This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Instability of the solitary waves for the Generalized Benjamin-Bona-Mahony Equation

Rui Jia (R. Jia) Center for Applied Mathematics
Tianjin University
Tianjin 300072, China
[email protected]
 and  Yifei Wu (Y.Wu) Center for Applied Mathematics
Tianjin University
Tianjin 300072, China
[email protected]
Abstract.

In this work, we consider the generalized Benjamin-Bona-Mahony equation

tu+xu+x(|u|pu)tx2u=0,(t,x)×,\partial_{t}u+\partial_{x}u+\partial_{x}(|u|^{p}u)-\partial_{t}\partial_{x}^{2}u=0,\quad(t,x)\in\mathbb{R}\times\mathbb{R},

with p>4p>4. This equation has the traveling wave solutions ϕc(xct),\phi_{c}(x-ct), for any frequency c>1.c>1. It has been proved by Souganidis and Strauss [6] that, there exists a number c0(p)>1c_{0}(p)>1, such that solitary waves ϕc(xct)\phi_{c}(x-ct) with 1<c<c0(p)1<c<c_{0}(p) is orbitally unstable, while for c>c0(p),c>c_{0}(p), ϕc(xct)\phi_{c}(x-ct) is orbitally stable. The linear exponential instability in the former case was further proved by Pego and Weinstein [5]. In this paper, we prove the orbital instability in the critical case c=c0(p)c=c_{0}(p).

Key words and phrases:
generalized Benjamin-Bona-Mahony equation, instability, critical frequency, traveling wave.
2010 Mathematics Subject Classification:
Primary 35B35; Secondary 35L70

1. Introduction

It is well known that the KdV equation is a classical model used to describe the characteristics of water waves of long wave length in river channels. When studying nonlinear dispersive long wave unidirectional propagation, Benjamin, Bona, and Mahony [1] considered a new model named the Benjamin-Bona-Mahony (BBM) equation, which can describe physical properties of long waves better. The BBM equation reads

ut+ux+uuxutxx=0.\displaystyle u_{t}+u_{x}+uu_{x}-u_{txx}=0.

In this paper, we consider the following generalized Benjamin-Bona-Mohony (gBBM) equation

tu+xu+x(|u|pu)tx2u=0(t,x)×\displaystyle\partial_{t}u+\partial_{x}u+\partial_{x}(|u|^{p}u)-\partial_{t}\partial_{x}^{2}u=0\quad(t,x)\in\mathbb{R}\times\mathbb{R} (1.1)

with p>0.p>0. For H1H^{1}-solution, the momentum QQ and the energy EE are conserved under the flow, where

Q(u)=12u2+ux2dx;\displaystyle Q(u)=\frac{1}{2}\int_{\mathbb{R}}u^{2}+u_{x}^{2}\,\mathrm{d}x; (1.2)
E(u)=12u2dx+1p+2|u|p+2dx.\displaystyle E(u)=\frac{1}{2}\int_{\mathbb{R}}u^{2}\,\mathrm{d}x+\frac{1}{p+2}\int_{\mathbb{R}}|u|^{p+2}\,\mathrm{d}x. (1.3)

In particular, the equation (1.1) can be expressed in the following Hamiltonian form

tu=JE(u), where J=(1x2)1x.\displaystyle\partial_{t}u=JE^{\prime}(u),\qquad\mbox{ where }\qquad J=-(1-\partial_{x}^{2})^{-1}\partial_{x}. (1.4)

In [6], Souganidis and Strauss proved that if u0=u(0,x)H1(),u_{0}=u(0,x)\in H^{1}(\mathbb{R}), there exists a unique global solution uu of (1.1) in C(;H1())C(\mathbb{R};H^{1}(\mathbb{R})).

The equation (1.1) has the solitary waves solution given by u(x,t)=ϕc(xct)u(x,t)=\phi_{c}(x-ct) for any c>1c>1, where ϕc\phi_{c} is the ground state solution of the following elliptic equation

cxxϕc+(c1)ϕcϕcp+1=0.\displaystyle-c\partial_{xx}\phi_{c}+(c-1)\phi_{c}-\phi_{c}^{p+1}=0. (1.5)

The ground state solution ϕc\phi_{c} is a smooth, even, and positive function, which decays exponentially as |x||x|\rightarrow\infty, in the sense that |ϕc|C1eC2|x|,|xϕc|C1eC2|x||\phi_{c}|\leq C_{1}e^{-C_{2}|x|},|\partial_{x}\phi_{c}|\leq C_{1}e^{-C_{2}|x|} for some C1,C2>0.C_{1},C_{2}>0. Then a natural problem is the stability theory of the solitary waves solution ϕc(xct)\phi_{c}(x-ct), which is defined as follows. For ε>0,\varepsilon>0, we denote the set Uε(ϕc)U_{\varepsilon}(\phi_{c}) as:

Uε(ϕc)\displaystyle U_{\varepsilon}(\phi_{c}) ={uC(;H1()):suptinfyuϕc(y)H1()<ε}.\displaystyle=\{u\in C(\mathbb{R};H^{1}(\mathbb{R})):\sup_{t\in\mathbb{R}}\inf_{y\in\mathbb{R}}\big{\|}u-\phi_{c}(\cdot-y)\big{\|}_{H^{1}(\mathbb{R})}<\varepsilon\}. (1.6)

Then we define the orbital stability/instability of the solitary waves as

Definition 1.1.

We say that the solitary waves solution ϕc(xct)\phi_{c}(x-ct) of (1.1) is orbitally stable if for any ε>0,\varepsilon>0, there exists δ>0\delta>0 such that if u0ϕcH1()<δ,\big{\|}u_{0}-\phi_{c}\big{\|}_{H^{1}(\mathbb{R})}<\delta, then the solution uu of (1.1) with u(0,x)=u0(x)u(0,x)=u_{0}(x) satisfies uUε(ϕc).u\in U_{\varepsilon}(\phi_{c}). Otherwise, ϕc(xct)\phi_{c}(x-ct) is said to be orbitally unstable.

Regarding the stability theory of these solitary waves, Souganidis and Strauss [6] proved that when 0<p40<p\leq 4, the solitary waves solution ϕc(xct)\phi_{c}(x-ct) is orbitally stable for all c>1c>1, while when p>4p>4, the solitary waves solution ϕc(xct)\phi_{c}(x-ct) is orbitally unstable in H1()H^{1}(\mathbb{R}) for 1<c<c0(p)1<c<c_{0}(p) and orbitally stable in H1()H^{1}(\mathbb{R}) for c>c0(p)c>c_{0}(p). Here

c0(p):=p4+2p(1+2+12p).c_{0}(p):=\frac{p}{4+2p}\left(1+\sqrt{2+\frac{1}{2}p}\right).

Denote d(c):=E(ϕc)cQ(ϕc)d(c):=E(\phi_{c})-cQ(\phi_{c}), the critical parameter c0(p)c_{0}(p) is determined by

d′′(c)|c=c0(p)=0.d^{\prime\prime}(c)\Big{|}_{c=c_{0}(p)}=0.

Since the operator JJ is not onto, the framework of Grillakis, Shatah, and Strauss [2, 3] cannot be directly applied to study the stability of the solitary waves ϕc(xct)\phi_{c}(x-ct). Therefore, the work [6] is not a direct application of the theories established in [2, 3]. For further discussion on these cases, readers are referred to the more recent paper [4] by Lin and Zeng.

In [5], Pego and Weinstein established criteria for the linear exponential instability of solitary waves solution of the gBBM equation. They further proved the linear exponential instability of ϕc(xct)\phi_{c}(x-ct) for each p>4p>4 when 1<c<c0(p)1<c<c_{0}(p).

So far, the stability of the solitary waves ϕc(xct)\phi_{c}(x-ct) has been nearly established, except for the critical case c=c0(p)c=c_{0}(p), which corresponds to the degenerate case where d′′(c)=0d^{\prime\prime}(c)=0. In this paper, our aim is to fully establish the stability of the solitary waves ϕc(xct)\phi_{c}(x-ct) by studying the degenerate case of c=c0(p)c=c_{0}(p).

Before presenting our theorem, let us clarify some definitions that will be used. We define the functional ScS_{c} as

Sc(u):=E(u)cQ(u).\displaystyle S_{c}(u):=E(u)-cQ(u). (1.7)

Then the equation (1.5) is equivalent to Sc(ϕc)=0S_{c}^{\prime}(\phi_{c})=0. For convenience, we denote that

ω=c12,\omega=c^{-\frac{1}{2}},

and

ψω(x)=c1pϕc(x).\displaystyle\psi_{\omega}(x)=c^{-\frac{1}{p}}\phi_{c}(x). (1.8)

Then by (1.5), we find that ψω\psi_{\omega} satisfies the following equation:

xxψω+(1ω2)ψωψωp+1=0.\displaystyle-\partial_{xx}\psi_{\omega}+(1-\omega^{2})\psi_{\omega}-\psi_{\omega}^{p+1}=0. (1.9)

As mentioned earlier, our objective is to demonstrate the instability of the solitary waves in the critical frequency case: c=c0(p)c=c_{0}(p). Our argument relies on the assumption of the negativity of a specific direction of the Hessian operator Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}), which is confirmed numerically. More precisely, let

Ψc\displaystyle\Psi_{c} :=12ω12pωψω,\displaystyle:=-\frac{1}{2}\omega^{1-\frac{2}{p}}\partial_{\omega}\psi_{\omega}, (1.10)
Γc\displaystyle\Gamma_{c} :=B(c)[c2Ψc+c2xxϕc+cϕc]+D(c)(3x2ϕc+x3xϕc),\displaystyle:=B(c)\left[c^{2}\Psi_{c}+\frac{c}{2}x\partial_{x}\phi_{c}+c\phi_{c}\right]+D(c)(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c}), (1.11)

where

D(c)=4pc+4c3p2(p+4)ϕcL22,B(c)=32xϕcL22+92xxϕcL223ϕcL22.\displaystyle D(c)=-\frac{4pc+4c-3p}{2(p+4)}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}},\quad B(c)=\frac{3}{2}\big{\|}x\phi_{c}\big{\|}^{2}_{L^{2}}+\frac{9}{2}\big{\|}x\partial_{x}\phi_{c}\big{\|}^{2}_{L^{2}}-3\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}.

We assume that

Sc′′(ϕc)Γc,Γc<0 holds for c=c0(p) with p>4,\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle<0\quad\mbox{ holds for }c=c_{0}(p)\mbox{ with }p>4, (1.12)

which is checked numerically 111According to Appendix A.4, we use Matlab to compute Sc′′(ϕc)Γc,Γc<0.\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle<0. It suffices in practice to run the computations until p=100p=100 to check Sc′′(ϕc)Γc,Γc<0\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle<0 as the inner product is decreasing fastly as a power function when pp is bigger than 10.10. We refer to “Appendix A.4” for more details. in Appendix A.4.

The main result in the present paper is the following.

Theorem 1.2.

Let p>4,c=c0(p)p>4,c=c_{0}(p) and ϕc\phi_{c} be the ground state of (1.5). Assume (1.12), then the solitary waves solution ϕc(xct)\phi_{c}(x-ct) is orbitally unstable.

Remark 1.3.

(1) In the previous works [5] and [6], the stability and instability results of solitary waves solution ϕc(xct)\phi_{c}(x-ct) for the non-degenerate case d′′(c)0d^{\prime\prime}(c)\neq 0 in the gBBM equation have already been established. Under (1.12), Theorem 1.2 closes the only remaining gap for the degenerate case d′′(c)=0d^{\prime\prime}(c)=0 and thereby completes the entire stability theory of solitary waves solution for the gBBM equation. We also give an element numerical computation to check (1.12).

(2) The instability of the solitary waves ϕc(xct)\phi_{c}(x-ct) with 1<c<c0(p)1<c<c_{0}(p) has been demonstrated using the Lyapunov stability argument based on the monotonicity of the Lyapunov functional in the non-degenerate cases d′′(c)0.d^{\prime\prime}(c)\neq 0. However, this argument does not apply to the degenerate cases, as the Lyapunov functional loses monotonicity when d′′(c)=0.d^{\prime\prime}(c)=0. Therefore, we need to construct a new monotonic functional. The outline of the proof will be provided in the following subsection.

1.1. Sketch of the proof

The main approach is to construct a monotonic quantity based on virial quantities and the modulation argument, drawing inspiration from [9], which established the instability of standing wave solutions of the Klein-Gordon equation in the degenerate case. The methodology involves analyzing the orthogonality conditions and the dynamics of the modulated parameters. However, due to the intricate structure of the gBBM equation, constructing the monotonic functional in this paper is much more complex than the Klein-Gordon equation case. In particular, the non-onto property of the skew symmetry operator JJ poses significant obstacles. The key ingredients of the proof can be summarized as follows.

Step1: Modulation. First of all, we assume the solitary wave is stable. The modulation argument allows us to find two parameters, y(t)y(t) and λ(t),\lambda(t), and a perturbation function ξ\xi, such that the solution uu can be expressed as

u(t,x)=(ϕλ+ξ)(xy(t)),\displaystyle u(t,x)=(\phi_{\lambda}+\xi)\big{(}x-y(t)\big{)}, (1.13)

where λ(t)\lambda(t) is a scaling parameter suitably defined, and y(t)y(t) is a spatial translation parameter. We also need to find two different orthogonality conditions, namely:

ξ,ψ1=ξ,ψ2=0.\displaystyle\langle\xi,\psi_{1}\rangle=\langle\xi,\psi_{2}\rangle=0. (1.14)

To find suitable ψ1\psi_{1} and ψ2,\psi_{2}, it is natural to consider the spectrum of the Hessian of the action Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}). The study of [7] indicates that kerSc′′(ϕc)={αxϕc,α}\ker S^{\prime\prime}_{c}(\phi_{c})=\{\alpha\partial_{x}\phi_{c},\alpha\in\mathbb{R}\} and Sc′′(ϕc)S^{\prime\prime}_{c}(\phi_{c}) has a unique negative eigenvalue. The properties of spectrum of Sc′′(ϕc)S^{\prime\prime}_{c}(\phi_{c}) helpfully identify the origin of ψ1\psi_{1} and ψ2,\psi_{2}, specifically:

ψ1kerSc′′(ϕc),Sc′′(ϕc)ψ2,ψ2<0.\displaystyle\psi_{1}\in\ker S^{\prime\prime}_{c}(\phi_{c}),\quad\langle S^{\prime\prime}_{c}(\phi_{c})\psi_{2},\psi_{2}\rangle<0. (1.15)

It is worth noting that ψ2\psi_{2} is not unique and it is not necessary to choose the negative eigenfunction. Indeed, the choice of ψ2\psi_{2} is crucial as its concrete expression has a significant impact on the construction of monotonicity, which will be addressed in Step 6 below.

Step2: Coercivity. Having determined the properties of ψ1\psi_{1} and ψ2\psi_{2} (i.e.,(1.15)), we shall prove the the coercivity of the Hessian Sλ′′(ϕλ)S_{\lambda}^{\prime\prime}(\phi_{\lambda}) as shown in Proposition A.3 for a general criterion by means of spectral decomposition argument, which can be expressed as follows:

Sλ′′(ϕλ)ξ,ξξH12.\displaystyle\langle S_{\lambda}^{\prime\prime}(\phi_{\lambda})\xi,\xi\rangle\gtrsim\|\xi\|^{2}_{H^{1}}.

In addition, in the degenerate case c=c0(p)c=c_{0}(p), we have

Sc′′(ϕc)cϕc,cϕc=0.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\partial_{c}\phi_{c},\partial_{c}\phi_{c}\rangle=0. (1.16)

This flatness equality (1.16), combined with the coercivity of Sλ′′(ϕλ)S_{\lambda}^{\prime\prime}(\phi_{\lambda}), implies an important estimate:

ξH1|λc|.\displaystyle\|\xi\|_{H^{1}}\ll|\lambda-c|. (1.17)

This means that the perturbation of the solution ξ,\xi, can be controlled by the scaling increment λc\lambda-c.

We emphasize that the Step 1 and Step 2 here are similar to the paper in [9], however, the following steps are of much problem-dependence and much more complicated for BBM mainly due to its poor Hamiltonian structure.

Step 3: Dynamic of the modulation parameters. Directly following the Implicit Function Theorem, the (translation) modulation parameter yy has a trivial bound given by

y˙λ=O(ξH1).\displaystyle\dot{y}-\lambda=O(\|\xi\|_{H^{1}}). (1.18)

In simpler terms, y˙λ\dot{y}-\lambda is actually the first-order of ξ.\xi. However, the rough estimate is not enough to support the later analysis. To obtain a more accurate estimate, we apply (1.13) to (1.4), which yields

ξ˙+λϕλλ˙xϕλ(y˙λ)=JSλ′′(ϕλ)ξ+“high-order term”.\displaystyle\dot{\xi}+\partial_{\lambda}\phi_{\lambda}\cdot\dot{\lambda}-\partial_{x}\phi_{\lambda}\cdot(\dot{y}-\lambda)=JS_{\lambda}^{\prime\prime}(\phi_{\lambda})\xi+\mbox{``high-order term''}. (1.19)

This gives us the key expression of the dynamic of y˙λ\dot{y}-\lambda:

y˙λ=c1(λ)ξ,Sλ′′(ϕλ)(Jfλ)+c1(λ)tξ,fλ+“high-order term”,\displaystyle\dot{y}-\lambda=c_{1}(\lambda)\left\langle\xi,S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}Jf_{\lambda}\big{)}\right\rangle+c_{1}(\lambda)\partial_{t}\big{\langle}\xi,f_{\lambda}\big{\rangle}+\mbox{``high-order term''}, (1.20)

for any fλf_{\lambda} satisfying

fλ,λϕλ=0,fλ,xϕλ0.\displaystyle\langle f_{\lambda},\partial_{\lambda}\phi_{\lambda}\rangle=0,\quad\langle f_{\lambda},\partial_{x}\phi_{\lambda}\rangle\neq 0. (1.21)

Obviously, the function fλf_{\lambda} satisfying condition (1.21) is not unique. The estimate (1.20) is therefore relatively flexible, depending on the choice of fλf_{\lambda}. Indeed, the latter almost determines the expression of the first-order of ξ\xi which appears in I(t)I^{\prime}(t) defined later. This constitutes the first key ingredient in our proof.

Step 4: Design of the virial identity. We are now in the position to consider the construction of virial identity I(t).I(t). Our goal is to show that it exhibits monotonic behavior, i.e., I(t)>0I^{\prime}(t)>0 or I(t)<0.I^{\prime}(t)<0. The virial identity typically arises from conservation laws such as (1.2)-(1.3) and the dynamic of the modulated function as in (1.19). The ideal form of I(t)I^{\prime}(t) is as follows:

I(t)=β(u0)+γ(λ)+“high-order term”,\displaystyle I^{\prime}(t)=\beta(u_{0})+\gamma(\lambda)+\mbox{``high-order term"}, (1.22)

where the high-order term is in fact ξH12\|\xi\|^{2}_{H^{1}} that has been estimated in Step 2. If β(u0)\beta(u_{0}) is a positive quantity, and γ(λ)\gamma(\lambda) is also a positive quantity satisfying γ(λ)(λc)2\gamma(\lambda)\gtrsim(\lambda-c)^{2} which requires that

γ(c)=γ(c)=0andγ′′(c)>0,\displaystyle\gamma(c)=\gamma^{\prime}(c)=0\quad\mbox{and}\quad\gamma^{\prime\prime}(c)>0, (1.23)

then the monotonicity of virial identity is guaranteed. This constitutes the second key ingredient in our proof.

Step 5: Construction of the monotonicity. Unlike the Lyapunov functional, the main monotonic functional here comes from the localized virial identity. Specifically, we first define

I(t)=χ(xy(t))(12u2+1p+2|u|p+2)dx.I(t)=\int_{\mathbb{R}}\chi(x-y(t))(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2})\,\mathrm{d}x.

where χ\chi is a suitable smooth cutoff function. By the expansion (1.13), we observe that I(t)I^{\prime}(t) has the following structure:

I(t)=β(u0)+γ(λ)+c2(λ)(y˙λ)+c3(λ)ξ,ϕλ+xxϕλ+c4(λ)ξ,Sλ′′(ϕλ)ϕλ+O(ξH12).I^{\prime}(t)=\beta(u_{0})+\gamma(\lambda)+c_{2}(\lambda)\cdot(\dot{y}-\lambda)+c_{3}(\lambda)\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle+c_{4}(\lambda)\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle+O\big{(}\|\xi\|^{2}_{H^{1}}\big{)}.

Since the precise estimate of y˙λ\dot{y}-\lambda is already known in Step 3, we obtain the structure of I(t)I^{\prime}(t) as follows:

I(t)\displaystyle I^{\prime}(t) =β(u0)+γ(λ)+ξ,Sλ′′(ϕλ)[c1(λ)c2(λ)Jfλ+c4(λ)ϕλ]\displaystyle=\beta(u_{0})+\gamma(\lambda)+\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{[}c_{1}(\lambda)c_{2}(\lambda)Jf_{\lambda}+c_{4}(\lambda)\phi_{\lambda}\big{]}\rangle
+c1(λ)c2(λ)tξ,fλ+c3(λ)ξ,ϕλ+xxϕλ+O(ξH12).\displaystyle\quad+c_{1}(\lambda)c_{2}(\lambda)\partial_{t}\big{\langle}\xi,f_{\lambda}\big{\rangle}+c_{3}(\lambda)\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle+O\big{(}\|\xi\|^{2}_{H^{1}}\big{)}.

Move the term c1(λ)c2(λ)tξ,fλc_{1}(\lambda)c_{2}(\lambda)\partial_{t}\big{\langle}\xi,f_{\lambda}\big{\rangle} to the left-hand side, and we further obtain that

ddt(I(t)c1(λ)c2(λ)ξ,fλ)\displaystyle\frac{d}{dt}\Big{(}I(t)-c_{1}(\lambda)c_{2}(\lambda)\big{\langle}\xi,f_{\lambda}\big{\rangle}\Big{)} =β(u0)+γ(λ)+ξ,Sλ′′(ϕλ)[c1(λ)c2(λ)Jfλ+c4(λ)ϕλ]\displaystyle=\beta(u_{0})+\gamma(\lambda)+\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{[}c_{1}(\lambda)c_{2}(\lambda)Jf_{\lambda}+c_{4}(\lambda)\phi_{\lambda}\big{]}\rangle
+c3(λ)ξ,ϕλ+xxϕλ+O(ξH12).\displaystyle\quad+c_{3}(\lambda)\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle+O\big{(}\|\xi\|^{2}_{H^{1}}\big{)}. (1.24)

This inspires us to make a bold assumption: After suitably choosing fλf_{\lambda}, if

ξ,Sλ′′(ϕλ)[c1(λ)c2(λ)Jfλ+c4(λ)ϕλ]+c3(λ)(ϕλ+xxϕλ)=0,\displaystyle\left\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{[}c_{1}(\lambda)c_{2}(\lambda)Jf_{\lambda}+c_{4}(\lambda)\phi_{\lambda}\big{]}+c_{3}(\lambda)\big{(}\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\big{)}\right\rangle=0, (1.25)

then I(t)I^{\prime}(t) will become the ideal form (1.22). In order to match the form in (1.15), we need the existence and the explicit expressions of the pre-images of ϕλ\phi_{\lambda} and xxϕλ\partial_{xx}\phi_{\lambda}. As a matter of fact, we need to find Ψ1\Psi_{1} and Ψ2,\Psi_{2}, such that

ϕλ=Sλ′′(ϕλ)Ψ1,xxϕλ=Sλ′′(ϕλ)Ψ2.\displaystyle\phi_{\lambda}=S_{\lambda}^{\prime\prime}(\phi_{\lambda})\Psi_{1},\quad\partial_{xx}\phi_{\lambda}=S_{\lambda}^{\prime\prime}(\phi_{\lambda})\Psi_{2}.

It is not an easy task, but we accomplished it. In fact, we observe that

ϕλ\displaystyle\phi_{\lambda} =Sλ′′(ϕλ)(12ω12pωψω),\displaystyle=S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}-\frac{1}{2}\omega^{1-\frac{2}{p}}\partial_{\omega}\psi_{\omega}\big{)},
xxϕλ\displaystyle\partial_{xx}\phi_{\lambda} =Sλ′′(ϕλ)(12xxϕλ),\displaystyle=S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}\frac{1}{2}x\partial_{x}\phi_{\lambda}\big{)},

where ω=λ12,\omega=\lambda^{-\frac{1}{2}}, ψω\psi_{\omega} satisfying (1.9). This constitutes the third key ingredient in our proof.

Step 6: Verification of the negative direction. Inspired by (1.25), we denote

Υλ=c1(λ)c2(λ)Jfλ+c3(λ)(12ω12pωψω+12xxϕλ)+c4(λ)ϕλ.\Upsilon_{\lambda}=c_{1}(\lambda)c_{2}(\lambda)Jf_{\lambda}+c_{3}(\lambda)\big{(}-\frac{1}{2}\omega^{1-\frac{2}{p}}\partial_{\omega}\psi_{\omega}+\frac{1}{2}x\partial_{x}\phi_{\lambda}\big{)}+c_{4}(\lambda)\phi_{\lambda}.

It is time to verify the negativity of Sλ′′(ϕλ)S^{\prime\prime}_{\lambda}(\phi_{\lambda}) on Υλ\Upsilon_{\lambda}. More precisely, the problem finally reduces to the following claim:

Claim 1.4.

There exists a function fλf_{\lambda} verifying (1.21), such that

Sλ′′(ϕλ)Υc,Υc<0.\displaystyle\langle S^{\prime\prime}_{\lambda}(\phi_{\lambda})\Upsilon_{c},\Upsilon_{c}\rangle<0. (1.26)

This claim is established by choosing fλ=(1x2)(x3ϕλ)f_{\lambda}=(1-\partial_{x}^{2})(x^{3}\phi_{\lambda}) as presented in the assumption (1.12). Due to the complexity of the expression Υλ\Upsilon_{\lambda}, we decide to check it by numerical experiments. Suppose the claim is true, then we choose ψ2=Sλ′′(ϕλ)Υλ\psi_{2}=S^{\prime\prime}_{\lambda}(\phi_{\lambda})\Upsilon_{\lambda} and thus obtain the form of I(t)I^{\prime}(t) in (1.22) as we expected. This constitutes the fourth key ingredient in our proof.

Step 7: Contradiction. Based on the works before, the structure of monotonicity becomes clear. Indeed,

I(t)=β(u0)+γ(λ)+O(ξH12).I^{\prime}(t)=\beta(u_{0})+\gamma(\lambda)+O(\|\xi\|^{2}_{H^{1}}).

Then using (1.17), we can infer that

I(t)β(u0)+12C(λc)2.I^{\prime}(t)\geq\beta(u_{0})+\frac{1}{2}C(\lambda-c)^{2}.

The positivity of β(u0)\beta(u_{0}) can be verified by suitably choosing initial data u0.u_{0}. Thus we establish the monotonicity of I(t).I(t). The contradiction between uniformly boundedness and monotonicity of I(t)I(t) proves the instability in the end.

1.2. Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we provide some preliminaries. In Section 3, we establish the coercivity of the Hessian Sλ′′(ϕλ)S_{\lambda}^{\prime\prime}(\phi_{\lambda}) and control the modulation parameters. In Section 4, we demonstrate the localized virial identities and define the monotonicity functional. In Section 5, we establish the monotonicity of the functional obtained in Section 4 and prove the main theorem. Finally, in Appendix A, we present a general coercivity property of the Hessian of the action Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) and the numerical result of the negative eigenfunction of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}).

2. Notations

2.1. Notations

For f,gL2(),f,g\in L^{2}(\mathbb{R}), we define

f,g=f(x)g(x)dx\langle f,g\rangle=\int_{\mathbb{R}}f(x)g(x)\,\mathrm{d}x

and regard L2()L^{2}(\mathbb{R}) as a real Hilbert Space. For a function f(x)f(x), its LqL^{q}-norm fq=(|f(x)|qdx)1q\|f\|_{q}=\left(\int_{\mathbb{R}}|f(x)|^{q}\,\mathrm{d}x\right)^{\frac{1}{q}} and its H1H^{1}-norm fH1=(fL22+xfL22)12.\|f\|_{H^{1}}=(\|f\|^{2}_{L^{2}}+\|\partial_{x}f\|^{2}_{L^{2}})^{\frac{1}{2}}.

Further, we write XYX\lesssim Y or YXY\lesssim X to indicate XCYX\leqslant CY for some constant C>0.C>0. We use the notation XYX\sim Y to denote XYX.X\lesssim Y\lesssim X. We also use O(Y)O(Y) to denote any quantity XX such that |X|Y|X|\lesssim Y and use o(Y)o(Y) to denote any quantity XX such that X/Y0X/Y\rightarrow 0 if Y0.Y\rightarrow 0. Throughout the whole paper, the letter CC will denote various positive constants which are of no importance in our analysis.

2.2. Some basic definitions and properties

In the rest of this paper, we consider the case of p>4,p>4, and c=c0(p).c=c_{0}(p). Recall the expression of conserved equality and the functional ScS_{c}, we have

E(u)\displaystyle E(u) =12u2dx+1p+2|u|p+2dx,\displaystyle=\frac{1}{2}\int_{\mathbb{R}}u^{2}\,\mathrm{d}x+\frac{1}{p+2}\int_{\mathbb{R}}|u|^{p+2}\,\mathrm{d}x,
Q(u)\displaystyle Q(u) =12(u2+ux2)dx;\displaystyle=\frac{1}{2}\int_{\mathbb{R}}\big{(}u^{2}+u_{x}^{2}\big{)}\,\mathrm{d}x;
Sc(u)\displaystyle S_{c}(u) =E(u)cQ(u).\displaystyle=E(u)-cQ(u). (2.1)

Taking derivative, then we have

E(u)\displaystyle E^{\prime}(u) =u+|u|pu,\displaystyle=u+|u|^{p}u, (2.2)
Q(u)\displaystyle Q^{\prime}(u) =uxxu,\displaystyle=u-\partial_{xx}u, (2.3)
Sc(u)\displaystyle S_{c}^{\prime}(u) =E(u)cQ(u)=cxxu+(1c)u+|u|pu.\displaystyle=E^{\prime}(u)-cQ^{\prime}(u)=c\partial_{xx}u+(1-c)u+|u|^{p}u.

Note that Sc(ϕc)=0.S_{c}^{\prime}(\phi_{c})=0. Moreover, for the real-valued function f,f, a direct computation shows

Sc′′(ϕc)f=cxxf+(1c)f+(p+1)ϕcpf.\displaystyle S_{c}^{\prime\prime}(\phi_{c})f=c\partial_{xx}f+(1-c)f+(p+1)\phi_{c}^{p}f. (2.4)

Taking the derivative of Sc(ϕc(x))=0S_{c}^{\prime}\big{(}\phi_{c}(\cdot-x)\big{)}=0 with respect to xx gives

Sc′′(ϕc)(xϕc)=0.\displaystyle S_{c}^{\prime\prime}(\phi_{c})(\partial_{x}\phi_{c})=0. (2.5)

For any function ξ,η,\xi,\eta, we have

Sc′′(ϕc)ξ,η=Sc′′(ϕc)η,ξ.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\eta\rangle=\langle S_{c}^{\prime\prime}(\phi_{c})\eta,\xi\rangle. (2.6)

Moreover, taking the derivative of Sc(ϕc)=0S_{c}^{\prime}(\phi_{c})=0 with respect to cc gives

Sc′′(ϕc)cϕc=Q(ϕc).\displaystyle S_{c}^{\prime\prime}(\phi_{c})\partial_{c}\phi_{c}=Q^{\prime}(\phi_{c}). (2.7)

Next, we give some basic properties on the momentum, energy and the functional ScS_{c}.

Lemma 2.1.

Let c=c0(p);c=c_{0}(p); then the following equality holds:

cQ(ϕc)|c=c0(p)=0.\displaystyle\partial_{c}Q\left(\phi_{c}\right)\Big{|}_{c=c_{0}(p)}=0.
Proof.

Note that

Q(u)=12u2+ux2dx.\displaystyle Q(u)=\frac{1}{2}\int_{\mathbb{R}}u^{2}+u_{x}^{2}\,\mathrm{d}x.

Taking inner product of (1.5) and ϕc,xxϕc\phi_{c},x\partial_{x}\phi_{c} respectively, by integration-by-parts, we can get

cxϕcL22+(c1)ϕcL22ϕcLp+2p+2=0,\displaystyle c\big{\|}\partial_{x}\phi_{c}\big{\|}^{2}_{L^{2}}+(c-1)\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}-\big{\|}\phi_{c}\big{\|}^{p+2}_{L^{p+2}}=0,
cxϕcL22(c1)ϕcL22+2p+2ϕcLp+2p+2=0.\displaystyle c\big{\|}\partial_{x}\phi_{c}\big{\|}^{2}_{L^{2}}-(c-1)\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+\frac{2}{p+2}\big{\|}\phi_{c}\big{\|}^{p+2}_{L^{p+2}}=0.

This gives that

ϕcLp+2p+2=2(p+2)(c1)p+4ϕcL22;xϕcL22=p(c1)(p+4)cϕcL22.\displaystyle\big{\|}\phi_{c}\big{\|}^{p+2}_{L^{p+2}}=\frac{2(p+2)(c-1)}{p+4}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}};\quad\big{\|}\partial_{x}\phi_{c}\big{\|}^{2}_{L^{2}}=\frac{p(c-1)}{(p+4)c}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}. (2.8)

This further yields that

Q(ϕc)=12[1+p(c1)(p+4)c]ϕcL22.Q(\phi_{c})=\frac{1}{2}\left[1+\frac{p(c-1)}{(p+4)c}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}.

By scaling, we find

ϕcL22\displaystyle\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}} =c12(c1)2p12ψ0L22,\displaystyle=c^{\frac{1}{2}}(c-1)^{\frac{2}{p}-\frac{1}{2}}\big{\|}\psi_{0}\big{\|}^{2}_{L^{2}}, (2.9)

where ψ0\psi_{0} is the solution of

xxψ0+ψ0ψ0p+1=0.\displaystyle-\partial_{xx}\psi_{0}+\psi_{0}-\psi_{0}^{p+1}=0.

Hence,

cϕcL22=4cp2pc(c1)ϕcL22.\displaystyle\partial_{c}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}=\frac{4c-p}{2pc(c-1)}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}. (2.10)

By a straightforward computation, we have

cQ(ϕc)=8(p+2)c28pcp24p(p+4)c2(c1)ϕcL22.\displaystyle\partial_{c}Q(\phi_{c})=\frac{8(p+2)c^{2}-8pc-p^{2}}{4p(p+4)c^{2}(c-1)}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}. (2.11)

Finally, we substitute c=c0(p)c=c_{0}(p) into the equality above, and thus we complete the proof. ∎

Then a consequence of Lemma 2.1 is

Corollary 2.2.

Let λ>1,c=c0(p)\lambda>1,c=c_{0}(p), then

Sλ(ϕλ)Sλ(ϕc)=o((λc)2).\displaystyle S_{\lambda}(\phi_{\lambda})-S_{\lambda}(\phi_{c})=o((\lambda-c)^{2}).
Proof.

From the definition of ScS_{c} in (2.1), we have

Sλ(ϕλ)Sλ(ϕc)=Sc(ϕλ)Sc(ϕc)(λc)[Q(ϕλ)Q(ϕc)].\displaystyle S_{\lambda}(\phi_{\lambda})-S_{\lambda}(\phi_{c})=S_{c}(\phi_{\lambda})-S_{c}(\phi_{c})-(\lambda-c)\big{[}Q(\phi_{\lambda})-Q(\phi_{c})\big{]}. (2.12)

Recall that Sc(ϕc)=0,S_{c}^{\prime}(\phi_{c})=0, then we use Taylor’s expansion to calculate

Sλ(ϕλ)Sλ(ϕc)=12Sc′′(ϕc)(ϕλϕc),(ϕλϕc)(λc)[Q(ϕλ)Q(ϕc)]+o((λc)2).\displaystyle S_{\lambda}(\phi_{\lambda})-S_{\lambda}(\phi_{c})=\frac{1}{2}\langle S_{c}^{\prime\prime}(\phi_{c})(\phi_{\lambda}-\phi_{c}),(\phi_{\lambda}-\phi_{c})\rangle-(\lambda-c)\big{[}Q(\phi_{\lambda})-Q(\phi_{c})\big{]}+o((\lambda-c)^{2}). (2.13)

Note that

ϕλϕc=(λc)cϕc+o(λc),\displaystyle\phi_{\lambda}-\phi_{c}=(\lambda-c)\partial_{c}\phi_{c}+o(\lambda-c),

then we find

Sc′′(ϕc)(ϕλϕc),(ϕλϕc)\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})(\phi_{\lambda}-\phi_{c}),(\phi_{\lambda}-\phi_{c})\rangle =(λc)2Sc′′(ϕc)cϕc,cϕc+o((λc)2)\displaystyle=(\lambda-c)^{2}\langle S_{c}^{\prime\prime}(\phi_{c})\partial_{c}\phi_{c},\partial_{c}\phi_{c}\rangle+o((\lambda-c)^{2})
=(λc)2Q(ϕc),cϕc+o((λc)2)\displaystyle=(\lambda-c)^{2}\langle Q^{\prime}(\phi_{c}),\partial_{c}\phi_{c}\rangle+o((\lambda-c)^{2})
=(λc)2cQ(ϕc)|c=c0(p)+o((λc)2),\displaystyle=(\lambda-c)^{2}\cdot\partial_{c}Q(\phi_{c})\big{|}_{c=c_{0}(p)}+o\big{(}(\lambda-c)^{2}\big{)},

where we used (2.7) in the second step. Using Lemma 2.1, we have

cQ(ϕc)|c=c0(p)=0.\displaystyle\partial_{c}Q(\phi_{c})|_{c=c_{0}(p)}=0.

Hence,

Q(ϕλ)Q(ϕc)=o(λc),\displaystyle Q(\phi_{\lambda})-Q(\phi_{c})=o(\lambda-c),

and

Sc′′(ϕc)(ϕλϕc),(ϕλϕc)=o((λc)2).\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})(\phi_{\lambda}-\phi_{c}),(\phi_{\lambda}-\phi_{c})\rangle=o\left((\lambda-c)^{2}\right).

Taking these two results into (2.13), we obtain the desired estimate. ∎

The next lemma gives pairs of pre-image and image of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}).

Lemma 2.3.

It holds that

Sc′′(ϕc)(xxϕc)\displaystyle S_{c}^{\prime\prime}(\phi_{c})(x\partial_{x}\phi_{c}) =2cxxϕc.\displaystyle=2c\partial_{xx}\phi_{c}. (2.14)

Moreover, let ψω\psi_{\omega} be defined in (1.8), and denote that

Ψc=12ω12pωψω.\Psi_{c}=-\frac{1}{2}\omega^{1-\frac{2}{p}}\partial_{\omega}\psi_{\omega}.

Then

Sc′′(ϕc)Ψc\displaystyle S_{c}^{\prime\prime}(\phi_{c})\Psi_{c} =ϕc.\displaystyle=\phi_{c}. (2.15)
Proof.

First, by the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.4), we have

Sc′′(ϕc)(xxϕc)\displaystyle S_{c}^{\prime\prime}(\phi_{c})(x\partial_{x}\phi_{c}) =cxx(xxϕc)+(1c)(xxϕc)+(p+1)ϕcp(xxϕc)\displaystyle=c\partial_{xx}(x\partial_{x}\phi_{c})+(1-c)(x\partial_{x}\phi_{c})+(p+1)\phi_{c}^{p}(x\partial_{x}\phi_{c})
=2cxxϕc+xx(cxxϕc+(1c)ϕc+ϕcp+1)\displaystyle=2c\partial_{xx}\phi_{c}+x\partial_{x}(c\partial_{xx}\phi_{c}+(1-c)\phi_{c}+\phi_{c}^{p+1})
=2cxxϕc.\displaystyle=2c\partial_{xx}\phi_{c}.

So we obtain (2.14).

Second, taking the derivative of (1.9) with respect to ω,\omega, we have

xx(ωψω)+(1ω2)ωψω(p+1)ψωpωψω=2ωψω.\displaystyle-\partial_{xx}(\partial_{\omega}\psi_{\omega})+(1-\omega^{2})\partial_{\omega}\psi_{\omega}-(p+1)\psi_{\omega}^{p}\partial_{\omega}\psi_{\omega}=2\omega\psi_{\omega}. (2.16)

Moreover, denoting that

Lωf=xxf+(1ω2)f(p+1)ψωpf,\displaystyle L_{\omega}f=-\partial_{xx}f+(1-\omega^{2})f-(p+1)\psi_{\omega}^{p}f, (2.17)

then we have that

Sc′′(ϕc)f=cLωf.\displaystyle S_{c}^{\prime\prime}(\phi_{c})f=-cL_{\omega}f. (2.18)

Using the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.18), we have

Sc′′(ϕc)Ψc\displaystyle S_{c}^{\prime\prime}(\phi_{c})\Psi_{c} =cLωΨc\displaystyle=-cL_{\omega}\Psi_{c}
=12ω12p[xx(ωψω)+(1ω2)ωψω(p+1)ψωpωψω].\displaystyle=\frac{1}{2}\omega^{-1-\frac{2}{p}}\big{[}-\partial_{xx}(\partial_{\omega}\psi_{\omega})+(1-\omega^{2})\partial_{\omega}\psi_{\omega}-(p+1)\psi_{\omega}^{p}\partial_{\omega}\psi_{\omega}\big{]}.

This combined with (2.16) and (1.8) gives

Sc′′(ϕc)Ψc=ω2pψω=ϕc.\displaystyle S_{c}^{\prime\prime}(\phi_{c})\Psi_{c}=\omega^{-\frac{2}{p}}\psi_{\omega}=\phi_{c}.

Thus we obtain the desired results. ∎

3. Modulation and dynamic of the parameter

Under the assumption (1.12), in order to obtain a contradiction, we assume that the solitary waves solution is stable, that is: for any ε>0\varepsilon>0, there exists δ>0\delta>0 such that when

u0ϕcH1()<δ,\displaystyle\big{\|}u_{0}-\phi_{c}\big{\|}_{H^{1}(\mathbb{R})}<\delta,

we have

uUε(ϕc).\displaystyle u\in U_{\varepsilon}(\phi_{c}). (3.1)
Proposition 3.1.

Let c=c0(p).c=c_{0}(p). Suppose that u(t)Uε(ϕc)u(t)\in U_{\varepsilon}(\phi_{c}) for any tt\in\mathbb{R}. Then there exist C1C^{1} functions

y:,λ:+\displaystyle y:\mathbb{R}\rightarrow\mathbb{R},\quad\lambda:\mathbb{R}\rightarrow\mathbb{R}^{+}

such that for

ξ(t)=u(t,+y(t))ϕλ(t),\displaystyle\xi(t)=u(t,\cdot+y(t))-\phi_{\lambda(t)}, (3.2)

the following orthogonality conditions hold:

ξ,xϕλ(t)=ξ,κλ(t)=0,\displaystyle\langle\xi,\partial_{x}\phi_{\lambda(t)}\rangle=\langle\xi,\kappa_{\lambda(t)}\rangle=0, (3.3)

where

κλ=Sλ′′(ϕλ)Γλ,\displaystyle\kappa_{\lambda}=S_{\lambda}^{\prime\prime}(\phi_{\lambda})\Gamma_{\lambda}, (3.4)

and ξ\xi lies in the positive direction of Sλ′′(ϕλ),S_{\lambda}^{\prime\prime}(\phi_{\lambda}), that is,

Sλ′′(ϕλ)ξ,ξξH12.\displaystyle\langle S_{\lambda}^{\prime\prime}(\phi_{\lambda})\xi,\xi\rangle\gtrsim\|\xi\|^{2}_{H^{1}}. (3.5)

Furthermore, the following estimate holds:

ξH1()+|λc|ε.\displaystyle\|\xi\|_{H^{1}(\mathbb{R})}+|\lambda-c|\lesssim\varepsilon. (3.6)
Proof.

From Proposition A.5, we first verify κc\kappa_{c} satisfying (A.27). By (2.7) and Lemma 2.1, we have

Sc′′(ϕc)cϕc,cϕc=ddcQ(ϕc)|c=c0(p)=0.\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\partial_{c}\phi_{c},\partial_{c}\phi_{c}\rangle=\frac{d}{dc}Q(\phi_{c})\Big{|}_{c=c_{0}(p)}=0.

Then by Corollary A.4, we obtain

cϕc,κc0.\displaystyle\langle\partial_{c}\phi_{c},\kappa_{c}\rangle\neq 0.

Therefore, there exists ε0>0\varepsilon_{0}>0 such that for ε(0,ε0),uUε(ϕc),\varepsilon\in(0,\varepsilon_{0}),u\in U_{\varepsilon}(\phi_{c}), there exists unique C1C^{1}-functions

y:Uε(ϕc),λ:Uε(ϕc)+,\displaystyle y:U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R},\quad\lambda:U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R}^{+},

such that

ξ,xϕλ=ξ,κλ=0.\displaystyle\langle\xi,\partial_{x}\phi_{\lambda}\rangle=\langle\xi,\kappa_{\lambda}\rangle=0.

By (1.12), we have that Γλ\Gamma_{\lambda} satisfying (A.5). From Proposition A.3, we obtain (3.5). Furthermore,

(uλvλuyvy)=J1(uF1vF1uF2vF2).\displaystyle\left(\begin{array}[]{cccc}\partial_{u}\lambda&\partial_{v}\lambda\\ \partial_{u}y&\partial_{v}y\end{array}\right)=J^{-1}\left(\begin{array}[]{cccc}\partial_{u}F_{1}&\partial_{v}F_{1}\\ \partial_{u}F_{2}&\partial_{v}F_{2}\end{array}\right).

This implies that

|λc|uϕcH1()<ε.\displaystyle|\lambda-c|\lesssim\big{\|}u-\phi_{c}\big{\|}_{H^{1}(\mathbb{R})}<\varepsilon.

This finishes the proof of the proposition. ∎

Some consequences of Proposition 3.1 are the follows. The first one is the rough estimate on y˙\dot{y} and λ˙.\dot{\lambda}.

Corollary 3.2.

Let uu be the solution of (1.1) with uUε(ϕc),u\in U_{\varepsilon}(\phi_{c}), where ε\varepsilon is obtained in Proposition 3.1. Let y,λ,ξy,\lambda,\xi be the parameters and function obtained in Proposition 3.1, then

y˙λ=O(ξH1())\displaystyle\dot{y}-\lambda=O\left(\|\xi\|_{H^{1}(\mathbb{R})}\right)

and

λ˙=O(ξH1()).\displaystyle\dot{\lambda}=O\left(\|\xi\|_{H^{1}(\mathbb{R})}\right).
Proof.

Recall the definition ξ(t)=u(t,+y(t))ϕλ(t)\xi(t)=u(t,\cdot+y(t))-\phi_{\lambda(t)} in (3.2), that is

u(t,x)=ϕλ(xy(t))+ξ(t,xy(t)).\displaystyle u(t,x)=\phi_{\lambda}(x-y(t))+\xi(t,x-y(t)). (3.7)

Taking the derivative of (3.7) with respect to t,t, we have

ut=ξ˙+λ˙λϕλy˙x(ϕλ+ξ).\displaystyle u_{t}=\dot{\xi}+\dot{\lambda}\partial_{\lambda}\phi_{\lambda}-\dot{y}\partial_{x}(\phi_{\lambda}+\xi). (3.8)

Inserting (3.8) into equation (1.4), we get

ξ˙+λ˙λϕλy˙x(ϕλ+ξ)=JE(ϕλ+ξ),\displaystyle\dot{\xi}+\dot{\lambda}\partial_{\lambda}\phi_{\lambda}-\dot{y}\partial_{x}(\phi_{\lambda}+\xi)=JE^{\prime}(\phi_{\lambda}+\xi), (3.9)

where we note that J=(1x2)1x.J=-(1-\partial_{x}^{2})^{-1}\partial_{x}. Adding λx(ϕλ+ξ)\lambda\partial_{x}(\phi_{\lambda}+\xi) to both sides of (3.9), we have

ξ˙+λ˙λϕλ(y˙λ)x(ϕλ+ξ)\displaystyle\dot{\xi}+\dot{\lambda}\partial_{\lambda}\phi_{\lambda}-(\dot{y}-\lambda)\partial_{x}(\phi_{\lambda}+\xi) =JE(ϕλ+ξ)+λx(ϕλ+ξ)\displaystyle=JE^{\prime}(\phi_{\lambda}+\xi)+\lambda\partial_{x}(\phi_{\lambda}+\xi)
=J[E(ϕλ+ξ)λ(1x2)(ϕλ+ξ)].\displaystyle=J\left[E^{\prime}(\phi_{\lambda}+\xi)-\lambda(1-\partial_{x}^{2})(\phi_{\lambda}+\xi)\right].

We note that (1x2)(ϕλ+ξ)=Q(ϕλ+ξ),(1-\partial_{x}^{2})(\phi_{\lambda}+\xi)=Q^{\prime}(\phi_{\lambda}+\xi), then the above equality can be rewritten as follows:

ξ˙+λ˙λϕλ(y˙λ)x(ϕλ+ξ)\displaystyle\dot{\xi}+\dot{\lambda}\partial_{\lambda}\phi_{\lambda}-(\dot{y}-\lambda)\partial_{x}(\phi_{\lambda}+\xi) =J[E(ϕλ+ξ)λQ(ϕλ+ξ)]\displaystyle=J\left[E^{\prime}(\phi_{\lambda}+\xi)-\lambda Q^{\prime}(\phi_{\lambda}+\xi)\right]
=JSλ(ϕλ+ξ).\displaystyle=JS^{\prime}_{\lambda}(\phi_{\lambda}+\xi). (3.10)

Using Taylor’s type expansion, we have

Sλ(ϕλ+ξ)\displaystyle S^{\prime}_{\lambda}(\phi_{\lambda}+\xi) =Sλ(ϕλ)+Sλ′′(ϕλ)ξ+O(ξ2)\displaystyle=S^{\prime}_{\lambda}(\phi_{\lambda})+S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi+O\big{(}\xi^{2}\big{)}
=Sλ′′(ϕλ)ξ+O(ξ2),\displaystyle=S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi+O\big{(}\xi^{2}\big{)}, (3.11)

where we used Sλ(ϕλ)=0.S^{\prime}_{\lambda}(\phi_{\lambda})=0. Inserting (3) into (3), we have

ξ˙+λ˙λϕλ(y˙λ)x(ϕλ+ξ)=JSλ′′(ϕλ)ξ+𝒩1(ξ),\displaystyle\dot{\xi}+\dot{\lambda}\partial_{\lambda}\phi_{\lambda}-(\dot{y}-\lambda)\partial_{x}(\phi_{\lambda}+\xi)=JS^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi+\mathcal{N}_{1}(\xi), (3.12)

where 𝒩1(ξ)\mathcal{N}_{1}(\xi) verifies

𝒩1(ξ),f=O(ξH12fH1),for any fH1.\displaystyle\langle\mathcal{N}_{1}(\xi),f\rangle=O\left(\|\xi\|^{2}_{H^{1}}\|f\|_{H^{1}}\right),\quad\mbox{for any }f\in H^{1}.

Taking inner product by (3.12) and xϕλ,κλ\partial_{x}\phi_{\lambda},\kappa_{\lambda} respectively, by integration-by-parts, we have

ξ˙,xϕλ+λ˙λϕλ,xϕλ(y˙λ)x(ϕλ+ξ),xϕλ\displaystyle\langle\dot{\xi},\partial_{x}\phi_{\lambda}\rangle+\dot{\lambda}\langle\partial_{\lambda}\phi_{\lambda},\partial_{x}\phi_{\lambda}\rangle-(\dot{y}-\lambda)\langle\partial_{x}\left(\phi_{\lambda}+\xi\right),\partial_{x}\phi_{\lambda}\rangle =JSλ′′(ϕλ)ξ,xϕλ+O(ξH12),\displaystyle=\langle JS_{\lambda}^{\prime\prime}(\phi_{\lambda})\xi,\partial_{x}\phi_{\lambda}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right), (3.13)
ξ˙,κλ+λ˙λϕλ,κλ(y˙λ)x(ϕλ+ξ),κλ\displaystyle\langle\dot{\xi},\kappa_{\lambda}\rangle+\dot{\lambda}\langle\partial_{\lambda}\phi_{\lambda},\kappa_{\lambda}\rangle-(\dot{y}-\lambda)\langle\partial_{x}\left(\phi_{\lambda}+\xi\right),\kappa_{\lambda}\rangle =JSλ′′(ϕλ)ξ,κλ+O(ξH12).\displaystyle=\langle JS_{\lambda}^{\prime\prime}(\phi_{\lambda})\xi,\kappa_{\lambda}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right). (3.14)

By the even property of ϕλ,\phi_{\lambda}, it is known that Γc=B(c)(c2Ψc+c2xxϕc+cϕc)+D(c)(3x2ϕc+x3xϕc)\Gamma_{c}=B(c)\left(c^{2}\Psi_{c}+\frac{c}{2}x\partial_{x}\phi_{c}+c\phi_{c}\right)+D(c)(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c}) is an even function. Moreover, we note that κλ\kappa_{\lambda} is also an even function since Sλ′′(ϕλ)ΓλS_{\lambda}^{\prime\prime}(\phi_{\lambda})\Gamma_{\lambda} has the same parity as Γλ\Gamma_{\lambda}. Using orthogonality conditions in (3.3), we simplify (3.13) and (3.14) as

λ˙ξ,λxϕλ(y˙λ)(xϕλL22ξ,xxϕλ)\displaystyle-\dot{\lambda}\langle\xi,\partial_{\lambda}\partial_{x}\phi_{\lambda}\rangle-(\dot{y}-\lambda)\Big{(}\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-\langle\xi,\partial_{xx}\phi_{\lambda}\rangle\Big{)} =ξ,Sλ′′(ϕλ)(Jxϕλ)+O(ξH12),\displaystyle=-\langle\xi,S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}J\partial_{x}\phi_{\lambda}\big{)}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right), (3.15)
λ˙[ξ,λκλ+λϕλ,κλ]+(y˙λ)ξ,xκλ\displaystyle\dot{\lambda}\left[-\langle\xi,\partial_{\lambda}\kappa_{\lambda}\rangle+\langle\partial_{\lambda}\phi_{\lambda},\kappa_{\lambda}\rangle\right]+(\dot{y}-\lambda)\langle\xi,\partial_{x}\kappa_{\lambda}\rangle =ξ,Sλ′′(ϕλ)(Jκλ)+O(ξH12),\displaystyle=-\langle\xi,S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}J\kappa_{\lambda}\big{)}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right), (3.16)

where λϕλ,κλ\langle\partial_{\lambda}\phi_{\lambda},\kappa_{\lambda}\rangle is a constant denoted by C(λ)C(\lambda) which only depends on λ.\lambda. We denote

A=(ξ,λxϕλxϕλL22+ξ,xxϕλξ,λκλ+C(λ)ξ,xκλ).\displaystyle A=\begin{pmatrix}&-\langle\xi,\partial_{\lambda}\partial_{x}\phi_{\lambda}\rangle&-\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\langle\xi,\partial_{xx}\phi_{\lambda}\rangle\\ &-\langle\xi,\partial_{\lambda}\kappa_{\lambda}\rangle+C(\lambda)&\langle\xi,\partial_{x}\kappa_{\lambda}\rangle\end{pmatrix}.

Combining (3.15) and (3.16), by a direct computation, we have

(λ˙y˙λ)\displaystyle\begin{pmatrix}\dot{\lambda}\\ \dot{y}-\lambda\end{pmatrix} =A1(ξ,Sλ′′(ϕλ)(Jxϕλ)ξ,Sλ′′(ϕλ)(Jκλ))+(O(ξH12)O(ξH12))\displaystyle=A^{-1}\begin{pmatrix}&-\langle\xi,S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}J\partial_{x}\phi_{\lambda}\big{)}\rangle\\ &-\langle\xi,S_{\lambda}^{\prime\prime}(\phi_{\lambda})\big{(}J\kappa_{\lambda}\big{)}\rangle\end{pmatrix}+\begin{pmatrix}O\left(\|\xi\|^{2}_{H^{1}}\right)\\ O\left(\|\xi\|^{2}_{H^{1}}\right)\end{pmatrix}
=(O(ξH1)O(ξH1)).\displaystyle=\begin{pmatrix}O\left(\|\xi\|_{H^{1}}\right)\\ O\left(\|\xi\|_{H^{1}}\right)\end{pmatrix}. (3.17)

Thus we obtain the desired results. ∎

The second is a precise estimate on the spatial transform parameter y(t)y(t).

Corollary 3.3.

Under the same assumption as in Corollary 3.2; let fλ=x3ϕλ,f_{\lambda}=x^{3}\phi_{\lambda}, then

y˙λ\displaystyle\dot{y}-\lambda =1B(λ)ξ,Sλ′′(ϕλ)xfλ1B(λ)tξ,(1x2)fλ+O(ξH12),\displaystyle=\frac{1}{B(\lambda)}\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\partial_{x}f_{\lambda}\rangle-\frac{1}{B(\lambda)}\partial_{t}\langle\xi,(1-\partial_{x}^{2})f_{\lambda}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right), (3.18)

where

B(λ)=32xϕλL22+92xxϕλL223ϕλL22.\displaystyle B(\lambda)=\frac{3}{2}\big{\|}x\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\frac{9}{2}\big{\|}x\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-3\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.
Proof.

Taking inner product by (3.12) and (1x2)fλ,(1-\partial_{x}^{2})f_{\lambda}, by integration-by-parts, we have

(1x2)ξ˙,fλ+λ˙(1x2)λϕλ,fλ(y˙λ)\displaystyle\langle(1-\partial_{x}^{2})\dot{\xi},f_{\lambda}\rangle+\dot{\lambda}\langle(1-\partial_{x}^{2})\partial_{\lambda}\phi_{\lambda},f_{\lambda}\rangle-(\dot{y}-\lambda) (1x2)xϕλ,fλ\displaystyle\langle(1-\partial_{x}^{2})\partial_{x}\phi_{\lambda},f_{\lambda}\rangle
=x(Sλ′′(ϕλ)ξ),fλ+O(ξH12).\displaystyle=-\langle\partial_{x}\left(S_{\lambda}^{\prime\prime}(\phi_{\lambda})\xi\right),f_{\lambda}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right). (3.19)

It’s worth noting that fλ=x3ϕλL2()f_{\lambda}=x^{3}\phi_{\lambda}\in L^{2}(\mathbb{R}) since ϕλ\phi_{\lambda} is exponential decaying. Now we consider terms in (3) one by one. First, from the rough estimate λ˙=O(ξH1)\dot{\lambda}=O\left(\|\xi\|_{H^{1}}\right) in Corollary 3.2, we have

(1x2)ξ˙,fλ\displaystyle\langle(1-\partial_{x}^{2})\dot{\xi},f_{\lambda}\rangle =tξ,(1x2)(x3ϕλ)λ˙ξ,(1x2)(x3λϕλ)\displaystyle=\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle-\dot{\lambda}\langle\xi,(1-\partial_{x}^{2})\left(x^{3}\partial_{\lambda}\phi_{\lambda}\right)\rangle
=tξ,(1x2)(x3ϕλ)+O(ξH12).\displaystyle=\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right). (3.20)

The term λ˙(1x2)λϕλ,x3ϕλ\dot{\lambda}\langle(1-\partial_{x}^{2})\partial_{\lambda}\phi_{\lambda},x^{3}\phi_{\lambda}\rangle vanishes since ϕλ\phi_{\lambda} is an even function. Then, direct calculation gives that

(y˙λ)(1x2)xϕλ,x3ϕλ\displaystyle-(\dot{y}-\lambda)\langle(1-\partial_{x}^{2})\partial_{x}\phi_{\lambda},x^{3}\phi_{\lambda}\rangle =(y˙λ)(1x2)ϕλ,3x2ϕλ+x3xϕλ\displaystyle=(\dot{y}-\lambda)\langle(1-\partial_{x}^{2})\phi_{\lambda},3x^{2}\phi_{\lambda}+x^{3}\partial_{x}\phi_{\lambda}\rangle
=(y˙λ)[32xϕλL22+92xxϕλL223ϕλL22].\displaystyle=(\dot{y}-\lambda)\left[\frac{3}{2}\big{\|}x\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\frac{9}{2}\big{\|}x\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-3\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right]. (3.21)

Using the property of Sλ′′(ϕλ)S_{\lambda}^{\prime\prime}(\phi_{\lambda}) in (2.6), we have

x(Sλ′′(ϕλ)ξ),fλ\displaystyle-\langle\partial_{x}\left(S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\right),f_{\lambda}\rangle =Sλ′′(ϕλ)ξ,xfλ\displaystyle=\langle S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi,\partial_{x}f_{\lambda}\rangle
=ξ,Sλ′′(ϕλ)(3x2ϕλ+x3xϕλ).\displaystyle=\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\left(3x^{2}\phi_{\lambda}+x^{3}\partial_{x}\phi_{\lambda}\right)\rangle. (3.22)

Combining (3)–(3), and thus we complete the proof. ∎

4. The localized virial identity

The following lemma is the localized virial identity. Let y,λ,ξy,\lambda,\xi be the parameters and function obtained in Corollary 3.2, fλ,B(λ)f_{\lambda},B(\lambda) are the same as Corollary 3.3. Denote

H(u)=(1x2)1(u+|u|pu).\displaystyle H(u)=-(1-\partial_{x}^{2})^{-1}(u+|u|^{p}u). (4.1)

From the equation (1.4), we obtain that xH(u)=ut.\partial_{x}H(u)=u_{t}. Inserting the expression of uu in (3.7) into (4.1), we have

H(u)=(1x2)1(ϕλ+ξ+|ϕλ+ξ|p(ϕλ+ξ)).\displaystyle H(u)=-(1-\partial_{x}^{2})^{-1}\big{(}\phi_{\lambda}+\xi+|\phi_{\lambda}+\xi|^{p}(\phi_{\lambda}+\xi)\big{)}.

Noting that ϕλ\phi_{\lambda} satisfies

λxxϕλ+(λ1)ϕλϕλp+1=0,\displaystyle-\lambda\partial_{xx}\phi_{\lambda}+(\lambda-1)\phi_{\lambda}-\phi_{\lambda}^{p+1}=0, (4.2)

and

Sλ′′(ϕλ)f=λxxf+(1λ)f+(p+1)ϕλpf.\displaystyle S^{\prime\prime}_{\lambda}(\phi_{\lambda})f=\lambda\partial_{xx}f+(1-\lambda)f+(p+1)\phi_{\lambda}^{p}f. (4.3)

From (4.2) and (4.3), we obtain that

H(u)=λ(ϕλ+ξ)(1x2)1(Sλ′′(ϕλ)ξ)+(1x2)1𝒩2(ξ),\displaystyle H(u)=-\lambda(\phi_{\lambda}+\xi)-(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}+(1-\partial_{x}^{2})^{-1}\mathcal{N}_{2}(\xi), (4.4)

where 𝒩2(ξ)\mathcal{N}_{2}(\xi) has the same property as 𝒩1(ξ)\mathcal{N}_{1}(\xi) in (3.12) which verifies that

𝒩2(ξ),f=O(ξH12fH1),for any fH1().\displaystyle\langle\mathcal{N}_{2}(\xi),f\rangle=O\left(\|\xi\|^{2}_{H^{1}}\|f\|_{H^{1}}\right),\quad\mbox{for any }f\in H^{1}(\mathbb{R}).

We also denote that

I1(t)=φ(xy(t))(12u2+1p+2|u|p+2)dx,\displaystyle I_{1}(t)=\int_{\mathbb{R}}\varphi(x-y(t))(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2})\,\mathrm{d}x,
I2(t)=D(λ)B(λ)ξ,(1x2)(x3ϕλ),\displaystyle I_{2}(t)=\frac{D(\lambda)}{B(\lambda)}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle,

where

D(λ)\displaystyle D(\lambda) =4pλ+4λ3p2(p+4)ϕλL22,\displaystyle=-\frac{4p\lambda+4\lambda-3p}{2(p+4)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}},
B(λ)\displaystyle B(\lambda) =32xϕλL22+92xxϕλL223ϕλL22.\displaystyle=\frac{3}{2}\big{\|}x\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\frac{9}{2}\big{\|}x\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-3\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.
Lemma 4.1.

Let φC3(),uH1()\varphi\in C^{3}(\mathbb{R}),u\in H^{1}(\mathbb{R}) be the solution of (1.1), then

I1(t)\displaystyle I_{1}^{\prime}(t) =y˙φ(xy(t))(12u2+1p+2|u|p+2)dx+12φ(xy(t))[(H(u))2ut2]dx,\displaystyle=-\dot{y}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right)\,\mathrm{d}x+\frac{1}{2}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left[\big{(}H(u)\big{)}^{2}-u_{t}^{2}\right]\,\mathrm{d}x,
I2(t)\displaystyle I_{2}^{\prime}(t) =D(λ)B(λ)tξ,(1x2)(x3ϕλ)+O(ξH12).\displaystyle=\frac{D(\lambda)}{B(\lambda)}\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)}.
Proof.

First, a direct computation gives that

I1(t)=y˙φ(xy(t))(12u2+1p+2|u|p+2)dx+φ(xy(t))t(12u2+1p+2|u|p+2)dx.\displaystyle I_{1}^{\prime}(t)=-\dot{y}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right)\,\mathrm{d}x+\int_{\mathbb{R}}\varphi(x-y(t))\partial_{t}\left(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right)\,\mathrm{d}x.

Multiplying (1.4) by u+|u|puu+|u|^{p}u gives:

t(12u2+1p+2|u|p+2)=(1x2)1x(u+|u|pu)(u+|u|pu).\displaystyle\partial_{t}\big{(}\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\big{)}=-(1-\partial_{x}^{2})^{-1}\partial_{x}\big{(}u+|u|^{p}u\big{)}\cdot\big{(}u+|u|^{p}u\big{)}.

Further, noting that

u+|u|pu=(1x2)H(u)=H(u)+txu,u+|u|^{p}u=-(1-\partial_{x}^{2})H(u)=-H(u)+\partial_{t}\partial_{x}u,

we get that

t(12u2+1p+2|u|p+2)\displaystyle\partial_{t}\big{(}\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\big{)} =xH(u)(H(u)+txu)\displaystyle=\partial_{x}H(u)\cdot\big{(}-H(u)+\partial_{t}\partial_{x}u\big{)}
=12x[(H(u))2ut2],\displaystyle=-\frac{1}{2}\partial_{x}\big{[}\big{(}H(u)\big{)}^{2}-u_{t}^{2}\big{]},

where we used xH(u)=ut\partial_{x}H(u)=u_{t} in the last step. Then by integration-by-parts, we obtain that

I1(t)=\displaystyle I_{1}^{\prime}(t)= y˙φ(xy(t))(12u2+1p+2|u|p+2)dx+12φ(xy(t))[(H(u))2ut2]dx.\displaystyle-\dot{y}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right)\,\mathrm{d}x+\frac{1}{2}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left[\big{(}H(u)\big{)}^{2}-u_{t}^{2}\right]\,\mathrm{d}x.

Second, a direct computation shows that

I2(t)=\displaystyle I_{2}^{\prime}(t)= λ˙λ[D(λ)B(λ)]ξ,(1x2)(x3ϕλ)+D(λ)B(λ)tξ,(1x2)(x3ϕλ)+O(ξH12)\displaystyle\dot{\lambda}\partial_{\lambda}\Big{[}\frac{D(\lambda)}{B(\lambda)}\Big{]}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+\frac{D(\lambda)}{B(\lambda)}\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)}
=\displaystyle= D(λ)B(λ)tξ,(1x2)(x3ϕλ)+O(ξH12),\displaystyle\frac{D(\lambda)}{B(\lambda)}\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)},

here we used the estimate of λ˙=O(ξH1)\dot{\lambda}=O\big{(}\|\xi\|_{H^{1}}\big{)} in Corollary 3.2 in the last step. This completes the proof. ∎

5. The monotonic functional

This section is devoted to prove our main theorem.

5.1. Virial identities

Let φ(x)\varphi(x) be a smooth cutoff function, where

φ(x)={x,|x|R,0,|x|2R,\displaystyle\varphi(x)=\left\{\begin{aligned} &x,\qquad|x|\leqslant R,\\ &0,\qquad|x|\geqslant 2R,\end{aligned}\right. (5.1)

0φ10\leqslant\varphi^{\prime}\leqslant 1 for any x,x\in\mathbb{R}, and RR is a large constant decided later. Moreover, we denote

I(t)=I1(t)+I2(t).\displaystyle I(t)=I_{1}(t)+I_{2}(t).

Then we have the following lemma.

Lemma 5.1.

Let R>0,y,λ,ξR>0,y,\lambda,\xi be the parameters and function obtained in Corollary 3.2. Then

I1(t)=\displaystyle I_{1}^{\prime}(t)= λE(u0)+12λ2(ϕλL22xϕλL22)\displaystyle-\lambda E(u_{0})+\frac{1}{2}\lambda^{2}\left(\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right) (5.2a)
+λ2ξ,ϕλ+xxϕλ+λξ,Sλ′′(ϕλ)ϕλ(y˙λ)[E(u0)+2λxϕλL22]\displaystyle+\lambda^{2}\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle+\lambda\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle-(\dot{y}-\lambda)\Big{[}E(u_{0})+2\lambda\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\Big{]} (5.2b)
+O(1R+ξH12).\displaystyle+O\left(\frac{1}{R}+\|\xi\|^{2}_{H^{1}}\right).
Proof.

From (4.1) and the conversation law of energy, we change the form of I1(t)I_{1}^{\prime}(t) as

I1(t)=\displaystyle I_{1}^{\prime}(t)= y˙φ(xy(t))(12u2+1p+2|u|p+2)dx+12φ(xy(t))[(H(u))2ut2]dx\displaystyle-\dot{y}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right)\,\mathrm{d}x+\frac{1}{2}\int_{\mathbb{R}}\varphi^{\prime}(x-y(t))\left[\big{(}H(u)\big{)}^{2}-u_{t}^{2}\right]\,\mathrm{d}x
=\displaystyle= y˙E(u0)+12[(H(u))2ut2]dx+R(u),\displaystyle-\dot{y}E(u_{0})+\frac{1}{2}\int_{\mathbb{R}}\left[\big{(}H(u)\big{)}^{2}-u_{t}^{2}\right]\,\mathrm{d}x+R(u),

where

R(u)\displaystyle R(u) =[1φ(xy(t))][y˙(12u2+1p+2|u|p+2)12(H(u))2+12ut2]dx.\displaystyle=\int_{\mathbb{R}}\left[1-\varphi^{\prime}(x-y(t))\right]\left[\dot{y}\left(\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right)-\frac{1}{2}\left(H(u)\right)^{2}+\frac{1}{2}u_{t}^{2}\right]\,\mathrm{d}x. (5.3)

Then we need to consider the terms 12[(H(u))2ut2]dx\frac{1}{2}\int_{\mathbb{R}}\left[\big{(}H(u)\big{)}^{2}-u_{t}^{2}\right]\,\mathrm{d}x and R(u).R(u).

\bullet Estimate on 12[(H(u))2ut2]dx.\frac{1}{2}\int_{\mathbb{R}}\left[(H(u))^{2}-u_{t}^{2}\right]\,\mathrm{d}x.

Now we consider terms (H(u))2dx\int_{\mathbb{R}}(H(u))^{2}\,\mathrm{d}x and ut2dx\int_{\mathbb{R}}u_{t}^{2}\,\mathrm{d}x respectively. We recall the expression of H(u)H(u) in (4.4), we have

(H(u))2dx\displaystyle\int_{\mathbb{R}}(H(u))^{2}\,\mathrm{d}x =[λ(ϕλ+ξ)(1x2)1(Sλ′′(ϕλ)ξ)+(1x2)1𝒩2(ξ)]2dx\displaystyle=\int_{\mathbb{R}}\left[-\lambda(\phi_{\lambda}+\xi)-(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}+(1-\partial_{x}^{2})^{-1}\mathcal{N}_{2}(\xi)\right]^{2}\,\mathrm{d}x
=λ2ϕλ+ξL22+2λϕλ,(1x2)1(Sλ′′(ϕλ)ξ)\displaystyle=\lambda^{2}\big{\|}\phi_{\lambda}+\xi\big{\|}^{2}_{L^{2}}+2\lambda\left\langle\phi_{\lambda},(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\right\rangle
+2λξ,(1x2)1(Sλ′′(ϕλ)ξ)+(1x2)1(Sλ′′(ϕλ)ξ)L22+O(ξH12).\displaystyle\quad+2\lambda\left\langle\xi,(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\right\rangle+\big{\|}(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\big{\|}^{2}_{L^{2}}+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)}.

Now we estimate the terms above one by one.

(i) The term ϕλ+ξL22\big{\|}\phi_{\lambda}+\xi\big{\|}^{2}_{L^{2}}.

ϕλ+ξL22=ϕλL22+2ξ,ϕλ+O(ξH12).\displaystyle\big{\|}\phi_{\lambda}+\xi\big{\|}^{2}_{L^{2}}=\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+2\langle\xi,\phi_{\lambda}\rangle+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)}. (5.4)

(ii) The term ϕλ,(1x2)1(Sλ′′(ϕλ)ξ)\left\langle\phi_{\lambda},(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\right\rangle. We recall (3.15) and insert the rough estimates of λ˙\dot{\lambda} and y˙λ\dot{y}-\lambda obtained in Corollary 3.2 into (3.15), we have that

(y˙λ)xϕλL22=ξ,Sλ′′(ϕλ)[(1x2)1xxϕλ]+O(ξH12).\displaystyle-(\dot{y}-\lambda)\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}=\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\left[(1-\partial_{x}^{2})^{-1}\partial_{xx}\phi_{\lambda}\right]\rangle+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)}.

We note that (1x2)1xxϕλ=ϕλ+(1x2)1ϕλ,(1-\partial_{x}^{2})^{-1}\partial_{xx}\phi_{\lambda}=-\phi_{\lambda}+(1-\partial_{x}^{2})^{-1}\phi_{\lambda}, then we have

ϕλ,(1x2)1(Sλ′′(ϕλ)ξ)\displaystyle\left\langle\phi_{\lambda},(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\right\rangle =ξ,Sλ′′(ϕλ)((1x2)1ϕλ)\displaystyle=\left\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{(}(1-\partial_{x}^{2})^{-1}\phi_{\lambda}\big{)}\right\rangle
=ξ,Sλ′′(ϕλ)((1x2)1xxϕλ)+ξ,Sλ′′(ϕλ)ϕλ\displaystyle=\left\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{(}(1-\partial_{x}^{2})^{-1}\partial_{xx}\phi_{\lambda}\big{)}\right\rangle+\left\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\right\rangle
=(y˙λ)xϕλL22+ξ,Sλ′′(ϕλ)ϕλ+O(ξH12).\displaystyle=-(\dot{y}-\lambda)\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle+O\big{(}\|\xi\|_{H^{1}}^{2}\big{)}. (5.5)

(iii) The term (1x2)1(Sλ′′(ϕλ)ξ)L22\big{\|}(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\big{\|}^{2}_{L^{2}}. Using the expression of Sλ′′(ϕλ)S^{\prime\prime}_{\lambda}(\phi_{\lambda}) in (4.3), we have

(1x2)1(Sλ′′(ϕλ)ξ)=λξ+(1x2)1[ξ+(p+1)ϕλpξ]\displaystyle(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}=-\lambda\xi+(1-\partial_{x}^{2})^{-1}\left[\xi+(p+1)\phi_{\lambda}^{p}\xi\right]

Thus by Young’s inequality, we have

(1x2)1(Sλ′′(ϕλ)ξ)L22\displaystyle\big{\|}(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\big{\|}^{2}_{L^{2}} ξL22+(1x2)1[ξ+(p+1)ϕλpξ]L22\displaystyle\lesssim\big{\|}\xi\big{\|}^{2}_{L^{2}}+\big{\|}(1-\partial_{x}^{2})^{-1}\left[\xi+(p+1)\phi_{\lambda}^{p}\xi\right]\big{\|}^{2}_{L^{2}}
ξL22+ξ+(p+1)ϕλpξL22\displaystyle\lesssim\big{\|}\xi\big{\|}^{2}_{L^{2}}+\big{\|}\xi+(p+1)\phi_{\lambda}^{p}\xi\big{\|}^{2}_{L^{2}}
ξL22,\displaystyle\lesssim\big{\|}\xi\big{\|}^{2}_{L^{2}}, (5.6)

where we used ϕλL()\phi_{\lambda}\in L^{\infty}(\mathbb{R}) in the last step.

(iv) The term ξ,(1x2)1(Sλ′′(ϕλ)ξ)\left\langle\xi,(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\right\rangle. By Hölder’s inequality and (5.1), we obtain that

ξ,(1x2)1(Sλ′′(ϕλ)ξ)\displaystyle\left\langle\xi,(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\right\rangle ξL2(1x2)1(Sλ′′(ϕλ)ξ)L2\displaystyle\lesssim\big{\|}\xi\big{\|}_{L^{2}}\cdot\big{\|}(1-\partial_{x}^{2})^{-1}\big{(}S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\big{)}\big{\|}_{L^{2}}
ξL22.\displaystyle\lesssim\big{\|}\xi\big{\|}^{2}_{L^{2}}. (5.7)

Collecting all the estimates above, we obtain that

(H(u))2dx\displaystyle\int_{\mathbb{R}}(H(u))^{2}\,\mathrm{d}x =λ2ϕλL22+2λ2ξ,ϕλ+2λξ,Sλ′′(ϕλ)ϕλ2λ(y˙λ)xϕλL22+O(ξH12).\displaystyle=\lambda^{2}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+2\lambda^{2}\langle\xi,\phi_{\lambda}\rangle+2\lambda\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle-2\lambda(\dot{y}-\lambda)\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+O\left(\|\xi\|^{2}_{H^{1}}\right). (5.8)

Arguing similarly, taking the derivative of (4.4) with respect to xx, we have that

ut\displaystyle u_{t} =(1x2)1x(u+|u|pu)\displaystyle=-(1-\partial_{x}^{2})^{-1}\partial_{x}(u+|u|^{p}u)
=λx(ϕλ+ξ)(1x2)1x[Sλ′′(ϕλ)ξ]+(1x2)1x𝒩2(ξ).\displaystyle=-\lambda\partial_{x}(\phi_{\lambda}+\xi)-(1-\partial_{x}^{2})^{-1}\partial_{x}\left[S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi\right]+(1-\partial_{x}^{2})^{-1}\partial_{x}\mathcal{N}_{2}(\xi). (5.9)

Repeating the process above, we obtain that

ut2dx=λ2xϕλL222λ2ξ,xxϕλ+2λ(y˙λ)xϕλL22+O(ξH12).\displaystyle\int_{\mathbb{R}}u_{t}^{2}\,\mathrm{d}x=\lambda^{2}\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-2\lambda^{2}\langle\xi,\partial_{xx}\phi_{\lambda}\rangle+2\lambda(\dot{y}-\lambda)\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+O\left(\|\xi\|_{H^{1}}^{2}\right). (5.10)

From (5.8) and (5.10), we have

12[(H(u))2ut2]dx\displaystyle\frac{1}{2}\int_{\mathbb{R}}\left[(H(u))^{2}-u_{t}^{2}\right]\,\mathrm{d}x =12λ2(ϕλL22xϕλL22)+λ2ξ,ϕλ+xxϕλ\displaystyle=\frac{1}{2}\lambda^{2}\left(\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right)+\lambda^{2}\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle
+λξ,Sλ′′(ϕλ)ϕλ2λ(y˙λ)xϕλL22+O(ξH12).\displaystyle\quad+\lambda\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle-2\lambda(\dot{y}-\lambda)\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+O\left(\|\xi\|^{2}_{H^{1}}\right). (5.11)

\bulletEstimate on R(u)R(u).

Using the definition of the cutoff function φ\varphi in (5.1), we have

|R(u)|\displaystyle\big{|}R(u)\big{|} 12||xy(t)|>R[1φ(xy(t))][(H(u))2ut2]dx|\displaystyle\leqslant\frac{1}{2}\Bigg{|}\int_{|x-y(t)|>R}\left[1-\varphi^{\prime}(x-y(t))\right]\left[\big{(}H(u)\big{)}^{2}-u_{t}^{2}\right]\,\mathrm{d}x\Bigg{|}
+|y˙|||xy(t)|>R[1φ(xy(t))][12u2+1p+2|u|p+2]dx\displaystyle\quad+|\dot{y}|\Bigg{|}\int_{|x-y(t)|>R}\left[1-\varphi^{\prime}(x-y(t))\right]\left[\frac{1}{2}u^{2}+\frac{1}{p+2}|u|^{p+2}\right]\,\mathrm{d}x
|x|>R[u2+|u|p+2+|H(u)|2+ut2]dx.\displaystyle\lesssim\int_{|x|>R}\left[u^{2}+|u|^{p+2}+\big{|}H(u)\big{|}^{2}+u_{t}^{2}\right]\,\mathrm{d}x.

By Hölder’s inequality, Corollary 3.2, (1.5), (4.3), (5.8) and (5.10), we have

|R(u)|\displaystyle\big{|}R(u)\big{|} |x|>R[(ϕλ+ξ)2+|ϕλ+ξ|p+2+|ϕλ|2+|xϕλ|2]]dx\displaystyle\lesssim\int_{|x|>R}\left[(\phi_{\lambda}+\xi)^{2}+|\phi_{\lambda}+\xi|^{p+2}+|\phi_{\lambda}|^{2}+|\partial_{x}\phi_{\lambda}|^{2}]\right]\,\mathrm{d}x
+||x|>Rξ(ϕλ+xxϕλ)dx|+O(ξH12).\displaystyle\qquad+\Big{|}\int_{|x|>R}\xi\cdot(\phi_{\lambda}+\partial_{xx}\phi_{\lambda})\,\mathrm{d}x\Big{|}+O(\|\xi\|^{2}_{H^{1}}).

Further, using the property of exponential decay of ϕλ,xxϕλ\phi_{\lambda},\partial_{xx}\phi_{\lambda} we have

|x|>R|ϕλ|2+|xϕλ|2dxC|x|>ReC|x|dxCR.\displaystyle\int_{|x|>R}|\phi_{\lambda}|^{2}+|\partial_{x}\phi_{\lambda}|^{2}\,\mathrm{d}x\leqslant C\int_{|x|>R}e^{-C|x|}\,\mathrm{d}x\leqslant\frac{C}{R}.

Then Young’s inequality gives that

|x|>Rξ(ϕλ+xxϕλ)dx1R+ξL22,\displaystyle\int_{|x|>R}\xi\cdot(\phi_{\lambda}+\partial_{xx}\phi_{\lambda})\,\mathrm{d}x\lesssim\frac{1}{R}+\|\xi\|^{2}_{L^{2}}, (5.12)
|x|>R(ϕλ+ξ)2dx1R+ξL22,\displaystyle\int_{|x|>R}(\phi_{\lambda}+\xi)^{2}\,\mathrm{d}x\lesssim\frac{1}{R}+\|\xi\|^{2}_{L^{2}}, (5.13)
|x|>R(ϕλ+ξ)p+2dx1R+ξH12.\displaystyle\int_{|x|>R}(\phi_{\lambda}+\xi)^{p+2}\,\mathrm{d}x\lesssim\frac{1}{R}+\|\xi\|^{2}_{H^{1}}. (5.14)

Therefore, we combine (5.12)–(5.14) to obtain

|R(u)|C(1R+ξH12).\displaystyle\big{|}R(u)\big{|}\leqslant C\left(\frac{1}{R}+\|\xi\|^{2}_{H^{1}}\right). (5.15)

Now inserting the estimates in (5.11) and (5.15) into (5.3), we give the desired estimate and thus complete the proof of the lemma. ∎

5.2. Structure of I(t)I^{\prime}(t)

Denote

β(u0)\displaystyle\beta(u_{0}) =λ[E(u0)E(ϕc)],\displaystyle=-\lambda\Big{[}E(u_{0})-E(\phi_{c})\Big{]}, (5.16)
γ(λ)\displaystyle\gamma(\lambda) =λE(ϕc)+12λ2(ϕλL22xϕλL22),\displaystyle=-\lambda E(\phi_{c})+\frac{1}{2}\lambda^{2}\left(\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right), (5.17)
R~(u)\displaystyle\tilde{R}(u) =R(u)+λ2ξ,ϕλ+xxϕλ+λξ,Sλ′′(ϕλ)ϕλ(y˙λ)[E(u0)+2λxϕλL22]\displaystyle=R(u)+\lambda^{2}\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle+\lambda\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle-(\dot{y}-\lambda)\left[E(u_{0})+2\lambda\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right]
+D(λ)B(λ)tξ,(1x2)(x3ϕλ)+O(ξH12),\displaystyle\quad+\frac{D(\lambda)}{B(\lambda)}\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right), (5.18)

where

D(λ)=4pλ+4λ3p2(p+4)ϕλL22,B(λ)=32xϕλL22+92xxϕλL223ϕλL22.\displaystyle D(\lambda)=-\frac{4p\lambda+4\lambda-3p}{2(p+4)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}},\quad B(\lambda)=\frac{3}{2}\big{\|}x\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\frac{9}{2}\big{\|}x\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-3\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.
Lemma 5.2.

It holds that

I(t)=β(u0)+γ(λ)+R~(u).\displaystyle I^{\prime}(t)=\beta(u_{0})+\gamma(\lambda)+\tilde{R}(u).
Proof.

It follows from Lemma 4.1 and Lemma 5.1 directly. ∎

Lemma 5.3.

We estimate R~(u)\tilde{R}(u) as follows:

R~(u)=O(1R+ξH12).\displaystyle\tilde{R}(u)=O(\frac{1}{R}+\|\xi\|^{2}_{H^{1}}). (5.19)
Proof.

Recall the definition of R~(u)\tilde{R}(u) in (5.2):

R~(u)\displaystyle\tilde{R}(u) =R(u)+λ2ξ,ϕλ+xxϕλ+λξ,Sλ′′(ϕλ)ϕλ(y˙λ)[E(u0)+2λxϕλL22]\displaystyle=R(u)+\lambda^{2}\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle+\lambda\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\phi_{\lambda}\rangle-(\dot{y}-\lambda)\left[E(u_{0})+2\lambda\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right]
+D(λ)B(λ)tξ,(1x2)(x3ϕλ)+O(ξH12).\displaystyle\quad+\frac{D(\lambda)}{B(\lambda)}\partial_{t}\langle\xi,(1-\partial_{x}^{2})(x^{3}\phi_{\lambda})\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right).

First, from Lemma 2.3, we have already known that ϕλ\phi_{\lambda} and xxϕλ\partial_{xx}\phi_{\lambda} both have pre-image with respect to Sλ′′(ϕλ),S^{\prime\prime}_{\lambda}(\phi_{\lambda}), then we have

ξ,ϕλ+xxϕλ=ξ,Sλ′′(ϕλ)(Ψλ+12λxxϕλ).\displaystyle\langle\xi,\phi_{\lambda}+\partial_{xx}\phi_{\lambda}\rangle=\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{(}\Psi_{\lambda}+\frac{1}{2\lambda}x\partial_{x}\phi_{\lambda}\big{)}\rangle. (5.20)

By (3.7) and Taylor’s type expansion, we have

E(u0)=E(u)\displaystyle E(u_{0})=E(u) =E(ϕλ)+E(ϕλ),ξ+O(ξH12)\displaystyle=E(\phi_{\lambda})+\langle E^{\prime}(\phi_{\lambda}),\xi\rangle+O(\|\xi\|^{2}_{H^{1}})
=E(ϕλ)+ξ,ϕλ+ϕλp+1+O(ξH12).\displaystyle=E(\phi_{\lambda})+\langle\xi,\phi_{\lambda}+\phi_{\lambda}^{p+1}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right).

From Lemma 2.1 and (2.8), we have

E(ϕλ)\displaystyle E(\phi_{\lambda}) =4λ+p2(p+4)ϕλL22;\displaystyle=\frac{4\lambda+p}{2(p+4)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}};
E(ϕλ)+2λxϕλL22\displaystyle E(\phi_{\lambda})+2\lambda\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}} =4pλ+4λ3p2(p+4)ϕλL22.\displaystyle=\frac{4p\lambda+4\lambda-3p}{2(p+4)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.

Combining the rough estimate of y˙λ=O(ξH1)\dot{y}-\lambda=O\left(\|\xi\|_{H^{1}}\right) in Corollary 3.2 and the precise estimate of y˙λ\dot{y}-\lambda in (3.18), we have

(y˙λ)[E(u0)+2λxϕλL22]\displaystyle-(\dot{y}-\lambda)\left[E(u_{0})+2\lambda\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right]
=\displaystyle= (y˙λ)[E(ϕλ)+2λxϕλL22+ξ,ϕλ+ϕλp+1+O(ξH12)]\displaystyle-(\dot{y}-\lambda)\left[E(\phi_{\lambda})+2\lambda\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\langle\xi,\phi_{\lambda}+\phi_{\lambda}^{p+1}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right)\right]
=\displaystyle= 4pλ+4λ3p2(p+4)B(λ)ϕλL22ξ,Sλ′′(ϕλ)(3x2ϕλ+x3xϕλ)\displaystyle-\frac{4p\lambda+4\lambda-3p}{2(p+4)B(\lambda)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\cdot\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})(3x^{2}\phi_{\lambda}+x^{3}\partial_{x}\phi_{\lambda})\rangle
+4pλ+4λ3p2(p+4)B(λ)ϕλL22tξ,(1x2)(x3ϕλ)+O(ξH12).\displaystyle\quad+\frac{4p\lambda+4\lambda-3p}{2(p+4)B(\lambda)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\cdot\partial_{t}\langle\xi,(1-\partial_{x}^{2})\big{(}x^{3}\phi_{\lambda}\big{)}\rangle+O\left(\|\xi\|^{2}_{H^{1}}\right). (5.21)

Inserting (5.20) and (5.2) into the expression of R~(u)\tilde{R}(u), we have

R~(u)=R(u)+ξ,Sλ′′(ϕλ)[λ2Ψλ+λ2xxϕλ+λϕλ+D(λ)B(λ)(3x2ϕλ+x3xϕλ)].\displaystyle\tilde{R}(u)=R(u)+\langle\xi,S^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{[}\lambda^{2}\Psi_{\lambda}+\frac{\lambda}{2}x\partial_{x}\phi_{\lambda}+\lambda\phi_{\lambda}+\frac{D(\lambda)}{B(\lambda)}(3x^{2}\phi_{\lambda}+x^{3}\partial_{x}\phi_{\lambda})\big{]}\rangle.

We note that Sλ′′(ϕλ)[B(λ)(λ2Ψλ+λ2xxϕλ+λϕλ)+D(λ)(3x2ϕλ+x3xϕλ)]=κλS^{\prime\prime}_{\lambda}(\phi_{\lambda})\big{[}B(\lambda)\big{(}\lambda^{2}\Psi_{\lambda}+\frac{\lambda}{2}x\partial_{x}\phi_{\lambda}+\lambda\phi_{\lambda}\big{)}+D(\lambda)(3x^{2}\phi_{\lambda}+x^{3}\partial_{x}\phi_{\lambda})\big{]}=\kappa_{\lambda}. By the second orthogonality condition (3.3) in Proposition 3.1, we complete the proof. ∎

5.2.1. Lower bound of β(u0)\beta(u_{0})

Lemma 5.4.

Let u0=(1a)ϕcu_{0}=(1-a)\phi_{c} for some small positive constant aa. Then there exist a constant C1>0C_{1}>0, such that

β(u0)C1a.\beta(u_{0})\geq C_{1}a.
Proof.

Recall the definition of β(u0)\beta(u_{0}) in (5.16):

β(u0)=λ[E(u0)E(ϕc)].\displaystyle\beta(u_{0})=-\lambda\Big{[}E(u_{0})-E(\phi_{c})\Big{]}.

Using the expression in (2.2) and Taylor’s type expansion, we have

E(u0)E(ϕc)\displaystyle E(u_{0})-E(\phi_{c}) =E(ϕc),u0ϕc+O(u0ϕcH12)\displaystyle=\langle E^{\prime}(\phi_{c}),u_{0}-\phi_{c}\rangle+O(\big{\|}u_{0}-\phi_{c}\big{\|}^{2}_{H^{1}})
=a(ϕc+ϕcp+1)ϕcdx+O(a2)\displaystyle=-a\int_{\mathbb{R}}\left(\phi_{c}+\phi_{c}^{p+1}\right)\cdot\phi_{c}\,\mathrm{d}x+O(a^{2})
=a[2(p+2)cp+4pp+4]ϕcL22+O(a2).\displaystyle=-a\left[\frac{2(p+2)c}{p+4}-\frac{p}{p+4}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+O(a^{2}). (5.22)

Then we put (5.2.1) into the expression of β(u0),\beta(u_{0}),

β(u0)\displaystyle\beta(u_{0}) =λ[E(u0)E(ϕc)]\displaystyle=-\lambda\Big{[}E(u_{0})-E(\phi_{c})\Big{]}
=aλ[2(p+2)cp+4pp+4]ϕcL22+O(a2)\displaystyle=a\lambda\left[\frac{2(p+2)c}{p+4}-\frac{p}{p+4}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+O(a^{2})
=ac[2(p+2)cp+4pp+4]ϕcL22+O(a|λc|)+O(a2).\displaystyle=ac\left[\frac{2(p+2)c}{p+4}-\frac{p}{p+4}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+O(a|\lambda-c|)+O(a^{2}).

Note that c>1,c>1, and choosing aa and ε0\varepsilon_{0} small enough, where ε0\varepsilon_{0} is the constant in Proposition 3.1, and by (3.6), we obtain the conclusion of this lemma. ∎

5.2.2. Lower bound of γ(λ)\gamma(\lambda)

Lemma 5.5.

There exists a positive constant C2C_{2} such that

γ(λ)C2(λc)2+o((λc)2).\gamma(\lambda)\geq C_{2}(\lambda-c)^{2}+o\left((\lambda-c)^{2}\right).
Proof.

Recall the definition of γ(λ)\gamma(\lambda) from (5.17):

γ(λ)\displaystyle\gamma(\lambda) =λE(ϕc)+12λ2(ϕλL22xϕλL22).\displaystyle=-\lambda E(\phi_{c})+\frac{1}{2}\lambda^{2}\left(\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\right).

We claim that

γ(c)=0,γ(c)=0,γ′′(c)>0.\displaystyle\gamma(c)=0,\quad\gamma^{\prime}(c)=0,\quad\gamma^{\prime\prime}(c)>0. (5.23)

We prove the claim by the following three steps.

Step 1. γ(c)=0.\gamma(c)=0.

From (2.8), we have

E(ϕc)=(12+2(c1)p+4)ϕcL22;\displaystyle E(\phi_{c})=\left(\frac{1}{2}+\frac{2(c-1)}{p+4}\right)\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}};
ϕλL22xϕλL22=4λ+p(p+4)λϕλL22.\displaystyle\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}-\big{\|}\partial_{x}\phi_{\lambda}\big{\|}^{2}_{L^{2}}=\frac{4\lambda+p}{(p+4)\lambda}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.

So, we have

γ(λ)=λ(12+2(c1)p+4)ϕcL22+4λ2+pλ2(p+4)ϕλL22.\displaystyle\gamma(\lambda)=-\lambda\left(\frac{1}{2}+\frac{2(c-1)}{p+4}\right)\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+\frac{4\lambda^{2}+p\lambda}{2(p+4)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}. (5.24)

A direct computation gives

γ(c)\displaystyle\gamma(c) =c(12+2(c1)p+4)ϕcL22+4c2+pc2(p+4)ϕcL22=0.\displaystyle=-c\left(\frac{1}{2}+\frac{2(c-1)}{p+4}\right)\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+\frac{4c^{2}+pc}{2(p+4)}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}=0.

Step 2. γ(c)=0.\gamma^{\prime}(c)=0.

Using the expression of γ(λ)\gamma(\lambda) in (5.24), we have

γ(λ)\displaystyle\gamma^{\prime}(\lambda) =(12+2(c1)p+4)ϕcL22+8λ+p2(p+4)ϕλL22+4λ2+pλ2(p+4)λϕλL22.\displaystyle=-\left(\frac{1}{2}+\frac{2(c-1)}{p+4}\right)\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+\frac{8\lambda+p}{2(p+4)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\ +\frac{4\lambda^{2}+p\lambda}{2(p+4)}\partial_{\lambda}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}. (5.25)

By (2.10), we have

λ(ϕλL22)=4λp2pλ(λ1)ϕλL22,\displaystyle\partial_{\lambda}\big{(}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}\big{)}=\frac{4\lambda-p}{2p\lambda(\lambda-1)}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}, (5.26)

so we have

γ(c)\displaystyle\gamma^{\prime}(c) =[(12+2(c1)p+4)+8c+p2(p+4)+(4c+p)(4cp)4p(p+4)(c1)]ϕcL22=0.\displaystyle=\left[-\left(\frac{1}{2}+\frac{2(c-1)}{p+4}\right)+\frac{8c+p}{2(p+4)}+\frac{(4c+p)(4c-p)}{4p(p+4)(c-1)}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}=0.

Step 3. γ′′(c)>0.\gamma^{\prime\prime}(c)>0.

From the expression of γ(λ)\gamma(\lambda) in (5.24), we have

γ′′(λ)=8λ+pp+4λϕλL22+4p+4ϕλL22+4λ2+pλ2(p+4)λλϕλL22.\displaystyle\gamma^{\prime\prime}(\lambda)=\frac{8\lambda+p}{p+4}\partial_{\lambda}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\frac{4}{p+4}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\frac{4\lambda^{2}+p\lambda}{2(p+4)}\partial_{\lambda\lambda}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.

From (5.26), we have

λλϕλL22\displaystyle\partial_{\lambda\lambda}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}} =4λ2+2pλp2pλ2(λ1)2ϕλL22+[4λp2pλ(λ1)]2ϕλL22\displaystyle=\frac{-4\lambda^{2}+2p\lambda-p}{2p\lambda^{2}(\lambda-1)^{2}}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}+\left[\frac{4\lambda-p}{2p\lambda(\lambda-1)}\right]^{2}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}
=8(2p)λ2+4p(p2)λp24p2λ2(λ1)2ϕλL22.\displaystyle=\frac{8(2-p)\lambda^{2}+4p(p-2)\lambda-p^{2}}{4p^{2}\lambda^{2}(\lambda-1)^{2}}\big{\|}\phi_{\lambda}\big{\|}^{2}_{L^{2}}.

So we get

γ′′(c)=p4c2p(c1)2ϕcL22,\displaystyle\gamma^{\prime\prime}(c)=\frac{p-4c}{2p(c-1)^{2}}\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}},

noting that p4c=pp+2[p22+12p]>0p-4c=\frac{p}{p+2}\left[p-2\sqrt{2+\frac{1}{2}p}\right]>0 when p>4,p>4, then γ′′(c)>0.\gamma^{\prime\prime}(c)>0. This proves the claim (5.23).

Using (5.23) and Taylor’s type expansion, we get

γ(λ)\displaystyle\gamma(\lambda) =γ(c)+γ(c)(λc)+12γ′′(c)(λc)2+o((λc)2)\displaystyle=\gamma(c)+\gamma^{\prime}(c)(\lambda-c)+\frac{1}{2}\gamma^{\prime\prime}(c)(\lambda-c)^{2}+o\left((\lambda-c)^{2}\right)
C2(λc)2+o((λc)2),\displaystyle\geq C_{2}(\lambda-c)^{2}+o\left((\lambda-c)^{2}\right),

where C2=12γ′′(c)>0.C_{2}=\frac{1}{2}\gamma^{\prime\prime}(c)>0. Thus we obtain the conclusion of this lemma. ∎

Hence, combining Lemmas 5.25.4, and (5.19), we have

I(t)C1a+C2(λc)2+O(1R+ξH12)+o((λc)2).\displaystyle I^{\prime}(t)\geq C_{1}a+C_{2}(\lambda-c)^{2}+O\left(\frac{1}{R}+\|\xi\|^{2}_{H^{1}}\right)+o\left((\lambda-c)^{2}\right). (5.27)

5.2.3. Upper bound of ξH1\|\xi\|_{H^{1}}

Lemma 5.6.

Let ξ\xi be defined in (3.2), then for any t,t\in\mathbb{R},

ξH12O(a|λc|+a2)+o((λc)2).\displaystyle\|\xi\|^{2}_{H^{1}}\lesssim O\left(a|\lambda-c|+a^{2}\right)+o\left((\lambda-c)^{2}\right).
Proof.

First, since u=(ϕλ+ξ)(xy)u=\left(\phi_{\lambda}+\xi\right)(x-y) in (3.7), by Taylor’s type extension and Sc(ϕc)=0S^{\prime}_{c}(\phi_{c})=0, we have

Sλ(u)Sλ(ϕλ)\displaystyle S_{\lambda}(u)-S_{\lambda}(\phi_{\lambda}) =Sλ(ϕλ),ξ+12Sλ′′(ϕλ)ξ,ξ+o(ξH12)\displaystyle=\langle S^{\prime}_{\lambda}(\phi_{\lambda}),\xi\rangle+\frac{1}{2}\langle S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi,\xi\rangle+o\left(\|\xi\|^{2}_{H^{1}}\right)
=12Sλ′′(ϕλ)ξ,ξ+o(ξH12).\displaystyle=\frac{1}{2}\langle S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi,\xi\rangle+o\left(\|\xi\|^{2}_{H^{1}}\right).

Using Sc(ϕc)=0S^{\prime}_{c}(\phi_{c})=0 and Taylor’s type extension, we have

Sλ(u)Sλ(ϕλ)=12Sλ′′(ϕλ)ξ,ξ+o(ξH12).\displaystyle S_{\lambda}(u)-S_{\lambda}(\phi_{\lambda})=\frac{1}{2}\langle S^{\prime\prime}_{\lambda}(\phi_{\lambda})\xi,\xi\rangle+o\left(\|\xi\|^{2}_{H^{1}}\right).

Then by Proposition 3.1, we get

Sλ(u)Sλ(ϕλ)ξH12.\displaystyle S_{\lambda}(u)-S_{\lambda}(\phi_{\lambda})\gtrsim\|\xi\|^{2}_{H^{1}}.

Second, note that

Sλ(u)Sλ(ϕλ)=Sλ(u0)Sλ(ϕc)+Sλ(ϕc)Sλ(ϕλ),\displaystyle S_{\lambda}(u)-S_{\lambda}(\phi_{\lambda})=S_{\lambda}(u_{0})-S_{\lambda}(\phi_{c})+S_{\lambda}(\phi_{c})-S_{\lambda}(\phi_{\lambda}),

and the expression of ScS_{c} in (2.1) gives that

Sλ(u0)Sλ(ϕc)=Sc(u0)Sc(ϕc)(λc)[Q(u0)Q(ϕc)].\displaystyle S_{\lambda}(u_{0})-S_{\lambda}(\phi_{c})=S_{c}(u_{0})-S_{c}(\phi_{c})-(\lambda-c)\big{[}Q(u_{0})-Q(\phi_{c})].

Using the Taylor’s type expansion, by Sc(ϕc)=0,S^{\prime}_{c}(\phi_{c})=0, (2.3) and (2.8), we have

Sc(u0)Sc(ϕc)\displaystyle S_{c}(u_{0})-S_{c}(\phi_{c}) =Sc(ϕc),u0ϕc+O(u0ϕcH12)\displaystyle=\langle S^{\prime}_{c}(\phi_{c}),u_{0}-\phi_{c}\rangle+O\left(\big{\|}u_{0}-\phi_{c}\big{\|}^{2}_{H^{1}}\right)
=O(a2);\displaystyle=O(a^{2});
Q(u0)Q(ϕc)\displaystyle Q(u_{0})-Q(\phi_{c}) =Q(ϕc),u0ϕc+O(u0ϕcH12)\displaystyle=\langle Q^{\prime}(\phi_{c}),u_{0}-\phi_{c}\rangle+O\left(\big{\|}u_{0}-\phi_{c}\big{\|}^{2}_{H^{1}}\right)
=a[1+p(c1)c(p+4)]ϕcL22+O(a2).\displaystyle=-a\left[1+\frac{p(c-1)}{c(p+4)}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+O(a^{2}).

So we obtain

Sλ(u0)Sλ(ϕc)\displaystyle S_{\lambda}(u_{0})-S_{\lambda}(\phi_{c}) =(λc)a[1+p(c1)c(p+4)]ϕcL22+O(a2)\displaystyle=(\lambda-c)a\left[1+\frac{p(c-1)}{c(p+4)}\right]\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+O(a^{2})
=O(a2+a|λc|).\displaystyle=O\left(a^{2}+a|\lambda-c|\right).

Moreover, by Corollary 2.2, we have

Sλ(ϕc)Sλ(ϕλ)=o((λc)2).\displaystyle S_{\lambda}(\phi_{c})-S_{\lambda}(\phi_{\lambda})=o\left((\lambda-c)^{2}\right).

Finally, we get the desired result

ξH12\displaystyle\|\xi\|^{2}_{H^{1}} Sλ(u)Sλ(ϕλ)=Sλ(u0)Sλ(ϕc)+Sλ(ϕc)Sλ(ϕλ)\displaystyle\lesssim S_{\lambda}(u)-S_{\lambda}(\phi_{\lambda})=S_{\lambda}(u_{0})-S_{\lambda}(\phi_{c})+S_{\lambda}(\phi_{c})-S_{\lambda}(\phi_{\lambda})
=O(a2+a|λc|)+o((λc)2).\displaystyle=O\left(a^{2}+a|\lambda-c|\right)+o\left((\lambda-c)^{2}\right).

This completes the proof. ∎

5.3. Proof of Theorem 1.2

As in the discussion above, we assume that uUε(ϕc),u\in U_{\varepsilon}(\phi_{c}), and thus |λc|ε.|\lambda-c|\lesssim\varepsilon. We note that from the definition of I(t)I(t) and (2.8) we have the uniform boundedness of I(t):I(t):

suptI(t)R(ϕcL22+1).\displaystyle\sup_{t\in\mathbb{R}}I(t)\lesssim R(\big{\|}\phi_{c}\big{\|}^{2}_{L^{2}}+1). (5.28)

Now we estimate I(t).I^{\prime}(t). From (5.27) and Lemma 5.6, we have

I(t)\displaystyle I^{\prime}(t) C1a+C2(λc)2+O(1R+ξH12)+o((λc)2)\displaystyle\geq C_{1}a+C_{2}(\lambda-c)^{2}+O\left(\frac{1}{R}+\|\xi\|^{2}_{H^{1}}\right)+o\left((\lambda-c)^{2}\right)
C1a+C2(λc)2+O(a2+a|λc|)+o((λc)2)+O(1R).\displaystyle\geq C_{1}a+C_{2}(\lambda-c)^{2}+O\left(a^{2}+a|\lambda-c|\right)+o\left((\lambda-c)^{2}\right)+O\left(\frac{1}{R}\right).

By (3.6), choosing RR satisfying 1Ra2\frac{1}{R}\leqslant a^{2} and ε,a0\varepsilon,a_{0} small enough, we obtain that for any a(0,a0),a\in(0,a_{0}),

I(t)\displaystyle I^{\prime}(t) C1a+C2(λc)2+O(a2+a|λc|)+o((λc)2)\displaystyle\geq C_{1}a+C_{2}(\lambda-c)^{2}+O\left(a^{2}+a|\lambda-c|\right)+o\left((\lambda-c)^{2}\right)
12C1a+12C2(λc)2.\displaystyle\geq\frac{1}{2}C_{1}a+\frac{1}{2}C_{2}(\lambda-c)^{2}.

This implies I(t)+I(t)\rightarrow+\infty when t+,t\rightarrow+\infty, which is contradicted with (5.28). Hence we prove the instability of solitary wave solution ϕc(xct)\phi_{c}(x-ct) and thus give the proof of Theorem 1.2.

Appendix A

A.1. Spectrum of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c})

First, we study the kernel of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in the following lemma. The proof is standard, and it is a consequence of the result from [7].

Lemma A.1.

The kernel of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) satisfies that

kerSc′′(ϕc)={αxϕc:α}.\displaystyle\ker S_{c}^{\prime\prime}(\phi_{c})=\{\alpha\partial_{x}\phi_{c}:\alpha\in\mathbb{R}\}.
Proof.

First, we need to show the relationship ``".``\supset". For any f{αxϕc:α},f\in\{{\alpha\partial_{x}\phi_{c}:\alpha\in\mathbb{R}}\}, using (1.5), we have

Sc′′(ϕc)f\displaystyle S_{c}^{\prime\prime}(\phi_{c})f =Sc′′(ϕc)(αxϕc)\displaystyle=S_{c}^{\prime\prime}(\phi_{c})(\alpha\partial_{x}\phi_{c})
=αx(cxxϕc+(1c)cϕc+ϕcp+1)\displaystyle=\alpha\partial_{x}(c\partial_{xx}\phi_{c}+(1-c)\partial_{c}\phi_{c}+\phi_{c}^{p+1})
=0\displaystyle=0 (A.1)

Then (A.1) implies that ff is in the kernel of Sc′′(ϕc),S_{c}^{\prime\prime}(\phi_{c}), and we have the conclusion

kerSc′′(ϕc){αxϕc:α}.\displaystyle\ker S_{c}^{\prime\prime}(\phi_{c})\supset\{\alpha\partial_{x}\phi_{c}:\alpha\in\mathbb{R}\}.

Second, we prove the reverse relationship ``".``\subset". By the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.18), we have

Sc′′(ϕc)f=0Lωf=0,\displaystyle S_{c}^{\prime\prime}(\phi_{c})f=0\Leftrightarrow L_{\omega}f=0,

for any fker(Sc′′(ϕc)),f\in\ker(S_{c}^{\prime\prime}(\phi_{c})), that is

xxf+(1ω2)f+(p+1)ψωpf=0.\displaystyle-\partial_{xx}f+(1-\omega^{2})f+(p+1)\psi_{\omega}^{p}f=0. (A.2)

By the work of Weinstein [7], the only solution to (A.2) are

f=αxψω,α.\displaystyle f=\alpha\partial_{x}\psi_{\omega},\quad\alpha\in\mathbb{R}.

Note that

xψω=c1pxϕc.\displaystyle\partial_{x}\psi_{\omega}=c^{-\frac{1}{p}}\partial_{x}\phi_{c}.

This implies that f{αxϕc:α},f\in\{\alpha\partial_{x}\phi_{c}:\alpha\in\mathbb{R}\}, and we have

ker(Sc′′(ϕc)){αxϕc:α}.\displaystyle\ker(S_{c}^{\prime\prime}(\phi_{c}))\subset\{\alpha\partial_{x}\phi_{c}:\alpha\in\mathbb{R}\}.

Finally, combining the two relationship gives us

ker(Sc′′(ϕc))={αxϕc:α}.\displaystyle\ker(S_{c}^{\prime\prime}(\phi_{c}))=\{\alpha\partial_{x}\phi_{c}:\alpha\in\mathbb{R}\}.

This gives the proof of the lemma. ∎

The second lemma is the uniqueness of the negative eigenvalue of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}).

Lemma A.2.

Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) exists only one negative eigenvalue.

Proof.

It is known that the operator xx+(1ω2)+(p+1)ψωp-\partial_{xx}+(1-\omega^{2})+(p+1)\psi_{\omega}^{p} has only one negative eigenvalue(see [7]), and we denote it by λ1.\lambda_{-1}. Then there exists a unique associated eigenfunction θH1()\theta\in H^{1}(\mathbb{R}) such that

xxθ+(1ω2)θ(p+1)ψωpθ=λ1θ.\displaystyle-\partial_{xx}\theta+(1-\omega^{2})\theta-(p+1)\psi_{\omega}^{p}\theta=\lambda_{-1}\theta. (A.3)

Using the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.18), we have

Sc′′(ϕc)ωψω,ωψω\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\partial_{\omega}\psi_{\omega},\partial_{\omega}\psi_{\omega}\rangle =cLωωψω,ωψω\displaystyle=-c\langle L_{\omega}\partial_{\omega}\psi_{\omega},\partial_{\omega}\psi_{\omega}\rangle
=c(xxωψω+(1ω2)ωψω(p+1)ψωpωψω)ωψωdx\displaystyle=-c\int_{\mathbb{R}}(-\partial_{xx}\partial_{\omega}\psi_{\omega}+(1-\omega^{2})\partial_{\omega}\psi_{\omega}-(p+1)\psi_{\omega}^{p}\partial_{\omega}\psi_{\omega})\cdot\partial_{\omega}\psi_{\omega}\,\mathrm{d}x
=c2ωψωωψωdx\displaystyle=-c\int_{\mathbb{R}}2\omega\psi_{\omega}\cdot\partial_{\omega}\psi_{\omega}\,\mathrm{d}x
=cωddω(ψωL22)\displaystyle=-c\omega\frac{d}{d\omega}\Big{(}\big{\|}\psi_{\omega}\big{\|}^{2}_{L^{2}}\Big{)}
=2(2p12)(1ω2)2p32ψ0L22.\displaystyle=2(\frac{2}{p}-\frac{1}{2})(1-\omega^{2})^{\frac{2}{p}-\frac{3}{2}}\big{\|}\psi_{0}\big{\|}^{2}_{L^{2}}.

Note that p>4,p>4, then we have

Sc′′(ϕc)ωψω,ωψω<0.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\partial_{\omega}\psi_{\omega},\partial_{\omega}\psi_{\omega}\rangle<0.

This implies that Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) has at least one negative eigenvalue μ0.\mu_{0}. Assume its associated eigenfunction ξ0,\xi_{0}, that is,

Sc′′(ϕc)ξ0=μ0ξ0.\displaystyle S_{c}^{\prime\prime}(\phi_{c})\xi_{0}=\mu_{0}\xi_{0}.

Using the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.18) again, the last equality yields

c[xxξ0+(1ω2)ξ0(p+1)ψωpξ0]=μ0ξ0.\displaystyle-c\big{[}-\partial_{xx}\xi_{0}+(1-\omega^{2})\xi_{0}-(p+1)\psi_{\omega}^{p}\xi_{0}\big{]}=\mu_{0}\xi_{0}.

Then we have ξ0=1cθ.\xi_{0}=-\frac{1}{c}\theta. Hence, by (A.3), (μ0,ξ0)(\mu_{0},\xi_{0}) is exactly the pair satisfying

μ0=λ1,ξ0=1cθ.\displaystyle\mu_{0}=\lambda_{-1},\quad\xi_{0}=-\frac{1}{c}\theta. (A.4)

This implies that Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) has exactly one simple negative eigenvalue. This completes the proof of Lemma (A.2). ∎

A.2. Coercivity

In this subsection, we give a general coercivity property on the Hessian of the action Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}).

Proposition A.3.

Let τc,Ψ\tau_{c},\Psi be any functions satisfying that

τc=Sc′′(ϕc)Ψ,andSc′′(ϕc)Ψ,Ψ<0.\displaystyle\tau_{c}=S_{c}^{\prime\prime}(\phi_{c})\Psi,\quad\mbox{and}\quad\langle S_{c}^{\prime\prime}(\phi_{c})\Psi,\Psi\rangle<0. (A.5)

Suppose that ξH1()\xi\in H^{1}(\mathbb{R}) satisfies

ξ,xϕc=ξ,τc=0.\displaystyle\langle\xi,\partial_{x}\phi_{c}\rangle=\langle\xi,\tau_{c}\rangle=0. (A.6)

Then

Sc′′(ϕc)ξ,ξξH1()2.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle\gtrsim\|\xi\|^{2}_{H^{1}(\mathbb{R})}.
Proof.

From the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.18), we can write Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) as

Sc′′(ϕc)=c(L+V),\displaystyle S_{c}^{\prime\prime}(\phi_{c})=-c(L+V),

where L=xx+(1ω2),L=-\partial_{xx}+(1-\omega^{2}), and V=(p+1)ψωp.V=-(p+1)\psi_{\omega}^{p}. Hence VV is a compact perturbation of the self-adjoint operator L.L.
Step 1. Analyze the spectrum of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}). We first compute the essential spectrum of L.L. Note that for any gH1(),g\in H^{1}(\mathbb{R}),

Lg,g\displaystyle\langle Lg,g\rangle =(xxg+(1ω2)g)gdx\displaystyle=\int_{\mathbb{R}}\big{(}-\partial_{xx}g+(1-\omega^{2})g\big{)}\cdot g\,\mathrm{d}x
=xgL22+(1ω2)gL22.\displaystyle=\big{\|}\partial_{x}g\big{\|}^{2}_{L^{2}}+(1-\omega^{2})\big{\|}g\big{\|}^{2}_{L^{2}}. (A.7)

Since c=ω2,c>1,c=\omega^{-2},c>1, we can get |ω|<1,|\omega|<1, and thus

Lg,ggH1()2.\displaystyle\langle Lg,g\rangle\gtrsim\big{\|}g\big{\|}^{2}_{H^{1}(\mathbb{R})}.

This means that there exists δ>0\delta>0 such that the essential spectrum of LL is [δ,+).[\delta,+\infty). By Weyl Theorem, Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) and LL share the same essential spectrum. So we obtain the essential spectrum of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}). Recall that we have obtained the only one negative eigenvalue μ0\mu_{0} of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in Lemma A.2 and the kernel of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in Lemma A.1. So the discrete spectrum of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) is μ0,0,\mu_{0},0, and the essential spectrum is [δ,+).[\delta,+\infty).
Step 2. Positivity. By Lemma A.2, we have the unique negative eigenvalue μ0\mu_{0} and the eigenfunction ξ0\xi_{0} of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}). For convenience, we normalize the eigenfunction ξ0\xi_{0} such that ξ0L2=1.\big{\|}\xi_{0}\big{\|}_{L^{2}}=1. Hence, for ξ0H1(),\xi_{0}\in H^{1}(\mathbb{R}), by the spectral decomposition theorem we can write the decomposition of ξ\xi along the spectrum of Sc′′(ϕc),S_{c}^{\prime\prime}(\phi_{c}),

ξ=aξξ0+bξxϕc+gξ,\displaystyle\xi=a_{\xi}\xi_{0}+b_{\xi}\partial_{x}\phi_{c}+g_{\xi},

where aξ,bξ,a_{\xi},b_{\xi}\in\mathbb{R}, and gξg_{\xi} lies in the positive eigenspace of Sc′′(ϕc),S_{c}^{\prime\prime}(\phi_{c}), that is, gξg_{\xi} satisfies

gξ,ξ0=gξ,xϕc=0,\displaystyle\langle g_{\xi},\xi_{0}\rangle=\langle g_{\xi},\partial_{x}\phi_{c}\rangle=0,

and there exists an absolute constant σ>0\sigma>0 such that

Sc′′(ϕc)gξ,gξσgξL22.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle\geqslant\sigma\big{\|}g_{\xi}\big{\|}^{2}_{L^{2}}. (A.8)

Since ξ\xi satisfies the orthogonality condition ξ,xϕc\langle\xi,\partial_{x}\phi_{c}\rangle in (A.6) and ξ0,xϕc=0,\langle\xi_{0},\partial_{x}\phi_{c}\rangle=0, we have bξ=0,b_{\xi}=0, and thus

ξ=aξξ0+gξ.\displaystyle\xi=a_{\xi}\xi_{0}+g_{\xi}. (A.9)

Substituting (A.9) into Sc′′(ϕc)ξ,ξ,\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle, we get

Sc′′(ϕc)ξ,ξ\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle =Sc′′(ϕc)(aξξ0+gξ),aξξ0+gξ\displaystyle=\langle S_{c}^{\prime\prime}(\phi_{c})(a_{\xi}\xi_{0}+g_{\xi}),a_{\xi}\xi_{0}+g_{\xi}\rangle
=aξ2Sc′′(ϕc)ξ0,ξ0+2μ0aξξ0,gξ+Sc′′(ϕc)gξ,gξ.\displaystyle=a_{\xi}^{2}\langle S_{c}^{\prime\prime}(\phi_{c})\xi_{0},\xi_{0}\rangle+2\mu_{0}a_{\xi}\langle\xi_{0},g_{\xi}\rangle+\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle.

Due to the orthogonality property of ξ0,gξ=0,\langle\xi_{0},g_{\xi}\rangle=0, we have

Sc′′(ϕc)ξ,ξ=μ0aξ2+Sc′′(ϕc)gξ,gξ.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle=\mu_{0}a_{\xi}^{2}+\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle. (A.10)

To Ψ,\Psi, by spectral decomposition theorem again, we may write

Ψ=aξ0+bxϕc+g,\displaystyle\Psi=a\xi_{0}+b\partial_{x}\phi_{c}+g,

where a,b,a,b\in\mathbb{R}, and gg lies in the positive eigenspace of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}). We note that

Sc′′(ϕc)Ψ=Sc′′(ϕc)(aξ0+bxϕc+g)=Sc′′(ϕc)(aξ0+g).\displaystyle S^{\prime\prime}_{c}(\phi_{c})\Psi=S^{\prime\prime}_{c}(\phi_{c})(a\xi_{0}+b\partial_{x}\phi_{c}+g)=S^{\prime\prime}_{c}(\phi_{c})(a\xi_{0}+g). (A.11)

Therefore, a similar computation as above shows that

Sc′′(ϕc)Ψ,Ψ\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\Psi,\Psi\rangle =Sc′′(ϕc)(aξ0+g),(aξ0+g)\displaystyle=\langle S_{c}^{\prime\prime}(\phi_{c})(a\xi_{0}+g),(a\xi_{0}+g)\rangle
=μ0a2+Sc′′(ϕc)g,g.\displaystyle=\mu_{0}a^{2}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle.

For convenience, let δ0=Sc′′(ϕc)Ψ,Ψ.-\delta_{0}=\langle S_{c}^{\prime\prime}(\phi_{c})\Psi,\Psi\rangle. Then by (A.5), we know that δ0>0.\delta_{0}>0. Moreover, we have

δ0=μ0a2+Sc′′(ϕc)g,g.\displaystyle-\delta_{0}=\mu_{0}a^{2}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle. (A.12)

By (A.9) and (A.11), using the orthogonality assumption ξ,τc=0\langle\xi,\tau_{c}\rangle=0 in (A.6) we have

0=ξ,τc\displaystyle 0=\langle\xi,\tau_{c}\rangle =aξξ0+gξ,Sc′′(ϕc)Ψ\displaystyle=\langle a_{\xi}\xi_{0}+g_{\xi},S_{c}^{\prime\prime}(\phi_{c})\Psi\rangle
=aξξ0+gξ,Sc′′(ϕc)(aξ0+g)\displaystyle=\langle a_{\xi}\xi_{0}+g_{\xi},S_{c}^{\prime\prime}(\phi_{c})(a\xi_{0}+g)\rangle
=aξξ0,Sc′′(ϕc)aξ0+Sc′′(ϕc)g,gξ\displaystyle=\langle a_{\xi}\xi_{0},S_{c}^{\prime\prime}(\phi_{c})a\xi_{0}\rangle+\langle S_{c}^{\prime\prime}(\phi_{c})g,g_{\xi}\rangle
=μ0aaξξ0,ξ0+Sc′′(ϕc)g,gξ\displaystyle=\mu_{0}aa_{\xi}\langle\xi_{0},\xi_{0}\rangle+\langle S_{c}^{\prime\prime}(\phi_{c})g,g_{\xi}\rangle
=μ0aaξ+Sc′′(ϕc)g,gξ.\displaystyle=\mu_{0}aa_{\xi}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g_{\xi}\rangle.

So we get the equality

0=μ0aaξ+Sc′′(ϕc)g,gξ.\displaystyle 0=\mu_{0}aa_{\xi}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g_{\xi}\rangle.

By the Cauchy-Schwartz inequality, we have

(μ0aaξ)2\displaystyle(\mu_{0}aa_{\xi})^{2} =Sc′′(ϕc)g,gξ2\displaystyle=\langle S_{c}^{\prime\prime}(\phi_{c})g,g_{\xi}\rangle^{2}
Sc′′(ϕc)g,gSc′′(ϕc)gξ,gξ.\displaystyle\leqslant\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle.

This gives

(μ0a2)(μ0aξ2)Sc′′(ϕc)g,gSc′′(ϕc)gξ,gξ.\displaystyle(-\mu_{0}a^{2})(-\mu_{0}a_{\xi}^{2})\leqslant\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle. (A.13)

The last inequality combining with (A.12) implies that

μ0aξ2\displaystyle-\mu_{0}a_{\xi}^{2} Sc′′(ϕc)g,gSc′′(ϕc)gξ,gξμ0a2\displaystyle\leqslant\frac{\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle}{-\mu_{0}a^{2}}
=Sc′′(ϕc)g,gSc′′(ϕc)gξ,gξδ0+Sc′′(ϕc)g,g,\displaystyle=\frac{\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle}{\delta_{0}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle},

that is

μ0aξ2Sc′′(ϕc)g,gSc′′(ϕc)gξ,gξδ0+Sc′′(ϕc)g,g.\displaystyle\mu_{0}a_{\xi}^{2}\geqslant-\frac{\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle}{\delta_{0}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle}. (A.14)

Inserting (A.14) into (A.10), we obtain

Sc′′(ϕc)ξ,ξ\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle Sc′′(ϕc)g,gSc′′(ϕc)gξ,gξδ0+Sc′′(ϕc)g,g+Sc′′(ϕc)gξ,gξ\displaystyle\geqslant-\frac{\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle}{\delta_{0}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle}+\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle
=Sc′′(ϕc)gξ,gξ(1Sc′′(ϕc)g,gδ0+Sc′′(ϕc)g,g)\displaystyle=\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle\left(1-\frac{\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle}{\delta_{0}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle}\right)
=Sc′′(ϕc)gξ,gξδ0δ0+Sc′′(ϕc)g,g.\displaystyle=\langle S_{c}^{\prime\prime}(\phi_{c})g_{\xi},g_{\xi}\rangle\frac{\delta_{0}}{\delta_{0}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle}.

Recalling that gξg_{\xi} satisfies (A.8), we have

Sc′′(ϕc)ξ,ξδ0σδ0+Sc′′(ϕc)g,ggξL22,σ>0.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle\geqslant\frac{\delta_{0}\sigma}{\delta_{0}+\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle}\big{\|}g_{\xi}\big{\|}^{2}_{L^{2}},\quad\sigma>0. (A.15)

From the expression of ξ\xi in (A.9) and the inequality (A.10), we have

ξL22\displaystyle\|\xi\|^{2}_{L^{2}} =aξξ0+gξL22=aξ2+gξL22\displaystyle=\big{\|}a_{\xi}\xi_{0}+g_{\xi}\big{\|}^{2}_{L^{2}}=a_{\xi}^{2}+\big{\|}g_{\xi}\big{\|}^{2}_{L^{2}}
Sc′′(ϕc)g,gSc′′(ϕc)ξ,ξμ0δ0+gξL22\displaystyle\leqslant-\frac{\langle S_{c}^{\prime\prime}(\phi_{c})g,g\rangle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle}{\mu_{0}\delta_{0}}+\big{\|}g_{\xi}\big{\|}^{2}_{L^{2}}
Sc′′(ϕc)ξ,ξ\displaystyle\lesssim\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle

Therefore, this gives

Sc′′(ϕc)ξ,ξξL22.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle\gtrsim\|\xi\|^{2}_{L^{2}}. (A.16)

To obtain the final conclusion, we still need to estimate

Sc′′(ϕc)ξ,ξξH1()2.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle\gtrsim\|\xi\|^{2}_{H^{1}(\mathbb{R})}.

Using the expression of Sc′′(ϕc)S_{c}^{\prime\prime}(\phi_{c}) in (2.4), we have

Sc′′(ϕc)ξ,ξ\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle =(cxxξ+(1c)ξ+(p+1)ϕcpξ)ξdx\displaystyle=\int_{\mathbb{R}}(c\partial_{xx}\xi+(1-c)\xi+(p+1)\phi_{c}^{p}\xi)\cdot\xi\,\mathrm{d}x
=cxξL22+(1c)ξL22+(p+1)|ϕc|pξ2dx\displaystyle=-c\big{\|}\partial_{x}\xi\big{\|}^{2}_{L^{2}}+(1-c)\|\xi\|^{2}_{L^{2}}+(p+1)\int_{\mathbb{R}}|\phi_{c}|^{p}\xi^{2}\,\mathrm{d}x

Thus by (A.16), we get

xξL22\displaystyle\big{\|}\partial_{x}\xi\big{\|}^{2}_{L^{2}} =1c[Sc′′(ϕc)ξ,ξ(1c)ξL22(p+1)|ϕc|pξ2dx]\displaystyle=-\frac{1}{c}\left[\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle-(1-c)\|\xi\|^{2}_{L^{2}}-(p+1)\int_{\mathbb{R}}|\phi_{c}|^{p}\xi^{2}\,\mathrm{d}x\right]
1cSc′′(ϕc)ξ,ξ+(1c1)ξL22+p+1cϕcLpξL22\displaystyle\leqslant-\frac{1}{c}\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle+(\frac{1}{c}-1)\|\xi\|^{2}_{L^{2}}+\frac{p+1}{c}\big{\|}\phi_{c}\big{\|}^{p}_{L^{\infty}}\|\xi\|^{2}_{L^{2}}
1cSc′′(ϕc)ξ,ξ+(1c1+p+1cϕcLp)ξL22\displaystyle\leqslant-\frac{1}{c}\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle+\left(\frac{1}{c}-1+\frac{p+1}{c}\big{\|}\phi_{c}\big{\|}^{p}_{L^{\infty}}\right)\|\xi\|^{2}_{L^{2}}
Sc′′(ϕc)ξ,ξ+ξL22\displaystyle\lesssim\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle+\|\xi\|^{2}_{L^{2}}
Sc′′(ϕc)ξ,ξ.\displaystyle\lesssim\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle. (A.17)

Therefore, together (A.16) and (A.2), we obtain

ξH1()2\displaystyle\|\xi\|^{2}_{H^{1}(\mathbb{R})} =ξL22+xξL22\displaystyle=\|\xi\|^{2}_{L^{2}}+\big{\|}\partial_{x}\xi\big{\|}^{2}_{L^{2}}
Sc′′(ϕc)ξ,ξ.\displaystyle\lesssim\langle S_{c}^{\prime\prime}(\phi_{c})\xi,\xi\rangle.

Thus we obtain the desired result. ∎

Corollary A.4.

Assume

Sc′′(ϕc)η,η0,ηkerSc′′(ϕc),ηH1(),\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\eta,\eta\rangle\leqslant 0,\quad\eta\notin\ker S^{\prime\prime}_{c}(\phi_{c}),\quad\eta\in H^{1}(\mathbb{R}), (A.18)

then for any ζH1(),\zeta\in H^{1}(\mathbb{R}), s.t.

Sc′′(ϕc)ζ,η=0,\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\zeta,\eta\rangle=0, (A.19)

we have

Sc′′(ϕc)ζ,ζ0.\displaystyle\langle S_{c}^{\prime\prime}(\phi_{c})\zeta,\zeta\rangle\geqslant 0.
Proof.

Using the similar spectral decomposition argument as in Proposition A.3, we apply the notation from Proposition A.3, that is: the unique negative eigenvalue μ0\mu_{0} and its corresponding normalized eigenfunction ξ0\xi_{0} of Sc′′(ϕc).S_{c}^{\prime\prime}(\phi_{c}). So for ηH1(),\eta\in H^{1}(\mathbb{R}), we can write the decomposition of η\eta as

η=aηξ0+bηxϕc+gη,\displaystyle\eta=a_{\eta}\xi_{0}+b_{\eta}\partial_{x}\phi_{c}+g_{\eta}, (A.20)

where aη,bη,a_{\eta},b_{\eta}\in\mathbb{R}, and gηg_{\eta} lies in the positive eigenspace of Sc′′(ϕc),S^{\prime\prime}_{c}(\phi_{c}), that is gηg_{\eta} satisfies

gη,ξ0=gη,xϕc=0,\displaystyle\langle g_{\eta},\xi_{0}\rangle=\langle g_{\eta},\partial_{x}\phi_{c}\rangle=0, (A.21)

and there exists an absolute constant σ1>0\sigma_{1}>0 such that

Sc′′(ϕc)gη,gησ1gηL22.\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle\geqslant\sigma_{1}\|g_{\eta}\|^{2}_{L^{2}}. (A.22)

Since η\eta satisfies (A.18),\eqref{condition_1}, there exists an absolute constant δ10,\delta_{1}\geqslant 0, such that

Sc′′(ϕc)η,η=δ1.\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\eta,\eta\rangle=-\delta_{1}. (A.23)

By Lemma A.1, and combining (A.20) and (A.21), we have

Sc′′(ϕc)η=aηSc′′(ϕc)ξ0+Sc′′(ϕc)gη.\displaystyle S^{\prime\prime}_{c}(\phi_{c})\eta=a_{\eta}S^{\prime\prime}_{c}(\phi_{c})\xi_{0}+S^{\prime\prime}_{c}(\phi_{c})g_{\eta}.

So we obtain that

Sc′′(ϕc)η,η\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\eta,\eta\rangle =aηSc′′(ϕc)ξ0+Sc′′(ϕc)gη,aηξ0+bηxϕc+gη\displaystyle=\langle a_{\eta}S^{\prime\prime}_{c}(\phi_{c})\xi_{0}+S^{\prime\prime}_{c}(\phi_{c})g_{\eta},a_{\eta}\xi_{0}+b_{\eta}\partial_{x}\phi_{c}+g_{\eta}\rangle
=μ0aη2+Sc′′(ϕc)gη,gη=δ1.\displaystyle=\mu_{0}a_{\eta}^{2}+\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle=-\delta_{1}. (A.24)

Similarly, we write ζ\zeta as ζ=a1ξ0+b1xϕc+g1,\zeta=a_{1}\xi_{0}+b_{1}\partial_{x}\phi_{c}+g_{1}, where a1,b1,a_{1},b_{1}\in\mathbb{R}, and g1g_{1} lies in the positive eigenspace of Sc′′(ϕc).S^{\prime\prime}_{c}(\phi_{c}). We note that

Sc′′(ϕc)ζ,ζ=μ0a12+Sc′′(ϕc)g1,g1.\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\zeta,\zeta\rangle=\mu_{0}a_{1}^{2}+\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle. (A.25)

From condition (A.19), we have

Sc′′(ϕc)ζ,η\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\zeta,\eta\rangle =a1Sc′′(ϕc)ξ0+Sc′′(ϕc)g1,aηξ0+bηxϕc+gη\displaystyle=\langle a_{1}S^{\prime\prime}_{c}(\phi_{c})\xi_{0}+S^{\prime\prime}_{c}(\phi_{c})g_{1},a_{\eta}\xi_{0}+b_{\eta}\partial_{x}\phi_{c}+g_{\eta}\rangle
=μ0a1aη+Sc′′(ϕc)g1,gη=0.\displaystyle=\mu_{0}a_{1}a_{\eta}+\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{\eta}\rangle=0.

So we get

(μ0a1aη)2\displaystyle\big{(}\mu_{0}a_{1}a_{\eta}\big{)}^{2} =(μ0a12)(μ0aη2)\displaystyle=\big{(}\mu_{0}a_{1}^{2}\big{)}\big{(}\mu_{0}a_{\eta}^{2}\big{)}
=Sc′′(ϕc)g1,gη2\displaystyle=\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{\eta}\rangle^{2}
Sc′′(ϕc)g1,g1Sc′′(ϕc)gη,gη,\displaystyle\leqslant\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle,

where we used Cauchy-Schwartz inequality in the last step. Combining (A.2), the last inequality implies that

μ0a12\displaystyle\mu_{0}a_{1}^{2} Sc′′(ϕc)g1,g1Sc′′(ϕc)gη,gημ0aη2\displaystyle\geqslant\frac{\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle}{\mu_{0}a_{\eta}^{2}}
=Sc′′(ϕc)g1,g1Sc′′(ϕc)gη,gηSc′′(ϕc)gη,gη+δ1.\displaystyle=-\frac{\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle}{\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle+\delta_{1}}. (A.26)

Inserting (A.2) into (A.25), we have

Sc′′(ϕc)ζ,ζ\displaystyle\langle S^{\prime\prime}_{c}(\phi_{c})\zeta,\zeta\rangle Sc′′(ϕc)g1,g1Sc′′(ϕc)gη,gηSc′′(ϕc)gη,gη+δ1+Sc′′(ϕc)g1,g1\displaystyle\geqslant-\frac{\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle}{\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle+\delta_{1}}+\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle
=δ1Sc′′(ϕc)g1,g1Sc′′(ϕc)gη,gη+δ10.\displaystyle=\frac{\delta_{1}\langle S^{\prime\prime}_{c}(\phi_{c})g_{1},g_{1}\rangle}{\langle S^{\prime\prime}_{c}(\phi_{c})g_{\eta},g_{\eta}\rangle+\delta_{1}}\geqslant 0.

Thus we complete the proof.

A.3. Modulation

The modulation theory shows that by choosing suitable parameters, some orthogonality conditions as in (A.3) can be verified.

Proposition A.5.

Assume that τc\tau_{c} be the function satisfying

cϕc,τc0.\displaystyle\langle\partial_{c}\phi_{c},\tau_{c}\rangle\neq 0. (A.27)

Moreover, suppose that there exists ε0>0\varepsilon_{0}>0 such that for any ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}), and any uUε(ϕc),u\in U_{\varepsilon}(\phi_{c}), then the following properties are verified. There exist C1C^{1}-functions

y:Uε(ϕc),λ:Uε(ϕc)+\displaystyle y:U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R},\quad\lambda:U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R}^{+}

such that if we define ξ\xi by

ξ=u(+y)ϕλ,\displaystyle\xi=u(\cdot+y)-\phi_{\lambda}, (A.28)

then ξ\xi satisfies the following orthogonality conditions:

ξ,xϕλ=ξ,τλ=0.\displaystyle\langle\xi,\partial_{x}\phi_{\lambda}\rangle=\langle\xi,\tau_{\lambda}\rangle=0. (A.29)
Proof.

We use the Implicit Function Theorem to prove this proposition. Here we only give the important steps of the proof and refer the readers to [7, 8] for the similar argument. Define

p=(u;λ,y),p0=(ϕc;c,0).\displaystyle\vec{p}=(u;\lambda,y),\qquad\vec{p}_{0}=(\phi_{c};c,0).

Let ε\varepsilon be the parameter decided later, and define the functional pair (F1,F2):Uε(ϕc)×+×2(F_{1},F_{2}):U_{\varepsilon}(\phi_{c})\times\mathbb{R}^{+}\times\mathbb{R}\rightarrow\mathbb{R}^{2} as

F1(p)=ξ,xϕλ,F2(p)=ξ,τλ.\displaystyle F_{1}(\vec{p})=\langle\xi,\partial_{x}\phi_{\lambda}\rangle,\quad F_{2}(\vec{p})=\langle\xi,\tau_{\lambda}\rangle.

We claim that there exists ε0>0,\varepsilon_{0}>0, such that for any ε(0,ε0),\varepsilon\in(0,\varepsilon_{0}), there exists a unique C1C^{1} map: Uε(ϕc)+×U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R}^{+}\times\mathbb{R} such that (F1(p),F2(p))=0.(F_{1}(\vec{p}),F_{2}(\vec{p}))=0. Indeed, we have

F1(p0)=F2(p0)=0.\displaystyle F_{1}(\vec{p}_{0})=F_{2}(\vec{p}_{0})=0.

Second, we prove that

|J|=|λF1yF1λF2yF2|p=p00.\displaystyle|J|=\left|\begin{array}[]{cccc}\partial_{\lambda}F_{1}&\partial_{y}F_{1}\\ \partial_{\lambda}F_{2}&\partial_{y}F_{2}\end{array}\right|_{\vec{p}=\vec{p}_{0}}\neq 0.

Indeed, a direct computation gives that

λF1(p)=λξ,xϕλ\displaystyle\partial_{\lambda}F_{1}(\vec{p})=\partial_{\lambda}\langle\xi,\partial_{x}\phi_{\lambda}\rangle =λu(t,x+y(t))ϕλ,xϕλ\displaystyle=\partial_{\lambda}\langle u(t,x+y(t))-\phi_{\lambda},\partial_{x}\phi_{\lambda}\rangle
=λϕλ,xϕλ+u(t,x+y(t))ϕλ(t),λxϕλ.\displaystyle=\langle-\partial_{\lambda}\phi_{\lambda},\partial_{x}\phi_{\lambda}\rangle+\langle u(t,x+y(t))-\phi_{\lambda(t)},\partial_{\lambda}\partial_{x}\phi_{\lambda}\rangle.

When p=p0,\vec{p}=\vec{p}_{0}, we observe that u(t,x+y(t))ϕλ(t)=0,u(t,x+y(t))-\phi_{\lambda(t)}=0, and the second term vanishes. So we get

λF1(p)|p=p0=cϕc,xϕc=0\displaystyle\partial_{\lambda}F_{1}(\vec{p})\big{|}_{\vec{p}=\vec{p}_{0}}=-\langle\partial_{c}\phi_{c},\partial_{x}\phi_{c}\rangle=0

as ϕc\phi_{c} is an even function. A similar computation shows that

yF1(p)|p=p0\displaystyle\partial_{y}F_{1}(\vec{p})\big{|}_{\vec{p}=\vec{p}_{0}} =xu(t,x+y(t)),xϕλ|p=p0=xϕcL22;\displaystyle=\langle\partial_{x}u(t,x+y(t)),\partial_{x}\phi_{\lambda}\rangle\big{|}_{\vec{p}=\vec{p}_{0}}=\big{\|}\partial_{x}\phi_{c}\big{\|}_{L^{2}}^{2};
λF2(p)|p=p0\displaystyle\partial_{\lambda}F_{2}(\vec{p})\big{|}_{\vec{p}=\vec{p}_{0}} =λu(t,x+y(t))ϕλ,τλ|p=p0=cϕc,τc;\displaystyle=\partial_{\lambda}\langle u(t,x+y(t))-\phi_{\lambda},\tau_{\lambda}\rangle\big{|}_{\vec{p}=\vec{p}_{0}}=-\langle\partial_{c}\phi_{c},\tau_{c}\rangle;
yF2(p)|p=p0\displaystyle\partial_{y}F_{2}(\vec{p})\big{|}_{\vec{p}=\vec{p}_{0}} =xu(t,x+y(t)),τλ|p=p0=xϕc,τc.\displaystyle=\langle\partial_{x}u(t,x+y(t)),\tau_{\lambda}\rangle\big{|}_{\vec{p}=\vec{p}_{0}}=\langle\partial_{x}\phi_{c},\tau_{c}\rangle.

By (A.27), we find that

|λF1yF1λF2yF2|p=p0\displaystyle\left|\begin{array}[]{cccc}\partial_{\lambda}F_{1}&\partial_{y}F_{1}\\ \partial_{\lambda}F_{2}&\partial_{y}F_{2}\end{array}\right|_{\vec{p}=\vec{p}_{0}} =|0xϕcL22cϕc,τcxϕc,τc|\displaystyle=\left|\begin{array}[]{cccc}0&\big{\|}\partial_{x}\phi_{c}\big{\|}_{L^{2}}^{2}\\ -\langle\partial_{c}\phi_{c},\tau_{c}\rangle&\langle\partial_{x}\phi_{c},\tau_{c}\rangle\end{array}\right|
=xϕcL22cϕc,τc0.\displaystyle=\big{\|}\partial_{x}\phi_{c}\big{\|}_{L^{2}}^{2}\langle\partial_{c}\phi_{c},\tau_{c}\rangle\neq 0.

Therefore, the Implicit Function Theorem implies that there exists ε0>0\varepsilon_{0}>0 such that for ε(0,ε0),uUε(ϕc),\varepsilon\in(0,\varepsilon_{0}),u\in U_{\varepsilon}(\phi_{c}), there exist unique C1C^{1}-functions

y:Uε(ϕc),λ:Uε(ϕc)+,\displaystyle y:U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R},\quad\lambda:U_{\varepsilon}(\phi_{c})\rightarrow\mathbb{R}^{+},

such that

ξ,xϕλ=ξ,τλ=0.\displaystyle\langle\xi,\partial_{x}\phi_{\lambda}\rangle=\langle\xi,\tau_{\lambda}\rangle=0. (A.30)

This proves the Proposition. ∎

A.4. The negativity of Sc′′(ϕc)Γc,Γc\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle (numerically checked).

We recall the expression of Γc\Gamma_{c} and κc\kappa_{c} which introduced in (1.11) and (3.4):

Γc=B(c)(c2Ψc+c2xxϕc+cϕc)+D(c)(3x2ϕc+x3xϕc),\displaystyle\Gamma_{c}=B(c)\big{(}c^{2}\Psi_{c}+\frac{c}{2}x\partial_{x}\phi_{c}+c\phi_{c}\big{)}+D(c)(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c}),
Sc′′(ϕc)Γc=κc.\displaystyle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c}=\kappa_{c}.

\bulletThe expression of κc.\kappa_{c}. From Lemma 2.3, we have already known that

Sc′′(ϕc)Ψc=ϕc,\displaystyle S^{\prime\prime}_{c}(\phi_{c})\Psi_{c}=\phi_{c}, (A.31)
Sc′′(ϕc)(12cxxϕc)=xxϕc.\displaystyle S^{\prime\prime}_{c}(\phi_{c})(\frac{1}{2c}x\partial_{x}\phi_{c})=\partial_{xx}\phi_{c}. (A.32)

By the expression of Sc′′(ϕc)S^{\prime\prime}_{c}(\phi_{c}) in (2.4), we have

Sc′′(ϕc)ϕc=cxxϕc+(1c)ϕc+(p+1)ϕcp+1.\displaystyle S^{\prime\prime}_{c}(\phi_{c})\phi_{c}=c\partial_{xx}\phi_{c}+(1-c)\phi_{c}+(p+1)\phi_{c}^{p+1}.

From equation (1.5), we have

ϕcp+1=cxxϕc+(c1)ϕc.\displaystyle\phi_{c}^{p+1}=-c\partial_{xx}\phi_{c}+(c-1)\phi_{c}. (A.33)

Thus we obtain

Sc′′(ϕc)ϕc=pcxxϕc+p(c1)ϕc.\displaystyle S^{\prime\prime}_{c}(\phi_{c})\phi_{c}=-pc\partial_{xx}\phi_{c}+p(c-1)\phi_{c}. (A.34)

Using the expression of Sc′′(ϕc)S^{\prime\prime}_{c}(\phi_{c}) in (2.4) again, we obtain

Sc′′(ϕc)(3x2ϕc+x3xϕc)\displaystyle\quad S^{\prime\prime}_{c}(\phi_{c})(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})
=cxx(3x2ϕc+x3xϕc)+(1c)(3x2ϕc+x3xϕc)+(p+1)ϕcp(3x2ϕc+x3xϕc)\displaystyle=c\partial_{xx}(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})+(1-c)(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})+(p+1)\phi_{c}^{p}(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})
=c(6ϕc+18xxϕc+9x2xxϕc+x3x3ϕc)+(1c)(3x2ϕc+x3xϕc)+(p+1)ϕcp(3x2ϕc+x3xϕc)\displaystyle=c(6\phi_{c}+18x\partial_{x}\phi_{c}+9x^{2}\partial_{xx}\phi_{c}+x^{3}\partial^{3}_{x}\phi_{c})+(1-c)(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})+(p+1)\phi_{c}^{p}(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})
=6cϕc+18cxxϕc+6cx2xxϕc+3x2[cxxϕc+(1c)ϕc+(p+1)ϕcp+1]\displaystyle=6c\phi_{c}+18cx\partial_{x}\phi_{c}+6cx^{2}\partial_{xx}\phi_{c}+3x^{2}\big{[}c\partial_{xx}\phi_{c}+(1-c)\phi_{c}+(p+1)\phi_{c}^{p+1}\big{]}
+x3x(cxxϕc+(1c)ϕc+ϕcp+1).\displaystyle\quad+x^{3}\partial_{x}(c\partial_{xx}\phi_{c}+(1-c)\phi_{c}+\phi_{c}^{p+1}). (A.35)

Inserting (A.33) into (A.4), and by (1.5), we have

Sc′′(ϕc)(3x2ϕc+x3xϕc)=6cϕc+18cxxϕc+(6c3pc)x2xxϕc+3p(c1)x2ϕc.\displaystyle S^{\prime\prime}_{c}(\phi_{c})(3x^{2}\phi_{c}+x^{3}\partial_{x}\phi_{c})=6c\phi_{c}+18cx\partial_{x}\phi_{c}+(6c-3pc)x^{2}\partial_{xx}\phi_{c}+3p(c-1)x^{2}\phi_{c}. (A.36)

Combining (A.31), (A.32), (A.34) and (A.36), we finally obtain the concrete expression of κc,\kappa_{c}, that is

κc\displaystyle\kappa_{c} =Sc′′(ϕc)Γc\displaystyle=S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c}
=[B(c)(p+1)c2B(c)pc+6cD(c)]ϕc+B(c)(1p)c2xxϕc+18cD(c)xxϕc\displaystyle=\big{[}B(c)(p+1)c^{2}-B(c)pc+6cD(c)\big{]}\phi_{c}+B(c)(1-p)c^{2}\partial_{xx}\phi_{c}+18cD(c)x\partial_{x}\phi_{c}
+(6c3pc)D(c)x2xxϕc+3p(c1)D(c)x2ϕc.\displaystyle\quad+(6c-3pc)D(c)x^{2}\partial_{xx}\phi_{c}+3p(c-1)D(c)x^{2}\phi_{c}. (A.37)

\bulletThe numerical result of κc,Γc.\langle\kappa_{c},\Gamma_{c}\rangle. According to [5], the solution of elliptic equation (1.5) ϕc\phi_{c} is explicitly given by

ϕc(x)=[12(c1)(p+2)]1psech2p(12xpc1c).\displaystyle\phi_{c}(x)=\left[\frac{1}{2}(c-1)(p+2)\right]^{\frac{1}{p}}\,\mathrm{sech}^{\frac{2}{p}}\big{(}\frac{1}{2}xp\sqrt{\frac{c-1}{c}}\big{)}. (A.38)

By (1.8) and the expression of Ψc\Psi_{c} in (1.10), we have

Ψc\displaystyle\Psi_{c} =12ω12pωψω=12ω12pddc(c1pϕc)dcdω\displaystyle=-\frac{1}{2}\omega^{1-\frac{2}{p}}\partial_{\omega}\psi_{\omega}=-\frac{1}{2}\omega^{1-\frac{2}{p}}\frac{d}{dc}(c^{-\frac{1}{p}}\phi_{c})\cdot\frac{dc}{d\omega}
=c1+1pddc(c1pϕc).\displaystyle=c^{1+\frac{1}{p}}\frac{d}{dc}(c^{-\frac{1}{p}}\phi_{c}).

Using (A.38), and by direct computation we obtain that

Ψc\displaystyle\Psi_{c} =ϕc[1p(c1)x2c(c1)tanh(12xpc1c)],\displaystyle=\phi_{c}\cdot\Big{[}\frac{1}{p(c-1)}-\frac{x}{2\sqrt{c(c-1)}}\tanh\big{(}\frac{1}{2}xp\sqrt{\frac{c-1}{c}}\big{)}\Big{]}, (A.39)
xϕc\displaystyle\partial_{x}\phi_{c} =c1cϕctanh(12xpc1c),\displaystyle=-\sqrt{\frac{c-1}{c}}\phi_{c}\cdot\tanh\big{(}\frac{1}{2}xp\sqrt{\frac{c-1}{c}}\big{)}, (A.40)
xxϕc\displaystyle\partial_{xx}\phi_{c} =c1cϕc[tanh2(12xpc1c)12psech2(12xpc1c)].\displaystyle=\frac{c-1}{c}\phi_{c}\cdot\Big{[}\tanh^{2}\big{(}\frac{1}{2}xp\sqrt{\frac{c-1}{c}}\big{)}-\frac{1}{2}p\,\mathrm{sech}^{2}\big{(}\frac{1}{2}xp\sqrt{\frac{c-1}{c}}\big{)}\Big{]}. (A.41)

We check Sc′′(ϕc)Γc,Γc<0\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle<0 in the following case:
The limit of integration is [50π,50π].[-50\pi,50\pi].

(1) for p=4.1,Sc′′(ϕc)Γc,Γc=1024.83,p=4.1,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-1024.83,

(2) for p=4.5,Sc′′(ϕc)Γc,Γc=362.82,p=4.5,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-362.82,

(3) for p=5,Sc′′(ϕc)Γc,Γc=292.10,p=5,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-292.10,

(4) for p=6,Sc′′(ϕc)Γc,Γc=274.60,p=6,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-274.60,

(5) for p=6.5,Sc′′(ϕc)Γc,Γc=276.36,p=6.5,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-276.36,

(6) for p=10,Sc′′(ϕc)Γc,Γc=303.22,p=10,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-303.22,

(7) for p=30,Sc′′(ϕc)Γc,Γc=445.07,p=30,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-445.07,

(8) for p=50,Sc′′(ϕc)Γc,Γc=609.47,p=50,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-609.47,

(9) for p=70,Sc′′(ϕc)Γc,Γc=790.46,p=70,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-790.46,

(10) for p=100,Sc′′(ϕc)Γc,Γc=1083.61.p=100,\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle=-1083.61.

The graph of Sc′′(ϕc)Γc,Γc\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle as a function of p is shown as below:

Refer to caption
Figure 1. The negativity of Sc′′(ϕc)Γc,Γc\langle S^{\prime\prime}_{c}(\phi_{c})\Gamma_{c},\Gamma_{c}\rangle.

Acknowledgment

R. Jia and Y. Wu are partially supported by NSFC 12171356. The authors would like to thank Professor Zeng Chongchun for many valuable discussions and suggestions.

Data Availability

There is no additional data associated to this article.

Declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  • [1] T. B.  Benjamin, J. L.  Bona, and J. J.  Mahony, Model equations for long waves in nonlinear dispersive equations, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.
  • [2] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), pp. 160–197.
  • [3] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., 94 (1990), pp. 308–348.
  • [4] Z. Lin; C. Zeng, Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs. Mem. Amer. Math. Soc., 275 (2022), no. 1347, v+136 pp.
  • [5] R. Pego and M. Weinstein, Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A, 340 (1992), 47–94.
  • [6] P. E.  Souganidis, and W. A.  Strauss, Instability of a class of dispersive solitary waves, Proc. R. Soc. Edinb, 114 (1990), 195-212.
  • [7] M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
  • [8] M. Weinstein, Lyapunov stability of ground states of nonlinear Schrödinger equations, Comm. Pure Appl. Math, 39 (1986), 51-67.
  • [9] Y. Wu, Instability of the standing waves for the nonlinear Klein-Gordon equations in one dimension, Trans. Amer. Math.Soc.,376 (2023), no. 6, 4085–4103.