This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Integrable modules over quantum symmetric pair coideal subalgebras

Hideya Watanabe (H. Watanabe) Department of Mathematics, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan [email protected]
Abstract.

We introduce the notion of integrable modules over ı\imathquantum groups (a.k.a. quantum symmetric pair coideal subalgebras). After determining a presentation of such modules, we prove that each integrable module over a quantum group is integrable when restricted to an ı\imathquantum group. As an application, we show that the space of matrix coefficients of all simple integrable modules over an ı\imathquantum group of finite type with specific parameters coincides with Bao-Song’s coordinate ring of the ı\imathquantum group.

2020 Mathematics Subject Classification:
Primary 17B10; Secondary 17B37

1. Introduction

1.1. Representation theory

The quantum groups (a.k.a. quantized enveloping algebras) were introduced by Drinfeld [Dr85] and Jimbo [J85] independently, and their representation theory has been studied for many years and been applied to a number of areas of mathematics and mathematical physics such as orthogonal polynomials, combinatorics, knot theory, and integrable systems. One of the central objects in the representation theory of quantum groups is the integrable modules. The notion of integrable modules originates in the representation theory of semisimple Lie algebras. In this context, an integrable module is a module over a semisimple Lie algebra which can be integrated to a representation of a corresponding Lie group. The integrability can be described as the local nilpotency of the Chevalley generators of the Lie algebra. This description can be used to define the notion of integrable modules over quantum groups as it is.

The ı\imathquantum groups (a.k.a. quantum symmetric pair coideal subalgebras) of finite type were formulated by Letzter [Le99] in order to perform noncommutative harmonic analysis on quantum symmetric spaces based on earlier works such as [NS95], [Di96], [N96]. Letzter’s construction was further generalized to infinite type by Kolb [Ko14].

It has been pointed out that the representation theory of ı\imathquantum groups develops very slowly ([Le19], [Wa21]). In fact, we do not still know any general theory to classify the finite-dimensional simple modules over ı\imathquantum groups of finite type, although such ı\imathquantum groups are quantum deformations of the universal enveloping algebra of a finite-dimensional complex reductive Lie algebra. Several type-dependent classification can be found in e.g. [GK91], [IK05], [M06] [IT10], [Wa20], [We20], [Wa21]. Since the ı\imathquantum groups have close resemblance to the quantum groups, it seems to be essential for better understanding of their representation theory to formulate the notion of integrable modules over ı\imathquantum groups. This is the aim of the present paper.

1.2. Integrable modules

Let us recall the definition of integrable modules over quantum groups. Let 𝐔\mathbf{U} be a quantum group, and {Ei,FiiI}\{E_{i},F_{i}\mid i\in I\} its Chevalley generators. Then, a weight 𝐔\mathbf{U}-module VV is said to be integrable if for each weight vector vVv\in V, there exist tuples (ai)iI(a_{i})_{i\in I}, (bi)iI(b_{i})_{i\in I} of nonnegative integers such that

Ei(ai+1)v=Fi(bi+1)v=0,E_{i}^{(a_{i}+1)}v=F_{i}^{(b_{i}+1)}v=0,

where the elements Ei(ai+1)E_{i}^{(a_{i}+1)}, Fi(bi+1)F_{i}^{(b_{i}+1)} are divided powers.

Let us turn to the ı\imathquantum groups. An ı\imathquantum group is a certain subalgebra of a quantum group 𝐔\mathbf{U}, and has a distinguished family {Ej,Fj,BkjI,kI}\{E_{j},F_{j},B_{k}\mid j\in I_{\bullet},\ k\in I_{\circ}\} of elements, which play similar roles to Chevalley generators of 𝐔\mathbf{U} in some sense. Here, the II_{\bullet} is a subset of II, and II_{\circ} is its complement III\setminus I_{\bullet}. An easy idea to define the integrable modules over the ı\imathquantum group is the local nilpotency with respect to the EjE_{j}, FjF_{j}, and BkB_{k}. However, this is not acceptable since the BkB_{k} may acts semisimply on many modules which should be included in the class of integrable modules. Bao and Wang, in their theory of ı\imathcanonical bases [BW18], [BW21], introduced the notion of ı\imathdivided powers, which are analogues of the divided powers of quantum groups. Using the ı\imathdivided powers, one may be able to resolve the semisimplicity issue of BkB_{k} above. Instead, testing integrability would be too hard since the ı\imathdivided powers are very complicated in general.

To overcome this difficulty, let us recall an alternative definition of the integrable 𝐔\mathbf{U}-modules. Let X+X^{+} denote the set of dominant weights. For each λX+\lambda\in X^{+}, let V(λ)V(\lambda) denote the integrable highest weight module of highest weight λ\lambda with highest weight vector vλv_{\lambda}. Also, let Vω(λ){}^{\omega}V(\lambda) denote the integrable lowest weight module of lowest weight λ-\lambda with lowest weight vector vλω{}^{\omega}v_{\lambda}. Then, a weight 𝐔\mathbf{U}-module VV is integrable if and only if for each weight vector vVv\in V, there exist λ,μX+\lambda,\mu\in X^{+} and a 𝐔\mathbf{U}-module homomorphism Vω(λ)V(μ)V{}^{\omega}V(\lambda)\otimes V(\mu)\rightarrow V which sends vλωvμ{}^{\omega}v_{\lambda}\otimes v_{\mu} to vv. Namely, integrable 𝐔\mathbf{U}-modules are locally quotients of various Vω(λ)V(μ){}^{\omega}V(\lambda)\otimes V(\mu).

The 𝐔\mathbf{U}-modules Vω(λ)V(μ){}^{\omega}V(\lambda)\otimes V(\mu) appear in Lusztig’s construction of the canonical basis of modified form of 𝐔\mathbf{U} ([Lu92]). They are replaced by certain 𝐔ı\mathbf{U}^{\imath}-modules Lı(λ,μ)L^{\imath}(\lambda,\mu) in Bao-Wang’s theory of ı\imathcanonical bases [BW18], [BW21]. Hence, it is natural to define an integrable 𝐔ı\mathbf{U}^{\imath}-module to be locally a quotient of Vı(λ,μ)V^{\imath}(\lambda,\mu). This definition turns out to work well in the present paper as summarized below.

1.3. Results

First, we determine a presentation of the 𝐔ı\mathbf{U}^{\imath}-modules Vı(λ,μ)V^{\imath}(\lambda,\mu). This enables one to test a given 𝐔ı\mathbf{U}^{\imath}-module to be integrable in a systematical way. In many cases, one only needs to check the local nilpotency with respect to EjE_{j}, FjF_{j}, BkB_{k} just like the quantum group case. In the remaining case, one needs to investigate local semisimplicity of some BkB_{k}. As an application, we show that each integrable 𝐔\mathbf{U}-module is integrable as a 𝐔ı\mathbf{U}^{\imath}-module.

Next, we concentrate on the ı\imathquantum groups of finite type. We also assume that the parameters of the 𝐔ı\mathbf{U}^{\imath} is chosen in a way such that the 𝐔ı\mathbf{U}^{\imath} is invariant under a certain anti-algebra involution ρ\rho on 𝐔\mathbf{U}, and that the ı\imathcanonical basis of the modified form of 𝐔ı\mathbf{U}^{\imath} is stable (or, strongly compatible). It turns out that each simple integrable 𝐔ı\mathbf{U}^{\imath}-module is finite-dimensional and appears as submodule of a finite-dimensional 𝐔\mathbf{U}-module.

Let us consider the space of matrix coefficients of all simple integrable 𝐔ı\mathbf{U}^{\imath}-modules. As in the quantum group case ([Ka93, Section 7]), it admits a Peter-Weyl type decomposition. Furthermore, by using the stability of ı\imathcanonical bases and the characterization of integrability, we show that this space has a basis which is dual to the ı\imathcanonical basis of the modified form of 𝐔ı\mathbf{U}^{\imath}. This shows that the space of matrix coefficients coincides with Bao-Song’s quantized coordinate ring [BS22], and hence, gives an intrinsic description of the latter.

1.4. Organization

The present paper is organized as follows. In Section 2, we review basic definitions and results concerning the structure and representation theory of quantum groups. Section 3 is devoted to formulating integrable modules over ı\imathquantum groups. In Section 4, we give an integrability criterion, and then prove that each integrable module over a quantum group is integrable when restricted to an ı\imathquantum group. As an application of this result, we investigate the space of matrix coefficients of all simple integrable modules over an ı\imathquantum group of finite type in Section 5.

Acknowledgments

The author thanks Paul Terwilliger for comments on the representation theory of ı\imathquantum groups, especially the qq-Onsager algebra. He is also grateful to Stefan Kolb for fruitful discussion on a sufficient condition for a weight 𝐔ı\mathbf{U}^{\imath}-module to be integrable, which stimulates him to formulate Proposition 4.3.1. This work was supported by JSPS KAKENHI Grant Number JP24K16903.

2. Quantum groups

In this section, we prepare necessary notation and fundamental results regarding the quantum groups. We more or less follow Lusztig’s textbook [Lu93] except in Subsection 2.4, where we discuss Levi and parabolic subalgebras of a quantum group.

2.1. Cartan and root data

Throughout the present paper, we fix an indeterminate qq, a Cartan datum I=(I,)I=(I,\cdot) and a YY- and XX-regular root datum (Y,X,,,Π,Π)(Y,X,\langle,\rangle,\Pi^{\vee},\Pi) of type II. For each i,jIi,j\in I and n0n\in\mathbb{Z}_{\geq 0}, set

di:=ii2,\displaystyle d_{i}:=\frac{i\cdot i}{2},
ai,j:=2ijii,\displaystyle a_{i,j}:=\frac{2i\cdot j}{i\cdot i},
qi:=qdi,\displaystyle q_{i}:=q^{d_{i}},
[n]i:=qinqinqiqi1,\displaystyle[n]_{i}:=\frac{q_{i}^{n}-q_{i}^{-n}}{q_{i}-q_{i}^{-1}},
[n]i!:=[n]i[n1]i[1]i.\displaystyle[n]_{i}!:=[n]_{i}[n-1]_{i}\cdots[1]_{i}.

For each iIi\in I, let hiΠh_{i}\in\Pi^{\vee} and αiΠ\alpha_{i}\in\Pi denote the corresponding simple coroot and simple root, respectively; in particular, we have

hi,αj=ai,j for all i,jI.\langle h_{i},\alpha_{j}\rangle=a_{i,j}\ \text{ for all }i,j\in I.

Let Br\mathrm{Br} and WW denote the braid group associated with II, and sis_{i} the simple reflection corresponding to iIi\in I. They act on [I]\mathbb{Z}[I], YY, and XX by

sij=jai,ji,sih=hh,αihi,siλ=λhi,λαis_{i}j=j-a_{i,j}i,\quad s_{i}h=h-\langle h,\alpha_{i}\rangle h_{i},\quad s_{i}\lambda=\lambda-\langle h_{i},\lambda\rangle\alpha_{i}

for each i,jI,hY,λXi,j\in I,\ h\in Y,\ \lambda\in X.

Let Q:=iIαiXQ:=\sum_{i\in I}\mathbb{Z}\alpha_{i}\subseteq X denote the root lattice, and Q±:=±iI0αiQ^{\pm}:=\pm\sum_{i\in I}\mathbb{Z}_{\geq 0}\alpha_{i} the positive and negative cones.

Let \leq denote the dominance order on XX, the partial ordering defined as follows: For each λ,μX\lambda,\mu\in X, we have λμ\lambda\leq\mu if and only if μλQ+\mu-\lambda\in Q^{+}.

Let X+X^{+} denote the set of dominant weights:

X+:={λXhi,λ0 for all iI}.X^{+}:=\{\lambda\in X\mid\langle h_{i},\lambda\rangle\geq 0\ \text{ for all }i\in I\}.

2.2. Quantum groups

Let 𝐔\mathbf{U} denote the quantum group associated with the root datum (Y,X,,,Π,Π)(Y,X,\langle,\rangle,\Pi^{\vee},\Pi). Namely, the 𝐔\mathbf{U} is the unital associative (q)\mathbb{Q}(q)-algebra with generators

{Ei,Fi,KhiI,hY}\{E_{i},\ F_{i},\ K_{h}\mid i\in I,\ h\in Y\}

subject to the following relations: For each h,h1,h2Yh,h_{1},h_{2}\in Y and i,jIi,j\in I,

K0=1,\displaystyle K_{0}=1,
Kh1Kh2=Kh1+h2,\displaystyle K_{h_{1}}K_{h_{2}}=K_{h_{1}+h_{2}},
KhEi=qh,αiEiKh,\displaystyle K_{h}E_{i}=q^{\langle h,\alpha_{i}\rangle}E_{i}K_{h},
KhFi=qh,αiFiKh,\displaystyle K_{h}F_{i}=q^{\langle h,-\alpha_{i}\rangle}F_{i}K_{h},
EiFjFjEi=δi,jKiKi1qiqi1,\displaystyle E_{i}F_{j}-F_{j}E_{i}=\delta_{i,j}\frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}},
r+s=1ai,j(1)sEi(r)EjEi(s)=0 if ij,\displaystyle\sum_{r+s=1-a_{i,j}}(-1)^{s}E_{i}^{(r)}E_{j}E_{i}^{(s)}=0\ \text{ if }i\neq j,
r+s=1ai,j(1)sFi(r)FjFi(s)=0 if ij.\displaystyle\sum_{r+s=1-a_{i,j}}(-1)^{s}F_{i}^{(r)}F_{j}F_{i}^{(s)}=0\ \text{ if }i\neq j.

where

Ki:=Kdihi,Ei(n):=1[n]i!Ein,Fi(n):=1[n]i!Fin.K_{i}:=K_{d_{i}h_{i}},\quad E_{i}^{(n)}:=\frac{1}{[n]_{i}!}E_{i}^{n},\quad F_{i}^{(n)}:=\frac{1}{[n]_{i}!}F_{i}^{n}.

The braid group Br\mathrm{Br} acts on 𝐔\mathbf{U} by siTi,1′′s_{i}\mapsto T^{\prime\prime}_{i,1} ([Lu93, §37.1]). For each wWw\in W with reduced expression w=si1silw=s_{i_{1}}\cdots s_{i_{l}}, set

Tw:=Ti1,1′′Til,1′′.T_{w}:=T^{\prime\prime}_{i_{1},1}\cdots T^{\prime\prime}_{i_{l},1}.

Let 𝐔\mathbf{U}^{-}, 𝐔0\mathbf{U}^{0}, and 𝐔+\mathbf{U}^{+} denote the negative, Cartan, and positive parts of 𝐔\mathbf{U}, respectively. We have a triangular decomposition:

(2.2.1) 𝐔=𝐔𝐔0𝐔+𝐔𝐔0𝐔+.\displaystyle\mathbf{U}=\mathbf{U}^{-}\mathbf{U}^{0}\mathbf{U}^{+}\simeq\mathbf{U}^{-}\otimes\mathbf{U}^{0}\otimes\mathbf{U}^{+}.

Let 𝐁(±)\mathbf{B}(\pm\infty) denote the canonical basis of 𝐔\mathbf{U}^{\mp}. They are graded by QQ^{\mp}:

𝐁(±)=λQ𝐁(±)λ,\mathbf{B}(\pm\infty)=\bigsqcup_{\lambda\in Q^{\mp}}\mathbf{B}(\pm\infty)_{\lambda},

where

𝐁(±)λ:=𝐁(±)𝐔λ,𝐔λ:={u𝐔KhuKh=qh,λu for all hY}.\mathbf{B}(\pm\infty)_{\lambda}:=\mathbf{B}(\pm\infty)\cap\mathbf{U}^{\mp}_{\lambda},\quad\mathbf{U}^{\mp}_{\lambda}:=\{u\in\mathbf{U}^{\mp}\mid K_{h}uK_{-h}=q^{\langle h,\lambda\rangle}u\ \text{ for all }h\in Y\}.

For each b𝐁(±)b\in\mathbf{B}(\pm\infty), we set wt(b):=λ\operatorname{wt}(b):=\lambda.

Let ω\omega denote the Chevalley involution on 𝐔\mathbf{U}, that is, the algebra automorphism such that

ω(Ei)=Fi,ω(Kh)=Kh for all iI,hY.\omega(E_{i})=F_{i},\ \omega(K_{h})=K_{-h}\ \text{ for all }i\in I,\ h\in Y.

Given a 𝐔\mathbf{U}-module VV, let Vω={vωvV}{}^{\omega}V=\{{}^{\omega}v\mid v\in V\} denote the 𝐔\mathbf{U}-module VV twisted by ω\omega:

uvω=(ω(u)v)ω for each u𝐔,vV.u\cdot{}^{\omega}v={}^{\omega}(\omega(u)v)\ \text{ for each }u\in\mathbf{U},\ v\in V.

Let 𝐔˙\dot{\mathbf{U}} denote the modified form of 𝐔\mathbf{U} with idempotents {1λλX}\{1_{\lambda}\mid\lambda\in X\}, and 𝐁˙\dot{\mathbf{B}} the canonical basis of 𝐔˙\dot{\mathbf{U}}.

2.3. Weight and integrable modules

A 𝐔\mathbf{U}-module VV is said to be a weight module if it admits a linear space decomposition

V=λXVλV=\bigoplus_{\lambda\in X}V_{\lambda}

such that

Vλ={vVKhv=qh,λv for all hY}.V_{\lambda}=\{v\in V\mid K_{h}v=q^{\langle h,\lambda\rangle}v\ \text{ for all }h\in Y\}.

For each vVλ{0}v\in V_{\lambda}\setminus\{0\}, we set wt(v):=λ\operatorname{wt}(v):=\lambda.

For each λX\lambda\in X, let M(λ)M(\lambda) denote the Verma module of highest weight λ\lambda with highest weight vector mλm_{\lambda}.

For each λ,μX\lambda,\mu\in X, set

M(λ,μ):=Mω(λ)M(μ)M(\lambda,\mu):={}^{\omega}M(\lambda)\otimes M(\mu)

and

mλ,μ:=mλωmμM(λ,μ).m_{\lambda,\mu}:={}^{\omega}m_{\lambda}\otimes m_{\mu}\in M(\lambda,\mu).

The linear map

𝐔˙1λ+μM(λ,μ);uumλ,μ\dot{\mathbf{U}}1_{-\lambda+\mu}\rightarrow M(\lambda,\mu);\ u\mapsto um_{\lambda,\mu}

is a 𝐔\mathbf{U}-module isomorphism ([Lu93, 23.3.1 (c)]). The 𝐔\mathbf{U}-module M(λ,μ)M(\lambda,\mu) (or rather 𝐔˙1λ+μ\dot{\mathbf{U}}1_{-\lambda+\mu}) is a universal weight module of weight λ+μ-\lambda+\mu in the following sense: For each weight 𝐔\mathbf{U}-module VV and a weight vector vVλ+μv\in V_{-\lambda+\mu}, there exists a unique 𝐔\mathbf{U}-module homomorphism M(λ,μ)VM(\lambda,\mu)\rightarrow V which sends mλ,μm_{\lambda,\mu} to vv.

A weight 𝐔\mathbf{U}-module VV is said to be integrable if for each λX\lambda\in X and vVλv\in V_{\lambda}, there exist (ai)iI,(bi)iI0I(a_{i})_{i\in I},(b_{i})_{i\in I}\in\mathbb{Z}_{\geq 0}^{I} such that

Ei(ai+1)v=Fi(bi+1)v=0 for all iI.E_{i}^{(a_{i}+1)}v=F_{i}^{(b_{i}+1)}v=0\ \text{ for all }i\in I.

For each λX+\lambda\in X^{+}, let V(λ)V(\lambda) denote the integrable highest weight module of highest weight λ\lambda. It is the maximal integrable quotient of the Verma module M(λ)M(\lambda):

V(λ):=M(λ)/iI𝐔Fi(hi,λ+1)mλ.V(\lambda):=M(\lambda)/\sum_{i\in I}\mathbf{U}F_{i}^{(\langle h_{i},\lambda\rangle+1)}m_{\lambda}.

Twisting it by the Chevalley involution ω\omega, we obtain

(2.3.1) Vω(λ)Mω(λ)/iI𝐔Ei(hi,λ+1)mλω.\displaystyle{}^{\omega}V(\lambda)\simeq{}^{\omega}M(\lambda)/\sum_{i\in I}\mathbf{U}E_{i}^{(\langle h_{i},\lambda\rangle+1)}\cdot{}^{\omega}m_{\lambda}.

Let vλV(λ)v_{\lambda}\in V(\lambda) denote the image of the highest weight vector mλM(λ)m_{\lambda}\in M(\lambda). Let 𝐁(λ)\mathbf{B}(\lambda) denote the canonical basis of V(λ)V(\lambda). The linear map

𝐔+Vω(λ);uuvλω\mathbf{U}^{+}\rightarrow{}^{\omega}V(\lambda);\ u\mapsto u\cdot{}^{\omega}v_{\lambda}

gives rise to a bijection

𝐁()[λ]:={b𝐁()bvλω0}𝐁ω(λ).\mathbf{B}(-\infty)[-\lambda]:=\{b\in\mathbf{B}(-\infty)\mid b\cdot{}^{\omega}v_{\lambda}\neq 0\}\rightarrow{}^{\omega}\mathbf{B}(\lambda).

Combining this fact with the presentation (2.3.1), we obtain

(2.3.2) b𝐁()𝐁()[λ]𝐔bmλω=iI𝐔Ei(hi,λ+1)mλω.\displaystyle\sum_{b\in\mathbf{B}(-\infty)\setminus\mathbf{B}(-\infty)[-\lambda]}\mathbf{U}b\cdot{}^{\omega}m_{\lambda}=\sum_{i\in I}\mathbf{U}E_{i}^{(\langle h_{i},\lambda\rangle+1)}\cdot{}^{\omega}m_{\lambda}.

For each λ,μX+\lambda,\mu\in X^{+}, set

V(λ,μ):=Vω(λ)V(μ)V(\lambda,\mu):={}^{\omega}V(\lambda)\otimes V(\mu)

and

vλ,μ:=vλωvμV(λ,μ).v_{\lambda,\mu}:={}^{\omega}v_{\lambda}\otimes v_{\mu}\in V(\lambda,\mu).

By [Lu93, Proposition 23.3.6], we have

(2.3.3) V(λ,μ)M(λ,μ)/(iI𝐔Ei(hi,λ+1)mλ,μ+iI𝐔Fi(hi,μ+1)mλ,μ).\displaystyle V(\lambda,\mu)\simeq M(\lambda,\mu)/(\sum_{i\in I}\mathbf{U}E_{i}^{(\langle h_{i},\lambda\rangle+1)}m_{\lambda,\mu}+\sum_{i\in I}\mathbf{U}F_{i}^{(\langle h_{i},\mu\rangle+1)}m_{\lambda,\mu}).

The 𝐔\mathbf{U}-modules V(λ,μ)V(\lambda,\mu) are universal integrable 𝐔\mathbf{U}-modules in the following sense: Let VV be an integrable 𝐔\mathbf{U}-module and vVv\in V a weight vector. Then, there exist λ,μX+\lambda,\mu\in X^{+} and a 𝐔\mathbf{U}-module homomorphism V(λ,μ)VV(\lambda,\mu)\rightarrow V which sends vλ,μv_{\lambda,\mu} to vv ([Lu93, Proposition 23.3.10]).

2.4. Levi and parabolic subalgebras

In this subsection, we fix a subset JIJ\subseteq I, and set K:=IJK:=I\setminus J. We often regard JJ as a Cartan datum and

(Y,X,,,{hjjJ},{αjjJ})(Y,X,\langle,\rangle,\{h_{j}\mid j\in J\},\{\alpha_{j}\mid j\in J\})

as a root datum of type JJ.

Let 𝐋=𝐋J\mathbf{L}=\mathbf{L}_{J} denote the Levi subalgebra of the quantum group 𝐔\mathbf{U} associated with JJ, that is, the subalgebra generated by

{Ej,Fj,KhjJ,hY}.\{E_{j},\ F_{j},\ K_{h}\mid j\in J,\ h\in Y\}.

The 𝐋\mathbf{L} itself is the quantum group associated with the root datum of type JJ above. Let 𝐋\mathbf{L}^{-} and 𝐋+\mathbf{L}^{+} denote the negative and the positive parts of 𝐋\mathbf{L}, respectively. Noting that the Cartan part of 𝐋\mathbf{L} is the 𝐔0\mathbf{U}^{0}, we have a triangular decomposition

(2.4.1) 𝐋=𝐋𝐔0𝐋+𝐋𝐔0𝐋+.\displaystyle\mathbf{L}=\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{L}^{+}\simeq\mathbf{L}^{-}\otimes\mathbf{U}^{0}\otimes\mathbf{L}^{+}.

For each λX\lambda\in X, let M𝐋(λ)M_{\mathbf{L}}(\lambda) denote the Verma module over 𝐋\mathbf{L} of highest weight λ\lambda with highest weight vector m𝐋,λm_{\mathbf{L},\lambda}. Similarly, for each λ,μX\lambda,\mu\in X, set M𝐋(λ,μ):=M𝐋ω(λ)M𝐋(μ)M_{\mathbf{L}}(\lambda,\mu):={}^{\omega}M_{\mathbf{L}}(\lambda)\otimes M_{\mathbf{L}}(\mu) and m𝐋;λ,μ:=m𝐋,λωm𝐋,μM𝐋(λ,μ)m_{\mathbf{L};\lambda,\mu}:={}^{\omega}m_{\mathbf{L},\lambda}\otimes m_{\mathbf{L},\mu}\in M_{\mathbf{L}}(\lambda,\mu). Then, we have M𝐋(λ,μ)𝐋˙1λ+μM_{\mathbf{L}}(\lambda,\mu)\simeq\dot{\mathbf{L}}1_{-\lambda+\mu} as 𝐋\mathbf{L}-modules, where 𝐋˙\dot{\mathbf{L}} denotes the modified form of 𝐋\mathbf{L}.

Let 𝐏+=𝐏J+\mathbf{P}^{+}=\mathbf{P}^{+}_{J} and 𝐏=𝐏J\mathbf{P}^{-}=\mathbf{P}^{-}_{J} denote the parabolic and the opposite parabolic subalgebra of 𝐔\mathbf{U} associated with the subset JJ. Namely, the 𝐏+\mathbf{P}^{+} (resp., 𝐏\mathbf{P}^{-}) is the subalgebra of 𝐔\mathbf{U} generated by 𝐋\mathbf{L} and

{EkkK}(resp., {FkkK}).\{E_{k}\mid k\in K\}\ (\text{resp., $\{F_{k}\mid k\in K\}$}).

We have triangular decompositions:

(2.4.2) 𝐏+=𝐋𝐔0𝐔+𝐋𝐔0𝐔+;\displaystyle\mathbf{P}^{+}=\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{U}^{+}\simeq\mathbf{L}^{-}\otimes\mathbf{U}^{0}\otimes\mathbf{U}^{+};
(2.4.3) 𝐏=𝐔𝐔0𝐋+𝐔𝐔0𝐋+;\displaystyle\mathbf{P}^{-}=\mathbf{U}^{-}\mathbf{U}^{0}\mathbf{L}^{+}\simeq\mathbf{U}^{-}\otimes\mathbf{U}^{0}\otimes\mathbf{L}^{+};

Although the algebras 𝐏±\mathbf{P}^{\pm} are not quantum groups, we can construct their modified forms 𝐏˙±=λX𝐏˙±1λ\dot{\mathbf{P}}^{\pm}=\bigoplus_{\lambda\in X}\dot{\mathbf{P}}^{\pm}1_{\lambda} in a canonical way. Just like the modified forms of quantum groups, the 𝐏˙±\dot{\mathbf{P}}^{\pm} have natural 𝐏±\mathbf{P}^{\pm}-bimodule structure. Furthermore, the 𝐋\mathbf{L}-bimodule structure on 𝐏±\mathbf{P}^{\pm} gives rise to an 𝐋˙\dot{\mathbf{L}}-bimodule structure on 𝐏˙±\dot{\mathbf{P}}^{\pm}.

Let 𝐑+=𝐑J+\mathbf{R}^{+}=\mathbf{R}^{+}_{J} (resp., 𝐑=𝐑J\mathbf{R}^{-}=\mathbf{R}^{-}_{J}) denote the nilradical part of 𝐏+\mathbf{P}^{+} (resp., 𝐏\mathbf{P}^{-}), that is, the two-sided ideal of 𝐔+\mathbf{U}^{+} (resp., 𝐔\mathbf{U}^{-}) generated by

{EkkK}(resp., {FkkK}).\{E_{k}\mid k\in K\}\ (\text{resp., $\{F_{k}\mid k\in K\}$}).

Then, we have

(2.4.4) 𝐔±=𝐋±𝐑±.\displaystyle\mathbf{U}^{\pm}=\mathbf{L}^{\pm}\oplus\mathbf{R}^{\pm}.
Proposition 2.4.1.

As a (q)\mathbb{Q}(q)-linear space, we have

(2.4.5) 𝐏+=𝐋𝐋𝐔0𝐑+.\displaystyle\mathbf{P}^{+}=\mathbf{L}\oplus\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{R}^{+}.

Moreover, the subspace 𝐋𝐔0𝐑+\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{R}^{+} coincides with the two-sided ideal of 𝐏+\mathbf{P}^{+} generated by {EkkK}\{E_{k}\mid k\in K\}.

Proof.

By decompositions (2.4.2), (2.4.4), and (2.4.1) we have

𝐏+=𝐋𝐔0(𝐋+𝐑+)=𝐋𝐋𝐔0𝐑+.\mathbf{P}^{+}=\mathbf{L}^{-}\mathbf{U}^{0}(\mathbf{L}^{+}\oplus\mathbf{R}^{+})=\mathbf{L}\oplus\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{R}^{+}.

This proves the first assertion.

To prove of the second assertion, let us compute as

(2.4.6) 𝐋𝐔0𝐑+=kK𝐋𝐔0𝐔+Ek𝐔+=kK𝐏+Ek𝐔+.\displaystyle\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{R}^{+}=\sum_{k\in K}\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{U}^{+}E_{k}\mathbf{U}^{+}=\sum_{k\in K}\mathbf{P}^{+}E_{k}\mathbf{U}^{+}.

For each kKk\in K, we have

(2.4.7) 𝐏+Ek𝐏+=𝐏+Ek𝐋𝐔0𝐔+=𝐏+𝐋𝐔0Ek𝐔+=𝐏+Ek𝐔+.\displaystyle\mathbf{P}^{+}E_{k}\mathbf{P}^{+}=\mathbf{P}^{+}E_{k}\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{U}^{+}=\mathbf{P}^{+}\mathbf{L}^{-}\mathbf{U}^{0}E_{k}\mathbf{U}^{+}=\mathbf{P}^{+}E_{k}\mathbf{U}^{+}.

Combining equations (2.4.6) and (2.4.7), we obtain

𝐋𝐔0𝐑+=kK𝐏+Ek𝐔+=kK𝐏+Ek𝐏+,\mathbf{L}^{-}\mathbf{U}^{0}\mathbf{R}^{+}=\sum_{k\in K}\mathbf{P}^{+}E_{k}\mathbf{U}^{+}=\sum_{k\in K}\mathbf{P}^{+}E_{k}\mathbf{P}^{+},

as desired. Thus, we complete the proof. ∎

Lemma 2.4.2.

Let λX\lambda\in X. We denote by 1λ𝐔1^{\mathbf{U}}_{\lambda} and 1λ𝐏1^{\mathbf{P}^{-}}_{\lambda} the idempotents in 𝐔˙\dot{\mathbf{U}} and 𝐏˙\dot{\mathbf{P}}^{-} corresponding to λ\lambda, respectively. Then, as (q)\mathbb{Q}(q)-linear spaces, we have

(2.4.8) 𝐏1λ𝐏𝐔1λ𝐔/𝐔𝐑+1λ𝐔.\displaystyle\mathbf{P}^{-}1^{\mathbf{P}^{-}}_{\lambda}\simeq\mathbf{U}1^{\mathbf{U}}_{\lambda}/\mathbf{U}\mathbf{R}^{+}1^{\mathbf{U}}_{\lambda}.
Proof.

By decompositions (2.2.1) and (2.4.4), we have

𝐔1λ𝐔=𝐔𝐔0𝐔+1λ𝐔=𝐔𝐔0(𝐋+𝐑+)1λ𝐔=(𝐏𝐔𝐑+)1λ𝐔.\mathbf{U}1^{\mathbf{U}}_{\lambda}=\mathbf{U}^{-}\mathbf{U}^{0}\mathbf{U}^{+}1^{\mathbf{U}}_{\lambda}=\mathbf{U}^{-}\mathbf{U}^{0}(\mathbf{L}^{+}\oplus\mathbf{R}^{+})1^{\mathbf{U}}_{\lambda}=(\mathbf{P}^{-}\oplus\mathbf{U}\mathbf{R}^{+})1^{\mathbf{U}}_{\lambda}.

Hence, we obtain a linear isomorphism

(2.4.9) 𝐏1λ𝐔𝐔1λ𝐔/𝐔𝐑+1λ𝐔.\displaystyle\mathbf{P}^{-}1^{\mathbf{U}}_{\lambda}\simeq\mathbf{U}1^{\mathbf{U}}_{\lambda}/\mathbf{U}\mathbf{R}^{+}1^{\mathbf{U}}_{\lambda}.

Since the triangular decomposition (2.4.3) of 𝐏\mathbf{P}^{-} is consistent with the one (2.2.1) of 𝐔\mathbf{U}, both the linear spaces 𝐏1λ𝐔\mathbf{P}^{-}1^{\mathbf{U}}_{\lambda} and 𝐏1λ𝐏\mathbf{P}^{-}1^{\mathbf{P}^{-}}_{\lambda} are isomorphic to 𝐔𝐋+\mathbf{U}^{-}\otimes\mathbf{L}^{+} in canonical ways. Thus, we complete the proof. ∎

Remark 2.4.3.

The linear isomorphism (2.4.9) has appeared in [BW21, §3.5].

Proposition 2.4.4.

Let VV be a weight 𝐋\mathbf{L}-module. Then, as a 𝐔\mathbf{U}-module, we have

Ind𝐏+𝐔V:=𝐔𝐏+V=𝐏˙𝐋˙V;\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}V:=\mathbf{U}\otimes_{\mathbf{P}^{+}}V=\dot{\mathbf{P}}^{-}\otimes_{\dot{\mathbf{L}}}V;

here, we regard VV as a 𝐏+\mathbf{P}^{+}-module via the projection 𝐏+𝐋\mathbf{P}^{+}\rightarrow\mathbf{L} with respect to the decomposition (2.4.5), and 𝐏˙(=λX𝐏1λ)\dot{\mathbf{P}}^{-}(=\bigoplus_{\lambda\in X}\mathbf{P}^{-}1_{\lambda}) as a 𝐔\mathbf{U}-module via the linear isomorphism (2.4.8).

Proof.

Let

ϕ:Ind𝐏+𝐔V𝐏˙𝐋˙V and ψ:𝐏˙𝐋˙VInd𝐏+𝐔V\phi\colon\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}V\rightarrow\dot{\mathbf{P}}^{-}\otimes_{\dot{\mathbf{L}}}V\text{ and }\psi\colon\dot{\mathbf{P}}^{-}\otimes_{\dot{\mathbf{L}}}V\rightarrow\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}V

denote the linear maps given as follows. Let λX\lambda\in X, vVλv\in V_{\lambda}, μQ+\mu\in Q^{+}, u𝐔u^{-}\in\mathbf{U}^{-}, u0𝐔0u^{0}\in\mathbf{U}^{0}, u+𝐔μ+u^{+}\in\mathbf{U}^{+}_{\mu}, and p𝐏p\in\mathbf{P}^{-}. Then, we set

ϕ(uu0u+v):=u1λ+μu0u+v and ψ(p1λv):=pv.\phi(u^{-}u^{0}u^{+}\otimes v):=u^{-}1_{\lambda+\mu}\otimes u^{0}u^{+}v\text{ and }\psi(p1_{\lambda}\otimes v):=p\otimes v.

That these maps are well-defined can be straightforwardly verified. Clearly, we have ϕψ=id\phi\circ\psi=\mathrm{id} and see that ψ\psi is a 𝐔\mathbf{U}-module homomorphism. Thus, we complete the proof. ∎

Corollary 2.4.5.

Let λ,μX\lambda,\mu\in X. Then, as 𝐔\mathbf{U}-modules, we have

Ind𝐏+𝐔M𝐋(λ,μ)Ind𝐏+𝐔𝐋˙1λ+μ𝐏˙𝐋˙𝐋˙1λ+μ𝐏˙1λ+μ.\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}M_{\mathbf{L}}(\lambda,\mu)\simeq\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}\dot{\mathbf{L}}1_{-\lambda+\mu}\simeq\dot{\mathbf{P}}^{-}\otimes_{\dot{\mathbf{L}}}\dot{\mathbf{L}}1_{-\lambda+\mu}\simeq\dot{\mathbf{P}}^{-}1_{-\lambda+\mu}.

3. Quantum symmetric pairs

After formulating basic notation regarding quantum symmetric pairs following mainly [BW21], we will introduce the notion of integrable modules over an ı\imathquantum group.

3.1. Quantum symmetric pair

Let (I,I,τ)(I,I_{\bullet},\tau) be a generalized Satake diagram ([RV20, Definition 1]). From now on, we assume that the root datum (Y,X,,,Π,Π)(Y,X,\langle,\rangle,\Pi^{\vee},\Pi) is a Satake datum of type (I,I,τ)(I,I_{\bullet},\tau) ([Wa23c, Definition 3.1.3]). In particular, the II_{\bullet} is a subdatum of II which is supposed to be of finite type, the τ\tau is an involutive automorphism on the Cartan datum II, and the lattices YY and XX are supposed to be equipped with involutive automorphisms τ\tau which are compatible with the one on II. Let wWw_{\bullet}\in W denote the longest element of the Weyl group WWW_{\bullet}\subseteq W associated with II_{\bullet}. Set

θ:=wτAut([I]),Aut(Y),Aut(X);\displaystyle\theta:=-w_{\bullet}\tau\in\operatorname{Aut}(\mathbb{Z}[I]),\operatorname{Aut}(Y),\operatorname{Aut}(X);
Yı:={hYθ(h)=h};\displaystyle Y^{\imath}:=\{h\in Y\mid\theta(h)=h\};
Xı:=X/{λθ(λ)λX};\displaystyle X^{\imath}:=X/\{\lambda-\theta(\lambda)\mid\lambda\in X\};
I:=II.\displaystyle I_{\circ}:=I\setminus I_{\bullet}.

Also, let

¯:XXı\overline{\cdot}\colon X\rightarrow X^{\imath}

denote the quotient map, and

,:Yı×Xı\langle,\rangle\colon Y^{\imath}\times X^{\imath}\rightarrow\mathbb{Z}

the bilinear pairing induced from the one on Y×XY\times X.

For later use, let us recall one of the axioms for generalized Satake diagrams from ([RV20, (2.19)]):

(3.1.1) hi,θ(αi)1 for all iI.\displaystyle\langle h_{i},\theta(\alpha_{i})\rangle\neq-1\ \text{ for all }i\in I.
Lemma 3.1.1.

Let kIk\in I_{\circ}. If τ(k)=kwk\tau(k)=k\neq w_{\bullet}k, then we have

hk,wαkαk2.\langle h_{k},w_{\bullet}\alpha_{k}-\alpha_{k}\rangle\leq-2.
Proof.

Since wαkαkjI0αjw_{\bullet}\alpha_{k}-\alpha_{k}\in\sum_{j\in I_{\bullet}}\mathbb{Z}_{\geq 0}\alpha_{j}, we have

hk,wαkαk0.\langle h_{k},w_{\bullet}\alpha_{k}-\alpha_{k}\rangle\in\mathbb{Z}_{\leq 0}.

Our assumption on kk that wkkw_{\bullet}k\neq k implies this value cannot be 0.

On the other hand, taking into account the assumption that τ(k)=k\tau(k)=k, we compute as follows:

hk,wαkαk=hk,θ(αk)αk=2hk,θ(αk).\langle h_{k},w_{\bullet}\alpha_{k}-\alpha_{k}\rangle=\langle h_{k},-\theta(\alpha_{k})-\alpha_{k}\rangle=-2-\langle h_{k},\theta(\alpha_{k})\rangle.

By axiom (3.1.1), the rightmost-hand side cannot be 1-1. Hence, the assertion follows. ∎

Let 𝐔ı\mathbf{U}^{\imath} denote the ı\imathquantum group associated with the Satake datum (Y,X,,,Π,Π)(Y,X,\langle,\rangle,\Pi^{\vee},\Pi) and parameters 𝝇=(ςk)kI((q)×)I{\boldsymbol{\varsigma}}=(\varsigma_{k})_{k\in I_{\circ}}\in(\mathbb{Q}(q)^{\times})^{I_{\circ}}, 𝜿=(κi)kI(q)I{\boldsymbol{\kappa}}=(\kappa_{i})_{k\in I_{\circ}}\in\mathbb{Q}(q)^{I_{\circ}}. It is the subalgebra of the quantum group 𝐔\mathbf{U} generated by

{Ej,Fj,Bk,KhjI,kI,hYı},\{E_{j},\ F_{j},\ B_{k},\ K_{h}\mid j\in I_{\bullet},\ k\in I_{\circ},\ h\in Y^{\imath}\},

where

Bk:=Fk+ςkTw(Eτ(k))Kk1+κkKk1B_{k}:=F_{k}+\varsigma_{k}T_{w_{\bullet}}(E_{\tau(k)})K_{k}^{-1}+\kappa_{k}K_{k}^{-1}

for each kIk\in I_{\circ}. The parameters are supposed to satisfy the following for all kIk\in I_{\circ}:

  • ςk=ςτ(k)\varsigma_{k}=\varsigma_{\tau(k)} if kθ(k)=0k\cdot\theta(k)=0.

  • κk=0\kappa_{k}=0 unless τ(k)=k\tau(k)=k, ak,j=0a_{k,j}=0 for all jIj\in I_{\bullet}, and ak,k2a_{k,k^{\prime}}\in 2\mathbb{Z} for all kIk^{\prime}\in I_{\circ} such that τ(k)=k\tau(k^{\prime})=k^{\prime} and ak,j=0a_{k^{\prime},j}=0 for all jIj\in I_{\bullet}.

They are as general as possible (see [Ko14, Definition 5.6]).

Let 𝐔˙ı\dot{\mathbf{U}}^{\imath} denote the modified form of 𝐔ı\mathbf{U}^{\imath} with idempotents {1ζζXı}\{1_{\zeta}\mid\zeta\in X^{\imath}\}.

Let 𝐋\mathbf{L}, 𝐏±\mathbf{P}^{\pm}, and 𝐑±\mathbf{R}^{\pm} denote the Levi, parabolic subalgebras, and the nilradical parts associated with II_{\bullet}, respectively.

Proposition 3.1.2 (cf[BW18, Lemma 3.22]).

Let λX\lambda\in X and ζ:=λ¯Xı\zeta:=\bar{\lambda}\in X^{\imath}. As 𝐔ı\mathbf{U}^{\imath}-modules, we have

𝐔˙ı1ζ𝐔ı1λ𝐏˙1λ.\dot{\mathbf{U}}^{\imath}1_{\zeta}\simeq\mathbf{U}^{\imath}1_{\lambda}\simeq\dot{\mathbf{P}}^{-}1_{\lambda}.

3.2. Weight modules

A 𝐔ı\mathbf{U}^{\imath}-module VV is said to be a weight module ([Wa23a, Definition 3.3.2]) if it admits a linear space decomposition

V=ζXıVζV=\bigoplus_{\zeta\in X^{\imath}}V_{\zeta}

such that

  • Vζ={vVKhv=qh,ζv for all hYı}V_{\zeta}=\{v\in V\mid K_{h}v=q^{\langle h,\zeta\rangle}v\ \text{ for all }h\in Y^{\imath}\};

  • EjVζVζ+αj¯E_{j}V_{\zeta}\subseteq V_{\zeta+\overline{\alpha_{j}}}, FjVζVζαj¯F_{j}V_{\zeta}\subseteq V_{\zeta-\overline{\alpha_{j}}} for all jIj\in I_{\bullet};

  • BkVζVζαk¯B_{k}V_{\zeta}\subseteq V_{\zeta-\overline{\alpha_{k}}} for all kIk\in I_{\circ};

A weight 𝐔\mathbf{U}-module V=λXVλV=\bigoplus_{\lambda\in X}V_{\lambda} has a canonical weight 𝐔ı\mathbf{U}^{\imath}-module structure:

(3.2.1) V=ζXıVζ,Vζ:=λXλ¯=ζVλ.\displaystyle V=\bigoplus_{\zeta\in X^{\imath}}V_{\zeta},\ V_{\zeta}:=\bigoplus_{\begin{subarray}{c}\lambda\in X\\ \bar{\lambda}=\zeta\end{subarray}}V_{\lambda}.

For each λ,μX\lambda,\mu\in X, set

Mı(λ,μ):=Ind𝐏+𝐔M𝐋(wλ,μ)M^{\imath}(\lambda,\mu):=\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}M_{\mathbf{L}}(-w_{\bullet}\lambda,\mu)

and

mλ,μı:=1m𝐋;wλ,μMı(λ,μ).m^{\imath}_{\lambda,\mu}:=1\otimes m_{\mathbf{L};-w_{\bullet}\lambda,\mu}\in M^{\imath}(\lambda,\mu).

Then, by Corollary 2.4.5, we have

(3.2.2) Mı(λ,μ)Ind𝐏+𝐔𝐋˙1wλ+μ𝐏˙1wλ+μ\displaystyle M^{\imath}(\lambda,\mu)\simeq\operatorname{Ind}_{\mathbf{P}^{+}}^{\mathbf{U}}\dot{\mathbf{L}}1_{w_{\bullet}\lambda+\mu}\simeq\dot{\mathbf{P}}^{-}1_{w_{\bullet}\lambda+\mu}

as 𝐔\mathbf{U}-modules. The 𝐔ı\mathbf{U}^{\imath}-module Mı(λ,μ)M^{\imath}(\lambda,\mu) is a universal weight module of weight wλ+μ¯\overline{w_{\bullet}\lambda+\mu} in the following sense:

Proposition 3.2.1.

Let λ,μX\lambda,\mu\in X and set ζ:=wλ+μ¯Xı\zeta:=\overline{w_{\bullet}\lambda+\mu}\in X^{\imath}. Let VV be a weight 𝐔ı\mathbf{U}^{\imath}-module and vVζv\in V_{\zeta}. Then, there exists a unique 𝐔ı\mathbf{U}^{\imath}-module homomorphism Mı(λ,μ)VM^{\imath}(\lambda,\mu)\rightarrow V which sends mλ,μım^{\imath}_{\lambda,\mu} to vv.

Proof.

By isomorphism (3.2.2) and Proposition 3.1.2, we have

Mı(λ,μ)𝐔˙ı1ζM^{\imath}(\lambda,\mu)\simeq\dot{\mathbf{U}}^{\imath}1_{\zeta}

as 𝐔ı\mathbf{U}^{\imath}-modules. Then, the assertion can be found in [Wa23a, after Definition 3.3.5]. ∎

3.3. Integrable modules

For each λ,μX+\lambda,\mu\in X^{+}, set Vı(λ,μ)V^{\imath}(\lambda,\mu) to be the quotient 𝐔\mathbf{U}-module of Mı(λ,μ)M^{\imath}(\lambda,\mu) factored by the submodule generated by

(3.3.1) {Ej(hj,wλ+1)mλ,μı,Fj(hj,μ+1)mλ,μı,Fk(hk,wλ+μ+1)mλ,μıjI,kI}.\displaystyle\{E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}m^{\imath}_{\lambda,\mu},\ F_{j}^{(\langle h_{j},\mu\rangle+1)}m^{\imath}_{\lambda,\mu},\ F_{k}^{(\langle h_{k},w_{\bullet}\lambda+\mu\rangle+1)}m^{\imath}_{\lambda,\mu}\mid j\in I_{\bullet},\ k\in I_{\circ}\}.

Let vλ,μıVı(λ,μ)v^{\imath}_{\lambda,\mu}\in V^{\imath}(\lambda,\mu) denote the image of mλ,μıMı(λ,μ)m^{\imath}_{\lambda,\mu}\in M^{\imath}(\lambda,\mu) under the quotient map.

Lemma 3.3.1.

Let λ,μX+\lambda,\mu\in X^{+}. Then, as a 𝐔\mathbf{U}-module, the Vı(λ,μ)V^{\imath}(\lambda,\mu) is isomorphic to the quotient module of 𝐔˙1wλ+μ\dot{\mathbf{U}}1_{w_{\bullet}\lambda+\mu} factored by the submodule generated by 𝐑+1wλ+μ\mathbf{R}^{+}1_{w_{\bullet}\lambda+\mu} and the set (3.3.1)

Proof.

The assertion follows from the definition of Vı(λ,μ)V^{\imath}(\lambda,\mu) and the isomorphisms (3.2.2) and (2.4.8). ∎

Lemma 3.3.2.

Let λ,μX+\lambda,\mu\in X^{+}. Then, there exist a finite number of dominant weights ν1,,νrX+\nu_{1},\dots,\nu_{r}\in X^{+} such that

𝐋vλ,μıs=1rV𝐋(νs)\mathbf{L}v^{\imath}_{\lambda,\mu}\simeq\bigoplus_{s=1}^{r}V_{\mathbf{L}}(\nu_{s})

as 𝐋\mathbf{L}-modules and

Vı(λ,μ)s=1rV(νs)V^{\imath}(\lambda,\mu)\simeq\bigoplus_{s=1}^{r}V(\nu_{s})

as 𝐔\mathbf{U}-modules, where V𝐋(ν)V_{\mathbf{L}}(\nu) denotes the integrable highest weight 𝐋\mathbf{L}-module of highest weight νX𝐋+\nu\in X_{\mathbf{L}}^{+}.

Proof.

By the definition of Vı(λ,μ)V^{\imath}(\lambda,\mu) and the presentation (2.3.3) of V𝐋(wλ,μ)V_{\mathbf{L}}(-w_{\bullet}\lambda,\mu), there exists an 𝐋\mathbf{L}-module homomorphism

V𝐋(wλ,μ)𝐋vλ,μıV_{\mathbf{L}}(-w_{\bullet}\lambda,\mu)\rightarrow\mathbf{L}v^{\imath}_{\lambda,\mu}

which sends v𝐋;wλ,μv_{\mathbf{L};-w_{\bullet}\lambda,\mu} to vλ,μıv^{\imath}_{\lambda,\mu}. This homomorphism is clearly surjective. Since the domain is finite-dimensional, so is the codomain. This implies that there exist ν1,,νrX𝐋+\nu_{1},\dots,\nu_{r}\in X_{\mathbf{L}}^{+} such that

𝐋vλ,μıs=1rV𝐋(νs).\mathbf{L}v^{\imath}_{\lambda,\mu}\simeq\bigoplus_{s=1}^{r}V_{\mathbf{L}}(\nu_{s}).

On the other hand, the 𝐔\mathbf{U}-module Vı(λ,μ)V^{\imath}(\lambda,\mu) is integrable, and

(3.3.2) 𝐔+vλ,μı=𝐋+vλ,μı\displaystyle\mathbf{U}^{+}v^{\imath}_{\lambda,\mu}=\mathbf{L}^{+}v^{\imath}_{\lambda,\mu}

Since the right-hand side is finite-dimensional, the weights of Vı(λ,μ)V^{\imath}(\lambda,\mu) are bounded above. Therefore, the 𝐔\mathbf{U}-module is a direct sum of submodules isomorphic to integrable highest weight modules. By equation (3.3.2), we see that the highest weight vectors in the 𝐔\mathbf{U}-module Vı(λ,μ)V^{\imath}(\lambda,\mu) are exactly those in the 𝐋\mathbf{L}-module 𝐋vλ,μı\mathbf{L}v^{\imath}_{\lambda,\mu}. This implies that

ν1,,νrX+\nu_{1},\dots,\nu_{r}\in X^{+}

and

Vı(λ,μ)s=1rV(νs).V^{\imath}(\lambda,\mu)\simeq\bigoplus_{s=1}^{r}V(\nu_{s}).

Thus, we complete the proof. ∎

Proposition 3.3.3.

Let Lı(λ,μ)L^{\imath}(\lambda,\mu) denote the 𝐔\mathbf{U}-submodule of V(λ)V(μ)V(\lambda)\otimes V(\mu) generated by vwλvμv_{w_{\bullet}\lambda}\otimes v_{\mu}, where vwλv_{w_{\bullet}\lambda} denotes the unique element in 𝐁(λ)\mathbf{B}(\lambda) of weight wλw_{\bullet}\lambda. Then, we have

Vı(λ,μ)Lı(λ,μ)V^{\imath}(\lambda,\mu)\simeq L^{\imath}(\lambda,\mu)

as 𝐔\mathbf{U}-modules.

Proof.

It is easily verified that 𝐑+(vwλvμ)=0\mathbf{R}^{+}(v_{w_{\bullet}\lambda}\otimes v_{\mu})=0 and

Ej(hj,wλ+1)(vwλvμ)=Fj(hj,μ+1)(vwλvμ)=Fk(hk,wλ+μ+1)(vwλvμ)=0E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}(v_{w_{\bullet}\lambda}\otimes v_{\mu})=F_{j}^{(\langle h_{j},\mu\rangle+1)}(v_{w_{\bullet}\lambda}\otimes v_{\mu})=F_{k}^{(\langle h_{k},w_{\bullet}\lambda+\mu\rangle+1)}(v_{w_{\bullet}\lambda}\otimes v_{\mu})=0

for all jIj\in I_{\bullet}, kIk\in I_{\circ}. Hence, Lemma 3.3.1 implies that there exists a 𝐔\mathbf{U}-module homomorphism

Vı(λ,μ)Lı(λ,μ)V^{\imath}(\lambda,\mu)\rightarrow L^{\imath}(\lambda,\mu)

which sends vλ,μıv^{\imath}_{\lambda,\mu} to vwλvμv_{w_{\bullet}\lambda}\otimes v_{\mu}.

On the other hand, since 𝐋(vwλvμ)V𝐋(wλ,μ)\mathbf{L}(v_{w_{\bullet}\lambda}\otimes v_{\mu})\simeq V_{\mathbf{L}}(-w_{\bullet}\lambda,\mu), there exists an 𝐋\mathbf{L}-module homomorphism

𝐋(vwλvμ)𝐋vλ,μı\mathbf{L}(v_{w_{\bullet}\lambda}\otimes v_{\mu})\rightarrow\mathbf{L}v^{\imath}_{\lambda,\mu}

which sends vwλvμv_{w_{\bullet}\lambda}\otimes v_{\mu} to vλ,μıv^{\imath}_{\lambda,\mu}.

Combining the two homomorphisms above, we see that 𝐋vλ,μı𝐋(vwλvμ)\mathbf{L}v^{\imath}_{\lambda,\mu}\simeq\mathbf{L}(v_{w_{\bullet}\lambda}\otimes v_{\mu}). By Lemma 3.3.2, the 𝐔\mathbf{U}-module structure of Vı(λ,μ)V^{\imath}(\lambda,\mu) is determined by the 𝐋\mathbf{L}-module structure of 𝐋vλ,μı\mathbf{L}v^{\imath}_{\lambda,\mu}. On the other hand, by [Wa23b, Proposition 3.4.3], the 𝐔\mathbf{U}-module structure of Lı(λ,μ)L^{\imath}(\lambda,\mu) is determined by the 𝐋\mathbf{L}-module structure of 𝐋(vwλvμ)\mathbf{L}(v_{w_{\bullet}\lambda}\otimes v_{\mu}). Hence, the assertion follows. ∎

Definition 3.3.4.

A weight 𝐔ı\mathbf{U}^{\imath}-module VV is said to be integrable if for each weight vector vVv\in V, there exist λ,μX+\lambda,\mu\in X^{+} and a 𝐔ı\mathbf{U}^{\imath}-module homomorphism Vı(λ,μ)VV^{\imath}(\lambda,\mu)\rightarrow V which sends vλ,μıv^{\imath}_{\lambda,\mu} to vv.

As explained in Section 1, the 𝐔\mathbf{U}-modules Lı(λ,μ)L^{\imath}(\lambda,\mu) in Proposition 3.3.3, which are isomorphic to Vı(λ,μ)V^{\imath}(\lambda,\mu), are counterparts of Vω(λ)V(μ){}^{\omega}V(\lambda)\otimes V(\mu) in the theory of ı\imathcanonical bases [BW18], [BW21], and the latter can be used to define integrable 𝐔\mathbf{U}-modules. From this point of view, Definition 3.3.4 is quite natural.

4. Properties of integrable modules

Although Definition 3.3.4 is a natural generalization of the definition of integrable 𝐔\mathbf{U}-modules, it is not quite useful to determine whether a given 𝐔ı\mathbf{U}^{\imath}-module is integrable or not. This is because we only know presentations of the Vı(λ,μ)V^{\imath}(\lambda,\mu)’s as 𝐔\mathbf{U}-modules, but not as 𝐔ı\mathbf{U}^{\imath}-modules. In this section, we shall give presentations as 𝐔ı\mathbf{U}^{\imath}-modules.

4.1. Some elements 𝔅k,ζ(n)\mathfrak{B}_{k,\zeta}^{(n)}

The aim of this subsection is to introduce a family {𝔅k,ζ(n)kI,ζXı,n0}\{\mathfrak{B}_{k,\zeta}^{(n)}\mid k\in I_{\circ},\ \zeta\in X^{\imath},\ n\in\mathbb{Z}_{\geq 0}\} of elements in 𝐔˙ı\dot{\mathbf{U}}^{\imath}, which will be used to express the 𝐔ı\mathbf{U}^{\imath}-modules Vı(λ,μ)V^{\imath}(\lambda,\mu) in terms of generators and relations.

4.1.1. Case 1:1: τ(k)=k=wk\tau(k)=k=w_{\bullet}k

First, let us consider the case where τ(k)=k=wk\tau(k)=k=w_{\bullet}k. For each ζXı\zeta\in X^{\imath} and λX\lambda\in X such that λ¯=ζ\bar{\lambda}=\zeta, the parity of the integer hk,λ\langle h_{k},\lambda\rangle is independent of the choice of λ\lambda. We call it the parity of ζ\zeta at kk. Set pk(ζ)/2={0¯,1¯}p_{k}(\zeta)\in\mathbb{Z}/2\mathbb{Z}=\{\bar{0},\bar{1}\} to be 0¯\bar{0} if the parity of ζ\zeta at kk is even, and to be 1¯\bar{1} otherwise. Similarly, given an integer nn, set p(n)p(n) to be 0¯\bar{0} if nn is even, and to be 1¯\bar{1} otherwise.

For each ζXı\zeta\in X^{\imath} and n0n\geq 0, define the element 𝔅k,ζ(n)𝐔˙ı1ζ\mathfrak{B}_{k,\zeta}^{(n)}\in\dot{\mathbf{U}}^{\imath}1_{\zeta} inductively as follows:

  • 𝔅k,ζ(0):=1ζ\mathfrak{B}_{k,\zeta}^{(0)}:=1_{\zeta}.

  • If pk(ζ)=0¯p_{k}(\zeta)=\bar{0}, then 𝔅k,ζ(1):=(Bkκk)1ζ\mathfrak{B}_{k,\zeta}^{(1)}:=(B_{k}-\kappa_{k})1_{\zeta}.

  • If pk(ζ)=p(n)p_{k}(\zeta)=p(n) and n1n\geq 1, then 𝔅k,ζ(n):=1[n]kBk𝔅k,ζ(n1)\mathfrak{B}_{k,\zeta}^{(n)}:=\frac{1}{[n]_{k}}B_{k}\mathfrak{B}_{k,\zeta}^{(n-1)}.

  • If pk(ζ)p(n)p_{k}(\zeta)\neq p(n) and n2n\geq 2, then

    𝔅k,ζ(n):=1[n]k[n1]k(Bk2(qkn1+qkn+1)κkBk+(κk2[n1]k2qkςk))𝔅k,ζ(n2).\mathfrak{B}_{k,\zeta}^{(n)}:=\frac{1}{[n]_{k}[n-1]_{k}}(B_{k}^{2}-(q_{k}^{n-1}+q_{k}^{-n+1})\kappa_{k}B_{k}+(\kappa_{k}^{2}-[n-1]_{k}^{2}q_{k}\varsigma_{k}))\mathfrak{B}_{k,\zeta}^{(n-2)}.

Let us see where this definition comes from. Let 𝕂\mathbb{K} denote an algebraic closure of the field (q)\mathbb{Q}(q), and consider the following quadratic equations

(QE)a,b(\mathrm{QE})_{a,b} x2(qk+qk1)ax+a2b=0\displaystyle x^{2}-(q_{k}+q_{k}^{-1})ax+a^{2}-b=0

with variant xx and constants a,b𝕂a,b\in\mathbb{K}. Since this equation is symmetric with respect to xx and aa, it follows that if c𝕂c\in\mathbb{K} is a solution to (QE)a,b(\mathrm{QE})_{a,b}, then aa is a solution to (QE)c,b(\mathrm{QE})_{c,b}.

Given scalars a(0),b𝕂a^{(0)},b\in\mathbb{K}, define a family (a(n))n𝕂(a^{(n)})_{n\in\mathbb{Z}}\in\mathbb{K}^{\mathbb{Z}} of scalars as follows: The a(1)a^{(1)} and a(1)a^{(-1)} are the solutions to the quadratic equation (QE)a(0),b(\mathrm{QE})_{a^{(0)},b}; the ambiguity will not matter in the subsequent argument. Suppose that we have defined a(m)a^{(m)} for nmn-n\leq m\leq n for some n1n\geq 1. Then, set a(±(n+1)):=(qk+qk1)a(±n)a(±(n1))a^{(\pm(n+1))}:=(q_{k}+q_{k}^{-1})a^{(\pm n)}-a^{(\pm(n-1))}.

By the construction above, it is clear that the a(n+1)a^{(n+1)} and a(n1)a^{(n-1)} are the solutions to the quadratic equation (QE)a(n),b(\mathrm{QE})_{a^{(n)},b} for each nn\in\mathbb{Z}. In particular, we have

a(n+1)+a(n1)=(qk+qk1)a(n),\displaystyle a^{(n+1)}+a^{(n-1)}=(q_{k}+q_{k}^{-1})a^{(n)},
a(n+1)a(n1)=(a(n))2b.\displaystyle a^{(n+1)}a^{(n-1)}=(a^{(n)})^{2}-b.

Then, one can straightforwardly verify that for each n1n\geq 1, the a(n)a^{(n)} and a(n)a^{(-n)} are the solutions to the quadratic equation

x2(qkn+qkn)a(0)x+(a(0))2[n]k2b=0.x^{2}-(q_{k}^{n}+q_{k}^{-n})a^{(0)}x+(a^{(0)})^{2}-[n]_{k}^{2}b=0.

Now, let us consider the (n+1)(n+1)-dimensional irreducible representation 𝐕n\mathbf{V}_{n} of Uq(𝔰𝔩2)U_{q}(\mathfrak{sl}_{2}), which we shall identify with the subalgebra of 𝐔\mathbf{U} generated by EkE_{k}, FkF_{k}, and Kk±1K_{k}^{\pm 1}. By a similar argument to [Wa21, §3.1], one can show that the Bk𝐔ıB_{k}\in\mathbf{U}^{\imath} acts on 𝐕n\mathbf{V}_{n} semisimply with eigenvalues κ(n),κ(n2),,κ(n)\kappa^{(n)},\kappa^{(n-2)},\dots,\kappa^{(-n)}, where we set κ(0):=κk\kappa^{(0)}:=\kappa_{k} and b:=qkςkb:=q_{k}\varsigma_{k}. Therefore, we see that

𝔅k,ζ(n+1)=1[n]k!Pn(Bk)1ζ for all ζXı with pk(ζ)=p(n),\mathfrak{B}_{k,\zeta}^{(n+1)}=\frac{1}{[n]_{k}!}P_{n}(B_{k})1_{\zeta}\ \text{ for all }\zeta\in X^{\imath}\text{ with }p_{k}(\zeta)=p(n),

where Pn(x)P_{n}(x) denotes the minimal polynomial of the action of BkB_{k} on 𝐕n\mathbf{V}_{n}.

The following are straightforward consequences of the argument above.

Proposition 4.1.1.

Let VV be a weight 𝐔\mathbf{U}-module, λX\lambda\in X, vVλv\in V_{\lambda}. Assume that n:=hk,λ0n:=\langle h_{k},\lambda\rangle\geq 0 and Ek𝐋+v=0E_{k}\mathbf{L}^{+}v=0. Then, we have

𝔅k,λ¯(n+1)v=Fk(n+1)v.\mathfrak{B}_{k,\bar{\lambda}}^{(n+1)}v=F_{k}^{(n+1)}v.
Proposition 4.1.2.

Let VV be an integrable 𝐔\mathbf{U}-module, λX\lambda\in X, and vVλv\in V_{\lambda}. Then, there exists N0N\in\mathbb{Z}_{\geq 0} such that 𝔅k,λ¯(n+1)v=0\mathfrak{B}_{k,\bar{\lambda}}^{(n+1)}v=0 for all nNn\geq N.

4.1.2. Case 2:2: τ(k)=kwk\tau(k)=k\neq w_{\bullet}k

Next, let us consider the case where τ(k)=kwk\tau(k)=k\neq w_{\bullet}k. For each ζXı\zeta\in X^{\imath} and n0n\geq 0, set

𝔅k,ζ(n):=1[n]k!Bkn1ζ.\mathfrak{B}_{k,\zeta}^{(n)}:=\frac{1}{[n]_{k}!}B_{k}^{n}1_{\zeta}.

Set Yk:=BkFkY_{k}:=B_{k}-F_{k} and Zk:=FkYkqk2YkFkZ_{k}:=F_{k}Y_{k}-q_{k}^{-2}Y_{k}F_{k}. Then, the following hold (cf[BW21, §5.2]):

  • ZkZ_{k} commutes with both FkF_{k} and YkY_{k}.

  • Zk𝐋w(αk)αk+Z_{k}\in\mathbf{L}^{+}_{w_{\bullet}(\alpha_{k})-\alpha_{k}}.

  • Yk𝐋+Ek𝐋+Y_{k}\in\mathbf{L}^{+}E_{k}\mathbf{L}^{+}.

Hence, for each n0n\geq 0, we have

(4.1.1) Bkn=f+2z+y=naf,z,yFkfZkzYky\displaystyle B_{k}^{n}=\sum_{f+2z+y=n}a_{f,z,y}F_{k}^{f}Z_{k}^{z}Y_{k}^{y}

for some af,z,y(q)a_{f,z,y}\in\mathbb{Q}(q).

Proposition 4.1.3.

Let VV be a weight 𝐔\mathbf{U}-module, λX\lambda\in X, vVλv\in V_{\lambda}. Assume that n:=hk,λ0n:=\langle h_{k},\lambda\rangle\geq 0 and Ek𝐋+v=0E_{k}\mathbf{L}^{+}v=0. Then, we have

𝔅k,λ¯(n+1)v=f+2z=n+1af,zFk(f)Zkzv\mathfrak{B}_{k,\bar{\lambda}}^{(n+1)}v=\sum_{f+2z=n+1}a_{f,z}F_{k}^{(f)}Z_{k}^{z}v

for some af,z(q)a_{f,z}\in\mathbb{Q}(q) such that an+1,0=1a_{n+1,0}=1.

Proof.

The assertion is immediate from equation (4.1.1). ∎

Proposition 4.1.4.

Let VV be an integrable 𝐔\mathbf{U}-module, λX\lambda\in X, and vVλv\in V_{\lambda}. Then, there exists N0N\in\mathbb{Z}_{\geq 0} such that 𝔅k,λ¯(n+1)v=0\mathfrak{B}_{k,\bar{\lambda}}^{(n+1)}v=0 for all nNn\geq N.

Proof.

Since VV is integrable, the YkY_{k}, which is a scalar multiple of Tw(Eτ(k))Kk1T_{w_{\bullet}}(E_{\tau(k)})K_{k}^{-1}, acts on VV locally nilpotently. In particular, there exists y00y_{0}\geq 0 such that

Ykyv=0 for all y>y0.Y_{k}^{y}v=0\ \text{ for all }y>y_{0}.

Recall that the algebra 𝐋+\mathbf{L}^{+} is a quantum group of finite type. Hence, the 𝐋+\mathbf{L}^{+}-submodule of the integrable module VV generated by the finite set {Ykyvy0}\{Y_{k}^{y}v\mid y\geq 0\} is finite-dimensional. Hence, there exists z00z_{0}\geq 0 such that

ZkzYkyv=0 for all y0,z>z0.Z_{k}^{z}Y_{k}^{y}v=0\ \text{ for all }y\geq 0,\ z>z_{0}.

Since the FkF_{k} acts on VV locally nilpotently, and the number of vectors of the form ZkzYkyvZ_{k}^{z}Y_{k}^{y}v with z,y0z,y\geq 0 is finite, there exists f00f_{0}\geq 0 such that

FkfZkzYkyv=0 for all z,y0,f>f0.F_{k}^{f}Z_{k}^{z}Y_{k}^{y}v=0\ \text{ for all }z,y\geq 0,\ f>f_{0}.

Now, set

N:=f0+2z0+f0.N:=f_{0}+2z_{0}+f_{0}.

By equation (4.1.1), we have

BkN+1=f+2z+y=N+1af,z,yFkfZkzYkyv.B_{k}^{N+1}=\sum_{f+2z+y=N+1}a_{f,z,y}F_{k}^{f}Z_{k}^{z}Y_{k}^{y}v.

All the summand in the right-hand side is 0 by the definition of NN. Hence, the assertion follows. ∎

4.1.3. Case 3:3: τ(k)k\tau(k)\neq k

Finally, let us consider the case where τ(k)k\tau(k)\neq k. For each ζXı\zeta\in X^{\imath} and n>0n>0, set

𝔅k,ζ(n):=1[n]k!Bkn1ζ.\mathfrak{B}_{k,\zeta}^{(n)}:=\frac{1}{[n]_{k}!}B_{k}^{n}1_{\zeta}.

Set Yk:=BkFkY_{k}:=B_{k}-F_{k}. Then, the following hold (cf[BW21, §5.5]):

  • FkYkqk2YkFk=0F_{k}Y_{k}-q_{k}^{-2}Y_{k}F_{k}=0.

  • Yk𝐋+Eτ(k)𝐋+Y_{k}\in\mathbf{L}^{+}E_{\tau(k)}\mathbf{L}^{+}.

Hence, for each n0n\geq 0, we have

(4.1.2) Bkn=f+y=naf,yFkfYky\displaystyle B_{k}^{n}=\sum_{f+y=n}a_{f,y}F_{k}^{f}Y_{k}^{y}

for some af,y(q)a_{f,y}\in\mathbb{Q}(q).

Proposition 4.1.5.

Let VV be a weight 𝐔\mathbf{U}-module, λX\lambda\in X, vVλv\in V_{\lambda}. Assume that n:=hk,λ0n:=\langle h_{k},\lambda\rangle\geq 0 and Ek𝐋+v=Eτ(k)𝐋+v=0E_{k}\mathbf{L}^{+}v=E_{\tau(k)}\mathbf{L}^{+}v=0. Then, we have

𝔅k,λ¯(n+1)v=Fk(n+1)v.\mathfrak{B}_{k,\bar{\lambda}}^{(n+1)}v=F_{k}^{(n+1)}v.
Proof.

The assertion is immediate from equation (4.1.2). ∎

Proposition 4.1.6.

Let VV be an integrable 𝐔\mathbf{U}-module, λX\lambda\in X, and vVλv\in V_{\lambda}. Then, there exists N0N\in\mathbb{Z}_{\geq 0} such that 𝔅k,λ¯(n+1)v=0\mathfrak{B}_{k,\bar{\lambda}}^{(n+1)}v=0 for all nNn\geq N.

Proof.

One can prove the assertion in the same way as Proposition 4.1.4. ∎

4.1.4. Summary

Let us summarize in a unified manner what we have obtained in the preceding argument.

Proposition 4.1.7.

Let VV be a weight 𝐔\mathbf{U}-module, λX\lambda\in X, vVλv\in V_{\lambda}, and kIk\in I_{\circ}. Assume that hk,λ0\langle h_{k},\lambda\rangle\geq 0 and Ek𝐋+v=Eτ(k)𝐋+v=0E_{k}\mathbf{L}^{+}v=E_{\tau(k)}\mathbf{L}^{+}v=0. Let 𝐔k\mathbf{U}_{k}^{-} denote the subalgebra of 𝐔\mathbf{U} generated by FkF_{k}. Then, the following hold:

  1. (1)

    𝔅k,ζ(hk,λ+1)vFk(hk,λ+1)vb𝐁𝐋(){1}𝐔kFk(hk,λ+wt(b)+1)bv\mathfrak{B}_{k,\zeta}^{(\langle h_{k},\lambda\rangle+1)}v-F_{k}^{(\langle h_{k},\lambda\rangle+1)}v\in\sum_{b\in\mathbf{B}_{\mathbf{L}}(-\infty)\setminus\{1\}}\mathbf{U}^{-}_{k}F_{k}^{(\langle h_{k},\lambda+\operatorname{wt}(b)\rangle+1)}bv, where we understand that Fk(n)=0F_{k}^{(n)}=0 if n<0n<0.

  2. (2)

    Ek𝔅k,ζ(hk,λ+1)vb𝐁𝐋(){1}𝐔Fk(hk,λ+wt(b)+1)bvE_{k}\mathfrak{B}_{k,\zeta}^{(\langle h_{k},\lambda\rangle+1)}v\in\sum_{b\in\mathbf{B}_{\mathbf{L}}(-\infty)\setminus\{1\}}\mathbf{U}F_{k}^{(\langle h_{k},\lambda+\operatorname{wt}(b)\rangle+1)}bv.

  3. (3)

    b𝔅k,ζhk,λ+1vb𝐁()wt(b)wt(b)𝐔kFk(hk,λ+wt(b)+1)bvb^{\prime}\mathfrak{B}_{k,\zeta}^{\langle h_{k},\lambda\rangle+1}v\in\sum_{\begin{subarray}{c}b\in\mathbf{B}(-\infty)\\ \operatorname{wt}(b)\geq\operatorname{wt}(b^{\prime})\end{subarray}}\mathbf{U}^{-}_{k}F_{k}^{(\langle h_{k},\lambda+\operatorname{wt}(b)\rangle+1)}bv for all b𝐁𝐋()b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty).

Proof.

By Lemma 3.1.1, the first assertion follows from Propositions 4.1.1, 4.1.3, and 4.1.5. The other assertions are immediate from the first one. ∎

Proposition 4.1.8.

Let VV be an integrable 𝐔\mathbf{U}-module, ζXı\zeta\in X^{\imath}, and vVζv\in V_{\zeta}. Then, there exist (aj)jI,(bj)jI0I(a_{j})_{j\in I_{\bullet}},(b_{j})_{j\in I_{\bullet}}\in\mathbb{Z}_{\geq 0}^{I_{\bullet}}, (ck)kI0I(c_{k})_{k\in I_{\circ}}\in\mathbb{Z}_{\geq 0}^{I_{\circ}} such that

Ej(aj+1)v=Fj(bj+1)v=𝔅k,ζ(ck+1)v=0.E_{j}^{(a_{j}+1)}v=F_{j}^{(b_{j}+1)}v=\mathfrak{B}_{k,\zeta}^{(c_{k}+1)}v=0.
Proof.

Since the weight vector vv is a finite sum of weight vectors of the weight 𝐔\mathbf{U}-module VV (see (3.2.1)), the assertion follows from Propositions 4.1.2, 4.1.4, and 4.1.6. ∎

4.2. A Presentation of the 𝐔ı\mathbf{U}^{\imath}-module Vı(λ,μ)V^{\imath}(\lambda,\mu)

In this subsection, we fix λ,μX+\lambda,\mu\in X^{+}, and set

ν:=wλ+μ,\displaystyle\nu:=w_{\bullet}\lambda+\mu,
:=jI𝐔Ej(hj,wλ+1)mλ,μı,\displaystyle\mathcal{E}:=\sum_{j\in I_{\bullet}}\mathbf{U}E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}m^{\imath}_{\lambda,\mu},
:=jI𝐔ıEj(hj,wλ+1)mλ,μı,\displaystyle\mathcal{E}^{\prime}:=\sum_{j\in I_{\bullet}}\mathbf{U}^{\imath}E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}m^{\imath}_{\lambda,\mu},
:=jI𝐔Fj(hj,μ+1)mλ,μı,\displaystyle\mathcal{F}:=\sum_{j\in I_{\bullet}}\mathbf{U}F_{j}^{(\langle h_{j},\mu\rangle+1)}m^{\imath}_{\lambda,\mu},
:=jI𝐔ıFj(hj,μ+1)mλ,μı,\displaystyle\mathcal{F}^{\prime}:=\sum_{j\in I_{\bullet}}\mathbf{U}^{\imath}F_{j}^{(\langle h_{j},\mu\rangle+1)}m^{\imath}_{\lambda,\mu},
:=kI𝐔Fk(hk,wλ+μ+1)mλ,μı,\displaystyle\mathcal{F}_{\circ}:=\sum_{k\in I_{\circ}}\mathbf{U}F_{k}^{(\langle h_{k},w_{\bullet}\lambda+\mu\rangle+1)}m^{\imath}_{\lambda,\mu},
:=kIb𝐁𝐋()[wλ]𝐔Fk(hk,ν+wt(b)+1)bmλ,μı,\displaystyle\mathcal{B}:=\sum_{k\in I_{\circ}}\sum_{b\in\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda]}\mathbf{U}F_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b)\rangle+1)}bm^{\imath}_{\lambda,\mu},
:=kIb𝐁𝐋()[wλ]𝐔ı𝔅k,ν+wt(b)¯(hk,ν+wt(b)+1)bmλ,μı.\displaystyle\mathcal{B}^{\prime}:=\sum_{k\in I_{\circ}}\sum_{b\in\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda]}\mathbf{U}^{\imath}\mathfrak{B}_{k,\overline{\nu+\operatorname{wt}(b)}}^{(\langle h_{k},\nu+\operatorname{wt}(b)\rangle+1)}bm^{\imath}_{\lambda,\mu}.

The aim of this subsection is to show that

++=++=++.\mathcal{E}+\mathcal{F}+\mathcal{F}_{\circ}=\mathcal{E}+\mathcal{F}+\mathcal{B}=\mathcal{E}^{\prime}+\mathcal{F}^{\prime}+\mathcal{B}^{\prime}.

This provides us with a presentation of the 𝐔ı\mathbf{U}^{\imath}-module Vı(λ,μ)V^{\imath}(\lambda,\mu).

Lemma 4.2.1.

Let VV be a weight 𝐔\mathbf{U}-module, and WVW\subseteq V a subspace. If 𝐔𝐑+WW\mathbf{U}\mathbf{R}^{+}W\subseteq W, then 𝐔W=𝐔ıW\mathbf{U}W=\mathbf{U}^{\imath}W.

Proof.

The assertion follows from the isomorphism 𝐔ı1λ𝐏˙1λ𝐔˙1λ/𝐔𝐑+1λ\mathbf{U}^{\imath}1_{\lambda}\simeq\dot{\mathbf{P}}^{-}1_{\lambda}\simeq\dot{\mathbf{U}}1_{\lambda}/\mathbf{U}\mathbf{R}^{+}1_{\lambda}, which is obtained from Proposition 3.1.2 and Lemma 2.4.2. ∎

Lemma 4.2.2.

We have

=.\mathcal{E}=\mathcal{E}^{\prime}.
Proof.

Let jIj\in I_{\bullet} and set v:=Ej(hj,wλ+1)mλ,μıMı(λ,μ)v:=E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}m^{\imath}_{\lambda,\mu}\in M^{\imath}(\lambda,\mu). Since 𝐑+Ej𝐑+\mathbf{R}^{+}E_{j}\subset\mathbf{R}^{+}, we have

𝐑+v𝐑+mλ,μı=0.\mathbf{R}^{+}v\subset\mathbf{R}^{+}m^{\imath}_{\lambda,\mu}=0.

Applying Lemma 4.2.1 to the 11-dimensional subspace spanned by vv, we obtain

𝐔v=𝐔ıv.\mathbf{U}v=\mathbf{U}^{\imath}v.

This implies the assertion. ∎

Lemma 4.2.3.

We have

=.\mathcal{F}=\mathcal{F}^{\prime}.
Proof.

Let jIj\in I_{\bullet} and set v:=Fj(hj,μ+1)mλ,μıMı(λ,μ)v:=F_{j}^{(\langle h_{j},\mu\rangle+1)}m^{\imath}_{\lambda,\mu}\in M^{\imath}(\lambda,\mu). Let x𝐋+x\in\mathbf{L}^{+} and kIk\in I_{\circ}. By the triangular decomposition (2.4.1) of 𝐋\mathbf{L}, the vector EkxvE_{k}xv is, up to scalar multiplies, of the form Ekxx+mλ,μıE_{k}x^{-}x^{+}m^{\imath}_{\lambda,\mu} with x𝐋x^{-}\in\mathbf{L}^{-}, x+𝐋+x^{+}\in\mathbf{L}^{+}. Since the EkE_{k} commutes with the elements in 𝐋\mathbf{L}^{-}, we have

Ekxx+mλ,μı=xEkx+mλ,μıx𝐑+mλ,μı=0.E_{k}x^{-}x^{+}m^{\imath}_{\lambda,\mu}=x^{-}E_{k}x^{+}m^{\imath}_{\lambda,\mu}\in x^{-}\mathbf{R}^{+}m^{\imath}_{\lambda,\mu}=0.

The argument above implies that 𝐑+v=0\mathbf{R}^{+}v=0. Hence, the assertion follows by applying Lemma 4.2.1 as in the proof of Lemma 4.2.2. ∎

Lemma 4.2.4.

We have

+=+.\mathcal{B}+\mathcal{E}=\mathcal{B}^{\prime}+\mathcal{E}.
Proof.

For each kIk\in I_{\circ} and b𝐁𝐋()b\in\mathbf{B}_{\mathbf{L}}(-\infty), set

  • λb:=ν+wt(b)\lambda_{b}:=\nu+\operatorname{wt}(b),

  • vk,b:=Fk(hk,λb+1)bmλ,μıv_{k,b}:=F_{k}^{(\langle h_{k},\lambda_{b}\rangle+1)}bm^{\imath}_{\lambda,\mu},

  • vk,b:=𝔅k,λb¯(hk,λb+1)bmλ,μıv^{\prime}_{k,b}:=\mathfrak{B}_{k,\overline{\lambda_{b}}}^{(\langle h_{k},\lambda_{b}\rangle+1)}bm^{\imath}_{\lambda,\mu},

  • W>b:=kIb𝐁𝐋()wt(b)>wt(b)𝐔vk,b+W_{>b}:=\sum_{k\in I_{\circ}}\sum_{\begin{subarray}{c}b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty)\\ \operatorname{wt}(b^{\prime})>\operatorname{wt}(b)\end{subarray}}\mathbf{U}v_{k,b^{\prime}}+\mathcal{E},

  • W>b:=kIb𝐁𝐋()wt(b)>wt(b)𝐔ıvk,b+W^{\prime}_{>b}:=\sum_{k\in I_{\circ}}\sum_{\begin{subarray}{c}b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty)\\ \operatorname{wt}(b^{\prime})>\operatorname{wt}(b)\end{subarray}}\mathbf{U}^{\imath}v^{\prime}_{k,b^{\prime}}+\mathcal{E},

  • Wb:=(q)vk,b+W>bW_{\geq b}:=\mathbb{Q}(q)v_{k,b}+W_{>b},

  • Wb:=(q)vk,b+W>bW^{\prime}_{\geq b}:=\mathbb{Q}(q)v^{\prime}_{k,b}+W^{\prime}_{>b},

Since bmλ,μıbm^{\imath}_{\lambda,\mu}\in\mathcal{E} for all b𝐁𝐋()𝐁𝐋()[wλ]b\in\mathbf{B}_{\mathbf{L}}(-\infty)\setminus\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda] by equation (2.3.2), we have vk,b,vk,bv_{k,b},v^{\prime}_{k,b}\in\mathcal{E} for all kIk\in I_{\circ} and such b𝐁𝐋()b\in\mathbf{B}_{\mathbf{L}}(-\infty). Hence, it holds that

W>b=kIb𝐁𝐋()[wλ]wt(b)>wt(b)𝐔vk,b+, and W>b=kIb𝐁𝐋()[wλ]wt(b)>wt(b)𝐔ıvk,b+.W_{>b}=\sum_{k\in I_{\circ}}\sum_{\begin{subarray}{c}b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda]\\ \operatorname{wt}(b^{\prime})>\operatorname{wt}(b)\end{subarray}}\mathbf{U}v_{k,b^{\prime}}+\mathcal{E},\text{ and }W^{\prime}_{>b}=\sum_{k\in I_{\circ}}\sum_{\begin{subarray}{c}b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda]\\ \operatorname{wt}(b^{\prime})>\operatorname{wt}(b)\end{subarray}}\mathbf{U}^{\imath}v^{\prime}_{k,b^{\prime}}+\mathcal{E}.

In particular,

𝐔W1=+ and 𝐔ıW1=+.\mathbf{U}W_{\geq 1}=\mathcal{B}+\mathcal{E}\text{ and }\mathbf{U}^{\imath}W^{\prime}_{\geq 1}=\mathcal{B}^{\prime}+\mathcal{E}.

We shall show that

𝐔ıWb=𝐔Wb\mathbf{U}^{\imath}W^{\prime}_{\geq b}=\mathbf{U}W_{\geq b}

for all b𝐁𝐋()b\in\mathbf{B}_{\mathbf{L}}(-\infty) by descending induction on wt(b)\operatorname{wt}(b). If this is the case, then we obtain

+=𝐔W1=𝐔ıW1=+,\mathcal{B}+\mathcal{E}=\mathbf{U}W_{\geq 1}=\mathbf{U}^{\imath}W^{\prime}_{\geq 1}=\mathcal{B}^{\prime}+\mathcal{E},

as desired.

When wt(b)0\operatorname{wt}(b)\gg 0, it holds that b𝐁𝐋()[wλ]b^{\prime}\notin\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda] for all b𝐁𝐋()b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty) such that wt(b)wt(b)\operatorname{wt}(b^{\prime})\geq\operatorname{wt}(b). These imply that vk,b,vk,bv_{k,b^{\prime}},v^{\prime}_{k,b^{\prime}}\in\mathcal{E} and hence the subspaces WbW_{\geq b} and WbW^{\prime}_{\geq b} are equal to \mathcal{E}. Hence, our claim follows in this case.

Assume that the claim holds for all b𝐁𝐋()b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty) with wt(b)>wt(b)\operatorname{wt}(b^{\prime})>\operatorname{wt}(b). Since

W>b=b𝐁𝐋()wt(b)>wt(b)𝐔Wb and W>b=b𝐁𝐋()wt(b)>wt(b)𝐔ıWb,W_{>b}=\sum_{\begin{subarray}{c}b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty)\\ \operatorname{wt}(b^{\prime})>\operatorname{wt}(b)\end{subarray}}\mathbf{U}W_{\geq b^{\prime}}\text{ and }W^{\prime}_{>b}=\sum_{\begin{subarray}{c}b^{\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty)\\ \operatorname{wt}(b^{\prime})>\operatorname{wt}(b)\end{subarray}}\mathbf{U}^{\imath}W^{\prime}_{\geq b^{\prime}},

these spaces are identical to each other.

Let us show that 𝐔𝐑+WbWb\mathbf{U}\mathbf{R}^{+}W^{\prime}_{\geq b}\subseteq W^{\prime}_{\geq b}. Since Wb=(q)vk,bW>bW^{\prime}_{\geq b}=\mathbb{Q}(q)v^{\prime}_{k,b}\oplus W_{>b} and 𝐔W>b=W>b\mathbf{U}W_{>b}=W_{>b}, we only need to show that 𝐑+vk,bW>b\mathbf{R}^{+}v^{\prime}_{k,b}\in W_{>b}. To this end, we will prove that Ekb′′vk,bW>bE_{k^{\prime}}b^{\prime\prime}v^{\prime}_{k,b}\in W_{>b} for all kIk^{\prime}\in I_{\circ} and b′′𝐁𝐋()b^{\prime\prime}\in\mathbf{B}_{\mathbf{L}}(-\infty). It is easily seen that the vector Ekb′′vk,bE_{k^{\prime}}b^{\prime\prime}v^{\prime}_{k,b} is equal to 0 unless k=kk^{\prime}=k. Hence, we may assume that k=kk^{\prime}=k.

When b′′=1b^{\prime\prime}=1, by Proposition 4.1.7 (2), we have

Ekvk,bb1𝐁(){1}𝐔Fk(hk,ν+wt(b)+wt(b1)+1)b1bmλ,μı.E_{k}v^{\prime}_{k,b}\in\sum_{b_{1}\in\mathbf{B}(-\infty)\setminus\{1\}}\mathbf{U}F_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b)+\operatorname{wt}(b_{1})\rangle+1)}b_{1}bm^{\imath}_{\lambda,\mu}.

Since b1bb_{1}b is a linear combination of b2𝐁()b_{2}\in\mathbf{B}(-\infty) with wt(b2)=wt(b)+wt(b1)\operatorname{wt}(b_{2})=\operatorname{wt}(b)+\operatorname{wt}(b_{1}), we see that

Fk(hk,ν+wt(b)+wt(b1)+1)b1bmλ,μıwt(b2)>wt(b)(q)Fk(hk,ν+wt(b2)+1)b2mλ,μı.F_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b)+\operatorname{wt}(b_{1})\rangle+1)}b_{1}bm^{\imath}_{\lambda,\mu}\in\sum_{\operatorname{wt}(b_{2})>\operatorname{wt}(b)}\mathbb{Q}(q)F_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b_{2})\rangle+1)}b_{2}m^{\imath}_{\lambda,\mu}.

Therefore, we obtain

Ekvk,bW>b,E_{k}v^{\prime}_{k,b}\in W_{>b},

as desired.

When b′′1b^{\prime\prime}\neq 1, by Proposition 4.1.7 (3), we have

Ekb′′vk,bwt(b)wt(b′′)𝐔Fk(hk,ν+wt(b)+wt(b)+1)bbmλ,μı=W>b.E_{k}b^{\prime\prime}v^{\prime}_{k,b}\in\sum_{\operatorname{wt}(b^{\prime})\geq\operatorname{wt}(b^{\prime\prime})}\mathbf{U}F_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b)+\operatorname{wt}(b^{\prime})\rangle+1)}b^{\prime}bm^{\imath}_{\lambda,\mu}=W_{>b}.

This completes the proof of the claim that 𝐔𝐑+WbWb\mathbf{U}\mathbf{R}^{+}W^{\prime}_{\geq b}\subseteq W^{\prime}_{\geq b}.

Let us apply Lemma 4.2.1 to obtain

𝐔Wb=𝐔ıWb.\mathbf{U}W^{\prime}_{\geq b}=\mathbf{U}^{\imath}W^{\prime}_{\geq b}.

By Proposition 4.1.7 (1), we have

vk,bvk,bW>b.v^{\prime}_{k,b}-v_{k,b}\in W_{>b}.

This shows that

Wb=Wb.W^{\prime}_{\geq b}=W_{\geq b}.

Thus, we complete the proof. ∎

Lemma 4.2.5.

We have

+=+.\mathcal{F}_{\circ}+\mathcal{E}=\mathcal{B}+\mathcal{E}.
Proof.

Clearly, we have \mathcal{F}_{\circ}\subseteq\mathcal{B}. Hence, we only need to show that Fk(hk,ν+wt(b)+1)bmλ,μıF_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b)\rangle+1)}bm^{\imath}_{\lambda,\mu}\in\mathcal{F}_{\circ} for all kIk\in I_{\circ} and b𝐁𝐋()b\in\mathbf{B}_{\mathbf{L}}(-\infty). Since bmλ,μıbm^{\imath}_{\lambda,\mu}\in\mathcal{E} if b𝐁𝐋()[wλ]b\notin\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda], we may assume that b𝐁𝐋()[wλ]b\in\mathbf{B}_{\mathbf{L}}(-\infty)[w_{\bullet}\lambda]. Noting that wt(b)jI0αj\operatorname{wt}(b)\in\sum_{j\in I_{\bullet}}\mathbb{Z}_{\geq 0}\alpha_{j} and (λwλ)wt(b)jI0αj(\lambda-w_{\bullet}\lambda)-\operatorname{wt}(b)\in\sum_{j\in I_{\bullet}}\mathbb{Z}_{\geq 0}\alpha_{j}, we see that

hk,wt(b)0 and hk,wλ+μ+wt(b)hk,λ+μ0.\langle h_{k},\operatorname{wt}(b)\rangle\leq 0\text{ and }\langle h_{k},w_{\bullet}\lambda+\mu+\operatorname{wt}(b)\rangle\geq\langle h_{k},\lambda+\mu\rangle\geq 0.

Therefore, the vector Fk(hk,ν+wt(b)+1)bmλ,μıF_{k}^{(\langle h_{k},\nu+\operatorname{wt}(b)\rangle+1)}bm^{\imath}_{\lambda,\mu} is a scalar multiple of the vector

Ekhk,wt(b)bFk(hk,wλ+μ+1)mλ,μı.E_{k}^{-\langle h_{k},\operatorname{wt}(b)\rangle}bF_{k}^{(\langle h_{k},w_{\bullet}\lambda+\mu\rangle+1)}m^{\imath}_{\lambda,\mu}.

This implies our claim, and the proof is completed. ∎

Theorem 4.2.6.

We have

++=++.\mathcal{E}+\mathcal{F}+\mathcal{F}_{\circ}=\mathcal{E}^{\prime}+\mathcal{F}^{\prime}+\mathcal{B}^{\prime}.

In other words, the 𝐔ı\mathbf{U}^{\imath}-module Vı(λ,μ)V^{\imath}(\lambda,\mu) coincides with the quotient 𝐔ı\mathbf{U}^{\imath}-module of Mı(λ,μ)M^{\imath}(\lambda,\mu) factored by the submodule generated by

{Ej(hj,wλ+1)mλ,μı,Fj(hj,μ+1)mλ,μıjI}\{E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}m^{\imath}_{\lambda,\mu},\ F_{j}^{(\langle h_{j},\mu\rangle+1)}m^{\imath}_{\lambda,\mu}\mid j\in I_{\bullet}\}

and

{𝔅k,wλ+μ¯+wtı(b)(hk,wλ+μ+wt(b)+1)bmλ,μıkI,b𝐁𝐋()}.\{\mathfrak{B}_{k,\overline{w_{\bullet}\lambda+\mu}+\mathrm{wt}^{\imath}(b)}^{(\langle h_{k},w_{\bullet}\lambda+\mu+\operatorname{wt}(b)\rangle+1)}bm^{\imath}_{\lambda,\mu}\mid k\in I_{\circ},\ b\in\mathbf{B}_{\mathbf{L}}(-\infty)\}.
Proof.

The assertion follows from Lemmas 4.2.2, 4.2.3, 4.2.4, and 4.2.5. ∎

Corollary 4.2.7.

Let VV be an integrable 𝐔ı\mathbf{U}^{\imath}-module. Then, for each ζXı\zeta\in X^{\imath} and vVζv\in V_{\zeta}, there exist (aj)jI,(bj)jI0I(a_{j})_{j\in I_{\bullet}},(b_{j})_{j\in I_{\bullet}}\in\mathbb{Z}_{\geq 0}^{I_{\bullet}} and (ck)kI0I(c_{k})_{k\in I_{\circ}}\in\mathbb{Z}_{\geq 0}^{I_{\circ}} such that

Ej(aj+1)v=Fj(bj+1)v=0 for all jIE_{j}^{(a_{j}+1)}v=F_{j}^{(b_{j}+1)}v=0\ \text{ for all }j\in I_{\bullet}

and

𝔅k,ζ(ck+1)v=0 for all kI.\mathfrak{B}_{k,\zeta}^{(c_{k}+1)}v=0\ \text{ for all }k\in I_{\circ}.

4.3. Some sufficient conditions

In this subsection, we give some sufficient conditions for a weight 𝐔ı\mathbf{U}^{\imath}-module to be integrable.

Proposition 4.3.1.

Let VV be a weight 𝐔ı\mathbf{U}^{\imath}-module generated by a weight vector vv of weight ζ\zeta. Suppose that there exist (aj)jI,(bj)jI0I(a_{j})_{j\in I_{\bullet}},(b_{j})_{j\in I_{\bullet}}\in\mathbb{Z}_{\geq 0}^{I_{\bullet}} and (ck)kI0I(c_{k})_{k\in I_{\circ}}\in\mathbb{Z}_{\geq 0}^{I_{\circ}} such that

Ej(aj+1)v=Fj(bj+1)v=0 for all jIE_{j}^{(a_{j}+1)}v=F_{j}^{(b_{j}+1)}v=0\ \text{ for all }j\in I_{\bullet}

and

𝔅k,ζ(ck+1)v=0 for all kI.\mathfrak{B}_{k,\zeta}^{(c_{k}+1)}v=0\ \text{ for all }k\in I_{\circ}.

Then, the VV is integrable.

Proof.

The assumption on vv implies that the 𝐋\mathbf{L}-module 𝐋v\mathbf{L}v is integrable. Since the 𝐋\mathbf{L} is a quantum group of finite type, every cyclic integrable module is finite-dimensional. Therefore, the set

BV:={b𝐁𝐋()bv0}B_{V}:=\{b\in\mathbf{B}_{\mathbf{L}}(-\infty)\mid bv\neq 0\}

is finite.

Let λ,μX+\lambda,\mu\in X^{+} be such that wλ+μ¯=ζ\overline{w_{\bullet}\lambda+\mu}=\zeta. By replacing λ\lambda and μ\mu by λ+τ(ν)\lambda+\tau(\nu) and μ+ν\mu+\nu, respectively for a suitable νX+\nu\in X^{+}, we may assume that

hj,wλaj,\displaystyle\langle h_{j},-w_{\bullet}\lambda\rangle\geq a_{j},
hj,μbj,\displaystyle\langle h_{j},\mu\rangle\geq b_{j},
hk,wλ+μ+wt(b)ck\displaystyle\langle h_{k},w_{\bullet}\lambda+\mu+\operatorname{wt}(b)\rangle\geq c_{k}

for all jIj\in I_{\bullet}, kIk\in I_{\circ}, and bBVb\in B_{V}. These imply that

Ej(hj,wλ+1)v𝐔ıEj(aj+1)v=0,\displaystyle E_{j}^{(\langle h_{j},-w_{\bullet}\lambda\rangle+1)}v\in\mathbf{U}^{\imath}E_{j}^{(a_{j}+1)}v=0,
Fj(hj,μ+1)v𝐔ıFj(bj+1)v=0,\displaystyle F_{j}^{(\langle h_{j},\mu\rangle+1)}v\in\mathbf{U}^{\imath}F_{j}^{(b_{j}+1)}v=0,
𝔅k,wλ+μ¯+wtı(b)(hk,wλ+μ+wt(b)+1)bv=b𝔅k,wλ+μ¯(hk,wλ+μ+wt(b)+1)v𝐔ı𝔅k,ζ(ck+1)v=0\displaystyle\mathfrak{B}_{k,\overline{w_{\bullet}\lambda+\mu}+\mathrm{wt}^{\imath}(b)}^{(\langle h_{k},w_{\bullet}\lambda+\mu+\operatorname{wt}(b)\rangle+1)}bv=b\mathfrak{B}_{k,\overline{w_{\bullet}\lambda+\mu}}^{(\langle h_{k},w_{\bullet}\lambda+\mu+\operatorname{wt}(b)\rangle+1)}v\in\mathbf{U}^{\imath}\mathfrak{B}_{k,\zeta}^{(c_{k}+1)}v=0

for all jIj\in I_{\bullet}, kIk\in I_{\circ}, and bBVb\in B_{V}. Hence, the assertion follows from Theorem 4.2.6. ∎

Proposition 4.3.2.

An integrable 𝐔\mathbf{U}-module is integrable as a 𝐔ı\mathbf{U}^{\imath}-module.

Proof.

Let VV be an integrable 𝐔\mathbf{U}-module. It is a weight 𝐔ı\mathbf{U}^{\imath}-module. Let ζXı\zeta\in X^{\imath} and vVζv\in V_{\zeta}. Let us write

v=r=1svrv=\sum_{r=1}^{s}v_{r}

for some s>0s\in\mathbb{Z}_{>0}, vrVλrv_{r}\in V_{\lambda_{r}}, and λrX\lambda_{r}\in X with λr¯=ζ\overline{\lambda_{r}}=\zeta.

Since VV is an integrable 𝐔\mathbf{U}-module, there exist aj,bj0a_{j},b_{j}\in\mathbb{Z}_{\geq 0} for jIj\in I_{\bullet} such that

Ej(aj+1)vr=Fj(bj+1)vr=0E_{j}^{(a_{j}+1)}v_{r}=F_{j}^{(b_{j}+1)}v_{r}=0

for all r=1,,sr=1,\dots,s. Hence, we obtain

Ej(aj+1)v=Fj(aj+1)v=0 for all jI.E_{j}^{(a_{j}+1)}v=F_{j}^{(a_{j}+1)}v=0\ \text{ for all }j\in I_{\bullet}.

Also, for each kIk\in I_{\circ}, by Proposition 4.1.8, there exists ck0c_{k}\geq 0 such that

𝔅k,ζ(ck+1)bv=0 for all b𝐁𝐋().\mathfrak{B}_{k,\zeta}^{(c_{k}+1)}bv=0\ \text{ for all }b\in\mathbf{B}_{\mathbf{L}}(-\infty).

5. Quantized coordinate algebras

In this section, we assume the following:

  • the Cartan datum II is of finite type.

  • the involution ρ\rho on 𝐔\mathbf{U} ([Lu93, 19.1.1]) preserves 𝐔ı\mathbf{U}^{\imath}.

  • the canonical basis 𝐁˙ı\dot{\mathbf{B}}^{\imath} of 𝐔˙ı\dot{\mathbf{U}}^{\imath} possesses the stability property.

For example, the last two conditions above are satisfied if the parameters 𝝇,𝜿{\boldsymbol{\varsigma}},{\boldsymbol{\kappa}} are as in [Wa23c, proof of Lemma 4.2.1] by [BW18, Proposition 4.6] and [Wa23c, Theorem 4.3.1].

5.1. Simple integrable modules

Let λ,μX+\lambda,\mu\in X^{+} and consider the 𝐔ı\mathbf{U}^{\imath}-module Vı(λ,μ)V^{\imath}(\lambda,\mu). It is equipped with a nondegenerate symmetric bilinear form (,)=(,)λ,μ(,)=(,)_{\lambda,\mu} such that (vλ,μı,vλ,μı)=1(v^{\imath}_{\lambda,\mu},v^{\imath}_{\lambda,\mu})=1 and

(xu,v)=(u,ρ(x)v) for all x𝐔ı,u,vVı(λ,μ)(xu,v)=(u,\rho(x)v)\ \text{ for all }x\in\mathbf{U}^{\imath},\ u,v\in V^{\imath}(\lambda,\mu)

(cf[BW18, §6.6]). Since the Vı(λ,μ)V^{\imath}(\lambda,\mu) is finite-dimensional, the existence of such a bilinear form ensures that it is semisimple. With some index set Γ\Gamma, let

{V(γ)γΓ}\{V(\gamma)\mid\gamma\in\Gamma\}

denote a complete set of representatives for the isomorphism classes of simple 𝐔ı\mathbf{U}^{\imath}-modules appearing as a submodule of Vı(λ,μ)V^{\imath}(\lambda,\mu) for some λ,μX+\lambda,\mu\in X^{+}. Since the 𝐔ı\mathbf{U}^{\imath}-module Vı(λ,μ)V^{\imath}(\lambda,\mu) is integrable by Proposition 4.3.2, so is each V(γ)V(\gamma).

Let VV be a simple integrable 𝐔ı\mathbf{U}^{\imath}-module, and vVv\in V a nonzero weight vector. Then, there exist λ,μX+\lambda,\mu\in X^{+} and a 𝐔ı\mathbf{U}^{\imath}-module homomorphism Vı(λ,μ)VV^{\imath}(\lambda,\mu)\rightarrow V which sends vλ,μıv^{\imath}_{\lambda,\mu} to vv. Since the VV is simple, this homomorphism must be surjective. The semisimplicity of Vı(λ,μ)V^{\imath}(\lambda,\mu) implies that it has a simple submodule isomorphic to VV. Therefore, the VV is isomorphic to V(γ)V(\gamma) for some γΓ\gamma\in\Gamma.

The argument above shows that the set {V(γ)γΓ}\{V(\gamma)\mid\gamma\in\Gamma\} is a complete set of representatives for the isomorphism classes of simple integrable 𝐔ı\mathbf{U}^{\imath}-modules.

Lemma 5.1.1.

Let γΓ\gamma\in\Gamma. Then, almost all the elements in 𝐁˙ı\dot{\mathbf{B}}^{\imath} acts on the 𝐔ı\mathbf{U}^{\imath}-module V(γ)V(\gamma) as 0:

{b𝐁˙ıbV(γ)0}<.\sharp\{b\in\dot{\mathbf{B}}^{\imath}\mid bV(\gamma)\neq 0\}<\infty.
Proof.

Let B(γ)={viγiIγ}B(\gamma)=\{v^{\gamma}_{i}\mid i\in I_{\gamma}\} be a basis of V(γ)V(\gamma) consisting of weight vectors. Since the V(γ)V(\gamma) is finite-dimensional, the index set IγI_{\gamma} is finite. By the integrability of V(γ)V(\gamma), for each iIγi\in I_{\gamma}, we may take λi,μiX+\lambda_{i},\mu_{i}\in X^{+} such that there exists a 𝐔ı\mathbf{U}^{\imath}-module homomorphism Vı(λi,μi)V(γ)V^{\imath}(\lambda_{i},\mu_{i})\rightarrow V(\gamma) which sends vλi,μiıv^{\imath}_{\lambda_{i},\mu_{i}} to viγv^{\gamma}_{i}.

Since the 𝐁˙ı\dot{\mathbf{B}}^{\imath} possesses the stability property, we have

{b𝐁˙ıbvλ,μı0}=dimVı(λ,μ) for all λ,μX+.\sharp\{b\in\dot{\mathbf{B}}^{\imath}\mid bv^{\imath}_{\lambda,\mu}\neq 0\}=\dim V^{\imath}(\lambda,\mu)\ \text{ for all }\lambda,\mu\in X^{+}.

Hence, the number of elements b𝐁˙ıb\in\dot{\mathbf{B}}^{\imath} such that bvλi,μiı0bv^{\imath}_{\lambda_{i},\mu_{i}}\neq 0 for some iIγi\in I_{\gamma} is finite.

Now, suppose that b𝐁˙ıb\in\dot{\mathbf{B}}^{\imath} acts on V(γ)V(\gamma) as nonzero. Then, there exists iIγi\in I_{\gamma} such that bvλi,μiı0bv^{\imath}_{\lambda_{i},\mu_{i}}\neq 0. By the argument above, the number of such elements is finite. ∎

5.2. Space of matrix coefficients

Given a linear space VV, let VV^{*} denote the linear dual space Hom(q)(V,(q))\operatorname{Hom}_{\mathbb{Q}(q)}(V,\mathbb{Q}(q)) to VV, and :V×V(q)\langle\mid\rangle\colon V\times V^{*}\rightarrow\mathbb{Q}(q) the canonical pairing.

Set 𝐔˙ı:=(𝐔˙ı)\dot{\mathbf{U}}^{\imath*}:=(\dot{\mathbf{U}}^{\imath})^{*}. It is equipped with the following 𝐔ı\mathbf{U}^{\imath}-bimodule structure:

uxϕy=yuxϕ for all x,y𝐔ı,u𝐔˙ı,ϕ𝐔˙ı.\langle u\mid x\phi y\rangle=\langle yux\mid\phi\rangle\ \text{ for all }x,y\in\mathbf{U}^{\imath},\ u\in\dot{\mathbf{U}}^{\imath},\ \phi\in\dot{\mathbf{U}}^{\imath*}.

For each γΓ\gamma\in\Gamma, vV(γ)v\in V(\gamma), and ϕV(γ)\phi\in V(\gamma)^{*}, let cv,ϕγ𝐔˙ıc^{\gamma}_{v,\phi}\in\dot{\mathbf{U}}^{\imath*} denote the corresponding matrix coefficient:

xcv,ϕγ=xvϕ for all x𝐔˙ı.\langle x\mid c^{\gamma}_{v,\phi}\rangle=\langle xv\mid\phi\rangle\ \text{ for all }x\in\dot{\mathbf{U}}^{\imath}.

The matrix coefficients {cv,ϕγvV(γ),ϕV(γ)}\{c^{\gamma}_{v,\phi}\mid v\in V(\gamma),\ \phi\in V(\gamma)^{*}\} form a simple 𝐔ı\mathbf{U}^{\imath}-bimodule isomorphic to V(γ)V(γ)V(\gamma)\otimes V(\gamma)^{*}; the matrix coefficient cv,ϕγc^{\gamma}_{v,\phi} corresponds to the vector vϕv\otimes\phi.

Let 𝐎ı\mathbf{O}^{\imath} denote the subspace of 𝐔˙ı\dot{\mathbf{U}}^{\imath*} consisting of ϕ𝐔˙ı\phi\in\dot{\mathbf{U}}^{\imath*} such that the 𝐔ı\mathbf{U}^{\imath}-submodule 𝐔ıϕ\mathbf{U}^{\imath}\phi and the right 𝐔ı\mathbf{U}^{\imath}-submodule ϕ𝐔ı\phi\mathbf{U}^{\imath} are integrable.

Lemma 5.2.1.

Every integrable cyclic 𝐔ı\mathbf{U}^{\imath}-module is finite-dimensional.

Proof.

Let VV be an integrable cyclic 𝐔ı\mathbf{U}^{\imath}-module with a cyclic vector vv. Without any loss of generality, we may assume that vv is a weight vector. By the definition of integrable 𝐔ı\mathbf{U}^{\imath}-modules, there exist λ,μX+\lambda,\mu\in X^{+} and a 𝐔ı\mathbf{U}^{\imath}-module homomorphism Vı(λ,μ)VV^{\imath}(\lambda,\mu)\rightarrow V which sends vλ,μıv^{\imath}_{\lambda,\mu} to vv. Since the VV is cyclic, the homomorphism must be surjective. Hence, the finite-dimensionality of Vı(λ,μ)V^{\imath}(\lambda,\mu) implies that of VV. Thus, we complete the proof. ∎

The following two statements can be proved by a similar way to classical results (e.g. see [P07, 6.2.6]).

Lemma 5.2.2.

Let ϕ𝐔˙ı\phi\in\dot{\mathbf{U}}^{\imath*}. Then, the following are equivalent:

  • 𝐔ıϕ\mathbf{U}^{\imath}\phi is integrable.

  • ϕ𝐔ı\phi\mathbf{U}^{\imath} is integrable.

Proposition 5.2.3.

The 𝐎ı\mathbf{O}^{\imath} is a 𝐔ı\mathbf{U}^{\imath}-bisubmodule of 𝐔˙ı\dot{\mathbf{U}}^{\imath*}. Moreover, the assignment

V(γ)V(γ)𝐔˙ı;vϕcv,ϕγV(\gamma)\otimes V(\gamma)^{*}\rightarrow\dot{\mathbf{U}}^{\imath*};\ v\otimes\phi\mapsto c^{\gamma}_{v,\phi}

gives rise to a Peter-Weyl type decomposition:

γΓV(γ)V(γ)𝐎ı(as 𝐔ı-bimodules).\bigoplus_{\gamma\in\Gamma}V(\gamma)\otimes V(\gamma)^{*}\simeq\mathbf{O}^{\imath}\ (\text{as $\mathbf{U}^{\imath}$-bimodules}).

Let 𝐁˙ı:={δbb𝐁˙ı}\dot{\mathbf{B}}^{\imath*}:=\{\delta_{b}\mid b\in\dot{\mathbf{B}}^{\imath}\} denote the dual basis to 𝐁˙ı\dot{\mathbf{B}}^{\imath}:

b1δb2=δb1,b2 for all b1,b2𝐁˙ı.\langle b_{1}\mid\delta_{b_{2}}\rangle=\delta_{b_{1},b_{2}}\ \text{ for all }b_{1},b_{2}\in\dot{\mathbf{B}}^{\imath}.
Theorem 5.2.4.

The 𝐁˙ı\dot{\mathbf{B}}^{\imath*} is a linear basis of 𝐎ı\mathbf{O}^{\imath}.

Proof.

First, we shall show that 𝐁˙ı𝐎ı\dot{\mathbf{B}}^{\imath*}\subset\mathbf{O}^{\imath}.

Let b𝐁˙ıb\in\dot{\mathbf{B}}^{\imath}. Take λ,μX+\lambda,\mu\in X^{+} in a way such that bvλ,μı0bv^{\imath}_{\lambda,\mu}\neq 0. Set B:={b𝐁˙ıbvλ,μı0}B:=\{b^{\prime}\in\dot{\mathbf{B}}^{\imath}\mid b^{\prime}v^{\imath}_{\lambda,\mu}\neq 0\}. Note that the set BB is finite: Since the 𝐔ı\mathbf{U}^{\imath}-module Vı(λ,μ)V^{\imath}(\lambda,\mu) is integrable, there exist (aj)jI,(bj)jI0I(a_{j})_{j\in I_{\bullet}},(b_{j})_{j\in I_{\bullet}}\in\mathbb{Z}_{\geq 0}^{I_{\bullet}}, (ck)kI0I(c_{k})_{k\in I_{\circ}}\in\mathbb{Z}_{\geq 0}^{I_{\circ}} such that

Ej(aj+1)bvλ,μı=Fj(bj+1)bvλ,μı=𝔅k,ζ(ck+1)bvλ,μı for all jI,kI,bB,E_{j}^{(a_{j}+1)}b^{\prime}v^{\imath}_{\lambda,\mu}=F_{j}^{(b_{j}+1)}b^{\prime}v^{\imath}_{\lambda,\mu}=\mathfrak{B}_{k,\zeta}^{(c_{k}+1)}b^{\prime}v^{\imath}_{\lambda,\mu}\ \text{ for all }j\in I_{\bullet},\ k\in I_{\circ},\ b^{\prime}\in B,

where ζXı\zeta\in X^{\imath} denotes the weight of bvλ,μıb^{\prime}v^{\imath}_{\lambda,\mu}.

We shall show that δbx=0\delta_{b}x=0 for all

x{Ej(aj+1),Fj(bj+1),𝔅k,ζ(ck+1)jI,kI,ζXı}.x\in\{E_{j}^{(a_{j}+1)},\ F_{j}^{(b_{j}+1)},\ \mathfrak{B}_{k,\zeta}^{(c_{k}+1)}\mid j\in I_{\bullet},\ k\in I_{\circ},\ \zeta\in X^{\imath}\}.

Let b1𝐁˙ıb_{1}\in\dot{\mathbf{B}}^{\imath} and write

(5.2.1) xb1=b2𝐁˙ıcb2b2\displaystyle xb_{1}=\sum_{b_{2}\in\dot{\mathbf{B}}^{\imath}}c_{b_{2}}b_{2}

with cb2[q,q1]c_{b_{2}}\in\mathbb{Z}[q,q^{-1}]. Then, we have

b1δbx=xb1δb=cb.\langle b_{1}\mid\delta_{b}x\rangle=\langle xb_{1}\mid\delta_{b}\rangle=c_{b}.

We want to show that cb=0c_{b}=0. By equation (5.2.1), we have

xb1vλ,μı=b2Bcb2b2vλ,μı.xb_{1}v^{\imath}_{\lambda,\mu}=\sum_{b_{2}\in B}c_{b_{2}}b_{2}v^{\imath}_{\lambda,\mu}.

The left-hand side equals 0 by the definition of xx. Since the elements {b2vλ,μıb2B}\{b_{2}v^{\imath}_{\lambda,\mu}\mid b_{2}\in B\} forms a basis of Vı(λ,μ)V^{\imath}(\lambda,\mu), we must have cb2=0c_{b_{2}}=0 for all b2Bb_{2}\in B. In particular, we obtain cb=0c_{b}=0.

Next, we shall prove that the 𝐁˙ı\dot{\mathbf{B}}^{\imath*} spans 𝐎ı\mathbf{O}^{\imath}. Let {viγiIγ}\{v^{\gamma}_{i}\mid i\in I_{\gamma}\} be a linear basis of V(γ)V(\gamma) and {ϕiγiIγ}\{\phi^{\gamma}_{i}\mid i\in I_{\gamma}\} its dual basis. By the Peter-Weyl type decomposition 5.2.3, the 𝐎ı\mathbf{O}^{\imath} has the following linear basis:

{cviγ,ϕjγγi,jIγ}.\{c^{\gamma}_{v^{\gamma}_{i},\phi^{\gamma}_{j}}\mid i,j\in I_{\gamma}\}.

We can formally express this basis elements as

cviγ,ϕjγγ=b𝐁˙ıcviγ,ϕjγγ(b)δb.c^{\gamma}_{v^{\gamma}_{i},\phi^{\gamma}_{j}}=\sum_{b\in\dot{\mathbf{B}}^{\imath}}c^{\gamma}_{v^{\gamma}_{i},\phi^{\gamma}_{j}}(b)\delta_{b}.

Since cviγ,ϕjγγ(b)=0c^{\gamma}_{v^{\gamma}_{i},\phi^{\gamma}_{j}}(b)=0 for almost all b𝐁˙ıb\in\dot{\mathbf{B}}^{\imath} (Lemma 5.1.1), the right-hand side is a finite sum. This proves the assertion. ∎

Corollary 5.2.5.

The space of matrix coefficients for the semisimple integrable 𝐔ı\mathbf{U}^{\imath}-modules coincides with the quantum coordinate algebra of 𝐔˙ı\dot{\mathbf{U}}^{\imath} in [BS22, 3.2.2].

Proof.

The former is the 𝐎ı\mathbf{O}^{\imath}, and the latter is the subspace of 𝐔˙ı\dot{\mathbf{U}}^{\imath*} spanned by the dual basis 𝐁˙ı\dot{\mathbf{B}}^{\imath*}. Hence, the assertion follows from Theorem 5.2.4. ∎

References

  • [BS22] H. Bao and J. Song, Symmetric subgroup schemes, Frobenius splittings, and quantum symmetric pairs, arXiv:2212.13426, 65 pp.
  • [BW18] H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (2018), no. 3, 1099–1177.
  • [BW21] H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs of Kac-Moody type, Compos. Math. 157 (2021), no. 7, 1507–1537.
  • [Di96] M. S. Dijkhuizen, Some remarks on the construction of quantum symmetric spaces, Representations of Lie groups, Lie algebras and their quantum analogues, Acta Appl. Math.44(1996), no.1-2, 59–80.
  • [Dr85] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064
  • [GK91] A. M. Gavrilik and A. U. Klimyk, qq-deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys. 21 (1991), no. 3, 215–220.
  • [IK05] N. Iorgov and A. U. Klimyk, Classification theorem on irreducible representations of the q-deformed algebra Uq(𝔰𝔬𝔫)U^{\prime}_{q}(\mathfrak{so_{n}}), Int. J. Math. Math. Sci. (2005), no. 2, 225–262.
  • [IT10] T. Ito and P. Terwilliger, The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), no. 1, 81–144.
  • [J85] M. Jimbo, A qq-difference analogue of U(𝔤)U(\mathfrak{g}) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69
  • [Ka93] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485.
  • [Ko14] S. Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469
  • [Le99] G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767
  • [Le19] G. Letzter, Cartan subalgebras for quantum symmetric pair coideals, Represent. Theory 23 (2019), 88–153
  • [Lu92] G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 17, 8177–8179
  • [Lu93] G. Lusztig, Introduction to Quantum Groups, Reprint of the 1994 edition, Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2010. xiv+346 pp.
  • [M06] A. I. Molev, Representations of the twisted quantized enveloping algebra of type CnC_{n}, Mosc. Math. J. 6 (2006), no. 3, 531–551, 588.
  • [N96] M. Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16–77
  • [NS95] M. Noumi and T. Sugitani, Quantum symmetric spaces and related qq-orthogonal polynomials, Group theoretical methods in physics (Toyonaka, 1994), 28–40, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
  • [P07] C. Procesi, Lie Groups. An Approach Through Invariants and Representations, Universitext, Springer, New York, 2007. xxiv+596 pp.
  • [RV20] V. Regelskis and B. Vlaar, Quasitriangular coideal subalgebras of Uq(𝔤)U_{q}(\mathfrak{g}) in terms of generalized Satake diagrams, Bull. Lond. Math. Soc. 52 (2020), no. 4, 693–715.
  • [Wa20] H. Watanabe, Crystal basis theory for a quantum symmetric pair (𝐔,𝐔ȷ)(\mathbf{U},\mathbf{U}^{\jmath}), Int. Math. Res. Not. IMRN (2020), no. 22, 8292–8352.
  • [Wa21] H. Watanabe, Classical weight modules over ı\imathquantum groups, J. Algebra 578 (2021), 241–302.
  • [Wa23a] H. Watanabe, Based modules over the ı\imathquantum group of type AI, Math. Z. 303 (2023), no. 2, Paper No. 43, 73 pp.
  • [Wa23b] H. Watanabe, Stability of ı\imathcanonical bases of irreducible finite type of real rank one, Represent. Theory 27 (2023), 1–29.
  • [Wa23c] H. Watanabe, Stability of ı\imathcanonical bases of locally finite type, arXiv:2306.12199, 14pp.
  • [We20] H. Wenzl, On representations of Uq𝔰𝔬nU^{\prime}_{q}\mathfrak{so}_{n}, Trans. Amer. Math. Soc. 373 (2020), no. 5, 3295–3322.