\mathcal{H}\mathcal{S}[\varphi]^{\prime}+\frac{1}{R}\mathcal{R}_{H},

where

(8.3) h:=1fγ(θ)𝒦γ[φ](1fγ(θ)𝒦γ(2Acf+A𝒮ϕ)12r(2Acf+A𝒮ϕ))+(1f(Γg)|γγ(θ)+c)(1fγ(θ)𝒦γ,γ~ϕ12r𝒮ϕ),\begin{split}\mathcal{R}_{h}:=&\;-\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\mathcal{R}_{[\varphi]^{\prime}}\\ &\;-\left(\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})-\frac{1}{2r}\mathcal{H}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})\right)\\ &\;+\left(\frac{1}{f}\nabla(\Gamma*g)|_{\gamma}\cdot\gamma^{\prime}(\theta)^{\perp}+c_{*}\right)-\left(\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}-\frac{1}{2r}\mathcal{H}\mathcal{S}\phi^{\prime}\right),\end{split}

and

(8.4) H:=1Fγ~(θ)𝒦γ~ϕ(1Fγ~(θ)𝒦γ~(2c~F+𝒮[φ])12R(2c~F+𝒮[φ]))+(1F(Γg)|γ~γ~(θ)+c~)(1Fγ~(θ)𝒦γ~,γ[φ]12R𝒮[φ]).\begin{split}\mathcal{R}_{H}:=&\;-\frac{1}{F}\tilde{\gamma}^{\prime}(\theta)\cdot\mathcal{K}_{\tilde{\gamma}}\mathcal{R}_{\phi^{\prime}}\\ &\;-\left(\frac{1}{F}\tilde{\gamma}^{\prime}(\theta)\cdot\mathcal{K}_{\tilde{\gamma}}(-2\tilde{c}_{*}F^{\prime}+\mathcal{S}[\varphi]^{\prime})-\frac{1}{2R}\mathcal{H}(-2\tilde{c}_{*}F^{\prime}+\mathcal{S}[\varphi]^{\prime})\right)\\ &\;+\left(\frac{1}{F}\nabla(\Gamma*g)|_{\tilde{\gamma}}\cdot\tilde{\gamma}^{\prime}(\theta)^{\perp}+\tilde{c}_{*}\right)-\left(\frac{1}{F}\tilde{\gamma}^{\prime}(\theta)\cdot\mathcal{K}_{\tilde{\gamma},\gamma}[\varphi]^{\prime}-\frac{1}{2R}\mathcal{H}\mathcal{S}[\varphi]^{\prime}\right).\end{split}

For future use, we also denote

(8.5) ~h:=1+A2r𝒮ϕ+h,~H:=1R𝒮[φ]+H.\tilde{\mathcal{R}}_{h}:=-\frac{1+A}{2r}\mathcal{H}\mathcal{S}\phi^{\prime}+\mathcal{R}_{h},\quad\tilde{\mathcal{R}}_{H}:=-\frac{1}{R}\mathcal{H}\mathcal{S}[\varphi]^{\prime}+\mathcal{R}_{H}.

We need estimates for h\mathcal{R}_{h} and H\mathcal{R}_{H}.

Lemma 8.1.

Under the assumptions of Proposition 7.2,

(8.6) rhW˙1,p+RHW˙1,pCN~2,p,r\|\mathcal{R}_{h}\|_{\dot{W}^{1,p}}+R\|\mathcal{R}_{H}\|_{\dot{W}^{1,p}}\leq C\tilde{N}_{2,p},

where C=C(μ,ν,p,G,β,β)C=C(\mu,\nu,p,G,\beta,\beta^{\prime}).

Proof.

By (7.1), [φ]\mathcal{R}_{[\varphi]^{\prime}} has zero integral on 𝕋\mathbb{T}. By Lemma 5.3 and Lemma 7.2,

(8.7) γ(θ)𝒦γ[φ]W˙1,pC[φ]W˙1,p+ChLp[φ]C˙βCN~2,p.\begin{split}\|\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{W}^{1,p}}\leq&\;C\|\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{W}^{1,p}}+C\|h^{\prime\prime}\|_{L^{p}}\|\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{C}^{\beta}}\leq C\tilde{N}_{2,p}.\end{split}

When γ\gamma^{\prime} and ψ\psi are Hölder continuous on 𝕋\mathbb{T} and hh satisfies the smallness assumption, one can rigorously show that

(8.8) γ𝒦γψ=ddθ[12π𝕋ln|γ(θ)γ(θ)|ψ(θ)dθ],\gamma^{\prime}\cdot\mathcal{K}_{\gamma}\psi=\frac{d}{d\theta}\left[\frac{1}{2\pi}\int_{\mathbb{T}}\ln|\gamma(\theta)-\gamma(\theta^{\prime})|\psi(\theta^{\prime})\,d\theta^{\prime}\right],

and thus it has mean zero on 𝕋\mathbb{T}. Hence, by Poincaré inequality and (8.7),

(8.9) f1γ(θ)𝒦γ[φ]W˙1,pCr1N~2,p.\|f^{-1}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}\mathcal{R}_{[\varphi]^{\prime}}\|_{\dot{W}^{1,p}}\leq Cr^{-1}\tilde{N}_{2,p}.

Similarly,

(8.10) 1fγ(θ)𝒦γ(2Acf+A𝒮ϕ)12r(2Acf+A𝒮ϕ)W˙1,p1f(γ(θ)𝒦γ(2Acf+A𝒮ϕ)12(2Acf+A𝒮ϕ))W˙1,p+(12f12r)(2Acf+A𝒮ϕ)W˙1,pCr1hLp2Acf+A𝒮ϕC˙β+Cr1m02Acf+A𝒮ϕW˙1,pCr1N~2,p.\begin{split}&\;\left\|\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})-\frac{1}{2r}\mathcal{H}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})\right\|_{\dot{W}^{1,p}}\\ \leq&\;\left\|\frac{1}{f}\left(\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})-\frac{1}{2}\mathcal{H}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})\right)\right\|_{\dot{W}^{1,p}}\\ &\;+\left\|\left(\frac{1}{2f}-\frac{1}{2r}\right)\mathcal{H}(2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime})\right\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{-1}\|h^{\prime\prime}\|_{L^{p}}\|2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime}\|_{\dot{C}^{\beta}}+Cr^{-1}m_{0}\|2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{-1}\tilde{N}_{2,p}.\end{split}

By Lemmas 3.3, 4.4 and 4.7,

(8.11) f1(Γg)|γγ(θ)+cW˙1,pCf/fW˙1,peθ(Γg)|γL+Cf/fLeθ(Γg)|γW˙1,p+er(Γg)|γW˙1,pCrhLp(m0δ|lnδ|+(p~p)L2(Br))+Cr(mβ+(p~p)L2(Br))Cr1N~2,p.\begin{split}&\;\|f^{-1}\nabla(\Gamma*g)|_{\gamma}\cdot\gamma^{\prime}(\theta)^{\perp}+c_{*}\|_{\dot{W}^{1,p}}\\ \leq&\;C\|f^{\prime}/f\|_{\dot{W}^{1,p}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{L^{\infty}}+C\|f^{\prime}/f\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ &\;+\|e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr\|h^{\prime\prime}\|_{L^{p}}(m_{0}\delta|\ln\delta|+\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{r})})\\ &\;+Cr(m_{\beta}+\|\nabla(\tilde{p}-p_{*})\|_{L^{2}(B_{r})})\\ \leq&\;Cr^{-1}\tilde{N}_{2,p}.\end{split}

Finally, by Lemmas 6.1, 6.3 and 6.5,

(8.12) 1fγ(θ)𝒦γ,γ~ϕ12r𝒮ϕW˙1,pCr1feθ𝒦γ,γ~ϕ12𝒮ϕW˙1,p+Cr1fer𝒦γ,γ~ϕW˙1,p+Cr1hW1,𝒮ϕW˙1,pCr1(HLpϕL+(m0+M0)ϕLp)+Cr1hLpϕLCr1N~2,p.\begin{split}&\;\left\|\frac{1}{f}\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}-\frac{1}{2r}\mathcal{H}\mathcal{S}\phi^{\prime}\right\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{-1}\left\|fe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}-\frac{1}{2}\mathcal{H}\mathcal{S}\phi^{\prime}\right\|_{\dot{W}^{1,p}}+Cr^{-1}\|f^{\prime}e_{r}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{\dot{W}^{1,p}}\\ &\;+Cr^{-1}\|h\|_{W^{1,\infty}}\|\mathcal{H}\mathcal{S}\phi^{\prime}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{-1}(\|H^{\prime\prime}\|_{L^{p}}\|\phi^{\prime}\|_{L^{\infty}}+(m_{0}+M_{0})\|\phi^{\prime\prime}\|_{L^{p}})+Cr^{-1}\|h^{\prime\prime}\|_{L^{p}}\|\phi^{\prime}\|_{L^{\infty}}\\ \leq&\;Cr^{-1}\tilde{N}_{2,p}.\end{split}

Combining these estimates with (8.3), we obtain the estimate for h\mathcal{R}_{h} in (8.6).

The estimate for H\mathcal{R}_{H} can be derived in a similar manner. MM \square

We shall also need bounds for integrals of h\mathcal{R}_{h} and H\mathcal{R}_{H} on 𝕋\mathbb{T}.

Lemma 8.2.

Under the assumptions of Proposition 7.2,

(8.13) r|𝕋hdθ|+R|𝕋Hdθ|C(hL+HL)N2,p+Cr2(m0+M0)(1+δR2)1/2,\begin{split}&\;r\left|\int_{\mathbb{T}}\mathcal{R}_{h}\,d\theta\right|+R\left|\int_{\mathbb{T}}\mathcal{R}_{H}\,d\theta\right|\\ \leq&\;C(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})N_{2,p}+Cr^{2}(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,p,G,β,β)C=C(\mu,\nu,p,G,\beta,\beta^{\prime}).

Proof.

We shall again use the fact that, provided γ\gamma^{\prime}, γ~\tilde{\gamma}^{\prime} and ψ\psi to be Hölder continuous on 𝕋\mathbb{T},

(8.14) (γ𝒦γψ),(γ~𝒦γ~ψ),(γ𝒦γ,γ~ψ),(γ~𝒦γ~,γψ) have integrals 0 on 𝕋.(\gamma^{\prime}\cdot\mathcal{K}_{\gamma}\psi),\;(\tilde{\gamma}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}}\psi),\;(\gamma^{\prime}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\psi),\;(\tilde{\gamma}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma},\gamma}\psi)\mbox{ have integrals }0\mbox{ on }\mathbb{T}.

This is because they all can be represented as θ\theta-derivatives of certain quantities as in (8.8).

Applying this fact to (8.3),

(8.15) 𝕋hdθ=𝕋(1r1f)(γ(θ)𝒦γ([φ]+2Acf+A𝒮ϕ))dθ+𝕋(er(Γg)|γ+c)dθ+𝕋ffeθ(Γg)|γdθ+𝕋(1r1f)γ(θ)𝒦γ,γ~ϕdθ.\begin{split}\int_{\mathbb{T}}\mathcal{R}_{h}\,d\theta=&\;\int_{\mathbb{T}}\left(\frac{1}{r}-\frac{1}{f}\right)(\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}(\mathcal{R}_{[\varphi]^{\prime}}+2Ac_{*}f^{\prime}+A\mathcal{S}\phi^{\prime}))\,d\theta\\ &\;+\int_{\mathbb{T}}(-e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}+c_{*})\,d\theta+\int_{\mathbb{T}}\frac{f^{\prime}}{f}e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\,d\theta\\ &\;+\int_{\mathbb{T}}\left(\frac{1}{r}-\frac{1}{f}\right)\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\,d\theta.\end{split}

By (7.1), Poincaré inequality, Lemmas 3.3, 4.4, 5.3, 6.1, 6.5 and 7.1, as well as Propositions 7.1 and 7.2, we derive that

(8.16) |𝕋hdθ|Cr1hLγ(θ)𝒦γ[φ]W˙1,p+Cer(Γg)|γcL+ChLeθ(Γg)|γL+Cr1hL(hLfer𝒦γ,γ~ϕL+feθ𝒦γ,γ~ϕL)Cr1hL(hLp[φ]C˙β+[φ]Lp)+Cr(m0δ|lnδ|+(m0+M0)(δR2)1/2)+Cr1hL(δ1(hL+HL)ϕL+ϕC˙β)Cr1hLN2,p+Cr(m0+M0)(1+δR2)1/2,\begin{split}\left|\int_{\mathbb{T}}\mathcal{R}_{h}\,d\theta\right|\leq&\;Cr^{-1}\|h\|_{L^{\infty}}\|\gamma^{\prime}(\theta)\cdot\mathcal{K}_{\gamma}[\varphi]^{\prime}\|_{\dot{W}^{1,p}}\\ &\;+C\|e_{r}\cdot\nabla(\Gamma*g)|_{\gamma}-c_{*}\|_{L^{\infty}}+C\|h^{\prime}\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g)|_{\gamma}\|_{L^{\infty}}\\ &\;+Cr^{-1}\|h\|_{L^{\infty}}(\|h^{\prime}\|_{L^{\infty}}\|fe_{r}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{L^{\infty}}+\|fe_{\theta}\cdot\mathcal{K}_{\gamma,\tilde{\gamma}}\phi^{\prime}\|_{L^{\infty}})\\ \leq&\;Cr^{-1}\|h\|_{L^{\infty}}(\|h^{\prime\prime}\|_{L^{p}}\|[\varphi]^{\prime}\|_{\dot{C}^{\beta}}+\|[\varphi]^{\prime\prime}\|_{L^{p}})\\ &\;+Cr(m_{0}\delta|\ln\delta|+(m_{0}+M_{0})(\delta R^{2})^{1/2})\\ &\;+Cr^{-1}\|h\|_{L^{\infty}}(\delta^{-1}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})\|\phi^{\prime}\|_{L^{\infty}}+\|\phi^{\prime}\|_{\dot{C}^{\beta}})\\ \leq&\;Cr^{-1}\|h\|_{L^{\infty}}N_{2,p}+Cr(m_{0}+M_{0})(1+\delta R^{2})^{1/2},\end{split}

where C=C(μ,ν,p,G,β,β)C=C(\mu,\nu,p,G,\beta,\beta^{\prime}).

The estimate for the 𝕋H\int_{\mathbb{T}}\mathcal{R}_{H} can be derived similarly. MM \square

8.2. Proof of existence of local solutions

Now we are ready to show existence of local solutions.

Proof of Theorem 2.1.

The proof is an application of the Schauder fixed-point theorem.

Step 1 (Setup).

Let δ\delta be chosen according to (2.23). Also recall that α=12p\alpha=1-\frac{2}{p}, and ε>0\varepsilon>0 and MM are given in (2.24). We assume M1M\leq 1. The exact smallness of MM will be specified later.

With 0<Tmin{1,δM}0<T\leq\min\{1,\delta M\} to be determined, we define

(8.17) XM,T:={vLp[0,T]W2,pC[0,T]C1,α(𝕋):vtLp[0,T]W1,p(𝕋),v|t=0=0,vC[0,T]L(𝕋)δM,vLp[0,T]W˙2,p(𝕋)+vC[0,T]C˙1,α(𝕋)+vtLp[0,T]W˙1,p(𝕋)δα+εM}.\begin{split}X_{M,T}:=&\;\Big{\{}v\in L^{p}_{[0,T]}W^{2,p}\cap C_{[0,T]}C^{1,\alpha}(\mathbb{T}):\;v_{t}\in L^{p}_{[0,T]}W^{1,p}(\mathbb{T}),\\ &\;\qquad\qquad v|_{t=0}=0,\;\|v\|_{C_{[0,T]}L^{\infty}(\mathbb{T})}\leq\delta M,\\ &\;\qquad\qquad\|v\|_{L^{p}_{[0,T]}\dot{W}^{2,p}(\mathbb{T})}+\|v\|_{C_{[0,T]}\dot{C}^{1,\alpha}(\mathbb{T})}+\|v_{t}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}(\mathbb{T})}\leq\delta^{-\alpha+\varepsilon}M\Big{\}}.\end{split}

XM,TX_{M,T} is a non-empty, convex, closed subset of {vC[0,T]C1,α(𝕋):vtLp[0,T]W1,p(𝕋)}\{v\in C_{[0,T]}C^{1,\alpha}(\mathbb{T}):\;v_{t}\in L^{p}_{[0,T]}W^{1,p}(\mathbb{T})\}. Take α(0,α)\alpha^{\prime}\in(0,\alpha) to be determined. Denote

(8.18) Z:=L[0,T]C1,α(𝕋).Z:=L^{\infty}_{[0,T]}C^{1,\alpha^{\prime}}(\mathbb{T}).

By Aubin-Lions Lemma [41], the embedding

(8.19) {vC[0,T]C1,α(𝕋):vtLp[0,T]W1,p(𝕋)}Z\{v\in C_{[0,T]}C^{1,\alpha}(\mathbb{T}):\;v_{t}\in L^{p}_{[0,T]}W^{1,p}(\mathbb{T})\}\hookrightarrow Z

is compact, so XM,TX_{M,T} is compact in ZZ. In what follows, we shall apply Schauder fixed-point theorem on

(8.20) YM,T:=(eAcrt(Δ)1/2h0ctr+XM,T)×(ec~Rt(Δ)1/2H0c~tR+XM,T),Y_{M,T}:=\left(e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0}-\frac{c_{*}t}{r}+X_{M,T}\right)\times\left(e^{\frac{\tilde{c}_{*}}{R}t(-\Delta)^{1/2}}H_{0}-\frac{\tilde{c}_{*}t}{R}+X_{M,T}\right),

which is a non-empty, convex, compact subset of Z×ZZ\times Z.

Step 2 (Estimates for elements in YM,TY_{M,T}).

Take (h,H)YM,T(h,H)\in Y_{M,T}. By the definition of XM,TX_{M,T} and Lemma 3.1,

(8.21) hC[0,T]L(𝕋)eAcrt(Δ)1/2h0L(𝕋)+|c|Tr+δMC(G)δM.\|h\|_{C_{[0,T]}L^{\infty}(\mathbb{T})}\leq\left\|e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0}\right\|_{L^{\infty}(\mathbb{T})}+\frac{|c_{*}|T}{r}+\delta M\leq C(G)\delta M.

By the definition of the W˙21p,p(𝕋)\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})-seminorm in (2.20),

(8.22) hLp[0,T]W˙2,p(𝕋)(r|Ac|)1ph0W˙21p,p(𝕋)+δα+εMC(p,μ,ν,r/|c|)δα+εM.\|h\|_{L^{p}_{[0,T]}\dot{W}^{2,p}(\mathbb{T})}\leq\left(\frac{r}{|Ac_{*}|}\right)^{\frac{1}{p}}\|h_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\delta^{-\alpha+\varepsilon}M\leq C(p,\mu,\nu,r/|c_{*}|)\delta^{-\alpha+\varepsilon}M.

Moreover, W21p,p(𝕋)h1,α(𝕋)W^{2-\frac{1}{p},p}(\mathbb{T})\hookrightarrow h^{1,\alpha}(\mathbb{T}) [32, § 2.7], where h1,α(𝕋)h^{1,\alpha}(\mathbb{T}) is the closure of C(𝕋)C^{\infty}(\mathbb{T}) in the C1,αC^{1,\alpha}-topology. So eAcrt(Δ)1/2h0e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0} is continuous in tt valued in C1,α(𝕋)C^{1,\alpha}(\mathbb{T}) and hence

(8.23) hC[0,T]C˙1,α(𝕋)h0C˙1,α(𝕋)+δα+εMC(p)δα+εM.\|h\|_{C_{[0,T]}\dot{C}^{1,\alpha}(\mathbb{T})}\leq\|h_{0}\|_{\dot{C}^{1,\alpha}(\mathbb{T})}+\delta^{-\alpha+\varepsilon}M\leq C(p)\delta^{-\alpha+\varepsilon}M.

Applying interpolation to (8.21) and (8.23) yields

(8.24) hC[0,T]C˙1,β(𝕋)C(G,p)δ11+αε1+α(1+β)M.\|h\|_{C_{[0,T]}\dot{C}^{1,\beta^{\prime}}(\mathbb{T})}\leq C(G,p)\delta^{1-\frac{1+\alpha-\varepsilon}{1+\alpha}(1+\beta^{\prime})}M.

Hence, taking

(8.25) β=ε1+αε,\beta^{\prime}=\frac{\varepsilon}{1+\alpha-\varepsilon},

we find that

(8.26) hC[0,T]C˙1,β(𝕋)C(G,p)M.\|h\|_{C_{[0,T]}\dot{C}^{1,\beta^{\prime}}(\mathbb{T})}\leq C(G,p)M.

Similarly,

(8.27) HC[0,T]L(𝕋)\displaystyle\|H\|_{C_{[0,T]}L^{\infty}(\mathbb{T})}\leq C(G)δM,\displaystyle\;C(G)\delta M,
(8.28) HLp[0,T]W˙2,p(𝕋)\displaystyle\|H\|_{L^{p}_{[0,T]}\dot{W}^{2,p}(\mathbb{T})}\leq C(p,R/|c~|)δα+εM,\displaystyle\;C(p,R/|\tilde{c}_{*}|)\delta^{-\alpha+\varepsilon}M,
(8.29) HC[0,T]C˙1,α(𝕋)\displaystyle\|H\|_{C_{[0,T]}\dot{C}^{1,\alpha}(\mathbb{T})}\leq C(p)δα+εM,\displaystyle\;C(p)\delta^{-\alpha+\varepsilon}M,

and, with the same β\beta^{\prime} as above,

(8.30) HC[0,T]C˙1,β(𝕋)C(G,p)M.\|H\|_{C_{[0,T]}\dot{C}^{1,\beta^{\prime}}(\mathbb{T})}\leq C(G,p)M.

In what follows, we shall assume MM to be suitably small, which depends on pp and GG, so that (8.21), (8.23), (8.26), (8.27), (8.29) and (8.30) implies that for (h,H)YM,T(h,H)\in Y_{M,T},

(8.31) supt[0,T](m1,α+M1,α+hC˙β+HC˙β)C(G,p)M1.\sup_{t\in[0,T]}(m_{1,\alpha}+M_{1,\alpha}+\|h^{\prime}\|_{\dot{C}^{\beta^{\prime}}}+\|H^{\prime}\|_{\dot{C}^{\beta^{\prime}}})\leq C(G,p)M\ll 1.
Step 3 (Construction of a map on YM,TY_{M,T}).

Inspired by (8.1) and (8.2), for given (h,H)YM,T(h,H)\in Y_{M,T}, we let (h,H)(h_{\dagger},H_{\dagger}) solve

(8.32) th=\displaystyle\partial_{t}h_{\dagger}= Acr(Δ)1/2h+1r~h,h|t=0=0,\displaystyle\;-\frac{Ac_{*}}{r}(-\Delta)^{1/2}h_{\dagger}+\frac{1}{r}\tilde{\mathcal{R}}_{h},\quad h_{\dagger}|_{t=0}=0,
(8.33) tH=\displaystyle\partial_{t}H_{\dagger}= c~R(Δ)1/2H+1R~H,H|t=0=0.\displaystyle\;\frac{\tilde{c}_{*}}{R}(-\Delta)^{1/2}H_{\dagger}+\frac{1}{R}\tilde{\mathcal{R}}_{H},\quad H_{\dagger}|_{t=0}=0.

Recall that ~h\tilde{\mathcal{R}}_{h} and ~H\tilde{\mathcal{R}}_{H} are defined in (8.5), which are uniquely determined by (h,H)(h,H) via (2.33) (c.f., Proposition 7.2), (2.34), (8.3) and (8.4). Then let

(8.34) (h~,H~)=(eAcrt(Δ)1/2h0ctr+h,ec~Rt(Δ)1/2H0c~tR+H).(\tilde{h},\tilde{H})=\left(e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0}-\frac{c_{*}t}{r}+h_{\dagger},\;e^{\frac{\tilde{c}_{*}}{R}t(-\Delta)^{1/2}}H_{0}-\frac{\tilde{c}_{*}t}{R}+H_{\dagger}\right).

A fixed-point of the map 𝒯:(h,H)(h~,H~)\mathcal{T}:\,(h,H)\mapsto(\tilde{h},\tilde{H}) is then a solution of (8.1) and (8.2).

We shall show that 𝒯\mathcal{T} is continuous from YM,TY_{M,T} to itself in the topology of Z×ZZ\times Z and then apply Schauder fixed-point theorem. It suffices to prove that:

  • the map 𝒯:(h,H)(h,H)\mathcal{T}^{\prime}:\,(h,H)\mapsto(h_{\dagger},H_{\dagger}) is well-defined as a continuous function on YM,TY_{M,T} in the topology of Z×ZZ\times Z, and

  • (h,H)XM,T×XM,T(h_{\dagger},H_{\dagger})\in X_{M,T}\times X_{M,T} for properly chosen MM and TT.

Step 4 (Continuity of 𝒯\mathcal{T}^{\prime}).

We choose α<α<min{14,α}\alpha^{\prime}<\alpha^{\prime\prime}<\min\{\frac{1}{4},\alpha\}. By (8.1) and (8.2),

(8.35) (~h,~H)=(rth+c+Ac(Δ)1/2h,RtH+c~c~(Δ)1/2H).(\tilde{\mathcal{R}}_{h},\tilde{\mathcal{R}}_{H})=(r\partial_{t}h+c_{*}+Ac_{*}(-\Delta)^{1/2}h,R\partial_{t}H+\tilde{c}_{*}-\tilde{c}_{*}(-\Delta)^{1/2}H).

By (8.31) and Lemma 3.4, provided that M1M\ll 1 which depends on pp, GG and α\alpha^{\prime\prime}, for any pair (h1,H1),(h2,H2)YM,T(h_{1},H_{1}),(h_{2},H_{2})\in Y_{M,T},

(8.36) ~h1~h2L[0,T]Cα(𝕋)+~H1~H2L[0,T]Cα(𝕋)C(α,μ,ν,r,R,G)dα((h1,H1),(h2,H2)),\begin{split}&\;\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{L^{\infty}_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T})}+\|\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}\|_{L^{\infty}_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T})}\\ \leq&\;C(\alpha^{\prime\prime},\mu,\nu,r,R,G)\cdot d_{\alpha^{\prime\prime}}((h_{1},H_{1}),(h_{2},H_{2})),\end{split}

where

(8.37) dα((h1,H1),(h2,H2)):=h1h2L[0,T]C1,α(𝕋)+H1H2L[0,T]C1,α(𝕋).d_{\alpha^{\prime\prime}}((h_{1},H_{1}),(h_{2},H_{2})):=\|h_{1}-h_{2}\|_{L^{\infty}_{[0,T]}C^{1,\alpha^{\prime\prime}}(\mathbb{T})}+\|H_{1}-H_{2}\|_{L^{\infty}_{[0,T]}C^{1,\alpha^{\prime\prime}}(\mathbb{T})}.

We abbreviate it as dαd_{\alpha^{\prime\prime}} if it incurs no confusion. By taking h2=H2=0h_{2}=H_{2}=0 in (8.36) which corresponds to ~h2=~H2=0\tilde{\mathcal{R}}_{h_{2}}=\tilde{\mathcal{R}}_{H_{2}}=0, we show that ~h1,~H1L[0,T]Cα(𝕋)\tilde{\mathcal{R}}_{h_{1}},\tilde{\mathcal{R}}_{H_{1}}\in L^{\infty}_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T}); so are ~h2\tilde{\mathcal{R}}_{h_{2}} and ~H2\tilde{\mathcal{R}}_{H_{2}}. Following a similar argument, we may apply Lemma 3.4 to different time slices of hih_{i} and HiH_{i}, and use the time continuity hi,HiC[0,T]C1,α(𝕋)h_{i},H_{i}\in C_{[0,T]}C^{1,\alpha^{\prime\prime}}(\mathbb{T}) to prove ~hi,~HiC[0,T]Cα(𝕋)\tilde{\mathcal{R}}_{h_{i}},\tilde{\mathcal{R}}_{H_{i}}\in C_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T}).

Let (hi,,Hi,)(h_{i,{\dagger}},H_{i,{\dagger}}) (i=1,2)(i=1,2) be the unique solution of (8.32) and (8.33) in Z×ZZ\times Z corresponding to (hi,Hi)YM,T(h_{i},H_{i})\in Y_{M,T}. By Lemma A.7 and (8.36),

(8.38) h1,h2,C[0,T]C˙1,α(𝕋)C(α,α,μ,ν,r,R,G)dα.\|h_{1,{\dagger}}-h_{2,{\dagger}}\|_{C_{[0,T]}\dot{C}^{1,\alpha^{\prime}}(\mathbb{T})}\leq C(\alpha^{\prime},\alpha^{\prime\prime},\mu,\nu,r,R,G)\cdot d_{\alpha^{\prime\prime}}.

On the other hand, let h¯i,=12π𝕋hi,dθ\bar{h}_{i,{\dagger}}=\frac{1}{2\pi}\int_{\mathbb{T}}h_{i,{\dagger}}\,d\theta. By (8.32) and (8.36),

(8.39) h¯1,h¯2,C[0,T]L(𝕋)Cr1~h1~h2C[0,T]Cα(𝕋)C(α,μ,ν,r,R,G)dα.\|\bar{h}_{1,{\dagger}}-\bar{h}_{2,{\dagger}}\|_{C_{[0,T]}L^{\infty}(\mathbb{T})}\leq Cr^{-1}\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{C_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T})}\leq C(\alpha^{\prime\prime},\mu,\nu,r,R,G)\cdot d_{\alpha^{\prime\prime}}.

Combining this with (8.38), we use interpolation as well as (8.21), (8.23), (8.27) and (8.29) to derive that

(8.40) h1,h2,C[0,T]C1,α(𝕋)C(α,α,μ,ν,r,R,G)dαθdα1θC(α,α,p,μ,ν,r,R,G)dαθ,\begin{split}\|h_{1,{\dagger}}-h_{2,{\dagger}}\|_{C_{[0,T]}C^{1,\alpha^{\prime}}(\mathbb{T})}\leq&\;C(\alpha^{\prime},\alpha^{\prime\prime},\mu,\nu,r,R,G)\cdot d_{\alpha^{\prime}}^{\theta}d_{\alpha}^{1-\theta}\\ \leq&\;C(\alpha^{\prime},\alpha^{\prime\prime},p,\mu,\nu,r,R,G)\cdot d_{\alpha^{\prime}}^{\theta},\end{split}

where θ=αααα\theta=\frac{\alpha-\alpha^{\prime\prime}}{\alpha-\alpha^{\prime}}. Similarly, H1,H2,C[0,T]C1,α(𝕋)\|H_{1,{\dagger}}-H_{2,{\dagger}}\|_{C_{[0,T]}C^{1,\alpha^{\prime}}(\mathbb{T})} enjoys the same bound. This proves (Hölder) continuity of 𝒯\mathcal{T}^{\prime} in YM,TY_{M,T} in the topology of Z×ZZ\times Z.

In fact, if one improves Lemma A.7, it can be shown that 𝒯\mathcal{T}^{\prime} is log-Lipschitz continuous in YM,TY_{M,T} in the topology of Z×ZZ\times Z. We omit the details although it may be of independent interest.

Step 5 (Justification of (h,H)XM,T×XM,T(h_{\dagger},H_{\dagger})\in X_{M,T}\times X_{M,T}).

Let β\beta^{\prime} be taken as before, and let β=β4<β1+β\beta=\frac{\beta^{\prime}}{4}<\frac{\beta^{\prime}}{1+\beta^{\prime}}. It is not difficult to show that

(8.41) 𝒮ψW˙1,pC𝒮ψW˙1,pCδβ1+1pψC˙β.\|\mathcal{H}\mathcal{S}\psi^{\prime}\|_{\dot{W}^{1,p}}\leq C\|\mathcal{S}\psi^{\prime}\|_{\dot{W}^{1,p}}\leq C\delta^{\beta-1+\frac{1}{p}}\|\psi^{\prime}\|_{\dot{C}^{\beta}}.

Combining with Lemma 8.1,

(8.42) ~hW˙1,p+~HW˙1,pCr1(N~2,p+δβ1+1pN1,β),\|\tilde{\mathcal{R}}_{h}\|_{\dot{W}^{1,p}}+\|\tilde{\mathcal{R}}_{H}\|_{\dot{W}^{1,p}}\leq Cr^{-1}(\tilde{N}_{2,p}+\delta^{\beta-1+\frac{1}{p}}N_{1,\beta}),

Then we derive by Lemma 3.1, Proposition 7.1, Lemma 7.2, (8.22), (8.28) and (8.31) that

(8.43) r1~hLp[0,T]W˙1,p+R1~HLp[0,T]W˙1,pC|c|r1(hLp[0,T]Lp+HLp[0,T]Lp)supt[0,T](hC˙β+HC˙β)+C(T1/p+hLp[0,T]Lp+HLp[0,T]Lp)supt[0,T](δβhC˙β+(m0+M0)(1+δR2)1/2)+Cδβ1+1pT1/p|c|r1supt[0,T](hC˙β+HC˙β)+Cδβ1+1pT1/psupt[0,T](δβhC˙β+(m0+M0)(1+δR2)1/2)Cδα+εM2(1+δR2)1/2+Cδβ1+1pT1/pM(1+δR2)1/2,\begin{split}&\;\|r^{-1}\tilde{\mathcal{R}}_{h}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|R^{-1}\tilde{\mathcal{R}}_{H}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}\\ \leq&\;C|c_{*}|r^{-1}(\|h^{\prime\prime}\|_{L^{p}_{[0,T]}L^{p}}+\|H^{\prime\prime}\|_{L^{p}_{[0,T]}L^{p}})\sup_{t\in[0,T]}(\|h^{\prime}\|_{\dot{C}^{\beta}}+\|H^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C(T^{1/p}+\|h^{\prime\prime}\|_{L^{p}_{[0,T]}L^{p}}+\|H^{\prime\prime}\|_{L^{p}_{[0,T]}L^{p}})\sup_{t\in[0,T]}(\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+(m_{0}+M_{0})(1+\delta R^{2})^{1/2})\\ &\;+C\delta^{\beta-1+\frac{1}{p}}T^{1/p}|c_{*}|r^{-1}\sup_{t\in[0,T]}(\|h^{\prime}\|_{\dot{C}^{\beta}}+\|H^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C\delta^{\beta-1+\frac{1}{p}}T^{1/p}\sup_{t\in[0,T]}(\delta^{\beta}\|h^{\prime}\|_{\dot{C}^{\beta}}+(m_{0}+M_{0})(1+\delta R^{2})^{1/2})\\ \leq&\;C\delta^{-\alpha+\varepsilon}M^{2}(1+\delta R^{2})^{1/2}+C\delta^{\beta-1+\frac{1}{p}}T^{1/p}M(1+\delta R^{2})^{1/2},\end{split}

where C=C(p,ε,μ,ν,R/|c~|,G)C=C(p,\varepsilon,\mu,\nu,R/|\tilde{c}_{*}|,G). Here we rewrote the β\beta- and β\beta^{\prime}-dependence into dependence on pp and ε\varepsilon, and used the fact that r/|c|R/|c~|r/|c_{*}|\leq R/|\tilde{c}_{*}|. In particular, CC does not deteriorate as δ\delta becomes smaller. Hence,

(8.44) r1~hLp[0,T]W˙1,p+R1~HLp[0,T]W˙1,pC(δβ1+1pT1/p+δα+εM)M,\|r^{-1}\tilde{\mathcal{R}}_{h}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|R^{-1}\tilde{\mathcal{R}}_{H}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}\leq C(\delta^{\beta-1+\frac{1}{p}}T^{1/p}+\delta^{-\alpha+\varepsilon}M)M,

where C=C(p,ε,μ,ν,R/|c~|,G,δR2)C=C(p,\varepsilon,\mu,\nu,R/|\tilde{c}_{*}|,G,\delta R^{2}).

To this end, applying Lemma A.5 and Lemma A.6 to (8.32) and (8.33), we obtain that

(8.45) hLp[0,T]W˙2,p+thLp[0,T]W˙1,p+hC[0,T]C˙1,α+HLp[0,T]W˙2,p+tHLp[0,T]W˙1,p+HC[0,T]C˙1,αC(δβ1+1pT1/p+δα+εM)M,\begin{split}&\;\|h_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{2,p}}+\|\partial_{t}h_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|h_{\dagger}\|_{C_{[0,T]}\dot{C}^{1,\alpha}}\\ &\;+\|H_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{2,p}}+\|\partial_{t}H_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|H_{\dagger}\|_{C_{[0,T]}\dot{C}^{1,\alpha}}\\ \leq&\;C(\delta^{\beta-1+\frac{1}{p}}T^{1/p}+\delta^{-\alpha+\varepsilon}M)M,\end{split}

Here the universal constant CC has the same dependence as above. Now we take

(8.46) M\displaystyle M\leq M(p,ε,μ,ν,R/|c~|,G,δR2)1,\displaystyle\;M_{*}(p,\varepsilon,\mu,\nu,R/|\tilde{c}_{*}|,G,\delta R^{2})\ll 1,
(8.47) T\displaystyle T\leq T(δ,p,ε,μ,ν,R/|c~|,G,δR2)1,\displaystyle\;T_{*}(\delta,p,\varepsilon,\mu,\nu,R/|\tilde{c}_{*}|,G,\delta R^{2})\ll 1,

so that (8.45) becomes

(8.48) hLp[0,T]W˙2,p+thLp[0,T]W˙1,p+hC[0,T]C˙1,α+HLp[0,T]W˙2,p+tHLp[0,T]W˙1,p+HC[0,T]C˙1,αδα+εM.\begin{split}&\;\|h_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{2,p}}+\|\partial_{t}h_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|h_{\dagger}\|_{C_{[0,T]}\dot{C}^{1,\alpha}}\\ &\;+\|H_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{2,p}}+\|\partial_{t}H_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|H_{\dagger}\|_{C_{[0,T]}\dot{C}^{1,\alpha}}\\ \leq&\;\delta^{-\alpha+\varepsilon}M.\end{split}

Note that the smallness needed for MM will not be more stringent as δ\delta becomes smaller.

Finally, we show (h,H)(h_{\dagger},H_{\dagger}) satisfies the C[0,T]L(𝕋)C_{[0,T]}L^{\infty}(\mathbb{T})-bound in the definition (8.17) of XM,TX_{M,T}. By Lemma 8.2, Sobolev inequality and (8.42),

(8.49) r1~hL+R1~HLCr2(hL+HL)N2,p+C(m0+M0)(1+δR2)1/2+Cr2(N~2,p+δβ1+1pN1,β)Cr2(N~2,p+δβ1+1pN1,β).\begin{split}&\;\|r^{-1}\tilde{\mathcal{R}}_{h}\|_{L^{\infty}}+\|R^{-1}\tilde{\mathcal{R}}_{H}\|_{L^{\infty}}\\ \leq&\;Cr^{-2}(\|h\|_{L^{\infty}}+\|H\|_{L^{\infty}})N_{2,p}+C(m_{0}+M_{0})(1+\delta R^{2})^{1/2}\\ &\;+Cr^{-2}(\tilde{N}_{2,p}+\delta^{\beta-1+\frac{1}{p}}N_{1,\beta})\\ \leq&\;Cr^{-2}(\tilde{N}_{2,p}+\delta^{\beta-1+\frac{1}{p}}N_{1,\beta}).\end{split}

Following (8.43) and (8.44),

(8.50) r1~hL1[0,T]L+R1~HL1[0,T]LCT11p(δβ1+1pT1/p+δα+εM)M.\|r^{-1}\tilde{\mathcal{R}}_{h}\|_{L^{1}_{[0,T]}L^{\infty}}+\|R^{-1}\tilde{\mathcal{R}}_{H}\|_{L^{1}_{[0,T]}L^{\infty}}\leq CT^{1-\frac{1}{p}}(\delta^{\beta-1+\frac{1}{p}}T^{1/p}+\delta^{-\alpha+\varepsilon}M)M.

Combining this with (8.32) and (8.33), we use the fact et(Δ)1/2LL1\|e^{-t(-\Delta)^{1/2}}\|_{L^{\infty}\to L^{\infty}}\leq 1 to obtain that

(8.51) hC[0,T]L(𝕋)+HC[0,T]L(𝕋)CT11p(δβ1+1pT1/p+δα+εM)M.\|h_{\dagger}\|_{C_{[0,T]}L^{\infty}(\mathbb{T})}+\|H_{\dagger}\|_{C_{[0,T]}L^{\infty}(\mathbb{T})}\leq CT^{1-\frac{1}{p}}(\delta^{\beta-1+\frac{1}{p}}T^{1/p}+\delta^{-\alpha+\varepsilon}M)M.

where C=C(p,ε,μ,ν,R/|c~|,G,δR2)C=C(p,\varepsilon,\mu,\nu,R/|\tilde{c}_{*}|,G,\delta R^{2}). Take TT_{*} in (8.47) even smaller if necessary, so that the required C[0,T]L(𝕋)C_{[0,T]}L^{\infty}(\mathbb{T})-bound for (h,H)(h_{\dagger},H_{\dagger}) in (8.17) is achieved.

This shows that 𝒯\mathcal{T}^{\prime} has its image (h,H)(h_{\dagger},H_{\dagger}) in XM,T×XM,TX_{M,T}\times X_{M,T}.

Step 6 (Existence and estimates).

By Schauder fixed-point theorem, the map 𝒯\mathcal{T} has a fixed-point (h,H)YM,T(h,H)\in Y_{M,T}, which is a mild solution of (8.1) and (8.2). Moreover, the pointwise well-definedness of th\partial_{t}h and tH\partial_{t}H has been readily shown in Step 4, as they are at least in C[0,T]Cα(𝕋)C_{[0,T]}C^{\alpha^{\prime\prime}}(\mathbb{T}), where α<min{14,α}\alpha^{\prime\prime}<\min\{\frac{1}{4},\alpha\} is arbitrary. Therefore, (h,H)(h,H) is a strong solution of (8.1) and (8.2).

Estimates for hh and HH follow from (8.21)-(8.23) and (8.27)-(8.29). For th\partial_{t}h and tH\partial_{t}H, we derive by (8.34), (8.48) and the definition of W21p,p(𝕋)W^{2-\frac{1}{p},p}(\mathbb{T})-space (2.20),

(8.52) thLp[0,T]W˙1,pteAcrt(Δ)1/2h0Lp[0,T]W˙1,p+thLp[0,T]W˙1,pC(μ,ν,p,G)h0W˙21p,p+δα+εM,\begin{split}\|\partial_{t}h\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}\leq&\;\|\partial_{t}e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}+\|\partial_{t}h_{\dagger}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}\\ \leq&\;C(\mu,\nu,p,G)\|h_{0}\|_{\dot{W}^{2-\frac{1}{p},p}}+\delta^{-\alpha+\varepsilon}M,\end{split}

and similarly,

(8.53) tHLp[0,T]W˙1,pC(μ,ν,p,G)H0W˙21p,p+δα+εM.\|\partial_{t}H\|_{L^{p}_{[0,T]}\dot{W}^{1,p}}\leq C(\mu,\nu,p,G)\|H_{0}\|_{\dot{W}^{2-\frac{1}{p},p}}+\delta^{-\alpha+\varepsilon}M.

MM \square

8.3. Continuation of the local solutions

A local solution can be extended to longer time intervals as long as f(T)f(T) and F(T)F(T) still satisfy the smallness assumption (2.24) on the initial data. We start with the following lemma that links estimates for f(T)f(T) and F(T)F(T) when they are treated as new initial datum, with the estimates for f0f_{0} and F0F_{0}.

Lemma 8.3.

Under the assumptions of Theorem 2.1 with MM_{*} suitably small, let ff and FF be a local solution over [0,T][0,T]. Define f1(θ)=f(θ,T)f_{1}(\theta)=f(\theta,T) and F1(θ)=F(θ,T)F_{1}(\theta)=F(\theta,T). Let

(8.54) r1:=12π𝕋f1(θ)dθ,R1:=12π𝕋F1(θ)dθ,r_{1}:=\frac{1}{2\pi}\int_{\mathbb{T}}f_{1}(\theta)\,d\theta,\quad R_{1}:=\frac{1}{2\pi}\int_{\mathbb{T}}F_{1}(\theta)\,d\theta,

and according to (2.19),

(8.55) h1(θ):=f1r11,H1(θ):=F1R11.h_{1}(\theta):=\frac{f_{1}}{r_{1}}-1,\quad H_{1}(\theta):=\frac{F_{1}}{R_{1}}-1.

Let

(8.56) δ1=1r1R11rRδ.\delta_{1}=\frac{1-\frac{r_{1}}{R_{1}}}{1-\frac{r}{R}}\cdot\delta.

Then r1r_{1}, R1R_{1} and δ1\delta_{1} satisfy (2.23). Moreover, with some universal constant C~=C~(p,ε,G)\tilde{C}=\tilde{C}(p,\varepsilon,G),

(8.57) δ11(h1L(𝕋)+H1L(𝕋))+δ1αε(h1W˙21p,p(𝕋)+H1W˙21p,p(𝕋))C~(p,ε,G)M,\delta_{1}^{-1}(\|h_{1}\|_{L^{\infty}(\mathbb{T})}+\|H_{1}\|_{L^{\infty}(\mathbb{T})})+\delta_{1}^{\alpha-\varepsilon}\left(\|h_{1}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H_{1}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\right)\leq\tilde{C}(p,\varepsilon,G)M,

where MM is defined in (2.24) with h0h_{0}, H0H_{0} and δ\delta.

Proof.

That r1r_{1}, R1R_{1} and δ1\delta_{1} satisfy (2.23) is obvious since rr, RR and δ\delta satisfy (2.23).

To show (8.57), we first study h(T)h(T) and H(T)H(T). Note that (2.26) readily provides

(8.58) δ1(h(T)L+H(T)L)C(p,G)M.\delta^{-1}(\|h(T)\|_{L^{\infty}}+\|H(T)\|_{L^{\infty}})\leq C(p,G)M.

A bound for W21p,pW^{2-\frac{1}{p},p}-seminorm of h(T)h(T) and H(T)H(T) may be derived as follows. Denote h=heAcrt(Δ)1/2h0h_{*}=h-e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0} and H=Hec~Rt(Δ)1/2H0H_{*}=H-e^{\frac{\tilde{c}_{*}}{R}t(-\Delta)^{1/2}}H_{0}. By (8.34) and (8.48), they satisfy

(8.59) xh,xHW1,p([0,T]×𝕋)\partial_{x}h_{*},\partial_{x}H_{*}\in W^{1,p}([0,T]\times\mathbb{T})

and

(8.60) h|t=0=H|t=0=xh|t=0=xH|t=0=0.h_{*}|_{t=0}=H_{*}|_{t=0}=\partial_{x}h_{*}|_{t=0}=\partial_{x}H_{*}|_{t=0}=0.

We make zero extension of hh_{*} and HH_{*} to the region t<0t<0 while still denote the extension to be hh_{*} and HH_{*}. Then the above properties imply that xh,xHW1,p((,T]×𝕋)\partial_{x}h_{*},\partial_{x}H_{*}\in W^{1,p}((-\infty,T]\times\mathbb{T}). By trace theorem (see e.g., [32, §2.7.2]) and (8.48),

(8.61) xh(T)W˙11p,p(𝕋)+xH(T)W˙11p,p(𝕋)C(xhW˙1,p((,T]×𝕋)+xHW˙1,p((,T]×𝕋))C(hLp[0,T]W˙2,p(𝕋)+HLp[0,T]W˙2,p(𝕋))+C(thLp[0,T]W˙1,p(𝕋)+tHLp[0,T]W˙1,p(𝕋))Cδα+εM.\begin{split}&\;\|\partial_{x}h_{*}(T)\|_{\dot{W}^{1-\frac{1}{p},p}(\mathbb{T})}+\|\partial_{x}H_{*}(T)\|_{\dot{W}^{1-\frac{1}{p},p}(\mathbb{T})}\\ \leq&\;C\left(\|\partial_{x}h_{*}\|_{\dot{W}^{1,p}((-\infty,T]\times\mathbb{T})}+\|\partial_{x}H_{*}\|_{\dot{W}^{1,p}((-\infty,T]\times\mathbb{T})}\right)\\ \leq&\;C\left(\|h_{*}\|_{L^{p}_{[0,T]}\dot{W}^{2,p}(\mathbb{T})}+\|H_{*}\|_{L^{p}_{[0,T]}\dot{W}^{2,p}(\mathbb{T})}\right)\\ &\;+C\left(\|\partial_{t}h_{*}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}(\mathbb{T})}+\|\partial_{t}H_{*}\|_{L^{p}_{[0,T]}\dot{W}^{1,p}(\mathbb{T})}\right)\\ \leq&\;C\delta^{-\alpha+\varepsilon}M.\end{split}

It is noteworthy that the constants CC may only depend on pp but not on TT. On the other hand, by the definition (2.20) of the W21p,p(𝕋)W^{2-\frac{1}{p},p}(\mathbb{T})-seminorm,

(8.62) eAcrt(Δ)1/2h0(T)W˙21p,p(𝕋)+ec~Rt(Δ)1/2H0(T)W˙21p,p(𝕋)h0W˙21p,p(𝕋)+H0W˙21p,p(𝕋).\begin{split}&\;\|e^{-\frac{Ac_{*}}{r}t(-\Delta)^{1/2}}h_{0}(T)\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|e^{-\frac{\tilde{c}_{*}}{R}t(-\Delta)^{1/2}}H_{0}(T)\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\\ \leq&\;\|h_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}.\end{split}

Combining this with (2.24) and (8.61), we conclude that

(8.63) h(T)W˙21p,p(𝕋)+H(T)W˙21p,p(𝕋)C(p)δα+εM.\|h(T)\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H(T)\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\leq C(p)\delta^{-\alpha+\varepsilon}M.

Thanks to (8.58) and the way r1r_{1} and R1R_{1} are defined

(8.64) |r1r1|+|R1R1|C(p,G)δM.\left|\frac{r_{1}}{r}-1\right|+\left|\frac{R_{1}}{R}-1\right|\leq C(p,G)\delta M.

Assume MM_{*} is already small enough, depending on pp and GG, to guarantee that the right hand side of the above inequality is sufficiently small and that

(8.65) c1δδ1c2δc_{1}\delta\leq\delta_{1}\leq c_{2}\delta

for some universal 0<c1<1<c20<c_{1}<1<c_{2}. Hence,

(8.66) δ11(h1L(𝕋)+H1L(𝕋))Cδ1(h(T)L(𝕋)+H(T)L(𝕋))+C(G)M,\delta_{1}^{-1}(\|h_{1}\|_{L^{\infty}(\mathbb{T})}+\|H_{1}\|_{L^{\infty}(\mathbb{T})})\leq C\delta^{-1}(\|h(T)\|_{L^{\infty}(\mathbb{T})}+\|H(T)\|_{L^{\infty}(\mathbb{T})})+C(G)M,

and

(8.67) δ1αε(h1W˙21p,p(𝕋)+H1W˙21p,p(𝕋))C(p,ε)δαε(h(T)W˙21p,p(𝕋)+H(T)W˙21p,p(𝕋)).\begin{split}&\;\delta_{1}^{\alpha-\varepsilon}\left(\|h_{1}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H_{1}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\right)\\ \leq&\;C(p,\varepsilon)\delta^{\alpha-\varepsilon}\left(\|h(T)\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H(T)\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\right).\end{split}

They combined with (8.58) and (8.63) imply (8.57). MM \square

Proof of Corollary 2.1.

We would like to construct a local solution over [0,T~][0,\tilde{T}] by making successive continuations.

Step 1 (Setup).

We can always start with f0f_{0} and F0F_{0} satisfying the smallness condition of Theorem 2.1. To make the notations more systematic, we rewrite rr, RR and δ\delta in Theorem 2.1 as r0r_{0}, R0R_{0} and δ0\delta_{0}, respectively. Let h0h_{0} and H0H_{0} be defined as in (2.19). Since

(8.68) M0:=δ01(h0L(𝕋)+H0L(𝕋))+δ0αε(h0W˙21p,p(𝕋)+H0W˙21p,p(𝕋))M,0,M^{0}:=\delta_{0}^{-1}(\|h_{0}\|_{L^{\infty}(\mathbb{T})}+\|H_{0}\|_{L^{\infty}(\mathbb{T})})+\delta_{0}^{\alpha-\varepsilon}\left(\|h_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H_{0}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\right)\leq M_{*,0},

where according to (8.46),

(8.69) M,0:=M(p,ε,μ,ν,R0/|c~(r0,R0)|,G,δ0R02),M_{*,0}:=M_{*}(p,\varepsilon,\mu,\nu,R_{0}/|\tilde{c}_{*}(r_{0},R_{0})|,G,\delta_{0}R_{0}^{2}),

by Theorem 2.1, there exists a solution (f0,F0)(f^{0},F^{0}) on [0,t0][0,t_{0}], where by (8.47),

(8.70) t0T(δ0,p,ε,μ,ν,R0/|c~(r0,R0)|,G,δ0R02).t_{0}\leq T_{*}(\delta_{0},p,\varepsilon,\mu,\nu,R_{0}/|\tilde{c}_{*}(r_{0},R_{0})|,G,\delta_{0}R_{0}^{2}).

Define T0=t0T_{0}=t_{0}.

Suppose we have obtained a solution on [0,Tk1][0,T_{k-1}] for some k+k\in\mathbb{Z}_{+}. We define

(8.71) fk=f(Tk1),Fk(t=0)=F(Tk1),f_{k}=f(T_{k-1}),\quad F_{k}(t=0)=F(T_{k-1}),
(8.72) rk=12π𝕋fk(θ)dθ,Rk=12π𝕋Fk(θ)dθ.r_{k}=\frac{1}{2\pi}\int_{\mathbb{T}}f_{k}(\theta)\,d\theta,\quad R_{k}=\frac{1}{2\pi}\int_{\mathbb{T}}F_{k}(\theta)\,d\theta.

Also let

(8.73) δk=1rkRk1rk1Rk1δk1.\delta_{k}=\frac{1-\frac{r_{k}}{R_{k}}}{1-\frac{r_{k-1}}{R_{k-1}}}\cdot\delta_{k-1}.

With this choice, rkr_{k}, RkR_{k} and δk\delta_{k} satisfy (2.23). Let hkh_{k} and HkH_{k} be defined by fkf_{k}, FkF_{k}, rkr_{k} and RkR_{k} as in (2.19). Then if

(8.74) Mk:=δk1(hkL(𝕋)+HkL(𝕋))+δkαε(hkW˙21p,p(𝕋)+HkW˙21p,p(𝕋))M,k,M^{k}:=\delta_{k}^{-1}(\|h_{k}\|_{L^{\infty}(\mathbb{T})}+\|H_{k}\|_{L^{\infty}(\mathbb{T})})+\delta_{k}^{\alpha-\varepsilon}\left(\|h_{k}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}+\|H_{k}\|_{\dot{W}^{2-\frac{1}{p},p}(\mathbb{T})}\right)\leq M_{*,k},

where

(8.75) M,k:=M(p,ε,μ,ν,Rk/|c~(rk,Rk)|,G,δkRk2),M_{*,k}:=M_{*}(p,\varepsilon,\mu,\nu,R_{k}/|\tilde{c}_{*}(r_{k},R_{k})|,G,\delta_{k}R_{k}^{2}),

Theorem 2.1 claims that there exists a solution (fk,Fk)(f^{k},F^{k}) on [0,tk][0,t_{k}], where by (8.47),

(8.76) tkT(δk,p,ε,μ,ν,Rk/|c~(rk,Rk)|,G,δkRk2).t_{k}\leq T_{*}(\delta_{k},p,\varepsilon,\mu,\nu,R_{k}/|\tilde{c}_{*}(r_{k},R_{k})|,G,\delta_{k}R_{k}^{2}).

To this end, we let Tk=Tk1+tkT_{k}=T_{k-1}+t_{k}, and define f(t)=fk(tTk1)f(t)=f^{k}(t-T_{k-1}) and F(t)=Fk(tTk1)F(t)=F^{k}(t-T_{k-1}) for t[Tk1,Tk]t\in[T_{k-1},T_{k}]. Then it is easy to verify that (f,F)(f,F) is a local strong solution on [0,Tk][0,T_{k}].

Starting from the initial data, if we are able to make such continuation until TKT~T_{K}\geq\tilde{T} for some finite KK, then we prove the existence of a strong solution on [0,T~][0,\tilde{T}]. Otherwise,

  1. (1)

    either (8.74) is first violated for some finite KK_{*} (depending on the initial data) with TK<T~T_{K_{*}}<\tilde{T};

  2. (2)

    or we are able to make continuation for infinitely many times but still can not reach T~\tilde{T}. This implies that for all kk\in\mathbb{N}, Tk<T~T_{k}<\tilde{T} and (8.74) holds, while

    (8.77) limkT(δk,p,ε,μ,ν,Rk/|c~(rk,Rk)|,G,δkRk2)=0.\lim_{k\to\infty}T_{*}(\delta_{k},p,\varepsilon,\mu,\nu,R_{k}/|\tilde{c}_{*}(r_{k},R_{k})|,G,\delta_{k}R_{k}^{2})=0.

We are going to show that both of them would not occur if we take initial datum h0h_{0} and H0H_{0} to be sufficiently small.

Step 2 (A priori estimates for configurations staying almost circular).

Consider an arbitrary kk such that Tk<T~T_{k}<\tilde{T} and (8.74) holds for all numbers from 0 to kk. We shall first derive upper and lower bounds for rkr_{k} and RkR_{k}.

Since (8.74) holds, in which MM_{*} is sufficiently small, the inner and outer interfaces at times T1,,Tk1T_{-1},\cdots,T_{k-1} are all sufficiently close to circles (we use the convention T1=0T_{-1}=0). In this case, we must have rk<Rkr_{k}<R_{k} as the interfaces can not cross by the proof of Theorem 2.1. Moreover, with some universal constants cc and CC,

(8.78) c|ΩTk1|1/2rk<RkC|Ω~Tk1|1/2.c|\Omega_{T_{k-1}}|^{1/2}\leq r_{k}<R_{k}\leq C|\tilde{\Omega}_{T_{k-1}}|^{1/2}.

The increment of |Ω~||\tilde{\Omega}| is due to the growth of the tumor, which provides a naive bound for |Ω~||\tilde{\Omega}|

(8.79) ddt|Ω~|G(0)|Ω~|.\frac{d}{dt}|\tilde{\Omega}|\leq G(0)|\tilde{\Omega}|.

Therefore, for all such kk, rkr_{k} and RkR_{k} admit an upper bound that only depends on GG, |Ω~0||\tilde{\Omega}_{0}| and T~\tilde{T}. Since the initial data is assumed to satisfy the smallness condition (8.68), |Ω~0||\tilde{\Omega}_{0}| is comparable with R02R_{0}^{2} up to universal constants. Hence, the |Ω~0||\tilde{\Omega}_{0}|-dependence can be rewritten as R0R_{0}-dependence. We note that Lemma 3.1 may provide a better upper bound that depends linearly on TT, but the naive bound here is enough for this qualitative discussion. On the other hand, because of the growth of the tumor, |ΩTk1||Ω0||\Omega_{T_{k-1}}|\geq|\Omega_{0}|. This gives a positive lower bound for rkr_{k} and RkR_{k} that only depends on |Ω0||\Omega_{0}|, and thus only on r0r_{0} by the same reasoning as above.

To this end, we note that R/|c~(r,R)|R/|\tilde{c}_{*}(r,R)| is a continuous function in r,R+r,R\in\mathbb{R}_{+}. The continuity can be justified using Lemma 3.4 with h1=H1=0h_{1}=H_{1}=0 and h2h_{2} and H2H_{2} being small constants. Indeed, |c~(r,R)||\tilde{c}_{*}(r,R)| is the speed of the outer interface when the interfaces are concentric circles with radii rr and RR, respectively. Therefore, for all such kk, Rk/|c~(rk,Rk)|R_{k}/|\tilde{c}_{*}(r_{k},R_{k})| admits positive lower and upper bounds depending only on μ\mu, ν\nu, GG, r0r_{0}, R0R_{0} and T~\tilde{T}.

By Remark 3.1, δkRk2\delta_{k}R_{k}^{2} has lower and upper bounds that only depend on |Ω~0\Ω0||\tilde{\Omega}_{0}\backslash\Omega_{0}|. This together with the bound for RkR_{k} implies that δk\delta_{k} has positive lower and upper bounds only depending on GG, r0r_{0}, R0R_{0} and T~\tilde{T}.

By the proof of Theorem 2.1 (c.f., (8.47) and (8.51)), TT_{*} has continuous dependence on δ\delta, R/|c~|R/|\tilde{c}_{*}| and δR2\delta R^{2}. Combining all the facts above, there is a universal T=T(μ,ν,G,r0,R0,T~)>0T_{**}=T_{**}(\mu,\nu,G,r_{0},R_{0},\tilde{T})>0, such that for all such kk,

(8.80) T(δk,p,ε,μ,ν,Rk/|c~(rk,Rk)|,G,δkRk2)T.T_{*}(\delta_{k},p,\varepsilon,\mu,\nu,R_{k}/|\tilde{c}_{*}(r_{k},R_{k})|,G,\delta_{k}R_{k}^{2})\geq T_{**}.

This contradicts with (8.77), so case (2) above is ruled out.

Similarly, there exists a universal M=M(μ,ν,G,r0,R0,T~)>0M_{**}=M_{**}(\mu,\nu,G,r_{0},R_{0},\tilde{T})>0 such that for all such kk,

(8.81) M(p,ε,μ,ν,Rk/|c~(rk,Rk)|,G,δkRk2)M.M_{*}(p,\varepsilon,\mu,\nu,R_{k}/|\tilde{c}_{*}(r_{k},R_{k})|,G,\delta_{k}R_{k}^{2})\geq M_{**}.
Step 3 (Estimates for total number of continuations).

It suffices to consider the case (1) above.

Thanks to (8.80), if (8.74) always holds, we only need to make continuation for finitely many times to cover the time interval [0,T~][0,\tilde{T}]. To be more precise, by choosing the longest possible lifespan of the local solution in each stage of continuation, we can have TNT~T_{N}\geq\tilde{T} for some NN that admits an upper bound

(8.82) NN(μ,ν,G,r0,R0,T~),N\leq N_{**}(\mu,\nu,G,r_{0},R_{0},\tilde{T}),

provided that (8.74) is not violated along the way. In order to make (8.74) hold for NN_{**} times, we take MM sufficiently small (recall that MM is defined by h0h_{0}, H0H_{0} and δ0\delta_{0} in (2.24)), such that

(8.83) C~(p,ε,G)NMM,\tilde{C}(p,\varepsilon,G)^{N_{**}}\cdot M\leq M_{**},

where C~\tilde{C} is given in Lemma 8.3 and MM_{**} is introduced in (8.81). Note that the required smallness for MM only depends on μ\mu, ν\nu, GG, r0r_{0}, R0R_{0} and T~\tilde{T}. With (8.83), it is easy to justify by Lemma 8.3 that (8.74) will always be satisfied before the solution is extended beyond T~\tilde{T}.

This completes the proof. MM \square

9. Uniqueness

In this section, we prove uniqueness of the local solution under the additional assumption GC1,1G\in C^{1,1}.

9.1. Basic setup

We start with basic setups that will be used throughout this section. Let p(2,)p\in(2,\infty) and ε>0\varepsilon>0 as in Theorem 2.1, and α=12p\alpha=1-\frac{2}{p}. Let β\beta^{\prime} be defined in (8.25) and β=β/4\beta=\beta^{\prime}/4 as in the proof of local existence (see step 5). In particular, β<β1+β\beta<\frac{\beta^{\prime}}{1+\beta^{\prime}} and β<14\beta<\frac{1}{4}.

Suppose there are two solutions fif_{i} and FiF_{i} (i=1,2)(i=1,2) of (2.16)-(2.18) with regularity and estimates given in Theorem 2.1. We define hih_{i} and HiH_{i} (i=1,2)(i=1,2) as in (2.19). Let m0,im_{0,i}, M0,iM_{0,i}, mα,im_{\alpha,i} and Mα,iM_{\alpha,i} be defined as in (3.17), (3.18), (3.45) and (3.46), respectively, and let Δm0\Delta m_{0}, ΔM0\Delta M_{0}, Δmα\Delta m_{\alpha} and ΔMα\Delta M_{\alpha} be defined in (3.47)-(3.50). By virtue of (2.26), by imposing sufficient smallness in (2.24) that depends on GG, pp and ε\varepsilon, we may assume that for all t[0,T]t\in[0,T], γi(t)Br(1+δ)\gamma_{i}(t)\subset B_{r(1+\delta)} and γ~i(t)Br(1+5δ)c\tilde{\gamma}_{i}(t)\subset B_{r(1+5\delta)}^{c}, and

(9.1) m0,i+M0,i+hiC˙β+HiC˙β1,m_{0,i}+M_{0,i}+\|h_{i}\|_{\dot{C}^{\beta^{\prime}}}+\|H_{i}\|_{\dot{C}^{\beta^{\prime}}}\ll 1,

Later we shall see the smallness needs to depend on pp and ε\varepsilon.

Let pip_{i} solve (1.6) and (1.7) in the (time-varying) physical domain that is determined by fif_{i} and FiF_{i}. Let xi(X)x_{i}(X) be the diffeomorphism between the physical and the (time-invariant) reference domains, determined by hih_{i} and HiH_{i} via (3.2), and let Xi(x)X_{i}(x) be its inverse. Define p~i(X):=pi(xi(X))\tilde{p}_{i}(X):=p_{i}(x_{i}(X)) as the pull-back of pip_{i} to the reference domain. Let φi\varphi_{i} be the potential defined in (2.1) corresponding to pip_{i}. Let cic_{i} and c~i\tilde{c}_{i} be defined as in (7.5).

The idea of proving uniqueness is to first derive bounds for ~h1~h2\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}} and ~H1~H2\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}} (see (8.5)) in terms of h1h2h_{1}-h_{2} and H1H2H_{1}-H_{2} by following the arguments in previous sections, and then use regularity theory of (8.1) and (8.2) to conclude that h1h2h_{1}-h_{2} and H1H2H_{1}-H_{2} can only be zero if they initially are. Such a process would be extremely involved if carried out naively, requiring more estimates than we currently have. To slightly reduce the complexity, we shall segregate inner and outer interfaces by a cut-off function in space, which decouples their dynamics in some sense.

With abuse of notation, let η(x)\eta(x) be a time-independent, radially symmetric, smooth cut-off function on the physical domain, such that η[0,1]\eta\in[0,1] in 2\mathbb{R}^{2}, η1\eta\equiv 1 on Br(1+3δ)B_{r(1+3\delta)}, and η0\eta\equiv 0 outside Br(1+4δ)B_{r(1+4\delta)}. Moreover, we need |η|C(rδ)1|\nabla\eta|\leq C(r\delta)^{-1} and |2η|C(rδ)2|\nabla^{2}\eta|\leq C(r\delta)^{-2} for some universal CC. For i=1,2i=1,2, define

ψi=ηφi,Ψi=(1η)φi.\psi_{i}=\eta\varphi_{i},\quad\Psi_{i}=(1-\eta)\varphi_{i}.

The equation satisfied by ψi\psi_{i} can be derived from (1.6), (1.7) and (2.1). Proceeding as in Section 2,

(9.2) ψi=𝒟γi[φi]+Γ(G(pi)χΩi2φiηφiΔη)=𝒟γi[φi]+Γ(gψ,i(Xi))in 2\γi,\begin{split}\psi_{i}=&\;-\mathcal{D}_{\gamma_{i}}[\varphi_{i}]+\Gamma*(G(p_{i})\chi_{\Omega_{i}}-2\nabla\varphi_{i}\nabla\eta-\varphi_{i}\Delta\eta)\\ =&\;-\mathcal{D}_{\gamma_{i}}[\varphi_{i}]+\Gamma*(g_{\psi,i}(X_{i}))\quad\mbox{in }\mathbb{R}^{2}\backslash\gamma_{i},\end{split}

where we define in the reference coordinate

(9.3) gψ,i(X)=G(p~i(X))χBr(X)2νp~i(X)η(X)νp~i(X)Δη(X).g_{\psi,i}(X)=G(\tilde{p}_{i}(X))\chi_{B_{r}}(X)-2\nu\nabla\tilde{p}_{i}(X)\nabla\eta(X)-\nu\tilde{p}_{i}(X)\Delta\eta(X).

Note that the last two terms above are only supported on B¯r(1+4δ)\Br(1+3δ)\overline{B}_{r(1+4\delta)}\backslash B_{r(1+3\delta)}, where the diffeomorphism is identity. Comparing (2.3) and (9.2), we find

(9.4) 𝒟γ~iϕi+Γ(2φiη+φiΔη)=0in Br(1+3δ).-\mathcal{D}_{\tilde{\gamma}_{i}}\phi_{i}+\Gamma*(2\nabla\varphi_{i}\nabla\eta+\varphi_{i}\Delta\eta)=0\quad\mbox{in }B_{r(1+3\delta)}.

Hence, we claim that

(9.5) Ψi=𝒟γ~iϕi+Γ(2φiη+φiΔη)in Ω~i.\Psi_{i}=-\mathcal{D}_{\tilde{\gamma}_{i}}\phi_{i}+\Gamma*(2\nabla\varphi_{i}\nabla\eta+\varphi_{i}\Delta\eta)\quad\mbox{in }\tilde{\Omega}_{i}.

Indeed, we may first assume Ψi=𝒟γ~iΦi+Γ(2φiη+φiΔη)\Psi_{i}=-\mathcal{D}_{\tilde{\gamma}_{i}}\Phi_{i}+\Gamma*(2\nabla\varphi_{i}\nabla\eta+\varphi_{i}\Delta\eta) for some boundary potential Φi\Phi_{i} to be determined along γ~i\tilde{\gamma}_{i}. Then we observe 𝒟γ~iΦi\mathcal{D}_{\tilde{\gamma}_{i}}\Phi_{i} and 𝒟γ~iϕi\mathcal{D}_{\tilde{\gamma}_{i}}\phi_{i} have to coincide in Br(1+3δ)B_{r(1+3\delta)} because of (9.4) and the fact Ψi=0\Psi_{i}=0 there. Since 𝒟γ~iΦi\mathcal{D}_{\tilde{\gamma}_{i}}\Phi_{i} and 𝒟γ~iϕi\mathcal{D}_{\tilde{\gamma}_{i}}\phi_{i} are harmonic inside Ω~i\tilde{\Omega}_{i}, this proves Φi=ϕi\Phi_{i}=\phi_{i}. For convenience, we also introduce

(9.6) gΨ,i(X)=2νp~i(X)η(X)+νp~i(X)Δη(X).g_{\Psi,i}(X)=2\nu\nabla\tilde{p}_{i}(X)\nabla\eta(X)+\nu\tilde{p}_{i}(X)\Delta\eta(X).

Then (9.5) becomes

(9.7) Ψi=𝒟γ~iϕi+ΓgΨ,i(Xi(x))in Ω~i.\Psi_{i}=-\mathcal{D}_{\tilde{\gamma}_{i}}\phi_{i}+\Gamma*g_{\Psi,i}(X_{i}(x))\quad\mbox{in }\tilde{\Omega}_{i}.

This also implies

(9.8) ΓgΨ,i(Xi(x))=Γ(G(pi)χΩi)𝒟γi[φi]in Br(1+4δ)c.\Gamma*g_{\Psi,i}(X_{i}(x))=\Gamma*(G(p_{i})\chi_{\Omega_{i}})-\mathcal{D}_{\gamma_{i}}[\varphi_{i}]\quad\mbox{in }B_{r(1+4\delta)}^{c}.

Recall that [φi][\varphi_{i}] and ϕi\phi_{i} satisfy (7.1)-(7.4). They can be rewritten as (see (2.33) and (2.34))

(9.9) [φi]2Acfi=\displaystyle[\varphi_{i}]^{\prime}-2Ac_{*}f_{i}^{\prime}= ~[φi],\displaystyle\;\tilde{\mathcal{R}}_{[\varphi_{i}]^{\prime}},
(9.10) ϕi+2c~Fi=\displaystyle\phi_{i}^{\prime}+2\tilde{c}_{*}F_{i}^{\prime}= ~ϕi,\displaystyle\;\tilde{\mathcal{R}}_{\phi_{i}^{\prime}},

where

(9.11) ~[φi]:= 2Afi(θ)(er(Γgψ,i(Xi))|γic)+2Afi(θ)eθ(Γgψ,i(Xi))|γi+2Aγi𝒦γi[φi],\begin{split}\tilde{\mathcal{R}}_{[\varphi_{i}]^{\prime}}:=&\;2Af_{i}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,i}(X_{i}))|_{\gamma_{i}}-c_{*})\\ &\;+2Af_{i}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\psi,i}(X_{i}))|_{\gamma_{i}}+2A\gamma_{i}^{\prime\perp}\cdot\mathcal{K}_{\gamma_{i}}[\varphi_{i}]^{\prime},\end{split}

and

(9.12) ~ϕi:=2Fi(θ)(er(Γgψ,i(Xi))|γ~ic~)2Fi(θ)eθ(Γgψ,i(Xi))|γ~i2γ~i𝒦γ~iϕi.\begin{split}\tilde{\mathcal{R}}_{\phi_{i}^{\prime}}:=&\;-2F_{i}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,i}(X_{i}))|_{\tilde{\gamma}_{i}}-\tilde{c}_{*})\\ &\;-2F_{i}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\psi,i}(X_{i}))|_{\tilde{\gamma}_{i}}-2\tilde{\gamma}_{i}^{\prime\perp}\cdot\mathcal{K}_{\tilde{\gamma}_{i}}\phi_{i}^{\prime}.\end{split}

On the other hand, following the derivation of (2.16) and (2.17), (8.1)-(8.5) admit the following new representations,

(9.13) thi+cr=\displaystyle\partial_{t}h_{i}+\frac{c_{*}}{r}= Acr(Δ)1/2hi+1r~hi,\displaystyle\;-\frac{Ac_{*}}{r}(-\Delta)^{1/2}h_{i}+\frac{1}{r}\tilde{\mathcal{R}}_{h_{i}},
(9.14) tHi+c~R=\displaystyle\partial_{t}H_{i}+\frac{\tilde{c}_{*}}{R}= c~R(Δ)1/2Hi+1R~Hi,\displaystyle\;\frac{\tilde{c}_{*}}{R}(-\Delta)^{1/2}H_{i}+\frac{1}{R}\tilde{\mathcal{R}}_{H_{i}},

where

(9.15) ~hi=1fiγi𝒦γi~[φi]2Ac(1fiγi𝒦γifi12rfi)+(fifieθ(Γgψ,i(Xi))|γier(Γgψ,i(Xi))|γi+c),\begin{split}\tilde{\mathcal{R}}_{h_{i}}=&\;-\frac{1}{f_{i}}\gamma_{i}^{\prime}\cdot\mathcal{K}_{\gamma_{i}}\tilde{\mathcal{R}}_{[\varphi_{i}]^{\prime}}-2Ac_{*}\left(\frac{1}{f_{i}}\gamma_{i}^{\prime}\cdot\mathcal{K}_{\gamma_{i}}f_{i}^{\prime}-\frac{1}{2r}\mathcal{H}f_{i}^{\prime}\right)\\ &\;+\left(\frac{f_{i}^{\prime}}{f_{i}}e_{\theta}\cdot\nabla(\Gamma*g_{\psi,i}(X_{i}))|_{\gamma_{i}}-e_{r}\cdot\nabla(\Gamma*g_{\psi,i}(X_{i}))|_{\gamma_{i}}+c_{*}\right),\end{split}

and

(9.16) ~Hi=1Fiγ~i𝒦γ~i~ϕi+2c~(1Fiγ~i𝒦γ~iFi12RFi)+(FiFieθ(ΓgΨ,i(Xi))|γ~ier(ΓgΨ,i(Xi))|γ~i+c~).\begin{split}\tilde{\mathcal{R}}_{H_{i}}=&\;-\frac{1}{F_{i}}\tilde{\gamma}_{i}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}_{i}}\tilde{\mathcal{R}}_{\phi_{i}^{\prime}}+2\tilde{c}_{*}\left(\frac{1}{F_{i}}\tilde{\gamma}_{i}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}_{i}}F_{i}^{\prime}-\frac{1}{2R}\mathcal{H}F_{i}^{\prime}\right)\\ &\;+\left(\frac{F_{i}^{\prime}}{F_{i}}e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,i}(X_{i}))|_{\tilde{\gamma}_{i}}-e_{r}\cdot\nabla(\Gamma*g_{\Psi,i}(X_{i}))|_{\tilde{\gamma}_{i}}+\tilde{c}_{*}\right).\end{split}

(9.13) and (9.14) are coupled with initial data hi(t=0)=h0h_{i}(t=0)=h_{0} and Hi(t=0)=H0H_{i}(t=0)=H_{0}.

9.2. Estimates for differences of two solutions

Next we shall bound R~h1R~h2\tilde{R}_{h_{1}}-\tilde{R}_{h_{2}} and R~H1R~H2\tilde{R}_{H_{1}}-\tilde{R}_{H_{2}}.

Lemma 9.1.

gψ,ig_{\psi,i} and gΨ,ig_{\Psi,i} are supported in Br(1+4δ)B_{r(1+4\delta)}, satisfying that

(9.17) gψ,iL+gΨ,iL\displaystyle\|g_{\psi,i}\|_{L^{\infty}}+\|g_{\Psi,i}\|_{L^{\infty}}\leq C(ν,r,R,G),\displaystyle\;C(\nu,r,R,G),
(9.18) gψ,1gψ,2L+gΨ,1gΨ,2L\displaystyle\|g_{\psi,1}-g_{\psi,2}\|_{L^{\infty}}+\|g_{\Psi,1}-g_{\Psi,2}\|_{L^{\infty}}\leq C(β,μ,ν,r,R,G)(Δm0+ΔM0),\displaystyle\;C(\beta,\mu,\nu,r,R,G)(\Delta m_{0}+\Delta M_{0}),

and

(9.19) eθgψ,iL2+eθgΨ,iL2\displaystyle\|e_{\theta}\cdot\nabla g_{\psi,i}\|_{L^{2}}+\|e_{\theta}\cdot\nabla g_{\Psi,i}\|_{L^{2}}\leq C(μ,ν,r,R,G)(m0,i+M0,i),\displaystyle\;C(\mu,\nu,r,R,G)(m_{0,i}+M_{0,i}),
(9.20) eθ(gψ,1gψ,2)L2+eθ(gΨ,1gΨ,2)L2\displaystyle\|e_{\theta}\cdot\nabla(g_{\psi,1}-g_{\psi,2})\|_{L^{2}}+\|e_{\theta}\cdot\nabla(g_{\Psi,1}-g_{\Psi,2})\|_{L^{2}}\leq C(β,μ,ν,r,R,G)(Δmβ+ΔMβ).\displaystyle\;C(\beta,\mu,\nu,r,R,G)(\Delta m_{\beta}+\Delta M_{\beta}).
Proof.

Note that p~i\tilde{p}_{i} and pp_{*} are harmonic in a neighborhood (whose size depends on rr and RR) of the support of η\nabla\eta, so gradient estimates apply. Then the desired estimates follow from Lemma 3.3 and Lemma 3.5. The assumption GC1,1G\in C^{1,1} is used when proving the last inequality. MM \square

Proposition 9.1.

Assume (9.1) with the smallness depending on pp and β\beta (and thus on pp and ε\varepsilon.)

(9.21) [φ1][φ2]C˙βCr2(h1h2C˙β+Δm0+ΔMβ),\|[\varphi_{1}]^{\prime}-[\varphi_{2}]^{\prime}\|_{\dot{C}^{\beta}}\leq Cr^{2}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta}),

and

(9.22) [φ1][φ2]LpC(p,ε,μ,ν,G)r2h1h2Lp(1+δR2)1/2+Cr2(h1h2C˙β+Δm0+ΔMβ)(1+h1Lp+h2Lp+H1Lp).\begin{split}&\;\|[\varphi_{1}]^{\prime\prime}-[\varphi_{2}]^{\prime\prime}\|_{L^{p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r^{2}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(1+\delta R^{2})^{1/2}\\ &\;+Cr^{2}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}).\end{split}

where C=C(p,ε,μ,ν,r,R,G)C=C(p,\varepsilon,\mu,\nu,r,R,G) unless otherwise stated.

Proof.

We proceed as in Proposition 7.1 and Proposition 7.2. By Lemmas 3.5, 4.3-4.7, 7.1 and 9.1,

(9.23) f1(θ)(er(Γgψ,1(X1))|γ1c)f2(θ)(er(Γgψ,2(X2))|γ2c)C˙β(f1f2)(er(Γgψ,1(X1))|γ1c)C˙β+f2(θ)(er(Γgψ,1(X1))|γ1er(Γgψ,1(X2))|γ2)C˙β+f2(θ)(er(Γ(gψ,1gψ,2)(X2))|γ2C˙βCr2h1h2C˙β(m0,1δ|lnδ|gψ,1L(B(1+4δ)r)+eθgψ,1L2(Br(1+4δ))+(m0,1+M0,1)(δR2)1/2)+Cr2h1h2L(gψ,1L(B(1+4δ)r)mβ,1+eθgψ,1L2(B(1+4δ)r))+Cr2h2C˙βδ|lnδ|Δm0gψ,1L(Br(1+4δ))+Cr2h2L(gψ,1L(B(1+4δ)r)Δmβ+Δm0eθgψ,1L2(B(1+4δ)r))+Cr2h2C˙β(m0,2δ|lnδ|gψ,1gψ,2L(B(1+4δ)r)+eθ(gψ,1gψ,2)L2(Br(1+4δ))+|c1c2|)+Cr2h2L(gψ,1gψ,2L(B(1+4δ)r)mβ,2+eθ(gψ,1gψ,2)L2(B(1+4δ)r))Cr2h1h2C˙β(mβ,1+M0,1)+Cr2h2C˙β(Δmβ+ΔMβ),\begin{split}&\;\|f_{1}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*})-f_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}-c_{*})\|_{\dot{C}^{\beta}}\\ \leq&\;\|(f_{1}^{\prime}-f_{2}^{\prime})(e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*})\|_{\dot{C}^{\beta}}\\ &\;+\|f_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{2}))|_{\gamma_{2}})\|_{\dot{C}^{\beta}}\\ &\;+\|f_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*(g_{\psi,1}-g_{\psi,2})(X_{2}))|_{\gamma_{2}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}(m_{0,1}\delta|\ln\delta|\|g_{\psi,1}\|_{L^{\infty}(B_{(1+4\delta)r})}\\ &\;\qquad+\|e_{\theta}\cdot\nabla g_{\psi,1}\|_{L^{2}(B_{r(1+4\delta)})}+(m_{0,1}+M_{0,1})(\delta R^{2})^{1/2})\\ &\;+Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|g_{\psi,1}\|_{L^{\infty}(B_{(1+4\delta)r})}m_{\beta,1}+\|e_{\theta}\cdot\nabla g_{\psi,1}\|_{L^{2}(B_{(1+4\delta)r})})\\ &\;+Cr^{2}\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\cdot\delta|\ln\delta|\Delta m_{0}\|g_{\psi,1}\|_{L^{\infty}(B_{r(1+4\delta)})}\\ &\;+Cr^{2}\|h_{2}^{\prime}\|_{L^{\infty}}(\|g_{\psi,1}\|_{L^{\infty}(B_{(1+4\delta)r})}\Delta m_{\beta}+\Delta m_{0}\|e_{\theta}\cdot\nabla g_{\psi,1}\|_{L^{2}(B_{(1+4\delta)r})})\\ &\;+Cr^{2}\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}(m_{0,2}\delta|\ln\delta|\|g_{\psi,1}-g_{\psi,2}\|_{L^{\infty}(B_{(1+4\delta)r})}\\ &\;\qquad+\|e_{\theta}\cdot\nabla(g_{\psi,1}-g_{\psi,2})\|_{L^{2}(B_{r(1+4\delta)})}+|c_{1}-c_{2}|)\\ &\;+Cr^{2}\|h_{2}^{\prime}\|_{L^{\infty}}(\|g_{\psi,1}-g_{\psi,2}\|_{L^{\infty}(B_{(1+4\delta)r})}m_{\beta,2}+\|e_{\theta}\cdot\nabla(g_{\psi,1}-g_{\psi,2})\|_{L^{2}(B_{(1+4\delta)r})})\\ \leq&\;Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}(m_{\beta,1}+M_{0,1})+Cr^{2}\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}

where C=C(β,μ,ν,r,R,G)C=C(\beta,\mu,\nu,r,R,G). Here we used the estimate by (7.5) and Lemma 3.5 that

(9.24) |c1c2|CrBr|G(p~1)G(p~2)|dXCrp~1p~2L(Br)Cr(Δm0+ΔM0),|c_{1}-c_{2}|\leq\frac{C}{r}\int_{B_{r}}|G(\tilde{p}_{1})-G(\tilde{p}_{2})|\,dX\leq Cr\|\tilde{p}_{1}-\tilde{p}_{2}\|_{L^{\infty}(B_{r})}\leq Cr(\Delta m_{0}+\Delta M_{0}),

where C=C(β,μ,ν,r,R,G)C=C(\beta,\mu,\nu,r,R,G). Similarly,

(9.25) f1(θ)eθ(Γgψ,1(X1))|γ1f2(θ)eθ(Γgψ,2(X2))|γ2C˙βCr2(Δmβ+ΔMβ).\begin{split}&\;\|f_{1}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-f_{2}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

On the other hand, by (9.1), Lemma 5.1 and Lemma 5.4,

(9.26) γ1𝒦γ1[φ1]γ2𝒦γ2[φ2]C˙βC(β)(h1h2C1,β[φ1]C˙β+h2C˙β[φ1][φ2]C˙β).\begin{split}&\;\|\gamma_{1}^{\prime\perp}\cdot\mathcal{K}_{\gamma_{1}}[\varphi_{1}]^{\prime}-\gamma_{2}^{\prime\perp}\cdot\mathcal{K}_{\gamma_{2}}[\varphi_{2}]^{\prime}\|_{\dot{C}^{\beta}}\\ \leq&\;C(\beta)(\|h_{1}-h_{2}\|_{C^{1,\beta}}\|[\varphi_{1}]^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|[\varphi_{1}]^{\prime}-[\varphi_{2}]^{\prime}\|_{\dot{C}^{\beta}}).\end{split}

Combining these estimates with (9.1), (9.9), (9.11) and Proposition 7.1 yields

(9.27) ~[φ1]~[φ2]C˙βCr2h1h2C˙β(m0,1+M0,1+h1C˙β+H1C˙β)+Cr2(Δmβ+ΔMβ)+C(β)h2C˙β[φ1][φ2]C˙β,\begin{split}&\;\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}(m_{0,1}+M_{0,1}+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}})+Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta})\\ &\;+C(\beta)\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|[\varphi_{1}]^{\prime}-[\varphi_{2}]^{\prime}\|_{\dot{C}^{\beta}},\end{split}

and

(9.28) [φ1][φ2]C˙βCr2h1h2C˙β+Cr2(Δmβ+ΔMβ),\|[\varphi_{1}]^{\prime}-[\varphi_{2}]^{\prime}\|_{\dot{C}^{\beta}}\leq Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta}),

where C=C(β,β,μ,ν,r,R,G)C=C(\beta,\beta^{\prime},\mu,\nu,r,R,G). Note that β\beta and β\beta^{\prime} essentially depend on pp and ε\varepsilon.

To show (9.22), we derive as in (7.22) that

(9.29) f1(θ)(er(Γgψ,1(X1))|γ1c)f2(θ)(er(Γgψ,2(X2))|γ2c)W˙1,pf1f2W˙1,per(Γgψ,1(X1))|γ1cL+f1f2Ler(Γgψ,1(X1))|γ1W˙1,p+f2(θ)(er(Γgψ,1(X1))|γ1er(Γgψ,1(X2))|γ2)W˙1,p+f2(θ)er(Γ(gψ,1gψ,2)(X2))|γ2W˙1,pf1f2W˙1,per(Γgψ,1(X1))|γ1cL+Cr2h1h2L(mβ,1+M0,1)+Cr2h2Lp(Δmβ+ΔMβ).\begin{split}&\;\|f_{1}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*})-f_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}-c_{*})\|_{\dot{W}^{1,p}}\\ \leq&\;\|f_{1}^{\prime}-f_{2}^{\prime}\|_{\dot{W}^{1,p}}\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*}\|_{L^{\infty}}\\ &\;+\|f_{1}^{\prime}-f_{2}^{\prime}\|_{L^{\infty}}\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}\|_{\dot{W}^{1,p}}\\ &\;+\|f_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{2}))|_{\gamma_{2}})\|_{\dot{W}^{1,p}}\\ &\;+\|f_{2}^{\prime}(\theta)e_{r}\cdot\nabla(\Gamma*(g_{\psi,1}-g_{\psi,2})(X_{2}))|_{\gamma_{2}}\|_{\dot{W}^{1,p}}\\ \leq&\;\|f_{1}^{\prime}-f_{2}^{\prime}\|_{\dot{W}^{1,p}}\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*}\|_{L^{\infty}}\\ &\;+Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(m_{\beta,1}+M_{0,1})+Cr^{2}\|h_{2}^{\prime\prime}\|_{L^{p}}(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

We shall need an estimate for er(Γgψ,1(X1))|γ1cL\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*}\|_{L^{\infty}} with explicit rr- and RR-dependence. By (9.4), and then (2.11), Lemmas 3.3, 4.4, 6.1, 6.5, 7.1 and Proposition 7.1,

(9.30) er(Γgψ,1(X1))|γ1cLer(Γ(G(p1)χΩ1))|γ1cL+er(𝒟γ~1ϕ1)|γ1Ler(Γ(G(p1)χΩ1))|γ1c1L+|c1c|+eθ𝒦γ1,γ~1ϕ1LC(μ,ν,G,β,β)r(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2).\begin{split}&\;\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*}\|_{L^{\infty}}\\ \leq&\;\|e_{r}\cdot\nabla(\Gamma*(G(p_{1})\chi_{\Omega_{1}}))|_{\gamma_{1}}-c_{*}\|_{L^{\infty}}+\|e_{r}\cdot\nabla(\mathcal{D}_{\tilde{\gamma}_{1}}\phi_{1})|_{\gamma_{1}}\|_{L^{\infty}}\\ \leq&\;\|e_{r}\cdot\nabla(\Gamma*(G(p_{1})\chi_{\Omega_{1}}))|_{\gamma_{1}}-c_{1}\|_{L^{\infty}}+|c_{1}-c_{*}|+\|e_{\theta}\cdot\mathcal{K}_{\gamma_{1},\tilde{\gamma}_{1}}\phi_{1}^{\prime}\|_{L^{\infty}}\\ \leq&\;C(\mu,\nu,G,\beta,\beta^{\prime})r(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2}).\end{split}

Hence,

(9.31) f1(θ)(er(Γgψ,1(X1))|γ1c)f2(θ)(er(Γgψ,2(X2))|γ2c)W˙1,pC(μ,ν,G,β,β)r2h1h2Lp(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2)+Cr2h1h2L(mβ,1+M0,1)+Cr2h2Lp(Δmβ+ΔMβ).\begin{split}&\;\|f_{1}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-c_{*})-f_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}-c_{*})\|_{\dot{W}^{1,p}}\\ \leq&\;C(\mu,\nu,G,\beta,\beta^{\prime})r^{2}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr^{2}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(m_{\beta,1}+M_{0,1})+Cr^{2}\|h_{2}^{\prime\prime}\|_{L^{p}}(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

On the other hand,

(9.32) f1(θ)eθ(Γgψ,1(X1))|γ1f2(θ)eθ(Γgψ,2(X2))|γ2W˙1,pCr2(Δmβ+ΔMβ),\begin{split}&\;\|f_{1}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-f_{2}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}

and by Lemma 5.2 and Lemma 5.5,

(9.33) γ1𝒦γ1[φ1]γ2𝒦γ2[φ2]W˙1,pC(Δm0+h1h2C˙β)(h1Lp+h2Lp)[φ1]C˙β+Ch1h2Lp[φ1]C˙β+CΔm0[φ1]Lp+C(h2Lp[φ1][φ2]C˙β+h2L[φ1][φ2]Lp),\begin{split}&\;\|\gamma_{1}^{\prime\perp}\cdot\mathcal{K}_{\gamma_{1}}[\varphi_{1}]^{\prime}-\gamma_{2}^{\prime\perp}\cdot\mathcal{K}_{\gamma_{2}}[\varphi_{2}]^{\prime}\|_{\dot{W}^{1,p}}\\ \leq&\;C(\Delta m_{0}+\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}})(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\|[\varphi_{1}]^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\|[\varphi_{1}]^{\prime}\|_{\dot{C}^{\beta}}+C\Delta m_{0}\|[\varphi_{1}]^{\prime\prime}\|_{L^{p}}\\ &\;+C(\|h_{2}^{\prime\prime}\|_{L^{p}}\|[\varphi_{1}]^{\prime}-[\varphi_{2}]^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|[\varphi_{1}]^{\prime\prime}-[\varphi_{2}]^{\prime\prime}\|_{L^{p}}),\end{split}

where C=C(p,β)C=C(p,\beta). Combining these estimates with (9.1), (9.9), (9.11), (9.21) as well as Propositions 7.1 and 7.2, we can show

(9.34) ~[φ1]~[φ2]W˙1,pC(p,ε,μ,ν,G)r2h1h2Lp(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2)+Cr2(h1h2C˙β+Δm0+ΔMβ)(1+h1Lp+h2Lp+H1Lp)+C(p,β)h2L[φ1][φ2]Lp,\begin{split}&\;\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r^{2}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr^{2}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}})\\ &\;+C(p,\beta)\|h_{2}^{\prime}\|_{L^{\infty}}\|[\varphi_{1}]^{\prime\prime}-[\varphi_{2}]^{\prime\prime}\|_{L^{p}},\end{split}

and thus (9.22). MM \square

Proposition 9.2.

Under the assumption of Proposition 9.1,

(9.35) ϕ1ϕ2C˙βCr2(H1H2C˙β+Δmβ+ΔM0),\|\phi_{1}^{\prime}-\phi_{2}^{\prime}\|_{\dot{C}^{\beta}}\leq Cr^{2}(\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{\beta}+\Delta M_{0}),\\

and

(9.36) ϕ1ϕ2LpC(p,ε,μ,ν,G)r2H1H2Lp(1+δR2)1/2+Cr2(Δmβ+ΔM0+H1H2C˙β)(1+h1Lp+H1Lp+H2Lp),\begin{split}\|\phi_{1}^{\prime\prime}-\phi_{2}^{\prime\prime}\|_{L^{p}}\leq&\;C(p,\varepsilon,\mu,\nu,G)r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}(1+\delta R^{2})^{1/2}\\ &\;+Cr^{2}(\Delta m_{\beta}+\Delta M_{0}+\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}}),\end{split}

where C=C(p,ε,μ,ν,r,R,G)C=C(p,\varepsilon,\mu,\nu,r,R,G) unless otherwise stated.

Proof.

We justify as before. By Lemmas 3.5, 4.8-4.12, 7.1 and 9.1,

(9.37) F1(θ)(er(ΓgΨ,1(X1))|γ~1c~)F2(θ)(er(ΓgΨ,2(X2))|γ~2c~)C˙βCr2H1H2C˙β(m0,1+M0,1)+Cr2H2C˙β(Δmβ+ΔMβ),\begin{split}&\;\|F_{1}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-\tilde{c}_{*})-F_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}-\tilde{c}_{*})\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}(m_{0,1}+M_{0,1})+Cr^{2}\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}

where C=C(β,μ,ν,r,R,G)C=C(\beta,\mu,\nu,r,R,G). Here we used the fact that, by (4.76), (7.5) and (9.6), with σ\sigma being the unit outer normal vector of Br(1+3δ)\partial B_{r(1+3\delta)},

c~gΨ,i=12πRBr(1+4δ)\Br(1+3δ)νΔ(ηp~i)dX=ν2πRBr(1+3δ)p~iσdy=c~i,\tilde{c}_{g_{\Psi,i}}=-\frac{1}{2\pi R}\int_{B_{r(1+4\delta)}\backslash B_{r(1+3\delta)}}\nu\Delta(\eta\tilde{p}_{i})\,dX=\frac{\nu}{2\pi R}\int_{\partial B_{r(1+3\delta)}}\frac{\partial\tilde{p}_{i}}{\partial\sigma}\,dy=\tilde{c}_{i},

which yields by (9.24) that

(9.38) |c~1c~2|Cr2R(Δm0+ΔM0).|\tilde{c}_{1}-\tilde{c}_{2}|\leq\frac{Cr^{2}}{R}(\Delta m_{0}+\Delta M_{0}).

Similarly,

(9.39) F1(θ)eθ(ΓgΨ,1(X1))|γ~1F2(θ)eθ(ΓgΨ,2(X2))|γ~2C˙βCr2(Δmβ+ΔMβ).\begin{split}&\;\|F_{1}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-F_{2}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

Again by (9.1), Lemma 5.1 and Lemma 5.4,

(9.40) γ~1𝒦γ~1ϕ1γ~2𝒦γ~2ϕ2C˙βC(β)(H1H2C1,βϕ1C˙β+H2C˙βϕ1ϕ2C˙β).\begin{split}&\;\|\tilde{\gamma}_{1}^{\prime\perp}\cdot\mathcal{K}_{\tilde{\gamma}_{1}}\phi_{1}^{\prime}-\tilde{\gamma}_{2}^{\prime\perp}\cdot\mathcal{K}_{\tilde{\gamma}_{2}}\phi_{2}^{\prime}\|_{\dot{C}^{\beta}}\\ \leq&\;C(\beta)(\|H_{1}-H_{2}\|_{C^{1,\beta}}\|\phi_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}\|\phi_{1}^{\prime}-\phi_{2}^{\prime}\|_{\dot{C}^{\beta}}).\end{split}

By (9.12), (9.37), (9.39), (9.40) and Proposition 7.1,

(9.41) ~ϕ1~ϕ2C˙βCr2H1H2C˙β(h1C˙β+H1C˙β+m0,1+M0,1)+Cr2(Δmβ+ΔMβ)+C(β)H2C˙βϕ1ϕ2C˙β,\begin{split}&\;\|\tilde{\mathcal{R}}_{\phi_{1}^{\prime}}-\tilde{\mathcal{R}}_{\phi_{2}^{\prime}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+m_{0,1}+M_{0,1})+Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta})\\ &\;+C(\beta)\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}\|\phi_{1}^{\prime}-\phi_{2}^{\prime}\|_{\dot{C}^{\beta}},\end{split}

where C=C(p,β,μ,ν,r,R,G)C=C(p,\beta,\mu,\nu,r,R,G). Combining this with (9.10) yields (9.35).

In addition, thanks to (9.8),

(9.42) F1(θ)(er(ΓgΨ,1(X1))|γ~1c~)F2(θ)(er(ΓgΨ,2(X2))|γ~2c~)W˙1,pRH1H2Lper(ΓgΨ,1(X1))|γ~1c~L+Cr2H1H2L(m0,1+M0,1)+Cr2H2Lp(Δmβ+ΔMβ)C(μ,ν,G,β,β)r2H1H2Lp(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2)+Cr2H1H2L(m0,1+M0,1)+Cr2H2Lp(Δmβ+ΔMβ),\begin{split}&\;\|F_{1}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-\tilde{c}_{*})-F_{2}^{\prime}(\theta)(e_{r}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}-\tilde{c}_{*})\|_{\dot{W}^{1,p}}\\ \leq&\;R\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}\|e_{r}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-\tilde{c}_{*}\|_{L^{\infty}}\\ &\;+Cr^{2}\|H_{1}^{\prime}-H_{2}^{\prime}\|_{L^{\infty}}(m_{0,1}+M_{0,1})+Cr^{2}\|H_{2}^{\prime\prime}\|_{L^{p}}(\Delta m_{\beta}+\Delta M_{\beta})\\ \leq&\;C(\mu,\nu,G,\beta,\beta^{\prime})r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr^{2}\|H_{1}^{\prime}-H_{2}^{\prime}\|_{L^{\infty}}(m_{0,1}+M_{0,1})+Cr^{2}\|H_{2}^{\prime\prime}\|_{L^{p}}(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}

and

(9.43) F1(θ)eθ(ΓgΨ,1(X1))|γ~1F2(θ)eθ(ΓgΨ,2(X2))|γ~2W˙1,pCr2(Δmβ+ΔMβ).\begin{split}&\;\|F_{1}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-F_{2}(\theta)e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

By Lemma 5.2 and Lemma 5.5,

(9.44) γ~1𝒦γ~1ϕ1γ~2𝒦γ~2ϕ2W˙1,pC(ΔM0+H1H2C˙β)(H1Lp+H2Lp)ϕ1C˙β+C(p,β)H1H2Lpϕ1C˙β+CΔM0ϕ1Lp+C(p,β)(H2Lpϕ1ϕ2C˙β+H2Lϕ1ϕ2Lp).\begin{split}&\;\|\tilde{\gamma}_{1}^{\prime\perp}\cdot\mathcal{K}_{\tilde{\gamma}_{1}}\phi_{1}^{\prime}-\tilde{\gamma}_{2}^{\prime\perp}\cdot\mathcal{K}_{\tilde{\gamma}_{2}}\phi_{2}^{\prime}\|_{\dot{W}^{1,p}}\\ \leq&\;C(\Delta M_{0}+\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}})(\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}})\|\phi_{1}^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C(p,\beta)\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}\|\phi_{1}^{\prime}\|_{\dot{C}^{\beta}}+C\Delta M_{0}\|\phi_{1}^{\prime\prime}\|_{L^{p}}\\ &\;+C(p,\beta)(\|H_{2}^{\prime\prime}\|_{L^{p}}\|\phi_{1}^{\prime}-\phi_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{L^{\infty}}\|\phi_{1}^{\prime\prime}-\phi_{2}^{\prime\prime}\|_{L^{p}}).\end{split}

Combining (9.42)-(9.44) with (9.35) and Propositions 7.1 and 7.2, we find

(9.45) ~ϕ1~ϕ2W˙1,pC(p,ε,μ,ν,G)r2H1H2Lp(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2)+Cr2(H1H2C˙β+Δmβ+ΔM0)(1+h1Lp+H1Lp+H2Lp)+C(p,β)H2Lϕ1ϕ2Lp.\begin{split}&\;\|\tilde{\mathcal{R}}_{\phi_{1}^{\prime}}-\tilde{\mathcal{R}}_{\phi_{2}^{\prime}}\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr^{2}(\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{\beta}+\Delta M_{0})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}})\\ &\;+C(p,\beta)\|H_{2}^{\prime}\|_{L^{\infty}}\|\phi_{1}^{\prime\prime}-\phi_{2}^{\prime\prime}\|_{L^{p}}.\end{split}

Then (9.36) follows from (9.10) and (9.45). MM \square

Lemma 9.2.

Under the assumption of Proposition 9.1,

(9.46) ~[φ1]~[φ2]C˙βCr2(Δmβ+ΔMβ)+Cr2h1h2C˙1,β(h1C˙β+h2C˙β+H1C˙β+m0,1+M0,1),\begin{split}&\;\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta})\\ &\;+Cr^{2}\|h_{1}-h_{2}\|_{\dot{C}^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+m_{0,1}+M_{0,1}),\end{split}
(9.47) ~[φ1]~[φ2]W˙1,pC(p,ε,μ,ν,G)r2h1h2Lp(h1C˙β+H1C˙β+(m0,1+m0,2+M0,1)(1+δR2)1/2)+Cr2(h1h2C˙β+Δm0+ΔMβ)(1+h1Lp+h2Lp+H1Lp),\begin{split}&\;\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r^{2}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+m_{0,2}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr^{2}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}),\end{split}
(9.48) ~ϕ1~ϕ2C˙βCr2(Δmβ+ΔMβ)+Cr2H1H2C˙1,β(h1C˙β+H1C˙β+H2C˙β+m0,1+M0,1),\begin{split}&\;\|\tilde{\mathcal{R}}_{\phi_{1}^{\prime}}-\tilde{\mathcal{R}}_{\phi_{2}^{\prime}}\|_{\dot{C}^{\beta}}\\ \leq&\;Cr^{2}(\Delta m_{\beta}+\Delta M_{\beta})\\ &\;+Cr^{2}\|H_{1}-H_{2}\|_{\dot{C}^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}+m_{0,1}+M_{0,1}),\end{split}

and

(9.49) ~ϕ1~ϕ2W˙1,pC(p,ε,μ,ν,G)r2H1H2Lp(h1C˙β+H1C˙β+(m0,1+M0,1+M0,2)(1+δR2)1/2)+Cr2(H1H2C˙β+Δmβ+ΔM0)(1+h1Lp+H1Lp+H2Lp),\begin{split}&\;\|\tilde{\mathcal{R}}_{\phi_{1}^{\prime}}-\tilde{\mathcal{R}}_{\phi_{2}^{\prime}}\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1}+M_{0,2})(1+\delta R^{2})^{1/2})\\ &\;+Cr^{2}(\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{\beta}+\Delta M_{0})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}}),\end{split}

where C=C(p,ε,μ,ν,r,R,G)C=C(p,\varepsilon,\mu,\nu,r,R,G) unless otherwise stated.

Proof.

It suffices to apply Proposition 9.1 and Proposition 9.2 to (9.27), (9.34), (9.41) and (9.45). MM \square

Lemma 9.3.

Under the assumption of Proposition 9.1,

(9.50) ~h1~h2W1,pC(p,ε,μ,ν,G)rh1h2Lp(h1C˙β+h2C˙β+H1C˙β+(m0,1+m0,2+M0,1)(1+δR2)1/2)+Cr(h1h2C˙β+Δm0+ΔMβ)(1+h1Lp+h2Lp+H1Lp).\begin{split}&\;\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{W^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\\ &\;\quad\cdot(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+m_{0,2}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}).\end{split}

and

(9.51) ~H1~H2W1,pC(p,ε,μ,ν,G)R1r2H1H2Lp(h1C˙β+H1C˙β+H2C˙β+(m0,1+M0,1+M0,2)(1+δR2)1/2)+CR1r2(H1H2C˙β+Δmβ+ΔM0)(1+h1Lp+H1Lp+H2Lp),\begin{split}&\;\|\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}\|_{W^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)R^{-1}r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}\\ &\;\quad\cdot(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1}+M_{0,2})(1+\delta R^{2})^{1/2})\\ &\;+CR^{-1}r^{2}(\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{\beta}+\Delta M_{0})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}}),\end{split}

where C=C(p,ε,μ,ν,r,R,G)C=C(p,\varepsilon,\mu,\nu,r,R,G) unless otherwise stated.

Proof.

We argue as in Lemma 8.1. Note that ~[φi]\tilde{\mathcal{R}}_{[\varphi_{i}]^{\prime}} has mean zero on 𝕋\mathbb{T}. By Poincaré inequality and Lemmas 5.3 and 5.6,

(9.52) 1f1γ1𝒦γ1~[φ1]1f2γ2𝒦γ2~[φ2]W1,pC1f11f2W1,γ1𝒦γ1~[φ1]W˙1,p+Cf21W1,γ1𝒦γ1~[φ1]γ2𝒦γ2~[φ1]W˙1,p+Cf21W1,γ2𝒦γ2(~[φ1]~[φ2])W˙1,pCr1Δm0~[φ1]W˙1,p+C(p,β)r1~[φ1]C˙β(h1h2Lp+(h1Lp+h2Lp)(h1h2C˙β+Δm0))+C(p,β)r1(~[φ1]~[φ2]W˙1,p+~[φ1]~[φ2]C˙βh2Lp).\begin{split}&\;\left\|\frac{1}{f_{1}}\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\frac{1}{f_{2}}\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\right\|_{W^{1,p}}\\ \leq&\;C\left\|\frac{1}{f_{1}}-\frac{1}{f_{2}}\right\|_{W^{1,\infty}}\|\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}\|_{\dot{W}^{1,p}}\\ &\;+C\|f_{2}^{-1}\|_{W^{1,\infty}}\|\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}\|_{\dot{W}^{1,p}}\\ &\;+C\|f_{2}^{-1}\|_{W^{1,\infty}}\|\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}(\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}})\|_{\dot{W}^{1,p}}\\ \leq&\;Cr^{-1}\Delta m_{0}\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}\|_{\dot{W}^{1,p}}\\ &\;+C(p,\beta)r^{-1}\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}\|_{\dot{C}^{\beta}}(\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}))\\ &\;+C(p,\beta)r^{-1}(\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\|_{\dot{W}^{1,p}}+\|\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\|_{\dot{C}^{\beta}}\|h_{2}^{\prime\prime}\|_{L^{p}}).\end{split}

By (9.9) and (9.10),

(9.53) ~[φi]C˙β+~ϕiC˙β\displaystyle\|\tilde{\mathcal{R}}_{[\varphi_{i}]^{\prime}}\|_{\dot{C}^{\beta}}+\|\tilde{\mathcal{R}}_{\phi_{i}^{\prime}}\|_{\dot{C}^{\beta}}\leq [φi]C˙β+ϕiC˙β+C(μ,ν,G)r2(hiC˙β+HiC˙β),\displaystyle\;\|[\varphi_{i}]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi_{i}^{\prime}\|_{\dot{C}^{\beta}}+C(\mu,\nu,G)r^{2}(\|h_{i}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{i}^{\prime}\|_{\dot{C}^{\beta}}),
(9.54) ~[φi]W˙1,p+~ϕiW˙1,p\displaystyle\|\tilde{\mathcal{R}}_{[\varphi_{i}]^{\prime}}\|_{\dot{W}^{1,p}}+\|\tilde{\mathcal{R}}_{\phi_{i}^{\prime}}\|_{\dot{W}^{1,p}}\leq [φi]W˙1,p+ϕiW˙1,p+C(μ,ν,G)r2(hiW˙1,p+HiW˙1,p).\displaystyle\;\|[\varphi_{i}]^{\prime}\|_{\dot{W}^{1,p}}+\|\phi_{i}^{\prime}\|_{\dot{W}^{1,p}}+C(\mu,\nu,G)r^{2}(\|h_{i}^{\prime}\|_{\dot{W}^{1,p}}+\|H_{i}^{\prime}\|_{\dot{W}^{1,p}}).

So by Proposition 7.1, Proposition 7.2 and Lemma 9.2,

(9.55) 1f1γ1𝒦γ1~[φ1]1f2γ2𝒦γ2~[φ2]W1,pCr1Δm0([φ1]Lp+ϕ1Lp+r2(h1Lp+H1Lp))+C(p,ε,μ,ν,G)r1([φ1]C˙β+ϕ1C˙β+r2(h1C˙β+H1C˙β))(h1h2Lp+(h1Lp+h2Lp)(h1h2C˙β+Δm0))+C(p,ε,μ,ν,G)rh1h2Lp(h1C˙β+H1C˙β+(m0,1+m0,2+M0,1)(1+δR2)1/2)+Cr(h1h2C˙β+Δm0+ΔMβ)(1+h1Lp+h2Lp+H1Lp)+Cr(Δmβ+ΔMβ)h2Lp+Crh1h2C˙1,β(h1C˙β+h2C˙β+H1C˙β+m0,1+M0,1)h2Lp,C(p,ε,μ,ν,G)rh1h2Lp(h1C˙β+H1C˙β+(m0,1+m0,2+M0,1)(1+δR2)1/2)+Cr(h1h2C˙β+Δm0+ΔMβ)(1+h1Lp+h2Lp+H1Lp),\begin{split}&\;\left\|\frac{1}{f_{1}}\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}\tilde{\mathcal{R}}_{[\varphi_{1}]^{\prime}}-\frac{1}{f_{2}}\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}\tilde{\mathcal{R}}_{[\varphi_{2}]^{\prime}}\right\|_{W^{1,p}}\\ \leq&\;Cr^{-1}\Delta m_{0}(\|[\varphi_{1}]^{\prime\prime}\|_{L^{p}}+\|\phi_{1}^{\prime\prime}\|_{L^{p}}+r^{2}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}))\\ &\;+C(p,\varepsilon,\mu,\nu,G)r^{-1}(\|[\varphi_{1}]^{\prime}\|_{\dot{C}^{\beta}}+\|\phi_{1}^{\prime}\|_{\dot{C}^{\beta}}+r^{2}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}))\\ &\;\qquad\cdot(\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}))\\ &\;+C(p,\varepsilon,\mu,\nu,G)r\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+m_{0,2}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}})\\ &\;+Cr(\Delta m_{\beta}+\Delta M_{\beta})\|h_{2}^{\prime\prime}\|_{L^{p}}\\ &\;+Cr\|h_{1}-h_{2}\|_{\dot{C}^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+m_{0,1}+M_{0,1})\|h_{2}^{\prime\prime}\|_{L^{p}},\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+m_{0,2}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}+\Delta M_{\beta})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}),\end{split}

where C=C(p,ε,μ,ν,r,R,G)C=C(p,\varepsilon,\mu,\nu,r,R,G) unless otherwise stated. Similarly,

(9.56) (1f1γ1𝒦γ1f112rf1)(1f2γ2𝒦γ2f212rf2)W1,p1f11f2W1,γ1𝒦γ1f1W˙1,p+1f2W1,γ1𝒦γ1f1γ2𝒦γ2f1W˙1,p+1f21rW1,γ2𝒦γ2(f1f2)W˙1,p+1rγ2𝒦γ2(f1f2)12(f1f2)W˙1,pC(p,β)h1h2Lp(m0,1+m0,2+h1C˙β+h2C˙β)+C(h1Lp+h2Lp)(h1h2C˙β+Δm0).\begin{split}&\;\left\|\left(\frac{1}{f_{1}}\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}f_{1}^{\prime}-\frac{1}{2r}\mathcal{H}f_{1}^{\prime}\right)-\left(\frac{1}{f_{2}}\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}f_{2}^{\prime}-\frac{1}{2r}\mathcal{H}f_{2}^{\prime}\right)\right\|_{W^{1,p}}\\ \leq&\;\left\|\frac{1}{f_{1}}-\frac{1}{f_{2}}\right\|_{W^{1,\infty}}\left\|\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}f_{1}^{\prime}\right\|_{\dot{W}^{1,p}}+\left\|\frac{1}{f_{2}}\right\|_{W^{1,\infty}}\left\|\gamma_{1}^{\prime}\cdot\mathcal{K}_{\gamma_{1}}f_{1}^{\prime}-\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}f_{1}^{\prime}\right\|_{\dot{W}^{1,p}}\\ &\;+\left\|\frac{1}{f_{2}}-\frac{1}{r}\right\|_{W^{1,\infty}}\left\|\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}(f_{1}-f_{2})^{\prime}\right\|_{\dot{W}^{1,p}}+\frac{1}{r}\left\|\gamma_{2}^{\prime}\cdot\mathcal{K}_{\gamma_{2}}(f_{1}-f_{2})^{\prime}-\frac{1}{2}\mathcal{H}(f_{1}-f_{2})^{\prime}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\beta)\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(m_{0,1}+m_{0,2}+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{0}).\end{split}

By (9.24) and Lemmas 4.3-4.7 and 9.1,

(9.57) er(Γgψ,1(X1))|γ1er(Γgψ,2(X2))|γ2Ler(Γgψ,1(X1))|γ1er(Γgψ,1(X2))|γ2L+er(Γ(gψ,1gψ,2)(X2))|γ2LCr(Δmβ+ΔMβ)+|c1c2|Cr(Δmβ+ΔMβ).\begin{split}&\;\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}\|_{L^{\infty}}\\ \leq&\;\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{2}))|_{\gamma_{2}}\|_{L^{\infty}}\\ &\;+\|e_{r}\cdot\nabla(\Gamma*(g_{\psi,1}-g_{\psi,2})(X_{2}))|_{\gamma_{2}}\|_{L^{\infty}}\\ \leq&\;Cr(\Delta m_{\beta}+\Delta M_{\beta})+|c_{1}-c_{2}|\\ \leq&\;Cr(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

and

(9.58) er(Γgψ,1(X1))|γ1er(Γgψ,2(X2))|γ2W˙1,pCr(Δmβ+ΔMβ).\begin{split}&\;\|e_{r}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}\|_{\dot{W}^{1,p}}\\ \leq&\;Cr(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

Note that this term is not of mean zero on 𝕋\mathbb{T}, so we have to bound its LL^{\infty}-norm and W˙1,p\dot{W}^{1,p}-seminorm in order to prove (9.50). Finally,

(9.59) f1f1eθ(Γgψ,1(X1))|γ1f2f2eθ(Γgψ,2(X2))|γ2LCf1f1f2f2Leθ(Γgψ,1(X1))|γ1L+Cf2f2L(eθ(Γgψ,1(X1))|γ1eθ(Γgψ,2(X2))|γ2)LCr(m0,1+m0,2+M0,1)(Δmβ+ΔMβ),\begin{split}&\;\left\|\frac{f_{1}^{\prime}}{f_{1}}e_{\theta}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-\frac{f_{2}^{\prime}}{f_{2}}e_{\theta}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}\right\|_{L^{\infty}}\\ \leq&\;C\left\|\frac{f_{1}^{\prime}}{f_{1}}-\frac{f_{2}^{\prime}}{f_{2}}\right\|_{L^{\infty}}\|e_{\theta}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}\|_{L^{\infty}}\\ &\;+C\left\|\frac{f_{2}^{\prime}}{f_{2}}\right\|_{L^{\infty}}\|(e_{\theta}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-e_{\theta}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}})\|_{L^{\infty}}\\ \leq&\;Cr(m_{0,1}+m_{0,2}+M_{0,1})(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}

and by proceeding as in (9.29)-(9.31),

(9.60) f1f1eθ(Γgψ,1(X1))|γ1f2f2eθ(Γgψ,2(X2))|γ2W˙1,pC(p,ε,μ,ν,G)rh1h2Lp(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2)+Cr(mβ,1+M0,1+h2Lp)(Δmβ+ΔMβ).\begin{split}&\;\left\|\frac{f_{1}^{\prime}}{f_{1}}e_{\theta}\cdot\nabla(\Gamma*g_{\psi,1}(X_{1}))|_{\gamma_{1}}-\frac{f_{2}^{\prime}}{f_{2}}e_{\theta}\cdot\nabla(\Gamma*g_{\psi,2}(X_{2}))|_{\gamma_{2}}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)r\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+Cr(m_{\beta,1}+M_{0,1}+\|h_{2}^{\prime\prime}\|_{L^{p}})(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

Combining these estimates with (9.15), we use the fact |c|Cr|c_{*}|\leq Cr by Lemma 3.1 to prove (9.50).

To show (9.51), we derive as before.

(9.61) 1F1γ~1𝒦γ~1~ϕ11F2γ~2𝒦γ~2~ϕ2W1,pC(p,ε,μ,ν,G)R1r2H1H2Lp(h1C˙β+H1C˙β+(m0,1+M0,1+M0,2)(1+δR2)1/2)+CR1r2(H1H2C˙β+Δmβ+ΔM0)(1+h1Lp+H1Lp+H2Lp)\begin{split}&\;\left\|\frac{1}{F_{1}}\tilde{\gamma}_{1}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}_{1}}\tilde{\mathcal{R}}_{\phi_{1}^{\prime}}-\frac{1}{F_{2}}\tilde{\gamma}_{2}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}_{2}}\tilde{\mathcal{R}}_{\phi_{2}^{\prime}}\right\|_{W^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)R^{-1}r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}\\ &\;\quad\cdot(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1}+M_{0,2})(1+\delta R^{2})^{1/2})\\ &\;+CR^{-1}r^{2}(\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta m_{\beta}+\Delta M_{0})(1+\|h_{1}^{\prime\prime}\|_{L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}})\end{split}

and

(9.62) (1F1γ~1𝒦γ~1F112RF1)(1F2γ~2𝒦γ~2F212RF2)W1,pC(p,β)H1H2Lp(M0,1+M0,2+H1C˙β+H2C˙β)+C(H1Lp+H2Lp)(H1H2C˙β+ΔM0).\begin{split}&\;\left\|\left(\frac{1}{F_{1}}\tilde{\gamma}_{1}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}_{1}}F_{1}^{\prime}-\frac{1}{2R}\mathcal{H}F_{1}^{\prime}\right)-\left(\frac{1}{F_{2}}\tilde{\gamma}_{2}^{\prime}\cdot\mathcal{K}_{\tilde{\gamma}_{2}}F_{2}^{\prime}-\frac{1}{2R}\mathcal{H}F_{2}^{\prime}\right)\right\|_{W^{1,p}}\\ \leq&\;C(p,\beta)\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}(M_{0,1}+M_{0,2}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C(\|H_{1}^{\prime\prime}\|_{L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}})(\|H_{1}^{\prime}-H_{2}^{\prime}\|_{\dot{C}^{\beta}}+\Delta M_{0}).\end{split}

By (9.38) and Lemmas 4.8-4.12 and 9.1,

(9.63) er(ΓgΨ,1(X1))|γ~1er(ΓgΨ,2(X2))|γ~2L+er(ΓgΨ,1(X1))|γ~1er(ΓgΨ,2(X2))|γ~2W˙1,pCR1r2(Δmβ+ΔMβ),\begin{split}&\;\|e_{r}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}\|_{L^{\infty}}\\ &\;+\|e_{r}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-e_{r}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}\|_{\dot{W}^{1,p}}\\ \leq&\;CR^{-1}r^{2}(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}
(9.64) F1F1eθ(ΓgΨ,1(X1))|γ~1F2F2eθ(ΓgΨ,2(X2))|γ~2LCR1r2(m0,1+M0,1+M0,2)(Δmβ+ΔMβ),\begin{split}&\;\left\|\frac{F_{1}^{\prime}}{F_{1}}e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-\frac{F_{2}^{\prime}}{F_{2}}e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}\right\|_{L^{\infty}}\\ \leq&\;CR^{-1}r^{2}(m_{0,1}+M_{0,1}+M_{0,2})(\Delta m_{\beta}+\Delta M_{\beta}),\end{split}

and

(9.65) F1F1eθ(ΓgΨ,1(X1))|γ~1F2F2eθ(ΓgΨ,2(X2))|γ~2W˙1,pC(p,ε,μ,ν,G)R1r2H1H2Lp(h1C˙β+H1C˙β+(m0,1+M0,1)(1+δR2)1/2)+CR1r2(m0,1+M0,1+H2Lp)(Δmβ+ΔMβ).\begin{split}&\;\left\|\frac{F_{1}^{\prime}}{F_{1}}e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,1}(X_{1}))|_{\tilde{\gamma}_{1}}-\frac{F_{2}^{\prime}}{F_{2}}e_{\theta}\cdot\nabla(\Gamma*g_{\Psi,2}(X_{2}))|_{\tilde{\gamma}_{2}}\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(p,\varepsilon,\mu,\nu,G)R^{-1}r^{2}\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}}\\ &\;\quad\cdot(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+(m_{0,1}+M_{0,1})(1+\delta R^{2})^{1/2})\\ &\;+CR^{-1}r^{2}(m_{0,1}+M_{0,1}+\|H_{2}^{\prime\prime}\|_{L^{p}})(\Delta m_{\beta}+\Delta M_{\beta}).\end{split}

Combining these estimates and the fact c~C(μ,ν,G)R1r2\tilde{c}_{*}\leq C(\mu,\nu,G)R^{-1}r^{2} with (9.16) yields (9.51). MM \square

9.3. Proof of the uniqueness

Now we are ready to prove uniqueness.

Proof of Theorem 2.2.

In this proof, we always assume that the constant CC has the dependence C=C(p,ε,μ,ν,r,R,G)C=C(p,\varepsilon,\mu,\nu,r,R,G) unless otherwise stated.

As stated at the beginning of this section, suppose there are two solutions fif_{i} and FiF_{i} (i=1,2)(i=1,2) of (2.16)-(2.18) with regularity and estimates given in Theorem 2.1. By (9.13) and (9.14), (h1h2)(h_{1}-h_{2}) and (H1H2)(H_{1}-H_{2}) solve

(9.66) t(h1h2)=\displaystyle\partial_{t}(h_{1}-h_{2})= Acr(Δ)1/2(h1h2)+1r(~h1~h2),\displaystyle\;-\frac{Ac_{*}}{r}(-\Delta)^{1/2}(h_{1}-h_{2})+\frac{1}{r}(\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}),
(9.67) t(H1H2)=\displaystyle\partial_{t}(H_{1}-H_{2})= c~R(Δ)1/2(H1H2)+1R(~H1~H2),\displaystyle\;\frac{\tilde{c}_{*}}{R}(-\Delta)^{1/2}(H_{1}-H_{2})+\frac{1}{R}(\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}),

with initial condition (h1h2)|t=0=(H1H2)|t=0=0(h_{1}-h_{2})|_{t=0}=(H_{1}-H_{2})|_{t=0}=0.

Let T0(0,T)T_{0}\in(0,T), T0<1T_{0}<1 to be chosen. By virtue of Lemma A.5 and Lemma A.6, with α=12p\alpha=1-\frac{2}{p},

(9.68) h1h2Lp[0,T0]Lp(𝕋)+H1H2Lp[0,T0]Lp(𝕋)+h1h2C[0,T0]C˙α(𝕋)+H1H2C[0,T0]C˙α(𝕋)C(p,μ,ν,G)(r|Ac|1r~h1~h2Lp[0,T0]W˙1,p(𝕋)+R|c~|1R~H1~H2Lp[0,T0]W˙1,p(𝕋)).\begin{split}&\;\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}(\mathbb{T})}+\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}(\mathbb{T})}\\ &\;+\|h_{1}^{\prime}-h_{2}^{\prime}\|_{C_{[0,T_{0}]}\dot{C}^{\alpha}(\mathbb{T})}+\|H_{1}^{\prime}-H_{2}^{\prime}\|_{C_{[0,T_{0}]}\dot{C}^{\alpha}(\mathbb{T})}\\ \leq&\;C(p,\mu,\nu,G)\left(\frac{r}{|Ac_{*}|}\cdot\frac{1}{r}\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{L^{p}_{[0,T_{0}]}\dot{W}^{1,p}(\mathbb{T})}+\frac{R}{|\tilde{c}_{*}|}\cdot\frac{1}{R}\|\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}\|_{L^{p}_{[0,T_{0}]}\dot{W}^{1,p}(\mathbb{T})}\right).\end{split}

Here we first applied change of time variables to normalize the coefficients of fractional Laplacians in (9.66) and (9.67), and then applied Lemma A.5 and Lemma A.6 to obtain these estimates. To fulfill the condition of Lemma A.6, we need

(9.69) T0min{rAc,R|c~|}.T_{0}\leq\min\left\{\frac{r}{Ac_{*}},\frac{R}{|\tilde{c}_{*}|}\right\}.

Note that by Lemma 3.1, the right hand side is bounded from below by some constant depending only on μ\mu, ν\nu and GG.

On the other hand, by Sobolev embedding (in space) and Hölder’s inequality (in time)

(9.70) h1h2C[0,T0]L(𝕋)+H1H2C[0,T0]L(𝕋)C(p)T011p(1r~h1~h2Lp[0,T0]W1,p(𝕋)+1R~H1~H2Lp[0,T0]W1,p(𝕋)).\begin{split}&\;\|h_{1}-h_{2}\|_{C_{[0,T_{0}]}L^{\infty}(\mathbb{T})}+\|H_{1}-H_{2}\|_{C_{[0,T_{0}]}L^{\infty}(\mathbb{T})}\\ \leq&\;C(p)T_{0}^{1-\frac{1}{p}}\left(\frac{1}{r}\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{L^{p}_{[0,T_{0}]}W^{1,p}(\mathbb{T})}+\frac{1}{R}\|\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}\|_{L^{p}_{[0,T_{0}]}W^{1,p}(\mathbb{T})}\right).\end{split}

Denote

(9.71) 𝒩(T0):=h1h2Lp[0,T0]Lp(𝕋)+H1H2Lp[0,T0]Lp(𝕋)+h1h2C[0,T0]C˙β(𝕋)+H1H2C[0,T0]C˙β(𝕋)+δ1h1h2C[0,T0]L(𝕋)+δ1H1H2C[0,T0]L(𝕋).\begin{split}\mathcal{N}(T_{0}):=&\;\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}(\mathbb{T})}+\|H_{1}^{\prime\prime}-H_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}(\mathbb{T})}\\ &\;+\|h_{1}^{\prime}-h_{2}^{\prime}\|_{C_{[0,T_{0}]}\dot{C}^{\beta}(\mathbb{T})}+\|H_{1}^{\prime}-H_{2}^{\prime}\|_{C_{[0,T_{0}]}\dot{C}^{\beta}(\mathbb{T})}\\ &\;+\delta^{-1}\|h_{1}-h_{2}\|_{C_{[0,T_{0}]}L^{\infty}(\mathbb{T})}+\delta^{-1}\|H_{1}-H_{2}\|_{C_{[0,T_{0}]}L^{\infty}(\mathbb{T})}.\end{split}

By interpolation and Lemma 9.3, with θ=(11p)αβ1+α\theta=(1-\frac{1}{p})\cdot\frac{\alpha-\beta}{1+\alpha},

(9.72) 𝒩(T0)C(p,μ,ν,G)(r|Ac|1r~h1~h2Lp[0,T0]W˙1,p(𝕋)+R|c~|1R~H1~H2Lp[0,T0]W˙1,p(𝕋))+CT0θ(1r~h1~h2Lp[0,T0]W˙1,p(𝕋)+1R~H1~H2Lp[0,T0]W˙1,p(𝕋))[C(p,ε,μ,ν,G)r|c|+C1T0θ]𝒩(T0)supt[0,T0](h1C˙β+h2C˙β+H1C˙β+H2C˙β+(m0,1+m0,2+M0,1+M0,2)(1+δR2)1/2)+C2𝒩(T0)(T01/p+h1Lp[0,T0]Lp+h2Lp[0,T0]Lp+H1Lp[0,T0]Lp+H2Lp[0,T0]Lp).\begin{split}&\;\mathcal{N}(T_{0})\\ \leq&\;C(p,\mu,\nu,G)\left(\frac{r}{|Ac_{*}|}\cdot\frac{1}{r}\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{L^{p}_{[0,T_{0}]}\dot{W}^{1,p}(\mathbb{T})}+\frac{R}{|\tilde{c}_{*}|}\cdot\frac{1}{R}\|\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}\|_{L^{p}_{[0,T_{0}]}\dot{W}^{1,p}(\mathbb{T})}\right)\\ &\;+CT_{0}^{\theta}\left(\frac{1}{r}\|\tilde{\mathcal{R}}_{h_{1}}-\tilde{\mathcal{R}}_{h_{2}}\|_{L^{p}_{[0,T_{0}]}\dot{W}^{1,p}(\mathbb{T})}+\frac{1}{R}\|\tilde{\mathcal{R}}_{H_{1}}-\tilde{\mathcal{R}}_{H_{2}}\|_{L^{p}_{[0,T_{0}]}\dot{W}^{1,p}(\mathbb{T})}\right)\\ \leq&\;\left[C(p,\varepsilon,\mu,\nu,G)\cdot\frac{r}{|c_{*}|}+C_{1}T_{0}^{\theta}\right]\mathcal{N}(T_{0})\\ &\;\cdot\sup_{t\in[0,T_{0}]}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}\\ &\;\qquad\quad+(m_{0,1}+m_{0,2}+M_{0,1}+M_{0,2})(1+\delta R^{2})^{1/2})\\ &\;+C_{2}\mathcal{N}(T_{0})(T_{0}^{1/p}+\|h_{1}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}).\end{split}

Here the constants C1C_{1} and C2C_{2} have the same dependence as CC introduced above.

Now we take T0T_{0} such that C1T0θ12C_{1}T_{0}^{\theta}\leq\frac{1}{2} and

(9.73) C2(T01/p+h1Lp[0,T0]Lp+h2Lp[0,T0]Lp+H1Lp[0,T0]Lp+H2Lp[0,T0]Lp)12.C_{2}(T_{0}^{1/p}+\|h_{1}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}+\|H_{1}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}}+\|H_{2}^{\prime\prime}\|_{L^{p}_{[0,T_{0}]}L^{p}})\leq\frac{1}{2}.

Such T0T_{0} relies on pp, ε\varepsilon, μ\mu, ν\nu, rr, RR, GG as well as the fixed solutions hih_{i} and HiH_{i}. Then (9.72) becomes

(9.74) 𝒩(T0)[C(p,ε,μ,ν,G)r|c|+1]𝒩(T0)supt[0,T0](h1C˙β+h2C˙β+H1C˙β+H2C˙β+(m0,1+m0,2+M0,1+M0,2)(1+δR2)1/2)C(p,ε,μ,ν,G,r/|c|,δR2)M𝒩(T0).\begin{split}\mathcal{N}(T_{0})\leq&\;\left[C(p,\varepsilon,\mu,\nu,G)\cdot\frac{r}{|c_{*}|}+1\right]\mathcal{N}(T_{0})\\ &\;\cdot\sup_{t\in[0,T_{0}]}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|H_{2}^{\prime}\|_{\dot{C}^{\beta}}\\ &\;\qquad\quad+(m_{0,1}+m_{0,2}+M_{0,1}+M_{0,2})(1+\delta R^{2})^{1/2})\\ \leq&\;C(p,\varepsilon,\mu,\nu,G,r/|c_{*}|,\delta R^{2})M\cdot\mathcal{N}(T_{0}).\end{split}

In the last inequality, we used the estimate (2.26). If we assume MM to be suitably small, depending only on pp, ε\varepsilon, μ\mu, ν\nu, GG, r/|c|r/|c_{*}| and δR2\delta R^{2}, we obtain that 𝒩(T0)=0\mathcal{N}(T_{0})=0. Note that here the smallness of MM has no additional dependence on other parameters compared to that in the proof of existence of local solutions.

We can continue this process starting from t=T0t=T_{0} and find a second time interval [T0,T0+T1][T_{0},T_{0}+T_{1}] on which uniqueness holds. By repeating this argument for finitely many times (see (2.28) and the way we chose T0T_{0} above), we can prove the uniqueness of local solution on [0,T][0,T]. MM \square

Appendix A Some Auxiliary Estimates

A.1. Estimates for the Poisson kernel and its conjugate

Lemma A.1.

Let Poisson kernel PP on the 2-D unit disc and its conjugate QQ be defined as in (4.1) and (4.2), respectively.

  1. (1)

    Let ξ\mathcal{H}_{\xi} denote the Hilbert transform on 𝕋\mathbb{T} with respect to ξ\xi. Then for s1s\not=1,

    (A.1) Q(s,ξ)=sgn(1s)ξP(s,ξ).Q(s,\xi)=\mathrm{sgn}(1-s)\mathcal{H}_{\xi}P(s,\xi).
  2. (2)

    For all ξ𝕋\xi\in\mathbb{T} and all s[0,2]s\in[0,2],

    (A.2) |P(s,ξ)|+|Q(s,ξ)|C(|1s|2+ξ2)1/2.|P(s,\xi)|+|Q(s,\xi)|\leq C(|1-s|^{2}+\xi^{2})^{-1/2}.
  3. (3)

    For derivatives of PP and QQ, we have

    (A.3) |Ps(s,ξ)|+|Qξ(s,ξ)|\displaystyle\left|\frac{\partial P}{\partial s}(s,\xi)\right|+\left|\frac{\partial Q}{\partial\xi}(s,\xi)\right|\leq C((1s)2+ξ2)1,\displaystyle\;C((1-s)^{2}+\xi^{2})^{-1},
    (A.4) |Pξ(s,ξ)|+|Qs(s,ξ)|\displaystyle\left|\frac{\partial P}{\partial\xi}(s,\xi)\right|+\left|\frac{\partial Q}{\partial s}(s,\xi)\right|\leq C|sinξ|((1s)2+ξ2)3/2,\displaystyle\;C|\sin\xi|((1-s)^{2}+\xi^{2})^{-3/2},

    and

    (A.5) |2Ps2(s,ξ)|+|2Pξs(s,ξ)|+|2Qs2(s,ξ)|C((1s)2+ξ2)3/2.\left|\frac{\partial^{2}P}{\partial s^{2}}(s,\xi)\right|+\left|\frac{\partial^{2}P}{\partial\xi\partial s}(s,\xi)\right|+\left|\frac{\partial^{2}Q}{\partial s^{2}}(s,\xi)\right|\leq C((1-s)^{2}+\xi^{2})^{-3/2}.

    Moreover,

    (A.6) Pξ(s,ξ)=sQs,Qξ(s,ξ)=sPs.\frac{\partial P}{\partial\xi}(s,\xi)=-s\frac{\partial Q}{\partial s},\quad\frac{\partial Q}{\partial\xi}(s,\xi)=s\frac{\partial P}{\partial s}.
Proof.

(A.1) can be proved by calculating Fourier transforms of P(s,)P(s,\cdot) and Q(s,)Q(s,\cdot).

For any s0s\geq 0,

(A.7) 1+s22scosξ=(1scosξ)2+(ssinξ)2=(scosξ)2+sin2ξ0.1+s^{2}-2s\cos\xi=(1-s\cos\xi)^{2}+(s\sin\xi)^{2}=(s-\cos\xi)^{2}+\sin^{2}\xi\geq 0.

If cosξ12\cos\xi\geq\frac{1}{2},

(A.8) 1+s22scosξ=(1+s2)(1cosξ)+cosξ(1s)2C(|ξ|2+|1s|2).\begin{split}1+s^{2}-2s\cos\xi=&\;(1+s^{2})(1-\cos\xi)+\cos\xi(1-s)^{2}\\ \geq&\;C(|\xi|^{2}+|1-s|^{2}).\end{split}

Otherwise,

(A.9) 1+s22scosξC(1+s2)C(|ξ|2+|1s|2).1+s^{2}-2s\cos\xi\geq C(1+s^{2})\geq C(|\xi|^{2}+|1-s|^{2}).

Then (A.2) follows easily.

Finally, we calculate that

(A.10) Ps(s,ξ)=\displaystyle\frac{\partial P}{\partial s}(s,\xi)= 2(1+s2)cosξ4s(1+s22scosξ)2=2cosξ1+s22scosξ4ssin2ξ(1+s22scosξ)2,\displaystyle\;\frac{2(1+s^{2})\cos\xi-4s}{(1+s^{2}-2s\cos\xi)^{2}}=\frac{2\cos\xi}{1+s^{2}-2s\cos\xi}-\frac{4s\sin^{2}\xi}{(1+s^{2}-2s\cos\xi)^{2}},
(A.11) Qs(s,ξ)=\displaystyle\frac{\partial Q}{\partial s}(s,\xi)= 2(1s2)sinξ(1+s22scosξ)2,\displaystyle\;\frac{2(1-s^{2})\sin\xi}{(1+s^{2}-2s\cos\xi)^{2}},
(A.12) 2Pξs(s,ξ)=\displaystyle\frac{\partial^{2}P}{\partial\xi\partial s}(s,\xi)= 2(1+s2)sinξ(1+s22scosξ)2Ps4ssinξ1+s22scosξ,\displaystyle\;-\frac{2(1+s^{2})\sin\xi}{(1+s^{2}-2s\cos\xi)^{2}}-\frac{\partial P}{\partial s}\cdot\frac{4s\sin\xi}{1+s^{2}-2s\cos\xi},
(A.13) 2Ps2(s,ξ)=\displaystyle\frac{\partial^{2}P}{\partial s^{2}}(s,\xi)= 4scosξ4(1+s22scosξ)28(scosξ)((1+s2)cosξ2s)(1+s22scosξ)3,\displaystyle\;\frac{4s\cos\xi-4}{(1+s^{2}-2s\cos\xi)^{2}}-\frac{8(s-\cos\xi)((1+s^{2})\cos\xi-2s)}{(1+s^{2}-2s\cos\xi)^{3}},

and

(A.14) Pξ(s,ξ)=\displaystyle\frac{\partial P}{\partial\xi}(s,\xi)= sQs,\displaystyle\;-s\frac{\partial Q}{\partial s},
(A.15) Qξ(s,ξ)=\displaystyle\frac{\partial Q}{\partial\xi}(s,\xi)= sPs,\displaystyle\;s\frac{\partial P}{\partial s},
(A.16) 2Qs2(s,ξ)=\displaystyle\frac{\partial^{2}Q}{\partial s^{2}}(s,\xi)= 1s(2Pξs+Qs).\displaystyle\;-\frac{1}{s}\left(\frac{\partial^{2}P}{\partial\xi\partial s}+\frac{\partial Q}{\partial s}\right).

Then (A.3)-(A.6) follow. MM \square

A.2. Some Calderón-commutator-type estimates

In this part we shall establish some Calderón-commutator-type estimates used in Section 5. Recall that

(A.17) Δf(θ):=f(θ+ξ)f(ξ)2sinξ2.\Delta f(\theta):=\frac{f(\theta+\xi)-f(\xi)}{2\sin\frac{\xi}{2}}.
Lemma A.2.

Let 𝐤=(k1,,kn)\mathbf{k}=(k_{1},\cdots,k_{n}) be a multi-index of length n+n\in\mathbb{Z}_{+}. Assume h1,,hnW1,(𝕋)h_{1},\cdots,h_{n}\in W^{1,\infty}(\mathbb{T}) and ψLp(𝕋)\psi\in L^{p}(\mathbb{T}) for some p[2,)p\in[2,\infty). Define

(A.18) M𝐤,ψ(θ)=\displaystyle M_{\mathbf{k},\psi}(\theta)= p.v.𝕋i=1n(Δhi)kiψ(θ+ξ)2tanξ2dξ,\displaystyle\;\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi,
(A.19) N𝐤,ψ(θ)=\displaystyle N_{\mathbf{k},\psi}(\theta)= p.v.𝕋i=1n(Δhi)kiψ(θ+ξ)2sinξ2dξ.\displaystyle\;\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi.

Then

(A.20) M𝐤,ψLp+N𝐤,ψLpC|𝐤|+2ψLpi=1nhiLki,\|M_{\mathbf{k},\psi}\|_{L^{p}}+\|N_{\mathbf{k},\psi}\|_{L^{p}}\leq C_{*}^{|\mathbf{k}|+2}\|\psi\|_{L^{p}}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}},

where CC_{*} is a universal constant depending only on pp. Here |𝐤|:=i=1nki|\mathbf{k}|:=\sum_{i=1}^{n}k_{i}.

Proof.

The proof essentially follows the classic argument of LpL^{p}-boundedness of the Calderón commutator [42, § 9.3\S\,9.3]. For completeness, we elaborate it as follows.

First we notice that sin(ξ/2)\sin(\xi/2) is not continuous on 𝕋\mathbb{T} at ±π\pm\pi. For this technical reason, with abuse of notations, we introduce an even cut-off function ηC0([2,2])\eta\in C_{0}^{\infty}([-2,2]), such that η1\eta\equiv 1 on [1,1][-1,1], η[0,1]\eta\in[0,1] on [2,2][-2,2], and |η|C|\eta^{\prime}|\leq C. Write (A.18) as

(A.21) M𝐤,ψ=p.v.𝕋i=1n(Δhi)kiψ(θ+ξ)2tanξ2[η(ξ)+(1η(ξ))]dξ=:M𝐤,ψ(1)+M𝐤,ψ(2).M_{\mathbf{k},\psi}=\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}[\eta(\xi)+(1-\eta(\xi))]\,d\xi=:M_{\mathbf{k},\psi}^{(1)}+M_{\mathbf{k},\psi}^{(2)}.

It is straightforward to bound M𝐤,ψ(2)M_{\mathbf{k},\psi}^{(2)} as it involves no singularity,

(A.22) M𝐤,ψ(2)LpCC|𝐤|1ψLpi=1nhiLki.\|M_{\mathbf{k},\psi}^{(2)}\|_{L^{p}}\leq CC^{|\mathbf{k}|}_{1}\|\psi\|_{L^{p}}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

Here C1=π/2C_{1}=\pi/2 comes from the fact that

(A.23) |2sinξ2|1C1|ξ|1 on 𝕋.\left|2\sin\frac{\xi}{2}\right|^{-1}\leq C_{1}|\xi|^{-1}\quad\mbox{ on }\mathbb{T}.

To derive an LpL^{p}-bound for M𝐤,ψ(1)M_{\mathbf{k},\psi}^{(1)}, we first show that M𝐤,1(1)BMOM_{\mathbf{k},1}^{(1)}\in BMO by mathematical induction.

Step 1.

For 𝐤=𝟎\mathbf{k}=\mathbf{0}, M𝟎,1(1)=πη(0)=0M_{\mathbf{0},1}^{(1)}=-\pi\mathcal{H}\eta(0)=0 since η\eta is even.

Step 2.

Suppose for some N1N\geq 1 and any multi-index 𝐤\mathbf{k} such that |𝐤|N1|\mathbf{k}|\leq N-1, we have shown that M𝐤,1(1)BMOM_{\mathbf{k},1}^{(1)}\in BMO and, with some constant CC_{*} that will be specified later,

(A.24) M𝐤,1(1)BMOC|𝐤|+1i=1nhiLki.\|M_{\mathbf{k},1}^{(1)}\|_{BMO}\leq C_{*}^{|\mathbf{k}|+1}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

It is known that the map ψM𝐤,ψ(1)\psi\mapsto M_{\mathbf{k},\psi}^{(1)} is associated with the kernel

(A.25) i=1n(hi(x)hi(y)2sinxy2)kiη(xy)2tanxy2,\prod_{i=1}^{n}\left(\frac{h_{i}(x)-h_{i}(y)}{2\sin\frac{x-y}{2}}\right)^{k_{i}}\cdot\frac{\eta(x-y)}{2\tan\frac{x-y}{2}},

which is a standard anti-symmetric kernel, vanishing whenever |xy|>2|x-y|>2. It can be naturally understand as a kernel on \mathbb{R} with a bound similar to (A.24). Hence, by the T1T1 Theorem, it is (2,2)(2,2)-bounded. Its operator norm depends linearly [42, § 9.3\S\,9.3] on the constant in (A.24) and the kernel constant of (A.25), which is bounded by

(A.26) CC1|𝐤|+1(|𝐤|+1)i=1nhiLki.CC_{1}^{|\mathbf{k}|+1}(|\mathbf{k}|+1)\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

This further implies that [42, Theorem 6.6] for all 𝐤\mathbf{k} satisfying |𝐤|N1|\mathbf{k}|\leq N-1, and ψL\psi\in L^{\infty},

(A.27) M𝐤,ψ(1)BMOC(C1|𝐤|+1(|𝐤|+1)+C|𝐤|+1)ψLi=1nhiLki.\|M_{\mathbf{k},\psi}^{(1)}\|_{BMO}\leq C(C_{1}^{|\mathbf{k}|+1}(|\mathbf{k}|+1)+C_{*}^{|\mathbf{k}|+1})\|\psi\|_{L^{\infty}}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

Now consider the case when |𝐤|=N|\mathbf{k}|=N. Observe that

(A.28) (12sinξ2)|𝐤|12tanξ2=1|𝐤|ddξ(12sinξ2)|𝐤|.\left(\frac{1}{2\sin\frac{\xi}{2}}\right)^{|\mathbf{k}|}\frac{1}{2\tan\frac{\xi}{2}}=-\frac{1}{|\mathbf{k}|}\cdot\frac{d}{d\xi}\left(\frac{1}{2\sin\frac{\xi}{2}}\right)^{|\mathbf{k}|}.

We integrate by parts in M𝐤,1(1)M_{\mathbf{k},1}^{(1)}. For almost all θ𝕋\theta\in\mathbb{T},

(A.29) M𝐤,1(1)(θ)=1|𝐤|p.v.[2,2](12sinξ2)|𝐤|d[(hi(θ+ξ)hi(θ))kiη(ξ)]=1|𝐤|[2,2]i=1n(Δhi)kiη(ξ)dξ+i=1nki|𝐤|p.v.[2,2](Δh1)k1(Δhi)ki1(Δhn)knη(ξ)hi(θ+ξ)2sinξ2dξ=:M𝐤,1(1,0)+i=1nM𝐤,1(1,i).\begin{split}M_{\mathbf{k},1}^{(1)}(\theta)=&\;\frac{1}{|\mathbf{k}|}\mathrm{p.v.}\int_{[-2,2]}\left(\frac{1}{2\sin\frac{\xi}{2}}\right)^{|\mathbf{k}|}\,d\left[\prod(h_{i}(\theta+\xi)-h_{i}(\theta))^{k_{i}}\eta(\xi)\right]\\ =&\;\frac{1}{|\mathbf{k}|}\int_{[-2,2]}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\cdot\eta^{\prime}(\xi)\,d\xi\\ &\;+\sum_{i=1}^{n}\frac{k_{i}}{|\mathbf{k}|}\mathrm{p.v.}\int_{[-2,2]}(\Delta h_{1})^{k_{1}}\cdots(\Delta h_{i})^{k_{i}-1}\cdots(\Delta h_{n})^{k_{n}}\cdot\frac{\eta(\xi)h_{i}^{\prime}(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ =:&\;M_{\mathbf{k},1}^{(1,0)}+\sum_{i=1}^{n}M_{\mathbf{k},1}^{(1,i)}.\end{split}

Indeed, this can be rigorously justified by the fact that hih_{i} are differentiable almost everywhere. It is straightforward to derive that

(A.30) M𝐤,1(1,0)LCC1|𝐤|i=1nhiLki.\|M_{\mathbf{k},1}^{(1,0)}\|_{L^{\infty}}\leq CC_{1}^{|\mathbf{k}|}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

On the other hand, by (A.27),

(A.31) M𝐤,1(1,i)BMOki|𝐤|M(k1,,ki1,,kn),hi(1)BMO+ki|𝐤|C1|𝐤|1j=1nhjLkj12sinξ212tanξ2L([2,2])Cki|𝐤|(C1|𝐤||𝐤|+C|𝐤|)j=1nhjLkj.\begin{split}&\;\|M_{\mathbf{k},1}^{(1,i)}\|_{BMO}\\ \leq&\;\frac{k_{i}}{|\mathbf{k}|}\|M_{(k_{1},\cdots,k_{i}-1,\cdots,k_{n}),h_{i}^{\prime}}^{(1)}\|_{BMO}+\frac{k_{i}}{|\mathbf{k}|}C_{1}^{|\mathbf{k}|-1}\prod_{j=1}^{n}\|h_{j}^{\prime}\|_{L^{\infty}}^{k_{j}}\left\|\frac{1}{2\sin\frac{\xi}{2}}-\frac{1}{2\tan\frac{\xi}{2}}\right\|_{L^{\infty}([-2,2])}\\ \leq&\;\frac{Ck_{i}}{|\mathbf{k}|}(C_{1}^{|\mathbf{k}|}|\mathbf{k}|+C_{*}^{|\mathbf{k}|})\prod_{j=1}^{n}\|h_{j}^{\prime}\|_{L^{\infty}}^{k_{j}}.\end{split}

Hence, with some universal constant CC,

(A.32) M𝐤,1(1)BMOC(C1|𝐤||𝐤|+C|𝐤|)i=1nhiLki.\|M_{\mathbf{k},1}^{(1)}\|_{BMO}\leq C(C_{1}^{|\mathbf{k}|}|\mathbf{k}|+C_{*}^{|\mathbf{k}|})\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

Now assuming CC_{*} sufficiently large but still universal, such that

(A.33) C[(C1C)|𝐤||𝐤|+1]C,C\left[\left(\frac{C_{1}}{C_{*}}\right)^{|\mathbf{k}|}|\mathbf{k}|+1\right]\leq C_{*},

we conclude with (A.24) for |𝐤|=N|\mathbf{k}|=N. By induction, (A.24) holds for all multi-indices 𝐤\mathbf{k}.

To this end, we argue as in (A.25)-(A.27) to find that ψM𝐤,ψ(1)\psi\mapsto M_{\mathbf{k},\psi}^{(1)} is bounded from L2L^{2} to L2L^{2}, and also from LL^{\infty} to BMOBMO. By interpolation, it is (p,p)(p,p)-bounded as well. In particular,

(A.34) M𝐤,ψ(1)LpCp(C1|𝐤|+1(|𝐤|+1)+C|𝐤|+1)ψLpi=1nhiLki.\|M_{\mathbf{k},\psi}^{(1)}\|_{L^{p}}\leq C_{p}(C_{1}^{|\mathbf{k}|+1}(|\mathbf{k}|+1)+C_{*}^{|\mathbf{k}|+1})\|\psi\|_{L^{p}}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}.

Combining (A.22) and (A.34) yields a bound for M𝐤,ψLp\|M_{\mathbf{k},\psi}\|_{L^{p}} that has the same form as in (A.34). A bound for N𝐤,ψLp\|N_{\mathbf{k},\psi}\|_{L^{p}} can be derived easily since (M𝐤,ψN𝐤,ψ)(M_{\mathbf{k},\psi}-N_{\mathbf{k},\psi}) is an integral with no singularity.

Assuming CC_{*} to be even larger if needed, we obtain the desired estimate from (A.34). MM \square

Lemma A.3.

Let 𝐤=(k1,,kn)\mathbf{k}=(k_{1},\cdots,k_{n}) be a multi-index of length n+n\in\mathbb{Z}_{+}. With p[2,)p\in[2,\infty), assume that h1,,hnW2,p(𝕋)h_{1},\cdots,h_{n}\in W^{2,p}(\mathbb{T}), and hn+1,ψW1,p(𝕋)h_{n+1},\psi\in W^{1,p}(\mathbb{T}). Define

(A.35) M~𝐤,ψ(θ)=\displaystyle\tilde{M}_{\mathbf{k},\psi}(\theta)= p.v.𝕋i=1n(Δhi)kiΔhn+1ψ(θ+ξ)2tanξ2dξ,\displaystyle\;\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\cdot\Delta h_{n+1}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi,
(A.36) N~𝐤,ψ(θ)=\displaystyle\tilde{N}_{\mathbf{k},\psi}(\theta)= p.v.𝕋i=1n(Δhi)kiΔhn+1ψ(θ+ξ)2sinξ2dξ.\displaystyle\;\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\cdot\Delta h_{n+1}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi.

Then

(A.37) M~𝐤,ψLp+N~𝐤,ψLpC|𝐤|+1(hn+1LpψL+hn+1LψLp)i=1nhiLki+C|𝐤|+1hn+1LψLi=1nh1Lk1hiLki1hnLkn𝟙{ki>0}hiLp,\begin{split}&\;\|\tilde{M}_{\mathbf{k},\psi}\|_{L^{p}}+\|\tilde{N}_{\mathbf{k},\psi}\|_{L^{p}}\\ \leq&\;C_{**}^{|\mathbf{k}|+1}(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\\ &\;+C_{**}^{|\mathbf{k}|+1}\|h_{n+1}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\sum_{i=1}^{n}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{i}>0\}}\|h_{i}^{\prime\prime}\|_{L^{p}},\end{split}

where CC_{**} is a universal constant depending only on pp.

Proof.

We shall prove (A.37) by induction. It suffices to prove it for hn+1h_{n+1} and ψ\psi being smooth.

Step 1.

Consider 𝐤=𝟎\mathbf{k}=\mathbf{0}. Note that even in this simple case, the estimate (A.37) does not trivially follow from Lemma A.2.

By integration by parts as in (A.29),

(A.38) M~𝟎,ψ(θ)=p.v.𝕋12sinξ2d[(hn+1(θ+ξ)hn+1(θ))ψ(θ+ξ)][(hn+1(θ+π)hn+1(θ))ψ(θ+π)]=𝕋1cosξ22sinξ2[hn+1(θ+ξ)ψ(θ+ξ)+(hn+1(θ+ξ)hn+1(θ))ψ(θ+ξ)]dξ+p.v.𝕋12tanξ2[hn+1(θ+ξ)ψ(θ+ξ)+(hn+1(θ+ξ)hn+1(θ))ψ(θ+ξ)]dξ[(hn+1(θ+π)hn+1(θ))ψ(θ+π)].\begin{split}&\;\tilde{M}_{\mathbf{0},\psi}(\theta)\\ =&\;\mathrm{p.v.}\int_{\mathbb{T}}\frac{1}{2\sin\frac{\xi}{2}}\,d[(h_{n+1}(\theta+\xi)-h_{n+1}(\theta))\psi(\theta+\xi)]\\ &\;-[(h_{n+1}(\theta+\pi)-h_{n+1}(\theta))\psi(\theta+\pi)]\\ =&\;\int_{\mathbb{T}}\frac{1-\cos\frac{\xi}{2}}{2\sin\frac{\xi}{2}}[h_{n+1}^{\prime}(\theta+\xi)\psi(\theta+\xi)+(h_{n+1}(\theta+\xi)-h_{n+1}(\theta))\psi^{\prime}(\theta+\xi)]\,d\xi\\ &\;+\mathrm{p.v.}\int_{\mathbb{T}}\frac{1}{2\tan\frac{\xi}{2}}[h_{n+1}^{\prime}(\theta+\xi)\psi(\theta+\xi)+(h_{n+1}(\theta+\xi)-h_{n+1}(\theta))\psi^{\prime}(\theta+\xi)]\,d\xi\\ &\;-[(h_{n+1}(\theta+\pi)-h_{n+1}(\theta))\psi(\theta+\pi)].\end{split}

By Sobolev embedding and LpL^{p}-boundedness of the Hilbert transform,

(A.39) M~𝟎,ψLpC(hn+1LpψL+hn+1LψLp).\begin{split}\|\tilde{M}_{\mathbf{0},\psi}\|_{L^{p}}\leq C(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}).\end{split}

Since

(A.40) |N~𝟎,ψM~𝟎,ψ|C𝕋|hn+1(θ+ξ)hn+1(θ)||ψ(θ+ξ)|dξ,|\tilde{N}_{\mathbf{0},\psi}-\tilde{M}_{\mathbf{0},\psi}|\leq C\int_{\mathbb{T}}|h_{n+1}(\theta+\xi)-h_{n+1}(\theta)||\psi(\theta+\xi)|\,d\xi,

it is easy to show that N~𝟎,ψ\tilde{N}_{\mathbf{0},\psi} satisfies the same estimate as (A.39).

Step 2.

Suppose (A.37) holds for all multi-indices 𝐤\mathbf{k} satisfying |𝐤|N1|\mathbf{k}|\leq N-1, where C>0C_{**}>0 is some constant to be chosen later. Then consider the case with |𝐤|=N|\mathbf{k}|=N. By integration by parts as in (A.29), for almost all θ𝕋\theta\in\mathbb{T},

(A.41) M~𝐤,ψ(θ)=i=1nki|𝐤|+1p.v.𝕋(Δh1)k1(Δhi)ki1(Δhn)knΔhn+1hi(θ+ξ)ψ(θ+ξ)2sinξ2dξ+1|𝐤|+1p.v.𝕋i=1n(Δhi)kihn+1(θ+ξ)ψ(θ+ξ)2sinξ2dξ+1|𝐤|+1p.v.𝕋i=1n(Δhi)ki(hn+1(θ+ξ)hn+1(θ))ψ(θ+ξ)2sinξ2dξ1|𝐤|+11(1)|𝐤|+12|𝐤|+1i=1n(hi(θ+π)hi(θ))ki(hn+1(θ+π)hn+1(θ))ψ(θ+π)=i=1nki|𝐤|+1N~(k1,,ki1,,kn),hiψ+1|𝐤|+1(N𝐤,(hn+1ψ)hn+1(θ)N𝐤,ψ)1|𝐤|+11(1)|𝐤|+12|𝐤|+1i=1n(hi(θ+π)hi(θ))ki(hn+1(θ+π)hn+1(θ))ψ(θ+π).\begin{split}&\;\tilde{M}_{\mathbf{k},\psi}(\theta)\\ =&\;\sum_{i=1}^{n}\frac{k_{i}}{|\mathbf{k}|+1}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{1})^{k_{1}}\cdots(\Delta h_{i})^{k_{i}-1}\cdots(\Delta h_{n})^{k_{n}}\cdot\Delta h_{n+1}\frac{h_{i}^{\prime}(\theta+\xi)\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ &\;+\frac{1}{|\mathbf{k}|+1}\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}\frac{h_{n+1}^{\prime}(\theta+\xi)\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ &\;+\frac{1}{|\mathbf{k}|+1}\mathrm{p.v.}\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i})^{k_{i}}(h_{n+1}(\theta+\xi)-h_{n+1}(\theta))\cdot\frac{\psi^{\prime}(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ &\;-\frac{1}{|\mathbf{k}|+1}\cdot\frac{1-(-1)^{|\mathbf{k}|+1}}{2^{|\mathbf{k}|+1}}\prod_{i=1}^{n}(h_{i}(\theta+\pi)-h_{i}(\theta))^{k_{i}}(h_{n+1}(\theta+\pi)-h_{n+1}(\theta))\psi(\theta+\pi)\\ =&\;\sum_{i=1}^{n}\frac{k_{i}}{|\mathbf{k}|+1}\tilde{N}_{(k_{1},\cdots,k_{i}-1,\cdots,k_{n}),h_{i}^{\prime}\psi}+\frac{1}{|\mathbf{k}|+1}(N_{\mathbf{k},(h_{n+1}\psi)^{\prime}}-h_{n+1}(\theta)N_{\mathbf{k},\psi^{\prime}})\\ &\;-\frac{1}{|\mathbf{k}|+1}\cdot\frac{1-(-1)^{|\mathbf{k}|+1}}{2^{|\mathbf{k}|+1}}\prod_{i=1}^{n}(h_{i}(\theta+\pi)-h_{i}(\theta))^{k_{i}}(h_{n+1}(\theta+\pi)-h_{n+1}(\theta))\psi(\theta+\pi).\end{split}

By the induction hypothesis (A.37),

(A.42) kiN~(k1,,ki1,,kn),hiψLpkiC|𝐤|(hn+1LphiψL+hn+1L(hiψ)Lp)h1Lk1hiLki1hnLkn+kiC|𝐤|hn+1LhiψLj=1,njih1Lk1hiLki1hjLkj1hnLkn𝟙{kj>0}hjLp+kiC|𝐤|hn+1LhiψLh1Lk1hiLki2hnLkn𝟙{ki>1}hiLpkiC|𝐤|(hn+1LpψL+hn+1LψLp)j=1nhjLkj+CkiC|𝐤|hn+1LψLj=1nh1Lk1hjLkj1hnLkn𝟙{kj>0}hjLp.\begin{split}&\;\|k_{i}\tilde{N}_{(k_{1},\cdots,k_{i}-1,\cdots,k_{n}),h_{i}^{\prime}\psi}\|_{L^{p}}\\ \leq&\;k_{i}C_{**}^{|\mathbf{k}|}(\|h_{n+1}^{\prime}\|_{L^{p}}\|h_{i}^{\prime}\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|(h_{i}^{\prime}\psi)^{\prime}\|_{L^{p}})\cdot\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\\ &\;+k_{i}C_{**}^{|\mathbf{k}|}\|h_{n+1}\|_{L^{\infty}}\|h_{i}^{\prime}\psi\|_{L^{\infty}}\\ &\;\qquad\cdot\sum_{j=1,\cdots n\atop j\not=i}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{j}^{\prime}\|_{L^{\infty}}^{k_{j}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{j}>0\}}\|h_{j}^{\prime\prime}\|_{L^{p}}\\ &\;+k_{i}C_{**}^{|\mathbf{k}|}\|h_{n+1}\|_{L^{\infty}}\|h_{i}^{\prime}\psi\|_{L^{\infty}}\cdot\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-2}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{i}>1\}}\|h_{i}^{\prime\prime}\|_{L^{p}}\\ \leq&\;k_{i}C_{**}^{|\mathbf{k}|}(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\cdot\prod_{j=1}^{n}\|h_{j}^{\prime}\|_{L^{\infty}}^{k_{j}}\\ &\;+Ck_{i}C_{**}^{|\mathbf{k}|}\|h_{n+1}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\sum_{j=1}^{n}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{j}^{\prime}\|_{L^{\infty}}^{k_{j}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{j}>0\}}\|h_{j}^{\prime\prime}\|_{L^{p}}.\end{split}

By Lemma A.2,

(A.43) (N𝐤,(hn+1ψ)hn+1(θ)N𝐤,ψ)LpC|𝐤|+2(hn+1LpψL+hn+1LψLp)i=1nhiLki.\begin{split}&\;\|(N_{\mathbf{k},(h_{n+1}\psi)^{\prime}}-h_{n+1}(\theta)N_{\mathbf{k},\psi^{\prime}})\|_{L^{p}}\\ \leq&\;C_{*}^{|\mathbf{k}|+2}(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\prod_{i=1}^{n}\|h^{\prime}_{i}\|_{L^{\infty}}^{k_{i}}.\end{split}

Combining these estimates with (A.41), we obtain by Sobolev embedding that

(A.44) M~𝐤,ψLpC|𝐤|(hn+1LpψL+hn+1LψLp)i=1nhiLki+CC|𝐤|hn+1LψLi=1nh1Lk1hiLki1hnLkn𝟙{ki>0}hiLp+C|𝐤|+2(hn+1LpψL+hn+1LψLp)i=1nhiLki+CC1|𝐤|i=1nhiLkihn+1LpψL(C|𝐤|+C|𝐤|+2+CC1|𝐤|)(hn+1LpψL+hn+1LψLp)i=1nhiLki+CC|𝐤|hn+1LψLi=1nh1Lk1hiLki1hnLkn𝟙{ki>0}hiLp\begin{split}&\;\|\tilde{M}_{\mathbf{k},\psi}\|_{L^{p}}\\ \leq&\;C_{**}^{|\mathbf{k}|}(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\\ &\;+CC_{**}^{|\mathbf{k}|}\|h_{n+1}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\sum_{i=1}^{n}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{i}>0\}}\|h_{i}^{\prime\prime}\|_{L^{p}}\\ &\;+C_{*}^{|\mathbf{k}|+2}(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\prod_{i=1}^{n}\|h^{\prime}_{i}\|_{L^{\infty}}^{k_{i}}\\ &\;+CC_{1}^{|\mathbf{k}|}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\cdot\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}\\ \leq&\;(C_{**}^{|\mathbf{k}|}+C_{*}^{|\mathbf{k}|+2}+CC_{1}^{|\mathbf{k}|})(\|h_{n+1}^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|h_{n+1}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\\ &\;+CC_{**}^{|\mathbf{k}|}\|h_{n+1}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\sum_{i=1}^{n}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{i}>0\}}\|h_{i}^{\prime\prime}\|_{L^{p}}\\ \end{split}

The estimate for N~𝐤,ψ\tilde{N}_{\mathbf{k},\psi} can be derived easily, since

(A.45) |N~𝐤,ψM~𝐤,ψ|CC1|𝐤|i=1nhiLki𝕋|hn+1(θ+ξ)hn+1(θ)||ψ(θ+ξ)|dξ.|\tilde{N}_{\mathbf{k},\psi}-\tilde{M}_{\mathbf{k},\psi}|\leq CC_{1}^{|\mathbf{k}|}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\int_{\mathbb{T}}|h_{n+1}(\theta+\xi)-h_{n+1}(\theta)||\psi(\theta+\xi)|\,d\xi.

Taking C>0C_{**}>0 to be suitably large, we prove (A.37) when |𝐤|=N|\mathbf{k}|=N.

This completes the proof. MM \square

Lemma A.4.

Under the hypotheses of Lemma A.2, we additionally assume h1,,hnW2,p(𝕋)h_{1},\cdots,h_{n}\in W^{2,p}(\mathbb{T}) and ψW1,p(𝕋)\psi\in W^{1,p}(\mathbb{T}). Then

(A.46) M𝐤,ψW˙1,p+N𝐤,ψW˙1,p(|𝐤|+1)C|𝐤|+1ψLpi=1nhiLki+(|𝐤|+1)C|𝐤|+1ψLi=1nh1Lk1hiLki1hnLkn𝟙{ki>0}hiLp.\begin{split}&\;\|M_{\mathbf{k},\psi}\|_{\dot{W}^{1,p}}+\|N_{\mathbf{k},\psi}\|_{\dot{W}^{1,p}}\\ \leq&\;(|\mathbf{k}|+1)C_{\dagger}^{|\mathbf{k}|+1}\|\psi^{\prime}\|_{L^{p}}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\\ &\;+(|\mathbf{k}|+1)C_{\dagger}^{|\mathbf{k}|+1}\|\psi\|_{L^{\infty}}\sum_{i=1}^{n}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{i}>0\}}\|h_{i}^{\prime\prime}\|_{L^{p}}.\end{split}

where CC_{\dagger} is a universal constant depending only on pp.

Proof.

Instead of studying weak derivatives of M𝐤,ψM_{\mathbf{k},\psi} and N𝐤,ψN_{\mathbf{k},\psi} directly, we turn to difference quotients first. Without loss of generality, let ε>0\varepsilon>0 be arbitrary and sufficiently small. It suffices to prove uniform-in-ε\varepsilon LpL^{p}-bounds for ε1(M𝐤,ψ(θ+ε)M𝐤,ψ(θ))\varepsilon^{-1}(M_{\mathbf{k},\psi}(\theta+\varepsilon)-M_{\mathbf{k},\psi}(\theta)) and ε1(N𝐤,ψ(θ+ε)N𝐤,ψ(θ))\varepsilon^{-1}(N_{\mathbf{k},\psi}(\theta+\varepsilon)-N_{\mathbf{k},\psi}(\theta)). Write

(A.47) ε1(M𝐤,ψ(θ+ε)M𝐤,ψ(θ))=i=1n𝕋(Δh1(θ))k1(Δhi1(θ))ki1(Δhi+1(θ+ε))ki+1(Δhn(θ+ε))knl=0ki1(Δhi(θ))l(Δhi(θ+ε))ki1lΔ(hi(θ+ε)hi(θ)ε)ψ(θ+ε+ξ)2tanξ2dξ+𝕋i=1n(Δhi(θ))kiε1(ψ(θ+ε+ξ)ψ(θ+ξ))2tanξ2dξ.\begin{split}&\;\varepsilon^{-1}(M_{\mathbf{k},\psi}(\theta+\varepsilon)-M_{\mathbf{k},\psi}(\theta))\\ =&\;\sum_{i=1}^{n}\int_{\mathbb{T}}(\Delta h_{1}(\theta))^{k_{1}}\cdots(\Delta h_{i-1}(\theta))^{k_{i-1}}(\Delta h_{i+1}(\theta+\varepsilon))^{k_{i+1}}\cdot(\Delta h_{n}(\theta+\varepsilon))^{k_{n}}\\ &\;\qquad\cdot\sum_{l=0}^{k_{i}-1}(\Delta h_{i}(\theta))^{l}(\Delta h_{i}(\theta+\varepsilon))^{k_{i}-1-l}\Delta\left(\frac{h_{i}(\theta+\varepsilon)-h_{i}(\theta)}{\varepsilon}\right)\frac{\psi(\theta+\varepsilon+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\\ &\;+\int_{\mathbb{T}}\prod_{i=1}^{n}(\Delta h_{i}(\theta))^{k_{i}}\cdot\frac{\varepsilon^{-1}(\psi(\theta+\varepsilon+\xi)-\psi(\theta+\xi))}{2\tan\frac{\xi}{2}}\,d\xi.\end{split}

Applying Lemma A.2 and Lemma A.3,

(A.48) ε1(M𝐤,ψ(θ+ε)M𝐤,ψ(θ))Lpi=1nkiC|𝐤|(ε1(hi(θ+ε)hi(θ))LpψL+ε1(hi(θ+ε)hi(θ))LψLp)h1Lk1hiLki1hnLkn+i=1nC|𝐤|ε1(hi(θ+ε)hi(θ))LψLkij=1,,njih1Lk1hiLki1hjLkj1hnLkn𝟙{kj>0}hjLp+i=1nC|𝐤|ε1(hi(θ+ε)hi(θ))LψLh1Lk1hiLki2hnLknC(ki1)𝟙{ki>1}hiLp+C|𝐤|+2i=1nhiLkiε1(ψ(+ε)ψ())LpC(|𝐤|C|𝐤|+C|𝐤|+2)ψLpi=1nhiLki+C|𝐤|C|𝐤|ψLi=1nh1Lk1hiLki1hnLkn𝟙{ki>0}hiLp.\begin{split}&\;\|\varepsilon^{-1}(M_{\mathbf{k},\psi}(\theta+\varepsilon)-M_{\mathbf{k},\psi}(\theta))\|_{L^{p}}\\ \leq&\;\sum_{i=1}^{n}k_{i}C_{**}^{|\mathbf{k}|}(\|\varepsilon^{-1}(h_{i}(\theta+\varepsilon)-h_{i}(\theta))^{\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}+\|\varepsilon^{-1}(h_{i}(\theta+\varepsilon)-h_{i}(\theta))\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}})\\ &\;\qquad\cdot\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\\ &\;+\sum_{i=1}^{n}C_{**}^{|\mathbf{k}|}\|\varepsilon^{-1}(h_{i}(\theta+\varepsilon)-h_{i}(\theta))\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\\ &\;\qquad\cdot k_{i}\sum_{j=1,\cdots,n\atop j\not=i}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{j}^{\prime}\|_{L^{\infty}}^{k_{j}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{j}>0\}}\|h_{j}^{\prime\prime}\|_{L^{p}}\\ &\;+\sum_{i=1}^{n}C_{**}^{|\mathbf{k}|}\|\varepsilon^{-1}(h_{i}(\theta+\varepsilon)-h_{i}(\theta))\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\\ &\;\qquad\cdot\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-2}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot C(k_{i}-1)\mathds{1}_{\{k_{i}>1\}}\|h_{i}^{\prime\prime}\|_{L^{p}}\\ &\;+C_{*}^{|\mathbf{k}|+2}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\cdot\|\varepsilon^{-1}(\psi(\cdot+\varepsilon)-\psi(\cdot))\|_{L^{p}}\\ \leq&\;C(|\mathbf{k}|C_{**}^{|\mathbf{k}|}+C_{*}^{|\mathbf{k}|+2})\|\psi^{\prime}\|_{L^{p}}\prod_{i=1}^{n}\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}}\\ &\;+C|\mathbf{k}|C_{**}^{|\mathbf{k}|}\|\psi\|_{L^{\infty}}\sum_{i=1}^{n}\|h_{1}^{\prime}\|_{L^{\infty}}^{k_{1}}\cdots\|h_{i}^{\prime}\|_{L^{\infty}}^{k_{i}-1}\cdots\|h_{n}^{\prime}\|_{L^{\infty}}^{k_{n}}\cdot\mathds{1}_{\{k_{i}>0\}}\|h_{i}^{\prime\prime}\|_{L^{p}}.\end{split}

Note that this bound is uniform in ε\varepsilon. Hence, M𝐤,ψ(θ)M_{\mathbf{k},\psi}(\theta) has weak derivative, with an identical LpL^{p}-bound as above. The estimate for N𝐤,ψN_{\mathbf{k},\psi} can be derived similarly. Therefore, (A.46) holds if CC_{{\dagger}} is taken to be suitably large. MM \square

A.3. Regularity theory of fractional heat equations

We focus on the following Cauchy problem of fractional heat equation on 𝕋\mathbb{T} with special exponent 12\frac{1}{2}.

(A.49) tv=(Δ)1/2v+f(t,θ),v(0,θ)=0.\partial_{t}v=-(-\Delta)^{1/2}v+f(t,\theta),\quad v(0,\theta)=0.

For our purpose, we have that

Lemma A.5.

Suppose fLp[0,T]Lp(𝕋)f\in L^{p}_{[0,T]}L^{p}(\mathbb{T}) for some p[2,)p\in[2,\infty). Then there exists vLp[0,T]W1,p(𝕋)v\in L^{p}_{[0,T]}W^{1,p}(\mathbb{T}) solving (A.49), satisfying that

(A.50) vtLp[0,T]Lp(𝕋)+(Δ)1/2vLp[0,T]Lp(𝕋)CfLp[0,T]Lp(𝕋),\|v_{t}\|_{L^{p}_{[0,T]}L^{p}(\mathbb{T})}+\|(-\Delta)^{1/2}v\|_{L^{p}_{[0,T]}L^{p}(\mathbb{T})}\leq C\|f\|_{L^{p}_{[0,T]}L^{p}(\mathbb{T})},

where C=C(p)C=C(p).

This immediately follows from [43, Theorem 1]; see also [44, Theorem 4.1].

Lemma A.6.

Suppose T1T\leq 1 and p(2,)p\in(2,\infty). Under the assumption of Lemma A.5, vC[0,T]Cα(𝕋)v\in C_{[0,T]}C^{\alpha}(\mathbb{T}) with α=12p\alpha=1-\frac{2}{p}, satisfying that

(A.51) vC[0,T]C˙α(𝕋)CfLp[0,T]Lp(𝕋),\|v\|_{C_{[0,T]}\dot{C}^{\alpha}(\mathbb{T})}\leq C\|f\|_{L^{p}_{[0,T]}L^{p}(\mathbb{T})},

where C=C(p)C=C(p).

Proof.

Let 𝒫(t,θ)\mathcal{P}(t,\theta) be the Poisson kernel on 𝕋\mathbb{T}, with tt being the time variable, solving

(A.52) t𝒫=(Δ)1/2𝒫,𝒫(0,θ)=δ0\partial_{t}\mathcal{P}=-(-\Delta)^{1/2}\mathcal{P},\quad\mathcal{P}(0,\theta)=\delta_{0}

in the sense of distribution. Here δ0\delta_{0} is the delta measure at 0𝕋0\in\mathbb{T}. Note that 𝒫(t,θ)\mathcal{P}(t,\theta) is related to P(s,ξ)P(s,\xi), which is defined in Section 4, in the following sense

(A.53) 𝒫(t,θ)=12πP(et,θ).\mathcal{P}(t,\theta)=\frac{1}{2\pi}P(e^{-t},\theta).

Then vv can be represented by

(A.54) v(t,θ)=0t𝕋𝒫(tτ,θξ)f(τ,ξ)dξdτ.v(t,\theta)=\int_{0}^{t}\int_{\mathbb{T}}\mathcal{P}(t-\tau,\theta-\xi)f(\tau,\xi)\,d\xi d\tau.

Take arbitrary θ1,θ2𝕋\theta_{1},\theta_{2}\in\mathbb{T}, such that dθ:=|θ1θ2|1d_{\theta}:=|\theta_{1}-\theta_{2}|\leq 1. Denote θ¯=(θ1+θ2)/2\bar{\theta}=(\theta_{1}+\theta_{2})/2. Then

(A.55) |v(t,θ1)v(t,θ2)|[0,t]×𝕋{(τ,ξ):|tτ|+|θ¯ξ|dθ}(|𝒫(tτ,θ1ξ)|+|𝒫(tτ,θ2ξ)|)|f(τ,ξ)|dξdτ+[0,t]×𝕋{(τ,ξ):|tτ|+|θ¯ξ|dθ}|𝒫(tτ,θ1ξ)𝒫(tτ,θ2ξ)||f(τ,ξ)|dξdτ.\begin{split}&\;|v(t,\theta_{1})-v(t,\theta_{2})|\\ \leq&\;\int_{[0,t]\times\mathbb{T}\cap\{(\tau,\xi):\,|t-\tau|+|\bar{\theta}-\xi|\leq d_{\theta}\}}(|\mathcal{P}(t-\tau,\theta_{1}-\xi)|+|\mathcal{P}(t-\tau,\theta_{2}-\xi)|)|f(\tau,\xi)|\,d\xi d\tau\\ &\;+\int_{[0,t]\times\mathbb{T}\cap\{(\tau,\xi):\,|t-\tau|+|\bar{\theta}-\xi|\geq d_{\theta}\}}|\mathcal{P}(t-\tau,\theta_{1}-\xi)-\mathcal{P}(t-\tau,\theta_{2}-\xi)||f(\tau,\xi)|\,d\xi d\tau.\end{split}

By the mean value theorem, Lemma A.1 and Hölder’s inequality,

(A.56) |v(t,θ1)v(t,θ2)|C[0,t]×𝕋{(τ,ξ):|tτ|+|θ1ξ|2dθ}|f(τ,ξ)||tτ|+|θ1ξ|dξdτ+C[0,t]×𝕋{(τ,ξ):|tτ|+|θ2ξ|2dθ}|f(τ,ξ)||tτ|+|θ2ξ|dξdτ+C|θ1θ2|[0,t]×𝕋{(τ,ξ):|tτ|+|θ¯ξ|dθ}|f(τ,ξ)||tτ|2+|θ¯ξ|2dξdτCfLp([0,T]×𝕋)(02dθρ1pdρ)1/p+C|θ1θ2|fLp([0,T]×𝕋)(dθ/2ρ12pdρ)1/p.\begin{split}&\;|v(t,\theta_{1})-v(t,\theta_{2})|\\ \leq&\;C\int_{[0,t]\times\mathbb{T}\cap\{(\tau,\xi):\,|t-\tau|+|\theta_{1}-\xi|\leq 2d_{\theta}\}}\frac{|f(\tau,\xi)|}{|t-\tau|+|\theta_{1}-\xi|}\,d\xi d\tau\\ &\;+C\int_{[0,t]\times\mathbb{T}\cap\{(\tau,\xi):\,|t-\tau|+|\theta_{2}-\xi|\leq 2d_{\theta}\}}\frac{|f(\tau,\xi)|}{|t-\tau|+|\theta_{2}-\xi|}\,d\xi d\tau\\ &\;+C|\theta_{1}-\theta_{2}|\int_{[0,t]\times\mathbb{T}\cap\{(\tau,\xi):\,|t-\tau|+|\bar{\theta}-\xi|\geq d_{\theta}\}}\frac{|f(\tau,\xi)|}{|t-\tau|^{2}+|\bar{\theta}-\xi|^{2}}\,d\xi d\tau\\ \leq&\;C\|f\|_{L^{p}([0,T]\times\mathbb{T})}\left(\int_{0}^{2d_{\theta}}\rho^{1-p^{\prime}}\,d\rho\right)^{1/p^{\prime}}\\ &\;+C|\theta_{1}-\theta_{2}|\|f\|_{L^{p}([0,T]\times\mathbb{T})}\left(\int_{d_{\theta}/\sqrt{2}}^{\infty}\rho^{1-2p^{\prime}}\,d\rho\right)^{1/p^{\prime}}.\end{split}

Here p=(11p)1(1,2)p^{\prime}=(1-\frac{1}{p})^{-1}\in(1,2). Calculating the integral above yields

(A.57) |v(t,θ1)v(t,θ2)|C|θ1θ2|αfLp[0,T]Lp(𝕋).|v(t,\theta_{1})-v(t,\theta_{2})|\leq C|\theta_{1}-\theta_{2}|^{\alpha}\|f\|_{L^{p}_{[0,T]}L^{p}(\mathbb{T})}.

It is then straightforward to justify the case |θ1θ2|>1|\theta_{1}-\theta_{2}|>1.

The time-continuity of vv in C1,αC^{1,\alpha} follows from the absolute continuity of the Lebesgue integral with respect to translation. MM \square

Lemma A.7.

Suppose T1T\leq 1 and fL[0,T]Cα(𝕋)f\in L^{\infty}_{[0,T]}C^{\alpha}(\mathbb{T}) for some α(0,1)\alpha\in(0,1). Then for all β(0,α)\beta\in(0,\alpha), there exists a unique vC[0,T]C1,β(𝕋)v\in C_{[0,T]}C^{1,\beta}(\mathbb{T}) solving (A.49), satisfying that

(A.58) vC[0,T]C˙1,β(𝕋)CfL[0,T]C˙α(𝕋),\|v\|_{C_{[0,T]}\dot{C}^{1,\beta}(\mathbb{T})}\leq C\|f\|_{L^{\infty}_{[0,T]}\dot{C}^{\alpha}(\mathbb{T})},

where C=C(α,β)C=C(\alpha,\beta).

Proof.

Once again, vv can be represented by (A.54). It then suffices to bound its C˙1,β\dot{C}^{1,\beta}-seminorm, which also implies the uniqueness.

For arbitrary θ1,θ2𝕋\theta_{1},\theta_{2}\in\mathbb{T},

(A.59) θv(t,θ1)θv(t,θ2)=0t𝕋θ𝒫(tτ,ξ)(f(τ,θ1ξ)f(τ,θ1)f(τ,θ2ξ)+f(τ,θ2))dξdτ\begin{split}&\;\partial_{\theta}v(t,\theta_{1})-\partial_{\theta}v(t,\theta_{2})\\ =&\;\int_{0}^{t}\int_{\mathbb{T}}\partial_{\theta}\mathcal{P}(t-\tau,\xi)(f(\tau,\theta_{1}-\xi)-f(\tau,\theta_{1})-f(\tau,\theta_{2}-\xi)+f(\tau,\theta_{2}))\,d\xi d\tau\\ \end{split}

Since

(A.60) |f(τ,θ1ξ)f(τ,θ1)f(τ,θ2ξ)+f(τ,θ2)|Cf(τ,)C˙αmin{|ξ|α,|θ1θ2|α},\begin{split}&\;|f(\tau,\theta_{1}-\xi)-f(\tau,\theta_{1})-f(\tau,\theta_{2}-\xi)+f(\tau,\theta_{2})|\\ \leq&\;C\|f(\tau,\cdot)\|_{\dot{C}^{\alpha}}\min\{|\xi|^{\alpha},|\theta_{1}-\theta_{2}|^{\alpha}\},\end{split}

by (A.53) and Lemma A.1, we have that

(A.61) |θv(t,θ1)θv(t,θ2)|0t𝕋|θ𝒫(tτ,ξ)||ξ|αβdξdτ|θ1θ2|βfL[0,T]C˙α(𝕋)C0t(1e(tτ))αβ1dτ|θ1θ2|βfL[0,T]C˙α(𝕋)C|θ1θ2|βfL[0,T]C˙α(𝕋).\begin{split}&\;|\partial_{\theta}v(t,\theta_{1})-\partial_{\theta}v(t,\theta_{2})|\\ \leq&\;\int_{0}^{t}\int_{\mathbb{T}}|\partial_{\theta}\mathcal{P}(t-\tau,\xi)||\xi|^{\alpha-\beta}\,d\xi d\tau\cdot|\theta_{1}-\theta_{2}|^{\beta}\|f\|_{L^{\infty}_{[0,T]}\dot{C}^{\alpha}(\mathbb{T})}\\ \leq&\;C\int_{0}^{t}(1-e^{-(t-\tau)})^{\alpha-\beta-1}\,d\tau\cdot|\theta_{1}-\theta_{2}|^{\beta}\|f\|_{L^{\infty}_{[0,T]}\dot{C}^{\alpha}(\mathbb{T})}\\ \leq&\;C|\theta_{1}-\theta_{2}|^{\beta}\|f\|_{L^{\infty}_{[0,T]}\dot{C}^{\alpha}(\mathbb{T})}.\end{split}

Finally, the time continuity of vv can be justified by interpolating between the facts that vC[0,T]Cα(𝕋)v\in C_{[0,T]}C^{\alpha}(\mathbb{T}) and vL[0,T]C1,β(𝕋)v\cap L^{\infty}_{[0,T]}C^{1,\beta^{\prime}}(\mathbb{T}) for some β(β,α)\beta^{\prime}\in(\beta,\alpha). MM \square

Appendix B Proofs of Lemma 3.4 and Lemma 3.5

We need several preparatory results.

Let hih_{i} and HiH_{i} be given as in Section 3.3. Let xi(X)x_{i}(X) (i=1,2)(i=1,2) denote the diffeomorphism (3.2) defined by hih_{i} and HiH_{i},

(B.1) xi(X)=ζi(X)X,ζi(X):=1+hi(ω)ηδ(ρr)+Hi(ω)ηδ(ρR).x_{i}(X)=\zeta_{i}(X)X,\quad\zeta_{i}(X):=1+h_{i}(\omega)\eta_{\delta}\left(\frac{\rho}{r}\right)+H_{i}(\omega)\eta_{\delta}\left(\frac{\rho}{R}\right).

Let pip_{i} denote the pressure on the physical domain that is determined by γi\gamma_{i} and γ~i\tilde{\gamma}_{i}, while p~i\tilde{p}_{i} denotes its pull back into the reference coordinate as in (3.4). By (3.5), (p~1p~2)(\tilde{p}_{1}-\tilde{p}_{2}) solves

(B.2) Xk(aXkx1,iXjx1,iXj(p~1p~2))=Xk[a(Xkx1,iXjx1,iXkx2,iXjx2,i)Xjp~2]+(G(p~1)G(p~2))χBrXkXkx1,iaXjx1,iXj(p~1p~2)a[XkXkx1,iXjx1,iXkXkx2,iXjx2,i]Xjp~2\begin{split}&\;-\nabla_{X_{k}}\left(a\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}\nabla_{X_{j}}(\tilde{p}_{1}-\tilde{p}_{2})\right)\\ =&\;\nabla_{X_{k}}\left[a\left(\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right)\nabla_{X_{j}}\tilde{p}_{2}\right]\\ &\;+(G(\tilde{p}_{1})-G(\tilde{p}_{2}))\chi_{B_{r}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot a\frac{\partial X_{j}}{\partial x_{1,i}}\nabla_{X_{j}}(\tilde{p}_{1}-\tilde{p}_{2})\\ &\;-a\left[\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot\frac{\partial X_{j}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\cdot\frac{\partial X_{j}}{\partial x_{2,i}}\right]\nabla_{X_{j}}\tilde{p}_{2}\end{split}

in BRB_{R}, with (p~1p~2)|BR=0(\tilde{p}_{1}-\tilde{p}_{2})|_{\partial B_{R}}=0. Here a=a(X)a=a(X) is given in (3.6), and x1,ix_{1,i} and x2,ix_{2,i} denote ii-th components of x1x_{1} and x2x_{2}, respectively.

We first derive estimates for several ingredients in (B.2).

Lemma B.1.

Assume hi,HiW1,(𝕋)h_{i},H_{i}\in W^{1,\infty}(\mathbb{T}) satisfy that m0,i+M0,i1m_{0,i}+M_{0,i}\ll 1. Then

(B.3) Xx1Xx2L(BR)\displaystyle\left\|\frac{\partial X}{\partial x_{1}}-\frac{\partial X}{\partial x_{2}}\right\|_{L^{\infty}(B_{R})}\leq C(Δm0+ΔM0),\displaystyle\;C(\Delta m_{0}+\Delta M_{0}),
(B.4) Xkx1,iXjx1,iXkx2,iXjx2,iL(BR)\displaystyle\left\|\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right\|_{L^{\infty}(B_{R})}\leq C(Δm0+ΔM0),\displaystyle\;C(\Delta m_{0}+\Delta M_{0}),
(B.5) XkXkx1,iXkXkx2,iL(BR)\displaystyle\left\|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\right\|_{L^{\infty}(B_{R})}\leq C(δr)1(Δm0+ΔM0),\displaystyle\;C(\delta r)^{-1}(\Delta m_{0}+\Delta M_{0}),

where the constants CC are all universal.

If in addition, hi,HiC1,α(𝕋)h_{i},H_{i}\in C^{1,\alpha}(\mathbb{T}) for some α(0,1)\alpha\in(0,1), such that mα,i+Mα,i1m_{\alpha,i}+M_{\alpha,i}\ll 1, then

(B.6) Xx1Xx2C˙α(BR)C(δr)α(Δmα+ΔMα),\left\|\frac{\partial X}{\partial x_{1}}-\frac{\partial X}{\partial x_{2}}\right\|_{\dot{C}^{\alpha}(B_{R})}\leq C(\delta r)^{-\alpha}(\Delta m_{\alpha}+\Delta M_{\alpha}),

and

(B.7) Xkx1,iXjx1,iXkx2,iXjx2,iC˙α(BR)C(δr)α(Δmα+ΔMα).\left\|\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right\|_{\dot{C}^{\alpha}(B_{R})}\leq C(\delta r)^{-\alpha}(\Delta m_{\alpha}+\Delta M_{\alpha}).

Here CC are universal constants only depending on α\alpha. All the quantities above are only supported on Br(1+2δ)¯\Br(12δ)\overline{B_{r(1+2\delta)}}\backslash B_{r(1-2\delta)} and BR¯\BR(12δ)\overline{B_{R}}\backslash B_{R(1-2\delta)}.

Proof.

The proof is once again a straightforward calculation.

We derive by (3.24) that

(B.8) Xx1Xx2=(ζ21+ζ1ρρζ1)1((ζ1ζ2)Id+((ζ1ζ2))X)+(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)(ζ21+ζ1ρρζ1)(ζ22+ζ2ρρζ2)(ζ2Id+(ζ2)X).\begin{split}\frac{\partial X}{\partial x_{1}}-\frac{\partial X}{\partial x_{2}}=&\;(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})^{-1}((\zeta_{1}-\zeta_{2})\cdot Id+(\nabla(\zeta_{1}-\zeta_{2}))^{\perp}\otimes X^{\perp})\\ &\;+\frac{(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})}{(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})}(\zeta_{2}\cdot Id+(\nabla\zeta_{2})^{\perp}\otimes X^{\perp}).\end{split}

By (3.27),

(B.9) |(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)||ζ1ζ2||ζ1+ζ2+ρρζ2|+|ζ1||ρρ(ζ1ζ2)|Cδ1(h1h2L+H1H2L)C(Δm0+ΔM0).\begin{split}&\;|(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})|\\ \leq&\;|\zeta_{1}-\zeta_{2}||\zeta_{1}+\zeta_{2}+\rho\partial_{\rho}\zeta_{2}|+|\zeta_{1}||\rho\partial_{\rho}(\zeta_{1}-\zeta_{2})|\\ \leq&\;C\delta^{-1}(\|h_{1}-h_{2}\|_{L^{\infty}}+\|H_{1}-H_{2}\|_{L^{\infty}})\\ \leq&\;C(\Delta m_{0}+\Delta M_{0}).\end{split}

Combining (3.28), (3.30) and (B.9) with (B.8), we find that

(B.10) |Xx1Xx2|C(|ζ1ζ2|+ρ|(ζ1ζ2)|)+C|(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)|(|ζ2|+ρ|ζ2|)C(Δm0+ΔM0),\begin{split}&\;\left|\frac{\partial X}{\partial x_{1}}-\frac{\partial X}{\partial x_{2}}\right|\\ \leq&\;C(|\zeta_{1}-\zeta_{2}|+\rho|\nabla(\zeta_{1}-\zeta_{2})|)\\ &\;+C|(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})|(|\zeta_{2}|+\rho|\nabla\zeta_{2}|)\\ \leq&\;C(\Delta m_{0}+\Delta M_{0}),\end{split}

which proves (B.3). It is easy to derive (B.4) from (B.3) and Lemma 3.2.

To show (B.5), we use (3.25) to derive that

(B.11) XkXkx1,iXkXkx2,i=(Xjx2,iXjx1,i)(ζ21+ζ1ρρζ1)1Xj(ζ21+ζ1ρρζ1)+Xjx2,i(ζ21+ζ1ρρζ1)(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)(ζ22+ζ2ρρζ2)Xj(ζ21+ζ1ρρζ1)+Xjx2,i(ζ22+ζ2ρρζ2)1Xj[(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)].\begin{split}&\;\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\\ =&\;\left(\frac{\partial X_{j}}{\partial x_{2,i}}-\frac{\partial X_{j}}{\partial x_{1,i}}\right)(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})^{-1}\nabla_{X_{j}}(\zeta^{2}_{1}+\zeta_{1}\rho\cdot\partial_{\rho}\zeta_{1})\\ &\;+\frac{\partial X_{j}}{\partial x_{2,i}}\frac{(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})-(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})}{(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})}\nabla_{X_{j}}(\zeta^{2}_{1}+\zeta_{1}\rho\cdot\partial_{\rho}\zeta_{1})\\ &\;+\frac{\partial X_{j}}{\partial x_{2,i}}(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})^{-1}\nabla_{X_{j}}[(\zeta^{2}_{2}+\zeta_{2}\rho\cdot\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\cdot\partial_{\rho}\zeta_{1})].\end{split}

Then by (3.27), (3.28), (3.30), (3.32), (B.9) and Lemma 3.2,

(B.12) |XkXkx1,iXkXkx2,i|C|Xx2Xx1||Xj(ζ21+ζ1ρρζ1)|+C|(ζ21+ζ1ρρζ1)(ζ22+ζ2ρρζ2)||Xj(ζ21+ζ1ρρζ1)|+C|Xj[(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)]|C(δr)1(Δm0+ΔM0).\begin{split}&\;\left|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\right|\\ \leq&\;C\left|\frac{\partial X}{\partial x_{2}}-\frac{\partial X}{\partial x_{1}}\right||\nabla_{X_{j}}(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})|\\ &\;+C|(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})-(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})||\nabla_{X_{j}}(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})|\\ &\;+C|\nabla_{X_{j}}[(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})]|\\ \leq&\;C(\delta r)^{-1}(\Delta m_{0}+\Delta M_{0}).\end{split}

To prove (B.6), we start with a Hölder estimate of (ζ12+ζ1ρρζ1)(ζ22+ζ2ρρζ2)(\zeta_{1}^{2}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})-(\zeta_{2}^{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2}). Using the fact that fgC˙αfC˙αgL+fLgC˙α\|fg\|_{\dot{C}^{\alpha}}\leq\|f\|_{\dot{C}^{\alpha}}\|g\|_{L^{\infty}}+\|f\|_{L^{\infty}}\|g\|_{\dot{C}^{\alpha}},

(B.13) (ζ12+ζ1ρρζ1)(ζ22+ζ2ρρζ2)C˙α(BR)ζ1ζ2C˙α(BR)(ζ1+ζ2L+ρρζ1L)+ζ1ζ2L(ζ1+ζ2C˙α(BR)+ρρζ1C˙α(BR))+ζ2C˙α(BR)ρρζ1ρρζ2L+ζ2Lρρζ1ρρζ2C˙α(BR).\begin{split}&\;\|(\zeta_{1}^{2}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})-(\zeta_{2}^{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;\|\zeta_{1}-\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}(\|\zeta_{1}+\zeta_{2}\|_{L^{\infty}}+\|\rho\partial_{\rho}\zeta_{1}\|_{L^{\infty}})\\ &\;+\|\zeta_{1}-\zeta_{2}\|_{L^{\infty}}(\|\zeta_{1}+\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}+\|\rho\partial_{\rho}\zeta_{1}\|_{\dot{C}^{\alpha}(B_{R})})\\ &\;+\|\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}\|\rho\partial_{\rho}\zeta_{1}-\rho\partial_{\rho}\zeta_{2}\|_{L^{\infty}}+\|\zeta_{2}\|_{L^{\infty}}\|\rho\partial_{\rho}\zeta_{1}-\rho\partial_{\rho}\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}.\end{split}

Note that the Hölder semi-norms are taken over BRB_{R} with respect to the Euclidean distance in XX-coordinate instead of the (ρ,ω)(\rho,\omega)-coordinate. Using

(B.14) (ζ1ζ2)(X)=(h1h2)(ω)ηδ(ρr)+(H1H2)(ω)ηδ(ρR),(\zeta_{1}-\zeta_{2})(X)=(h_{1}-h_{2})(\omega)\eta_{\delta}\left(\frac{\rho}{r}\right)+(H_{1}-H_{2})(\omega)\eta_{\delta}\left(\frac{\rho}{R}\right),

and the fact that ηδ(ρr)\eta_{\delta}(\frac{\rho}{r}) and ηδ(ρR)\eta_{\delta}(\frac{\rho}{R}) are supported near Br\partial B_{r} and BR\partial B_{R}, respectively, we find that

(B.15) ζ1ζ2C˙α(BR)Crαh1h2C˙α(𝕋)+Ch1h2Lηδ(ρr)C˙α(BR)+CRαH1H2C˙α(𝕋)+CH1H2Lηδ(ρR)C˙α(BR)Crαh1h2C˙α(𝕋)+Ch1h2L(δr)α+CRαH1H2C˙α(𝕋)+CH1H2L(δR)αCδ1αrαΔm0+Cδ1αRαΔM0.\begin{split}&\;\|\zeta_{1}-\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;Cr^{-\alpha}\|h_{1}-h_{2}\|_{\dot{C}^{\alpha}(\mathbb{T})}+C\|h_{1}-h_{2}\|_{L^{\infty}}\left\|\eta_{\delta}\left(\frac{\rho}{r}\right)\right\|_{\dot{C}^{\alpha}(B_{R})}\\ &\;+CR^{-\alpha}\|H_{1}-H_{2}\|_{\dot{C}^{\alpha}(\mathbb{T})}+C\|H_{1}-H_{2}\|_{L^{\infty}}\left\|\eta_{\delta}\left(\frac{\rho}{R}\right)\right\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;Cr^{-\alpha}\|h_{1}-h_{2}\|_{\dot{C}^{\alpha}(\mathbb{T})}+C\|h_{1}-h_{2}\|_{L^{\infty}}(\delta r)^{-\alpha}\\ &\;+CR^{-\alpha}\|H_{1}-H_{2}\|_{\dot{C}^{\alpha}(\mathbb{T})}+C\|H_{1}-H_{2}\|_{L^{\infty}}(\delta R)^{-\alpha}\\ \leq&\;C\delta^{1-\alpha}r^{-\alpha}\Delta m_{0}+C\delta^{1-\alpha}R^{-\alpha}\Delta M_{0}.\end{split}

In the last line, we applied interpolation inequalities. Setting h1=H1=0h_{1}=H_{1}=0 (or h2=H2=0h_{2}=H_{2}=0), we obtain estimates for ζiC˙α(BR)\|\zeta_{i}\|_{\dot{C}^{\alpha}(B_{R})}.

Similarly, since

(B.16) ρρ(ζ1ζ2)=(h1h2)(ω)ρrηδ(ρr)+(H1H2)(ω)ρRηδ(ρR),\rho\partial_{\rho}(\zeta_{1}-\zeta_{2})=(h_{1}-h_{2})(\omega)\cdot\frac{\rho}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)+(H_{1}-H_{2})(\omega)\cdot\frac{\rho}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right),

we deduce that

(B.17) ρρζ1ρρζ2C˙α(BR)C(δr)αΔm0+C(δR)αΔM0.\|\rho\partial_{\rho}\zeta_{1}-\rho\partial_{\rho}\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}\leq C(\delta r)^{-\alpha}\Delta m_{0}+C(\delta R)^{-\alpha}\Delta M_{0}.

Combining (B.15) and (B.17) with (B.13) yields that

(B.18) (ζ12+ζ1ρρζ1)(ζ22+ζ2ρρζ2)C˙α(BR)Cζ1ζ2C˙α(BR)+Cδ(Δm0+ΔM0)(ζ1C˙α(BR)+ζ2C˙α(BR)+ρρζ1C˙α(BR))+Cζ2C˙α(Δm0+ΔM0)+Cρρζ1ρρζ2C˙α(BR)C(δr)α(Δm0+ΔM0).\begin{split}&\;\|(\zeta_{1}^{2}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})-(\zeta_{2}^{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;C\|\zeta_{1}-\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}\\ &\;+C\delta(\Delta m_{0}+\Delta M_{0})\cdot(\|\zeta_{1}\|_{\dot{C}^{\alpha}(B_{R})}+\|\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}+\|\rho\partial_{\rho}\zeta_{1}\|_{\dot{C}^{\alpha}(B_{R})})\\ &\;+C\|\zeta_{2}\|_{\dot{C}^{\alpha}}(\Delta m_{0}+\Delta M_{0})+C\|\rho\partial_{\rho}\zeta_{1}-\rho\partial_{\rho}\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;C(\delta r)^{-\alpha}(\Delta m_{0}+\Delta M_{0}).\end{split}

Setting h2=H2=0h_{2}=H_{2}=0 gives

(B.19) ζ12+ζ1ρρζ1C˙α(BR)C(δr)α(m0,1+M0,1).\|\zeta_{1}^{2}+\zeta_{1}\rho\partial_{\rho}\zeta_{1}\|_{\dot{C}^{\alpha}(B_{R})}\leq C(\delta r)^{-\alpha}(m_{0,1}+M_{0,1}).

Thanks to (3.28), it is not difficult to derive that (ζ12+ζ1ρρζ1)1C˙α(BR)\|(\zeta_{1}^{2}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})^{-1}\|_{\dot{C}^{\alpha}(B_{R})} has the same bound, with a different constant CC.

In addition, by (3.30),

(B.20) (ζ1ζ2)=[(h1h2)(ω)1rηδ(ρr)+(H1H2)(ω)1Rηδ(ρR)]er+[(h1h2)(ω)ηδ(ρr)+(H1H2)(ω)ηδ(ρR)]ρ1eθ.\begin{split}\nabla(\zeta_{1}-\zeta_{2})=&\;\left[(h_{1}-h_{2})(\omega)\cdot\frac{1}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)+(H_{1}-H_{2})(\omega)\cdot\frac{1}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right)\right]e_{r}\\ &\;+\left[(h_{1}^{\prime}-h_{2}^{\prime})(\omega)\cdot\eta_{\delta}\left(\frac{\rho}{r}\right)+(H_{1}^{\prime}-H_{2}^{\prime})(\omega)\cdot\eta_{\delta}\left(\frac{\rho}{R}\right)\right]\rho^{-1}e_{\theta}.\end{split}

So

(B.21) (ζ1ζ2)C˙α(BR)Crα(h1h2)erC˙α(𝕋)(δr)1+Ch1h2L1rηδ(ρr)C˙α(BR)+CRα(H1H2)erC˙α(𝕋)(δR)1+CH1H2L1Rηδ(ρR)C˙α(BR)+Crα(h1h2)eθC˙α(𝕋)r1+Ch1h2L1ρηδ(ρr)C˙α(BR)+CRα(H1H2)eθC˙α(𝕋)R1+CH1H2L1ρηδ(ρR)C˙α(BR)Cδα(r1αΔmα+R1αΔMα).\begin{split}&\;\|\nabla(\zeta_{1}-\zeta_{2})\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;Cr^{-\alpha}\|(h_{1}-h_{2})e_{r}\|_{\dot{C}^{\alpha}(\mathbb{T})}(\delta r)^{-1}+C\|h_{1}-h_{2}\|_{L^{\infty}}\left\|\frac{1}{r}\eta_{\delta}^{\prime}\left(\frac{\rho}{r}\right)\right\|_{\dot{C}^{\alpha}(B_{R})}\\ &\;+CR^{-\alpha}\|(H_{1}-H_{2})e_{r}\|_{\dot{C}^{\alpha}(\mathbb{T})}(\delta R)^{-1}+C\|H_{1}-H_{2}\|_{L^{\infty}}\left\|\frac{1}{R}\eta_{\delta}^{\prime}\left(\frac{\rho}{R}\right)\right\|_{\dot{C}^{\alpha}(B_{R})}\\ &\;+Cr^{-\alpha}\|(h_{1}^{\prime}-h_{2}^{\prime})e_{\theta}\|_{\dot{C}^{\alpha}(\mathbb{T})}r^{-1}+C\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\left\|\frac{1}{\rho}\eta_{\delta}\left(\frac{\rho}{r}\right)\right\|_{\dot{C}^{\alpha}(B_{R})}\\ &\;+CR^{-\alpha}\|(H_{1}^{\prime}-H_{2}^{\prime})e_{\theta}\|_{\dot{C}^{\alpha}(\mathbb{T})}R^{-1}+C\|H_{1}^{\prime}-H_{2}^{\prime}\|_{L^{\infty}}\left\|\frac{1}{\rho}\eta_{\delta}\left(\frac{\rho}{R}\right)\right\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;C\delta^{-\alpha}(r^{-1-\alpha}\Delta m_{\alpha}+R^{-1-\alpha}\Delta M_{\alpha}).\end{split}

Here we used the fact that Δm0+ΔM0C(Δmα+ΔMα)\Delta m_{0}+\Delta M_{0}\leq C(\Delta m_{\alpha}+\Delta M_{\alpha}) by interpolation.

To this end, combining (3.28), (3.30), (B.8), (B.9), (B.15), (B.18) and (B.21),

(B.22) Xx1Xx2C˙α(BR)C(ζ21+ζ1ρρζ1)1C˙α(BR)(ζ1ζ2L+ρ(ζ1ζ2)L)+C(ζ1ζ2C˙α(BR)+(ζ1ζ2))XC˙α(BR))+C(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)C˙α(BR)+C(ζ22+ζ2ρρζ2)(ζ21+ζ1ρρζ1)L[(ζ21+ζ1ρρζ1)1C˙α(BR)+(ζ22+ζ2ρρζ2)1C˙α(BR)+ζ2C˙α(BR)+(ζ2)XC˙α(BR)]C(δr)α(Δmα+ΔMα).\begin{split}&\;\left\|\frac{\partial X}{\partial x_{1}}-\frac{\partial X}{\partial x_{2}}\right\|_{\dot{C}^{\alpha}(B_{R})}\\ \leq&\;C\|(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})^{-1}\|_{\dot{C}^{\alpha}(B_{R})}(\|\zeta_{1}-\zeta_{2}\|_{L^{\infty}}+\|\rho\nabla(\zeta_{1}-\zeta_{2})\|_{L^{\infty}})\\ &\;+C(\|\zeta_{1}-\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}+\|\nabla(\zeta_{1}-\zeta_{2}))^{\perp}\otimes X^{\perp}\|_{\dot{C}^{\alpha}(B_{R})})\\ &\;+C\|(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})\|_{\dot{C}^{\alpha}(B_{R})}\\ &\;+C\|(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})-(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})\|_{L^{\infty}}\\ &\;\quad\cdot\left[\|(\zeta^{2}_{1}+\zeta_{1}\rho\partial_{\rho}\zeta_{1})^{-1}\|_{\dot{C}^{\alpha}(B_{R})}+\|(\zeta^{2}_{2}+\zeta_{2}\rho\partial_{\rho}\zeta_{2})^{-1}\|_{\dot{C}^{\alpha}(B_{R})}\right.\\ &\;\qquad\left.+\|\zeta_{2}\|_{\dot{C}^{\alpha}(B_{R})}+\|(\nabla\zeta_{2})^{\perp}\otimes X^{\perp}\|_{\dot{C}^{\alpha}(B_{R})}\right]\\ \leq&\;C(\delta r)^{-\alpha}(\Delta m_{\alpha}+\Delta M_{\alpha}).\end{split}

In the last inequality, we needed the assumption mα,i+Mα,i1m_{\alpha,i}+M_{\alpha,i}\ll 1.

Finally, (B.7) follows from (B.3), (B.6) and Lemma 3.2. MM \square

Lemma B.2.

Assume h2,H2C1,α(𝕋)h_{2},H_{2}\in C^{1,\alpha}(\mathbb{T}) with α<14\alpha<\frac{1}{4}, satisfying that mα,2+Mα,21m_{\alpha,2}+M_{\alpha,2}\ll 1. Then

(B.23) p~2C1,α(Br¯)+p~2C1,α(BR\Br¯)C(α,μ,ν,r,R,G).\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\leq C(\alpha,\mu,\nu,r,R,G).
Proof.

By (3.5), p~2\tilde{p}_{2} solves

(B.24) Xk(aXkx2,iXjx2,iXjp~2)=G(p~2)χBrXkXkx2,iaXjx2,iXjp~2\begin{split}&\;-\nabla_{X_{k}}\left(a\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\nabla_{X_{j}}\tilde{p}_{2}\right)=G(\tilde{p}_{2})\chi_{B_{r}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\cdot a\frac{\partial X_{j}}{\partial x_{2,i}}\nabla_{X_{j}}\tilde{p}_{2}\end{split}

in BRB_{R}, with p~2|BR=0\tilde{p}_{2}|_{\partial B_{R}}=0. By putting h1=H1=0h_{1}=H_{1}=0 in (B.4) and (B.7), we obtain that

(B.25) Xkx2,iXjx2,iIdL(BR)\displaystyle\left\|\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}-Id\right\|_{L^{\infty}(B_{R})}\leq C(m0,2+M0,2),\displaystyle\;C(m_{0,2}+M_{0,2}),
(B.26) Xkx2,iXjx2,iC˙α(BR)\displaystyle\left\|\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right\|_{\dot{C}^{\alpha}(B_{R})}\leq C(δr)α(mα,2+Mα,2).\displaystyle\;C(\delta r)^{-\alpha}(m_{\alpha,2}+M_{\alpha,2}).

By assuming mα,2+Mα,2m_{\alpha,2}+M_{\alpha,2} to be suitably small (ans thus m0,2+M0,2m_{0,2}+M_{0,2} is small by interpolation), we may have the coefficient matrix satisfy

(B.27) 12min{μ,ν}IdaXkx2,iXjx2,i2max{μ,ν}Id,\frac{1}{2}\min\{\mu,\nu\}Id\leq a\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\leq 2\max\{\mu,\nu\}Id,

which is symmetric and piecewise CαC^{\alpha} in BRB_{R}. Therefore, by [39, Corollary 1.3] and Lemma 3.2, for α<14\alpha<\frac{1}{4},

(B.28) p~2C1,α(Br¯)+p~2C1,α(BR\Br¯)C(α,μ,ν,r,R,Xkx2,iXjx2,iCα(BR))G(p~2)χBrXkXkx2,iaXjx2,iXjp~2LC(α,μ,ν,r,R,G)(1+p~2L(BR))\begin{split}&\;\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\\ \leq&\;C\left(\alpha,\mu,\nu,r,R,\left\|\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right\|_{C^{\alpha}(B_{R})}\right)\left\|G(\tilde{p}_{2})\chi_{B_{r}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\cdot a\frac{\partial X_{j}}{\partial x_{2,i}}\nabla_{X_{j}}\tilde{p}_{2}\right\|_{L^{\infty}}\\ \leq&\;C(\alpha,\mu,\nu,r,R,G)(1+\|\nabla\tilde{p}_{2}\|_{L^{\infty}(B_{R})})\\ \end{split}

We omit the dependence of CC on m0,2+M0,2m_{0,2}+M_{0,2} and mα,2+Mα,2m_{\alpha,2}+M_{\alpha,2} since they can be bounded by universal constants. The δ\delta-dependence of CC is encoded in the (r,R)(r,R)-dependence. By interpolation inequality, with ϵ>0\epsilon>0 to be chosen and CϵC_{\epsilon} depending on ϵ\epsilon and α\alpha,

(B.29) p~2L(BR)ϵ(p~2C1,α(Br¯)+p~2C1,α(BR\Br¯))+Cϵp~2L(BR).\|\nabla\tilde{p}_{2}\|_{L^{\infty}(B_{R})}\leq\epsilon\left(\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\right)+C_{\epsilon}\|\tilde{p}_{2}\|_{L^{\infty}(B_{R})}.

Taking ϵ\epsilon suitably small, we conclude from (B.28) that

(B.30) p~2C1,α(Br¯)+p~2C1,α(BR\Br¯)C(α,μ,ν,r,R,G)(1+p~2L(BR)).\begin{split}&\;\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\\ \leq&\;C(\alpha,\mu,\nu,r,R,G)(1+\|\tilde{p}_{2}\|_{L^{\infty}(B_{R})}).\end{split}

Then the desired estimate follows from the fact p2[0,pM]p_{2}\in[0,p_{M}] (see Section 1). MM \square

Now we are ready to prove Lemma 3.5.

Proof of Lemma 3.5.

In this proof, we shall use CC_{*} to denote universal constants with the dependence C=C(α,μ,ν,r,R,G)C_{*}=C_{*}(\alpha,\mu,\nu,r,R,G). Its precise definition may vary from line to line.

Step 1 (LL^{\infty}-bound).

Rewrite (B.2) as

(B.31) Xk(aXkx1,iXjx1,iXj(p~1p~2))+G(p~1)G(p~2)p~1p~2χBr(p~1p~2)XkXkx1,iaXjx1,iXj(p~1p~2)=Xk[a(Xkx1,iXjx1,iXkx2,iXjx2,i)Xjp~2]+a[XkXkx1,iXjx1,iXkXkx2,iXjx2,i]Xjp~2.\begin{split}&\;\nabla_{X_{k}}\left(a\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}\nabla_{X_{j}}(\tilde{p}_{1}-\tilde{p}_{2})\right)\\ &\;\quad+\frac{G(\tilde{p}_{1})-G(\tilde{p}_{2})}{\tilde{p}_{1}-\tilde{p}_{2}}\chi_{B_{r}}\cdot(\tilde{p}_{1}-\tilde{p}_{2})-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot a\frac{\partial X_{j}}{\partial x_{1,i}}\nabla_{X_{j}}(\tilde{p}_{1}-\tilde{p}_{2})\\ =&\;-\nabla_{X_{k}}\left[a\left(\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right)\nabla_{X_{j}}\tilde{p}_{2}\right]\\ &\;+a\left[\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot\frac{\partial X_{j}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\cdot\frac{\partial X_{j}}{\partial x_{2,i}}\right]\nabla_{X_{j}}\tilde{p}_{2}.\end{split}

Arguing as in the proof of Lemma B.2, we may assume the coefficient matrix satisfies

(B.32) 12min{μ,ν}IdaXkx1,iXjx1,i2max{μ,ν}Id,\frac{1}{2}\min\{\mu,\nu\}Id\leq a\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}\leq 2\max\{\mu,\nu\}Id,

and it is symmetric and piecewise CαC^{\alpha} in BRB_{R}. Moreover,

(B.33) G(p~1)G(p~2)p~1p~2χBr0,\frac{G(\tilde{p}_{1})-G(\tilde{p}_{2})}{\tilde{p}_{1}-\tilde{p}_{2}}\chi_{B_{r}}\leq 0,

and

(B.34) |G(p~1)G(p~2)p~1p~2|+|XkXkx1,iaXjx1,i|C(μ,ν,r,R,G).\left|\frac{G(\tilde{p}_{1})-G(\tilde{p}_{2})}{\tilde{p}_{1}-\tilde{p}_{2}}\right|+\left|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot a\frac{\partial X_{j}}{\partial x_{1,i}}\right|\leq C(\mu,\nu,r,R,G).

Recall that (p~1p~2)|BR=0(\tilde{p}_{1}-\tilde{p}_{2})|_{\partial B_{R}}=0. By the LL^{\infty}-bound of the weak solution [40, Theorem 8.16], together with Lemma B.1 and Lemma B.2,

(B.35) p~1p~2L(BR)C(μ,ν,r,R,G)a(Xkx1,iXjx1,iXkx2,iXjx2,i)Xjp~2L4(BR)+C(μ,ν,r,R,G)a[XkXkx1,iXjx1,iXkXkx2,iXjx2,i]Xjp~2L2(BR)C(Δm0+ΔM0).\begin{split}&\;\|\tilde{p}_{1}-\tilde{p}_{2}\|_{L^{\infty}(B_{R})}\\ \leq&\;C(\mu,\nu,r,R,G)\left\|a\left(\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right)\nabla_{X_{j}}\tilde{p}_{2}\right\|_{L^{4}(B_{R})}\\ &\;+C(\mu,\nu,r,R,G)\left\|a\left[\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot\frac{\partial X_{j}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\cdot\frac{\partial X_{j}}{\partial x_{2,i}}\right]\nabla_{X_{j}}\tilde{p}_{2}\right\|_{L^{2}(B_{R})}\\ \leq&\;C_{*}(\Delta m_{0}+\Delta M_{0}).\end{split}

This proves (3.52).

Step 2 (C1,αC^{1,\alpha}-bound).

This part of the proof is similar to that of Lemma B.2.

In addition to (B.32), we know that

(B.36) a(Xkx1,iXjx1,iXkx2,iXjx2,i)Xjp~2a\left(\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right)\nabla_{X_{j}}\tilde{p}_{2}

is piecewise CαC^{\alpha} thanks to Lemma B.1 and Lemma B.2. Applying [39, Corollary 1.3] to (B.2), for α<14\alpha<\frac{1}{4},

(B.37) p~1p~2C1,α(Br¯)+p~1p~2C1,α(BR\Br¯)CG(p~1)G(p~2)L(Br)+CXkXkx1,iXjx1,iL(BR)(p~1p~2)L(BR)+CXkXkx1,iXjx1,iXkXkx2,iXjx2,iL(BR)p~2L(BR)+C(Xkx1,iXjx1,iXkx2,iXjx2,i)Xjp~2Cα(Br¯)+C(Xkx1,iXjx1,iXkx2,iXjx2,i)Xjp~2Cα(BR\Br¯).\begin{split}&\;\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\\ \leq&\;C\|G(\tilde{p}_{1})-G(\tilde{p}_{2})\|_{L^{\infty}(B_{r})}+C\left\|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}\right\|_{L^{\infty}(B_{R})}\|\nabla(\tilde{p}_{1}-\tilde{p}_{2})\|_{L^{\infty}(B_{R})}\\ &\;+C\left\|\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{1,i}}\cdot\frac{\partial X_{j}}{\partial x_{1,i}}-\nabla_{X_{k}}\frac{\partial X_{k}}{\partial x_{2,i}}\cdot\frac{\partial X_{j}}{\partial x_{2,i}}\right\|_{L^{\infty}(B_{R})}\|\nabla\tilde{p}_{2}\|_{L^{\infty}(B_{R})}\\ &\;+C\left\|\left(\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right)\nabla_{X_{j}}\tilde{p}_{2}\right\|_{C^{\alpha}(\overline{B_{r}})}\\ &\;+C\left\|\left(\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}-\frac{\partial X_{k}}{\partial x_{2,i}}\frac{\partial X_{j}}{\partial x_{2,i}}\right)\nabla_{X_{j}}\tilde{p}_{2}\right\|_{C^{\alpha}(\overline{B_{R}\backslash B_{r}})}.\end{split}

Here the constants

(B.38) C=C(α,μ,ν,r,R,Xkx1,iXjx1,iCα(BR)).C=C\left(\alpha,\mu,\nu,r,R,\left\|\frac{\partial X_{k}}{\partial x_{1,i}}\frac{\partial X_{j}}{\partial x_{1,i}}\right\|_{C^{\alpha}(B_{R})}\right).

By (3.52), Lemma B.1 and Lemma B.2, we simplify (B.37) to be

(B.39) p~1p~2C1,α(Br¯)+p~1p~2C1,α(BR\Br¯)Cp~1p~2L(Br)+C(δr)1(m0,1+M0,1)(p~1p~2)L(BR)+C(δr)1(Δm0+ΔM0)+C(Δm0+ΔM0)+C(δr)α(Δmα+ΔMα)C(p~1p~2)L(BR)+C(Δmα+ΔMα).\begin{split}&\;\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\\ \leq&\;C_{*}\|\tilde{p}_{1}-\tilde{p}_{2}\|_{L^{\infty}(B_{r})}+C_{*}(\delta r)^{-1}(m_{0,1}+M_{0,1})\|\nabla(\tilde{p}_{1}-\tilde{p}_{2})\|_{L^{\infty}(B_{R})}\\ &\;+C_{*}(\delta r)^{-1}(\Delta m_{0}+\Delta M_{0})\\ &\;+C_{*}(\Delta m_{0}+\Delta M_{0})+C_{*}(\delta r)^{-\alpha}(\Delta m_{\alpha}+\Delta M_{\alpha})\\ \leq&\;C_{*}\|\nabla(\tilde{p}_{1}-\tilde{p}_{2})\|_{L^{\infty}(B_{R})}+C_{*}(\Delta m_{\alpha}+\Delta M_{\alpha}).\end{split}

By interpolation and arguing as in the proof of Lemma B.2,

(B.40) p~1p~2C1,α(Br¯)+p~1p~2C1,α(BR\Br¯)C(Δmα+ΔMα+p~1p~2L(BR)).\begin{split}&\;\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{r}})}+\|\tilde{p}_{1}-\tilde{p}_{2}\|_{C^{1,\alpha}(\overline{B_{R}\backslash B_{r}})}\\ \leq&\;C_{*}(\Delta m_{\alpha}+\Delta M_{\alpha}+\|\tilde{p}_{1}-\tilde{p}_{2}\|_{L^{\infty}(B_{R})}).\end{split}

Now by the LL^{\infty}-bound (3.52), we conclude with (3.53).

MM \square

Lemma 3.4 follows from Lemma 3.5 immediately.

Proof of Lemma 3.4.

Back in the physical coordinate, by (2.13),

(B.41) thi=1rfiui(γ(θ))γi(θ)=μ((1+hi)erhieθ)jr(1+hi)[Xkxi,jXkp~i]|Br.\partial_{t}h_{i}=-\frac{1}{rf_{i}}\cdot u_{i}(\gamma(\theta))\cdot\gamma^{\prime}_{i}(\theta)^{\perp}=-\frac{\mu((1+h_{i})e_{r}-h^{\prime}_{i}e_{\theta})_{j}}{r(1+h_{i})}\cdot\left.\left[\frac{\partial X_{k}}{\partial x_{i,j}}\cdot\nabla_{X_{k}}\tilde{p}_{i}\right]\right|_{\partial B_{r}}.

Here Xk\nabla_{X_{k}} is taken from the inside of Br\partial B_{r}. Similarly,

(B.42) tHi=ν((1+Hi)erHieθ)jR(1+Hi)[Xkxi,jXkp~i]|BR.\partial_{t}H_{i}=-\frac{\nu((1+H_{i})e_{r}-H^{\prime}_{i}e_{\theta})_{j}}{R(1+H_{i})}\cdot\left.\left[\frac{\partial X_{k}}{\partial x_{i,j}}\cdot\nabla_{X_{k}}\tilde{p}_{i}\right]\right|_{\partial B_{R}}.

By definition (B.1), ζi=1+hi(θ)\zeta_{i}=1+h_{i}(\theta) in a neighborhood of Br\partial B_{r}, while ζi=1+Hi(θ)\zeta_{i}=1+H_{i}(\theta) near BR\partial B_{R}. So (3.30) reduces to

(B.43) ζi={hi(θ)r1eθ on Br,Hi(θ)R1eθ on BR.\nabla\zeta_{i}=\begin{cases}h_{i}^{\prime}(\theta)r^{-1}e_{\theta}&\mbox{ on }\partial B_{r},\\ H_{i}^{\prime}(\theta)R^{-1}e_{\theta}&\mbox{ on }\partial B_{R}.\end{cases}

Hence, (3.24) can be simplified as

(B.44) Xkxi,j={(1+hi(θ))2[(1+hi(θ))δkjhi(θ)er,keθ,j] on Br,(1+Hi(θ))2[(1+Hi(θ))δkjHi(θ)er,keθ,j] on BR.\frac{\partial X_{k}}{\partial x_{i,j}}=\begin{cases}(1+h_{i}(\theta))^{-2}[(1+h_{i}(\theta))\delta_{kj}-h_{i}^{\prime}(\theta)e_{r,k}\otimes e_{\theta,j}]&\mbox{ on }\partial B_{r},\\ (1+H_{i}(\theta))^{-2}[(1+H_{i}(\theta))\delta_{kj}-H_{i}^{\prime}(\theta)e_{r,k}\otimes e_{\theta,j}]&\mbox{ on }\partial B_{R}.\end{cases}

Now we calculate by (B.41) and (B.42) that

(B.45) thi=\displaystyle\partial_{t}h_{i}= μr[(1+hi)2+(hi)2(1+hi)3erhi(1+hi)2eθ]p~i|Br,\displaystyle\;-\frac{\mu}{r}\left[\frac{(1+h_{i})^{2}+(h^{\prime}_{i})^{2}}{(1+h_{i})^{3}}e_{r}-\frac{h_{i}^{\prime}}{(1+h_{i})^{2}}e_{\theta}\right]\nabla\tilde{p}_{i}|_{\partial B_{r}},
(B.46) tHi=\displaystyle\partial_{t}H_{i}= νR(1+Hi)2+(Hi)2(1+Hi)3erp~i|BR.\displaystyle\;-\frac{\nu}{R}\cdot\frac{(1+H_{i})^{2}+(H^{\prime}_{i})^{2}}{(1+H_{i})^{3}}\cdot e_{r}\cdot\nabla\tilde{p}_{i}|_{\partial B_{R}}.

In (B.46), we used the fact that p~i|BR=0\tilde{p}_{i}|_{\partial B_{R}}=0 and thus p~i|BR\nabla\tilde{p}_{i}|_{\partial B_{R}} is in the ere_{r}-direction.

To prove (3.51), we start with the trivial bound

(B.47) (1+hi(θ))1Cα(𝕋)C\|(1+h_{i}(\theta))^{-1}\|_{C^{\alpha}(\mathbb{T})}\leq C

due to the smallness of m0,im_{0,i}, where CC is a universal constant. Then we simply use fgCα(𝕋)3fCα(𝕋)gCα(𝕋)\|fg\|_{C^{\alpha}(\mathbb{T})}\leq 3\|f\|_{C^{\alpha}(\mathbb{T})}\|g\|_{C^{\alpha}(\mathbb{T})} to derive that

(B.48) (1+h1)2+(h1)2(1+h1)3(1+h2)2+(h2)2(1+h2)3Cα(𝕋)11+h111+h2Cα+(h1)2(h2)2(1+h1)3Cα+(h2)2(1+h1)3(1+h2)3(1+h1)3(1+h2)3CαCh1h2Cα+Ch1+h2Cαh1h2Cα+Ch2Cα2h1h2CαC(α,δ,mα,1+mα,2)Δmα.\begin{split}&\;\left\|\frac{(1+h_{1})^{2}+(h^{\prime}_{1})^{2}}{(1+h_{1})^{3}}-\frac{(1+h_{2})^{2}+(h^{\prime}_{2})^{2}}{(1+h_{2})^{3}}\right\|_{C^{\alpha}(\mathbb{T})}\\ \leq&\;\left\|\frac{1}{1+h_{1}}-\frac{1}{1+h_{2}}\right\|_{C^{\alpha}}+\left\|\frac{(h^{\prime}_{1})^{2}-(h^{\prime}_{2})^{2}}{(1+h_{1})^{3}}\right\|_{C^{\alpha}}+\left\|(h^{\prime}_{2})^{2}\frac{(1+h_{1})^{3}-(1+h_{2})^{3}}{(1+h_{1})^{3}(1+h_{2})^{3}}\right\|_{C^{\alpha}}\\ \leq&\;C\|h_{1}-h_{2}\|_{C^{\alpha}}+C\|h_{1}^{\prime}+h_{2}^{\prime}\|_{C^{\alpha}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{C^{\alpha}}+C\|h_{2}^{\prime}\|_{C^{\alpha}}^{2}\|h_{1}-h_{2}\|_{C^{\alpha}}\\ \leq&\;C(\alpha,\delta,m_{\alpha,1}+m_{\alpha,2})\Delta m_{\alpha}.\end{split}

Similarly,

(B.49) h1(1+h1)2h2(1+h2)2Cα(𝕋)C(α,δ,mα,1+mα,2)Δmα.\left\|\frac{h_{1}^{\prime}}{(1+h_{1})^{2}}-\frac{h_{2}^{\prime}}{(1+h_{2})^{2}}\right\|_{C^{\alpha}(\mathbb{T})}\leq C(\alpha,\delta,m_{\alpha,1}+m_{\alpha,2})\Delta m_{\alpha}.

Setting h1=0h_{1}=0 or h2=0h_{2}=0 above yields

(B.50) (1+hi)2+(hi)2(1+hi)3Cα(𝕋)+hi(1+hi)2Cα(𝕋)C(α,δ,mα,i).\left\|\frac{(1+h_{i})^{2}+(h^{\prime}_{i})^{2}}{(1+h_{i})^{3}}\right\|_{C^{\alpha}(\mathbb{T})}+\left\|\frac{h_{i}^{\prime}}{(1+h_{i})^{2}}\right\|_{C^{\alpha}(\mathbb{T})}\leq C(\alpha,\delta,m_{\alpha,i}).

Then it is not difficult to derive from (B.45) that

(B.51) th1th2Cα(𝕋)C(μ,r)C(α,δ,mα,1+mα,2)Δmαp~1Cα(𝕋)+C(μ,r)C(δ,mα,2)(p~1p~2)Cα(𝕋)C(α,μ,r,R,mα,1+mα,2)(Δmαp~1Cα(Br¯)+(p~1p~2)Cα(Br¯)).\begin{split}&\;\|\partial_{t}h_{1}-\partial_{t}h_{2}\|_{C^{\alpha}(\mathbb{T})}\\ \leq&\;C(\mu,r)\cdot C(\alpha,\delta,m_{\alpha,1}+m_{\alpha,2})\Delta m_{\alpha}\cdot\|\nabla\tilde{p}_{1}\|_{C^{\alpha}(\mathbb{T})}\\ &\;+C(\mu,r)\cdot C(\delta,m_{\alpha,2})\|\nabla(\tilde{p}_{1}-\tilde{p}_{2})\|_{C^{\alpha}(\mathbb{T})}\\ \leq&\;C(\alpha,\mu,r,R,m_{\alpha,1}+m_{\alpha,2})(\Delta m_{\alpha}\|\nabla\tilde{p}_{1}\|_{C^{\alpha}(\overline{B_{r}})}+\|\nabla(\tilde{p}_{1}-\tilde{p}_{2})\|_{C^{\alpha}(\overline{B_{r}})}).\end{split}

By Lemma B.2 and Lemma 3.5,

(B.52) th1th2Cα(𝕋)C(Δmα+ΔMα),\|\partial_{t}h_{1}-\partial_{t}h_{2}\|_{C^{\alpha}(\mathbb{T})}\leq C_{*}(\Delta m_{\alpha}+\Delta M_{\alpha}),

where C=C(α,μ,ν,r,R,G)C_{*}=C_{*}(\alpha,\mu,\nu,r,R,G). Once again, the dependence of CC_{*} on mα,i+Mα,im_{\alpha,i}+M_{\alpha,i} is omitted since it is assumed to be small.

Estimates for (tH1tH2)(\partial_{t}H_{1}-\partial_{t}H_{2}) can be derived from (B.46) in a similar manner. MM \square

Appendix C Proofs of Lemmas 5.4-5.6

In this section, we prove Lemmas 5.4-5.6.

Proof of Lemma 5.4.

Let lil_{i} be defined as in (5.2) corresponding to hih_{i}. By virtue of (5.5),

(C.1)  2π(γ1(θ)𝒦γ1ψγ2(θ)𝒦γ2ψ)=12𝕋(11+l111+l2)ψ(θ+ξ)dξ+h2(θ)h1(θ)1+h2(θ)11+h1(θ)𝕋Δh1(θ)cosξ2h1(θ)2sinξ2ψ(θ+ξ)1+l1dξ+11+h2(θ)𝕋Δ(h1h2)(θ)cosξ2(h1h2)(θ)2sinξ2ψ(θ+ξ)1+l1dξ+11+h2(θ)𝕋Δh2(θ)cosξ2h2(θ)2sinξ2(ψ(θ+ξ)1+l1ψ(θ+ξ)1+l2)dξ=:J1+J2+J3+J4.\begin{split}&\;2\pi(\gamma^{\prime}_{1}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma_{1}}\psi-\gamma^{\prime}_{2}(\theta)^{\perp}\cdot\mathcal{K}_{\gamma_{2}}\psi)\\ =&\;\frac{1}{2}\int_{\mathbb{T}}\left(\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right)\psi(\theta+\xi)\,d\xi\\ &\;+\frac{h_{2}(\theta)-h_{1}(\theta)}{1+h_{2}(\theta)}\cdot\frac{1}{1+h_{1}(\theta)}\int_{\mathbb{T}}\frac{\Delta h_{1}(\theta)-\cos\frac{\xi}{2}\cdot h^{\prime}_{1}(\theta)}{2\sin\frac{\xi}{2}}\frac{\psi(\theta+\xi)}{1+l_{1}}\,d\xi\\ &\;+\frac{1}{1+h_{2}(\theta)}\int_{\mathbb{T}}\frac{\Delta(h_{1}-h_{2})(\theta)-\cos\frac{\xi}{2}\cdot(h_{1}-h_{2})^{\prime}(\theta)}{2\sin\frac{\xi}{2}}\frac{\psi(\theta+\xi)}{1+l_{1}}\,d\xi\\ &\;+\frac{1}{1+h_{2}(\theta)}\int_{\mathbb{T}}\frac{\Delta h_{2}(\theta)-\cos\frac{\xi}{2}\cdot h_{2}^{\prime}(\theta)}{2\sin\frac{\xi}{2}}\left(\frac{\psi(\theta+\xi)}{1+l_{1}}-\frac{\psi(\theta+\xi)}{1+l_{2}}\right)\,d\xi\\ =:&\;J_{1}+J_{2}+J_{3}+J_{4}.\end{split}

We start with the integrand of J1J_{1}.

(C.2) (11+l111+l2)ψ(θ+ξ)C˙θβ11+l111+l2C˙θβψL+11+l111+l2LθψC˙βCl1l2C˙θβψL+Cl1l2Lθ(l1C˙θβ+l2C˙θβ)ψL+Cl1l2LθψC˙β.\begin{split}&\;\left\|\left(\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right)\psi(\theta+\xi)\right\|_{\dot{C}_{\theta}^{\beta}}\\ \leq&\;\left\|\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right\|_{\dot{C}_{\theta}^{\beta}}\|\psi\|_{L^{\infty}}+\left\|\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right\|_{L^{\infty}_{\theta}}\|\psi\|_{\dot{C}^{\beta}}\\ \leq&\;C\|l_{1}-l_{2}\|_{\dot{C}_{\theta}^{\beta}}\|\psi\|_{L^{\infty}}+C\|l_{1}-l_{2}\|_{L^{\infty}_{\theta}}(\|l_{1}\|_{\dot{C}_{\theta}^{\beta}}+\|l_{2}\|_{\dot{C}_{\theta}^{\beta}})\|\psi\|_{L^{\infty}}\\ &\;+C\|l_{1}-l_{2}\|_{L^{\infty}_{\theta}}\|\psi\|_{\dot{C}^{\beta}}.\end{split}

We derive that

(C.3) l1l2Lθ(Δh1)2(Δh2)2(1+h1(θ))(1+h1(θ+ξ))Lθ+(Δh2)2(1(1+h1(θ))(1+h1(θ+ξ))1(1+h2(θ))(1+h2(θ+ξ)))LC(h1L+h2L)h1h2W1,,\begin{split}&\;\|l_{1}-l_{2}\|_{L^{\infty}_{\theta}}\\ \leq&\;\left\|\frac{(\Delta h_{1})^{2}-(\Delta h_{2})^{2}}{(1+h_{1}(\theta))(1+h_{1}(\theta+\xi))}\right\|_{L_{\theta}^{\infty}}\\ &\;+\left\|(\Delta h_{2})^{2}\left(\frac{1}{(1+h_{1}(\theta))(1+h_{1}(\theta+\xi))}-\frac{1}{(1+h_{2}(\theta))(1+h_{2}(\theta+\xi))}\right)\right\|_{L^{\infty}}\\ \leq&\;C(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|h_{1}-h_{2}\|_{W^{1,\infty}},\end{split}

and

(C.4) l1l2C˙θβ(Δh1)2(Δh2)2(1+h1(θ))(1+h1(θ+ξ))C˙θβ+(Δh2)2(1(1+h1(θ))(1+h1(θ+ξ))1(1+h2(θ))(1+h2(θ+ξ)))C˙θβCh1+h2C˙βh1h2L+Ch1+h2Lh1h2C˙β+Ch1+h2Lh1h2Lh1C˙β+Ch2C˙βh2Lh1h2L+Ch2L2h1h2C˙β+Ch2L2h1h2L(h1C˙β+h2C˙β)C(h1C˙β+h2C˙β)h1h2C1,β.\begin{split}&\;\|l_{1}-l_{2}\|_{\dot{C}_{\theta}^{\beta}}\\ \leq&\;\left\|\frac{(\Delta h_{1})^{2}-(\Delta h_{2})^{2}}{(1+h_{1}(\theta))(1+h_{1}(\theta+\xi))}\right\|_{\dot{C}_{\theta}^{\beta}}\\ &\;+\left\|(\Delta h_{2})^{2}\left(\frac{1}{(1+h_{1}(\theta))(1+h_{1}(\theta+\xi))}-\frac{1}{(1+h_{2}(\theta))(1+h_{2}(\theta+\xi))}\right)\right\|_{\dot{C}_{\theta}^{\beta}}\\ \leq&\;C\|h_{1}^{\prime}+h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}+C\|h_{1}^{\prime}+h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}\\ &\;+C\|h_{1}^{\prime}+h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}\|_{\dot{C}^{\beta}}\\ &\;+C\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}-h_{2}\|_{L^{\infty}}+C\|h_{2}^{\prime}\|_{L^{\infty}}^{2}\|h_{1}-h_{2}\|_{\dot{C}^{\beta}}\\ &\;+C\|h_{2}^{\prime}\|_{L^{\infty}}^{2}\|h_{1}-h_{2}\|_{L^{\infty}}(\|h_{1}\|_{\dot{C}^{\beta}}+\|h_{2}\|_{\dot{C}^{\beta}})\\ \leq&\;C(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|h_{1}-h_{2}\|_{C^{1,\beta}}.\end{split}

Taking h2=0h_{2}=0 in the second last step of (C.4) yields that

(C.5) liC˙θβChiC˙βhiL.\|l_{i}\|_{\dot{C}_{\theta}^{\beta}}\leq C\|h^{\prime}_{i}\|_{\dot{C}^{\beta}}\|h^{\prime}_{i}\|_{L^{\infty}}.

Combining these estimates with (C.2), we argue as in (5.6) that

(C.6) J1C˙βCsupξ𝕋(11+l111+l2)ψ(θ+ξ)C˙θβCh1h2C1,β(h1C˙β+h2C˙β)ψCβ.\begin{split}\|J_{1}\|_{\dot{C}^{\beta}}\leq&\;C\sup_{\xi\in\mathbb{T}}\left\|\left(\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right)\psi(\theta+\xi)\right\|_{\dot{C}_{\theta}^{\beta}}\\ \leq&\;C\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|\psi\|_{C^{\beta}}.\end{split}

Next, by taking advantage of (5.10) and (5.15),

(C.7) J2C˙βh2h11+h2C˙β11+h1𝕋Δh1(θ)cosξ2h1(θ)2sinξ2ψ(θ+ξ)1+l1dξL+h2h11+h2L11+h1𝕋Δh1(θ)cosξ2h1(θ)2sinξ2ψ(θ+ξ)1+l1dξC˙βC(h2h1C˙β+h2h1Lh2C˙β)h1C˙βψL+Ch2h1Lh1C˙β(ψCβ+ψLh1C˙βh1L).\begin{split}&\;\|J_{2}\|_{\dot{C}^{\beta}}\\ \leq&\;\left\|\frac{h_{2}-h_{1}}{1+h_{2}}\right\|_{\dot{C}^{\beta}}\left\|\frac{1}{1+h_{1}}\int_{\mathbb{T}}\frac{\Delta h_{1}(\theta)-\cos\frac{\xi}{2}\cdot h^{\prime}_{1}(\theta)}{2\sin\frac{\xi}{2}}\frac{\psi(\theta+\xi)}{1+l_{1}}\,d\xi\right\|_{L^{\infty}}\\ &\;+\left\|\frac{h_{2}-h_{1}}{1+h_{2}}\right\|_{L^{\infty}}\left\|\frac{1}{1+h_{1}}\int_{\mathbb{T}}\frac{\Delta h_{1}(\theta)-\cos\frac{\xi}{2}\cdot h^{\prime}_{1}(\theta)}{2\sin\frac{\xi}{2}}\frac{\psi(\theta+\xi)}{1+l_{1}}\,d\xi\right\|_{\dot{C}^{\beta}}\\ \leq&\;C(\|h_{2}-h_{1}\|_{\dot{C}^{\beta}}+\|h_{2}-h_{1}\|_{L^{\infty}}\|h_{2}\|_{\dot{C}^{\beta}})\cdot\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}\\ &\;+C\|h_{2}-h_{1}\|_{L^{\infty}}\cdot\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}(\|\psi\|_{C^{\beta}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}\|h_{1}^{\prime}\|_{L^{\infty}}).\end{split}

Arguing as in (5.9)-(5.15),

(C.8) J3C˙βC(h1h2)C˙β(ψCβ+ψLh1C˙βh1L).\|J_{3}\|_{\dot{C}^{\beta}}\leq C\|(h_{1}-h_{2})^{\prime}\|_{\dot{C}^{\beta}}(\|\psi\|_{C^{\beta}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}\|h_{1}^{\prime}\|_{L^{\infty}}).

In order to apply the same argument to J4J_{4}, we need the following estimate.

(C.9) |ψ(θ+ξ)1+l1ψ(θ+ξ)1+l2ψ(θ)1+h1(θ)2(1+h1)2+ψ(θ)1+h2(θ)2(1+h2)2|C|ψ(θ+ξ)ψ(θ)||l1l2|+C|ψ(θ)||l1l2h1(θ)2(1+h1)2+h2(θ)2(1+h2)2|+C|ψ(θ)||h1(θ)2(1+h1(θ))2h2(θ)2(1+h2(θ))2|(|l1h1(θ)2(1+h1)2|+|l2h2(θ)2(1+h2)2|).\begin{split}&\;\left|\frac{\psi(\theta+\xi)}{1+l_{1}}-\frac{\psi(\theta+\xi)}{1+l_{2}}-\frac{\psi(\theta)}{1+\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1})^{2}}}+\frac{\psi(\theta)}{1+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2})^{2}}}\right|\\ \leq&\;C|\psi(\theta+\xi)-\psi(\theta)||l_{1}-l_{2}|\\ &\;+C|\psi(\theta)|\left|l_{1}-l_{2}-\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1})^{2}}+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2})^{2}}\right|\\ &\;+C|\psi(\theta)|\left|\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1}(\theta))^{2}}-\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2}(\theta))^{2}}\right|\left(\left|l_{1}-\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1})^{2}}\right|+\left|l_{2}-\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2})^{2}}\right|\right).\end{split}

Since

(C.10) |l1l2h1(θ)2(1+h1)2+h2(θ)2(1+h2)2||(Δh1(θ))2h1(θ)2(1+h1)(1+h1(θ+ξ))(Δh2(θ))2h2(θ)2(1+h2)(1+h2(θ+ξ))|+|h1(θ)2(h1(θ+ξ)h1(θ))(1+h1)2(1+h1(θ+ξ))h2(θ)2(h2(θ+ξ)h2(θ))(1+h2)2(1+h2(θ+ξ))|C|ξ|βh1h2C1,β(h1C˙β+h2C˙β),\begin{split}&\;\left|l_{1}-l_{2}-\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1})^{2}}+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2})^{2}}\right|\\ \leq&\;\left|\frac{(\Delta h_{1}(\theta))^{2}-h_{1}^{\prime}(\theta)^{2}}{(1+h_{1})(1+h_{1}(\theta+\xi))}-\frac{(\Delta h_{2}(\theta))^{2}-h_{2}^{\prime}(\theta)^{2}}{(1+h_{2})(1+h_{2}(\theta+\xi))}\right|\\ &\;+\left|\frac{h_{1}^{\prime}(\theta)^{2}(h_{1}(\theta+\xi)-h_{1}(\theta))}{(1+h_{1})^{2}(1+h_{1}(\theta+\xi))}-\frac{h_{2}^{\prime}(\theta)^{2}(h_{2}(\theta+\xi)-h_{2}(\theta))}{(1+h_{2})^{2}(1+h_{2}(\theta+\xi))}\right|\\ \leq&\;C|\xi|^{\beta}\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}),\end{split}

we apply this and (C.3) to (C.9) to conclude that

(C.11) |ψ(θ+ξ)1+l1ψ(θ+ξ)1+l2ψ(θ)1+h1(θ)2(1+h1)2+ψ(θ)1+h2(θ)2(1+h2)2|C|ξ|βψC˙β(h1L+h2L)h1h2W1,+CψL|ξ|βh1h2C1,β(h1C˙β+h2C˙β)+CψL(h1L+h2L)h1h2W1,|ξ|β(h1Lh1C˙β+h2Lh2C˙β)C|ξ|βψCβ(h1C˙β+h2C˙β)h1h2C1,β.\begin{split}&\;\left|\frac{\psi(\theta+\xi)}{1+l_{1}}-\frac{\psi(\theta+\xi)}{1+l_{2}}-\frac{\psi(\theta)}{1+\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1})^{2}}}+\frac{\psi(\theta)}{1+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2})^{2}}}\right|\\ \leq&\;C|\xi|^{\beta}\|\psi\|_{\dot{C}^{\beta}}\cdot(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|h_{1}-h_{2}\|_{W^{1,\infty}}\\ &\;+C\|\psi\|_{L^{\infty}}\cdot|\xi|^{\beta}\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\\ &\;+C\|\psi\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|h_{1}-h_{2}\|_{W^{1,\infty}}\cdot|\xi|^{\beta}(\|h_{1}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\\ \leq&\;C|\xi|^{\beta}\|\psi\|_{C^{\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|h_{1}-h_{2}\|_{C^{1,\beta}}.\end{split}

Now we proceed as in (5.9)-(5.15).

(C.12) |J4(θ+ε)J4(θ)||11+h2(θ+ε)11+h2(θ)|𝕋|Δh2(θ+ε)cosξ2h2(θ+ε)2sinξ2||ψ(θ+ε+ξ)1+l1(θ+ε,θ+ε+ξ)ψ(θ+ε+ξ)1+l2(θ+ε,θ+ε+ξ)|dξ+C𝕋|Δh2(θ+ε)cosξ2h2(θ+ε)2sinξ2||ε|βsupξψ(θ+ξ)1+l1(θ,θ+ξ)ψ(θ+ξ)1+l2(θ,θ+ξ)C˙βθdξ+C𝕋|Δh2(θ+ε)Δh2(θ)cosξ2(h2(θ+ε)h2(θ))2sinξ2||ψ(θ+ξ)1+l1(θ,θ+ξ)ψ(θ+ξ)1+l2(θ,θ+ξ)ψ(θ)1+h1(θ)2(1+h1(θ))2+ψ(θ)1+h2(θ)2(1+h2(θ))2|dξ+C|𝕋Δh2(θ+ε)Δh2(θ)cosξ2(h2(θ+ε)h2(θ))2sinξ2dξ||ψ(θ)1+h1(θ)2(1+h1(θ))2ψ(θ)1+h2(θ)2(1+h2(θ))2|.\begin{split}&\;|J_{4}(\theta+\varepsilon)-J_{4}(\theta)|\\ \leq&\;\left|\frac{1}{1+h_{2}(\theta+\varepsilon)}-\frac{1}{1+h_{2}(\theta)}\right|\int_{\mathbb{T}}\left|\frac{\Delta h_{2}(\theta+\varepsilon)-\cos\frac{\xi}{2}\cdot h_{2}^{\prime}(\theta+\varepsilon)}{2\sin\frac{\xi}{2}}\right|\\ &\;\qquad\cdot\left|\frac{\psi(\theta+\varepsilon+\xi)}{1+l_{1}(\theta+\varepsilon,\theta+\varepsilon+\xi)}-\frac{\psi(\theta+\varepsilon+\xi)}{1+l_{2}(\theta+\varepsilon,\theta+\varepsilon+\xi)}\right|\,d\xi\\ &\;+C\int_{\mathbb{T}}\left|\frac{\Delta h_{2}(\theta+\varepsilon)-\cos\frac{\xi}{2}\cdot h_{2}^{\prime}(\theta+\varepsilon)}{2\sin\frac{\xi}{2}}\right|\\ &\;\qquad\cdot|\varepsilon|^{\beta}\sup_{\xi}\left\|\frac{\psi(\theta+\xi)}{1+l_{1}(\theta,\theta+\xi)}-\frac{\psi(\theta+\xi)}{1+l_{2}(\theta,\theta+\xi)}\right\|_{\dot{C}^{\beta}_{\theta}}\,d\xi\\ &\;+C\int_{\mathbb{T}}\left|\frac{\Delta h_{2}(\theta+\varepsilon)-\Delta h_{2}(\theta)-\cos\frac{\xi}{2}(h_{2}^{\prime}(\theta+\varepsilon)-h_{2}^{\prime}(\theta))}{2\sin\frac{\xi}{2}}\right|\\ &\;\qquad\cdot\left|\frac{\psi(\theta+\xi)}{1+l_{1}(\theta,\theta+\xi)}-\frac{\psi(\theta+\xi)}{1+l_{2}(\theta,\theta+\xi)}-\frac{\psi(\theta)}{1+\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1}(\theta))^{2}}}+\frac{\psi(\theta)}{1+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2}(\theta))^{2}}}\right|\,d\xi\\ &\;+C\left|\int_{\mathbb{T}}\frac{\Delta h_{2}(\theta+\varepsilon)-\Delta h_{2}(\theta)-\cos\frac{\xi}{2}(h_{2}^{\prime}(\theta+\varepsilon)-h_{2}^{\prime}(\theta))}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ &\;\qquad\cdot\left|\frac{\psi(\theta)}{1+\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1}(\theta))^{2}}}-\frac{\psi(\theta)}{1+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2}(\theta))^{2}}}\right|.\end{split}

By (5.11), (5.14), (C.3)-(C.6) and (C.11),

(C.13) |J4(θ+ε)J4(θ)|CεβψCβh2C˙β(h1C˙β+h2C˙β)h1h2C1,β.\begin{split}&\;|J_{4}(\theta+\varepsilon)-J_{4}(\theta)|\\ \leq&\;C\varepsilon^{\beta}\|\psi\|_{C^{\beta}}\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|h_{1}-h_{2}\|_{C^{1,\beta}}.\end{split}

Combining (C.6)-(C.8) and (C.13) yield the desired estimate. MM \square

Proof of Lemma 5.5.

Let CC_{*} and CC_{\dagger} be the constants in Lemma A.2 and Lemma A.4, respectively, both of which only depend on pp. Without loss of generality, we may assume CC1C_{\dagger}\geq C_{*}\geq 1. Following (5.5), we use Lk(i)L_{k}^{(i)} (k=0,1,2,3)(k=0,1,2,3) to denote the corresponding quantities defined by hih_{i} (i=1,2)(i=1,2). lil_{i} are defined as in (5.2) by hih_{i}. Thanks to the smallness of hih_{i}, we may assume |li|<1|l_{i}|<1, and that C2>0C_{2}>0 is a universal constant such that (1+hi)1LC2\|(1+h_{i})^{-1}\|_{L^{\infty}}\leq C_{2}.

We start with bounding L1(1)L1(2)L_{1}^{(1)}-L_{1}^{(2)}. Taking their θ\theta-derivatives, we use (C.3) to derive that

(C.14) L1(1)L1(2)W˙1,p12𝕋[2Δh1Δh1(1+h1(θ))(1+h1(θ+ξ))(Δh1)2(h1(θ)+h1(θ+ξ)+h1(θ)h1(θ+ξ)+h1(θ)h1(θ+ξ))(1+h1(θ))2(1+h1(θ+ξ))2(1+l1(θ,θ+ξ))22Δh2Δh2(1+h2(θ))(1+h2(θ+ξ))(Δh2)2(h2(θ)+h2(θ+ξ)+h2(θ)h2(θ+ξ)+h2(θ)h2(θ+ξ))(1+h2(θ))2(1+h2(θ+ξ))2(1+l2(θ,θ+ξ))2]ψ(θ+ξ)dξLp+12𝕋(11+l111+l2)ψ(θ+ξ)dξLpC(h1h2Lh1Lp+h2Lh1h2Lp+h2Lh2Lph1h2W1,)ψL+C(h1L+h2L)h1h2W1,ψLp.\begin{split}&\;\|L_{1}^{(1)}-L_{1}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;\frac{1}{2}\left\|\int_{\mathbb{T}}\left[\frac{\frac{2\Delta h_{1}\Delta h_{1}^{\prime}}{(1+h_{1}(\theta))(1+h_{1}(\theta+\xi))}-\frac{(\Delta h_{1})^{2}(h_{1}^{\prime}(\theta)+h_{1}^{\prime}(\theta+\xi)+h_{1}^{\prime}(\theta)h_{1}(\theta+\xi)+h_{1}(\theta)h_{1}^{\prime}(\theta+\xi))}{(1+h_{1}(\theta))^{2}(1+h_{1}(\theta+\xi))^{2}}}{(1+l_{1}(\theta,\theta+\xi))^{2}}\right.\right.\\ &\;\left.\left.\qquad-\frac{\frac{2\Delta h_{2}\Delta h_{2}^{\prime}}{(1+h_{2}(\theta))(1+h_{2}(\theta+\xi))}-\frac{(\Delta h_{2})^{2}(h_{2}^{\prime}(\theta)+h_{2}^{\prime}(\theta+\xi)+h_{2}^{\prime}(\theta)h_{2}(\theta+\xi)+h_{2}(\theta)h_{2}^{\prime}(\theta+\xi))}{(1+h_{2}(\theta))^{2}(1+h_{2}(\theta+\xi))^{2}}}{(1+l_{2}(\theta,\theta+\xi))^{2}}\right]\psi(\theta+\xi)\,d\xi\right\|_{L^{p}}\\ &\;+\frac{1}{2}\left\|\int_{\mathbb{T}}\left(\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right)\psi^{\prime}(\theta+\xi)\,d\xi\right\|_{L^{p}}\\ \leq&\;C(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{2}^{\prime\prime}\|_{L^{p}}\|h_{1}-h_{2}\|_{W^{1,\infty}})\|\psi\|_{L^{\infty}}\\ &\;+C(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}.\end{split}

As in (5.18), we Taylor expand (1+li)1(1+l_{i})^{-1} and rewrite L2(i)L_{2}^{(i)} as

(C.15) L2(i)=j=0(1)j(1+hi(θ))(j+1)p.v.𝕋(Δhi)2j+1(1+hi(θ+ξ))jψ(θ+ξ)2sinξ2dξ=:j=0L2,j(i).\begin{split}L_{2}^{(i)}=&\;\sum_{j=0}^{\infty}(-1)^{j}(1+h_{i}(\theta))^{-(j+1)}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{i})^{2j+1}(1+h_{i}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ =:&\;\sum_{j=0}^{\infty}L_{2,j}^{(i)}.\end{split}

We derive

(C.16) (1)j(L2,j(1)L2,j(2))=[(1+h1(θ))(j+1)(1+h2(θ))(j+1)]p.v.𝕋(Δh1)2j+1(1+h1(θ+ξ))jψ(θ+ξ)2sinξ2dξ+(1+h2(θ))(j+1)p.v.𝕋Δ(h1h2)l=02j(Δh1)l(Δh2)2jl(1+h1(θ+ξ))jψ(θ+ξ)2sinξ2dξ+(1+h2(θ))(j+1)p.v.𝕋(Δh2)2j+1(11+h1(θ+ξ)11+h2(θ+ξ))l=0j1(1+h1(θ+ξ))l(1+h2(θ+ξ))(j1l)ψ(θ+ξ)2sinξ2dξ.\begin{split}&\;(-1)^{j}(L_{2,j}^{(1)}-L_{2,j}^{(2)})\\ =&\;\left[(1+h_{1}(\theta))^{-(j+1)}-(1+h_{2}(\theta))^{-(j+1)}\right]\\ &\;\quad\cdot\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{1})^{2j+1}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ &\;+(1+h_{2}(\theta))^{-(j+1)}\\ &\;\quad\cdot\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})\sum_{l=0}^{2j}(\Delta h_{1})^{l}(\Delta h_{2})^{2j-l}\cdot(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\\ &\;+(1+h_{2}(\theta))^{-(j+1)}\\ &\;\quad\cdot\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j+1}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\\ &\;\quad\qquad\qquad\cdot\sum_{l=0}^{j-1}(1+h_{1}(\theta+\xi))^{-l}(1+h_{2}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi.\end{split}

Note that here in this proof, with abuse of notations, we use ll as a summation index, which has nothing to do with (5.2).

By Lemma A.2, for 0lk0\leq l\leq k,

(C.17) p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)klψ(θ+ξ)2sinξ2dξLpCCk(h1L+h2L)kh1h2LψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{k-l}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;CC_{*}^{k}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{k}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}.\end{split}

Letting k=2jk=2j and replacing ψ\psi by (1+h1)jψ(1+h_{1})^{-j}\psi,

(C.18) p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)2jl(1+h1(θ+ξ))jψ(θ+ξ)2sinξ2dξLpC(C2C2(h1L+h2L)2)jh1h2LψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{2j-l}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C(C_{*}^{2}C_{2}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2})^{j}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}.\end{split}

Further taking h2=0h_{2}=0 and l=2jl=2j, we find

(C.19) p.v.𝕋(Δh1)2j+1(1+h1(θ+ξ))jψ(θ+ξ)2sinξ2dξLpC(C2C2h1L2)jh1LψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{1})^{2j+1}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C(C_{*}^{2}C_{2}\|h_{1}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}.\end{split}

Similarly,

(C.20) p.v.𝕋(Δh2)2j+1(11+h1(θ+ξ)11+h2(θ+ξ))(1+h1(θ+ξ))l(1+h2(θ+ξ))(j1l)ψ(θ+ξ)2sinξ2dξLpC(C2C2h2L2)jh2Lh1h2LψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j+1}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\right.\\ &\;\left.\qquad\cdot(1+h_{1}(\theta+\xi))^{-l}(1+h_{2}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;C(C_{*}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{p}}.\end{split}

On the other hand, by Lemma A.4, for 0lk0\leq l\leq k,

(C.21) p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)klψ(θ+ξ)2sinξ2dξW˙1,p(k+2)Ck+2ψLph1h2L(h1L+h2L)k+(k+2)Ck+2ψLh1h2Lp(h1L+h2L)k+(k+2)Ck+2ψLh1h2L(h1L+h2L)k1𝟙{k>0}(h1Lp+h2Lp).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{k-l}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(k+2)C_{\dagger}^{k+2}\|\psi^{\prime}\|_{L^{p}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{k}\\ &\;+(k+2)C_{\dagger}^{k+2}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{k}\\ &\;+(k+2)C_{\dagger}^{k+2}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{k-1}\cdot\mathds{1}_{\{k>0\}}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}).\end{split}

Taking k=2jk=2j and replacing ψ\psi by (1+h1)jψ(1+h_{1})^{-j}\psi,

(C.22) p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)2jl(1+h1(θ+ξ))jψ(θ+ξ)2sinξ2dξW˙1,p(2j+2)C2j+2(jC2j+1h1LψLp+C2jψLp)h1h2L(h1L+h2L)2j+(2j+2)C2j+2C2jψLh1h2Lp(h1L+h2L)2j+(2j+2)C2j+2C2jψLh1h2L𝟙{j>0}(h1L+h2L)2j1(h1Lp+h2Lp).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{2j-l}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(2j+2)C_{\dagger}^{2j+2}(jC_{2}^{j+1}\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+C_{2}^{j}\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j}\\ &\;+(2j+2)C_{\dagger}^{2j+2}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j}\\ &\;+(2j+2)C_{\dagger}^{2j+2}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\\ &\;\qquad\cdot\mathds{1}_{\{j>0\}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}).\end{split}

Further taking h2=0h_{2}=0 and l=2jl=2j,

(C.23) p.v.𝕋(Δh1)2j+1(1+h1(θ+ξ))jψ(θ+ξ)2sinξ2dξW˙1,pC(j+1)(C2C2h1L2)j[(jh1LψLp+ψLp)h1L+ψLh1Lp].\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{1})^{2j+1}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;C(j+1)(C_{\dagger}^{2}C_{2}\|h_{1}^{\prime}\|_{L^{\infty}}^{2})^{j}[(j\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}\|_{L^{\infty}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}\|_{L^{p}}].\end{split}

Similarly,

(C.24) p.v.𝕋(Δh2)2j+1(11+h1(θ+ξ)11+h2(θ+ξ))(1+h1(θ+ξ))l(1+h2(θ+ξ))(j1l)ψ(θ+ξ)2sinξ2dξW˙1,p(2j+2)C2j+2h2L2j+1(11+h111+h2)(1+h1)l(1+h2)(j1l)ψW˙1,p+C(2j+2)C2j+2h2L2jh2LpC2j+1h1h2LψLC(j+1)(C2C2h2L2)jh2L[h1h2LψLp+jh1h2L(h1L+h2L)ψLp+h1h2LψLp]+C(j+1)(C2C2h2L2)jh2Lph1h2LψL.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j+1}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\right.\\ &\;\left.\qquad\cdot(1+h_{1}(\theta+\xi))^{-l}(1+h_{2}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(2j+2)C_{\dagger}^{2j+2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j+1}\\ &\;\quad\cdot\left\|\left(\frac{1}{1+h_{1}}-\frac{1}{1+h_{2}}\right)(1+h_{1})^{-l}(1+h_{2})^{-(j-1-l)}\psi\right\|_{\dot{W}^{1,p}}\\ &\;+C(2j+2)C_{\dagger}^{2j+2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j}\|h_{2}^{\prime\prime}\|_{L^{p}}\cdot C_{2}^{j+1}\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\\ \leq&\;C(j+1)(C_{\dagger}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{2}^{\prime}\|_{L^{\infty}}\cdot\left[\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}\right.\\ &\;\left.\qquad+j\|h_{1}-h_{2}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|\psi\|_{L^{p}}+\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}\right]\\ &\;+C(j+1)(C_{\dagger}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{2}^{\prime\prime}\|_{L^{p}}\cdot\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}.\end{split}

Combining these estimates with (C.16), we use the fact fgW˙1,pfW˙1,gLp+fLgW˙1,p\|fg\|_{\dot{W}^{1,p}}\leq\|f\|_{\dot{W}^{1,\infty}}\|g\|_{L^{p}}+\|f\|_{L^{\infty}}\|g\|_{\dot{W}^{1,p}} to derive that

(C.25) L2,j(1)L2,j(2)W˙1,pC(j+1)C2j(h1h2L+(j+2)h1h2Lh2L)(C2C2h1L2)jh1LψLp+C(j+1)C2jh1h2L(j+1)(C2C2h1L2)j[(jh1LψLp+ψLp)h1L+ψLh1Lp]+C(j+1)C2jh2Ll=02j(C2C2(h1L+h2L)2)jh1h2LψLp+CC2jl=02j(j+1)(C2C2(h1L+h2L)2)j[(jh1LψLp+ψLp)h1h2L+ψLh1h2Lp+𝟙{j>0}ψLh1h2L(h1Lp+h2Lp)(h1L+h2L)1]+C(j+1)C2jh2Ll=0j1(C2C2h2L2)jh2Lh1h2LψLp+CC2jl=0j1(j+1)(C2C2h2L2)jh2L[h1h2LψLp+jh1h2L(h1L+h2L)ψLp+h1h2LψLp]+(j+1)(C2C2h2L2)jh2Lph1h2LψL.\begin{split}&\;\|L_{2,j}^{(1)}-L_{2,j}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C(j+1)C_{2}^{j}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}+(j+2)\|h_{1}-h_{2}\|_{L^{\infty}}\|h_{2}^{\prime}\|_{L^{\infty}})\cdot(C_{*}^{2}C_{2}\|h_{1}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}\\ &\;+C(j+1)C_{2}^{j}\|h_{1}-h_{2}\|_{L^{\infty}}\\ &\;\quad\cdot(j+1)(C_{\dagger}^{2}C_{2}\|h_{1}^{\prime}\|_{L^{\infty}}^{2})^{j}[(j\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}\|_{L^{\infty}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}\|_{L^{p}}]\\ &\;+C(j+1)C_{2}^{j}\|h_{2}^{\prime}\|_{L^{\infty}}\sum_{l=0}^{2j}(C_{*}^{2}C_{2}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2})^{j}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}\\ &\;+CC_{2}^{j}\sum_{l=0}^{2j}(j+1)(C_{\dagger}^{2}C_{2}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2})^{j}\\ &\;\qquad\cdot[(j\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\\ &\;\qquad\qquad+\mathds{1}_{\{j>0\}}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{-1}]\\ &\;+C(j+1)C_{2}^{j}\|h_{2}^{\prime}\|_{L^{\infty}}\sum_{l=0}^{j-1}(C_{*}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{p}}\\ &\;+CC_{2}^{j}\sum_{l=0}^{j-1}(j+1)(C_{\dagger}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{2}^{\prime}\|_{L^{\infty}}\cdot\left[\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}\right.\\ &\;\left.\qquad\qquad+j\|h_{1}-h_{2}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|\psi\|_{L^{p}}+\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}\right]\\ &\;\qquad\qquad+(j+1)(C_{\dagger}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j}\|h_{2}^{\prime\prime}\|_{L^{p}}\cdot\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}.\end{split}

Assuming hiL1\|h_{i}^{\prime}\|_{L^{\infty}}\ll 1,

(C.26) L2(1)L2(2)W˙1,pj=0L2,j(1)L2,j(2)W˙1,pC(ψLph1h2W1,+ψLh1h2Lp)+CψLh1h2W1,(h1Lp+h2Lp).\begin{split}\|L_{2}^{(1)}-L_{2}^{(2)}\|_{\dot{W}^{1,p}}\leq&\;\sum_{j=0}^{\infty}\|L_{2,j}^{(1)}-L_{2,j}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C(\|\psi^{\prime}\|_{L^{p}}\|h_{1}-h_{2}\|_{W^{1,\infty}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}})\\ &\;+C\|\psi\|_{L^{\infty}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}).\end{split}

We similarly write

(C.27) L3(i)=j=0hi(θ)(1hi(θ))(j+1)p.v.𝕋(Δhi)2j(1+hi(θ+ξ))jψ(θ+ξ)2tanξ2dξ=:j=0L3,j(i)\begin{split}L_{3}^{(i)}=&\;\sum_{j=0}^{\infty}h_{i}^{\prime}(\theta)(-1-h_{i}(\theta))^{-(j+1)}\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{i})^{2j}(1+h_{i}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\\ =:&\;\sum_{j=0}^{\infty}L_{3,j}^{(i)}\end{split}

and

(C.28) (1)j+1(L3,j(1)L3,j(2))=[h1(θ)(1+h1(θ))(j+1)h2(θ)(1+h2(θ))(j+1)]p.v.𝕋Aijψ(θ+ξ)2tanξ2dξ+h2(θ)(1+h2(θ))(j+1)p.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξ,\begin{split}&\;(-1)^{j+1}(L_{3,j}^{(1)}-L_{3,j}^{(2)})\\ =&\;\left[h_{1}^{\prime}(\theta)(1+h_{1}(\theta))^{-(j+1)}-h_{2}^{\prime}(\theta)(1+h_{2}(\theta))^{-(j+1)}\right]\cdot\mathrm{p.v.}\int_{\mathbb{T}}A_{i}^{j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\\ &\;+h_{2}^{\prime}(\theta)(1+h_{2}(\theta))^{-(j+1)}\cdot\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi,\end{split}

where

(C.29) Ai:=(Δhi)21+hi(θ+ξ)=(1+hi(θ))li(θ,θ+ξ).A_{i}:=\frac{(\Delta h_{i})^{2}}{1+h_{i}(\theta+\xi)}=(1+h_{i}(\theta))\cdot l_{i}(\theta,\theta+\xi).

To proceed as before, we need LL^{\infty}-bounds for the integrals in (C.28). We additionally define

(C.30) Bi=hi(θ)21+hi(θ).B_{i}=\frac{h_{i}^{\prime}(\theta)^{2}}{1+h_{i}(\theta)}.

It is easy to show that |Ai|,|Bi|C12C2hiL2|A_{i}|,|B_{i}|\leq C_{1}^{2}C_{2}\|h_{i}^{\prime}\|_{L^{\infty}}^{2}, where C1=π/2C_{1}=\pi/2 is introduced in the proof of Lemma A.2, and

(C.31) |AiBi|ChiLhiC˙β|ξ|β.|A_{i}-B_{i}|\leq C\|h_{i}^{\prime}\|_{L^{\infty}}\|h_{i}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}.

Hence, by the mean value theorem,

(C.32) |p.v.𝕋Aijψ(θ+ξ)2tanξ2dξ|=|𝕋(Aijψ(θ+ξ)Bijψ(θ))12tanξ2dξ|C𝕋j(C12C2hiL2)j1hiLhiC˙β|ξ|βψL|ξ|1dξ+C𝕋(C12C2hiL2)j|ψ(θ+ξ)ψ(θ)||ξ|1dξC(C12C2)j(jhiL2j1hiC˙βψL+hiL2jψC˙β).\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}A_{i}^{j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right|\\ =&\;\left|\int_{\mathbb{T}}(A_{i}^{j}\psi(\theta+\xi)-B_{i}^{j}\psi(\theta))\frac{1}{2\tan\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;C\int_{\mathbb{T}}j(C_{1}^{2}C_{2}\|h_{i}^{\prime}\|_{L^{\infty}}^{2})^{j-1}\cdot\|h_{i}^{\prime}\|_{L^{\infty}}\|h_{i}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}\cdot\|\psi\|_{L^{\infty}}|\xi|^{-1}\,d\xi\\ &\;+C\int_{\mathbb{T}}(C_{1}^{2}C_{2}\|h_{i}^{\prime}\|_{L^{\infty}}^{2})^{j}\cdot|\psi(\theta+\xi)-\psi(\theta)||\xi|^{-1}\,d\xi\\ \leq&\;C(C_{1}^{2}C_{2})^{j}(j\|h_{i}^{\prime}\|_{L^{\infty}}^{2j-1}\|h_{i}^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{L^{\infty}}+\|h_{i}^{\prime}\|_{L^{\infty}}^{2j}\|\psi\|_{\dot{C}^{\beta}}).\end{split}

We also derive that

(C.33) |p.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξ|𝕋|A1jA2jB1j+B2j||ψ(θ+ξ)2tanξ2|dξ+|B1jB2j||𝕋ψ(θ+ξ)ψ(θ)2tanξ2dξ|.\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;\int_{\mathbb{T}}|A_{1}^{j}-A_{2}^{j}-B_{1}^{j}+B_{2}^{j}|\left|\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\right|\,d\xi+|B_{1}^{j}-B_{2}^{j}|\left|\int_{\mathbb{T}}\frac{\psi(\theta+\xi)-\psi(\theta)}{2\tan\frac{\xi}{2}}\,d\xi\right|.\end{split}

Write

(C.34) A1jA2jB1j+B2j=(A1A2B1+B2)l=0j1A1lA2j1l+(B1B2)l=0j1(A1lA2j1lB1lB2j1l).\begin{split}&\;A_{1}^{j}-A_{2}^{j}-B_{1}^{j}+B_{2}^{j}\\ =&\;(A_{1}-A_{2}-B_{1}+B_{2})\sum_{l=0}^{j-1}A_{1}^{l}A_{2}^{j-1-l}+(B_{1}-B_{2})\sum_{l=0}^{j-1}(A_{1}^{l}A_{2}^{j-1-l}-B_{1}^{l}B_{2}^{j-1-l}).\end{split}

Since

(C.35) A1A2B1+B2=(1+h1(θ))(l1h1(θ)2(1+h1(θ))2)(1+h2(θ))(l2h2(θ)2(1+h2(θ))2)=h1h21+h1(A1B1)+(1+h2(θ))(l1l2h1(θ)2(1+h1(θ))2+h2(θ)2(1+h2(θ))2),\begin{split}&\;A_{1}-A_{2}-B_{1}+B_{2}\\ =&\;(1+h_{1}(\theta))\left(l_{1}-\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1}(\theta))^{2}}\right)-(1+h_{2}(\theta))\left(l_{2}-\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2}(\theta))^{2}}\right)\\ =&\;\frac{h_{1}-h_{2}}{1+h_{1}}(A_{1}-B_{1})\\ &\;+(1+h_{2}(\theta))\left(l_{1}-l_{2}-\frac{h_{1}^{\prime}(\theta)^{2}}{(1+h_{1}(\theta))^{2}}+\frac{h_{2}^{\prime}(\theta)^{2}}{(1+h_{2}(\theta))^{2}}\right),\end{split}

we use (C.10) and (C.31) to derive that

(C.36) |A1A2B1+B2|C|ξ|βh1h2C1,β(h1C˙β+h2C˙β)|A_{1}-A_{2}-B_{1}+B_{2}|\leq C|\xi|^{\beta}\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\\

Combining this with (C.31) and (C.34) yields that

(C.37) |A1jA2jB1j+B2j||A1A2B1+B2|l=0j1(C12C2h1L2)l(C12C2h2L2)j1l+C|B1B2|l=0j1l(C12C2h1L2)l1h1Lh1C˙β|ξ|β(C12C2h2L2)j1l+C|B1B2|l=0j1(C12C2h1L2)l(j1l)(C12C2h2L2)j2lh2Lh2C˙β|ξ|βC(C12C2)j1|ξ|βjh1h2C1,β(h1C˙β+h2C˙β)(h1L2+h2L2)j1.\begin{split}&\;|A_{1}^{j}-A_{2}^{j}-B_{1}^{j}+B_{2}^{j}|\\ \leq&\;|A_{1}-A_{2}-B_{1}+B_{2}|\sum_{l=0}^{j-1}(C_{1}^{2}C_{2}\|h_{1}^{\prime}\|_{L^{\infty}}^{2})^{l}(C_{1}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j-1-l}\\ &\;+C|B_{1}-B_{2}|\sum_{l=0}^{j-1}l(C_{1}^{2}C_{2}\|h^{\prime}_{1}\|_{L^{\infty}}^{2})^{l-1}\cdot\|h_{1}^{\prime}\|_{L^{\infty}}\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}\cdot(C_{1}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j-1-l}\\ &\;+C|B_{1}-B_{2}|\sum_{l=0}^{j-1}(C_{1}^{2}C_{2}\|h^{\prime}_{1}\|_{L^{\infty}}^{2})^{l}\cdot(j-1-l)(C_{1}^{2}C_{2}\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j-2-l}\cdot\|h_{2}^{\prime}\|_{L^{\infty}}\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}|\xi|^{\beta}\\ \leq&\;C(C_{1}^{2}C_{2})^{j-1}|\xi|^{\beta}\cdot j\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})(\|h_{1}^{\prime}\|_{L^{\infty}}^{2}+\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j-1}.\end{split}

Applying this to (C.33), we obtain that

(C.38) |p.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξ|C(C12C2)j1jh1h2C1,β(h1C˙β+h2C˙β)(h1L2+h2L2)j1ψCβ.\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;C(C_{1}^{2}C_{2})^{j-1}\cdot j\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})(\|h_{1}^{\prime}\|_{L^{\infty}}^{2}+\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j-1}\|\psi\|_{C^{\beta}}.\end{split}

Arguing as in (C.17)-(C.20), for j1j\geq 1 and 0l2j10\leq l\leq 2j-1,

(C.39) p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)2j1l(1+h1(θ+ξ))jψ(θ+ξ)2tanξ2dξLpCC2j1C2j(h1L+h2L)2j1h1h2LψLp,\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{2j-1-l}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;CC_{*}^{2j-1}C_{2}^{j}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}},\end{split}
(C.40) p.v.𝕋A1jψ(θ+ξ)2tanξ2dξLpCC2j1C2jh1L2jψLp,\left\|\mathrm{p.v.}\int_{\mathbb{T}}A_{1}^{j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\leq CC_{*}^{2j-1}C_{2}^{j}\|h_{1}^{\prime}\|_{L^{\infty}}^{2j}\|\psi\|_{L^{p}},

and

(C.41) p.v.𝕋(Δh2)2j(11+h1(θ+ξ)11+h2(θ+ξ))(1+h1(θ+ξ))l(1+h2(θ+ξ))(j1l)ψ(θ+ξ)2sinξ2dξLpCC2j1C2jh2L2jh1h2LψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\right.\\ &\;\left.\qquad\cdot(1+h_{1}(\theta+\xi))^{-l}(1+h_{2}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;CC_{*}^{2j-1}C_{2}^{j}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j}\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{p}}.\end{split}

Hence,

(C.42) p.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξLpl=02j1p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)2j1l(1+h1(θ+ξ))jψ(θ+ξ)2tanξ2dξLp+l=0j1p.v.𝕋(Δh2)2j(11+h1(θ+ξ)11+h2(θ+ξ))(1+h1(θ+ξ))l(1+h1(θ+ξ))(j1l)ψ(θ+ξ)2tanξ2dξLpCjC2j1C2j(h1L+h2L)2j1h1h2W1,ψLp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;\sum_{l=0}^{2j-1}\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{2j-1-l}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ &\;+\sum_{l=0}^{j-1}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\right.\\ &\;\left.\qquad\qquad\cdot(1+h_{1}(\theta+\xi))^{-l}(1+h_{1}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ \leq&\;CjC_{*}^{2j-1}C_{2}^{j}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi\|_{L^{p}}.\end{split}

Similar to (C.21)-(C.24), for j1j\geq 1,

(C.43) p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)2j1l(1+h1(θ+ξ))jψ(θ+ξ)2tanξ2dξW˙1,p(2j+1)C2j+1(jC2j+1h1LψLp+C2jψLp)h1h2L(h1L+h2L)2j1+(2j+1)C2j+1C2jψLh1h2Lp(h1L+h2L)2j1+(2j+1)C2j+1C2jψLh1h2L(h1L+h2L)2j2(h1Lp+h2Lp),\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{2j-1-l}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(2j+1)C_{\dagger}^{2j+1}(jC_{2}^{j+1}\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+C_{2}^{j}\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\\ &\;+(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\\ &\;+(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-2}\cdot(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}),\end{split}
(C.44) p.v.𝕋A1jψ(θ+ξ)2tanξ2dξW˙1,p(2j+1)C2j+1(jC2j+1h1LψLp+C2jψLp)h1L2j+C(2j+1)C2j+1C2jψLh1Lph1L2j1,\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}A_{1}^{j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(2j+1)C_{\dagger}^{2j+1}(jC_{2}^{j+1}\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+C_{2}^{j}\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}\|_{L^{\infty}}^{2j}\\ &\;+C(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}\|_{L^{p}}\|h_{1}^{\prime}\|_{L^{\infty}}^{2j-1},\end{split}

and

(C.45) p.v.𝕋(Δh2)2j(11+h1(θ+ξ)11+h2(θ+ξ))(1+h1(θ+ξ))l(1+h2(θ+ξ))(j1l)ψ(θ+ξ)2sinξ2dξW˙1,p(2j+1)C2j+1(11+h111+h2)(1+h1)l(1+h2)(j1l)ψW˙1,ph2L2j+C(2j+1)C2j+1C2j+1h1h2LψLh2Lph2L2j1C(2j+1)C2j+1C2jh2L2j[h1h2LψLp+jh1h2L(h1L+h2L)ψLp+h1h2LψLp]+C(2j+1)C2j+1C2j+1h2L2j1h1h2LψLh2Lp.\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\right.\\ &\;\left.\qquad\cdot(1+h_{1}(\theta+\xi))^{-l}(1+h_{2}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;(2j+1)C_{\dagger}^{2j+1}\left\|\left(\frac{1}{1+h_{1}}-\frac{1}{1+h_{2}}\right)(1+h_{1})^{-l}(1+h_{2})^{-(j-1-l)}\psi\right\|_{\dot{W}^{1,p}}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j}\\ &\;+C(2j+1)C_{\dagger}^{2j+1}C_{2}^{j+1}\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\|h_{2}^{\prime\prime}\|_{L^{p}}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j-1}\\ \leq&\;C(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j}\cdot[\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}\\ &\;\qquad+j\|h_{1}-h_{2}\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|\psi\|_{L^{p}}+\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi^{\prime}\|_{L^{p}}]\\ &\;+C(2j+1)C_{\dagger}^{2j+1}C_{2}^{j+1}\|h_{2}^{\prime}\|_{L^{\infty}}^{2j-1}\|h_{1}-h_{2}\|_{L^{\infty}}\|\psi\|_{L^{\infty}}\|h_{2}^{\prime\prime}\|_{L^{p}}.\end{split}

Hence,

(C.46) p.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξW˙1,pl=02j1p.v.𝕋Δ(h1h2)(Δh1)l(Δh2)2j1l(1+h1(θ+ξ))jψ(θ+ξ)2tanξ2dξW˙1,p+l=0j1p.v.𝕋(Δh2)2j(11+h1(θ+ξ)11+h2(θ+ξ))(1+h1(θ+ξ))l(1+h2(θ+ξ))(j1l)ψ(θ+ξ)2tanξ2dξW˙1,pCj2(2j+1)C2j+1C2jψLph1h2W1,(h1L+h2L)2j+Cj(2j+1)C2j+1C2jψLph1h2W1,(h1L+h2L)2j1+Cj(2j+1)C2j+1C2jψLh1h2Lp(h1L+h2L)2j1+Cj(2j+1)C2j+1C2jψLh1h2W1,(h1L+h2L)2j2(h1Lp+h2Lp).\begin{split}&\;\left\|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;\sum_{l=0}^{2j-1}\left\|\mathrm{p.v.}\int_{\mathbb{T}}\Delta(h_{1}-h_{2})(\Delta h_{1})^{l}(\Delta h_{2})^{2j-1-l}(1+h_{1}(\theta+\xi))^{-j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ &\;+\sum_{l=0}^{j-1}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(\Delta h_{2})^{2j}\left(\frac{1}{1+h_{1}(\theta+\xi)}-\frac{1}{1+h_{2}(\theta+\xi)}\right)\right.\\ &\;\left.\qquad\qquad\cdot(1+h_{1}(\theta+\xi))^{-l}(1+h_{2}(\theta+\xi))^{-(j-1-l)}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ \leq&\;Cj^{2}(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{p}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j}\\ &\;+Cj(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi^{\prime}\|_{L^{p}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\\ &\;+Cj(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\\ &\;+Cj(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-2}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}).\end{split}

To this end, by (C.28),

(C.47) L3,j(1)L3,j(2)W˙1,ph1(1+h1)(j+1)h2(1+h2)(j+1)Lpp.v.𝕋A1jψ(θ+ξ)2tanξ2dξL+(j+1)(h1)2(1+h1)(j+2)(h2)2(1+h2)(j+2)Lp.v.𝕋A1jψ(θ+ξ)2tanξ2dξLp+h1(1+h1)(j+1)h2(1+h2)(j+1)Lp.v.𝕋A1jψ(θ+ξ)2tanξ2dξW˙1,p+h2(1+h2)(j+1)Lpp.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξL+(j+1)(h2)2(1+h2)(j+2)Lp.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξLp+h2(1+h2)(j+1)Lp.v.𝕋(A1jA2j)ψ(θ+ξ)2tanξ2dξW˙1,p.\begin{split}&\;\|L_{3,j}^{(1)}-L_{3,j}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;\|h_{1}^{\prime\prime}(1+h_{1})^{-(j+1)}-h_{2}^{\prime\prime}(1+h_{2})^{-(j+1)}\|_{L^{p}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}A_{1}^{j}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{\infty}}\\ &\;+(j+1)\|(h_{1}^{\prime})^{2}(1+h_{1})^{-(j+2)}-(h_{2}^{\prime})^{2}(1+h_{2})^{-(j+2)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}A_{1}^{j}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ &\;+\|h_{1}^{\prime}(1+h_{1})^{-(j+1)}-h_{2}^{\prime}(1+h_{2})^{-(j+1)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}A_{1}^{j}\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}\\ &\;+\|h_{2}^{\prime\prime}(1+h_{2})^{-(j+1)}\|_{L^{p}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{\infty}}\\ &\;+(j+1)\|(h_{2}^{\prime})^{2}(1+h_{2})^{-(j+2)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{L^{p}}\\ &\;+\|h_{2}^{\prime}(1+h_{2})^{-(j+1)}\|_{L^{\infty}}\left\|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi\right\|_{\dot{W}^{1,p}}.\end{split}

For j=0j=0, this can be simplified as

(C.48) L3,0(1)L3,0(2)W˙1,pC(h1h2Lp+h2Lph1h2L)ψC˙β+Ch1h2W1,(h1L+h2L)ψLp+Ch1h2W1,ψLp.\begin{split}&\;\|L_{3,0}^{(1)}-L_{3,0}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C(\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}\|h_{1}-h_{2}\|_{L^{\infty}})\|\psi\|_{\dot{C}^{\beta}}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|\psi\|_{L^{p}}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}.\end{split}

For j1j\geq 1, by applying (C.32), (C.38), (C.40), (C.42), (C.44) and (C.46) to (C.47), we derive that

(C.49) L3,j(1)L3,j(2)W˙1,pC(C2j+1h1h2Lp+h2Lp(j+1)C2j+2h1h2L)(C12C2)jjh1L2j1h1C˙βψCβ+C(j+1)(j+2)C2j+2h1h2W1,(h1L+h2L)C2j1C2jh1L2jψLp+C(j+1)C2j+1h1h2W1,[(2j+1)C2j+1(jC2j+1h1LψLp+C2jψLp)h1L2j+(2j+1)C2j+1C2jψLh1Lph1L2j1]+CC2j+1h2Lp(C12C2)j1jh1h2C1,β(h1C˙β+h2C˙β)(h1L2+h2L2)j1ψCβ+CC2j+2(j+1)h2L2jC2j1C2j(h1L+h2L)2j1h1h2W1,ψLp+CC2j+1h2Lj(2j+1)C2j+1C2j(h1L+h2L)2j2[jψLph1h2W1,(h1L+h2L)2+ψLph1h2W1,(h1L+h2L)+ψLh1h2Lp(h1L+h2L)+ψLh1h2W1,(h1Lp+h2Lp)].\begin{split}&\;\|L_{3,j}^{(1)}-L_{3,j}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C(C_{2}^{j+1}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}(j+1)C_{2}^{j+2}\|h_{1}-h_{2}\|_{L^{\infty}})\\ &\;\quad\cdot(C_{1}^{2}C_{2})^{j}\cdot j\|h_{1}^{\prime}\|_{L^{\infty}}^{2j-1}\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}\|\psi\|_{C^{\beta}}\\ &\;+C(j+1)(j+2)C_{2}^{j+2}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\\ &\;\quad\cdot C_{*}^{2j-1}C_{2}^{j}\|h_{1}^{\prime}\|_{L^{\infty}}^{2j}\|\psi\|_{L^{p}}\\ &\;+C(j+1)C_{2}^{j+1}\|h_{1}-h_{2}\|_{W^{1,\infty}}\\ &\;\quad\cdot\left[(2j+1)C_{\dagger}^{2j+1}(jC_{2}^{j+1}\|h_{1}^{\prime}\|_{L^{\infty}}\|\psi\|_{L^{p}}+C_{2}^{j}\|\psi^{\prime}\|_{L^{p}})\|h_{1}^{\prime}\|_{L^{\infty}}^{2j}\right.\\ &\;\left.\qquad+(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}\|_{L^{p}}\|h_{1}^{\prime}\|_{L^{\infty}}^{2j-1}\right]\\ &\;+CC_{2}^{j+1}\|h_{2}^{\prime\prime}\|_{L^{p}}\\ &\;\quad\cdot(C_{1}^{2}C_{2})^{j-1}\cdot j\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})(\|h_{1}^{\prime}\|_{L^{\infty}}^{2}+\|h_{2}^{\prime}\|_{L^{\infty}}^{2})^{j-1}\|\psi\|_{C^{\beta}}\\ &\;+CC_{2}^{j+2}(j+1)\|h_{2}^{\prime}\|_{L^{\infty}}^{2}\\ &\;\quad\cdot jC_{*}^{2j-1}C_{2}^{j}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-1}\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi\|_{L^{p}}\\ &\;+CC_{2}^{j+1}\|h_{2}^{\prime}\|_{L^{\infty}}\cdot j(2j+1)C_{\dagger}^{2j+1}C_{2}^{j}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2j-2}\\ &\;\quad\cdot\left[j\|\psi\|_{L^{p}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2}\right.\\ &\;\qquad+\|\psi^{\prime}\|_{L^{p}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\\ &\;\qquad+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\\ &\;\left.\qquad+\|\psi\|_{L^{\infty}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\right].\end{split}

This together with (C.48) and the smallness of hih_{i} implies

(C.50) L3(1)L3(2)W˙1,pL3,0(1)L3,0(2)W˙1,p+j=1L3,j(1)L3,j(2)W˙1,pCh1h2Lp(1+h1C˙β+h2C˙β)ψCβ+C(h1Lp+h2Lp)h1h2C1,β(1+h1C˙β+h2C˙β)ψCβ+Ch1h2W1,ψLp.\begin{split}&\;\|L_{3}^{(1)}-L_{3}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;\|L_{3,0}^{(1)}-L_{3,0}^{(2)}\|_{\dot{W}^{1,p}}+\sum_{j=1}^{\infty}\|L_{3,j}^{(1)}-L_{3,j}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}(1+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|\psi\|_{C^{\beta}}\\ &\;+C(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}})\|\psi\|_{C^{\beta}}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}.\end{split}

Then the desired estimate follows from (C.14), (C.26) and (C.50). MM \square

Proof of Lemma 5.6.

Following (5.31), we use L~k(i)\tilde{L}_{k}^{(i)} (k=1,2,3)(k=1,2,3) to denote the corresponding quantities defined by hih_{i} (i=1,2)(i=1,2).

Using (5.32), we find that

(C.51) L~1(1)L~1(2)W˙1,p(h11+h1(h1)2(1+h1)2h21+h2+(h2)2(1+h2)2)(12𝕋ψdξ+L1(1))Lp+(h21+h2(h2)2(1+h2)2)(L1(1)L1(2))Lp+(h11+h1h21+h2)(L1(1))Lp+h21+h2(L1(1)L1(2))LpC(h1h2Lp+h2Lph1h2L)(|𝕋ψdξ|+L1(1)L)+Ch2LpL1(1)L1(2)L+Ch1h2W1,L1(1)W˙1,p+Ch2LL1(1)L1(2)W˙1,p.\begin{split}&\;\|\tilde{L}_{1}^{(1)}-\tilde{L}_{1}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;\left\|\left(\frac{h_{1}^{\prime\prime}}{1+h_{1}}-\frac{(h_{1}^{\prime})^{2}}{(1+h_{1})^{2}}-\frac{h_{2}^{\prime\prime}}{1+h_{2}}+\frac{(h_{2}^{\prime})^{2}}{(1+h_{2})^{2}}\right)\left(\frac{1}{2}\int_{\mathbb{T}}\psi\,d\xi+L_{1}^{(1)}\right)\right\|_{L^{p}}\\ &\;+\left\|\left(\frac{h_{2}^{\prime\prime}}{1+h_{2}}-\frac{(h_{2}^{\prime})^{2}}{(1+h_{2})^{2}}\right)(L_{1}^{(1)}-L_{1}^{(2)})\right\|_{L^{p}}\\ &\;+\left\|\left(\frac{h_{1}^{\prime}}{1+h_{1}}-\frac{h_{2}^{\prime}}{1+h_{2}}\right)(L_{1}^{(1)})^{\prime}\right\|_{L^{p}}+\left\|\frac{h_{2}^{\prime}}{1+h_{2}}(L_{1}^{(1)}-L_{1}^{(2)})^{\prime}\right\|_{L^{p}}\\ \leq&\;C(\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}\|h_{1}-h_{2}\|_{L^{\infty}})\left(\left|\int_{\mathbb{T}}\psi\,d\xi\right|+\|L_{1}^{(1)}\|_{L^{\infty}}\right)\\ &\;+C\|h_{2}^{\prime\prime}\|_{L^{p}}\|L_{1}^{(1)}-L_{1}^{(2)}\|_{L^{\infty}}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}\|L_{1}^{(1)}\|_{\dot{W}^{1,p}}+C\|h_{2}^{\prime}\|_{L^{\infty}}\|L_{1}^{(1)}-L_{1}^{(2)}\|_{\dot{W}^{1,p}}.\end{split}

It is not difficult to show by (C.3) that

(C.52) L1(1)L1(2)LCψL𝕋l1l2LθdξCψL(h1L+h2L)h1h2W1,.\begin{split}\|L_{1}^{(1)}-L_{1}^{(2)}\|_{L^{\infty}}\leq&\;C\|\psi\|_{L^{\infty}}\int_{\mathbb{T}}\|l_{1}-l_{2}\|_{L^{\infty}_{\theta}}\,d\xi\\ \leq&\;C\|\psi\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\|h_{1}-h_{2}\|_{W^{1,\infty}}.\end{split}

Taking h2=0h_{2}=0 yields L1(1)LCψLh1L\|L_{1}^{(1)}\|_{L^{\infty}}\leq C\|\psi\|_{L^{\infty}}\|h_{1}^{\prime}\|_{L^{\infty}}; here we used the fact m0,i1m_{0,i}\ll 1. Substituting these estimates as well as (5.17) and (C.14) into (C.51), we obtain that

(C.53) L~1(1)L~1(2)W˙1,pC(h1h2Lp+(h1Lp+h2Lp)h1h2W1,)(|𝕋ψdξ|+ψL(h1L+h2L))+C(h1L+h2L)2h1h2W1,ψLp.\begin{split}&\;\|\tilde{L}_{1}^{(1)}-\tilde{L}_{1}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C(\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}+(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\|h_{1}-h_{2}\|_{W^{1,\infty}})\\ &\;\qquad\cdot\left(\left|\int_{\mathbb{T}}\psi\,d\xi\right|+\|\psi\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})\right)\\ &\;+C(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})^{2}\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}.\end{split}

To bound L~2(1)L~2(2)\tilde{L}_{2}^{(1)}-\tilde{L}_{2}^{(2)}, we are going to make use of the estimates for L2(1)L2(2)L_{2}^{(1)}-L_{2}^{(2)} in Lemma 5.5, since L~2(i)\tilde{L}_{2}^{(i)} coincides with hi(θ)L2(i)-h_{i}^{\prime}(\theta)L_{2}^{(i)} if ψ\psi in the definition of L2(i)L_{2}^{(i)} is replaced by ψ/(1+hi)\psi/(1+h_{i}). For this purpose, an LL^{\infty}-estimate for L2(1)L2(2)L_{2}^{(1)}-L_{2}^{(2)} is needed. We start with

(C.54) |L2(1)L2(2)||p.v.𝕋(Δh1h1(θ)1+h1(θ)1+l1Δh2h2(θ)1+h2(θ)1+l2)ψ(θ+ξ)2sinξ2dξ|+|p.v.𝕋(h1(θ)1+h1(θ)1+l1h2(θ)1+h2(θ)1+l2)ψ(θ+ξ)2sinξ2dξ|.\begin{split}&\;|L_{2}^{(1)}-L_{2}^{(2)}|\\ \leq&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{\frac{\Delta h_{1}-h_{1}^{\prime}(\theta)}{1+h_{1}(\theta)}}{1+l_{1}}-\frac{\frac{\Delta h_{2}-h_{2}^{\prime}(\theta)}{1+h_{2}(\theta)}}{1+l_{2}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ &\;+\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{\frac{h_{1}^{\prime}(\theta)}{1+h_{1}(\theta)}}{1+l_{1}}-\frac{\frac{h_{2}^{\prime}(\theta)}{1+h_{2}(\theta)}}{1+l_{2}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|.\end{split}

It is straightforward to bound the first term.

(C.55) |p.v.𝕋(Δh1h1(θ)1+h1(θ)1+l1Δh2h2(θ)1+h2(θ)1+l2)ψ(θ+ξ)2sinξ2dξ|C𝕋|ξ|β(h1h2C˙β+h2C˙β(h1h2L+|l1l2|))ψL|ξ|1dξC(h1h2C˙β+h2C˙βh1h2W1,)ψL.\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{\frac{\Delta h_{1}-h_{1}^{\prime}(\theta)}{1+h_{1}(\theta)}}{1+l_{1}}-\frac{\frac{\Delta h_{2}-h_{2}^{\prime}(\theta)}{1+h_{2}(\theta)}}{1+l_{2}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;C\int_{\mathbb{T}}|\xi|^{\beta}(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}(\|h_{1}-h_{2}\|_{L^{\infty}}+|l_{1}-l_{2}|))\|\psi\|_{L^{\infty}}|\xi|^{-1}\,d\xi\\ \leq&\;C(\|h_{1}^{\prime}-h_{2}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}\|h_{1}-h_{2}\|_{W^{1,\infty}})\|\psi\|_{L^{\infty}}.\end{split}

To bound the second term in (C.54), we first note that (C.32) and (C.38) still hold if 2tanξ22\tan\frac{\xi}{2} in their denominators are replaced by 2sinξ22\sin\frac{\xi}{2}. Hence, we argue as in the proof of Lemma 5.5 by Taylor expanding (1+li)1(1+l_{i})^{-1} that

(C.56) |p.v.𝕋(11+l111+l2)ψ(θ+ξ)2sinξ2dξ|j=1|p.v.𝕋(A1j(1+h1(θ))jA2j(1+h2(θ))j)ψ(θ+ξ)2sinξ2dξ|j=1C2j|p.v.𝕋(A1jA2j)ψ(θ+ξ)2sinξ2dξ|+|1(1+h1)j1(1+h2)j||p.v.𝕋A2jψ(θ+ξ)2sinξ2dξ|CψCβh1h2C1,β(h1C˙β+h2C˙β).\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;\sum_{j=1}^{\infty}\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{A_{1}^{j}}{(1+h_{1}(\theta))^{j}}-\frac{A_{2}^{j}}{(1+h_{2}(\theta))^{j}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;\sum_{j=1}^{\infty}C_{2}^{j}\left|\mathrm{p.v.}\int_{\mathbb{T}}(A_{1}^{j}-A_{2}^{j})\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|+\left|\frac{1}{(1+h_{1})^{j}}-\frac{1}{(1+h_{2})^{j}}\right|\left|\mathrm{p.v.}\int_{\mathbb{T}}A_{2}^{j}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;C\|\psi\|_{C^{\beta}}\|h_{1}-h_{2}\|_{C^{1,\beta}}(\|h_{1}^{\prime}\|_{\dot{C}^{\beta}}+\|h_{2}^{\prime}\|_{\dot{C}^{\beta}}).\end{split}

Taking h2=0h_{2}=0 here yields

(C.57) |p.v.𝕋(11+l11)ψ(θ+ξ)2sinξ2dξ|CψCβh1C1,βh1C˙β,\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{1}{1+l_{1}}-1\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\leq C\|\psi\|_{C^{\beta}}\|h_{1}\|_{C^{1,\beta}}\|h_{1}^{\prime}\|_{\dot{C}^{\beta}},

which further implies

(C.58) |p.v.𝕋11+l1ψ(θ+ξ)2sinξ2dξ|CψCβ(1+h1C1,β)2.\left|\mathrm{p.v.}\int_{\mathbb{T}}\frac{1}{1+l_{1}}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\leq C\|\psi\|_{C^{\beta}}(1+\|h_{1}\|_{C^{1,\beta}})^{2}.

To this end, we may bound the second term in (C.54) as follows

(C.59) |p.v.𝕋(h1(θ)1+h1(θ)1+l1h2(θ)1+h2(θ)1+l2)ψ(θ+ξ)2sinξ2dξ||h11+h1h21+h2||p.v.𝕋11+l1ψ(θ+ξ)2sinξ2dξ|+|h21+h2||p.v.𝕋(11+l111+l2)ψ(θ+ξ)2sinξ2dξ|CψCβh1h2C1,β(1+h1C1,β+h2C1,β)2.\begin{split}&\;\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{\frac{h_{1}^{\prime}(\theta)}{1+h_{1}(\theta)}}{1+l_{1}}-\frac{\frac{h_{2}^{\prime}(\theta)}{1+h_{2}(\theta)}}{1+l_{2}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;\left|\frac{h_{1}^{\prime}}{1+h_{1}}-\frac{h_{2}^{\prime}}{1+h_{2}}\right|\left|\mathrm{p.v.}\int_{\mathbb{T}}\frac{1}{1+l_{1}}\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ &\;+\left|\frac{h_{2}^{\prime}}{1+h_{2}}\right|\left|\mathrm{p.v.}\int_{\mathbb{T}}\left(\frac{1}{1+l_{1}}-\frac{1}{1+l_{2}}\right)\frac{\psi(\theta+\xi)}{2\sin\frac{\xi}{2}}\,d\xi\right|\\ \leq&\;C\|\psi\|_{C^{\beta}}\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{2}.\end{split}

Combining this with (C.54) and (C.55),

(C.60) L2(1)L2(2)LCψCβh1h2C1,β(1+h1C1,β+h2C1,β)2.\|L_{2}^{(1)}-L_{2}^{(2)}\|_{L^{\infty}}\leq C\|\psi\|_{C^{\beta}}\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{2}.

Setting h1=0h_{1}=0 (or h2=0h_{2}=0) provides

(C.61) L2(i)LCψCβhiC1,β(1+hiC1,β)2.\|L_{2}^{(i)}\|_{L^{\infty}}\leq C\|\psi\|_{C^{\beta}}\|h_{i}\|_{C^{1,\beta}}(1+\|h_{i}\|_{C^{1,\beta}})^{2}.

To emphasize the ψ\psi-dependence of L2(i)L_{2}^{(i)}, we shall rewrite L2(i)L_{2}^{(i)} as L2,ψ(i)L_{2,\psi}^{(i)}. Since L~2(i)=hi(θ)L2,ψ/(1+hi)(i)\tilde{L}_{2}^{(i)}=-h_{i}^{\prime}(\theta)L_{2,\psi/(1+h_{i})}^{(i)}, we derive with (C.26), (C.60) and (C.61) that

(C.62) L~2(1)L~2(2)W˙1,ph1h2LpL2,ψ/(1+h1)(1)L+h2LpL2,ψ/(1+h1)(1)L2,ψ/(1+h1)(2)L+h2LpL2,ψ/(1+h1)ψ/(1+h2)(2)L+h1h2LL2,ψ/(1+h1)(1)W˙1,p+h2LL2,ψ/(1+h1)(1)L2,ψ/(1+h1)(2)W˙1,p+h2LL2,ψ/(1+h1)ψ/(1+h2)(2)W˙1,pCh1h2Lpψ1+h1Cβh1C1,β(1+h1C1,β)2+Ch2Lpψ1+h1Cβh1h2C1,β(1+h1C1,β+h2C1,β)2+Ch2Lpψ1+h1ψ1+h2Cβh2C1,β(1+h2C1,β)2+Ch1h2L(ψ1+h1W˙1,ph1W1,+ψLh1Lp)+Ch2L(ψ1+h1W˙1,ph1h2W1,+ψLh1h2Lp+ψLh1h2W1,(h1Lp+h2Lp))+Ch2L(ψ1+h1ψ1+h2W˙1,ph2W1,+ψ1+h1ψ1+h2Lh2Lp).\begin{split}&\;\|\tilde{L}_{2}^{(1)}-\tilde{L}_{2}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\|L_{2,\psi/(1+h_{1})}^{(1)}\|_{L^{\infty}}+\|h_{2}^{\prime\prime}\|_{L^{p}}\|L_{2,\psi/(1+h_{1})}^{(1)}-L_{2,\psi/(1+h_{1})}^{(2)}\|_{L^{\infty}}\\ &\;+\|h_{2}^{\prime\prime}\|_{L^{p}}\|L_{2,\psi/(1+h_{1})-\psi/(1+h_{2})}^{(2)}\|_{L^{\infty}}\\ &\;+\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\|L_{2,\psi/(1+h_{1})}^{(1)}\|_{\dot{W}^{1,p}}+\|h_{2}^{\prime}\|_{L^{\infty}}\|L_{2,\psi/(1+h_{1})}^{(1)}-L_{2,\psi/(1+h_{1})}^{(2)}\|_{\dot{W}^{1,p}}\\ &\;+\|h_{2}^{\prime}\|_{L^{\infty}}\|L_{2,\psi/(1+h_{1})-\psi/(1+h_{2})}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\left\|\frac{\psi}{1+h_{1}}\right\|_{C^{\beta}}\|h_{1}\|_{C^{1,\beta}}(1+\|h_{1}\|_{C^{1,\beta}})^{2}\\ &\;+C\|h_{2}^{\prime\prime}\|_{L^{p}}\left\|\frac{\psi}{1+h_{1}}\right\|_{C^{\beta}}\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{2}\\ &\;+C\|h_{2}^{\prime\prime}\|_{L^{p}}\left\|\frac{\psi}{1+h_{1}}-\frac{\psi}{1+h_{2}}\right\|_{C^{\beta}}\|h_{2}\|_{C^{1,\beta}}(1+\|h_{2}\|_{C^{1,\beta}})^{2}\\ &\;+C\|h_{1}^{\prime}-h_{2}^{\prime}\|_{L^{\infty}}\left(\left\|\frac{\psi}{1+h_{1}}\right\|_{\dot{W}^{1,p}}\|h_{1}\|_{W^{1,\infty}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}\|_{L^{p}}\right)\\ &\;+C\|h_{2}^{\prime}\|_{L^{\infty}}\left(\left\|\frac{\psi}{1+h_{1}}\right\|_{\dot{W}^{1,p}}\|h_{1}-h_{2}\|_{W^{1,\infty}}+\|\psi\|_{L^{\infty}}\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\right.\\ &\;\qquad+\|\psi\|_{L^{\infty}}\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\bigg{)}\\ &\;+C\|h_{2}^{\prime}\|_{L^{\infty}}\left(\left\|\frac{\psi}{1+h_{1}}-\frac{\psi}{1+h_{2}}\right\|_{\dot{W}^{1,p}}\|h_{2}\|_{W^{1,\infty}}+\left\|\frac{\psi}{1+h_{1}}-\frac{\psi}{1+h_{2}}\right\|_{L^{\infty}}\|h_{2}^{\prime\prime}\|_{L^{p}}\right).\end{split}

This gives

(C.63) L~2(1)L~2(2)W˙1,pCh1h2LpψCβ(h1C1,β+h2C1,β)(1+h1C1,β+h2C1,β)2+C(h1Lp+h2Lp)ψCβh1h2C1,β(1+h1C1,β+h2C1,β)3+Ch1h2W1,ψLp(h1W1,+h2W1,).\begin{split}&\;\|\tilde{L}_{2}^{(1)}-\tilde{L}_{2}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\|\psi\|_{C^{\beta}}(\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{2}\\ &\;+C(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}})\|\psi\|_{C^{\beta}}\|h_{1}-h_{2}\|_{C^{1,\beta}}(1+\|h_{1}\|_{C^{1,\beta}}+\|h_{2}\|_{C^{1,\beta}})^{3}\\ &\;+C\|h_{1}-h_{2}\|_{W^{1,\infty}}\|\psi^{\prime}\|_{L^{p}}(\|h_{1}\|_{W^{1,\infty}}+\|h_{2}\|_{W^{1,\infty}}).\end{split}

For L~3(i)\tilde{L}_{3}^{(i)}, we rewrite

(C.64) L~3(i)=j=1(1)j+1(1+hi(θ))jp.v.𝕋Aijψ(θ+ξ)2tanξ2dξ.\tilde{L}_{3}^{(i)}=\sum_{j=1}^{\infty}(-1)^{j+1}(1+h_{i}(\theta))^{-j}\mathrm{p.v.}\int_{\mathbb{T}}A_{i}^{j}\cdot\frac{\psi(\theta+\xi)}{2\tan\frac{\xi}{2}}\,d\xi.

Thanks to (C.40), (C.42), (C.44) and (C.46), we derive as in the proof of Lemma 5.5 that

(C.65) L~3(1)L~3(2)W˙1,pCh1h2W1,(ψLp(h1L+h2L)+ψL(h1Lp+h2Lp))+Ch1h2LpψL(h1L+h2L).\begin{split}&\;\|\tilde{L}_{3}^{(1)}-\tilde{L}_{3}^{(2)}\|_{\dot{W}^{1,p}}\\ \leq&\;C\|h_{1}-h_{2}\|_{W^{1,\infty}}(\|\psi^{\prime}\|_{L^{p}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}})+\|\psi\|_{L^{\infty}}(\|h_{1}^{\prime\prime}\|_{L^{p}}+\|h_{2}^{\prime\prime}\|_{L^{p}}))\\ &\;+C\|h_{1}^{\prime\prime}-h_{2}^{\prime\prime}\|_{L^{p}}\|\psi\|_{L^{\infty}}(\|h_{1}^{\prime}\|_{L^{\infty}}+\|h_{2}^{\prime}\|_{L^{\infty}}).\end{split}

Combining (C.53), (C.63) and (C.65), we obtain (5.45). MM \square

References

  • [1] Tommaso Lorenzi, Alexander Lorz, and Benoît Perthame. On interfaces between cell populations with different mobilities. Kinetic and Related Models, 10(1):299–311, 2017.
  • [2] HM Byrne and Mark AJ Chaplain. Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Mathematical and Computer Modelling, 24(12):1–17, 1996.
  • [3] Inwon Kim and Alpár Richárd Mészáros. On nonlinear cross-diffusion systems: an optimal transport approach. Calculus of Variations and Partial Differential Equations, 57(3):79, 2018.
  • [4] Federica Bubba, Benoît Perthame, Camille Pouchol, and Markus Schmidtchen. Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues. arXiv preprint arXiv:1901.01692, 2019.
  • [5] Piotr Gwiazda, Benoît Perthame, and Agnieszka Świerczewska-Gwiazda. A two-species hyperbolic-parabolic model of tissue growth. Communications in Partial Differential Equations, 44(12):1605–1618, 2019.
  • [6] M. Bertsch, M. E. Gurtin, D. Hilhorst, and L.A. Peletier. On interacting populations that disperse to avoid crowding: preservation of segregation. Journal of Mathematical Biology, 23:1–13, 1985.
  • [7] Michiel Bertsch, Roberta Dal Passo, and Masayasu Mimura. A free boundary problem arising in a simplified tumour growth model of contact inhibition. Interfaces and Free Boundaries, 12(2):235–250, 2010.
  • [8] José A Carrillo, Simone Fagioli, Filippo Santambrogio, and Markus Schmidtchen. Splitting schemes and segregation in reaction cross-diffusion systems. SIAM Journal on Mathematical Analysis, 50(5):5695–5718, 2018.
  • [9] Philip Geoffrey Saffman and Geoffrey Ingram Taylor. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245(1242):312–329, 1958.
  • [10] Morris Muskat. Two fluid systems in porous media. the encroachment of water into an oil sand. Physics, 5(9):250–264, 1934.
  • [11] Jacob Bear. Dynamics of fluids in porous media. Courier Corporation, 2013.
  • [12] Michael Siegel, Russel E Caflisch, and Sam Howison. Global existence, singular solutions, and ill-posedness for the Muskat problem. Communications on Pure and Applied Mathematics, 57(10):1374–1411, 2004.
  • [13] Bogdan-Vasile Matioc. Well-posedness and stability results for some periodic Muskat problems. arXiv preprint arXiv:1804.10403, 2018.
  • [14] Joachim Escher, Anca-Voichita Matioc, and Bogdan-Vasile Matioc. A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity, 25(1):73, 2011.
  • [15] David M Ambrose. Well-posedness of two-phase Hele-Shaw flow without surface tension. European Journal of Applied Mathematics, 15(5):597–607, 2004.
  • [16] Diego Córdoba and Francisco Gancedo. Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Communications in Mathematical Physics, 273(2):445–471, 2007.
  • [17] Peter Constantin, Diego Córdoba, Francisco Gancedo, and Robert M Strain. On the global existence for the Muskat problem. Journal of the European Mathematical Society, 15(1):201–227, 2012.
  • [18] Peter Constantin, Diego Córdoba, Francisco Gancedo, Luis Rodríguez-Piazza, and Robert M Strain. On the Muskat problem: global in time results in 2D and 3D. American Journal of Mathematics, 138(6):1455–1494, 2016.
  • [19] Diego Cordoba and Omar Lazar. Global well-posedness for the 2D stable Muskat problem in H3/2H^{3/2}. arXiv preprint arXiv:1803.07528, 2018.
  • [20] Antonio Córdoba, Diego Córdoba, and Francisco Gancedo. Interface evolution: the Hele-Shaw and Muskat problems. Annals of mathematics, pages 477–542, 2011.
  • [21] Antonio Córdoba, Diego Córdoba, and Francisco Gancedo. Porous media: the Muskat problem in three dimensions. Analysis & PDE, 6(2):447–497, 2013.
  • [22] Francisco Gancedo, Eduardo Garcia-Juarez, Neel Patel, and Robert M Strain. On the Muskat problem with viscosity jump: Global in time results. Advances in Mathematics, 345:552–597, 2019.
  • [23] CH Arthur Cheng, Rafael Granero-Belinchón, and Steve Shkoller. Well-posedness of the Muskat problem with H2H^{2} initial data. Advances in Mathematics, 286:32–104, 2016.
  • [24] Stanley Richardson. Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. Journal of Fluid Mechanics, 56(4):609–618, 1972.
  • [25] Charles M Elliott and Vladimır Janovskỳ. A variational inequality approach to Hele-Shaw flow with a moving boundary. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 88(1-2):93–107, 1981.
  • [26] Emmanuele DiBenedetto and Avner Friedman. The ill-posed Hele-Shaw model and the stefan problem for supercooled water. Transactions of the American Mathematical Society, 282(1):183–204, 1984.
  • [27] SD Howison. Complex variable methods in Hele-Shaw moving boundary problems. European Journal of Applied Mathematics, 3(3):209–224, 1992.
  • [28] Joachim Escher and Gieri Simonett. Classical solutions of multidimensional Hele-Shaw models. SIAM Journal on Mathematical Analysis, 28(5):1028–1047, 1997.
  • [29] Inwon C Kim. Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Archive for Rational Mechanics & Analysis, 168(4), 2003.
  • [30] CH Cheng, Daniel Coutand, and Steve Shkoller. Global existence and decay for solutions of the Hele-Shaw flow with injection. arXiv preprint arXiv:1208.6213, 2012.
  • [31] Andrew J Majda and Andrea L Bertozzi. Vorticity and incompressible flow, volume 27. Cambridge university press, 2002.
  • [32] H. Triebel. Theory of Function Spaces. Modern Birkhäuser Classics. Springer Basel, 2010.
  • [33] Loukas Grafakos. Classical Fourier analysis, volume 2. Springer, 2008.
  • [34] Luis A Caffarelli and Avner Friedman. Regularity of the free boundary of a gas flow in an nn-dimensional porous medium. Indiana University Mathematics Journal, 29(3):361–391, 1980.
  • [35] Luis A Caffarelli, Juan Luis Vázquez, and Noemı Irene Wolanski. Lipschitz continuity of solutions and interfaces of the nn-dimensional porous medium equation. Indiana University mathematics journal, 36(2):373–401, 1987.
  • [36] Luis A Caffarelli and Noemi I Wolanski. C1,α{C}^{1,\alpha} regularity of the free boundary for the nn-dimensional porous media equation. Communications on pure and applied mathematics, 43(7):885–902, 1990.
  • [37] Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press, 2007.
  • [38] Inwon Kim and Yuming Paul Zhang. Porous medium equation with a drift: Free boundary regularity. arXiv preprint arXiv:1812.08770, 2018.
  • [39] Yan-Yan Li and Michael Vogelius. Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Archive for Rational Mechanics and Analysis, 153(2):91–151, 2000.
  • [40] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order. springer, 2015.
  • [41] Roger Temam. Navier-Stokes equations, volume 2. North-Holland Amsterdam, 1984.
  • [42] Javier Duoandikoetxea. Fourier analysis, volume 29. American Mathematical Soc., 2001.
  • [43] Damien Lamberton. Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces Lp{L}^{p}. Journal of Functional Analysis, 72(2):252–262, 1987.
  • [44] Umberto Biccari, Mahamadi Warma, and Enrique Zuazua. Local regularity for fractional heat equations. In Recent Advances in PDEs: Analysis, Numerics and Control, pages 233–249. Springer, 2018.