This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: S. Venkataraaman 22institutetext: Associate Professor in Mathematics
School of Sciences
Indira Gandhi National Open University
Maidangarhi
Delhi 110068 22email: [email protected]
33institutetext: Prof. Manisha V. Kulkarni 44institutetext: Professor in Mathematics
International Institute of Information Technology
26/C, Phase-1, Electronics City
Hosur Road
560100
44email: [email protected]

Integral Basis for Quartic Kummer Extensions Over [i]\mathbb{Q}[i]

Dr. S. Venkataraman    Prof. Manisha V. Kulkarni
(Received: date / Accepted: date)
Abstract

Let K=[ι]K=\mathbb{Q}[\iota] and N=K[α4]N=K[\sqrt[4]{\alpha}], α[ι]\alpha\in\mathbb{Z}[\iota], α=fg2h3\alpha=fg^{2}h^{3}, ff, gg, h[ι]h\in\mathbb{Z}[\iota] are pairwise coprime and square free. Let 𝒪N{\cal O}_{\scriptstyle N} be the ring of integers of NN. In this article we construct normalised integral basis for 𝒪N{\cal O}_{\scriptstyle N} over [ι]\mathbb{Z}[\iota], that is an integral basis of the form

{1,f1(α)d1,f2(α)d2,f3(α)d3}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\frac{f_{2}(\alpha)}{d_{2}},\frac{f_{3}(\alpha)}{d_{3}}\right\}

where di[i]d_{i}\in\mathbb{Z}[i] and fi(X)f_{i}(X), 1i31\leq i\leq 3 are monic polynomials of degree ii over [ι]\mathbb{Z}[\iota]. We explicitly determine what did_{i}, 1in11\leq i\leq n-1 are in terms of ff, gg and hh.

Keywords:
Ring of integersIntegral basis Algebraic number theory
MSC:
11R04

1 Introduction

Let L/FL/F be an extension of number fields and let 𝒪F{\cal O}_{\scriptstyle F} and 𝒪L{\cal O}_{\scriptstyle L} be the ring of integers of LL and FF, respectively. Then, 𝒪L{\cal O}_{\scriptstyle L} has a natural structure of a module over 𝒪F{\cal O}_{\scriptstyle F}. When F=F=\mathbb{Q}, since 𝒪={\cal O}_{\scriptstyle\mathbb{Q}}=\mathbb{Z} is a PID, 𝒪L{\cal O}_{\scriptstyle L} is free over \mathbb{Z}. So, 𝒪L{\cal O}_{\scriptstyle L} has a basis over \mathbb{Z} that we call the integral basis for 𝒪L{\cal O}_{\scriptstyle L}. Dedekind gave an integral basis for cubic fields in dedekind1900 . Berwick computed integral bases for many extensions of \mathbb{Q} in berwick1927 . There has been a lot of work on topic and the literature is too vast to give an exhaustive list.

When FF\neq\mathbb{Q} the module 𝒪L{\cal O}_{\scriptstyle L} may not be free over 𝒪F{\cal O}_{\scriptstyle F}. H. B. Mann has discussed the question of existence of integral basis in hbmann . In this paper, we discuss the case where F=[ι]F=\mathbb{Q}[\iota] and L=(α4)L=\mathbb{Q}\left(\sqrt[4]{\alpha}\right) where α[i]\alpha\in\mathbb{Q}[i] and is not a fourth power. Hymo and Parry, in hp92 have already calculated the integral basis when α\alpha\in\mathbb{Q}. Funakura funakura has given integral basis when F=F=\mathbb{Q} and L=(k4)L=\mathbb{Q}\left(\sqrt[4]{k}\right), kk\in\mathbb{Z}. In jhakar2021 , the case F=F=\mathbb{Q}, L=F(an)L=F\left(\sqrt[n]{a}\right) is dealt with, where aa\in\mathbb{Z}, nn\in\mathbb{N} is such that, for each prime pp dividing nn, either pap\nmid a or the exponent of pp in aa is coprime to pp.

In Section 2, we recall some of the results that we need in proving the main result. In Section 3, we prove the main result of our paper.

2 Preliminaries

Throughout this paper, let ff, gg, hh be pairwise coprime, square free integers in [ι]\mathbb{Z}[\iota], m=fg2h3m=fg^{2}h^{3} and α=fg2h34\alpha=\sqrt[4]{fg^{2}h^{3}}. Let K=Q[ι]K=Q[\iota], M=(fh)M=\mathbb{Q}\left(\sqrt{fh}\right) and N=K[α]N=K[\alpha]. In this paper, we determine a normalised integral basis for N/KN/K. (See definition below.)

Let 𝒪F{\cal O}_{\scriptstyle F} be a P.I.D with quotient field FF, where FF is a finite extension of \mathbb{Q}. Let LL be an extension of degree nn over FF and 𝒪L{\cal O}_{\scriptstyle L}, the integral closure of 𝒪F{\cal O}_{\scriptstyle F} in LL. Let α𝒪L\alpha\in{\cal O}_{\scriptstyle L} be such that F(α)=LF(\alpha)=L. We have the following result.

Theorem 2.1 (Normalised Integral Basis)

There exist d1,d2,,dn𝒪Fd_{1},d_{2},\ldots,d_{n}\in{\cal O}_{\scriptstyle F} and monic polynomials fi(X)𝒪F[X]f_{i}(X)\in{\cal O}_{\scriptstyle F}[X], 1in11\leq i\leq n-1, deg(fi(X))=ideg(f_{i}(X))=i, such that

{1,f1(α)d1,f2(α)d2,fn1(α)dn1}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\frac{f_{2}(\alpha)}{d_{2}}\cdots,\frac{f_{n-1}(\alpha)}{d_{n-1}}\right\} (1)

is a basis for 𝒪L{\cal O}_{\scriptstyle L} over 𝒪F{\cal O}_{\scriptstyle F}. Further, did_{i}’s satisfy the following conditions:

  1. (1)

    Each fif_{i} can be replaced by any monic polynomial g𝒪K[X]g\in{\cal O}_{\scriptstyle K}[X] of the same degree such that g(α)diS\displaystyle{g(\alpha)\over{d_{i}}}\in S.

  2. (2)

    If g(α)q𝒪L\displaystyle{g(\alpha)\over q}\in{\cal O}_{\scriptstyle L} for some monic polynomial g(X)𝒪K[X]g(X)\in{\cal O}_{\scriptstyle K}[X] of degree ii and q𝒪Kq\in{\cal O}_{\scriptstyle K}, qdiq\mid d_{i}.

  3. (3)

    didjdi+jd_{i}d_{j}\mid d_{i+j} if i+j<ni+j<n.

  4. (4)

    (d1d2dn1)2disc(L/F)=disc(α)(d_{1}d_{2}\ldots d_{n-1})^{2}\operatorname{disc}(L/F)=\operatorname{disc}(\alpha).

  5. (5)

    d1n(n1)disc(α)d_{1}^{n(n-1)}\mid\operatorname{disc}(\alpha).

A. A. Albert calls the integral basis of the form given in 1 a Normalised Integral Basis in the case K=K=\mathbb{Q}. See albert37 . He attributes this result to berwick1927 . This result seems fairly well known for K=K=\mathbb{Q} and can be easily extended to any number field whose ring of integers is a PID. (For K=K=\mathbb{Q}, see mar , page 26 and exercises 38, 39 and 40 in pages 34 and 35. See also alaca_williams_2003 , page 169 though the formulation is slightly different.) We give a complete proof of this for the case where KK is a PID in the Appendix.

We now state a result proved in mar , page 21, proved in the case K=K=\mathbb{Q}.

Lemma 1

Let L/FL/F be an extension of nunmber fields, [L:K]=n[L:K]=n. Further, suppose that 𝒪K{\cal O}_{\scriptstyle K} is a PID. Let

{α1,α2,,αn}S\left\{\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\right\}\subset S

be a basis for L/FL/F and

d=disc(α1,α2,,αn)=|TrKL(αiαj)|2d=\operatorname{disc}\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\right)=\left|Tr^{L}_{K}\left(\alpha_{i}\alpha_{j}\right)\right|^{2}

Then, every α𝒪L\alpha\in{\cal O}_{\scriptstyle L} can be expressed in the form

m1α1+m2α2++mnαnd\frac{m_{1}\alpha_{1}+m_{2}\alpha_{2}+\cdots+m_{n}\alpha_{n}}{d} (2)

with all mj𝒪Km_{j}\in{\cal O}_{\scriptstyle K} and all mj2m_{j}^{2} divisible by dd.

See mar , Chapter 2, Theorem 9 for the case K=K=\mathbb{Q}. The same proof carries over here.

2.1 Quadratic Sub Extension

In this subsection, we determine integral basis and discriminant for MM over K=[ι]K=\mathbb{Q}[\iota]. We let γ=fh\gamma=\sqrt{fh} where ff and hh are square free and coprime to each other. Let Δ\Delta be the discriminant of M/KM/K.

Given α𝒪K\alpha\in{\cal O}_{\scriptstyle K}, we can write α=α1α2\alpha=\alpha_{1}\alpha_{2} such that α1\alpha_{1} is coprime to 1+ι1+\iota and the only prime divisor of α2\alpha_{2} is 1+ι1+\iota. We call α1\alpha_{1} the odd part of α\alpha and α2\alpha_{2} the even part of α\alpha. Of course α1\alpha_{1} and α2\alpha_{2} are determined only up to a unit. We will call a prime π𝒪K\pi\in{\cal O}_{\scriptstyle K} an odd prime if it is coprime to 1+ι1+\iota. We will use the 1 to determine an integral basis for M/KM/K.

Proposition 1

The extension M/KM/K has an integral basis of the form {1,a+γd1}\{1,\frac{a+\gamma}{d_{1}}\} with the following properties:

  1. (1)

    a2fh(modd12)a^{2}\equiv fh\enspace\bigl{(}{\rm mod}~{}d_{1}^{2}\bigr{)} where d124d_{1}^{2}\mid 4.

  2. (2)

    Δ=4fhd12\Delta=\frac{4fh}{d_{1}^{2}}.

  3. (3)

    If aa(modd1)a^{\prime}\equiv a\enspace\bigl{(}{\rm mod}~{}d_{1}\bigr{)}, then {1,a+γd1}\{1,\frac{a^{\prime}+\gamma}{d_{1}}\} is also an integral basis for M/KM/K.

Proof

By 2.1 there is an integral basis of the form {1,a+γd1}\left\{1,\displaystyle{a+\gamma\over d_{1}}\right\}, a[ι]a\in\mathbb{Z}[\iota] for M/KM/K. Since a+γd1𝒪M\frac{a+\gamma}{d_{1}}\in{\cal O}_{\scriptstyle M} it follows that NM/K(a+γd1)=a2fhd12𝒪KN_{M/K}\left(\frac{a+\gamma}{d_{1}}\right)=\frac{a^{2}-fh}{d_{1}^{2}}\in{\cal O}_{\scriptstyle K}, therefore a2fh(modd12)a^{2}\equiv fh\enspace\bigl{(}{\rm mod}~{}d_{1}^{2}\bigr{)}.

Further discM/K(γ)=4fh\operatorname{disc}_{M/K}(\gamma)=4fh. Then, from property 4 of 2.1 it follows that d12Δ=4fhd_{1}^{2}\Delta=4fh. So, property 2 follows.

We now show that d124d_{1}^{2}\mid 4. From 2.1, 5, it follows that d124fhd_{1}^{2}\mid 4fh. If π\pi is an odd prime factor of d1d_{1}, π4\pi\nmid 4, and π2fh\pi^{2}\mid fh which is not possible since ff and hh are square free and pairwise coprime. So, d12d_{1}^{2} is a power of 1+ι1+\iota. This completes the proof of 1.

Since ff and hh are square free and pairwise coprime, the maximum power of 1+ι1+\iota dividing 4fh4fh is five. Since d12d_{1}^{2} is an even power of 1+ι1+\iota, d124d_{1}^{2}\mid 4.

If aa(modd1)a^{\prime}\equiv a\enspace\bigl{(}{\rm mod}~{}d_{1}\bigr{)}, we have a+γd1=aad1+a+γd1𝒪M\frac{a^{\prime}+\gamma}{d_{1}}=\frac{a^{\prime}-a}{d_{1}}+\frac{a+\gamma}{d_{1}}\in{\cal O}_{\scriptstyle M} since d1(aa)d_{1}\mid\left(a-a^{\prime}\right). Therefore, by 1, 2.1, it follows that {1,a+γd1}\{1,\frac{a^{\prime}+\gamma}{d_{1}}\} is also an integral basis.

From 1, 1, it follows that d1d_{1} is 11, 1+ι1+\iota or 22. Note further that, d1=2d_{1}=2 iff fhfh is a square modulo four, d1=(1+i)d_{1}=(1+i) iff fhfh is a square modulo 2, but not a square modulo 4. We have d1=1d_{1}=1 iff fhfh is not a square modulo 2.

If d1=2d_{1}=2, fhfh has to be a square modulo 4. The only squares (mod4[ι])\enspace\bigl{(}{\rm mod}~{}4\mathbb{Z}[\iota]\bigr{)} are ±1\pm 1. If fh1(mod4[ι])fh\equiv 1\enspace\bigl{(}{\rm mod}~{}4\mathbb{Z}[\iota]\bigr{)}, {1,1+fh2}\left\{1,\displaystyle{1+\sqrt{fh}\over 2}\right\} is an integral basis and the discriminant is fhfh. If fh1(mod4[ι])fh\equiv-1\enspace\bigl{(}{\rm mod}~{}4\mathbb{Z}[\iota]\bigr{)}, {1,i+fh2}\left\{1,\displaystyle{i+\sqrt{fh}\over 2}\right\} is an integral basis and the discriminant is again fhfh.

If d1=1+id_{1}=1+i, fhfh has to be a square modulo 2 and not a square modulo 4. Note that fh0(mod2[ι])fh\not\equiv 0\enspace\bigl{(}{\rm mod}~{}2\mathbb{Z}[\iota]\bigr{)} since fhfh is square free and ff and hh are pairwise coprime.

The squares (mod2[ι])\enspace\bigl{(}{\rm mod}~{}2\mathbb{Z}[\iota]\bigr{)}, but non squares (mod4[ι])\enspace\bigl{(}{\rm mod}~{}4\mathbb{Z}[\iota]\bigr{)} are 1+2ι1+2\iota, 1+2ι-1+2\iota. If fh1+2ι(mod4[ι])fh\equiv 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\mathbb{Z}[\iota]\bigr{)}, an integral basis is {1,1+fh1+ι}\left\{1,\displaystyle{1+\sqrt{fh}\over 1+\iota}\right\}, and the discriminant is 2fh2fh. If fh3+2ι(mod4[ι])fh\equiv 3+2\iota\enspace\bigl{(}{\rm mod}~{}4\mathbb{Z}[\iota]\bigr{)}, {1,1+fh1+ι}\left\{1,\displaystyle{-1+\sqrt{fh}\over 1+\iota}\right\} is an integral basis and the discriminant is 2fh2fh.

If d1=1d_{1}=1, then fhfh is not a square modulo 2. We have that ι\iota, 3ι3\iota, 1+ι1+\iota, 1+3ι1+3\iota, 2+ι2+\iota, 2+3ι2+3\iota and 3+3ι3+3\iota not squares (mod2[ι])\enspace\bigl{(}{\rm mod}~{}2\mathbb{Z}[\iota]\bigr{)}. Either they are 0(mod(1+ι))0\enspace\bigl{(}{\rm mod}~{}(1+\iota)\bigr{)} or i(mod2[ι])i\enspace\bigl{(}{\rm mod}~{}2\mathbb{Z}[\iota]\bigr{)}. In both the cases, the integral basis is {1,fh}\left\{1,\sqrt{fh}\right\} and the discriminant is 4fh4fh. We summarise the result in 1.

CaseIntegral basisDiscriminantfh1(mod4){1,1+fh2}fhfh1(mod4){1,ι+fh2}fhfh1+2ι(mod4){1,1+fh1+ι}2fhfh1+2ι(mod4){1,ι+fh1+ι}2fhfhι(mod2) or 0(mod1+ι){1,fh}4fh\begin{array}[]{lcc}\hline\cr\textrm{Case}&\textrm{Integral basis}&\textrm{Discriminant}\\ \hline\cr&&\\[-7.0pt] fh\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}&\left\{1,\displaystyle{1+\sqrt{fh}\over 2}\right\}&fh\\ fh\equiv-1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}&\left\{1,\displaystyle{\iota+\sqrt{fh}\over 2}\right\}&fh\\ fh\equiv 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}&\left\{1,\displaystyle{1+\sqrt{fh}\over 1+\iota}\right\}&2fh\\ fh\equiv-1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}&\left\{1,\displaystyle{\iota+\sqrt{fh}\over 1+\iota}\right\}&2fh\cr fh\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)}\textrm{ or }0\enspace\bigl{(}{\rm mod}~{}1+\iota\bigr{)}&\left\{1,\sqrt{fh}\right\}&4fh\\ \hline\cr\end{array}

Table 1: Basis and discriminant in the quadratic case

We recall some terms and facts from algebraic number theory.

Definition 1

Let L/FL/F be an extension of number fields of degree nn and let PP be a prime ideal in 𝒪K{\cal O}_{\scriptstyle K}. Let

P=Q1e1Q2e2QrerP=Q_{1}^{e_{1}}Q_{2}^{e_{2}}\ldots Q_{r}^{e_{r}}

be the decompostion of PP into prime ideals in 𝒪K{\cal O}_{\scriptstyle K}. We say that PP is ramified in L/FL/F if ei>1e_{i}>1 for some ii, 1ir1\leq i\leq r. We say that the prime PP is tamely ramified in L/FL/F if the characteristic of (𝒪KP)\left(\displaystyle{{\cal O}_{\scriptstyle K}\over P}\right) does not divide eie_{i} for any ii, 1ir1\leq i\leq r.

In general, we have

i=1rei(Qi|P)f(Qi|P)=n\sum_{i=1}^{r}e_{i}(Q_{i}|P)f(Q_{i}|P)=n (3)

where QiQ_{i} and PP are as in 1. Recall that, if L/FL/F is a galois extension, all the e(Qi|P)e(Q_{i}|P) and f(Qi|P)f(Q_{i}|P) are equal. Suppose L/FL/F is a galois extension and e(Qi|P)=ee(Q_{i}|P)=e, f(Qi|P)=ff(Q_{i}|P)=f for1ir1\leq i\leq r. Then,3 becomes

ref=nref=n (4)

The next result gives equivalent conditions for a prime to be tamely ramified in a galois extension of number fields.

Proposition 2

Let L/FL/F be a galois extension of algebraic number fields and PP be a prime in 𝒪K{\cal O}_{\scriptstyle K} with ramification index ee. Then, following statements are equivalent:

  1. (1)

    PP is tamely ramifed in L/FL/F.

  2. (2)

    PP doesn’t divide TrL/F(𝒪L)Tr_{L/F}({\cal O}_{\scriptstyle L}).

  3. (3)

    If DD is the different of L/FL/F, νQ(D)=e1\nu_{Q}(D)=e-1 for any prime QQ in 𝒪L{\cal O}_{\scriptstyle L} with Q𝒪L=PQ\cap{\cal O}_{\scriptstyle L}=P.

See cassels-frohlich-old , Theorem 2, page 21 for the local case. We can easily deduce 2 from this.

We now recall a result regarding discriminant.

Proposition 3

Let FFLF\subset F^{\prime}\subset L. Then

disc(L/F)=NF/F(disc(L/F))(disc(F/F))[L:F]\operatorname{disc}(L/F)=N_{F^{\prime}/F}\left(\operatorname{disc}(L/F^{\prime})\right)(\operatorname{disc}(F^{\prime}/F))^{[L:F^{\prime}]} (5)

2.2 Ramification Groups

In this subsection we gather various results on ramification groups that we will use in the proof the main result. We fix a prime pp. Let FLF\subset L be finite extensions of QpQ_{p}, the completion of QQ with respect to the discrete valuation defined by the prime pp. Let νL\nu_{L} and νF\nu_{F} be the normalised valuation on LL and FF, respectively, such that νL(L)=\nu_{L}(L^{*})=\mathbb{Z} and νF(F)=\nu_{F}(F^{*})=\mathbb{Z}. We let 𝒪K={xK|νK(x)0}{\cal O}_{\scriptstyle K}=\left\{x\in K^{*}|\nu_{K}(x)\geq 0\right\}. We define 𝒪L{\cal O}_{\scriptstyle L} similarly. Then, there is a θ𝒪L\theta\in{\cal O}_{\scriptstyle L} such that {1,θ,,θn1}\{1,\theta,\ldots,\theta^{n-1}\} is a basis for 𝒪L{\cal O}_{\scriptstyle L} over 𝒪K{\cal O}_{\scriptstyle K}. If L/KL/K is totally ramified, {1,π,,πn1}\{1,\pi,\ldots,\pi^{n-1}\} is a basis for 𝒪L{\cal O}_{\scriptstyle L} over 𝒪K{\cal O}_{\scriptstyle K}, where π\pi is a generator of the unique prime ideal of 𝒪L{\cal O}_{\scriptstyle L}. We also call π\pi a uniformiser in LL.

Let GG be the galois group of L/FL/F. We define iG:Gi_{G}\colon G\to\mathbb{Z} by iG(σ)=νL(σ(θ)θ)i_{G}(\sigma)=\nu_{L}(\sigma(\theta)-\theta)

Definition 2

Then, for i0i\geq 0, we define

Gi={σGiG(x)i+1}G_{i}=\left\{\sigma\in G\mid i_{G}(x)\geq i+1\right\} (6)

Recall that e(Q|P)=|G1|e(Q|P)=|G_{1}|. Further Gi+1GiG_{i+1}\subset G_{i} and Gi={e}G_{i}=\{e\} for sufficiently large ii.

We have the following formula for the power of QQ dividing the different of L/FL/F in terms of the ramification groups.

Proposition 4

Let L/FL/F be a galois extension. Let DD be the different of L/KL/K. Then,

νL(D)=σ1iG(σ)=i=0(|Gi|1)\nu_{L}(D)=\sum_{\sigma\neq 1}i_{G}(\sigma)=\sum_{i=0}^{\infty}\left(|G_{i}|-1\right) (7)

See lf , page 64.

Suppose KKLK\subset K^{\prime}\subset L and K/KK^{\prime}/K is a normal extension so that H=G(L/K)H=G(L/K^{\prime}) is a normal subgroup of KK^{\prime}. We have the following result:

Proposition 5

Let GG be the galois group of L/FL/F and let H=GjH=G_{j} for some j0j\geq 0. Then (G/H)i=Gi/H(G/H)_{i}=G_{i}/H for iji\leq j and (G/H)i={1}(G/H)_{i}=\{1\} for iji\geq j.

See Corollary to Proposition 3, page 64 in lf .

If an integer ii is such that Gi/Gi+1{1}G_{i}/G_{i+1}\neq\{1\}, then ii is called a (lower) break number.

We also recall the definition of the Herbrand function. For real tt let Gt=GtG_{t}=G_{\lceil t\rceil} where x\lceil x\rceil is the largest integer x\geq x. We then define

ϕ(u)=0u1[G0:Gt]𝑑t for u0\phi(u)=\int_{0}^{u}\frac{1}{[G_{0}:G_{t}]}\,dt\textrm{ for }u\geq 0 (8)

Then, ϕ\phi is a continuos, piecewise linear and an increasing function and therefore has an inverse ψ(u)\psi(u).

We define the upper numbering of the ramification groups by Gt=Gψ(t)G^{t}=G_{\psi(t)} or Gt=Gϕ(t)G_{t}=G^{\phi(t)}. A real number tt is an upper break number if Gt>Gt+ϵG^{t}>G^{t+\epsilon} for ϵ>0\epsilon>0. If L/FL/F is an abelian extensions, the upper break numbers are integers. We have Gbi=GbiG^{b^{i}}=G_{b_{i}} for each i1i\geq-1. Further, the upper numbering behaves well with respect to passing to the quotient. If HH is a normal subgroup of GG, we have

(G/H)v=GvH/H(G/H)^{v}=G^{v}H/H (9)

We now recall some known results for convenience. Let e=νL(p)e=\nu_{L}(p) be the absolute ramification index of LL.

Proposition 6

Let Suppose i>e/(p1)i>e/(p-1). Then, Gi={1}G_{i}=\{1\}

See lf , exercise 3 c), page 72. We have the following result:

Proposition 7

Let GG be the galois group of L/FL/F and let H=GjH=G_{j} for some j0j\geq 0. Then (G/H)i=Gi/H(G/H)_{i}=G_{i}/H for iji\leq j and (G/H)i={1}(G/H)_{i}=\{1\} for iji\geq j.

See Corollary to Proposition 3, page 64 in lf . Furtherm we have the following result:

Proposition 8

The integers ii, i1i\geq 1, such that GiGi+1G_{i}\neq G_{i+1} are congruent to each other modp\bmod{p} where pp is the charcteristic of the residue field LL.

See lf , Proposition 11, page 70.

We get more detailed information when we assume that L/FL/F is totally ramified cyclic extension of prime power degree.

Proposition 9

Let Suppose L/FL/F ia totally ramified, cyclic extension of degree pnp^{n}, n1n\geq 1. Let ee^{\prime} be the absolute ramfication index of FF and b1>e/(p1)b^{1}>e^{\prime}/(p-1). Then, the upper break numbers are precisely bi=b1+(i1)eb^{i}=b^{1}+(i-1)e^{\prime}.

See wyman , Theorem 3.

We continue to assume that L/FL/F is a totally ramified, cyclic extension of order pnp^{n}, nn\in\mathbb{N}. Let G(i)G(i) be the unique subgroup of of GG of order pnip^{n-i}. We know that each G(i)G(i) is a ramification group of L/FL/F. Then, there are strictly positive integers i0i_{0}, i1i_{1}, \ldots, in1i_{n-1} such that

G0==Gi0=G=G0==Gi0Gi0+1==Gi0+pi1=G(1)=Gi0+1==Gi0+i1Gi0+pi1+1==Gi0+pi1+p2i2=G(2)=Gi0+i1+1==Gi0+i1+i2Gi0+pi1++pn1in1+1={1}=Gi0+i+1++in1+1\begin{gathered}G_{0}=\cdots=G_{i_{0}}=G=G^{0}=\cdots=G^{i_{0}}\\ G_{i_{0}+1}=\cdots=G_{i_{0}+pi_{1}}=G(1)=G^{i_{0}+1}=\cdots=G^{i_{0}+i_{1}}\\ G_{i_{0}+pi_{1}+1}=\cdots=G_{i_{0}+pi_{1}+p^{2}i_{2}}=G(2)=G^{i_{0}+i_{1}+1}=\cdots=G^{i_{0}+i_{1}+i_{2}}\\ \vdots\\ G_{i_{0}+pi_{1}+\cdots+p^{n-1}i_{n-1}+1}=\{1\}=G^{i_{0}+i+1+\cdots+i_{n-1}+1}\end{gathered}

Therefore, if i0i_{0}, i1i_{1}, \ldots, in1i_{n-1} are given by the above equations we have

b1\displaystyle b_{1} =i0\displaystyle=i_{0} b1\displaystyle b^{1} =i0\displaystyle=i_{0}
b2\displaystyle b_{2} =i0+pi1\displaystyle=i_{0}+pi_{1} b2\displaystyle b^{2} =i0+i1\displaystyle=i_{0}+i_{1}
\displaystyle\vdots \displaystyle\vdots
bn\displaystyle b_{n} =i0+pi1+pn1in1\displaystyle=i_{0}+pi_{1}+\cdots p^{n-1}i_{n-1} bn1\displaystyle b^{n-1} =i0+i1++in1\displaystyle=i_{0}+i_{1}+\cdots+i_{n-1}

It follows that, given the upper numbering for L/KL/K, we can calculate the lower numbering recursively as follows:

b1\displaystyle b_{1} =b1\displaystyle=b^{1} (10)
b2\displaystyle b_{2} =b1+p(b2b1)\displaystyle=b_{1}+p\left(b^{2}-b^{1}\right) (11)
\displaystyle\vdots
bn\displaystyle b_{n} =bn1+pn1(bnbn1)\displaystyle=b_{n-1}+p^{n-1}\left(b^{n}-b^{n-1}\right) (12)

3 Integral Basis

In this section we determine an integral basis for the extension N/KN/K.

Since [ι]\mathbb{Z}[\iota] is a P.I.D, there is a basis

{1,α2=a0+αd1,α3=b0+b1α+α2d2,α4=c0+c1α+c2α2+α3d3}\left\{1,\alpha_{2}={a_{0}+\alpha\over{d_{1}}},\alpha_{3}={\displaystyle b_{0}+b_{1}\alpha+\alpha^{2}\over{\displaystyle d_{2}}},\alpha_{4}={\displaystyle c_{0}+c_{1}\alpha+c_{2}\alpha^{2}+\alpha^{3}\over{\displaystyle d_{3}}}\right\} (13)

with a0)a_{0}), b0b_{0}, b1b_{1}, c0c_{0} c1c_{1}, c2c_{2} and c3c_{3} in 𝒪K{\cal O}_{\scriptstyle K}. We will determine d1,d2,d3d_{1},d_{2},d_{3}.

Remark 1

From 2.1, 2, it follows that α2\alpha_{2} can be replaced by a0+αd1\displaystyle{a_{0}^{\prime}+\alpha\over d_{1}} for any a0a_{0}^{\prime} with a0a0(modd1)a_{0}^{\prime}\equiv a_{0}\enspace\bigl{(}{\rm mod}~{}d_{1}\bigr{)}. Similarly, α3\alpha_{3} can be replaced by b0+b1α2+α3d2\displaystyle{b_{0}^{\prime}+b_{1}^{\prime}\alpha^{2}+\alpha^{3}\over d_{2}} with b0b0(modd2)b_{0}\equiv b_{0}^{\prime}\enspace\bigl{(}{\rm mod}~{}d_{2}\bigr{)}, b1b1(modd2)b_{1}^{\prime}\equiv b_{1}\enspace\bigl{(}{\rm mod}~{}d_{2}\bigr{)} and α4\alpha_{4} can be replaced by c0+c1α+c2α2+α3d3\displaystyle{c_{0}^{\prime}+c_{1}^{\prime}\alpha+c_{2}^{\prime}\alpha^{2}+\alpha^{3}\over d_{3}} with c0c0(modd3)c_{0}^{\prime}\equiv c_{0}\enspace\bigl{(}{\rm mod}~{}d_{3}\bigr{)}, c1c1(modd3)c_{1}^{\prime}\equiv c_{1}\enspace\bigl{(}{\rm mod}~{}d_{3}\bigr{)}, c2c2(modd3)c_{2}^{\prime}\equiv c_{2}\enspace\bigl{(}{\rm mod}~{}d_{3}\bigr{)}.

We have

disc(α)=NN/K(4α3)=44α3(ια3)(α3)(ια3)=(1+ι)16f3g6h9\operatorname{disc}(\alpha)=N_{N/K}(4\alpha^{3})=4^{4}\alpha^{3}(-\iota\alpha^{3})(-\alpha^{3})(-\iota\alpha^{3})=(1+\iota)^{16}f^{3}g^{6}h^{9}

From the property 4 of 2.1, it follows that

(d1d2d3)2disc(N/K)=(1+ι)16f3g6h9\left(d_{1}d_{2}d_{3}\right)^{2}\operatorname{disc}(N/K)=(1+\iota)^{16}f^{3}g^{6}h^{9} (14)

With this terminology, let δ1\delta_{1}, δ2\delta_{2} and δ3\delta_{3} be the even parts of d1d_{1}, d2d_{2} and d3d_{3}, respectively. Let μ1\mu_{1}, μ2\mu_{2} and μ3\mu_{3} be the odd parts of d1d_{1}, d2d_{2} and d3d_{3}, respectively.

The next lemma is a purely computational result that we will use later.

Lemma 2

Let β3=b0+b1α+α2δ2\beta_{3}=\displaystyle{b_{0}+b_{1}\alpha+\alpha^{2}\over\delta_{2}} and β4=c0+c1α+c2α2+c3δ3\beta_{4}=\displaystyle{c_{0}+c_{1}\alpha+c_{2}\alpha^{2}+c_{3}\over\delta_{3}} where b0b_{0}, b1b_{1}, c0c_{0}, c1c_{1} and c2𝒪Kc_{2}\in{\cal O}_{\scriptstyle K}. Then, we have β3\beta_{3}, β4𝒪N\beta_{4}\in{\cal O}_{\scriptstyle N} and

TrN/M(β3)\displaystyle Tr_{N/M}\left(\beta_{3}\right) =2(b0+α2δ2)𝒪M\displaystyle=2\left(\displaystyle{b_{0}+\alpha^{2}\over\delta_{2}}\right)\in{\cal O}_{\scriptstyle M} (15)
NN/M(β3)\displaystyle N_{N/M}\left(\beta_{3}\right) =(b02+m)+(2b0b12)α2δ22𝒪M\displaystyle=\displaystyle{\left(b_{0}^{2}+m\right)+\left(2b_{0}-b_{1}^{2}\right)\alpha^{2}\over\delta_{2}^{2}}\in{\cal O}_{\scriptstyle M} (16)
TrN/M(β4)\displaystyle Tr_{N/M}\left(\beta_{4}\right) =2(c0+c2α2δ3)𝒪M\displaystyle=2\left(\displaystyle{c_{0}+c_{2}\alpha^{2}\over\delta_{3}}\right)\in{\cal O}_{\scriptstyle M} (17)
NN/M(β4)\displaystyle N_{N/M}\left(\beta_{4}\right) =(c02+c22m2c1m)+(2c0c2c12m)δ32𝒪M\displaystyle=\displaystyle{\left(c_{0}^{2}+c_{2}^{2}m-2c_{1}m\right)+\left(2c_{0}c_{2}-c_{1}^{2}-m\right)\over\delta_{3}^{2}}\in{\cal O}_{\scriptstyle M} (18)
Proof

We have β3=μ2α3\beta_{3}=\mu_{2}\alpha_{3} and β4=μ3α4\beta_{4}=\mu_{3}\alpha_{4}. Since α2\alpha_{2}, α3\alpha_{3}, μ2\mu_{2} and μ3\mu_{3} are algebraic integers, so are β3\beta_{3} and β4\beta_{4}. The remaining part of the proof is a simple computation.

Before we find the integral basis, we gather some facts that we will use in the proof as a proposition.

Proposition 10
  1. (1)

    If π1+ι\pi\neq 1+\iota is any prime, then π\pi doesn’t divide d1d_{1}. Further, (1+ι)2d1(1+\iota)^{2}\nmid d_{1} if 1+ιh1+\iota\nmid h.

  2. (2)

    If π\pi is a prime in 𝒪K{\cal O}_{\scriptstyle K} and π\pi divides ff, gg or hh, then π\pi is ramified in N/KN/K.

  3. (3)

    Let π1+ι\pi\neq 1+\iota. If πfh\pi\mid fh, νπ(disc(N/K)))=3\nu_{\pi}(\operatorname{disc}(N/K)))=3. If πg\pi\mid g νπ(disc(N/K))=2\nu_{\pi}(\operatorname{disc}(N/K))=2.

  4. (4)

    We have ghd2gh\mid d_{2} and gh2d3gh^{2}\mid d_{3}. Further, the odd part of ghgh is the same as the odd part of d2d_{2} and the odd part of gh2gh^{2} is the same as the odd part of d3d_{3}.

  5. (5)

    δ1|1+ι\delta_{1}|1+\iota and δ1=1+ι\delta_{1}=1+\iota if and only if m1(mod4𝒪K)m\equiv 1\enspace\bigl{(}{\rm mod}~{}4{\cal O}_{\scriptstyle K}\bigr{)}.

  6. (6)

    If mm is odd δ34\delta_{3}\mid 4. Also, N/KN/K is unramified at (1+ι)(1+\iota) iff δ3=4\delta_{3}=4.

Proof
  1. (1)

    If π\pi divides d1d_{1}, π12\pi^{12} divides disc(α)\operatorname{disc}(\alpha) from property 2 of 2.1. Also, π\pi can divide only one of ff, gg or hh since ff, gg and hh are pairwise coprime. Since ff, gg and hh are square free π12\pi^{12} can’t divide f3f^{3}, g6g^{6} or h9h^{9}.

    If (1+ι)2d1(1+\iota)^{2}\mid d_{1}, (1+ι)24(1+\iota)^{24} divides the RHS of 14. If 1+ιh1+\iota\nmid h, the maximum power of 1+ι1+\iota that divides the RHS of 14 is 22. (This will happen when 1+ιg1+\iota\mid g.)

  2. (2)

    If πfh\pi\mid fh, from the computation of the disriminants in 1 π\pi is ramified in M/KM/K and hence ramified in N/KN/K. Let π\pi divide gg. We have

    (α4)=(fg2h3)(π)\left(\alpha^{4}\right)=\left(fg^{2}h^{3}\right)\subset\left(\pi\right) (19)

    in NN. If π\pi is unramified in N/KN/K, f=1f=1 and r=4r=4 then (π)=Q1Q2Q3Q4\left(\pi\right)=Q_{1}Q_{2}Q_{3}Q_{4}. If r=2r=2, f=2f=2 we have (π)=Q1Q2\left(\pi\right)=Q_{1}Q_{2} and (π)(\pi) is inert if r=1r=1, f=4f=4.

    In the first case, from 19 it follows that (α4)=Q1Q2Q3Q4J(\alpha^{4})=Q_{1}Q_{2}Q_{3}Q_{4}J for some ideal JJ in 𝒪N{\cal O}_{\scriptstyle N}. Hence, we have α4Qi\alpha^{4}\in Q_{i}, 1i41\leq i\leq 4. It follows that αQi\alpha\in Q_{i} for 1i41\leq i\leq 4. Therefore, (α)=Q1Q2Q3Q4J(\alpha)=Q_{1}Q_{2}Q_{3}Q_{4}J^{\prime} for some ideal JJ^{\prime} in 𝒪N{\cal O}_{\scriptstyle N}. So, NN/K(Q1Q2Q3Q4)(NN/K((α)))N_{N/K}\left(Q_{1}Q_{2}Q_{3}Q_{4}\right)\mid\left(N_{N/K}((\alpha))\right), i.e. π4NM/K(α)\pi^{4}\mid N_{M/K}(\alpha). Therefore, π12NM/K(α3)\pi^{12}\mid N_{M/K}\left(\alpha^{3}\right). If π\pi is odd, this contradicts the fact that g6g^{6} divides disc(α)\operatorname{disc}(\alpha) and no higher power of gg divides disc(α)\operatorname{disc}(\alpha).

    If π=(1+i)\pi=(1+i), the same argument gives that π28NN/K(4α3)\pi^{28}\mid N_{N/K}(4\alpha^{3}) since π16NN/K(4)(=44)\pi^{16}\mid N_{N/K}(4)(=4^{4}) and π12NN/K(α3)\pi^{12}\mid N_{N/K}(\alpha^{3}). This is again a contradiction becasue the power of dividing disc(α)\operatorname{disc}(\alpha) is 2222, 16 from (1+ι)16(1+\iota)^{16} and 6 from g6g^{6}. The proofs for the cases r=2r=2, f=2f=2 and r=1r=1, f=4f=4 are similar.

  3. (3)

    From 2, we know that π\pi is ramified in N/KN/K. So, the ramification group of N/KN/K is nontrivial. Suppose πf\pi\mid f or hh. If the ramification group of π\pi has order 22, the fixed field MM^{\prime} of the ramification group is a subfield of N/KN/K in which π\pi is unramified. However, the galois group of N/KN/K is cylic and M/KM/K is the unique quadratic sub-extension of N/KN/K and π\pi is ramified in M/KM/K. So, if follows that the ramification index of π\pi in N/KN/K is four. If DD is the different of N/KN/K and QQ in NN is such that Q4=(π)Q^{4}=(\pi), it follows from 2 that νQ(D)=3\nu_{Q}(D)=3. So, νπ(disc(M/K))=vπ(NM/K(D))=νQ(D)=3\nu_{\pi}(\operatorname{disc}(M/K))=v_{\pi}\left(N_{M/K}(D)\right)=\nu_{Q}(D)=3.

    If πg\pi\mid g, then π\pi is unramified in M/KM/K since we know from 1 that π\pi doesn’t divide disc(M/K)\operatorname{disc}(M/K). So, π\pi is ramified only in N/MN/M and e=2e=2 in this case. So, if QQ is such that Q𝒪K=(π)Q\cap{\cal O}_{\scriptstyle K}=(\pi), νQ(D)=1\nu_{Q}(D)=1. If f(Q(π))=2f\left(Q\mid(\pi)\right)=2, from the relation fνQ(D)=νπ(NN/K(D))=νπ(disc(M/K))f\nu_{Q}(D)=\nu_{\pi}(N_{N/K}(D))=\nu_{\pi}(\operatorname{disc}(M/K)) it follows that νπ(discN/K)=2\nu_{\pi}(\operatorname{disc}{N/K})=2. If f=1f=1, there will be two primes Q1Q_{1} and Q2Q_{2} in NN such that Q1𝒪K=πQ_{1}\cap{\cal O}_{\scriptstyle K}=\pi, Q2𝒪K=πQ_{2}\cap{\cal O}_{\scriptstyle K}=\pi. So, again, νπ(disc(N/K))=2\nu_{\pi}(\operatorname{disc}(N/K))=2.

  4. (4)

    By looking at their norm and trace over MM, we see that α2gh\displaystyle{\alpha^{2}\over gh} and α3gh2\displaystyle{\alpha^{3}\over gh^{2}} are in 𝒪N{\cal O}_{\scriptstyle N}. It follows from property 4 of the 2.1 that ghd2gh\mid d_{2} and gh2d3gh^{2}\mid d_{3}. Let π1+ι\pi\neq 1+\iota, πh\pi\mid h. From property 3 of 10, it follows that νπ(disc(N/K))=3\nu_{\pi}(\operatorname{disc}(N/K))=3. Comparing the LHS and the RHS of 14, we get 2νπ(d2d3)+3=92\nu_{\pi}\left(d_{2}d_{3}\right)+3=9 or νπ(d2)+νπ(d3)=3\nu_{\pi}\left(d_{2}\right)+\nu_{\pi}\left(d_{3}\right)=3. Since hd2h\mid d_{2} and h2d3h^{2}\mid d_{3}, we have νπ(d2)=1\nu_{\pi}\left(d_{2}\right)=1, νπ(d3)=2\nu_{\pi}\left(d_{3}\right)=2. So, π2d2\pi^{2}\nmid d_{2}, π3d3\pi^{3}\nmid d_{3}. Similarly, we can show that, if πg\pi\mid g, from the fact that νπ(disc(α))=6\nu_{\pi}(\operatorname{disc}(\alpha))=6 and νπ(disc(N/K))=2\nu_{\pi}(\operatorname{disc}(N/K))=2, π2d2\pi^{2}\nmid d_{2} and π3d3\pi^{3}\nmid d_{3}.

  5. (5)

    We have δ112|disc(α)\delta_{1}^{12}|\operatorname{disc}(\alpha). If δ1=2\delta_{1}=2, from 14 it follows that (1+ι)24disc(α)(1+\iota)^{24}\mid disc(\alpha). However the highest power of 1+ι1+\iota dividing disc(α)disc(\alpha) is 2121, 12 from (1+ι)12(1+\iota)^{12} and nine from g9g^{9}.

    If α2\alpha_{2} is an integer, we have NN/K(α2)=(a04m)4𝒪KN_{N/K}(\alpha_{2})=\displaystyle{(a_{0}^{4}-m)\over 4}\in{\cal O}_{\scriptstyle K}. Since the only odd fourth power (mod4𝒪K)\enspace\bigl{(}{\rm mod}~{}4{\cal O}_{\scriptstyle K}\bigr{)} is 1, the result follows.

    Conversely suppose suppose m1(mod4𝒪K)m\equiv 1\enspace\bigl{(}{\rm mod}~{}4{\cal O}_{\scriptstyle K}\bigr{)}. Consider α2=1+α1+iN\alpha_{2}=\displaystyle{1+\alpha\over 1+i}\in N. To prove that α2𝒪N\alpha_{2}\in{\cal O}_{\scriptstyle N}, we need to prove that NN/M(α2)N_{N/M}\left(\alpha_{2}\right) and TrN/M(α2)Tr_{N/M}\left(\alpha_{2}\right) are integers. We have TrN/M(α2)=21+ι=1+ι𝒪MTr_{N/M}\left(\alpha_{2}\right)=\frac{2}{1+\iota}=1+\iota\in{\cal O}_{\scriptstyle M}. Also, NN/M(α2)=1α22N_{N/M}\left(\alpha_{2}\right)=\displaystyle{1-\alpha^{2}\over 2}. We have NM/K(1α22)=1m4𝒪KN_{M/K}\left(\displaystyle{1-\alpha^{2}\over 2}\right)=\frac{1-m}{4}\in{\cal O}_{\scriptstyle K} and TrM/K(1α22)=1𝒪KTr_{M/K}\left(\displaystyle{1-\alpha^{2}\over 2}\right)=1\in{\cal O}_{\scriptstyle K}. So, it follows that 1α22𝒪M\displaystyle{1-\alpha^{2}\over 2}\in{\cal O}_{\scriptstyle M}.

  6. (6)

    Suppose mm is odd. We have

    αβ3=α(c0+c1α+c2α2+α3δ3)=c0α+c1α2+c2α3+mδ3𝒪N\alpha\beta_{3}=\alpha\left(\displaystyle{c_{0}+c_{1}\alpha+c_{2}\alpha^{2}+\alpha^{3}\over\delta_{3}}\right)=\displaystyle{c_{0}\alpha+c_{1}\alpha^{2}+c_{2}\alpha^{3}+m\over\delta_{3}}\in{\cal O}_{\scriptstyle N}

    Therefore,

    TrN/K(c0α+c1α2+c2α3+mδ3)=4mδ3𝒪KTr_{N/K}\left(\displaystyle{c_{0}\alpha+c_{1}\alpha^{2}+c_{2}\alpha^{3}+m\over\delta_{3}}\right)=\frac{4m}{\delta_{3}}\in{\cal O}_{\scriptstyle K} (20)

    Since mm is odd, it follows that δ34\delta_{3}\mid 4.

    Suppose δ3=4\delta_{3}=4. Then, arguing as above we get

    TrN/K(c0α+c1α2+c2α3+m4)=m𝒪KTr_{N/K}\left(\displaystyle{c_{0}\alpha+c_{1}\alpha^{2}+c_{2}\alpha^{3}+m\over 4}\right)=m\in{\cal O}_{\scriptstyle K}

    Since mm is odd and (m)TrN/K(𝒪N)(m)\subset Tr_{N/K}\left({\cal O}_{\scriptstyle N}\right) it follows that 1+ι1+\iota does not divide TrN/K(𝒪N)Tr_{N/K}({\cal O}_{\scriptstyle N}). From 2, it follows that 1+ι1+\iota is unramified in N/KN/K.

    Conversely, suppose (1+ι)(1+\iota) is unramified. By property 2, it follows that 1+ι1+\iota doesn’t divide ff, gg or hh and hence mm is odd. From property 5, it follows that ν1+ι(δ1)1\nu_{1+\iota}(\delta_{1})\leq 1. Suppose δ32(1+ι)\delta_{3}\mid 2(1+\iota), i.e. ν1+ι(δ3)3\nu_{1+\iota}(\delta_{3})\leq 3. From 14. we get ν1+ι(δ1δ2δ3)=8\nu_{1+\iota}\left(\delta_{1}\delta_{2}\delta_{3}\right)=8 since 1+ι1+\iota doesn’t divide disc(N/K)\operatorname{disc}(N/K). We have ν1+i(δ2)3\nu_{1+i}(\delta_{2})\leq 3 since δ2δ3\delta_{2}\mid\delta_{3}. So, ν1+ι(δ2δ2δ3)7\nu_{1+\iota}(\delta_{2}\delta_{2}\delta_{3})\leq 7 which is a contradiction. So, δ3=4\delta_{3}=4.

Theorem 3.1

An integral basis of NN over KK is as in 2.

Condition Integral Basis Δ\Delta
m1(mod8)m\equiv 1\enspace\bigl{(}{\rm mod}~{}8\bigr{)} {1,1+α1+ι,|gh|2(ι+(1+ι)α)+α22(1+ι)gh,|gh2|2(1+α+α2)+α34gh2}\left\{{1},\displaystyle{1+\alpha\over 1+\iota},{\displaystyle{{|gh|^{2}(\iota+(1+\iota)\alpha)}+{\alpha^{2}}\over 2(1+\iota)gh}},\displaystyle{{|gh^{2}|}^{2}(1+\alpha+{\alpha^{2}})+{\alpha^{3}}\over 4g{h^{2}}}\right\}
m1+4ι(mod8)m\equiv{1+4\iota}\enspace\bigl{(}{\rm mod}~{}8\bigr{)} {1,1+α1+ι,|gh|2(ι+(1+ι)α)+α22(1+ι)gh,|gh2|2(2ι+α+ια2)+α34gh2}\left\{1,\displaystyle{1+\alpha\over 1+\iota},{\displaystyle{{|gh|^{2}(-\iota+(1+\iota)\alpha)}+{\alpha^{2}}\over 2(1+\iota)gh}},\displaystyle{{|gh^{2}|}^{2}(2-\iota+\alpha+\iota{\alpha^{2}})+{\alpha^{3}}\over 4g{h^{2}}}\right\}
m2ι(mod4)fh1(mod4)\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}\end{array} {1,α,gh+α22gh,α+α3/gh22}\left\{1,\alpha,\displaystyle{gh+\alpha^{2}\over 2gh},\displaystyle{\alpha+\alpha^{3}/gh^{2}\over 2}\right\}
m2ι(mod4)fh1(mod4)\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv-1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}\end{array} {1,α,ιgh+α22gh,ια+α3/gh22}\left\{1,\alpha,\displaystyle{\iota gh+\alpha^{2}\over 2gh},\displaystyle{\iota\alpha+\alpha^{3}/gh^{2}\over 2}\right\}
m2ι(mod4)fh±1(mod2(1+ι))fh¯1(mod2(1+ι))\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\\ f\bar{h}\equiv 1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\end{array} {1,α,gh+α2(1+ι)gh,α+α3/gh22}\left\{1,\alpha,\displaystyle{gh+\alpha^{2}\over(1+\iota)gh},\displaystyle{\alpha+\alpha^{3}/gh^{2}\over 2}\right\}
m2ι(mod4)fh±1(mod2(1+ι))fh¯1(mod2(1+ι))\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\\ f\bar{h}\equiv-1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\end{array} {1,α,gh+α2(1+ι)gh,ια+α3/gh22}\left\{1,\alpha,\displaystyle{gh+\alpha^{2}\over(1+\iota)gh},\displaystyle{\iota\alpha+\alpha^{3}/gh^{2}\over 2}\right\}
m3+2ι(mod4)m\equiv 3+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)} {1,α,|gh|2+α2(1+ι)gh,|gh2|2(1+α+α2)+α32gh2}\left\{1,\alpha,\displaystyle{|gh|^{2}+\alpha^{2}\over(1+\iota)gh},\displaystyle{{|gh^{2}|^{2}(1+\alpha+\alpha^{2})}+\alpha^{3}\over 2gh^{2}}\right\}
m1+2ι(mod4)m\equiv 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)} {1,α,|gh|2(1+(1+ι)α)+α22gh,|gh2|2(α+(1+ι)α2)+α32gh2}\left\{1,\alpha,\displaystyle{|gh|^{2}(1+(1+\iota)\alpha)+\alpha^{2}\over 2gh},\displaystyle{|gh^{2}|^{2}(\alpha+(1+\iota)\alpha^{2})+\alpha^{3}\over 2gh^{2}}\right\}
m3(mod4)m\equiv 3\enspace\bigl{(}{\rm mod}~{}4\bigr{)} {1,α,ι|gh|2+α22gh,|gh2|2(ι+ια+α2)+α32gh2}\left\{1,\alpha,\displaystyle{\iota|gh|^{2}+\alpha^{2}\over 2gh},\displaystyle{{|gh^{2}|^{2}}(\iota+\iota\alpha+\alpha^{2})+\alpha^{3}\over 2gh^{2}}\right\}
m5(mod8)orm5+4ι(mod8)\begin{array}[]{l}{m\equiv 5\enspace\bigl{(}{\rm mod}~{}8\bigr{)}}\\ \mbox{or}\\ {m\equiv 5+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}}\end{array} {1,1+α1+ι,|gh|2+α22gh,|gh2|2(1+α+α2)+α32(1+ι)gh2}\left\{1,\displaystyle{1+\alpha\over 1+\iota},\displaystyle{|gh|^{2}+\alpha^{2}\over 2gh},\displaystyle{{|gh^{2}|}^{2}(1+\alpha+{\alpha^{2}})+{\alpha^{3}}\over 2(1+\iota)gh^{2}}\right\}
fis even  orh is evenormι(mod2)\begin{array}[]{l}f~{}\mbox{is even~{}~{}or}~{}~{}\mbox{h is even}\\ \mbox{or}\\ {m\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)}}\end{array} {1,α,α2gh,α3gh2}\left\{1,\alpha,\displaystyle{\alpha^{2}\over gh},\displaystyle{\alpha^{3}\over gh^{2}}\right\}
fhι(mod2)andg is even\begin{array}[]{l}fh\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)}\\ \mbox{and}~{}g\mbox{ is even}\end{array} {1,α,α2ghια+α3/gh21+ι}\left\{1,\alpha,\displaystyle{\alpha^{2}\over gh}\displaystyle{\iota\alpha+\alpha^{3}/gh^{2}\over 1+\iota}\right\}
Table 2: Integral Bases

We divide the proof into two cases, N/KN/K is ramified at 1+ι1+\iota and N/KN/K is unramified at 1+ι1+\iota.

Proposition 11

The extension N/KN/K is unramified at 1+ι1+\iota iff m1(mod8)m\equiv 1\enspace\bigl{(}{\rm mod}~{}8\bigr{)} or m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. If m1(mod8)m\equiv 1\enspace\bigl{(}{\rm mod}~{}8\bigr{)} an integral basis is

{1,1+α1+ι,|gh|2(ι+(1+ι)α)+α22(1+ι)gh,|gh2|2(1+α+α2)+α34gh2}\left\{{1},\displaystyle{1+\alpha\over 1+\iota},{\displaystyle{{|gh|^{2}(\iota+(1+\iota)\alpha)}+{\alpha^{2}}\over 2(1+\iota)gh}},\displaystyle{{|gh^{2}|}^{2}(1+\alpha+{\alpha^{2}})+{\alpha^{3}}\over 4g{h^{2}}}\right\}

If m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}, an integral basis is

{1,1+α1+ι,|gh|2(ι+(1+ι)α)+α22(1+ι)gh,|gh2|2(2ι+α+ια2)+α34gh2}\left\{1,\displaystyle{1+\alpha\over 1+\iota},{\displaystyle{{|gh|^{2}(-\iota+(1+\iota)\alpha)}+{\alpha^{2}}\over 2(1+\iota)gh}},\displaystyle{{|gh^{2}|}^{2}(2-\iota+\alpha+\iota{\alpha^{2}})+{\alpha^{3}}\over 4g{h^{2}}}\right\}

Further, the discriminant of N/KN/K is f3g2h3f^{3}g^{2}h^{3}.

Proof

Consider the extension N/KN/K. From 10, property 4 and property 1, we know the odd parts of d1d_{1}, d2d_{2} and d3d_{3}. So, we need to determine δ1,δ2,δ3\delta_{1},\delta_{2},\delta_{3}, the even parts of d1,d2,d3d_{1},d_{2},d_{3}.

Since N/KN/K is unramified at 1+ι1+\iota, from 10, property 2, mm is odd. From 10, property 6, we also have δ3=4\delta_{3}=4.

If ν1+ι(δ2)<3\nu_{1+\iota}(\delta_{2})<3, since ν1+ι(δ1)1\nu_{1+\iota}(\delta_{1})\leq 1 we get ν1+ι(δ1δ2δ3)7\nu_{1+\iota}(\delta_{1}\delta_{2}\delta_{3})\leq 7 which contradicts 14. So,

ν1+ι(δ2)3\nu_{1+\iota}(\delta_{2})\geq 3 (21)

We have

gh(σ2(α3)α3)=2b1δ2𝒪Kgh\left(\sigma^{2}(\alpha_{3})-\alpha_{3}\right)=\frac{2b_{1}}{\delta_{2}}\in{\cal O}_{\scriptstyle K}

Therefore ν1+ι(b1)ν1+ι(δ2)ν1+ι(2)1\nu_{1+\iota}(b_{1})\geq\nu_{1+\iota}(\delta_{2})-\nu_{1+\iota}(2)\geq 1. We claim that ν1+ι(b1)=1\nu_{1+\iota}(b_{1})=1. Assume for contradiction that 2b12\mid b_{1}. Considering

TrM/K(α2NN/M(β3))=m(2b0b12)δ22𝒪KTr_{M/K}(\alpha^{2}N_{N/M}(\beta_{3}))=\frac{m(2b_{0}-b_{1}^{2})}{\delta_{2}^{2}}\in{\cal O}_{\scriptstyle K} (22)

since ν1+ι(δ3)3\nu_{1+\iota}\left(\delta_{3}\right)\geq 3, we get 2b0b120(mod4)2b_{0}-b_{1}^{2}\equiv 0\enspace\bigl{(}{\rm mod}~{}4\bigr{)}. It follows that b00(mod2)b_{0}\equiv 0\enspace\bigl{(}{\rm mod}~{}2\bigr{)}. From TrN/M(α2)=2(b0+α2δ2)𝒪MTr_{N/M}(\alpha_{2})=2\left(\frac{b_{0}+\alpha^{2}}{\delta_{2}}\right)\in{\cal O}_{\scriptstyle M} it follows that 1+ια21+\iota\mid\alpha^{2}. So, α20(mod1+ι)\alpha^{2}\equiv 0\enspace\bigl{(}{\rm mod}~{}1+\iota\bigr{)} and therefore 1+ιm1+\iota\mid m. So, by 10, 2, it follows that 1+ι1+\iota is ramified in N/KN/K which is a contradiction to our assumption that N/KN/K is unramified at 1+ι1+\iota. Therefore, ν1+ι(b1)=1\nu_{1+\iota}(b_{1})=1.

Since ν1+ι(b1)=1\nu_{1+\iota}(b_{1})=1, from ν1+ι(2b1δ2)0\nu_{1+\iota}\left(\displaystyle{2b_{1}\over\delta_{2}}\right)\geq 0 it follows that ν1+ι(δ2)3\nu_{1+\iota}(\delta_{2})\leq 3. So, from 21, it follows that ν1+ι(δ2)=3\nu_{1+\iota}(\delta_{2})=3. Since δ3=4\delta_{3}=4, from 14, it follows that δ1=1+ι\delta_{1}=1+\iota. From 10, property 5, it follows that m1mod4m\equiv 1\mod{4}.

We now determine the possible values of b0b_{0} and b1b_{1}. Note that, these are determined only modulo 2(1+ι)2(1+\iota). We have δ2=2(1+ι)\delta_{2}=2(1+\iota) and 1+ιm1+\iota\nmid m since m1(mod4)m\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}. So, from 22 it follows that 2b0b120(mod8)2b_{0}-b_{1}^{2}\equiv 0\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. Also, b1=a(1+i)b_{1}=a(1+i) with aa odd. So, b12=2ιa2±2i(mod8)b_{1}^{2}=2\iota a^{2}\equiv\pm 2i\enspace\bigl{(}{\rm mod}~{}8\bigr{)} since a2±1,±3+4ι(mod8)a^{2}\equiv\pm 1,\pm 3+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. This implies that 2b0±2i(mod8)2b_{0}\equiv\pm 2i\enspace\bigl{(}{\rm mod}~{}8\bigr{)} or b0±ι(mod4)b_{0}\equiv\pm\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}. Also b122ι(mod2(1+ι))b_{1}^{2}\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}, so b11±ι(mod2(1+ι))b_{1}\equiv 1\pm\iota\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}. So we can take the value of b0b_{0} and b1b_{1} to be by ±ι\pm\iota and 1±ι1\pm\iota respectively.

We show next that m1(mod8)m\equiv 1\enspace\bigl{(}{\rm mod}~{}8\bigr{)} or m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)} if N/MN/M is unramified at 1+ι1+\iota. We have α3=b0+b1α+α2d2=b0+b1α+α2δ2gh𝒪N\alpha_{3}={\displaystyle b_{0}+b_{1}\alpha+\alpha^{2}\over{\displaystyle d_{2}}}={\displaystyle b_{0}+b_{1}\alpha+\alpha^{2}\over{\displaystyle\delta_{2}gh}}\in{\cal O}_{\scriptstyle N}. Therefore, β3=ghα3=b0+b1α+α2δ2𝒪N\beta_{3}=gh\alpha_{3}={\displaystyle b_{0}+b_{1}\alpha+\alpha^{2}\over{\displaystyle\delta_{2}}}\in{\cal O}_{\scriptstyle N}.

Consider

NN/M(β3)=b02+m+α2(2b0b12)8𝒪MN_{N/M}(\beta_{3})=\displaystyle{b_{0}^{2}+m+\alpha^{2}(2b_{0}-b_{1}^{2})\over 8}\in{\cal O}_{\scriptstyle M}

Since b0=±ιb_{0}=\pm\iota and b1=1±ιb_{1}=1\pm\iota, 2b0b120 or 4ι(mod8)2b_{0}-b_{1}^{2}\equiv 0\hbox{ or }4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)} and b02+m=m1b_{0}^{2}+m=m-1. When 2b0b120(mod8)2b_{0}-b_{1}^{2}\equiv 0\enspace\bigl{(}{\rm mod}~{}8\bigr{)}, α2(m1)8𝒪M\displaystyle{\alpha^{2}(m-1)\over 8}\in{\cal O}_{\scriptstyle M} or m1(mod8)m\equiv 1\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. When 2b0b124ι(mod8)2b_{0}-b_{1}^{2}\equiv 4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)},

m1+4ια28=m(1+4ι)+4ι(1+α2)8𝒪M\displaystyle{m-1+4\iota\alpha^{2}\over 8}=\displaystyle{m-(1+4\iota)+4\iota(1+\alpha^{2})\over 8}\in{\cal O}_{\scriptstyle M}

is an integer. We have 4ι(1+α2)8=ι(1+α2)2\displaystyle{4\iota(1+\alpha^{2})\over 8}=\frac{\iota\left(1+\alpha^{2}\right)}{2} is an integer. (Considering NM/K(1+α22)N_{M/K}\left(\displaystyle{1+\alpha^{2}\over 2}\right) and TrM/K(1+α22)Tr_{M/K}\left(\displaystyle{1+\alpha^{2}\over 2}\right) we can easily check that 1+α22\displaystyle{1+\alpha^{2}\over 2} is an integer.) So, m1+4ι8𝒪M\displaystyle{m-1+4\iota\over 8}\in{\cal O}_{\scriptstyle M} or m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. So if N/KN/K is unramified at 1+ι1+\iota, m1 or 1+4ι(mod8)m\equiv 1\hbox{ or }1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}.

Conversely, if m1 or 1+4ι(mod8)m\equiv 1\hbox{ or }1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}, mm is odd and δ1=1+ι\delta_{1}=1+\iota. If m1(mod8)m\equiv 1\enspace\bigl{(}{\rm mod}~{}8\bigr{)}, we claim that ι+(1+ι)α+α22(1+ι)𝒪N\displaystyle{\iota+(1+\iota)\alpha+\alpha^{2}\over 2(1+\iota)}\in{\cal O}_{\scriptstyle N}. Since N/MN/M is a quadratic extension, it is enough to show that

TrN/M(ι+(1+ι)α+α22(1+ι))𝒪M and NN/M(ι+(1+ι)α+α22(1+ι))𝒪MTr_{N/M}\left(\displaystyle{\iota+(1+\iota)\alpha+\alpha^{2}\over 2(1+\iota)}\right)\in{\cal O}_{\scriptstyle M}\textrm{ and }N_{N/M}\left(\displaystyle{\iota+(1+\iota)\alpha+\alpha^{2}\over 2(1+\iota)}\right)\in{\cal O}_{\scriptstyle M}

We have TrN/M(ι+(1+ι)α+α22(1+ι))=ι+α21+ιTr_{N/M}\left(\displaystyle{\iota+(1+\iota)\alpha+\alpha^{2}\over 2(1+\iota)}\right)=\displaystyle{\iota+\alpha^{2}\over 1+\iota}. To show that (ι+α21+ι)𝒪M\left(\displaystyle{\iota+\alpha^{2}\over 1+\iota}\right)\in{\cal O}_{\scriptstyle M} is an integer, we again look at its norm and trace over M/KM/K. Here,

NM/K(ι+α21+ι)=1m2i𝒪K,TrM/K(ι+α21+ι)=2ι1+ι𝒪KN_{M/K}\left(\displaystyle{\iota+\alpha^{2}\over 1+\iota}\right)=\displaystyle{-1-m\over 2i}\in{\cal O}_{\scriptstyle K},Tr_{M/K}\left(\frac{\iota+\alpha^{2}}{1+\iota}\right)=\frac{2\iota}{1+\iota}\in{\cal O}_{\scriptstyle K}

since m1(mod4)m\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}.

Using 18 we have

NN/M(ι+(1+ι)α+α22(1+ι))\displaystyle N_{N/M}\left(\displaystyle{\iota+(1+\iota)\alpha+\alpha^{2}\over 2(1+\iota)}\right) =(1+m)+(2ι(1+ι)2)α28\displaystyle=\displaystyle{(-1+m)+(2\iota-(1+\iota)^{2})\alpha^{2}\over 8}
=m18𝒪M\displaystyle=\displaystyle{m-1\over 8}\in{\cal O}_{\scriptstyle M}

So 2(1+ι)|δ22(1+\iota)|\delta_{2}. Thus, 4|δ1δ2|δ34|\delta_{1}\delta_{2}|\delta_{3} and δ3=4\delta_{3}=4. From 14, it follows that δ2=2(1+ι)\delta_{2}=2(1+\iota) since ff, gg and hh are odd. If m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}, we have

ι+(1+ι)α)+α22(1+ι)𝒪N\frac{-\iota+(1+\iota)\alpha)+\alpha^{2}}{2(1+\iota)}\in{\cal O}_{\scriptstyle N}

As before, δ1=1+ι\delta_{1}=1+\iota, δ2=2(1+ι)\delta_{2}=2(1+\iota) and δ3=4\delta_{3}=4. Again, from 14, we get disc(N/M)=f3g2h3\operatorname{disc}(N/M)=f^{3}g^{2}h^{3} and N/KN/K is unramified at 1+ι1+\iota in this case.

To prove that

α3=|gh|2(ι+(1+ι)α)+α22(1+ι)gh\alpha_{3}={\displaystyle{{|gh|^{2}(\iota+(1+\iota)\alpha)}+{\alpha^{2}}\over 2(1+\iota)gh}}

is an integer, we need to show that

νQ(|gh|2(ι+(1+ι)α)+α2)νQ(2(1+ι)gh)\nu_{Q}\left(|gh|^{2}(\iota+(1+\iota)\alpha)+{\alpha^{2}}\right)\geq\nu_{Q}(2(1+\iota)gh)

for each prime ideal QQ in 𝒪N{\cal O}_{\scriptstyle N} dividing 2(1+ι)gh2(1+\iota)gh. This is clear for QghQ\mid gh once we write the numerator as ghgh¯(ι+(1+ι)α)+ghα2ghgh\overline{gh}(\iota+(1+\iota)\alpha)+gh\frac{\alpha^{2}}{gh} since π1+ι\pi\neq 1+\iota.

For \mathbb{Q} in 𝒪N{\cal O}_{\scriptstyle N}, Q1+ιQ\mid 1+\iota, since ν1+ι(gh)=0\nu_{1+\iota}(gh)=0 we need to show that

νQ(|gh|2(ι+(1+ι)α)+α2)νQ(2(1+ι))\nu_{Q}\left(|gh|^{2}(\iota+(1+\iota)\alpha)+{\alpha^{2}}\right)\geq\nu_{Q}(2(1+\iota))

or |gh|2(ι+(1+ι)α)+α22(1+ι)\displaystyle{|gh|^{2}(\iota+(1+\iota)\alpha)+{\alpha^{2}}\over 2(1+\iota)} is an integer. Since |gh|21(mod4)\lvert gh\rvert^{2}\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}, it is enough to show that (ι+(1+ι)α)+α22(1+ι)\displaystyle{(\iota+(1+\iota)\alpha)+{\alpha^{2}}\over 2(1+\iota)} is an integer and we are done.

Similarly, we can show that |gh|2(ι+(1+ι)α)+α22(1+ι)\displaystyle{\lvert gh\rvert^{2}\left(-\iota+(1+\iota)\alpha\right)+\alpha^{2}\over 2(1+\iota)} is an integer if m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}.

Assume that m1+4ι(mod8)m\equiv 1+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. Note that α3gh2𝒪N\frac{\alpha^{3}}{gh^{2}}\in{\cal O}_{\scriptstyle N} it satisfies the polynomial x4f3g2h=0x^{4}-f^{3}g^{2}h=0. As before, to show that

|gh2|2(2ι+α+ια2)+α34gh2=gh2gh2¯(2ι+α+ια2)+gh2α3gh24gh2\displaystyle{{|gh^{2}|}^{2}(2-\iota+\alpha+\iota{\alpha^{2}})+{\alpha^{3}}\over 4g{h^{2}}}=\displaystyle{gh^{2}\overline{gh^{2}}(2-\iota+\alpha+\iota{\alpha^{2}})+{gh^{2}\frac{\alpha^{3}}{gh^{2}}}\over 4g{h^{2}}}

is an integer, it is enough to show that 2ι+α+ια2+α34\displaystyle{2-\iota+\alpha+\iota\alpha^{2}+\alpha^{3}\over 4} is an integer. We have

TrN/M(2ι+α+ια2+α34)=2ι+ια22=2+ι(α21)2𝒪MTr_{N/M}\left(\displaystyle{2-\iota+\alpha+\iota\alpha^{2}+\alpha^{3}\over 4}\right)=\displaystyle{2-\iota+\iota\alpha^{2}\over 2}=\displaystyle{2+\iota(\alpha^{2}-1)\over 2}\in{\cal O}_{\scriptstyle M}

because we have already proved that α212𝒪M\displaystyle{\alpha^{2}-1\over 2}\in{\cal O}_{\scriptstyle M} if m1(mod4)m\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}.

From 18 we have

NN/M(2ι+α+ια2+α34)\displaystyle N_{N/M}\left(\displaystyle{2-\iota+\alpha+\iota\alpha^{2}+\alpha^{3}\over 4}\right) =((2ι)2m2m)+(4ι+1m)α216\displaystyle=\displaystyle{\left((2-\iota)^{2}-m-2m\right)+\left(4\iota+1-m\right)\alpha^{2}\over 16}
=34ι3m+(4ι+1m)α216\displaystyle=\displaystyle{3-4\iota-3m+\left(4\iota+1-m\right)\alpha^{2}\over 16}
Writing m=1+4ι+8μm=1+4\iota+8\mu with μ𝒪K\mu\in{\cal O}_{\scriptstyle K}, we get
NN/M(2ι+α+ια2+α34)\displaystyle N_{N/M}\left(\displaystyle{2-\iota+\alpha+\iota\alpha^{2}+\alpha^{3}\over 4}\right) =16ι24μ8μα216=2ι3μμα22\displaystyle=\displaystyle{-16\iota-24\mu-8\mu\alpha^{2}\over 16}=\frac{-2\iota-3\mu-\mu\alpha^{2}}{2}

We have

NM/K(2ι+3μμα22)\displaystyle N_{M/K}\left(\frac{-2\iota+3\mu-\mu\alpha^{2}}{2}\right) =4+(9m)μ2+12ιμ4𝒪K\displaystyle=\displaystyle{-4+(9-m)\mu^{2}+12\iota\mu\over 4}\in{\cal O}_{\scriptstyle K}
since 9m=84ι8μ9-m=8-4\iota-8\mu. Also,
TrM/K(2ι+3μμα22)\displaystyle Tr_{M/K}\left(\frac{-2\iota+3\mu-\mu\alpha^{2}}{2}\right) =2ι+3μ𝒪K\displaystyle=-2\iota+3\mu\in{\cal O}_{\scriptstyle K}
Proposition 12

If N/KN/K is ramified at 1+ι1+\iota, the integral basis is as in 3.

Condition Integral Basis Δ\Delta
m2ι(mod4)fh1(mod4)\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}\end{array} {1,α,gh+α22gh,gh2α+α32gh2}\left\{1,\alpha,\displaystyle{gh+\alpha^{2}\over 2gh},\displaystyle{gh^{2}\alpha+\alpha^{3}\over 2gh^{2}}\right\}
m2ι(mod4)fh1(mod4)\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv-1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}\end{array} {1,α,ιgh+α22gh,gh2ια+α32gh2}\left\{1,\alpha,\displaystyle{\iota gh+\alpha^{2}\over 2gh},\displaystyle{gh^{2}\iota\alpha+\alpha^{3}\over 2gh^{2}}\right\}
m2ι(mod4)fh±1(mod2(1+ι))fh¯1(mod2(1+ι))\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\\ f\bar{h}\equiv 1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\end{array} {1,α,gh+α2(1+ι)gh,gh2α+α32gh2}\left\{1,\alpha,\displaystyle{gh+\alpha^{2}\over(1+\iota)gh},\displaystyle{gh^{2}\alpha+\alpha^{3}\over 2gh^{2}}\right\}
m2ι(mod4)fh±1(mod2(1+ι))fh¯1(mod2(1+ι))\begin{array}[]{l}{m\equiv 2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}}\\ fh\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\\ f\bar{h}\equiv-1\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}\end{array} {1,α,gh+α2(1+ι)gh,gh2ια+α32gh2}\left\{1,\alpha,\displaystyle{gh+\alpha^{2}\over(1+\iota)gh},\displaystyle{gh^{2}\iota\alpha+\alpha^{3}\over 2gh^{2}}\right\}
m3+2ι(mod4)m\equiv 3+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)} {1,α,|gh|2+α2(1+ι)gh,|gh2|2(1+α+α2)+α32gh2}\left\{1,\alpha,\displaystyle{|gh|^{2}+\alpha^{2}\over(1+\iota)gh},\displaystyle{{|gh^{2}|^{2}(1+\alpha+\alpha^{2})}+\alpha^{3}\over 2gh^{2}}\right\}
m1+2ι(mod4)m\equiv 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)} {1,α,|gh|2(1+(1+ι)α)+α22gh,|gh2|2(α+(1+ι)α2)+α32gh2}\left\{1,\alpha,\displaystyle{|gh|^{2}(1+(1+\iota)\alpha)+\alpha^{2}\over 2gh},\displaystyle{|gh^{2}|^{2}(\alpha+(1+\iota)\alpha^{2})+\alpha^{3}\over 2gh^{2}}\right\}
m3(mod4)m\equiv 3\enspace\bigl{(}{\rm mod}~{}4\bigr{)} {1,α,ι|gh|2+α22gh,|gh2|2(ι+ια+α2)+α32gh2}\left\{1,\alpha,\displaystyle{\iota|gh|^{2}+\alpha^{2}\over 2gh},\displaystyle{{|gh^{2}|^{2}}(\iota+\iota\alpha+\alpha^{2})+\alpha^{3}\over 2gh^{2}}\right\}
m5(mod8)orm5+4ι(mod8)\begin{array}[]{l}{m\equiv 5\enspace\bigl{(}{\rm mod}~{}8\bigr{)}}\\ \mbox{or}\\ {m\equiv 5+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}}\end{array} {1,1+α1+ι,|gh|2+α22gh,|gh2|2(1+α+α2)+α32(1+ι)gh2}\left\{1,\displaystyle{1+\alpha\over 1+\iota},\displaystyle{|gh|^{2}+\alpha^{2}\over 2gh},\displaystyle{{|gh^{2}|}^{2}(1+\alpha+{\alpha^{2}})+{\alpha^{3}}\over 2(1+\iota)gh^{2}}\right\}
fis even  orh is evenormι(mod2)\begin{array}[]{l}f~{}\mbox{is even~{}~{}or}~{}~{}\mbox{h is even}\\ \mbox{or}\\ {m\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)}}\end{array} {1,α,α2gh,α3gh2}\left\{1,\alpha,\displaystyle{\alpha^{2}\over gh},\displaystyle{\alpha^{3}\over gh^{2}}\right\}
fhι(mod2)andg is even\begin{array}[]{l}fh\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)}\\ \mbox{and}~{}g\mbox{ is even}\end{array} {1,α,α2gh,gh2ια+α3(1+ι)gh2}\left\{1,\alpha,\displaystyle{\alpha^{2}\over gh},\displaystyle{gh^{2}\iota\alpha+\alpha^{3}\over(1+\iota)gh^{2}}\right\}
Table 3: Integral Bases
Proof

Case 1 N/MN/M is ramified and M/KM/K is unramified at 1+ι1+\iota. Note that fh±1(mod4)fh\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)} since M/KM/K is unramified at 1+ι1+\iota.

Case 1(a) f,g,hf,g,h are odd.

Since mm is odd and m±1(mod4)m\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}4\bigr{)}, m5or5+4ι(mod8)m\equiv 5{\rm~{}or~{}}5+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)} or m3(mod4)m\equiv 3\enspace\bigl{(}{\rm mod}~{}4\bigr{)}. When m5or5+4ι(mod8)m\equiv 5{\rm~{}or~{}}5+4\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}, δ1=1+ι\delta_{1}=1+\iota and so 2|δ22|\delta_{2} and 2(1+ι)|δ32(1+\iota)|\delta_{3}. Since M/KM/K is ramified at 1+ι1+\iota, from 10, 6, it follows that δ34\delta_{3}\neq 4 and δ3=2(1+ι)\delta_{3}=2(1+\iota). As δ1δ2|δ3\delta_{1}\delta_{2}|\delta_{3}, 2(1+ι)δ22(1+\iota)\not|\delta_{2}. Thus, δ2=2\delta_{2}=2.

Let m3(mod4)m\equiv 3\enspace\bigl{(}{\rm mod}~{}4\bigr{)}. Then δ1=1\delta_{1}=1. We have NN/K(α1)=m12(mod4)N_{N/K}(\alpha-1)=m-1\equiv 2\enspace\bigl{(}{\rm mod}~{}4\bigr{)}. It follows that (1+ι)2NN/K(α1)(1+\iota)^{2}\parallel N_{N/K}(\alpha-1). We claim that νQ(α1)=1\nu_{Q}(\alpha-1)=1 for all primes in 𝒪N{\cal O}_{\scriptstyle N} with Q𝒪K=(1+ι)Q\cap{\cal O}_{\scriptstyle K}=(1+\iota). Primes above 1+ι1+\iota are unramified in M/KM/K and (totally) ramified in N/MN/M. So, the possibilities are f(Q|(1+ι))=1f(Q|(1+\iota))=1 or 22. If f(Q|(1+ι))=1f(Q|(1+\iota))=1, there are primes Q1Q_{1} and Q2Q_{2} in NN dividing 1+ι1+\iota such that (1+ι)=Q12Q22(1+\iota)=Q_{1}^{2}Q_{2}^{2}. Further, if Q1|(α1)Q_{1}|(\alpha-1), Q2=σ2(Q1)Q_{2}=\sigma^{2}(Q_{1}) divides (α+1)=(α+1)-(\alpha+1)=(\alpha+1). So, Q2Q_{2} divides (α1)(\alpha-1) since (α1)(α+1)+(2)Q2(\alpha-1)\subset(\alpha+1)+(2)\subset Q_{2}. So, Q1Q_{1} divides α1\alpha-1 iff Q2Q_{2} divides α1\alpha-1. Writing (α1)=Q1k1Q2k2I(\alpha-1)=Q_{1}^{k_{1}}Q_{2}^{k_{2}}I, where Q1Q_{1} and Q2Q_{2} do not divide II, we have NN/K(α1)=(1+ι)k1+k2NN/K(I)N_{N/K}(\alpha-1)=(1+\iota)^{k_{1}+k_{2}}N_{N/K}(I). Since 2(α1)2\parallel(\alpha-1), we have k1+k2=2k_{1}+k_{2}=2, so k1=1k_{1}=1 and k2=1k_{2}=1. If f(Q|(1+ι))=2f(Q|(1+\iota))=2, we have Q2=(1+ι)Q^{2}=(1+\iota). Suppose (α1)=QkI(\alpha-1)=Q^{k}I where QQ does not divide II. We have NN/K(α1)=(1+ι)2kNN/K(I)N_{N/K}(\alpha-1)=(1+\iota)^{2k}N_{N/K}(I) and we get k=1k=1.

Since, α1\alpha-1 is a uniformiser at all primes QQ in NN dividing 1+ι1+\iota, it follows that νQ(α1)=1\nu_{Q}(\alpha-1)=1 and α1\alpha-1 is a uniformiser for the unique prime ideal in 𝒪N,Q{\cal O}_{\scriptstyle N,Q}, the completion of NN at QQ. This is because the discrete valuation on NQN_{Q}, the completion of NN at QQ is the unique extension of the discrete valuation on NN defined by the prime ideal QQ.

Let QM=P𝒪MQ_{M}=P\cap{\cal O}_{\scriptstyle M} be a prime in 𝒪M{\cal O}_{\scriptstyle M}. Let MQMM_{Q_{M}} be the completion of MM with respect to the discrete valuation defined by QMQ_{M}. Since NQ/MQMN_{Q}/M_{Q_{M}} is totally ramified, it follows that {1,α1}\left\{1,\alpha-1\right\} generates 𝒪NQ{\cal O}_{\scriptstyle N_{Q}} over 𝒪MQM{\cal O}_{\scriptstyle M_{Q_{M}}}. So, we have

Gi={σG(NQ/MQM)|σ(α1)(α1)Qi+1}G_{i}=\left\{\sigma\in G(N_{Q}/M_{Q_{M}})|\sigma(\alpha-1)-(\alpha-1)\in Q^{i+1}\right\}

Suppose 1+ι1+\iota is inert in MM. We have σ2(α1)(α1)=2αQ4\sigma^{2}(\alpha-1)-(\alpha-1)=-2\alpha\in Q^{4} when 1+ι1+\iota is inert in MM and QQ is the unique prime in NN dividing 1+ι1+\iota. So σ2G3(F/L)\sigma^{2}\in G_{3}(F/L) and σ2G4(F/L)\sigma^{2}\not\in G_{4}(F/L). Using the formula for the different(cf. lf )

vQ(𝒟(NQ/MQM))=i=0(|Gi|1){v_{Q}}({{\cal D}\left(N_{Q}/M_{Q_{M}}\right)})=\sum_{i=0}^{\infty}({|G_{i}|-1})

we get νQ(𝒟)=4\nu_{Q}({\cal D})=4. Therefore

d(NQ/MQM)=NNQ/MQM(𝒟)=NNQ/MQM(Q4)=(1+ι)4d\left(N_{Q}/M_{Q_{M}}\right)=N_{N_{Q}/M_{Q_{M}}}\left({\cal D}\right)=N_{N_{Q}/M_{Q_{M}}}\left(Q^{4}\right)=(1+\iota)^{4}

Therefore (1+ι)4d(N/M)(1+\iota)^{4}\parallel d\left(N/M\right). Since d(N/K)=NN/M(d(N/M))(d(M/K))[N:M]d(N/K)=N_{N/M}(d(N/M))\left(d(M/K)\right)^{[N:M]} and (1+ι)d(M/K)(1+\iota)\nmid d(M/K), it follows that (1+ι)8d(N/K)(1+\iota)^{8}\parallel d(N/K).

If 1+ι1+\iota splits in MM and QQ is one of the two primes in NN dividing 1+ι1+\iota, Q42αQ^{4}\parallel 2\alpha. From this, it follows that for any prime QQ in NN dividing 1+ι1+\iota, we have QM4d(N/M)Q_{M}^{4}\parallel d(N/M) where QM=Q𝒪MQ_{M}=Q\cap{\cal O}_{\scriptstyle M}. If QMQ_{M} and QMQ_{M}^{\prime} are the two primes in MM above (1+ι)(1+\iota), (QMQM)4=(1+ι)4disc(N/M)\left(Q_{M}Q_{M}^{\prime}\right)^{4}=(1+\iota)^{4}\parallel\operatorname{disc}(N/M). As before, (1+ι)8d(N/K)(1+\iota)^{8}\parallel d(N/K).

Therefore, from (2.1), it follows that δ2δ3=4\delta_{2}\delta_{3}=4. Since

ι|gh|2+α22gh,|gh2|2ια+α32gh2𝒪F,{\iota{\lvert gh\rvert}^{2}+\alpha^{2}\over 2gh},{\lvert gh^{2}\rvert^{2}\iota\alpha+\alpha^{3}\over 2gh^{2}}\in{\cal O}_{\scriptstyle F},

δ2=δ3=2\delta_{2}=\delta_{3}=2.

Case 2(b) Suppose gg is even. Let QQ be a prime ideal in NN that divides 1+ι1+\iota. Since (1+ι)α4=fg2h3(1+\iota)\mid\alpha^{4}=fg^{2}h^{3}, Q(α)Q\mid(\alpha). Let (α)=QrI(\alpha)=Q^{r}I where QIQ\nmid I. We have NN/M(α)=NN/M(Qr)NN/M(I)=QMrJN_{N/M}(\alpha)=N_{N/M}\left(Q^{r}\right)N_{N/M}(I)=Q_{M}^{r}J where QM=𝒪MQQ_{M}={\cal O}_{\scriptstyle M}\cap Q, QMJQ_{M}\nmid J. Then, since f(Q|QM)=1f(Q|Q_{M})=1,

vQM(NF/M(α))=rv_{Q_{M}}(N_{F/M}(\alpha))=r (23)

where QMQ_{M} is a prime in MM dividing 1+ι1+\iota. On the other hand 1+ι1+\iota is unramified in LL, so νQM((1+ι))=1\nu_{Q_{M}}((1+\iota))=1. Since (1+ι)2g(1+\iota)^{2}\nmid g, it follows that νQM(ghfh)=1\nu_{Q_{M}}(gh\sqrt{fh})=1. Therefore, νQM(NN/M(α))=νQM(ghfh)=1\nu_{Q_{M}}(N_{N/M}(\alpha))=\nu_{Q_{M}}(gh\sqrt{fh})=1. So. (α)=QI(\alpha)=QI and thereforee α\alpha is a uniformiser at all primes in FF dividing 1+ι1+\iota.

We have σ2(α)α=2α\sigma^{2}(\alpha)-\alpha=2\alpha. As in the previous case we can check that (1+ι)10disc(N/K)(1+\iota)^{10}\parallel\operatorname{disc}(N/K) and δ2δ3=(1+ι)6\delta_{2}\delta_{3}=(1+\iota)^{6} . Since

gh+α22gh,igh2+α32gh2𝒪F{gh+\alpha^{2}\over 2gh},{igh^{2}+\alpha^{3}\over 2gh^{2}}\in{\cal O}_{\scriptstyle F}

2δ22\mid\delta_{2}, 2δ32\mid\delta_{3} and δ34\delta_{3}\neq 4 we must have δ2=δ3=2(1+ι)\delta_{2}=\delta_{3}=2(1+\iota).

Case 3 N/KN/K is totally ramified at 1+ι1+\iota. Note that N/KN/K is totally ramified at 1+ι1+\iota if and only if 1+ι1+\iota ramifies in M/KM/K.

Let GiG_{i}, i0i\geq 0, be the ramification groups of N/KN/K. Since 1+ι1+\iota is totally ramified in N/KN/K, these are the same as the ramification groups of N/KN^{\prime}/K^{\prime} where KK^{\prime} is the completion of KK at 1+ι1+\iota and NN^{\prime} is the completion of NN at the unique prime in NN that lies over 1+ι1+\iota in NN.

We will use the results from wyman . Let bib_{i} and bib^{i} denote the ithi^{th} lower and upper break numbers of the extension M/KM/K.

C̱ase 3(a)/ mι(mod2)m\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)} and gg is odd .

In this case, 4disc(M/K)4\parallel\operatorname{disc}(M/K). From the formula for the different, it follows that the break number for the extension for M/KM/K is 33. So, from 7 it follows that b1=b1=3b^{1}=b_{1}=3 for the extension for N/KN/K. Using 9, it follows that b2=5b^{2}=5. From 10 it follows that b2=7b_{2}=7 for the extension N/KN/K. Using the formula for the different, we get that (1+ι)16disc(N/K)(1+\iota)^{16}\parallel\operatorname{disc}(N/K). From (14), it follows that δ1δ2δ3=1\delta_{1}\delta_{2}\delta_{3}=1.

Case 3(b) fhι(mod2)fh\equiv\iota\enspace\bigl{(}{\rm mod}~{}2\bigr{)}, gg is even .

As before, (1+ι)16disc(N/K)(1+\iota)^{16}\parallel\operatorname{disc}(N/K). So we get, from (14),

(d1d2d3)2=(1+ι)6f3g16h9\left(d_{1}d_{2}d_{3}\right)^{2}=(1+\iota)^{6}f^{3}g_{1}^{6}h^{9}

where g1g_{1} is the odd part of gg. Therefore, δ2δ3=(1+ι)3\delta_{2}\delta_{3}=(1+\iota)^{3}. Since α2/gh𝒪F\alpha^{2}/gh\in{\cal O}_{\scriptstyle F} and δ2|δ3\delta_{2}|\delta_{3}, the only possibility is δ2=1+ι\delta_{2}=1+\iota and δ3=2\delta_{3}=2.

Case 3(c) ff or hh is divisible by 1+ι1+\iota.

In either case (1+ι)5disc(M/K)(1+\iota)^{5}\parallel\operatorname{disc}(M/K). As in the previous case, we have b1(M/K)=b1(N/K)=4b^{1}(M/K)=b^{1}(N/K)=4, b2=6b^{2}=6 and b2=8b_{2}=8. So using the formula for the different, we get (1+ι)19disc(N/K)(1+\iota)^{19}\parallel\operatorname{disc}(N/K).

When ff is even, δ2δ3=1\delta_{2}\delta_{3}=1. When hh is even, δ2δ3=(1+ι)3\delta_{2}\delta_{3}=(1+\iota)^{3}. As α2/gh𝒪F\alpha^{2}/gh\in{\cal O}_{\scriptstyle F}, δ2=1+ι\delta_{2}=1+\iota and δ3=2\delta_{3}=2.

Case 3(d) fh±1+2ι(mod4)fh\equiv\pm 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)} and gg is odd. Since 2disc(M/K)2\parallel\operatorname{disc}(M/K) when fh±1+2ι(mod4)fh\equiv\pm 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}, the break number is 1 for M/KM/K and so b1=1b_{1}=1 for N/K.N/K. Using 8, we get that the break numbers are odd. Therefore, b23b_{2}\geq 3. (1+ι)8|disc(F/L)(1+\iota)^{8}|\operatorname{disc}(F/L). Thus, δ2δ3|(1+ι)4\delta_{2}\delta_{3}|(1+\iota)^{4}.

When m1+2ι(mod4)m\equiv 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}, 1+(1+ι)α+α22𝒪F\displaystyle{{1+(1+\iota)\alpha+\alpha^{2}}\over{2}}\in{\cal O}_{\scriptstyle F}. Therefore δ2=2\delta_{2}=2, δ3=2\delta_{3}=2.

When m3+2ι(mod4)m\equiv 3+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)},

NN/K(α1)=m12(1+ι)(mod4)N_{N/K}(\alpha-1)=m-1\equiv 2(1+\iota)\enspace\bigl{(}{\rm mod}~{}4\bigr{)}

So (α1)32\displaystyle{{(\alpha-1)^{3}}\over{2}} is a uniformiser for the unique prime in FF dividing 1+ι1+\iota. We have

σ2((α1)32)(α1)3=α(α2+3)\sigma^{2}\left(\displaystyle{{(\alpha-1)^{3}}\over{2}}\right)-(\alpha-1)^{3}=\alpha(\alpha^{2}+3)

and NN/K(α2+3)=(m9)2N_{N/K}(\alpha^{2}+3)=(m-9)^{2}. Since m92(1+ι)(mod4)m-9\equiv 2(1+\iota)\enspace\bigl{(}{\rm mod}~{}4\bigr{)}, (1+ι)6NN/Kα(α2+3)(1+\iota)^{6}\parallel N_{N/K}\alpha(\alpha^{2}+3) and so σ2G5(N/K)\sigma^{2}\in G_{5}(N/K) and σ2G6(N/K)\sigma^{2}\not\in G_{6}(N/K). So, in this case, b2=5b_{2}=5 for N/K.N/K. Thus, (1+ι)10|disc(N/K)(1+\iota)^{10}|\operatorname{disc}(N/K). Therefore, δ2δ3(1+ι)6\delta_{2}\delta_{3}\parallel(1+\iota)^{6}. So δ2δ3|(1+ι)3.\delta_{2}\delta_{3}|(1+\iota)^{3}. Since |gh|2+α21+ι\displaystyle{{{\lvert gh\rvert}^{2}+\alpha^{2}}\over{1+\iota}} is an integer, δ2=(1+ι)\delta_{2}=(1+\iota), δ3=2.\delta_{3}=2.

C̱ase3(e)/ Let fh±1+2ι(mod4)fh\equiv\pm 1+2\iota\enspace\bigl{(}{\rm mod}~{}4\bigr{)}, gg be even.

Since fh±1(mod2(1+i))fh\equiv\pm 1\enspace\bigl{(}{\rm mod}~{}2(1+i)\bigr{)}, f±h(mod2(1+ι)).f\equiv\pm h\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}. When fh(mod2(1+ι))f\equiv h\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}, consider the element 𝒳=1+α+α3/gh22{\cal X}=1+\displaystyle{{\alpha+\alpha^{3}/gh^{2}}\over{2}} . We have

NN/K(𝒳)=16(g(fh))216fgh16N_{N/K}({\cal X})={16-(g(f-h))^{2}-16fgh\over 16}

Since g(1+ι)(mod2)g\equiv(1+\iota)\enspace\bigl{(}{\rm mod}~{}2\bigr{)}, g=a+ιbg=a+\iota b with aa and bb odd. So g2±2ι(mod8)g^{2}\equiv\pm 2\iota\enspace\bigl{(}{\rm mod}~{}8\bigr{)}. One checks easily that (g(fh))216(mod32)(g(f-h))^{2}\equiv 16\enspace\bigl{(}{\rm mod}~{}32\bigr{)} and 16fgh16(1+ι)(mod32)16fgh\equiv 16(1+\iota)\enspace\bigl{(}{\rm mod}~{}32\bigr{)}. So 𝒳{\cal X} is a uniformiser. We have

σ2(𝒳)𝒳\displaystyle\sigma^{2}({\cal X})-{\cal X} =\displaystyle= α+α3/gh2\displaystyle\alpha+\mbox{$\alpha^{3}/gh^{2}$}
and
(1+ι)8NN/K(α+α3/gh2)\displaystyle(1+\iota)^{8}\parallel N_{N/K}(\alpha+\mbox{$\alpha^{3}/gh^{2}$}) =\displaystyle= g2fh(fh)2.\displaystyle g^{2}fh(f-h)^{2}.

So G7{1}G_{7}\neq\{1\}. Since b1b_{1} is odd, so is b2b_{2}. So b28b_{2}\neq 8. Since G9(N/K)=1G_{9}(N/K)=1, b2=7b_{2}=7. (Gi(N/K)={1}(G_{i}(N/K)=\{1\} if i>e/(p1)i>e/(p-1) for any extension of local fields N/KN/K, where pp is the characteristic of the residue field and ee is the valuation of pp in LL. Cf. lf , Exercise (2)c at the end of §\S2 in Chapter 4.) So (1+ι)12|disc(N/K)(1+\iota)^{12}|\operatorname{disc}(N/K) and therefore δ2δ3=(1+ι)5\delta_{2}\delta_{3}=(1+\iota)^{5}. Since gh+α2gh\displaystyle{{gh+\alpha^{2}}\over{gh}} and α+α3/gh22\displaystyle{{\alpha+\alpha^{3}/gh^{2}}\over{2}} are in 𝒪F{\cal O}_{\scriptstyle F}, δ2=2\delta_{2}=2, δ3=2(1+ι)\delta_{3}=2(1+\iota).

Similarly, when fh(mod2(1+ι))f\equiv-h\enspace\bigl{(}{\rm mod}~{}2(1+\iota)\bigr{)}, 1+ια+α3/gh221+\displaystyle{{\iota\alpha+\alpha^{3}/gh^{2}}\over{2}} is an uniformiser. As before, it can be checked that (1+ι)12|disc(N/K)(1+\iota)^{12}|\operatorname{disc}(N/K). Since gh+α2(1+ι)gh\displaystyle{{gh+\alpha^{2}}\over{(1+\iota)gh}} and ια+α3/gh22\displaystyle{{\iota\alpha+\alpha^{3}/gh^{2}}\over{2}} are in 𝒪F{\cal O}_{\scriptstyle F}, δ2=2\delta_{2}=2, δ3=2(1+ι)\delta_{3}=2(1+\iota).

4 Appendix

In this appendix, we give the proof of main theorem on existence of normalised integral basis for the ring of integers of an extension field when the ring of integers for the base field is a PID. The proof in mar for the case where the base field is \mathbb{Q} goes through for this case also and no new ideas are needed. We have reproduced adapted proof here for the sake of completeness.

We prove another lemma that will be useful in the proving the main theorem.

Lemma 3

Let θ\theta\in\mathbb{C} have degree nn over KK and h1(x)h_{1}(x), h2(x)K[x]h_{2}(x)\in K[x] have degree less than nn with h1(θ)=h2(θ)h_{1}(\theta)=h_{2}(\theta). Then, h1(x)=h2(x)h_{1}(x)=h_{2}(x).

Proof

This follows immediately from the fact that the set {1,θ,,θn1}\{1,\theta,\ldots,\theta^{n-1}\} is linearly independet over KK

Proof (Proof of the main theorem)

Let αS\alpha\in S be such that L=K[α]L=K[\alpha]. Then {1,α,α2,,αn1}\left\{1,\alpha,\alpha^{2},\ldots,\alpha^{n-1}\right\} is a basis for LL over KK. By, 1, we have

SR1dRαdRαn1dS\subseteq R\frac{1}{d}\oplus R\frac{\alpha}{d}\oplus\cdots\oplus R\frac{\alpha^{n-1}}{d}

where

d=disc(1,α,,αn1)d=\operatorname{disc}\left(1,\alpha,\ldots,\alpha^{n-1}\right)

Let

Fi=R1dRαdRα2dRαi1dF_{i}=R\frac{1}{d}\oplus R\frac{\alpha}{d}\oplus R\frac{\alpha^{2}}{d}\cdots\oplus R\frac{\alpha^{i-1}}{d}

be the RR-module generated by

{1d,αd,α2d,,αi1d}\left\{\frac{1}{d},\frac{\alpha}{d},\frac{\alpha^{2}}{d},\ldots,\frac{\alpha^{i-1}}{d}\right\}

and let Si=FiSS_{i}=F_{i}\cap S. Each SiS_{i} is an RR-module. We have S1=RS_{1}=R and Sn=SS_{n}=S. Let us see why. We have S1KS_{1}\subset K. Since elements in S1S_{1} are integers, RR is integrally closed, and 1S11\in S_{1} it follows that S1=RS_{1}=R. Since SFnS\subset F_{n} by 1, it follows that Sn=SS_{n}=S.

We define fk(x)R[x]f_{k}(x)\in R[x] and dkRd_{k}\in R such that for each ii

{1,f1(α)d1,,fi1(α)di1}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\ldots,\frac{f_{i-1}(\alpha)}{d_{i-1}}\right\}

is a basis for SiS_{i} and dkdk+1d_{k}\mid d_{k+1} if ki2k\leq i-2. This is certainly true for i=1i=1.

Suppose this is true for mm, that is

Sm={1,f1(α)d1,,fm1(α)dm1}S_{m}=\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\ldots,\frac{f_{m-1}(\alpha)}{d_{m-1}}\right\}

is a basis for SmS_{m} for monic polynomials fk(x)f_{k}(x) of degree kk and dkRd_{k}\in R such that dkdk+1d_{k}\mid d_{k+1} if km2k\leq m-2. We have to show that there is a monic polynomial fm(x)f_{m}(x) of degree mm and dmRd_{m}\in R such that dm1dmd_{m-1}\mid d_{m} and

{1,f1(α)d1,,fm(α)dm}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\ldots,\frac{f_{m}(\alpha)}{d_{m}}\right\}

is a basis for Sm+1S_{m+1} over RR.

Consider the map π:Fm+1M\pi\colon F_{m+1}\to M where MM is the RR-module

{rαmd|rR}\left\{\left.r\frac{\alpha^{m}}{d}\right|r\in R\right\}

given by projection on the (m+1)th(m+1)^{\textrm{th}} component, that is

a0d+a1αd++amαmdamαmd\frac{a_{0}}{d}+a_{1}\frac{\alpha}{d}+\cdots+a_{m}\frac{\alpha^{m}}{d}\mapsto a_{m}\frac{\alpha^{m}}{d}

Then, π(Sm+1)\pi\left(S_{m+1}\right) is a submodule of the free RR-module MM of rank one generated by αmd\frac{\alpha^{m}}{d}. We have π(Sm+1)0\pi\left(S_{m+1}\right)\neq 0 since

αm=01d+0αd++dαmdSm+1\alpha^{m}=0\cdot\frac{1}{d}+0\cdot\frac{\alpha}{d}+\cdots+d\cdot\frac{\alpha^{m}}{d}\in S_{m+1}

and π(αm)=dαmd0\pi\left(\alpha^{m}\right)=d\,\frac{\alpha^{m}}{d}\neq 0. So, there is a βSm+1\beta\in S_{m+1} such that π(β)\pi(\beta) generates π(Sm+1)\pi\left(S_{m+1}\right).

We will prove that

{1,f1(α)d1,,fm1(α)dm1,β}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\cdots,\frac{f_{m-1}(\alpha)}{d_{m-1}},\beta\right\}

is a basis for Sm+1S_{m+1}.

Let γSm+1\gamma\in S_{m+1}. Then π(γ)=sπ(β)\pi(\gamma)=s\pi(\beta). So, π(γsβ)=0\pi(\gamma-s\beta)=0 and γsβSm\gamma-s\beta\in S_{m}. So, by induction hypothesis

γsβ=b0+b1f1(α)d1++bm1fm1(α)dm1\gamma-s\beta=b_{0}+b_{1}\frac{f_{1}(\alpha)}{d_{1}}+\cdots+b_{m-1}\frac{f_{m-1}(\alpha)}{d_{m-1}}

or

γ=b0+b1f1(α)d1++bm1fm1(α)dm1+sβ\gamma=b_{0}+b_{1}\frac{f_{1}(\alpha)}{d_{1}}+\cdots+b_{m-1}\frac{f_{m-1}(\alpha)}{d_{m-1}}+s\beta

Since π(β)0\pi(\beta)\neq 0, β\beta is a polynomial in α\alpha of degree mm over KK. It follows that

{1,f1(α)d1,,fm1(α)dm1,β}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\cdots,\frac{f_{m-1}(\alpha)}{d_{m-1}},\beta\right\}

is a basis for Sm+1S_{m+1}. We have to prove that β\beta is in the correct form.

We have fm1(α)dm1Sm\frac{f_{m-1}(\alpha)}{d_{m-1}}\in S_{m} so, αfm1(α)dm1S\frac{\alpha f_{m-1}(\alpha)}{d_{m-1}}\in S. Also, since fm1(x)f_{m-1}(x) has degree m1m-1, xfm1(x)xf_{m-1}(x) has degree mm and αfm1(α)dm1Sm+1\frac{\alpha f_{m-1}(\alpha)}{d_{m-1}}\in S_{m+1}. So,

αmdm1=π(αfm1(α)dm1)π(Sm+1)\frac{\alpha^{m}}{d_{m-1}}=\pi\left(\frac{\alpha f_{m-1}(\alpha)}{d_{m-1}}\right)\in\pi\left(S_{m+1}\right)

So, αmdm1=kπ(β)\frac{\alpha^{m}}{d_{m-1}}=k\pi(\beta). Writing dm=kdm1d_{m}=kd_{m-1}, we have π(β)=αmdm\pi(\beta)=\frac{\alpha^{m}}{d_{m}}.

Since βSm+1\beta\in S_{m+1}, β=i=0muidxi\beta=\sum_{i=0}^{m}\frac{u_{i}}{d}x^{i} with uiRu_{i}\in R. From π(β)=αmdm\pi(\beta)=\frac{\alpha^{m}}{d_{m}}, it follows that um=ddmu_{m}=\frac{d}{d_{m}} and ddmR\frac{d}{d_{m}}\in R. Let

fm(x)=dm(u0d+u1dx++um1dxm1)+xmf_{m}(x)=d_{m}\left(\frac{u_{0}}{d}+\frac{u_{1}}{d}x+\cdots+\frac{u_{m-1}}{d}x^{m-1}\right)+x^{m}

Then β=fm(α)dm\beta=\frac{f_{m}(\alpha)}{d_{m}}. We need to show that fm(x)R[x]f_{m}(x)\in R[x]. We have fm(α)dm1=kβS\frac{f_{m}(\alpha)}{d_{m-1}}=k\beta\in S, so,

fm(α)αfm1(α)dm1=γS\frac{f_{m}(\alpha)-\alpha f_{m-1}(\alpha)}{d_{m-1}}=\gamma\in S

Actually, γSm\gamma\in S_{m}. Let

γ=u0+u1d1f1(α)++um1dm1fm1(α)=g(α)dm1\gamma=u_{0}+\frac{u_{1}}{d_{1}}f_{1}(\alpha)+\cdots+\frac{u_{m-1}}{d_{m-1}}f_{m-1}(\alpha)=\frac{g(\alpha)}{d_{m-1}}

where uiRu_{i}\in R and

g(x)=dm1u0+u1dm1d1f1(x)+u2dm1d2f2(x)++um1fm1(x)g(x)=d_{m-1}u_{0}+u_{1}\frac{d_{m-1}}{d_{1}}f_{1}(x)+u_{2}\frac{d_{m-1}}{d_{2}}f_{2}(x)+\cdots+u_{m-1}f_{m-1}(x)

Since didm1d_{i}\mid d_{m-1} if im1i\leq m-1, g(x)R[x]g(x)\in R[x] and deg(g(x))<m\deg(g(x))<m. We have g(α)=fm(α)αfm1(α)g(\alpha)=f_{m}(\alpha)-\alpha f_{m-1}(\alpha). From 3 it follows that g(x)=fm(x)xfm1(x)g(x)=f_{m}(x)-xf_{m-1}(x). Since g(x)g(x), xfm1(x)R[x]xf_{m-1}(x)\in R[x], it follows that fm(x)R[x]f_{m}(x)\in R[x].

We now show that dmd_{m} is uniquely determined up to a unit. Let

Im={xR|xSm+1R[α]}I_{m}=\left\{x\in R\left|xS_{m+1}\subset R[\alpha]\right.\right\}

We claim that Im=(dm)I_{m}=\left(d_{m}\right). We have dmImd_{m}\in I_{m} because didmd_{i}\mid d_{m} for 1im11\leq i\leq m-1.

If λIm\lambda\in I_{m}, since αmdmSm+1\frac{\alpha^{m}}{d_{m}}\in S_{m+1}, λαmdmR[α]\lambda\frac{\alpha^{m}}{d_{m}}\in R[\alpha]. So, λdmαm=h(α)\frac{\lambda}{d_{m}}\alpha^{m}=h(\alpha), where h(x)R[x]h(x)\in R[x] and deg(h(x))=m<n\deg(h(x))=m<n. So, h(x)=λdmxmh(x)=\frac{\lambda}{d_{m}}x^{m} and λdmR\frac{\lambda}{d_{m}}\in R. This completes the proof of the main result in 2.1.

Proof of 1 of the 2.1: Since g(α)diS\frac{g(\alpha)}{d_{i}}\in S, we have

g(α)di=u0+i=1n1uifi(α)di\frac{g(\alpha)}{d_{i}}=u_{0}+\sum_{i=1}^{n-1}u_{i}\frac{f_{i}\left(\alpha\right)}{d_{i}}

Letting

h(x)=u0+i=1n1uifi(x)dih(x)=u_{0}+\sum_{i=1}^{n-1}u_{i}\frac{f_{i}\left(x\right)}{d_{i}}

we have g(α)=h(α)g(\alpha)=h(\alpha) and both g(x)g(x) and h(x)h(x) have degree less than nn. Applying 3, it follows immediately that g(x)di=h(x)\frac{g(x)}{d_{i}}=h(x). Considering the coefficients of xn1x^{n-1} both sides we conclude that un1=0u_{n-1}=0. Similarly, considering the coefficients of xn2x^{n-2}, \ldots, xi+1x^{i+1} in succession, we get un2=0u_{n-2}=0, un3=0u_{n-3}=0, \ldots, ui+1=0u_{i+1}=0 and ui=1u_{i}=1. So, the transition matrix from

{1,f1(α)d2,,fi1(α)di1,g(α)di,fi+1(α)di+1,,fn1(α)dn1}\left\{1,\frac{f_{1}(\alpha)}{d_{2}},\ldots,\frac{f_{i-1}(\alpha)}{d_{i-1}},\frac{g(\alpha)}{d_{i}},\frac{f_{i+1}(\alpha)}{d_{i+1}},\ldots,\frac{f_{n-1}(\alpha)}{d_{n-1}}\right\} (24)

to

{1,f1(α)d1,,fn1(α)dn1}\left\{1,\frac{f_{1}(\alpha)}{d_{1}},\ldots,\frac{f_{n-1}(\alpha)}{d_{n-1}}\right\} (25)

has coefficients in RR and is an upper triangular matrix with 1’s along the diagonal. Indeed all the columns of the matrix are the same as that of the same as the n×nn\times n identity matrix except the ith column which is

[u0u1ui1100]\begin{bmatrix}u_{0}\\ u_{1}\\ \vdots\\ u_{i-1}\\ 1\\ 0\\ \vdots\\ 0\end{bmatrix}

So, the set in 24 is also a basis for SS over RR.

Proof of property 3: Suppose g(α)qS\frac{g(\alpha)}{q}\in S for a monic polynomial g(x)R[x]g(x)\in R[x] of degree ii, 1in11\leq i\leq n-1. Writing g(α)q\frac{g(\alpha)}{q}{} in terms of the integral basis in 1, we get

g(α)q=u0+i=1n1uifi(α)di,uiR\frac{g(\alpha)}{q}=u_{0}+\sum_{i=1}^{n-1}u_{i}\frac{f_{i}(\alpha)}{d_{i}},\ u_{i}\in R

Arguing as we did in the proof of Property 1, we get un1u_{n-1}, un2u_{n-2}, \ldots, ui+1u_{i+1} are all zero and 1q=uidi\frac{1}{q}=\frac{u_{i}}{d_{i}} or di=quid_{i}=qu_{i} and qdiq\mid d_{i}.

Proof of Property 3 We have fi(α)fj(α)didjS\frac{f_{i}(\alpha)f_{j}(\alpha)}{d_{i}d_{j}}\in S and g(x)=fi(x)fj(x)g(x)=f_{i}(x)f_{j}(x) is a monic polynomial of degree i+ji+j over RR. The result now follows from Property 3.

Proof of Property 4:1 is an integral basis for SS over RR it follows that

disc(S/R)=disc({1,f1(α)(d1,f2(α)d2,,fn1(α)dn1})\operatorname{disc}(S/R)=\operatorname{disc}\left(\left\{1,\frac{f_{1}(\alpha)}{(d_{1}},\frac{f_{2}(\alpha)}{d_{2}},\ldots,\frac{f_{n-1}(\alpha)}{d_{n-1}}\right\}\right)

The matrix over RR that maps {1,α,,αn1}\left\{1,\alpha,\ldots,\alpha^{n-1}\right\} to the basis in 1 is an upper triangular matrix with entries 1, 1d1\frac{1}{d_{1}}, 1d2\frac{1}{d_{2}}, \ldots,1dn1\frac{1}{d_{n-1}} along the diagnal. So, the determinant of the matrix is 1d1d2dn1\frac{1}{d_{1}d_{2}\cdots d_{n-1}}. Therefore,

disc(S/R)=1(d1d2dn1)2disc(α)\operatorname{disc}(S/R)=\frac{1}{\left(d_{1}d_{2}\cdots d_{n-1}\right)^{2}}\operatorname{disc}(\alpha)

which is the required result.

Proof of Property 5: From Property 3, it follows by induction that d1idid_{1}^{i}\mid d_{i} for 1in11\leq i\leq n-1. So, d1n(n1)2d_{1}^{\frac{n(n-1)}{2}} divides d1d2dn1d_{1}d_{2}\cdots d_{n-1}. From Property 4 it follows that d1n(n1)d_{1}^{n(n-1)} divides disc(α)\operatorname{disc}(\alpha).

Acknowledgement: The authors would like to thank Prof. R. Balasubramanian for many useful discussions. This work was done when the second author was visiting The Institute of Mathematical Sciences, Madras. He thanks the institute for its hospitality.

References

  • (1) R. Dedekind, Über die anzahl der idealklassen in reinen kubischen zahlkörpern. J. reine angew. Math. 121 (1900)
  • (2) W. Berwick, Integral Bases. Cambridge tracts in mathematics and mathematical physics (The University Press, 1927)
  • (3) H.B. Mann, On integral bases. Proceedings of the American Mathematical Society 9(1), 167–172 (1958)
  • (4) J.A. Hymo, C.J. Parry, On relative integral bases for pure quartic fields. Indian J. of Pure and Applied Mathematics 23(5), 359–376 (1992)
  • (5) T. Funakura, On integral bases of pure quartic fields. Math. J. Okayama Univ. 26, 27—41 (1984)
  • (6) A. Jakhar, S.K. Khanduja, N. Sangwan, On integral basis of pure number fields. Mathematika 67(1), 187–195 (2021)
  • (7) A.A. Albert, Normalized integral bases of algebraic number fields i. Annals of Mathematics 38(4), 923–957 (1937)
  • (8) D. Marcus, Number Fields. Universitext (Springer International Publishing, 2018)
  • (9) S. Alaca, K.S. Williams, Introductory Algebraic Number Theory (Cambridge University Press, 2003)
  • (10) J. Cassels, A. Fröhlich, L.M. Society, I.M. Union, Algebraic Number Theory: Proceedings of an Instructional Conference : Organized by the London Mathematical Society (Academic Press, 1967)
  • (11) J. Serre, Local Fields. Graduate Texts in Mathematics (Springer New York, 2013)
  • (12) B.F. Wyman, Wildly ramified gamma extensions. American Journal of Mathematics 91(1), 135–152 (1969)