This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

∎

11institutetext: Jiezhu Lin 22institutetext: Department of Mathematics and Information Science ,Guangzhou University,Guangzhou, P. R. China
22email: [email protected]
Xuanming Ye
33institutetext: Department of Mathematics and Information Science ,Guangzhou University,Guangzhou, P. R. China
33email: [email protected]

Integrable Harmonic Higgs Bundles With Vanishing 𝒰\mathcal{U} And Eigenvalues of 𝒬\mathcal{Q}

Jiezhu Lin    Xuanming Ye
Abstract

We study the tt*-geometry with vanishing endormorphism 𝒰{\mathcal{U}}. Given an integrable harmonic Higgs bundle (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) on a complex manifold MM, Firstly we prove that, under the IS condition, vanishing 𝒰{\mathcal{U}} implies vanishing Higgs field Ξ¦\Phi and the Chern connection of the Hermitian Einstein metric hh is a holomorphic connection, so the metric hh and 𝒬\mathcal{Q} are invariant. Secondly, without the IS condition, we show that vanishing 𝒰{\mathcal{U}} will imply vanishing Higgs field Ξ¦\Phi if we assume that the Chern connection of hh is a holomorphic connection. Finally, we add real structure ΞΊ\kappa. Given any CV-structure, we prove that super-symmetric operator 𝒬\mathcal{Q} must have 0 as an eigenvalue when the underlying bundle has odd rank.

Keywords:
integrable harmonic Higgs bundle, tt*-structure, CV-structure,CDV-structure

1 Introduction

Cecotti and Vafa CV3 CVN considered moduli spaces of N=2N=2 super-symmetric quantum field theories and introduced a geometry on them which is governed by the tt*-equations. Tt*-structure is understood well after the work of C. Hertling in Hert2 , as an enrichment that of harmonic bundle previously introduced by N. Hitchin and C. Simpson. Tt*-structure was axiomatized as a CV-structures by C. Hertling in Hert2 . One way to study tt*-structure is to construct the so-called TERP-structure and prove it to be trTERP-structure. The exsitence of a tt*-structure on the base space of semiuniversal unifolding of hypersurface singularity was proved by C. Hertling, by using oscillating integrals, and he proved that this structure was compatible with the Frobenius structure and get a CDV-structure. The existence of a CDV-structure on the base space of a convenient and non-degenerate Laurent polynomial was proved by C. Sabbah in Sabb22 . Another way to build tt*-structure on deformation space of Landau-Ginzburg model was developed by H. Fan in Fan . By considering the spectrum theory of twisted Lapacian operator, he obtained tt*-structure on the deformation space. Most recent work on Ξ“^\hat{\Gamma}-integral structure in orbifold quantum cohomology has been done by A. Chiodo, H. Iritani and Y. Ruan. in CIR .

An integrable harmonic Higgs bundle (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) is a harmonic bundle (E,h,Ξ¦)(E,h,\Phi) on a complex manifold MM with supplementary structures 𝒰\mathcal{U} and 𝒬\mathcal{Q}, here 𝒰\mathcal{U} and 𝒬\mathcal{Q} are endomorphisms of complex vector bundle HH associated to EE. Adding a real structure ΞΊ\kappa on a integrable harmonic Higgs bundle (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) in a compatible way we can get a CV-structure. When the CV-structure is semi-simple everywhere, the associated TERP(w)-structure is determined completely by the number ww, its Stokes matrix SS and eigenvalues of 𝒰|t0\mathcal{U}|_{t_{0}}. However, the moduli spaces of massive deformations of conformal field theories contain non semi-simple points. The points t0t_{0} with 𝒰|t0=0\mathcal{U}|_{t_{0}}=0 correspond to conformal field theories. The eigenvalues of 𝒬|t0\mathcal{Q}|_{t_{0}} at such points are charges, certain rational number Ξ±j\alpha_{j} such that (βˆ’1)w​eβˆ’2​π​i​αj(-1)^{w}e^{-2\pi i\alpha_{j}} are the eigenvalues of the monodromy. In the singularity case they are up to a shift the spectral numbers(=the exponents-1) Hert2 .

The purpose of this article is to study the integrable harmonic Higgs bundles (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) with vanishing 𝒰\mathcal{U}, and to study on eigenvalues of 𝒬\mathcal{Q} for any CV-structure. We firstly conclude that, given an integrable harmonic Higgs bundle, vanishing 𝒰\mathcal{U} will implies vanishing of the Higgs field Ξ¦\Phi if 𝒬\mathcal{Q} saitisfies the IS condition at pp, here ”IS condition” means that differences of any two eigenvalues of 𝒬|p\mathcal{Q}|_{p} are not Β±1\pm 1. Moreover, the (1,0)(1,0) part of Chern connection Dβ€²D^{\prime} of the Hermitian Einstein hh is a holomorphic connection. The structure connection βˆ‡~\widetilde{\nabla} have regular singularity at 0, the pullback bundle pβˆ—β€‹Ep^{*}E is the logarithmic lattice, and βˆ‡~\widetilde{\nabla} can be decomposition as a direct sum of r=rank⁑Er=\operatorname{rank}E meromorphic connection with regular singularities at 0, here p:β„‚βˆ—Γ—Mβ†’Mp:\mathbb{C}^{*}\times M\rightarrow M is the projection. For a CDV-structure, since 𝒰=βˆ’Ξ¦β„°\mathcal{U}=-\Phi_{\mathcal{E}}, Obviously Ξ¦=0\Phi=0 implies 𝒰=0\mathcal{U}=0. However the inverse is usually not true for a CV-structure. It is quite interesting that the inverse is true when the 𝒬\mathcal{Q} satisfies the IS condition at one point.

Secondly, we consider the case that some difference of two eigenvalues of 𝒬\mathcal{Q} may be equal to 11. In this case we conclude that an integrable harmonic Higgs bundle (𝒯M,h,Ξ¦,𝒰,𝒬)(\mathcal{T}_{M},h,\Phi,\mathcal{U},\mathcal{Q}), 𝒰=0\mathcal{U}=0 will implies that Ξ¦=0\Phi=0 with the assumption that the (1,0)(1,0) part of Chern connection Dβ€²D^{\prime} is equal to zero.

Finally, given any CV-structure, we prove that super-symmetric operator 𝒬\mathcal{Q} must have 0 as an eigenvalue when the underlying bundle EE has odd rank. we give the results on eigenvalues of 𝒬\mathcal{Q} for a CV-structure (𝒯M,h,Ξ¦,ΞΊ,𝒰,𝒬)(\mathcal{T}_{M},h,\Phi,\kappa,\mathcal{U},\mathcal{Q}) when dimM\dim M is equal to 22 and 33.

Acknowledgements.
We would like to thanks Claude Sabbah for valuable comments, and for pointing out a mistake in Lemma 3 in the first version of the paper.

2 Frobenius manifold and tt* geometry

In this section we recall the notion of a Frobenius manifold, integrable harmonic Higgs bundle and tt*-bundle. This will mainly serve to fix notation.

2.1 Saito structure and Frobenius manifold structure

Frobenius manifolds were introduced and investigated by B. Dubrovin as the axiomatization of a part of the rich mathematical structure of the Topological Field Theory (TFT): cf. D , Hert , Mani .

A Frobenius manifold (also called Frobenius structure on MM) is a quintuple (M,∘,g,e,β„°)(M,\circ,g,e,\mathcal{E}). Here MM is a manifold in one of the standard categories (C∞C^{\infty}, analytic, …), gg is a metric on MM (that is, a symmetric, non-degenerate bilinear form, also denoted by ⟨,⟩\langle\,,\,\rangle), ∘\circ is a commutative and associative product on the tangent bundle 𝒯M\mathcal{T}_{M} and depends smoothly on MM, such that if βˆ‡\nabla denotes the Levi-Civita connection of gg and ΘM\Theta_{M} denotes the locally free sheaf of π’ͺM\mathcal{O}_{M}-module corresponding to 𝒯M\mathcal{T}_{M}, all subject to the following conditions:

  1. a)

    βˆ‡\nabla is flat;

  2. b)

    g​(X∘Y,Z)=g​(X,Y∘Z)g(X\circ Y,Z)=g(X,Y\circ Z), for any X,Y,Z∈ΘMX,Y,Z\in\Theta_{M}.

  3. c)

    the unit vector field e is covariant constant w.r.t. βˆ‡\nabla

    βˆ‡e=0;\displaystyle\nabla e=0;
  4. d)

    Let

    c​(X,Y,Z):=g​(X∘Y,Z)c(X,Y,Z):=g(X\circ Y,Z)

    (a symmetric 3-tensor). We require the 4-tensor

    (βˆ‡Zc)​(U,V,W)(\nabla_{Z}c)(U,V,W)

    to be symmetric in the four vector fields U,V,W,ZU,V,W,Z.

  5. e)

    A vector field β„°\mathcal{E} must be determined on MM such that

    βˆ‡(βˆ‡β„°)\displaystyle\nabla(\nabla\mathcal{E}) =0;\displaystyle=0;
    ℒℰ​(∘)\displaystyle\mathcal{L}_{\mathcal{E}}(\circ) =∘;\displaystyle=\circ;
    βˆƒdβˆˆβ„‚,ℒℰ​(g)\displaystyle\exists d\in\mathbb{C},\quad\mathcal{L}_{\mathcal{E}}(g) =(2βˆ’d)β‹…g.\displaystyle=(2-d)\cdot g.

Locally, given a Frobenius manifold structure on an open subset UβŠ‚β„‚mU\subset\mathbb{C}^{m}, Let t=(t1,t2,…,tm)t=(t^{1},t^{2},\dots,t^{m}) be holomorphic local coordinates of UU such that e=βˆ‚t1e=\partial_{t^{1}}, then we can find a function F=F​(t)F=F(t) such that its third derivatives

Ci​j​k:=βˆ‚Fβˆ‚tiβ€‹βˆ‚tjβ€‹βˆ‚tkC_{ijk}:=\frac{\partial F}{\partial t^{i}\partial t^{j}\partial t^{k}}

satisfy the following equations

  1. 1)

    Normalization:

    gi​j:=C1​i​jg_{ij}:=C_{1ij}

    is a constant non-degenerate matrix. Let

    (gi​j):=(gi​j)βˆ’1(g^{ij}):=(g_{ij})^{-1}
  2. 2)

    Associativity: the functions

    Ci​jk:=βˆ‘lCi​j​lβ‹…gl​k{C_{ij}}^{k}:=\sum_{l}C_{ijl}\cdot g^{lk}

    define a commutative and associative algebra on Tt​MT_{t}M by

    βˆ‚tiβˆ˜βˆ‚tj:=βˆ‘kCi​jkβ€‹βˆ‚tk\partial_{t^{i}}\circ\partial_{t^{j}}:=\sum_{k}C_{ij}^{k}\partial_{t^{k}}
  3. 3)

    Homogeneity: The function FF must be quasi-homogeneous, i.e.,

    ℒℰ​F=dFβ‹…F+quadratic terms,\mathcal{L}_{\mathcal{E}}F=d_{F}\cdot F+\text{quadratic terms},

    where β„°=βˆ‘i,j(qij​ti+rj)β€‹βˆ‚tj\mathcal{E}=\sum_{i,j}(q_{i}^{j}t^{i}+r^{j})\partial_{t^{j}}, and dFβˆˆβ„‚d_{F}\in\mathbb{C}.

If the endomorphism βˆ‡β„°\nabla\mathcal{E} is semi-simple, then the Euler vector field can be reduced to the form

β„°=βˆ‘idi​tiβ€‹βˆ‚ti+βˆ‘j∣dj=0rjβ€‹βˆ‚tj.\mathcal{E}=\sum_{i}d_{i}t^{i}\partial_{t^{i}}+\sum_{j\mid d_{j}=0}r_{j}\partial_{t^{j}}.

where all rjr_{j} are complex numbers, and all did_{i} are the eigenvalues of βˆ‡β„°\nabla\mathcal{E}. Moreover, if g​(e,e)=0g(e,e)=0, we have

Proposition 1 (D )

Let MM be a Frobenius manifold. Assume that g​(e,e)=0g(e,e)=0 and that the endomorphism βˆ‡β„°\nabla\mathcal{E} is semi-simple. Then by a linear change of coordinates ti the matrix gi​jg_{ij} can be reduced to the anti-diagonal form

gi​j=Ξ΄i+j,m+1;\displaystyle g_{ij}=\delta_{i+j,m+1};
e=βˆ‚t1\displaystyle e=\partial_{t^{1}}

and in these coordinates, write

F​(t)=12​(t1)2​tm+12​t1β€‹βˆ‘iβ‰₯2ti​tmβˆ’i+1+f​(t2,t3,…,tm)\displaystyle F(t)=\frac{1}{2}(t^{1})^{2}t^{m}+\frac{1}{2}t^{1}\sum_{i\geq 2}t^{i}t^{m-i+1}+f(t^{2},t^{3},\dots,t^{m})

for some functions, the sum

di+dmβˆ’i+1d_{i}+d_{m-i+1}

does not depend on ii, and

dF=2​d1+dm.d_{F}=2d_{1}+d_{m}.

If the degrees are normalized in such a way that d1=1d_{1}=1 then they can be represented in the form

di=1βˆ’qi;dF=3βˆ’d,d_{i}=1-q_{i};\quad d_{F}=3-d,

where q1,q2,…,qm,dq_{1},q_{2},\dots,q_{m},d satisfy

q1=0,qm=d,qi+qmβˆ’i+1=d.q_{1}=0,\quad q_{m}=d,\quad q_{i}+q_{m-i+1}=d.

So, under the assumption of Proposition 1, we can choose flat holomorphic local coordinates t1,t2,…,tmt^{1},t^{2},\dots,t^{m} of MM such that gi​j=Ξ΄i+j,m+1g_{ij}=\delta_{i+j,m+1}, e=βˆ‚t1e=\partial_{t^{1}} and

β„°=βˆ‘idi​tiβ€‹βˆ‚ti+βˆ‘i|di=0riβ€‹βˆ‚ti;\displaystyle\mathcal{E}=\sum_{i}d_{i}t^{i}\partial_{t^{i}}+\sum_{i|d_{i}=0}r^{i}\partial_{t^{i}};
d1=1;\displaystyle d_{1}=1;
di+dm+1βˆ’i=2βˆ’d;\displaystyle d_{i}+d_{m+1-i}=2-d;

2.2 Harmonic Higgs bundles with supplementary structures

In this paragraph, we consider supplementary structures on a harmonic Higgs bundle. Let MM be a complex manifold and Let EE be holomorphic bundle on MM, equipped with a Hermitian non-degenerate sequilinear form hh. We will say that (E,h)\left(E,h\right) is a Hermitian holomorphic bundle. For any operator PP acting on EE , we will denote by P†P^{\dagger} its adjoint with respect to hh. A holomorphic Higgs field Ξ¦\Phi on EE we means an π’ͺM\mathcal{O}_{M}-linear morphism Ξ¦:E⟢ΩM1βŠ—E\Phi:E\longrightarrow\Omega^{1}_{M}\otimes E satisfying the integrability relation Φ∧Φ=0\Phi\wedge\Phi=0, we then say that (E,Ξ¦)\left(E,\Phi\right) is a Higgs bundle.

Let (E,h)(E,h) be a Hermitian holomorphic bundle with Higgs field Ξ¦\Phi. Let HH be the associated C∞C^{\infty} bundle, so that E=K​e​rβ€‹βˆ‚Β―E=Ker\overline{\partial}, let D=Dβ€²+βˆ‚Β―D=D^{{}^{\prime}}+\overline{\partial} be the Chern connection of hh and let Φ†\Phi^{\dagger} be the hh-adjoint of Ξ¦\Phi. We say that (E,h,Ξ¦)(E,h,\Phi) is a harmonic Higgs bundle ((or that hh is Hermite-Einstein with respect to (E,Ξ¦)(E,\Phi) )) if Dβ€²+βˆ‚Β―+Ξ¦+Φ†D^{{}^{\prime}}+\overline{\partial}+\Phi+\Phi^{\dagger} is an integrable connection onΒ HH. This is equivalent to a set of relations:

(βˆ‚Β―)2=0,βˆ‚Β―β€‹(Ξ¦)=0,Φ∧Φ=0;\displaystyle(\overline{\partial})^{2}=0,\overline{\partial}(\Phi)=0,\Phi\wedge\Phi=0; (1)
(Dβ€²)2=0,D′​(Φ†)=0,Ξ¦β€ βˆ§Ξ¦β€ =0;\displaystyle(D^{\prime})^{2}=0,D^{{}^{\prime}}(\Phi^{\dagger})=0,\Phi^{\dagger}\wedge\Phi^{\dagger}=0; (2)
D′​(Ξ¦)=0,βˆ‚Β―β€‹(Φ†)=0,Dβ€²β€‹βˆ‚Β―+βˆ‚Β―β€‹Dβ€²=βˆ’(Φ​Φ†+Φ†​Φ).\displaystyle D^{\prime}(\Phi)=0,\overline{\partial}(\Phi^{\dagger})=0,D^{\prime}\overline{\partial}+\overline{\partial}D^{\prime}=-(\Phi\Phi^{\dagger}+\Phi^{\dagger}\Phi). (3)

where the first line is by definition, the second one by hh-adjunction from the first one, and the third line contains the remaining relations in the integrability condition of Dβ€²+βˆ‚Β―+Ξ¦+Φ†D^{{}^{\prime}}+\overline{\partial}+\Phi+\Phi^{\dagger}.

Definition 1 (Sabbah2 )

Let (E,h)(E,h) be a Hermitian holomorphic bundle, Let HH be the C∞C^{\infty} bundle. By a real structure we mean an antilinear isomorphism ΞΊ:H​→~​H\kappa:H\widetilde{\rightarrow}H such that

ΞΊ2=Id;\displaystyle\kappa^{2}=\operatorname{Id}; (4)
h(ΞΊβ‹…,ΞΊβ‹…)=h​(β‹…,β‹…)Β―;\displaystyle h(\kappa\cdot,\kappa\cdot)=\overline{h(\cdot,\cdot)}; (5)
D​(ΞΊ)=0.\displaystyle D(\kappa)=0. (6)
Remark 1

Set g​(X,Y)=h​(X,κ​Y),g(X,Y)=h(X,\kappa Y), we get a nondegenerate bilinear form gg. Obviously gg is symmetric and compatible with DD,i.e., D​(g)=0.D(g)=0.

Definition 2 (Sabbah2 )

Let (E,h,Ξ¦)(E,h,\Phi) be a harmonic Higgs bundle, if there exists a C∞C^{\infty} endomorphism AA of EE satisfying Ξ¦=D′​A.\Phi=D^{{}^{\prime}}A. we will say that (E,h,Ξ¦)(E,h,\Phi) is a potential harmonic Higgs bundle, also denoted by (E,h,A)(E,h,A)

Definition 3 (Sabbah2 )

An integrable harmonic Higgs bundle is a tuple (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}), here (E,h,Ξ¦)(E,h,\Phi) is a harmonic Higgs bundle, and there exist two endomorphisms 𝒰\mathcal{U} and 𝒬\mathcal{Q} of HH satisfying

βˆ‚Β―β€‹(𝒰)=0;\displaystyle\overline{\partial}(\mathcal{U})=0; (7)
𝒬†=𝒬.\displaystyle\mathcal{Q}^{\dagger}=\mathcal{Q}. (8)
[Ξ¦,𝒰]=0;\displaystyle[\Phi,\mathcal{U}]=0; (9)
D′​(𝒰)βˆ’[Ξ¦,𝒬]+Ξ¦=0;\displaystyle D^{\prime}(\mathcal{U})-[\Phi,\mathcal{Q}]+\Phi=0; (10)
D′​(𝒬)+[Ξ¦,𝒰†]=0;\displaystyle D^{\prime}(\mathcal{Q})+[\Phi,\mathcal{U}^{\dagger}]=0; (11)
Remark 2

Given any harmonic harmonic Higgs bundle, if we set

βˆ‡~=Dβ€²+βˆ‚Β―+1z​Φ+z​Φ†+(𝒰zβˆ’π’¬βˆ’z​𝒰†)​d​zz\widetilde{\nabla}=D^{{}^{\prime}}+\overline{\partial}+\frac{1}{z}\Phi+z\Phi^{{\dagger}}+(\frac{\mathcal{U}}{z}-\mathcal{Q}-z\mathcal{U}^{\dagger})\frac{dz}{z}

It is an integrable connection on the pull-back bundle Ο€:pβˆ—β€‹Eβ†’β„‚βˆ—Γ—M\pi:p^{*}E\rightarrow\mathbb{C}^{*}\times M. The (0,1)(0,1)-part of the connection βˆ‚Β―+z​Φ†\overline{\partial}+z\Phi^{{\dagger}} gives a holomorphic structure on pullback bundle. and (1,0)(1,0)-part of this connection Dβ€²+1z​Φ+(𝒰zβˆ’π’¬βˆ’z​𝒰†)​d​zzD^{{}^{\prime}}+\frac{1}{z}\Phi+(\frac{\mathcal{U}}{z}-\mathcal{Q}-z\mathcal{U}^{\dagger})\frac{dz}{z} is called the structure connection of the integrable harmonic Higgs bundle.

Putting all the structure together, we get

Definition 4 (Sabb22 )

A tt*-bundle is a tuple (E,h,Ξ¦,ΞΊ,𝒰,𝒬)(E,h,\Phi,\kappa,\mathcal{U},\mathcal{Q}), such that (E,h,ΞΊ)(E,h,\kappa) be a real Hermitian holomorphic bundle, (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) is an integrable harmonic Higgs bundle, and moreover,

π’°βˆ—=𝒰,\displaystyle\mathcal{U}^{*}=\mathcal{U},
π’¬βˆ—+𝒬=0.\displaystyle\mathcal{Q}^{*}+\mathcal{Q}=0.
Remark 3

A tt*-bundle is a CV-structure, and an integrable harmonic Higgs bundle is CV-structure without real strucure ΞΊ\kappa in Hert2 .

Definition 5 (Sabbah2 )

A structure of harmonic Frobenius manifold (M,∘,g,ΞΊ,e,β„°)(M,\circ,g,\kappa,e,\mathcal{E}) on a complex manifold such that (M,∘,g,e,β„°)(M,\circ,g,e,\mathcal{E}) is a Frobenius manifold, and (M,h,ΞΊ,Ξ¦,𝒰,𝒬)(M,h,\kappa,\Phi,\mathcal{U},\mathcal{Q}) is a real integrable harmonic Higgs bundle, with supplementary condition De​e=0D_{e}e=0 and dβˆˆβ„.d\in\mathbb{R}. Here Ξ¦X​Y:=βˆ’X∘Y,h​(X,Y):=g​(X,κ​Y),𝒰:=βˆ’Ξ¦β„°,𝒬:=Dβ„°β€²βˆ’β„’β„°βˆ’2βˆ’d2​Id.\Phi_{X}Y:=-X\circ Y,h(X,Y):=g(X,\kappa Y),\mathcal{U}:=-\Phi_{\mathcal{E}},\mathcal{Q}:=D^{{}^{\prime}}_{\mathcal{E}}-\mathcal{L}_{\mathcal{E}}-\frac{2-d}{2}\operatorname{Id}.

Remark 4 (Sabbah2 )

A structure of harmonic Frobenius manifold is a manifold with a CDV-structure in Hert2 .

Proposition 2 (Sabbah2 )

There is a canonical harmonic structure on the canonical Frobenius manifold attached to a convenient and nondegenerate Laurent polynomial. The corresponding Hermitian metric hh is positive definite.

The existence of tt*-structure of rank two was completely discussed in taka . The existence of a canonical harmonic structure(CDV-structre) on base space of a semi-universal unfolding of a hypersurface singularity was prove in Hert2 . The existence of a canonical harmonic structure on base space of a universal unfolding of a convenient and non-degenerate Laurent polynomails was proved in Sabb22 . A suffucient and necessary condition for a Frobenius manifold to be a harmonic Frobenius manifold was given by the first author in Lin , and she construct a real structure ΞΊ\kappa on a Frobenius manifold to be harmonic Frobenius manifold with vanishing 𝒬\mathcal{Q}. The integral structure called Ξ“^\widehat{\Gamma}-integral structure on quantum D-modules was done in CIR . More recent work on tt*-structure on Landau-Ginzburg side has been done in FLY .

2.3 Correspondence with special integrable harmonic Higgs bundles

Harmonic bundles was introduced by Simpson to a generalization of variations of polarized Hodge structure. But from harmonic bundle one can not recover the Hodge filtration, integrable harmonic Higgs bundle provides such information.

Example 1 (Sabbah2 )

(Variations of complex Hodge structures of weight 0) Let HH be a C∞C^{\infty} vector bundle on MM, equipped with a flat connection βˆ‡~=βˆ‡~β€²+βˆ‡~β€²β€²\widetilde{\nabla}=\widetilde{\nabla}^{{}^{\prime}}+\widetilde{\nabla}^{{}^{\prime\prime}} and a composition H=βŠ•pβˆˆβ„€HpH=\oplus_{p\in\mathbb{Z}}H^{p} into C∞C^{\infty} subbundles. We assume that Griffiths transversality relations hold:

βˆ‡~′​HpβŠ‚(HpβŠ•Hpβˆ’1)βŠ—π’ͺMΞ©M1,βˆ‡~′′​HpβŠ‚(HpβŠ•Hp+1)βŠ—π’ͺMΒ―Ξ©MΒ―1\widetilde{\nabla}^{{}^{\prime}}H^{p}\subset(H^{p}\oplus H^{p-1})\otimes_{\mathcal{O}_{M}}\Omega_{M}^{1},\widetilde{\nabla}^{{}^{\prime\prime}}H^{p}\subset(H^{p}\oplus H^{p+1})\otimes_{\mathcal{O}_{\overline{M}}}\Omega_{\overline{M}}^{1}

We denoted by D|HpD_{|H^{p}} the composition of βˆ‡~|Hp\widetilde{\nabla}_{|H^{p}} with the projection to Hp,H^{p}, denoted by Ξ¦|Hp\Phi_{|H^{p}} the composition of βˆ‡~|Hpβ€²\widetilde{\nabla}^{{}^{\prime}}_{|H^{p}} with the projection to Hpβˆ’1,H^{p-1}, and by Ξ¦|Hp†\Phi^{\dagger}_{|H^{p}} that of βˆ‡~|Hpβ€²β€²\widetilde{\nabla}^{{}^{\prime\prime}}_{|H^{p}} with the projection to Hp+1,H^{p+1}, then we set

D=βŠ•pD|Hp,Ξ¦=βŠ•pΞ¦|Hp,Φ†=βŠ•pΞ¦|Hp†D=\oplus_{p}D_{|H^{p}},\Phi=\oplus_{p}\Phi_{|H^{p}},\Phi^{\dagger}=\oplus_{p}\Phi^{\dagger}_{|H^{p}}

Assume that we are given a non-degenerate Hermitian form kk such that βˆ‡~​(k)=0\widetilde{\nabla}(k)=0 and the decomposition H=βŠ•pβˆˆβ„€HpH=\oplus_{p\in\mathbb{Z}}H^{p} is kk-orthogonal. Consider the nondegenerate Hermitian form h=βŠ•p(βˆ’1)p​k|Hph=\oplus_{p}(-1)^{p}k_{|H^{p}}. Then D​(h)=0D(h)=0 and Φ†\Phi^{\dagger} is complex Hodge structure of weight 0. In particular, (H,Dβ€²β€²,h,Ξ¦)(H,D^{{}^{\prime\prime}},h,\Phi) is a harmonic Higgs bundle. Set 𝒬=βŠ•pp​Id|Hp\mathcal{Q}=\oplus_{p}p\operatorname{Id}_{|H^{p}} and 𝒰=0.\mathcal{U}=0. we get D​(𝒬)=0D(\mathcal{Q})=0 and as pp is real, we have 𝒬†=𝒬.\mathcal{Q}^{\dagger}=\mathcal{Q}. Lastly, we have [Ξ¦,𝒬]=Ξ¦.[\Phi,\mathcal{Q}]=\Phi. By a real structure ΞΊ\kappa, we mean an anti-linear involution ΞΊ:Hβ†’H\kappa:H\rightarrow H which is βˆ‡~\widetilde{\nabla}-horizontal such that κ​(Hp)=Hβˆ’p\kappa(H^{p})=H^{-p} for any pp. Then D​(ΞΊ)=0D(\kappa)=0 and Φ†=κ​Φ​κ.\Phi^{\dagger}=\kappa\Phi\kappa. The previous data thus define a tt*-bundle.

The inverse of example 1 is straightforward. We formulate it.

Lemma 1 (Hert2 )

Let (Hβ†’M,D,Ξ¦,ΞΊ,h,𝒰,𝒬)(H\to M,D,\Phi,\kappa,h,{\mathcal{U}},{\mathcal{Q}}) be a tt*-bundle with 𝒰=0{\mathcal{U}}=0 and such that 𝒬{\mathcal{Q}} has no eigenvalues in w+12+β„€\frac{w+1}{2}+{\mathbb{Z}}.

Define a connection βˆ‡:=D+Ξ¦+Φ†\nabla:=D+\Phi+\Phi^{\dagger} and define

Htp,wβˆ’p\displaystyle H^{p,w-p}_{t} :=\displaystyle:= ⨁α:[Ξ±+w+12]=pker⁑(π’¬βˆ’Ξ±β€‹id:Htβ†’Ht),\displaystyle\bigoplus_{\alpha:\ [\alpha+\frac{w+1}{2}]=p}\ker({\mathcal{Q}}-\alpha\operatorname{id}:H_{t}\to H_{t})\ ,
Ftp\displaystyle F^{p}_{t} :=\displaystyle:= ⨁qβ‰₯pHtq,wβˆ’q,\displaystyle\bigoplus_{q\geq p}H^{q,w-q}_{t}\ ,
S\displaystyle S :\displaystyle: HtΓ—Ht→ℂ​ with\displaystyle H_{t}\times H_{t}\to{\mathbb{C}}\mbox{ \ \ with}
S​(a,b)\displaystyle S(a,b) :=\displaystyle:= (2​π​i)w​(βˆ’1)p​h​(a,bΒ―)​ for ​a∈Htp,wβˆ’p,b∈Ht,\displaystyle(2\pi i)^{w}(-1)^{p}h(a,\overline{b})\mbox{ \ \ for }a\in H^{p,w-p}_{t},\ b\in H_{t}\ ,
A\displaystyle A :=\displaystyle:= e2​π​i​𝒬.\displaystyle e^{2\pi i{\mathcal{Q}}}\ .

Then (Hβ†’M,βˆ‡,Hℝ,S,Fβˆ™,A)(H\to M,\nabla,H_{\mathbb{R}},S,F^{\bullet},A) is a variation of polarized Hodge structures of weight ww with an automorphism AA.

The eigenvalues of 𝒬\mathcal{Q} gives the decomposition of the Hodge decomposition. We are interested in the explicit computation on eigenvalues of the matrix the 𝒬\mathcal{Q}, we shall see these eigenvalues determined the Higgs field locally.


3 Main Result

In this paper, we study the integrable harmonic Higgs bundle (E,h,Ξ¦,𝒰,𝒬)\left(E,h,\Phi,\mathcal{U},\mathcal{Q}\right). The Hermitian metric hh will be always assumed to be positive-definite. The Chern connection of hh is denoted by Dβ€²+βˆ‚Β―.D^{\prime}+\overline{\partial}. Firstly, we assume that the differences of any two eigenvalues of 𝒬\mathcal{Q} is neither 11 nor βˆ’1.-1.

Definition 6

Let EE be a complex vector bundle on MM, and 𝒬\mathcal{Q} is an endomorphism of EE, given any point p∈Mp\in M, we say that 𝒬\mathcal{Q} satisfies the IS condition at pp if any difference of two eigenvalues of β„šβ€‹(p)\mathbb{Q}(p) is not Β±1\pm 1, here β„šβ€‹(p)\mathbb{Q}(p) is the matrix of 𝒬​(p)\mathcal{Q}(p) under some local frame.

Under this IS condition ,we prove that D′​(𝒰)=0D^{{}^{\prime}}\left(\mathcal{U}\right)=0 imply Ξ¦=0\Phi=0 locally. Under this conditon, we can conclude that the (1,0)(1,0)-part of the Chern connection Dβ€²D^{\prime} is a holomorphic connection, and we can choose a holomorphic Dβ€²D^{\prime}-flat local frame e1,e2,β‹―,eme_{1},e_{2},\cdots,e_{m} such that the matrix β„š\mathbb{Q} under the local frame e1,e2,β‹―,eme_{1},e_{2},\cdots,e_{m} is constant and diagonal.

Theorem 3.1

Let (E,h,Ξ¦,𝒰,𝒬)\left(E,h,\Phi,\mathcal{U},\mathcal{Q}\right) be an integrable harmonic Higgs bundle. Assume βˆƒp∈M,\exists p\in M, such that 𝒬\mathcal{Q} satisfies the IS condition at pp, i.e., the differences of any two eigenvalues of 𝒬​(p):Epβ†’Ep\mathcal{Q}(p):E_{p}\rightarrow E_{p} are not Β±1\pm 1, then

  1. (1)

    There exists an open neighborhood UpU_{p} of pp, such that 𝒬\mathcal{Q} satisfies IS condition at all q∈Upq\in U_{p}.

  2. (2)

    Locally, Ξ¦\Phi is uniquely determined by D′​(𝒰).D^{{}^{\prime}}\left(\mathcal{U}\right). If D′​(𝒰)=0D^{{}^{\prime}}\left(\mathcal{U}\right)=0 holds, then Ξ¦=0\Phi=0. In this case, the connection Dβ€²D^{{}^{\prime}} is holomorphic,i.e. Dβ€²β€‹βˆ‚Β―+βˆ‚Β―β€‹Dβ€²=0.D^{{}^{\prime}}\overline{\partial}+\overline{\partial}D^{{}^{\prime}}=0. If 𝒬\mathcal{Q} satisfies IS condition at all q∈Mq\in M. then (E,h,Ξ¦,𝒰,𝒬)\left(E,h,\Phi,\mathcal{U},\mathcal{Q}\right) is a potential integrable harmonic Higgs bundle with a potential 𝒰\mathcal{U}.

  3. (3)

    There exists a flat holomorphic local frame {e1,e2,…,em}βŠ‚Ξ“β€‹(M,𝒯M)\left\{e_{1},e_{2},...,e_{m}\right\}\subset\Gamma\left(M,\mathcal{T}_{M}\right), the matrix of 𝒬\mathcal{Q} is a diagonal matrix Ξ›=diag​(Ξ»1,Ξ»2,…,Ξ»m),Ξ»jβˆˆβ„.\Lambda=\mathrm{diag}\left(\lambda_{1},\lambda_{2},...,\lambda_{m}\right),\lambda_{j}\in\mathbb{R}. Moreover, specially, if 𝒰=0\mathcal{U}=0 , then Locally, the structure connection can be written in a simple way

    βˆ‡~=Dβ€²+βˆ’Ξ›+w2​Imz​d​z\widetilde{\nabla}=D^{{}^{\prime}}+\frac{-\Lambda+\frac{w}{2}I_{m}}{z}dz

    i.e.,βˆ‡~\widetilde{\nabla} can be written as direct sum of mm line bundles with connections βˆ‡~i=d+Ξ»i+w2z{\widetilde{\nabla}}^{i}=d+\frac{\lambda_{i}+\frac{w}{2}}{z}.

Corollary 1

Let (𝒯M,h,Ξ¦,𝒰=0,𝒬)\left(\mathcal{T}_{M},h,\Phi,\mathcal{U}=0,\mathcal{Q}\right) be a integrable harmonic Higgs bundle on MM, set X∘Y=βˆ’Ξ¦X​YX\circ Y=-\Phi_{X}Y for arbitrary X,Y∈ΘMX,Y\in\Theta_{M}. Assume βˆƒp∈M,\exists p\in M, such that 𝒬\mathcal{Q} satisfies the IS condition at pp, then (M,∘)(M,\circ) is a locally trivial pre-Frobenius manfold, i.e. X∘Y=0,βˆ€X,YβˆˆΞ“β€‹(Up,𝒯M)X\circ Y=0,\forall X,Y\in\Gamma(U_{p},\mathcal{T}_{M}).

Secondly, we will consider the case without IS condition. We restrict to the case that E=𝒯ME=\mathcal{T}_{M}. Under the assumption that (1,0)(1,0)-part of the Chern connection DD is holomorphic, we can also conclude that D′​(𝒰)=0D^{{}^{\prime}}\left(\mathcal{U}\right)=0 implies the Higgs field Ξ¦=0\Phi=0 locally.

Theorem 3.2

Let (𝒯M,h,Ξ¦,𝒰,𝒬)\left(\mathcal{T}_{M},h,\Phi,\mathcal{U},\mathcal{Q}\right) be an integrable harmonic Higgs bundle on complex manifold MM with D′​(𝒰)=0D^{\prime}(\mathcal{U})=0, here Dβ€²+βˆ‚Β―D^{\prime}+\overline{\partial} is the Chern connection of positive-definite Hermitian metric hh. Assume that Dβ€²D^{\prime} is holomorphic, Set X∘Y:=βˆ’Ξ¦X​YX\circ Y:=-\Phi_{X}Y, then

  1. (1).

    X∘Y=0,βˆ€X,Yβˆˆπ’―M;X\circ Y=0,\forall X,Y\in\mathcal{T}_{M};

  2. (2).

    If 𝒰=0\mathcal{U}=0 holds, the structure connection can be written in a simple way

    βˆ‡~=Dβ€²+βˆ’Ξ›+w2​Imz​d​z\widetilde{\nabla}=D^{{}^{\prime}}+\frac{-\Lambda+\frac{w}{2}I_{m}}{z}dz

In SK2 ,SK3 , M. Saito studied the Gauss-Manin connection of hypersurface singularities and developed the notation of the primitive forms. His work was completed by M. Saito SM2 and resulted in a construction of Frobenius manifolds. A partial Fourier transform maps the Gauss-Manin connection to a TERP(w)-structure. The TERP(n+1)-structure ,constructed on the base space MM of a semiuniversal unfolding FF of a singularity f:(β„‚n+1,0)β†’(β„‚,0)f:(\mathbb{C}^{n+1},0)\rightarrow(\mathbb{C},0) was shown to be generically a trTERP(n+1)-structure by C. Hertling. The CV-structure constructed in this way is compatible with the Frobenius manifold structure and gives a CDV-structure in Hert2 . Hertling gave the following conjecture

Conjecture 1

Given any p∈Mp\in M, The set RR does not contain the β„°+β„°Β―\mathcal{E}+\overline{\mathcal{E}} orbit of pp. If one goes far enough along the flow β„°+β„°Β―\mathcal{E}+\overline{\mathcal{E}}, then one will not meet anymore the set RR, the Hermtian metric hh will be positive definite, and the eigenvalues of 𝒬\mathcal{Q} will be tend to E​x​p​(Fp)βˆ’n+12Exp(F_{p})-\frac{n+1}{2}. Here RR is the set where the TERP(n+1)-structure is not a trTERP(n+1)-structure;E​x​p​(Fp):=⋃x∈Sing​(Fp)E​x​p​(Fp,x)Exp(F_{p}):=\bigcup_{x\in\mathrm{Sing}\left(F_{p}\right)}Exp(F_{p},x).

He prove that the conjecture is true when 𝒰p\mathcal{U}_{p} is either have ΞΌ\mu different eigenvalues or 𝒰p\mathcal{U}_{p} is nilpotent. Here ΞΌ\mu is the Milnor number of ff, i.e. ΞΌ\mu is the dimension of the Jacobi algebra π’ͺβ„‚n+1,0/(βˆ‚fβˆ‚x0,βˆ‚fβˆ‚x1,β‹―,βˆ‚fβˆ‚xn)\mathcal{O}_{\mathbb{C}^{n+1},0}/(\frac{\partial f}{\partial x_{0}},\frac{\partial f}{\partial x_{1}},\cdots,\frac{\partial f}{\partial x_{n}}).


In the last part of paper, we study a general tt*-bunle(i.e., a CV-structure). That is an integrable harmonic Higgs bundle with a compatible real structure ΞΊ\kappa. We ask for neither 𝒬=Dβ„°β€²βˆ’β„’β„°βˆ’2βˆ’d2​Id\mathcal{Q}=D^{{}^{\prime}}_{\mathcal{E}}-\mathcal{L}_{\mathcal{E}}-\frac{2-d}{2}\operatorname{Id} nor 𝒰=βˆ’Ξ¦β„°\mathcal{U}=-\Phi_{\mathcal{E}}. Given a tt*-bundle (E,h,Ξ¦,ΞΊ,𝒰,𝒬)(E,h,\Phi,\kappa,\mathcal{U},\mathcal{Q}), then compatible conditions include the relation 𝒬=βˆ’ΞΊβ€‹π’¬β€‹ΞΊ.\mathcal{Q}=-\kappa\mathcal{Q}\kappa. Since ΞΊ2=Id,\kappa^{2}=\operatorname{Id}, by straightforward computation we conclude that the matrices βˆ’β„š-\mathbb{Q} and β„šΒ―\overline{\mathbb{Q}} have the same eigenvalue polynomial, Here β„š\mathbb{Q} is the matrix of 𝒬\mathcal{Q} under a local frame of EE. Now let us fix a point pp in MM. If the Hermitian Einstein metric hh is positive-definite, all eigenvaluse of 𝒬​(p)\mathcal{Q}(p) are real numbers. Hence together with the condition 𝒬=βˆ’ΞΊβ€‹π’¬β€‹ΞΊ\mathcal{Q}=-\kappa\mathcal{Q}\kappa, we can conclude that when rank⁑E\operatorname{rank}E is 2​l2l, then the matrix of 𝒬​(p)\mathcal{Q}(p) can be diagonalized to

diag⁑(Ξ»1,Ξ»2,β‹―,Ξ»l,βˆ’Ξ»1,βˆ’Ξ»2,β‹―,βˆ’Ξ»l).\operatorname{diag}(\lambda_{1},\lambda_{2},\cdots,\lambda_{l},-\lambda_{1},-\lambda_{2},\cdots,-\lambda_{l}).

when rank⁑E\operatorname{rank}E is 2​l+12l+1, 0 must be an eigenvalue of β„šβ€‹(p)\mathbb{Q}(p), and the matrix of 𝒬​(p)\mathcal{Q}(p) can be diagonalized to

diag⁑(Ξ»1,Ξ»2,β‹―,Ξ»l,0,βˆ’Ξ»1,βˆ’Ξ»2,β‹―,βˆ’Ξ»l),\operatorname{diag}(\lambda_{1},\lambda_{2},\cdots,\lambda_{l},0,-\lambda_{1},-\lambda_{2},\cdots,-\lambda_{l}),

all Ξ»j\lambda_{j} are non-negative real numbers.

Proposition 3

Let (E,h,Ξ¦,𝒰,𝒬,ΞΊ)\left(E,h,\Phi,\mathcal{U},\mathcal{Q},\kappa\right) be a tt*-bundle on MM. r=rank⁑Er=\operatorname{rank}E, fixing any p∈M,p\in M, then

  1. (1).

    If r=2​l+1r=2l+1, 0 must be an eigenvalue of 𝒬​(p)\mathcal{Q}(p), and there exist l=[r/2]l=[r/2] non-negative real numbers Ξ»1,Ξ»2,β‹―,Ξ»l\lambda_{1},\lambda_{2},\cdots,\lambda_{l} such that he matrix of 𝒬​(p)\mathcal{Q}(p) can be diagonalized

    diag⁑(Ξ»1,Ξ»2,β‹―,Ξ»l,0,βˆ’Ξ»1,βˆ’Ξ»2,β‹―,βˆ’Ξ»l);\operatorname{diag}(\lambda_{1},\lambda_{2},\cdots,\lambda_{l},0,-\lambda_{1},-\lambda_{2},\cdots,-\lambda_{l});
  2. (2).

    If r=2​lr=2l, there exist l=r/2l=r/2 non-negative real numbers Ξ»1,Ξ»2,β‹―,Ξ»l\lambda_{1},\lambda_{2},\cdots,\lambda_{l} such that the matrix of 𝒬​(p)\mathcal{Q}(p) can be diagonalized either to the matrix

    diag⁑(Ξ»1,Ξ»2,β‹―,Ξ»l,βˆ’Ξ»1,βˆ’Ξ»2,β‹―,βˆ’Ξ»l).\operatorname{diag}(\lambda_{1},\lambda_{2},\cdots,\lambda_{l},-\lambda_{1},-\lambda_{2},\cdots,-\lambda_{l}).
Remark 5

For any point p∈M,p\in M, the trace of the matrix β„šβ€‹(p)\mathbb{Q}(p) is equal to zero.

If rank⁑E=2,\operatorname{rank}E=2, then the eigenvalues of β„š\mathbb{Q} should be {Ξ»,βˆ’Ξ»}\{\lambda,-\lambda\}. If rank⁑E=3,\operatorname{rank}E=3, then the eigenvalues of β„š\mathbb{Q} should be {Ξ»,0,βˆ’Ξ»}\{\lambda,0,-\lambda\}. we restricts to the cases that dimM=3\dim M=3 and dimM=2.\dim M=2.

Corollary 2

Let (𝒯M,h,Ξ¦,ΞΊ,𝒰,𝒬)(\mathcal{T}_{M},h,\Phi,\kappa,\mathcal{U},\mathcal{Q}) be a tt*-bundle on MM with D′​(𝒰)=0,D^{\prime}(\mathcal{U})=0, here dimM=3,\dim M=3, βˆ€p∈M,\forall p\in M,
(1)(1) If neither Β±1\pm 1 nor Β±12\pm\frac{1}{2} is eigenvalues of β„šβ€‹(p)\mathbb{Q}(p), then there is open neighborhood UpU_{p} of pp such that Ξ¦|Up=0\Phi_{|U_{p}}=0 and the connection D|Upβ€²D^{\prime}_{|U_{p}} is holomorphic.
(2)(2) If either Β±1\pm 1 or Β±12\pm\frac{1}{2} is an eigenvalue of β„šβ€‹(p)\mathbb{Q}(p), and if Dβ€²D^{\prime} is a holomorphic connection, then there is a flat holomorphic local frame X1,X2,X3X_{1},X_{2},X_{3} such that the matrix β„š\mathbb{Q} satisifying

β„š=(βˆ’100000001)\displaystyle\mathbb{Q}=\left(\begin{matrix}-1&0&0\\ 0&0&0\\ 0&0&1\\ \end{matrix}\right)

or

β„š=(βˆ’12000000012)\displaystyle\mathbb{Q}=\left(\begin{matrix}-\frac{1}{2}&0&0\\ 0&0&0\\ 0&0&\frac{1}{2}\\ \end{matrix}\right)

and locally Ξ¦=0\Phi=0 holds.
(2)(2) For the case

β„š=(βˆ’100000001)\displaystyle\mathbb{Q}=\left(\begin{matrix}-1&0&0\\ 0&0&0\\ 0&0&1\\ \end{matrix}\right)

The monodromy representation TT of the local system determined by (pβˆ—β€‹π’―M(1,0),D~)|{p}Γ—β„‚βˆ—(p^{*}\mathcal{T}_{M}^{(1,0)},\widetilde{D})|_{\{p\}\times\mathbb{C}^{*}} is unity matrix of size 33.

when dimM=2\dim M=2, we get more explicit results.

Corollary 3

Let (𝒯M,h,Ξ¦,ΞΊ,𝒰,𝒬)(\mathcal{T}_{M},h,\Phi,\kappa,\mathcal{U},\mathcal{Q}) be a tt*-bundle on MM with D′​(𝒰)=0,D^{\prime}(\mathcal{U})=0, here dimM=2,\dim M=2, Given any point p∈M,p\in M,
(1)(1) If Β±12\pm\frac{1}{2} is NOT an eigenvalue of β„šβ€‹(p)\mathbb{Q}(p), then there is open neighborhood UpU_{p} of pp such that Ξ¦Up=0\Phi_{U_{p}}=0 and the connection D|Upβ€²D^{\prime}_{|U_{p}} is holomorphic.
(2)(2) If 12\frac{1}{2} is an eigenvalue of β„šβ€‹(p)\mathbb{Q}(p), and if Dβ€²D^{\prime} is a holomorphic connection, then there is a flat holomorphic local frame X1,X2X_{1},X_{2} such that the matrix β„š\mathbb{Q} satisifying

β„š=(1200βˆ’12)\displaystyle\mathbb{Q}=\left(\begin{matrix}\frac{1}{2}&0\\ 0&-\frac{1}{2}\\ \end{matrix}\right)

and locally Ξ¦=0\Phi=0 holds.


4 PROOF OF THE THEOREMS

In order to prove theorem 3.1, we need some Lemmas in the following.

Lemma 2

Let (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) be an integrable harmonic Higgs bundle on MM. Given any point p∈Mp\in M, if 𝒬\mathcal{Q} satisfies IS condition at p∈Mp\in M, then there exists an open neighborhood UpβŠ‚MU_{p}\subset M of pp such that βˆ€q∈Up\forall q\in U_{p}, 𝒬\mathcal{Q} satisfies IS condition at q∈Upq\in U_{p}

Proof

Let Ξ±\alpha and Ξ²\beta are the eigenvalue functions of 𝒬\mathcal{Q} over a open neighborhood VV of p0p_{0}, which means there exists X,YβˆˆΞ“β€‹(V,E)X,Y\in\Gamma(V,E) such that

𝒬​(X)=α​X\mathcal{Q}\left(X\right)=\alpha X
𝒬​(Y)=β​Y\mathcal{Q}\left(Y\right)=\beta Y

Note that Ξ±βˆ’Ξ²βˆˆCβˆžβ€‹(V)\alpha-\beta\in C^{\infty}\left(V\right), if (Ξ±βˆ’Ξ²)​(p)βˆ‰{Β±1}\left(\alpha-\beta\right)\left(p\right)\notin\left\{\pm 1\right\}, then (Ξ±βˆ’Ξ²)​(p)βˆˆβ„\{Β±1}\,\,\left(\alpha-\beta\right)\left(p\right)\in\mathbb{R}\backslash\left\{\pm 1\right\} Therefore, there exists an open neighborhood UpU_{p} of pp, such that

(Ξ±βˆ’Ξ²)​(Up)βˆˆβ„\{Β±1}.(\alpha-\beta)(U_{p})\in\mathbb{R}\backslash\left\{\pm 1\right\}.
βˆ΄βˆ€q∈Up,(Ξ±βˆ’Ξ²)​(q)β‰ Β±1..\therefore\forall q\in U_{p},(\alpha-\beta)(q)\neq\pm 1..

∎

Lemma 3

Let (E,h,Ξ¦,𝒰,𝒬)(E,h,\Phi,\mathcal{U},\mathcal{Q}) be an integrable harmonic Higgs bundle on MM. If Dβ€²β€‹βˆ‚Β―+βˆ‚Β―β€‹Dβ€²=0D^{{}^{\prime}}\overline{\partial}+\overline{\partial}D^{{}^{\prime}}=0 and D′​(𝒬)=0,D^{{}^{\prime}}(\mathcal{Q})=0, then βˆ€p∈M,\forall p\in M, there exists an open neighborhood UpU_{p} of pp such that all eigenvalue functions α∈Cβˆžβ€‹(Up)\alpha\in C^{\infty}\left(U_{p}\right)\,\, of 𝒬\mathcal{Q} are constants.

Proof

Since the connection Dβ€²D^{{}^{\prime}} is holomorphic and Dβ€²+βˆ‚Β―D^{{}^{\prime}}+\overline{\partial} is compatible with hh, we can choose a holomorphic Dβ€²D^{{}^{\prime}}-flat local frame S1,S2,β‹―,SrS_{1},S_{2},\cdots,S_{r} such that

h​(SΞ±,SΞ²)=δα​βh(S_{\alpha},S_{\beta})=\delta_{\alpha\beta}

here r=rank⁑Er=\operatorname{rank}E. By condition 𝒬†=𝒬\mathcal{Q}^{\dagger}=\mathcal{Q} we can conclude that

β„št=β„šΒ―.\mathbb{Q}^{t}=\overline{\mathbb{Q}}.

Here β„š\mathbb{Q} is the matrix of 𝒬\mathcal{Q} under the local frame S1,S2,β‹―,SrS_{1},S_{2},\cdots,S_{r}. D′​(𝒬)=0D^{{}^{\prime}}\left(\mathcal{Q}\right)=0 implies that all entries of the matrix β„š\mathbb{Q} are anti-holomorphic functions, together with β„št=β„šΒ―\mathbb{Q}^{t}=\overline{\mathbb{Q}}, we conclude that β„š\mathbb{Q} is a constant matrix. So we can choose another holomorphic Dβ€²D^{{}^{\prime}}-flat local frame e1,e2,β‹―,ere_{1},e_{2},\cdots,e_{r}, such that the matrix β„š\mathbb{Q} is equal to a constant diagonal matrix Ξ›=diag⁑(Ξ»1,Ξ»2,β‹―,Ξ»r),\Lambda=\operatorname{diag}(\lambda_{1},\lambda_{2},\cdots,\lambda_{r}), here all Ξ»j\lambda_{j} are constants. ∎

Lemma 4 (Lemma 2.16,Sabbah2 )

Let A∈Mk​(β„‚)A\in M_{k}(\mathbb{C}) and B∈Ml​(β„‚)B\in M_{l}(\mathbb{C}) be two matrices, then the following properties are equivalent:

  1. (1)

    For any YY of size lΓ—kl\times k with entries in β„‚,\mathbb{C}, there exists a unique matrix XX of the same kind satisfying X​Aβˆ’B​X=Y;XA-BX=Y;

  2. (2)

    the square matrices AA and BB have no common eigenvalue.

Proof

of theorem 3.1. By Lemma2, we conclude that there exists an open neighborhood UpU_{p} of pp such that the difference of any two eigenvalues of 𝒬\mathcal{Q} is neither 11 nor βˆ’1-1. The first statement holds obviously.

Since the connection Dβ€²D^{{}^{\prime}} is flat , we can choose a local frame S1,S2,β‹―,SrS_{1},S_{2},\cdots,S_{r} of EE such that D′​Si=0,βˆ€i.D^{{}^{\prime}}S_{i}=0,\forall i. Denoted by π•Œ\mathbb{U} the matrix of the endomorphism 𝒰\mathcal{U}, denoted by β„š\mathbb{Q} the matrix of the endomorphism 𝒬\mathcal{Q}, denoted by C(i)C_{(i)} the matrix of the endomorphism βˆ’Ξ¦βˆ‚i-\Phi_{\partial_{i}}, under the local frame S1,S2,β‹―,SrS_{1},S_{2},\cdots,S_{r}, here t1,t2,β‹―,tmt^{1},t^{2},\cdots,t^{m} are any holomorphic local coordinates of M,M, r=rank⁑Er=\operatorname{rank}E and m=dimM.m=\dim M. Denoted βˆ‚βˆ‚ti\frac{\partial}{\partial t^{i}} by βˆ‚i\partial_{i} for simplicity. Since D′​(𝒰)βˆ’[Ξ¦,𝒬]+Ξ¦=0D^{{}^{\prime}}\left(\mathcal{U}\right)-\left[\Phi,\mathcal{Q}\right]+\Phi=0, by straightforward computation ,we conclude that

βˆ‚iπ•Œ=C(i)β€‹β„šβˆ’(β„šβˆ’Ir)​C(i).\partial_{i}\mathbb{U}=C_{(i)}\mathbb{Q}-\left(\mathbb{Q}-I_{r}\right)C_{(i)}.

Here Ir=diag⁑(1,1,β‹―,1)I_{r}=\operatorname{diag}(1,1,\cdots,1). By the assumption that the differences of any two eigenvalues is not Β±1\pm 1, then matrices β„š\mathbb{Q} and β„šβˆ’Ir\mathbb{Q}-I_{r} have no common eigenvalues, so by Lemma 4, βˆ€Y,βˆƒ|X,\forall Y,\exists|X, such that Xβ€‹β„šβˆ’(β„šβˆ’Im)​X=Y.X\mathbb{Q}-\left(\mathbb{Q}-I_{m}\right)X=Y. Taking Y=βˆ‚iπ•Œ,βˆƒ|C(i)Y=\partial_{i}\mathbb{U},\exists|C_{(i)} such that βˆ‚iπ•Œ=C(i)β€‹β„šβˆ’(β„šβˆ’1)​C(i)\partial_{i}\mathbb{U}=C_{(i)}\mathbb{Q}-\left(\mathbb{Q}-1\right)C_{(i)} holds. If βˆ‚iπ•Œ=0,\partial_{i}\mathbb{U}=0, then all C(i)C_{(i)} must be zero. So we conclude that locally Ξ¦=0.\Phi=0.

Obviously Φ†=0\Phi^{\dagger}=0 since Ξ¦=0\Phi=0, Hence Dβ€²β€‹βˆ‚Β―+βˆ‚Β―β€‹Dβ€²=βˆ’(Ξ¦βˆ§Ξ¦β€ +Ξ¦β€ βˆ§Ξ¦)D^{{}^{\prime}}\bar{\partial}+\bar{\partial}D^{{}^{\prime}}=-\left(\Phi\land\Phi^{\dagger}+\Phi^{\dagger}\land\Phi\right) implies that

Dβ€²β€‹βˆ‚Β―+βˆ‚Β―β€‹Dβ€²=0,D^{{}^{\prime}}\bar{\partial}+\bar{\partial}D^{{}^{\prime}}=0,

i.e., Dβ€²D^{{}^{\prime}} is a holomorphic connection. By the condition D′​(𝒬)+[Ξ¦,𝒰†]=0,D^{{}^{\prime}}(\mathcal{Q})+[\Phi,\mathcal{U}^{\dagger}]=0, we get D′​(𝒬)=0,D^{{}^{\prime}}(\mathcal{Q})=0, hence by Lemma3, we can choose a Dβ€²D^{{}^{\prime}}-flat holomorphic local frame e1,e2,β‹―,ere_{1},e_{2},\cdots,e_{r} of EE such that

β„š=Ξ›=diag⁑(Ξ»1,Ξ»2,…,Ξ»r),βˆ€Ξ»iβˆˆβ„.\mathbb{Q}=\Lambda=\operatorname{diag}(\lambda_{1},\lambda_{2},...,\lambda_{r}),\forall\lambda_{i}\in\mathbb{R}.

Finally, if 𝒰=0,\mathcal{U}=0, Obviously we get 𝒰†=0\mathcal{U}^{\dagger}=0 and D′​(𝒰)=0,D^{{}^{\prime}}(\mathcal{U})=0, by above discussion, we can choose a holomorphic Dβ€²D^{{}^{\prime}}-flat local frame e1,e2,⋯​ere_{1},e_{2},\cdots e_{r} such that the matrix of 𝒬\mathcal{Q} is a diagonal constant matrix Ξ›.\Lambda. Locally, the structure connection,

D~=Dβ€²+1z​Φ+βˆ’π’¬+Ο‰2​Irz​d​z=Dβ€²+βˆ’Ξ›+w2​Irz​d​z\widetilde{D}=D^{{}^{\prime}}+\frac{1}{z}\Phi+\frac{-\mathcal{Q}+\frac{\omega}{2}I_{r}}{z}dz=D^{{}^{\prime}}+\frac{-\Lambda+\frac{w}{2}I_{r}}{z}dz

D~\widetilde{D} can be written as direct sum of rr holomorphic line bundles β„’i\mathcal{L}_{i} with connections d+Ξ»i+w2zd+\frac{\lambda_{i}+\frac{w}{2}}{z}. ∎


We assume that the connection Dβ€²D^{\prime} is holomprhic, then D′​(𝒰)=0D^{\prime}(\mathcal{U})=0 implies that Ξ¦=0\Phi=0. For giving a proof of theorem3.2, we need some lemmas.

Lemma 5

Let RR be a ring, VV be a free RR-module of finite rank mm, ∘\circ is a commutative and associative product on VV. Suppose we have a decomposition of submodules V=βŠ•j=1sVΞ»+jV=\oplus_{j=1}^{s}V_{\lambda+j}, satisfying

  1. (1∘1^{\circ})

    X∘Y∈VΞ»+j,βˆ€X,Y∈VΞ»+j+1,,βˆ€j=1,2,β‹―,s;X\circ Y\in V_{\lambda+j},\forall X,Y\in V_{\lambda+j+1},,\forall j=1,2,\cdots,s;

  2. (2∘2^{\circ})

    X∘Y=0,βˆ€X∈VΞ»+i,Y∈VΞ»+j,βˆ€iβ‰ j;X\circ Y=0,\forall X\in V_{\lambda+i},Y\in V_{\lambda+j},\forall i\neq j;

  3. (3∘3^{\circ})

    X∘Y=0,βˆ€X,Y∈VΞ»+1.X\circ Y=0,\forall X,Y\in V_{\lambda+1}.

Assume that for any base e1,e2,β‹―,eme_{1},e_{2},\cdots,e_{m} of VV, we have C(j)​C(j)tΒ―=C(j)t¯​C(j)C_{(j)}\overline{C_{(j)}^{t}}=\overline{C_{(j)}^{t}}C_{(j)}, here C(j)C_{(j)} is the matrix of the RR-modules morphism ej∘:Vβ†’Ve_{j}\circ:V\rightarrow V under the base e1,e2,β‹―,eme_{1},e_{2},\cdots,e_{m}, then

X∘Y=0,βˆ€X,Y∈V=βŠ•j=1sVΞ»+j.X\circ Y=0,\forall X,Y\in V=\oplus_{j=1}^{s}V_{\lambda+j}. (12)
Proof

We prove (12) by induction on sβˆˆβ„•.s\in\mathbb{N}.
When s=1,s=1, it is trivial because of the assumption (3∘)(3^{\circ}).
When s=2,s=2, then V=VΞ»+1βŠ•VΞ»+2V=V_{\lambda+1}\oplus V_{\lambda+2}, here VΞ»+1V_{\lambda+1} and VΞ»+2V_{\lambda+2} are the submodules of VV.
Suppose VΞ»+1V_{\lambda+1} is generated by e1,e2,β‹―,eke_{1},e_{2},\cdots,e_{k}, and VΞ»+2V_{\lambda+2} is generated by ek+1,ek+2,β‹―,eme_{k+1},e_{k+2},\cdots,e_{m}, by the assumption condition (2∘),(3∘)(2^{\circ}),(3^{\circ}), we have

C(i)=0,i∈{1,2,β‹―,k}.C_{(i)}=0,i\in\{1,2,\cdots,k\}.

By the assumption, we have eβ∘ei=0,βˆ€i∈{1,2,β‹―,k},β∈{k+1,k+2,β‹―,m}e_{\beta}\circ e_{i}=0,\forall i\in\{1,2,\cdots,k\},\beta\in\{k+1,k+2,\cdots,m\}
βˆ€Ξ²βˆˆ{k+1,k+2,β‹―,m}\forall\beta\in\{k+1,k+2,\cdots,m\}, by the assumption condition (1∘)(1^{\circ}), we can set
eβ∘ek+1=f11β​e1+f12β​e2+⋯​f1​kβ​eke_{\beta}\circ e_{k+1}=f_{11}^{\beta}e_{1}+f_{12}^{\beta}e_{2}+\cdots f_{1k}^{\beta}e_{k},
eβ∘ek+2=f21β​e1+f22β​e2+⋯​f2​kβ​eke_{\beta}\circ e_{k+2}=f_{21}^{\beta}e_{1}+f_{22}^{\beta}e_{2}+\cdots f_{2k}^{\beta}e_{k},
β‹―,β‹―,β‹―,β‹―\cdots,\cdots,\quad\cdots,\cdots
eβ∘em=fmβˆ’k,1β​e1+fmβˆ’k,2β​e2+⋯​fmβˆ’k,kβ​eke_{\beta}\circ e_{m}=f_{m-k,1}^{\beta}e_{1}+f_{m-k,2}^{\beta}e_{2}+\cdots f_{m-k,k}^{\beta}e_{k},
Denoted by AΞ²=(fi​jΞ²)(mβˆ’k)Γ—kA^{\beta}=(f^{\beta}_{ij})_{(m-k)\times k}, then we get,

C(Ξ²)=(OOAΞ²O)\displaystyle C_{\left(\beta\right)}=\left(\begin{matrix}O&O\\ A^{\beta}&O\\ \end{matrix}\right)

so we get

C(Ξ²)Β―t=(OAΞ²Β―tOO)\displaystyle\overline{C_{\left(\beta\right)}}^{t}=\left(\begin{matrix}O&\overline{A^{\beta}}^{t}\\ O&O\\ \end{matrix}\right)

since C(j)​C(j)tΒ―=C(j)t¯​C(j)C_{(j)}\overline{C_{(j)}^{t}}=\overline{C_{(j)}^{t}}C_{(j)}, by straightforward computation ,we conclude

AΞ²β‹…AΞ²tΒ―=0,βˆ€Ξ²βˆˆ{k+1,k+2,β‹―,m},A^{\beta}\cdot\overline{{A^{\beta}}^{t}}=0,\forall\beta\in\{k+1,k+2,\cdots,m\},

hence AΞ²=0,βˆ€Ξ²βˆˆ{k+1,k+2,β‹―,m}A^{\beta}=0,\forall\beta\in\{k+1,k+2,\cdots,m\}. that is C(j)=0,βˆ€j=1,2,β‹―,m.C_{(j)}=0,\forall j=1,2,\cdots,m. Hence we have thus prove (12) in the case s=2.s=2.
Suppose (12) holds when V=βŠ•j=1sVΞ»+jV=\oplus_{j=1}^{s}V_{\lambda+j}, we shall prove that (12) holds when V=βŠ•j=1s+1VΞ»+jV=\oplus_{j=1}^{s+1}V_{\lambda+j} Suppose that e1,e2,β‹―,eke_{1},e_{2},\cdots,e_{k} is a base of βŠ•j=1sVΞ»+j\oplus_{j=1}^{s}V_{\lambda+j}, and ek+1,ek+2,β‹―,eme_{k+1},e_{k+2},\cdots,e_{m} is a base of VΞ»+s+1V_{\lambda+s+1}, By the assumption (2∘)(2^{\circ}), we have

eβ∘ei=0,βˆ€i∈{1,2,β‹―,k},β∈{k+1,k+2,β‹―,m}.e_{\beta}\circ e_{i}=0,\forall i\in\{1,2,\cdots,k\},\beta\in\{k+1,k+2,\cdots,m\}.

βˆ€Ξ²βˆˆ{k+1,k+2,β‹―,m},\forall\beta\in\{k+1,k+2,\cdots,m\}, we can set
eβ∘ek+1=f11β​e1+f12β​e2+⋯​f1​kβ​eke_{\beta}\circ e_{k+1}=f_{11}^{\beta}e_{1}+f_{12}^{\beta}e_{2}+\cdots f_{1k}^{\beta}e_{k},
eβ∘ek+2=f21β​e1+f22β​e2+⋯​f2​kβ​eke_{\beta}\circ e_{k+2}=f_{21}^{\beta}e_{1}+f_{22}^{\beta}e_{2}+\cdots f_{2k}^{\beta}e_{k},
β‹―,β‹―,β‹―,β‹―\cdots,\cdots,\quad\cdots,\cdots
eβ∘em=fmβˆ’k,1β​e1+fmβˆ’k,2β​e2+⋯​fmβˆ’k,kβ​eke_{\beta}\circ e_{m}=f_{m-k,1}^{\beta}e_{1}+f_{m-k,2}^{\beta}e_{2}+\cdots f_{m-k,k}^{\beta}e_{k},

Denoted by AΞ²=(fi​jΞ²)(mβˆ’k)Γ—kA^{\beta}=(f^{\beta}_{ij})_{(m-k)\times k},which is a matrix of size (mβˆ’k)Γ—k(m-k)\times k, then we get

C(Ξ²)=(OOAΞ²O)\displaystyle C_{\left(\beta\right)}=\left(\begin{matrix}O&O\\ A^{\beta}&O\\ \end{matrix}\right)

so we get

C(Ξ²)Β―t=(OAΞ²Β―tOO)\displaystyle\overline{C_{\left(\beta\right)}}^{t}=\left(\begin{matrix}O&\overline{A^{\beta}}^{t}\\ O&O\\ \end{matrix}\right)

since C(Ξ²)​C(Ξ²)tΒ―=C(Ξ²)t¯​C(Ξ²)C_{(\beta)}\overline{C_{(\beta)}^{t}}=\overline{C_{(\beta)}^{t}}C_{(\beta)}, by straightforward computation, we get Aβ​AΞ²Β―t=0(mβˆ’k)Γ—(mβˆ’k).A^{\beta}\overline{A^{\beta}}^{t}=0_{(m-k)\times(m-k)}. Hence AΞ²=0(mβˆ’k)Γ—k.A^{\beta}=0_{(m-k)\times k}. we conclude

C(Ξ²)=0,βˆ€Ξ²=k+1,k+2,β‹―,s.C_{(\beta)}=0,\forall\beta=k+1,k+2,\cdots,s. (13)

Since we can restrict the endomorphism ei∘e_{i}\circ to the submodule βŠ•j=1sVΞ»+j\oplus_{j=1}^{s}V_{\lambda+j} and get ei∘|βŠ•j=1sVΞ»+j:βŠ•j=1sVΞ»+jβŸΆβŠ•j=1sVΞ»+j{e_{i}\circ}_{|_{\oplus_{j=1}^{s}V_{\lambda+j}}}:\oplus_{j=1}^{s}V_{\lambda+j}\longrightarrow\oplus_{j=1}^{s}V_{\lambda+j} Denoted by B(i)B_{(i)} the matrix of ei∘|βŠ•j=1sVΞ»+j{e_{i}\circ}_{|_{\oplus_{j=1}^{s}V_{\lambda+j}}} under the base e1,e2,β‹―,ek,e_{1},e_{2},\cdots,e_{k}, By straightforward computation, we get

C(i)=(B(i)OOO)\displaystyle C_{\left(i\right)}=\left(\begin{matrix}B_{\left(i\right)}&O\\ O&O\\ \end{matrix}\right)

by C(i)​C(i)tΒ―βˆ’C(i)t¯​C(i)=0C_{(i)}\overline{C_{(i)}^{t}}-\overline{C_{(i)}^{t}}C_{(i)}=0 we get

B(i)​B(i)tΒ―βˆ’B(i)t¯​B(i)=0.B_{(i)}\overline{B_{(i)}^{t}}-\overline{B_{(i)}^{t}}B_{(i)}=0.

So, by the induction hypothesis, we get X∘Y=0,βˆ€X,YβˆˆβŠ•j=1sVΞ»+j,X\circ Y=0,\forall X,Y\in\oplus_{j=1}^{s}V_{\lambda+j}, i.e., B(i)=0,βˆ€i∈1,2,β‹―,k.B_{(i)}=0,\forall i\in{1,2,\cdots,k}. Hence we get

C(i)=0,βˆ€i∈{1,2,β‹―,k}.C_{(i)}=0,\forall i\in\{1,2,\cdots,k\}. (14)

By (13)and (14), we conclude that X∘Y=0,βˆ€X,Y∈VX\circ Y=0,\forall X,Y\in V holds when V=βŠ•j=1s+1VΞ»+j.V=\oplus_{j=1}^{s+1}V_{\lambda+j}. ∎

Lemma 6

Let (𝒯M,h,Ξ¦,𝒰,𝒱)\left(\mathcal{T}_{M},h,\Phi,\mathcal{U},\mathcal{V}\right) be an integrable harmonic Higgs bundle on complex manifold MM with D′​(𝒰)=0D^{\prime}(\mathcal{U})=0, here Dβ€²+βˆ‚Β―D^{\prime}+\overline{\partial} is the Chern connection of positive-definite Hermitian metric hh. Assume that Dβ€²D^{\prime} is holomorphic, Set X∘Y=βˆ’Ξ¦X​YX\circ Y=-\Phi_{X}Y, βˆ€X,Y,Zβˆˆπ’―M\forall X,Y,Z\in\mathcal{T}_{M} satisfying 𝒬​X=λ​X,𝒬​Y=μ​Y,\mathcal{Q}X=\lambda X,\mathcal{Q}Y=\mu Y, βˆ€Zβˆˆπ’―M\forall Z\in\mathcal{T}_{M}

  1. (1).

    If Ξ»β‰ ΞΌ\lambda\neq\mu then X∘Y=0X\circ Y=0

  2. (2).

    If Ξ»=ΞΌ\lambda=\mu then 𝒬​(X∘Y)=(Ξ»βˆ’1)​X∘Y.\mathcal{Q}(X\circ Y)=(\lambda-1)X\circ Y.

  3. (3).

    (X∘Y)∘Z=0.\left(X\circ Y\right)\circ Z=0.

Proof

In fact, βˆ’[Ξ¦,𝒬]+Ξ¦=0⟺[βˆ’Ξ¦,𝒬]=βˆ’Ξ¦,-\left[\Phi,\mathcal{Q}\right]+\Phi=0\Longleftrightarrow\left[-\Phi,\mathcal{Q}\right]=-\Phi,

∴[βˆ’Ξ¦X,𝒬]​(Y)=(βˆ’Ξ¦X)​(Y).\therefore\,\,\left[-\Phi_{X},\mathcal{Q}\right]\left(Y\right)=\left(-\Phi_{X}\right)\left(Y\right).

By straightforward computation we get

𝒬​(βˆ’Ξ¦X​Y)=(ΞΌβˆ’1)​(βˆ’Ξ¦X​Y).\mathcal{Q}\left(-\Phi_{X}Y\right)=\left(\mu-1\right)\left(-\Phi_{X}Y\right).
i.e.𝒬(X∘Y)=(ΞΌβˆ’1)X∘Y\displaystyle{\rm i.e.}\quad\mathcal{Q}\left(X\circ Y\right)=\left(\mu-1\right)X\circ Y (15)

Similarly, [βˆ’Ξ¦Y,𝒬]​(X)=(βˆ’Ξ¦Y)​(X)\left[-\Phi_{Y},\mathcal{Q}\right]\left(X\right)=\left(-\Phi_{Y}\right)\left(X\right) implies

𝒬​(Y∘X)=(Ξ»βˆ’1)​Y∘X.\displaystyle\mathcal{Q}\left(Y\circ X\right)=\left(\lambda-1\right)Y\circ X. (16)

Then by (15),(16) and the assumption that Ξ¦\Phi is symmetric, we have

X∘Y=0.X\circ Y=0.
Claim

βˆ€X,Y,ZβˆˆΞ“β€‹(U,𝒯M1,0)\forall X,Y,Z\in\Gamma\left(U,\mathcal{T}_{M}^{1,0}\right), if 𝒬​X=λ​X,𝒬​Y=λ​Y,𝒬​Z=λ​Z\mathcal{Q}X=\lambda X,\mathcal{Q}Y=\lambda Y,\mathcal{Q}Z=\lambda Z, then X∘Y∘Z=0X\circ Y\circ Z=0.

In fact, by [βˆ’Ξ¦,𝒬]=βˆ’Ξ¦\left[-\Phi,\mathcal{Q}\right]=-\Phi we have

[βˆ’Ξ¦X∘Y,𝒬]​(Z)=βˆ’Ξ¦X∘Y​Z\left[-\Phi_{X\circ Y},\mathcal{Q}\right]\left(Z\right)=-\Phi_{X\circ Y}Z
βŸΊπ’¬β€‹((X∘Y)∘Z)=(Ξ»βˆ’1)​((X∘Y)∘Z)\displaystyle\Longleftrightarrow\mathcal{Q}\left(\left(X\circ Y\right)\circ Z\right)=\left(\lambda-1\right)\left(\left(X\circ Y\right)\circ Z\right) (17)

If X∘Y=0X\circ Y=0,then (X∘Y)∘Z=0.\left(X\circ Y\right)\circ Z=0. If X∘Yβ‰ 0X\circ Y\neq 0, then

𝒬​(X∘Y)=(Ξ»βˆ’1)​(X∘Y).\mathcal{Q}\left(X\circ Y\right)=\left(\lambda-1\right)\left(X\circ Y\right).
∴[βˆ’Ξ¦Z,𝒬]​(X∘Y)=(βˆ’Ξ¦Z)​(X∘Y)\therefore\left[-\Phi_{Z},\mathcal{Q}\right]\left(X\circ Y\right)=\left(-\Phi_{Z}\right)\left(X\circ Y\right)
βŸΊπ’¬β€‹(Z∘(X∘Y))=(Ξ»βˆ’2)​(Z∘(X∘Y)).\displaystyle\Longleftrightarrow\mathcal{Q}\left(Z\circ\left(X\circ Y\right)\right)=\left(\lambda-2\right)\left(Z\circ\left(X\circ Y\right)\right). (18)

Then by (17),(18) and the assumption that Ξ¦\Phi is symmetric, we have

(X∘Y)∘Z=Z∘(X∘Y)=0.\left(X\circ Y\right)\circ Z=Z\circ\left(X\circ Y\right)=0.

We have βˆ€X,Y,Zβˆˆπ’―M1,0,\forall X,Y,Z\in\mathcal{T}_{M}^{1,0}, if X,Y,ZX,Y,Z are eigenvectors, then we have

(X∘Y)∘Z=0.\left(X\circ Y\right)\circ Z=0.
∴X∘(Y∘Z)=(Y∘Z)∘X=0=(X∘Y)∘Z.\therefore\,\,X\circ\left(Y\circ Z\right)=\left(Y\circ Z\right)\circ X=0=\left(X\circ Y\right)\circ Z.

Therefore

βˆ€ΞΎ,Ξ·,ΞΆβˆˆΞ“β€‹(U,𝒯M1,0),ξ∘η∘΢=0,\forall\xi,\eta,\zeta\in\Gamma\left(U,\mathcal{T}_{M}^{1,0}\right),\xi\circ\eta\circ\zeta=0,

especially ξ∘3=0\xi^{\circ 3}=0. ∎


Proof

of theorem 3.2.

Since the connection Dβ€²D^{\prime} is holomorphic and flat, we can choose a flat holomorphic local frame S1,S2,β‹―,SmS_{1},S_{2},\cdots,S_{m} such that hα​β:=h​(SΞ±,SΞ²)=δα​β.h_{\alpha\beta}:=h(S_{\alpha},S_{\beta})=\delta_{\alpha\beta}. Then the matrix of 𝒬\mathcal{Q}, denoted by β„š\mathbb{Q}, is a constant matrix. Since hα​β=δα​βh_{\alpha\beta}=\delta_{\alpha\beta}, we get β„št=β„šΒ―\mathbb{Q}^{t}=\overline{\mathbb{Q}}. Suppose Ξ»1,Ξ»2,β‹―,Ξ»m\lambda_{1},\lambda_{2},\cdots,\lambda_{m} are the eigenvalues of β„š\mathbb{Q}, Then we conclude that all eigenvalues are real numbers. we can assume that Ξ»i≀λi+1β€‹βˆ€i.\lambda_{i}\leq\lambda_{i+1}\forall i. Let e1,e2,β‹―,emβˆˆπ’―Mfe_{1},e_{2},\cdots,e_{m}\in\mathcal{T}_{M}^{f} be the linearly independent eigenvectors of β„š\mathbb{Q} corresponding Ξ»1,Ξ»2,β‹―,Ξ»m\lambda_{1},\lambda_{2},\cdots,\lambda_{m}.
C​a​s​eCase 1∘1^{\circ} (Special Case) If the differnces of any two eigenvalues are not Β±1.\pm 1. all the conclusion (1)(1) holds by Therorem 22;
C​a​s​eCase 2∘2^{\circ} (Special Case) If the set of all the eigenvalues of β„š\mathbb{Q} are {Ξ»+1,Ξ»+2,β‹―,Ξ»+s},\{\lambda+1,\lambda+2,\cdots,\lambda+s\}, we shall conclude X∘Y=0,βˆ€X,Yβˆˆπ’―M(1,0)X\circ Y=0,\forall X,Y\in\mathcal{T}_{M}^{(1,0)} in the following.
Denoted VΞ»+jV_{\lambda+j} by the π’ͺM\mathcal{O}_{M}-module generated by the eigenvectors of 𝒬\mathcal{Q} corresponding to the eigenvalue Ξ»+j\lambda+j, set V=βŠ•j=1sVΞ»+j.V=\oplus_{j=1}^{s}V_{\lambda+j}.
Obviously, V=𝒯M.V=\mathcal{T}_{M}. Since D′​(𝒰)=0D^{\prime}(\mathcal{U})=0, we get the equality [Ξ¦,𝒬]=Ξ¦[\Phi,\mathcal{Q}]=\Phi, which implies that

X∘Y=0,βˆ€X∈VΞ»+i,βˆ€Y∈VΞ»+j,iβ‰ jX\circ Y=0,\forall X\in V_{\lambda+i},\forall Y\in V_{\lambda+j},i\neq j

and

X∘Y∈VΞ»+i,βˆ€X,Y∈VΞ»+i+1.X\circ Y\in V_{\lambda+i},\forall X,Y\in V_{\lambda+i+1}.

Since Dβ€²D^{\prime} is holomorphic, we conclude βˆ’(Ξ¦βˆ§Ξ¦β€ +Ξ¦β€ βˆ§Ξ¦)=Dβ€²β€‹βˆ‚Β―+βˆ‚Β―β€‹Dβ€²=0-(\Phi\wedge\Phi^{\dagger}+\Phi^{\dagger}\wedge\Phi)=D^{\prime}\overline{\partial}+\overline{\partial}D^{\prime}=0. Hence we get C(j)​C(j)tΒ―=C(j)t¯​C(j)C_{(j)}\overline{C_{(j)}^{t}}=\overline{C_{(j)}^{t}}C_{(j)}. By Lemma 5, we have

X∘Y=0,βˆ€X,Y∈V=βŠ•j=1sVΞ»+j.X\circ Y=0,\forall X,Y\in V=\oplus_{j=1}^{s}V_{\lambda+j}. (19)

C​a​s​eCase 3∘3^{\circ} Otherwise, differences of two eigenvalues may be Β±1,\pm 1, and βˆƒΞ»j0∈{Ξ»2,Ξ»3,β‹―,Ξ»m},\exists\lambda_{j_{0}}\in\{\lambda_{2},\lambda_{3},\cdots,\lambda_{m}\}, such that Ξ»j0βˆ’1\lambda_{j_{0}}-1 is not an eigenvalue of 𝒬\mathcal{Q}.
Denoted by {Ξ»i1,Ξ»i2,β‹―,Ξ»is}\{\lambda_{i_{1}},\lambda_{i_{2}},\cdots,\lambda_{i_{s}}\} be the set of all different eigenvalues of 𝒬\mathcal{Q} satisfying Ξ»i1<Ξ»i2<β‹―<Ξ»is.\lambda_{i_{1}}<\lambda_{i_{2}}<\cdots<\lambda_{i_{s}}. We shall prove (19) by induction on s>1s>1. We can assume that the set of all different eigenvalues of 𝒬\mathcal{Q} are {Ξ»l1,β‹―,Ξ»lsβˆ’k,Ξ»sβˆ’k+1,β‹―,Ξ»sβˆ’1,Ξ»s}\{\lambda_{l_{1}},\cdots,\lambda_{l_{s-k}},\lambda_{s}-k+1,\cdots,\lambda_{s}-1,\lambda_{s}\} satisfying Ξ»ljβ‰ Ξ»sβˆ’k,βˆ€j=1,2,⋯​sβˆ’k.\lambda_{l_{j}}\neq\lambda_{s}-k,\forall j=1,2,\cdots s-k. So Ξ»sβˆ’k\lambda_{s}-k is NOT an eigenvalue of 𝒬\mathcal{Q}.

Set V1:=βŠ•j=1sβˆ’kVΞ»ijV_{1}:=\oplus_{j=1}^{s-k}V_{\lambda_{i_{j}}} and V2:=βŠ•j=0kβˆ’1VΞ»sβˆ’j.V_{2}:=\oplus_{j=0}^{k-1}V_{\lambda_{s}-j}. Then V1V_{1} and V2V_{2} are submodules of VV and satisfies

V=V1βŠ•V2,V=V_{1}\oplus V_{2},
X∘Y=0,βˆ€X∈V1,Y∈V2,X\circ Y=0,\forall X\in V_{1},Y\in V_{2},

and

X∘Y∈Vi,βˆ€X,Y∈Vi,βˆ€i=1,2.X\circ Y\in V_{i},\forall X,Y\in V_{i},\forall i=1,2.

When s=2s=2 then by theorem 1, (19) holds obviously.
Suppose (19) holds when V=βŠ•j=1sβˆ’1VΞ»jV=\oplus_{j=1}^{s-1}V_{\lambda_{j}}. Suppose e1,e2,β‹―,ete_{1},e_{2},\cdots,e_{t} is a base of V1V_{1}, and et+1,et+2,β‹―,eme_{t+1},e_{t+2},\cdots,e_{m} is a base of V2V_{2}. Denoted by B(Ξ²)B_{(\beta)} the matrix of endomorphism

eβ∘|V2:V2⟢V2,βˆ€Ξ²βˆˆ{t+1,t+2,β‹―,m}.e_{\beta}\circ_{|V_{2}}:V_{2}\longrightarrow V_{2},\forall\beta\in\{t+1,t+2,\cdots,m\}.

By straightforward computation, we have

C(Ξ²)=(OOOB(Ξ²))\displaystyle C_{\left(\beta\right)}=\left(\begin{matrix}O&O\\ O&B_{\left(\beta\right)}\\ \end{matrix}\right)

by C(j)​C(j)tΒ―βˆ’C(j)t¯​C(j)=0,C_{(j)}\overline{C_{(j)}^{t}}-\overline{C_{(j)}^{t}}C_{(j)}=0, we have B(Ξ²)​B(Ξ²)tΒ―βˆ’B(Ξ²)t¯​B(Ξ²)=0,βˆ€Ξ²βˆˆ{t+1,t+2,β‹―,m}B_{(\beta)}\overline{B_{(\beta)}^{t}}-\overline{B_{(\beta)}^{t}}B_{(\beta)}=0,\forall\beta\in\{t+1,t+2,\cdots,m\}. So the π’ͺM\mathcal{O}_{M}-module V2V_{2} together with product ∘\circ satisfying all the assumptions in Lemma 5, by Lemma 5, we conclude that eα∘eΞ²=0,βˆ€Ξ±,β∈{t+1,t+2,β‹―,m},e_{\alpha}\circ e_{\beta}=0,\forall\alpha,\beta\in\{t+1,t+2,\cdots,m\}, that is, B(Ξ²)=0,βˆ€Ξ²βˆˆ{t+1,t+2,β‹―,m}.B_{(\beta)}=0,\forall\beta\in\{t+1,t+2,\cdots,m\}. Hence

C(Ξ²)=0,βˆ€Ξ²βˆˆ{t+1,t+2,β‹―,m}.C_{(\beta)}=0,\forall\beta\in\{t+1,t+2,\cdots,m\}.

By the induction hypothesis, we obtain C(i)=0,βˆ€i∈{1,2,β‹―,t}C_{(i)}=0,\forall i\in\{1,2,\cdots,t\} So we conclude that C(j)=0,βˆ€j∈{1,2,β‹―,m},C_{(j)}=0,\forall j\in\{1,2,\cdots,m\}, which is equivalent to Ξ¦=0.\Phi=0.

Finally, since Ξ¦=0.\Phi=0. when 𝒰=0\mathcal{U}=0 holds, we get 𝒰†=0\mathcal{U}^{\dagger}=0 and Φ†=0\Phi^{\dagger}=0.In this case, the structure connection

D~=Dβ€²+1z​Φ+(𝒰zβˆ’π’¬βˆ’z​𝒰†+w2​Id)​d​zz=Dβ€²+(βˆ’Ξ›+w2​Id)​d​zz,\widetilde{D}=D^{\prime}+\frac{1}{z}\Phi+(\frac{\mathcal{U}}{z}-\mathcal{Q}-z\mathcal{U}^{\dagger}+\frac{w}{2}\operatorname{Id})\frac{dz}{z}=D^{\prime}+(-\Lambda+\frac{w}{2}\operatorname{Id})\frac{dz}{z},

here Ξ›=d​i​a​g​(Ξ»1,β‹―,Ξ»m).\Lambda=diag(\lambda_{1},\cdots,\lambda_{m}). ∎

Proof

of corollary 2. By the assumption 𝒬=βˆ’ΞΊβ€‹π’¬β€‹ΞΊ\mathcal{Q}=-\kappa\mathcal{Q}\kappa, we conclude that the matrices βˆ’β„š-\mathbb{Q} and β„šΒ―\overline{\mathbb{Q}} have the same eigenvalue polynomial. So we can assume that {Ξ»,0,βˆ’Ξ»}\{\lambda,0,-\lambda\} is the set of all eigenvalues of β„š\mathbb{Q}, 𝒬=𝒬†\mathcal{Q}=\mathcal{Q}^{\dagger} so Ξ»\lambda is a real differential function on some coordinate neighborhood. Obviously, {Ξ»βˆ’1,βˆ’1,βˆ’Ξ»βˆ’1}\{\lambda-1,-1,-\lambda-1\} is the set of eigenvalues of β„šβˆ’I3\mathbb{Q}-I_{3}.
(1) If neither Β±1\pm 1 nor Β±12\pm\frac{1}{2} is an eigenvalue of β„š\mathbb{Q}, then β„šβˆ’I3\mathbb{Q}-I_{3} and β„š\mathbb{Q} have no common eigenvalues, then by Theorem 2, we conclude that t Ξ¦|Up=0.\Phi_{|U_{p}}=0.
(2) Dβ€²D^{\prime} is a holomorphic connection, there is a flat holomorphic local frame such that the matrix β„š\mathbb{Q} of 𝒬\mathcal{Q} is constant, If 11 is an eigenvalue of β„š\mathbb{Q}, then βˆ’1-1 is also an eigenvalue of β„š\mathbb{Q}. So we can choose a a flat holomorphic local frame X1,X2,X3X_{1},X_{2},X_{3} such that β„š=diag⁑(1,0,βˆ’1)\mathbb{Q}=\operatorname{diag}(1,0,-1) on some neighborhood UpU_{p}. Similar discussion for Β±12\pm\frac{1}{2} is an eigenvalue of β„š\mathbb{Q}. ∎

The proof of corollary 3 is similar.


In taka , A. Takahashi study the extend moduli space of elliptic curves, and prove that it can be equipped with a positive-definite CDV-structure (M,g,∘,e,β„°,ΞΊ)(M,g,\circ,e,\mathcal{E},\kappa). In this structure, the matrix of the endomorphism 𝒬=Dβ„°β€²βˆ’β„’β„°βˆ’2βˆ’d2​Id\mathcal{Q}=D^{{}^{\prime}}_{\mathcal{E}}-\mathcal{L}_{\mathcal{E}}-\frac{2-d}{2}\operatorname{Id} is given by β„š=diag⁑(12,βˆ’12)\mathbb{Q}=\operatorname{diag}(\frac{1}{2},-\frac{1}{2}) and the Chern connection Dβ€²D^{{}^{\prime}} of Hermitian Einstein metric hh is holomorphic.

5 Other Results

We get a sufficient condition for a tuple (𝒯M1,0⟢M,Dβ€²+βˆ‚Β―,Ξ¦,h,𝒰=0,𝒬)\left(\mathcal{T}_{M}^{1,0}\longrightarrow M,D^{{}^{\prime}}+\bar{\partial},\Phi,h,\mathcal{U}=0,\mathcal{Q}\right) be an integrable harmonic Higgs bundle.

Corollary 4

Let (M,h,Dβ€²+βˆ‚Β―)\left(M,h,D^{{}^{\prime}}+\bar{\partial}\right) be a Hermitian manifold, i.e.\rm i.e. hh is positive definite and Dβ€²+βˆ‚Β―D^{{}^{\prime}}+\bar{\partial} is the Chern connection of hh, and Dβ€²D^{\prime} is holomorphic connection. Given any flat holomorphic local frame e1,e2,β‹―,eme_{1},e_{2},\cdots,e_{m} on UU satisfying h​(ei,ej)=Ξ΄i​jh(e_{i},e_{j})=\delta_{ij}, any constant matrix β„š\mathbb{Q} satisfying β„šΒ―=β„št\overline{\mathbb{Q}}=\mathbb{Q}^{t} determined locally a holomorphic endormorphism 𝒬\mathcal{Q} of the holomorphic tangent bundle. Define Ξ¦X​Y=0,𝒰=0\Phi_{X}Y=0,\mathcal{U}=0. Then
(𝒯M,Ξ¦,h,𝒰=0,𝒬)\left(\mathcal{T}_{M},\Phi,h,\mathcal{U}=0,\mathcal{Q}\right) is an integrable harmonic Higgs bundle on U.

Proof

of corollary 4.
By lemma3, there is a Dβ€²D^{{}^{\prime}}-flat holomorphic local frame e1,e2,β‹―,em,e_{1},e_{2},\cdots,e_{m}, such that 𝒬​ej=Ξ»j​ej,βˆ€j=1,2,…,m\mathcal{Q}e_{j}=\lambda_{j}e_{j},\forall j=1,2,...,m, here Ξ»j\lambda_{j} are constants.

Note that X∘Y=βˆ’Ξ¦X​Y,X\circ Y=-\Phi_{X}Y\,\,, ∡ΦX​Y=Ξ¦X​Y,\because\Phi_{X}Y=\Phi_{X}Y, ∴X∘Y=Y∘X.\therefore X\circ Y=Y\circ X.

Claim

1∘1^{\circ} If 𝒬​X=λ​X,𝒬​Y=μ​Y,ΞΌβ‰ Ξ»\mathcal{Q}X=\lambda X,\mathcal{Q}Y=\mu Y,\mu\neq\lambda\,\, then X∘Y=0.X\circ Y=0.

In fact, βˆ’[Ξ¦,𝒬]+Ξ¦=0⟺[βˆ’Ξ¦,𝒬]=βˆ’Ξ¦,-\left[\Phi,\mathcal{Q}\right]+\Phi=0\Longleftrightarrow\left[-\Phi,\mathcal{Q}\right]=-\Phi,

∴[βˆ’Ξ¦X,𝒬]​(Y)=(βˆ’Ξ¦X)​(Y).\therefore\,\,\left[-\Phi_{X},\mathcal{Q}\right]\left(Y\right)=\left(-\Phi_{X}\right)\left(Y\right).

Direct computation shows that

𝒬​(βˆ’Ξ¦X​Y)=(ΞΌβˆ’1)​(βˆ’Ξ¦X​Y).\mathcal{Q}\left(-\Phi_{X}Y\right)=\left(\mu-1\right)\left(-\Phi_{X}Y\right).
i.e.𝒬(X∘Y)=(ΞΌβˆ’1)X∘Y\displaystyle{\rm i.e.}\quad\mathcal{Q}\left(X\circ Y\right)=\left(\mu-1\right)X\circ Y (20)

Similarly, [βˆ’Ξ¦Y,𝒬]​(X)=(βˆ’Ξ¦Y)​(X)\left[-\Phi_{Y},\mathcal{Q}\right]\left(X\right)=\left(-\Phi_{Y}\right)\left(X\right) implies

𝒬​(Y∘X)=(Ξ»βˆ’1)​Y∘X.\displaystyle\mathcal{Q}\left(Y\circ X\right)=\left(\lambda-1\right)Y\circ X. (21)

Then by (20),(21) and the assumption that Ξ¦\Phi is symmetric, we have

X∘Y=0.X\circ Y=0.
Claim

2∘2^{\circ} βˆ€X,Y,ZβˆˆΞ“β€‹(U,𝒯M1,0)\forall X,Y,Z\in\Gamma\left(U,\mathcal{T}_{M}^{1,0}\right), if 𝒬​X=λ​X,𝒬​Y=λ​Y,𝒬​Z=λ​Z\mathcal{Q}X=\lambda X,\mathcal{Q}Y=\lambda Y,\mathcal{Q}Z=\lambda Z, then X∘Y∘Z=0X\circ Y\circ Z=0.

In fact, by [βˆ’Ξ¦,𝒬]=βˆ’Ξ¦\left[-\Phi,\mathcal{Q}\right]=-\Phi we have

[βˆ’Ξ¦X∘Y,𝒬]​(Z)=βˆ’Ξ¦X∘Y​Z\left[-\Phi_{X\circ Y},\mathcal{Q}\right]\left(Z\right)=-\Phi_{X\circ Y}Z
βŸΊπ’¬β€‹((X∘Y)∘Z)=(Ξ»βˆ’1)​((X∘Y)∘Z)\displaystyle\Longleftrightarrow\mathcal{Q}\left(\left(X\circ Y\right)\circ Z\right)=\left(\lambda-1\right)\left(\left(X\circ Y\right)\circ Z\right) (22)

If X∘Y=0X\circ Y=0,then (X∘Y)∘Z=0.\left(X\circ Y\right)\circ Z=0. If X∘Yβ‰ 0X\circ Y\neq 0, then

𝒬​(X∘Y)=(Ξ»βˆ’1)​(X∘Y).\mathcal{Q}\left(X\circ Y\right)=\left(\lambda-1\right)\left(X\circ Y\right).
∴[βˆ’Ξ¦Z,𝒬]​(X∘Y)=(βˆ’Ξ¦Z)​(X∘Y)\therefore\left[-\Phi_{Z},\mathcal{Q}\right]\left(X\circ Y\right)=\left(-\Phi_{Z}\right)\left(X\circ Y\right)
βŸΊπ’¬β€‹(Z∘(X∘Y))=(Ξ»βˆ’2)​(Z∘(X∘Y)).\displaystyle\Longleftrightarrow\mathcal{Q}\left(Z\circ\left(X\circ Y\right)\right)=\left(\lambda-2\right)\left(Z\circ\left(X\circ Y\right)\right). (23)

Then by (22),(23) and the assumption that Ξ¦\Phi is symmetric, we have

(X∘Y)∘Z=Z∘(X∘Y)=0.\left(X\circ Y\right)\circ Z=Z\circ\left(X\circ Y\right)=0.

By claim 1∘1^{\circ} and 2∘2^{\circ} we have βˆ€X,Y,Zβˆˆπ’―M1,0,\forall X,Y,Z\in\mathcal{T}_{M}^{1,0}, if X,Y,ZX,Y,Z are eigenvectors, then we have

(X∘Y)∘Z=0.\left(X\circ Y\right)\circ Z=0.
∴X∘(Y∘Z)=(Y∘Z)∘X=0=(X∘Y)∘Z.\therefore\,\,X\circ\left(Y\circ Z\right)=\left(Y\circ Z\right)\circ X=0=\left(X\circ Y\right)\circ Z.
Claim

3∘3^{\circ} The product ∘\circ satisfies:

βˆ€ΞΎ,Ξ·,ΞΆβˆˆΞ“β€‹(U,𝒯M1,0),(ξ∘η)∘΢=0,\forall\xi,\eta,\zeta\in\Gamma\left(U,\mathcal{T}_{M}^{1,0}\right),\left(\xi\circ\eta\right)\circ\zeta=0,

therefore This product ∘\circ has the associative law, i.e. Φ∧Φ=0.\Phi\land\Phi=0.

In fact, {e1,e2,…,em}\left\{e_{1},e_{2},...,e_{m}\right\} is a local frame. By claim 1∘1^{\circ} and 2∘2^{\circ} ,

βˆ€i,j,k,(ei∘ej)∘ek=0.\forall i,j,k,\quad\left(e_{i}\circ e_{j}\right)\circ e_{k}=0.

Let ΞΎ=fi​ei,Ξ·=gj​ej,ΞΆ=hk​ek\xi=f^{i}e_{i},\eta=g^{j}e_{j},\zeta=h^{k}e_{k}, then

(ξ∘η)∘΢=fi​gj​hk​(ei∘ej)∘ek=0.\left(\xi\circ\eta\right)\circ\zeta=f^{i}g^{j}h^{k}\left(e_{i}\circ e_{j}\right)\circ e_{k}=0.

So we can conclude that Φ∧Φ=0\Phi\wedge\Phi=0 holds.
Since D′​(Ξ¦)=0D^{{}^{\prime}}\left(\Phi\right)=0 , Dβ€²+βˆ‚Β―D^{{}^{\prime}}+\bar{\partial} is compatible with hh and βˆ‚Β―β€‹(Φ†)=0\bar{\partial}\left(\Phi^{\dagger}\right)=0 holds, straight forward computation shows that:

βˆ€Ξ±,Ξ²,h​((βˆ‚Β―XΒ―i​(Ξ¦XΒ―j†)βˆ’βˆ‚Β―XΒ―j​(Ξ¦XΒ―i†))​eΞ±,eΞ²)=h​(eΞ±,(DXi′​(Ξ¦Xj)βˆ’DXj′​(Ξ¦Xi))​eΞ²),\forall\alpha,\beta,\quad h\left(\left(\bar{\partial}_{\bar{X}_{i}}\left(\Phi_{\bar{X}_{j}}^{\dagger}\right)-\bar{\partial}_{\bar{X}_{j}}\left(\Phi_{\bar{X}_{i}}^{\dagger}\right)\right)e_{\alpha},e_{\beta}\right)=h\left(e_{\alpha},\left(D_{X_{i}}^{{}^{\prime}}\left(\Phi_{X_{j}}\right)-D_{X_{j}}^{{}^{\prime}}\left(\Phi_{X_{i}}\right)\right)e_{\beta}\right),

where Xi=βˆ‚βˆ‚tiX_{i}=\frac{\partial}{\partial t^{i}}, while t1,t2,…,tmt^{1},t^{2},...,t^{m} are local coordinates.
D′​(Ξ¦)=0D^{{}^{\prime}}\left(\Phi\right)=0 and hh is positive definite, βˆ΄βˆ‚Β―β€‹(Φ†)=0.\therefore\bar{\partial}\left(\Phi^{\dagger}\right)=0. Since 𝒰=0,\mathcal{U}=0, we get [Ξ¦,𝒰]=0,\left[\Phi,\mathcal{U}\right]=0, and 𝒰†=0.\mathcal{U}^{\dagger}=0. By βˆ’[Ξ¦,𝒬]+Ξ¦=0-\left[\Phi,\mathcal{Q}\right]+\Phi=0, we get

D′​(𝒰)βˆ’[Ξ¦,𝒬]+Ξ¦=0,D^{{}^{\prime}}\left(\mathcal{U}\right)-\left[\Phi,\mathcal{Q}\right]+\Phi=0,
D′​(𝒬)+[Ξ¦,𝒰†]=D′​(𝒬)+0=0..D^{{}^{\prime}}\left(\mathcal{Q}\right)+\left[\Phi,\mathcal{U}^{\dagger}\right]=D^{{}^{\prime}}\left(\mathcal{Q}\right)+0=0..

∴(M,h,Ξ¦,𝒰=0,𝒬)\therefore\left(M,h,\Phi,\mathcal{U}=0,\mathcal{Q}\right) is a integrable harmonic Higgs bundle. ∎

References

  • (1) Sergio Cecotti and Cumrun Vafa, Topological–anti-topological fusion, Nuclear Phys. B 367 (1991), no.Β 2, 359–461.
  • (2)  , On classification of N=2N=2 supersymmetric theories, Comm. Math. Phys. 158 (1993), no.Β 3, 569–644.
  • (3) Alessandro Chiodo, Hiroshi Iritani, and Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Γ‰tudes Sci. 119 (2014), 127–216.
  • (4) Boris Dubrovin, Geometry of 22D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp.Β 120–348.
  • (5) H.Β Fan, SchrΓΆdinger equations, deformation theory and t​tβˆ—tt^{*}-geometry, arXiv:1107.1290v1 (2011).
  • (6) Huijun Fan, Tian Lan, and Zongrui Yang, LG/CY correspondence between t​tβˆ—tt^{*} geometries, Commun. Math. Res. 37 (2021), no.Β 3, 297–349.
  • (7) Claus Hertling, Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, vol. 151, Cambridge University Press, Cambridge, 2002.
  • (8)  , t​tβˆ—tt^{*} geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), 77–161.
  • (9) Jiezhu Lin, Some constraints on Frobenius manifolds with a t​tβˆ—tt^{*}-structure, Math. Z. 267 (2011), no.Β 1-2, 81–108.
  • (10) YuriΒ I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, vol.Β 47, American Mathematical Society, Providence, RI, 1999.
  • (11) Claude Sabbah, Universal unfoldings of Laurent polynomials and tt* structures, From Hodge theory to integrability and TQFT: tt*-geometry (R.Β Donagi and K.Β Wendland, eds.), Proc. Symposia in Pure Math., vol.Β 78, American Math. Society, Providence, RI, 2008, pp.Β 1–29.
  • (12)  , Universal unfoldings of Laurent polynomials and t​tβˆ—tt^{\ast} structures, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol.Β 78, Amer. Math. Soc., Providence, RI, 2008, pp.Β 1–29.
  • (13) Kyoji Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no.Β 3, 775–792 (1982).
  • (14)  , Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), no.Β 3, 1231–1264.
  • (15) Morihiko Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), no.Β 1, 27–72.
  • (16) Atsushi Takahashi, t​tβˆ—tt^{\ast} geometry of rank two, Int. Math. Res. Not. (2004), no.Β 22, 1099–1114.