This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

WUCG-22-09

Inspiral gravitational waveforms from compact binary systems in Horndeski gravity

Yurika Higashino and Shinji Tsujikawa Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan
Abstract

In a subclass of Horndeski theories with the speed of gravity equivalent to that of light, we study gravitational radiation emitted during the inspiral phase of compact binary systems. We compute the waveform of scalar perturbations under a post-Newtonian expansion of energy-momentum tensors of point-like particles that depend on a scalar field. This scalar mode not only gives rise to breathing and longitudinal polarizations of gravitational waves, but it is also responsible for scalar gravitational radiation in addition to energy loss associated with transverse and traceless tensor polarizations. We calculate the Fourier-transformed gravitational waveform of two tensor polarizations under a stationary phase approximation and show that the resulting waveform reduces to the one in a parametrized post-Einsteinian (ppE) formalism. The ppE parameters are directly related to a scalar charge in the Einstein frame, whose existence is crucial to allow the deviation from General Relativity (GR). We apply our general framework to several concrete theories and show that a new theory of spontaneous scalarization with a higher-order scalar kinetic term leaves interesting deviations from GR that can be probed by the observations of gravitational waves emitted from neutron star-black hole binaries. If the scalar mass exceeds the order of typical orbital frequencies ω1013\omega\simeq 10^{-13} eV, which is the case for a recently proposed scalarized neutron star with a self-interacting potential, the gravitational waveform practically reduces to that in GR.

I Introduction

The discovery of gravitational waves (GWs) Abbott et al. (2016) opened up a new window for probing the physics in strong gravity regimes Berti et al. (2015); Barack et al. (2019); Berti et al. (2018). Up to now, there have been many observed events of the coalescence of two black holes (BHs) Abbott et al. (2019, 2021). The merger of two neutron stars (NSs) was first detected as the event GW170817 Abbott et al. (2017a), together with an electromagnetic counterpart Goldstein et al. (2017). This latter event constrained the speed of gravity to be very close to that of light Abbott et al. (2017b). There was also a possible NS-BH coalescence event GW190426-152155, albeit its highest false alarm rate Abbott et al. (2020); Broekgaarden et al. (2021); Li et al. (2020); Niu et al. (2021). The increasing sensitivity in future GW observations will allow one to detect more promising events of the NS-BH coalescence.

General Relativity (GR) is a fundamental theory of gravity consistent with submillimeter laboratory tests Hoyle et al. (2001); Adelberger et al. (2003), solar system constraints Will (2014), and binary pulsar measurements Taylor and Weisberg (1982); Stairs (2003); Antoniadis et al. (2013). However, there are several cosmological problems like the origins of inflation, dark energy, and dark matter, which are difficult to be resolved within the framework of GR and standard model of particle physics Lyth and Riotto (1999); Copeland et al. (2006); Bertone et al. (2005). To address these problems, one usually introduces additional degrees of freedom beyond those appearing in GR (two tensor polarizations). The simplest example is a scalar field ϕ\phi minimally or nonminimally coupled to gravity. If there is a nonminimal coupling with the Ricci scalar RR of the form F(ϕ)RF(\phi)R, the gravitational interaction is generally modified from that in GR. Brans-Dicke (BD) theories Brans and Dicke (1961) with a scalar potential V(ϕ)V(\phi) belong to such a class, which accommodates f(R)f(R) gravity Starobinsky (1980) as a special case. The applications of BD theories and f(R)f(R) gravity to inflation and dark energy have been extensively performed in the literature (see the reviews Sotiriou and Faraoni (2010); De Felice and Tsujikawa (2010)).

In BD theories, the NS can have a scalar hair through the coupling between the scalar field and matter mediated by gravity. On the other hand, the no-hair property of BHs was proven in BD theories Hawking (1972); Bekenstein (1995); Sotiriou and Faraoni (2012). This means that the binary system containing at least one scalarized NS may leave some signatures for the deviation from GR in inspiral gravitational waveforms. In massless BD theories, Eardley Eardley (1975) estimated the change of an orbital period induced by dipole gravitational radiation in a compact binary system. In the same theories, Will Will (1994) computed gravitational waveforms radiated during an inspiral phase of the compact binary up to the Newtonian quadrupole order (see also Refs. Shibata et al. (1994); Harada et al. (1997); Brunetti et al. (1999); Berti et al. (2005); Scharre and Will (2002); Chatziioannou et al. (2012) for related works). Under a so-called post-Newtonian (PN) approximation Blanchet (2014) based on slow velocities of the binary system relative to the speed of light cc, the gravitational radiation was also calculated up to 2PN Lang (2014); Mirshekari and Will (2013); Lang (2015); Sennett et al. (2016) and 2.5PN Bernard et al. (2022) orders, with the equations of motion up to 3PN order Bernard (2018).

In massless BD theories given by the Lagrangian L=(1/2)ϕR+ωBDX/ϕL=(1/2)\phi R+\omega_{\rm BD}X/\phi, where X=(1/2)μϕμϕX=-(1/2)\nabla^{\mu}\phi\nabla_{\mu}\phi is a field kinetic term with the covariant derivative operator μ\nabla^{\mu}, the solar-system tests of gravity put a tight bound on the BD parameter, ωBD>4.0×104\omega_{\rm BD}>4.0\times 10^{4} Will (2014). With this constraint, the deviation from GR in strong gravity regimes is limited to be small. In other words, the GW measurements need to reach high sensitivities to distinguish between BD theories and GR from the observed gravitational waveform. If the scalar field has a potential V(ϕ)V(\phi) with a heavy mass inside a nonrelativistic star, while having a light mass outside the star, it is possible to suppress the propagation of fifth forces in the solar system through a so-called chameleon mechanism Khoury and Weltman (2004a, b). In such cases the constraint on ωBD\omega_{\rm BD} is loosened Faulkner et al. (2007); Hu and Sawicki (2007); Capozziello and Tsujikawa (2008); Tsujikawa et al. (2008); Berti et al. (2012), so there is more freedom to probe signatures of the modification of gravity in strong gravity environments. The gravitational radiation and tensor waves emitted from a compact binary have been computed in massive BD theories Alsing et al. (2012); Berti et al. (2012); Sagunski et al. (2018); Liu et al. (2020) and screened modified gravity in the Einstein frame Zhang et al. (2017); Liu et al. (2018); Niu et al. (2019).

In the presence of a nonminimal coupling of the form F(ϕ)RF(\phi)R, there is yet the other scenario dubbed spontaneous scalarization of NSs Damour and Esposito-Farese (1993, 1996) in which the modification of gravity manifests itself only on the strong gravity background. Provided that F(ϕ)F(\phi) contains even power-law functions of ϕ\phi, the theory admits the existence of a nonvanishing field branch besides the GR branch (ϕ=0\phi=0). Since the Ricci scalar RR coupled to the scalar field is large inside the NS, the GR branch can be unstable to trigger tachyonic growth of ϕ\phi toward the other nontrivial branch. For the nonminimal coupling F(ϕ)=eβϕ2/(2MPl2)F(\phi)=e^{-\beta\phi^{2}/(2M_{\rm Pl}^{2})} chosen by Damour and Esposito-Farese Damour and Esposito-Farese (1993), spontaneous scalarization can occur for the coupling constant β4.35\beta\leq-4.35 Harada (1998); Novak (1998); Sotani and Kokkotas (2004); Silva et al. (2015); Barausse et al. (2013). On the other hand, the presence of a scalar charge for the scalarized solution leads to an energy loss through dipolar gravitational radiation. This results in time variation of the orbital period of binary systems. Indeed, binary-pulsar observations put the bound β4.5\beta\geq-4.5 Freire et al. (2012); Shao et al. (2017); Anderson et al. (2019), so the coupling constant β\beta is confined in a limited range. Since the gravitational waveform emitted from compact binaries containing a NS should give an independent constraint on the scalar charge, it remains to be seen how the future GW observations place the bound on β\beta. In Ref. Niu et al. (2021), the authors started to derive constraints on β\beta by using the possible NS-BH coalescence event GW190426-152155.

Theory of spontaneous scalarization does not belong to a framework of BD theories, but it can be accommodated as a generalized class of BD theories by promoting the BD parameter ωBD\omega_{\rm BD} to a scalar-field dependent function ω(ϕ)\omega(\phi). Indeed, the gravitational radiation and waveforms in theories given by the Lagrangian L=(1/2)ϕR+ω(ϕ)X/ϕL=(1/2)\phi R+\omega(\phi)X/\phi have been investigated in Refs. Alsing et al. (2012); Yunes et al. (2012); Berti et al. (2018); Liu et al. (2020). Such theories belong to a scheme of Horndeski theories Horndeski (1974)– most general scalar-tensor theories with second-order Euler-Lagrange equations of motion Deffayet et al. (2011); Kobayashi et al. (2011); Charmousis et al. (2012). The subclass of Horndeski theories with the speed of gravity equivalent to that of light is given by the Lagrangian L=G2(ϕ,X)G3(ϕ,X)ϕ+G4(ϕ)RL=G_{2}(\phi,X)-G_{3}(\phi,X)\square\phi+G_{4}(\phi)R Kobayashi et al. (2011); De Felice and Tsujikawa (2012); Kase and Tsujikawa (2019), where G2G_{2} and G3G_{3} are functions of ϕ\phi and XX, and G4G_{4} is a function of ϕ\phi. This class of theories automatically evades the observational bound on the speed of gravity constrained by the GW170817 event Abbott et al. (2017b).

Theories with the Lagrangian L=G2(ϕ,X)+G4(ϕ)RL=G_{2}(\phi,X)+G_{4}(\phi)R accommodate not only the generalized massive BD theories with L=(1/2)ϕR+ω(ϕ)X/ϕV(ϕ)L=(1/2)\phi R+\omega(\phi)X/\phi-V(\phi) but also nonminimally coupled k-essence Armendariz-Picon et al. (1999); Chiba et al. (2000); Armendariz-Picon et al. (2000); Arkani-Hamed et al. (2004); Piazza and Tsujikawa (2004); ter Haar et al. (2021); Bezares et al. (2022) containing higher-order kinetic terms like μ2X2\mu_{2}X^{2} in G2G_{2}. When spontaneous scalarization occurs inside the NS, higher-order derivatives can be as large as the linear kinetic term around the surface of star. Indeed, we will propose a new scenario of spontaneous scalarization where the scalar charge is reduced by an additional term μ2X2\mu_{2}X^{2}. This allows a possibility for alleviating the tension of the coupling constant β\beta mentioned above. The modified scalar-field solution also affects the gravitational waveform radiated from the binary system containing a NS. Thus, it is convenient to provide a general scheme for confronting such theories with future GW observations of the NS-BH or NS-NS coalescence.

In this paper, we compute the gravitational waveform emitted during the inspiral phase of compact binary systems in a subclass of Horndeski theories given by the Lagrangian L=G2(ϕ,X)G3(ϕ,X)ϕ+G4(ϕ)RL=G_{2}(\phi,X)-G_{3}(\phi,X)\square\phi+G_{4}(\phi)R. For this purpose, we perform the PN expansion of a source energy-momentum tensor and neglect nonlinear derivative terms arising from the cubic coupling G3(X)ϕG_{3}(X)\square\phi outside the source. This amounts to neglecting nonlinear Galileon-type self-interactions Nicolis et al. (2009); Deffayet et al. (2009) relative to the linear kinetic term. Hence it is difficult to accommodate the case in which the field derivative is suppressed in the exterior region of NSs by the Vainshtein mechanism Vainshtein (1972); Burrage and Seery (2010); De Felice et al. (2012); Kimura et al. (2012); Koyama et al. (2013), unless some specific scaling methods McManus et al. (2016); Renevey et al. (2020, 2022) are employed. However, if the Vainshtein radius rVr_{V} is of the same order as the NS radius rsr_{s} (10\sim 10 km), the PN analysis used for the derivation of solutions to scalar perturbations from r=rsr=r_{s} to an observer does not lose its validity. In such a case, the field derivative and scalar charge can be suppressed by the Vainshtein screening inside the NS, analogous to the findings in Ref. Chagoya et al. (2014); Ogawa et al. (2020). Thus, the gravitational waveform derived in this paper can be applied to the case rVrsr_{V}\lesssim r_{s}.

This paper is organized as follows. In Sec. II, we review the field equations of motion and the matter action of two point-like sources in the subclass of Horndeski theories. In Sec. III, we perform the weak-field expansions of metric and scalar field to study the propagation of GWs from the binary system of a quasicircular orbit to the observer and derive solutions to tensor GWs. In Sec. IV, we obtain the time-domain gravitational waveforms corresponding to two transverse and longitudinal tensor polarizations as well as breathing and longitudinal modes. In Sec. V, we study the energy loss induced by the GW emission and derive the Fourier-transformed gravitational waveforms by using a stationary phase approximation. We show that the resulting waveform reduces to the one in a parameterized post-Einsteinian (ppE) framework Yunes and Pretorius (2009); Cornish et al. (2011); Chatziioannou et al. (2012); Tahura and Yagi (2018) and derive the ppE parameters in our theory. In Sec. VI, we apply our general results to several concrete theories and clarify the relations between ppE parameters and the scalar charge in the Einstein frame. In particular, we show that a new theory of spontaneous scalarization with the higher-order derivative term μ2X2\mu_{2}X^{2} in G2G_{2} allows an interesting possibility for reducing the scalar charge in comparison to the case μ2=0\mu_{2}=0, whose property can be probed in future GW observations. Sec. VII is devoted conclusions.

Throughout the paper, we use the metric signature (,+,+,+)(-,+,+,+) and natural units c==1c=\hbar=1, where \hbar is the reduced Planck constant.

II Subclass of Horndeski theories and field equations of motion

We consider a subclass of Horndeski theories Horndeski (1974) given by the action

𝒮=d4xg[G2(ϕ,X)G3(ϕ,X)ϕ+G4(ϕ)R]+𝒮m(gμν,Ψm),{\cal S}=\int{\rm d}^{4}x\sqrt{-g}\left[G_{2}(\phi,X)-G_{3}(\phi,X)\square\phi+G_{4}(\phi)R\right]+{\cal S}_{m}(g_{\mu\nu},\Psi_{m})\,, (1)

where gg is the determinant of metric tensor gμνg_{\mu\nu}, X=(1/2)μϕμϕX=-(1/2)\nabla^{\mu}\phi\nabla_{\mu}\phi is the kinetic term of a scalar field ϕ\phi, and gμνμν\square\equiv g^{\mu\nu}\nabla_{\mu}\nabla_{\nu} is the d’Alembertian. The action 𝒮m{\cal S}_{m} contains matter fields Ψm\Psi_{m} minimally coupled to gravity. In theories (1), there are no asymptotically flat spherically symmetric and static BH solutions with a scalar hair Hawking (1972); Bekenstein (1995); Sotiriou and Faraoni (2012); Graham and Jha (2014); Faraoni (2017); Minamitsuji et al. (2022). On the other hand, NSs can have scalar charges in the presence of nonminimal couplings G4(ϕ)RG_{4}(\phi)R Eardley (1975).

Our aim is to compute a gravitational waveform emitted from inspiraling compact binaries containing at least one NS. If the NS has a scalar hair, the waveform is subject to modifications in comparison to GR. This allows us to probe signatures for the possible existence of a scalar field nonminimally coupled to gravity. In theories given by the action (1), the speed of gravity on the cosmological background is identical to that of light Kobayashi et al. (2011); De Felice and Tsujikawa (2012); Kase and Tsujikawa (2019). We note that the equivalence principle can be generally violated in scalar-tensor theories including the action (1). However, in concrete models discussed in Sec. VI, we are interested in the case where the fifth force induced by scalar-gravitational couplings is suppressed on weak gravity backgrounds for the consistency with solar-system constraints. For the derivation of gravitational waveforms, we do not restrict the analysis to some specific models by the end of Sec. V.

We deal with the binary system of a quasicircular orbit as a collection of two point-like particles with masses mI(ϕ)m_{I}(\phi), where I=A,BI=A,B for each particle. Since the existence of ϕ\phi affects matter through gravitational field equations of motion, there is the ϕ\phi-dependence in mIm_{I}. The matter sector is expressed by the action Eardley (1975)

𝒮m=I=A,BmI(ϕ)dτI,{\cal S}_{m}=-\sum_{I=A,B}\int m_{I}(\phi){\rm d}\tau_{I}\,, (2)

where τI\tau_{I} is the proper time along the world line xIμx_{I}^{\mu} of particle II. The infinitesimal line element is given by

ds2=dτ2=gμνdxμdxν.{\rm d}s^{2}=-{\rm d}\tau^{2}=g_{\mu\nu}{\rm d}x^{\mu}{\rm d}x^{\nu}\,. (3)

Then, the matter action (2) can be written as

𝒮m=I=A,Bd4xmI(ϕ)gμνdxIμdxIνδ(4)(xμxIμ),{\cal S}_{m}=-\sum_{I=A,B}\int{\rm d}^{4}x\,m_{I}(\phi)\sqrt{-g_{\mu\nu}{\rm d}x_{I}^{\mu}{\rm d}x_{I}^{\nu}}\,\delta^{(4)}(x^{\mu}-x_{I}^{\mu})\,, (4)

where δ(4)(xμxIμ)\delta^{(4)}(x^{\mu}-x_{I}^{\mu}) is the four dimensional delta function. Varying (4) with respect to gμνg_{\mu\nu}, it follows that

δ𝒮mδgμν=I=A,B12d4xdτImI(ϕ)uIμuIνδ(4)(xμxIμ),\frac{\delta{\cal S}_{m}}{\delta g_{\mu\nu}}=\sum_{I=A,B}\frac{1}{2}\int{\rm d}^{4}x\,\int{\rm d}\tau_{I}\,m_{I}(\phi)u_{I}^{\mu}u_{I}^{\nu}\,\delta^{(4)}(x^{\mu}-x_{I}^{\mu})\,, (5)

where uIμ=dxIμ/dτIu_{I}^{\mu}={\rm d}x_{I}^{\mu}/{\rm d}\tau_{I} is the four velocity of particle II. The matter energy-momentum tensor TμνT^{\mu\nu} is defined by

δ𝒮m=12d4xgTμνδgμν.\delta{\cal S}_{m}=\frac{1}{2}\int{\rm d}^{4}x\sqrt{-g}\,T^{\mu\nu}\delta g_{\mu\nu}\,. (6)

Comparing Eq. (6) with Eq. (5), we obtain

Tμν\displaystyle T^{\mu\nu} =\displaystyle= 1gI=A,BdτImI(ϕ)uIμuIνδ(4)(xμxIμ)\displaystyle\frac{1}{\sqrt{-g}}\sum_{I=A,B}\int{\rm d}\tau_{I}\,m_{I}(\phi)u_{I}^{\mu}u_{I}^{\nu}\delta^{(4)}(x^{\mu}-x_{I}^{\mu}) (7)
=\displaystyle= 1gI=A,BmI(ϕ)uIμuIνuI0δ(3)(𝒙𝒙I(t)).\displaystyle\frac{1}{\sqrt{-g}}\sum_{I=A,B}m_{I}(\phi)\frac{u_{I}^{\mu}u_{I}^{\nu}}{u_{I}^{0}}\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t))\,. (8)

In the second line, we used dτI=dxI0/uI0{\rm d}\tau_{I}={\rm d}x_{I}^{0}/u_{I}^{0} and integrated Eq. (7) with respect to xI0x_{I}^{0}. Note that δ(3)(𝒙𝒙I(t))\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t)) is a three dimensional delta function and that the time tt is determined by t=xI0t=x_{I}^{0}.

On using the property gμνuIμuIν=1g_{\mu\nu}u_{I}^{\mu}u_{I}^{\nu}=-1, the trace of Eq. (8) yields

TgμνTμν=1gI=A,BmI(ϕ)1uI0δ(3)(𝒙𝒙I(t)).T\equiv g_{\mu\nu}T^{\mu\nu}=-\frac{1}{\sqrt{-g}}\sum_{I=A,B}m_{I}(\phi)\frac{1}{u_{I}^{0}}\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t))\,. (9)

On the other hand, the action (2) can be written in the form

𝒮m=I=A,Bd4xmI(ϕ)1uI0δ(3)(𝒙𝒙I(t)).{\cal S}_{m}=-\sum_{I=A,B}\int{\rm d}^{4}x\,m_{I}(\phi)\frac{1}{u_{I}^{0}}\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t))\,. (10)

Comparing Eq. (9) with Eq. (10), it follows that

𝒮m=d4xgT(ϕ),{\cal S}_{m}=\int{\rm d}^{4}x\sqrt{-g}\,T(\phi)\,, (11)

whose form is used for the variation of 𝒮m{\cal S}_{m} with respect to ϕ\phi.

Varying the action (1) with respect to gμνg^{\mu\nu}, we obtain the covariant gravitational field equations of motion Kobayashi et al. (2011)

G2,XμϕνϕG2gμν+G3,Xϕμϕνϕ+μG3νϕ+νG3μϕgμνλG3λϕ\displaystyle-G_{2,X}\nabla_{\mu}\phi\nabla_{\nu}\phi-G_{2}g_{\mu\nu}+G_{3,X}\square\phi\nabla_{\mu}\phi\nabla_{\nu}\phi+\nabla_{\mu}G_{3}\nabla_{\nu}\phi+\nabla_{\nu}G_{3}\nabla_{\mu}\phi-g_{\mu\nu}\nabla^{\lambda}G_{3}\nabla_{\lambda}\phi
+2G4Gμν+2gμν(G4,ϕϕ2XG4,ϕϕ)2G4,ϕμνϕ2G4,ϕϕμϕνϕ=Tμν,\displaystyle+2G_{4}G_{\mu\nu}+2g_{\mu\nu}\left(G_{4,\phi}\square\phi-2XG_{4,\phi\phi}\right)-2G_{4,\phi}\nabla_{\mu}\nabla_{\nu}\phi-2G_{4,\phi\phi}\nabla_{\mu}\phi\nabla_{\nu}\phi=T_{\mu\nu}\,, (12)

where we used the notations like G2,X=G2/XG_{2,X}=\partial G_{2}/\partial X, G4,ϕϕ=2G4/ϕ2G_{4,\phi\phi}=\partial^{2}G_{4}/\partial\phi^{2}, etc. The variation of (1) with respect to ϕ\phi leads to the scalar-field equation of motion

μJμ=𝒫ϕ,\nabla^{\mu}J_{\mu}={\cal P}_{\phi}\,, (13)

where

Jμ\displaystyle J_{\mu} =\displaystyle= G2,Xμϕ+G3,Xϕμϕ+G3,XμX+2G3,ϕμϕ,\displaystyle-G_{2,X}\nabla_{\mu}\phi+G_{3,X}\square\phi\nabla_{\mu}\phi+G_{3,X}\nabla_{\mu}X+2G_{3,\phi}\nabla_{\mu}\phi\,, (14)
𝒫ϕ\displaystyle{\cal P}_{\phi} =\displaystyle= G2,ϕ+μG3,ϕμϕ+G4,ϕR+T,ϕ.\displaystyle G_{2,\phi}+\nabla^{\mu}G_{3,\phi}\nabla_{\mu}\phi+G_{4,\phi}R+T_{,\phi}\,. (15)

The ϕ\phi dependence in T(ϕ)T(\phi) influences the scalar-field equation through the last term in Eq. (15). The Ricci scalar RR in 𝒫ϕ{\cal P}_{\phi} is affected by the presence of matter through the gravitational Eq. (12). Taking the trace of Eq. (12), we obtain

2G4R=2XG2,X4G22XG3,Xϕ2μG3μϕ+6(G4,ϕϕ2XG4,ϕϕ)T.2G_{4}R=2XG_{2,X}-4G_{2}-2XG_{3,X}\square\phi-2\nabla^{\mu}G_{3}\nabla_{\mu}\phi+6\left(G_{4,\phi}\square\phi-2XG_{4,\phi\phi}\right)-T\,. (16)

Then, we can express 𝒫ϕ{\cal P}_{\phi} in the following form

𝒫ϕ\displaystyle{\cal P}_{\phi} =\displaystyle= G2,ϕ+μG3,ϕμϕ+G4,ϕG4(XG2,X2G2XG3,XϕμG3μϕ+3G4,ϕϕ6XG4,ϕϕ)\displaystyle G_{2,\phi}+\nabla^{\mu}G_{3,\phi}\nabla_{\mu}\phi+\frac{G_{4,\phi}}{G_{4}}\left(XG_{2,X}-2G_{2}-XG_{3,X}\square\phi-\nabla^{\mu}G_{3}\nabla_{\mu}\phi+3G_{4,\phi}\square\phi-6XG_{4,\phi\phi}\right) (17)
+T,ϕG4,ϕ2G4T.\displaystyle+T_{,\phi}-\frac{G_{4,\phi}}{2G_{4}}T\,.

The last two contributions to Eq. (17) work as matter source terms for the scalar-field equation.

The matter action (2) can be also expressed in the form

𝒮m=I=A,BmI(ϕ(xIλ))gμν(xIλ)uIμuIνdτI.{\cal S}_{m}=-\sum_{I=A,B}\int m_{I}(\phi(x_{I}^{\lambda}))\sqrt{-g_{\mu\nu}(x_{I}^{\lambda})u_{I}^{\mu}u_{I}^{\nu}}\,{\rm d}\tau_{I}\,. (18)

Varying this action with respect to xIλx_{I}^{\lambda} and integrating it by parts, we obtain

δ𝒮m=I=A,B[ddτ(mIgμλuIμ)12mIgμνxIλuIμuIν+mI,ϕϕxIλ]δxIλdτ.\delta{\cal S}_{m}=-\sum_{I=A,B}\int\left[\frac{{\rm d}}{{\rm d}\tau}\left(m_{I}g_{\mu\lambda}u_{I}^{\mu}\right)-\frac{1}{2}m_{I}\frac{\partial g_{\mu\nu}}{\partial x_{I}^{\lambda}}u_{I}^{\mu}u_{I}^{\nu}+m_{I,\phi}\frac{\partial\phi}{\partial x_{I}^{\lambda}}\right]\delta x_{I}^{\lambda}{\rm d}\tau\,. (19)

Then, the equation of motion for the II-th particle is given by

ddτ(mIgμλuIμ)12mIgμνxIλuIμuIν+mI,ϕϕxIλ=0.\frac{{\rm d}}{{\rm d}\tau}\left(m_{I}g_{\mu\lambda}u_{I}^{\mu}\right)-\frac{1}{2}m_{I}\frac{\partial g_{\mu\nu}}{\partial x_{I}^{\lambda}}u_{I}^{\mu}u_{I}^{\nu}+m_{I,\phi}\frac{\partial\phi}{\partial x_{I}^{\lambda}}=0\,. (20)

Multiplying Eq. (20) by gαλg^{\alpha\lambda} and using dmI/dτ=mI,ϕuββϕ{\rm d}m_{I}/{\rm d}\tau=m_{I,\phi}u^{\beta}\nabla_{\beta}\phi and dgμλ/dτ=(gμλ/xIν)uIν/2+(gλμ/xIν)uIν/2{\rm d}g_{\mu\lambda}/{\rm d}\tau=(\partial g_{\mu\lambda}/\partial x_{I}^{\nu})u_{I}^{\nu}/2+(\partial g_{\lambda\mu}/\partial x_{I}^{\nu})u_{I}^{\nu}/2, it follows that

mI(duIαdτ+ΓμναuIμuIν)+mI,ϕ(αϕ+uIαuIββϕ)=0,m_{I}\left(\frac{{\rm d}u_{I}^{\alpha}}{{\rm d}\tau}+\Gamma^{\alpha}_{\mu\nu}u_{I}^{\mu}u_{I}^{\nu}\right)+m_{I,\phi}\left(\nabla^{\alpha}\phi+u_{I}^{\alpha}u_{I}^{\beta}\nabla_{\beta}\phi\right)=0\,, (21)

where Γμνα\Gamma^{\alpha}_{\mu\nu} is the Christoffel symbol. The ϕ\phi dependence in mIm_{I} modifies the standard geodesic equation. One can express Eq. (21) in a simple form Eardley (1975)

uIββ(mIuIα)=mI,ϕαϕ.u_{I}^{\beta}\nabla_{\beta}\left(m_{I}u_{I}^{\alpha}\right)=-m_{I,\phi}\nabla^{\alpha}\phi\,. (22)

In terms of the matter energy-momentum tensor given by Eq. (7), Eq. (22) is equivalent to the continuity equation βTαβ=T,ϕαϕ\nabla_{\beta}T^{\alpha\beta}=T_{,\phi}\nabla^{\alpha}\phi. This latter equation coincides with the one derived in Ref. Will and Zaglauer (1989) in BD theories.

Equations (12), (13), and (21) are the master equations used to describe the dynamics of gravity, scalar-field, and point-like particles, respectively.

III Weak field expansion

To compute the gravitational waveform emitted from the inspiraling compact binary, we need to study the propagation of GWs from the binary to an observer. For this purpose, we expand the metric gμνg_{\mu\nu} about a Minkowski background and the scalar field ϕ\phi around a constant asymptotic cosmological value ϕ0\phi_{0}, as Will (1994)

gμν=ημν+hμν,ϕ=ϕ0+φ,g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}\,,\qquad\phi=\phi_{0}+\varphi\,, (23)

where ημν=diag(1,1,1,1)\eta_{\mu\nu}={\rm diag}(-1,1,1,1), and hμνh_{\mu\nu} and φ\varphi are the perturbed quantities. We would like to calculate the gravitational waveform associated with hμνh_{\mu\nu} and φ\varphi up to quadrupole order. We perform the expansions of Eqs. (12) and (13) with respect to the perturbations hμνh_{\mu\nu} and φ\varphi and derive a quadrupole formlula for tensor GWs in this section.

The scalar-field equation (17) contains the matter source term T,ϕG4,ϕT/(2G4)T_{,\phi}-G_{4,\phi}T/(2G_{4}). The trace TT acquires the ϕ\phi dependence through the mass term mI(ϕ)m_{I}(\phi) in Eq. (9). We expand mI(ϕ)m_{I}(\phi) and G4(ϕ)G_{4}(\phi) around the background field value ϕ=ϕ0\phi=\phi_{0}, respectively, as

mI(ϕ)\displaystyle m_{I}(\phi) =\displaystyle= mI(ϕ0)[1+αI(φMPl)+12(αI2+βI)(φMPl)2],\displaystyle m_{I}(\phi_{0})\left[1+\alpha_{I}\left(\frac{\varphi}{M_{\rm Pl}}\right)+\frac{1}{2}\left(\alpha_{I}^{2}+\beta_{I}\right)\left(\frac{\varphi}{M_{\rm Pl}}\right)^{2}\right]\,, (24)
G4(ϕ)\displaystyle G_{4}(\phi) =\displaystyle= G4(ϕ0)[1+g4(φMPl)+12(g42+γ4)(φMPl)2],\displaystyle G_{4}(\phi_{0})\left[1+g_{4}\left(\frac{\varphi}{M_{\rm Pl}}\right)+\frac{1}{2}\left(g_{4}^{2}+\gamma_{4}\right)\left(\frac{\varphi}{M_{\rm Pl}}\right)^{2}\right]\,, (25)

where MPl=2.4354×1018M_{\rm Pl}=2.4354\times 10^{18} GeV is the reduced Planck mass, and

αI\displaystyle\alpha_{I} \displaystyle\equiv MPldlnmI(ϕ)dϕ|ϕ=ϕ0,βIMPl2d2lnmI(ϕ)dϕ2|ϕ=ϕ0,\displaystyle M_{\rm Pl}\frac{{\rm d}\ln m_{I}(\phi)}{{\rm d}\phi}\biggr{|}_{\phi=\phi_{0}}\,,\qquad\beta_{I}\equiv M_{\rm Pl}^{2}\frac{{\rm d}^{2}\ln m_{I}(\phi)}{{\rm d}\phi^{2}}\biggr{|}_{\phi=\phi_{0}}\,, (26)
g4\displaystyle g_{4} \displaystyle\equiv MPldlnG4(ϕ)dϕ|ϕ=ϕ0,γ4MPl2d2lnG4(ϕ)dϕ2|ϕ=ϕ0.\displaystyle M_{\rm Pl}\frac{{\rm d}\ln G_{4}(\phi)}{{\rm d}\phi}\biggr{|}_{\phi=\phi_{0}}\,,\qquad\gamma_{4}\equiv M_{\rm Pl}^{2}\frac{{\rm d}^{2}\ln G_{4}(\phi)}{{\rm d}\phi^{2}}\biggr{|}_{\phi=\phi_{0}}\,. (27)

On using Eq. (9), the matter source terms in Eq. (17) evaluated on the Minkowski background are expressed as

T,ϕG4,ϕ2G4T|ϕ=ϕ0=1MPlI=A,Bα^ImI(ϕ0)1uI0δ(3)(𝒙𝒙I(t)),T_{,\phi}-\frac{G_{4,\phi}}{2G_{4}}T\biggr{|}_{\phi=\phi_{0}}=-\frac{1}{M_{\rm Pl}}\sum_{I=A,B}\hat{\alpha}_{I}m_{I}(\phi_{0})\frac{1}{u_{I}^{0}}\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t))\,, (28)

where

α^IαIg42.\hat{\alpha}_{I}\equiv\alpha_{I}-\frac{g_{4}}{2}\,. (29)

As we will show in Sec. VI, the quantity α^I\hat{\alpha}_{I} is directly related to a scalar charge. In this sense, α^I\hat{\alpha}_{I} is a more fundamental physical quantity than αI\alpha_{I}. It is known that the theory (1) does not have hairy BH solutions, in which case α^I=0\hat{\alpha}_{I}=0. On the other hand, the NS can have scalar hairs, in which case α^I0\hat{\alpha}_{I}\neq 0. As we will see in Sec. V, the scalar charge α^I\hat{\alpha}_{I} appears in the gravitational waveform as a quantity charactering the deviation from GR. One can also consider the following sensitivity parameter Eardley (1975)

sIdlnmI(ϕ)dlnϕ|ϕ=ϕ0=ϕ0MPlαI.s_{I}\equiv\frac{{\rm d}\ln m_{I}(\phi)}{{\rm d}\ln\phi}\biggr{|}_{\phi=\phi_{0}}=\frac{\phi_{0}}{M_{\rm Pl}}\alpha_{I}\,. (30)

In BD theories given by G4=ϕ/(16π)G_{4}=\phi/(16\pi), we have g4=MPl/ϕ0g_{4}=M_{\rm Pl}/\phi_{0} and hence α^I=(MPl/ϕ0)(sI1/2)\hat{\alpha}_{I}=(M_{\rm Pl}/\phi_{0})(s_{I}-1/2). Then, the no-hair BH in BD theories corresponds to the sensitivity parameter sI=1/2s_{I}=1/2. Depending on the theories under consideration, however, sIs_{I} defined in Eq. (30) can be affected by an ambiguity of the asymptotic value of ϕ0\phi_{0}. In the following we will use α^I\hat{\alpha}_{I} instead of sIs_{I}, as the former has a direct relation with the scalar charge.

III.1 Perturbation equations up to second order

We expand the field equations of motion up to second order in metric and scalar-field perturbations. In doing so, we use the properties μϕ=μφ\nabla_{\mu}\phi=\partial_{\mu}\varphi and δX=ημνμφνφ/2\delta X=-\eta^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi/2 up to quadratic order, where μ/xμ\partial_{\mu}\equiv\partial/\partial x^{\mu}. We also exploit the following relation

ϕ=(ημνhμν)μνϕ=Mφhμνμνφ(μhμα12ηαββh)αφ+𝒪(ε3),\square\phi=(\eta^{\mu\nu}-h^{\mu\nu})\nabla_{\mu}\partial_{\nu}\phi=\square_{\rm M}\varphi-h^{\mu\nu}\partial_{\mu}\partial_{\nu}\varphi-\left(\partial_{\mu}h^{\mu\alpha}-\frac{1}{2}\eta^{\alpha\beta}\partial_{\beta}h\right)\partial_{\alpha}\varphi+{\cal O}(\varepsilon^{3})\,, (31)

where 𝒪(ε3){\cal O}(\varepsilon^{3}) means the third-order perturbations, and

Mημνμν=2t2+2,\square_{\rm M}\equiv\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}=-\frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}\,, (32)

with 2\nabla^{2} being the three dimensional Laplacian in Minkowski spacetime. Expanding Eqs. (12) and (13) up to second order in perturbations, it follows that Hou and Gong (2018)

G2ημνG2hμνG2,ϕφημνG2,ϕφhμν+12G2,Xμφμφημν12G2,ϕϕφ2ημνG2,Xμφνφ\displaystyle-G_{2}\eta_{\mu\nu}-G_{2}h_{\mu\nu}-G_{2,\phi}\varphi\eta_{\mu\nu}-G_{2,\phi}\varphi h_{\mu\nu}+\frac{1}{2}G_{2,X}\partial^{\mu}\varphi\partial_{\mu}\varphi\,\eta_{\mu\nu}-\frac{1}{2}G_{2,\phi\phi}\varphi^{2}\eta_{\mu\nu}-G_{2,X}\partial_{\mu}\varphi\partial_{\nu}\varphi
+2G3,ϕμφνφημνG3,ϕλφλφ+2(G4+G4,ϕφ)δGμν(1)+2G4δGμν(2)+2hμνG4,ϕMφ2ημνG4,ϕhαβαβφ\displaystyle+2G_{3,\phi}\partial_{\mu}\varphi\partial_{\nu}\varphi-\eta_{\mu\nu}G_{3,\phi}\partial^{\lambda}\varphi\partial_{\lambda}\varphi+2(G_{4}+G_{4,\phi}\varphi)\delta G_{\mu\nu}^{(1)}+2G_{4}\delta G_{\mu\nu}^{(2)}+2h_{\mu\nu}G_{4,\phi}\square_{\rm M}\varphi-2\eta_{\mu\nu}G_{4,\phi}h^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\varphi
+2ημν(G4,ϕMφ+G4,ϕϕφMφ+G4,ϕϕλφλφ)ημνG4,ϕαφ(2βhαβηαββh)2G4,ϕμνφ\displaystyle+2\eta_{\mu\nu}\left(G_{4,\phi}\square_{\rm M}\varphi+G_{4,\phi\phi}\varphi\square_{\rm M}\varphi+G_{4,\phi\phi}\partial^{\lambda}\varphi\partial_{\lambda}\varphi\right)-\eta_{\mu\nu}G_{4,\phi}\partial_{\alpha}\varphi\left(2\partial_{\beta}h^{\alpha\beta}-\eta^{\alpha\beta}\partial_{\beta}h\right)-2G_{4,\phi}\partial_{\mu}\partial_{\nu}\varphi
+G4,ϕ(2μhναηαββhμν)αφ2G4,ϕϕφμνφ2G4,ϕϕμφνφ=Tμν(1)+Tμν(2),\displaystyle+G_{4,\phi}\left(2\partial_{\mu}{h_{\nu}}^{\alpha}-\eta^{\alpha\beta}\partial_{\beta}h_{\mu\nu}\right)\partial_{\alpha}\varphi-2G_{4,\phi\phi}\varphi\partial_{\mu}\partial_{\nu}\varphi-2G_{4,\phi\phi}\partial_{\mu}\varphi\partial_{\nu}\varphi=T_{\mu\nu}^{(1)}+T_{\mu\nu}^{(2)}\,, (33)
(G2,X2G3,ϕ)[Mφhμνμνφ(μhμα12ηαββh)αφ]+(G2,ϕX2G3,ϕϕ)(φMφ+μφμφ)\displaystyle\left(G_{2,X}-2G_{3,\phi}\right)\left[\square_{\rm M}\varphi-h^{\mu\nu}\partial_{\mu}\partial_{\nu}\varphi-\left(\partial_{\mu}h^{\mu\alpha}-\frac{1}{2}\eta^{\alpha\beta}\partial_{\beta}h\right)\partial_{\alpha}\varphi\right]+\left(G_{2,\phi X}-2G_{3,\phi\phi}\right)\left(\varphi\square_{\rm M}\varphi+\partial^{\mu}\varphi\partial_{\mu}\varphi\right)
G3,X[(Mφ)2μνφμνφ]+G2,ϕ+G2,ϕϕφ+12G2,ϕϕϕφ2(12G2,ϕX2G3,ϕϕ)μφμφ\displaystyle-G_{3,X}\left[(\square_{\rm M}\varphi)^{2}-\partial^{\mu}\partial^{\nu}\varphi\partial_{\mu}\partial_{\nu}\varphi\right]+G_{2,\phi}+G_{2,\phi\phi}\varphi+\frac{1}{2}G_{2,\phi\phi\phi}\varphi^{2}-\left(\frac{1}{2}G_{2,\phi X}-2G_{3,\phi\phi}\right)\partial^{\mu}\varphi\partial_{\mu}\varphi
+(G4,ϕ+G4,ϕϕφ)δR(1)+G4,ϕδR(2)=T,ϕ(1)T,ϕ(2),\displaystyle+\left(G_{4,\phi}+G_{4,\phi\phi}\varphi\right)\delta R^{(1)}+G_{4,\phi}\delta R^{(2)}=-T_{,\phi}^{(1)}-T_{,\phi}^{(2)}\,, (34)

where δGμν\delta G_{\mu\nu} and δR\delta R are the perturbed Einstein tensor and Ricci scalar, respectively, hημνhμνh\equiv\eta^{\mu\nu}h_{\mu\nu} is the trace of hμνh_{\mu\nu}, and the upper subscripts “(1)(1)” and “(2)(2)” represent the first- and second-order perturbations, respectively. The explicit forms of δGμν(1)\delta G_{\mu\nu}^{(1)} and δR(1)\delta R^{(1)} are given, respectively, by

δGμν(1)\displaystyle\delta G_{\mu\nu}^{(1)} =\displaystyle= 12(MhμνημνMh2μαhνα+μνh+ημναβhαβ),\displaystyle-\frac{1}{2}\left(\square_{\rm M}h_{\mu\nu}-\eta_{\mu\nu}\square_{\rm M}h-2\partial_{\mu}\partial^{\alpha}h_{\nu\alpha}+\partial_{\mu}\partial_{\nu}h+\eta_{\mu\nu}\partial_{\alpha}\partial_{\beta}h^{\alpha\beta}\right)\,, (35)
δR(1)\displaystyle\delta R^{(1)} =\displaystyle= μνhμνMh.\displaystyle\partial_{\mu}\partial_{\nu}h^{\mu\nu}-\square_{\rm M}h\,. (36)

In Eqs. (33) and (34), the quantities G2,3,4G_{2,3,4} and their ϕ\phi, XX derivatives should be evaluated on the Minkowski background with the field value ϕ=ϕ0\phi=\phi_{0}, e.g., G4=G4(ϕ0)G_{4}=G_{4}(\phi_{0}). For the consistency of Eq. (33), the background term G2ημν-G_{2}\eta_{\mu\nu} needs to vanish. Similarly, the term G2,ϕG_{2,\phi} in Eq. (34) must vanish, so that

G2(ϕ0)=0,G2,ϕ(ϕ0)=0.G_{2}(\phi_{0})=0\,,\qquad G_{2,\phi}(\phi_{0})=0\,. (37)

We introduce the following quantity

θμνhμν12ημνhημνg4φMPl.\theta_{\mu\nu}\equiv h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h-\eta_{\mu\nu}g_{4}\frac{\varphi}{M_{\rm Pl}}\,. (38)

Taking the trace of Eq. (38) and defining θημνθμν\theta\equiv\eta^{\mu\nu}\theta_{\mu\nu}, we find

h=θ4g4φMPl,h=-\theta-4g_{4}\frac{\varphi}{M_{\rm Pl}}\,, (39)

so that hμνh_{\mu\nu} is expressed as

hμν=θμν12ημνθημνg4φMPl.h_{\mu\nu}=\theta_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}\theta-\eta_{\mu\nu}g_{4}\frac{\varphi}{M_{\rm Pl}}\,. (40)

Substituting Eqs. (39) and (40) into Eq. (33), we obtain

Mθμν+2μαθναημναβθαβ=τμν,-\square_{\rm M}\theta_{\mu\nu}+2\partial_{\mu}\partial^{\alpha}\theta_{\nu\alpha}-\eta_{\mu\nu}\partial^{\alpha}\partial^{\beta}\theta_{\alpha\beta}=\tau_{\mu\nu}\,, (41)

where

τμν=Tμν(1)G4+𝒪(θ2,φ2,θφ,Tμν(2),).\tau_{\mu\nu}=\frac{T_{\mu\nu}^{(1)}}{G_{4}}+{\cal O}\left(\theta^{2},\varphi^{2},\theta\varphi,T_{\mu\nu}^{(2)},\cdots\right)\,. (42)

In the following, we choose the Lorentz gauge condition

νθμν=0.\partial^{\nu}\theta_{\mu\nu}=0\,. (43)

Under this gauge choice, Eq. (41) is simplified to

Mθμν=τμν,\square_{\rm M}\theta_{\mu\nu}=-\tau_{\mu\nu}\,, (44)

with τμν\tau_{\mu\nu} satisfying

ντμν=0.\partial^{\nu}\tau_{\mu\nu}=0\,. (45)

We note that the leading-order contribution to τμν\tau_{\mu\nu} is the first-order perturbation Tμν(1)/G4(ϕ0)T_{\mu\nu}^{(1)}/G_{4}(\phi_{0}).

III.2 Linear perturbations and quadrupole formula of tensor waves

Let us first derive the solutions to hμνh_{\mu\nu} and φ\varphi at linear order. At first order in perturbations, Eqs. (33) and (34) reduce, respectively, to

2G4δGμν(1)+2ημνG4,ϕMφ2G4,ϕμνφ=Tμν(1),\displaystyle 2G_{4}\delta G_{\mu\nu}^{(1)}+2\eta_{\mu\nu}G_{4,\phi}\square_{\rm M}\varphi-2G_{4,\phi}\partial_{\mu}\partial_{\nu}\varphi=T_{\mu\nu}^{(1)}\,, (46)
(G2,X2G3,ϕ)Mφ+G2,ϕϕφ+G4,ϕδR(1)=T,ϕ(1).\displaystyle\left(G_{2,X}-2G_{3,\phi}\right)\square_{\rm M}\varphi+G_{2,\phi\phi}\varphi+G_{4,\phi}\delta R^{(1)}=-T_{,\phi}^{(1)}\,. (47)

Taking the trace of Eq. (46), defining T(1)ημνTμν(1)T^{(1)}\equiv\eta^{\mu\nu}T_{\mu\nu}^{(1)}, and using the property ημνδGμν(1)=δR(1)\eta^{\mu\nu}\delta G_{\mu\nu}^{(1)}=-\delta R^{(1)}, we obtain

δR(1)=6G4,ϕMφT(1)2G4.\delta R^{(1)}=\frac{6G_{4,\phi}\square_{\rm M}\varphi-T^{(1)}}{2G_{4}}\,. (48)

Substituting Eq. (48) into Eq. (47), we find

(Mms2)φ=1ζ0[T,ϕ(1)g42MPlT(1)],\left(\square_{\rm M}-m_{s}^{2}\right)\varphi=-\frac{1}{\zeta_{0}}\left[T_{,\phi}^{(1)}-\frac{g_{4}}{2M_{\rm Pl}}T^{(1)}\right]\,, (49)

where

ζ0G2,X2G3,ϕ+3G4,ϕ2G4|ϕ=ϕ0,ms2G2,ϕϕ(ϕ0)ζ0.\zeta_{0}\equiv G_{2,X}-2G_{3,\phi}+\frac{3G_{4,\phi}^{2}}{G_{4}}\biggr{|}_{\phi=\phi_{0}}\,,\qquad m_{s}^{2}\equiv-\frac{G_{2,\phi\phi}(\phi_{0})}{\zeta_{0}}\,. (50)

The quantity msm_{s} corresponds to the mass of the scalar field. In the presence of a scalar potential V(ϕ)V(\phi) appearing as the term V(ϕ)-V(\phi) in G2(ϕ,X)G_{2}(\phi,X), the mass squared is given by V,ϕϕ/ζ0V_{,\phi\phi}/\zeta_{0}. From Eqs. (42) and (44), the linear-order perturbation θμν\theta_{\mu\nu} obeys

Mθμν=Tμν(1)G4(ϕ0).\square_{\rm M}\theta_{\mu\nu}=-\frac{T_{\mu\nu}^{(1)}}{G_{4}(\phi_{0})}\,. (51)

To solve Eq. (51) for θμν\theta_{\mu\nu}, we consider the Green function satisfying M𝒢(xx)=δ(4)(xx)\square_{\rm M}\,{\cal G}(x-x^{\prime})=\delta^{(4)}(x-x^{\prime}), where xx represents the four dimensional coordinate xμ=(t,𝒙)x^{\mu}=(t,{\bm{x}}) and δ(4)(x)\delta^{(4)}(x) is the four dimensional delta function. We exploit the fact that the integrated solution to this equation is expressed in the form

𝒢(xx)=14π|𝒙𝒙|δ(trett),{\cal G}(x-x^{\prime})=-\frac{1}{4\pi|{\bm{x}}-{\bm{x}}^{\prime}|}\delta(t_{\rm ret}-t^{\prime})\,, (52)

where tret=t|𝒙𝒙|t_{\rm ret}=t-|{\bm{x}}-{\bm{x}}^{\prime}| is the retarded time. Then, the solution to Eq. (51) at spacetime point xx is given by

θμν(x)=14πG4(ϕ0)d4xδ(trett)|𝒙𝒙|Tμν(1)(x)=14πG4(ϕ0)d3xTμν(1)(t|𝒙𝒙|,𝒙)|𝒙𝒙|.\theta_{\mu\nu}(x)=\frac{1}{4\pi G_{4}(\phi_{0})}\int{\rm d}^{4}x^{\prime}\frac{\delta(t_{\rm ret}-t^{\prime})}{|{\bm{x}}-{\bm{x}}^{\prime}|}T_{\mu\nu}^{(1)}(x^{\prime})=\frac{1}{4\pi G_{4}(\phi_{0})}\int{\rm d}^{3}x^{\prime}\frac{T_{\mu\nu}^{(1)}(t-|{\bm{x}}-{\bm{x}}^{\prime}|,{\bm{x}}^{\prime})}{|{\bm{x}}-{\bm{x}}^{\prime}|}\,. (53)

Since the metric components θ0μ\theta_{0\mu} do not correspond to the dynamical degrees of freedom of GWs, we will study the propagation of spatial components θij\theta_{ij} in the following discussion. We would like to compute θij(x)\theta_{ij}(x) at an observer position 𝒙=D𝒏{\bm{x}}=D{\bm{n}} far away from a binary source, where 𝒏{\bm{n}} is a unit vector. For |𝒙||{\bm{x}}^{\prime}| at most of order a typical radius of the source dd, we have |𝒙𝒙|=D𝒙𝒏+𝒪(d2/D)|{\bm{x}}-{\bm{x}}^{\prime}|=D-{\bm{x}}^{\prime}\cdot{\bm{n}}+{\cal O}(d^{2}/D) and hence t|𝒙𝒙|tD+𝒙𝒏t-|{\bm{x}}-{\bm{x}}^{\prime}|\simeq t-D+{\bm{x}}^{\prime}\cdot{\bm{n}}. Provided that typical velocities of the source are much smaller than the speed of light, we can expand Tμν(t|𝒙𝒙|,𝒙)T_{\mu\nu}(t-|{\bm{x}}-{\bm{x}}^{\prime}|,{\bm{x}}^{\prime}) about the retarded time tDt-D. For DdD\gg d, the denominator of Eq. (53) can be approximated as |𝒙𝒙|D|{\bm{x}}-{\bm{x}}^{\prime}|\simeq D. Then, it follows that

θij(x)=14πG4(ϕ0)D=01!td3xTij(1)(tD,𝒙)(𝒙𝒏).\theta_{ij}(x)=\frac{1}{4\pi G_{4}(\phi_{0})D}\sum_{\ell=0}^{\infty}\frac{1}{\ell!}\frac{\partial^{\ell}}{\partial t^{\ell}}\int{\rm d}^{3}x^{\prime}\,T_{ij}^{(1)}\left(t-D,{\bm{x}}^{\prime}\right)\left({\bm{x}}^{\prime}\cdot{\bm{n}}\right)^{\ell}\,. (54)

On using the continuity equation νTμν(1)=0\partial^{\nu}T_{\mu\nu}^{(1)}=0 arising from Eq. (45), there is the relation Maggiore (2007)

d3xTij(1)(t,𝒙)=122t2d3xT00(1)(t,𝒙)xixj.\int{\rm d}^{3}x^{\prime}\,T_{ij}^{(1)}(t,{\bm{x}}^{\prime})=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}\int{\rm d}^{3}x^{\prime}\,T_{00}^{(1)}(t,{\bm{x}}^{\prime})x_{i}^{\prime}x_{j}^{\prime}\,. (55)

Then, the leading-order term of Eq. (54) (i.e., =0\ell=0) yields

θij(x)=18πG4(ϕ0)D2t2d3xT00(1)(tD,𝒙)xixj.\theta_{ij}(x)=\frac{1}{8\pi G_{4}(\phi_{0})D}\frac{\partial^{2}}{\partial t^{2}}\int{\rm d}^{3}x^{\prime}\,T_{00}^{(1)}\left(t-D,{\bm{x}}^{\prime}\right)x_{i}^{\prime}x_{j}^{\prime}\,. (56)

Under the low-velocity approximation of point sources, the leading-order contribution to the (00) component of Eq. (8) on the Minkowski background is given by

T00(1)(x)=I=A,BmIδ(3)(𝒙𝒙I(t)).{T^{00}}^{(1)}(x)=\sum_{I=A,B}m_{I}\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t))\,. (57)

From Eqs. (56) and (57), we obtain the following quadrupole formula

θij(x)=18πG4(ϕ0)D2t2I=A,BmIxIixIj.\theta^{ij}(x)=\frac{1}{8\pi G_{4}(\phi_{0})D}\frac{\partial^{2}}{\partial t^{2}}\sum_{I=A,B}m_{I}x_{I}^{i}x_{I}^{j}\,. (58)

Since θij(x)\theta^{ij}(x) depends on the motion of sources, we derive the geodesic equations of motion at Newtonian order in Sec. III.3.

III.3 Geodesic equations at Newtonian order

Under the approximation that the typical velocities of sources are much smaller than the speed of light (|uIi|1|u_{I}^{i}|\ll 1 with τt\tau\simeq t), the spatial components of Eq. (21) translate to

d2xIidt212ih00+αIiφMPl=0,\frac{{\rm d}^{2}x_{I}^{i}}{{\rm d}t^{2}}-\frac{1}{2}\partial^{i}h_{00}+\alpha_{I}\frac{\partial^{i}\varphi}{M_{\rm Pl}}=0\,, (59)

where we used Γ00iih00/2\Gamma^{i}_{00}\simeq-\partial^{i}h_{00}/2. The particle motion is affected by the spatial derivatives of h00h_{00} and φ\varphi, so we compute these terms in the following. At leading order in the PN approximation, the only nonvanishing component of TμνT_{\mu\nu} is given by

T00=T00(1)=I=A,BmIδ(3)(𝒙𝒙I).T_{00}=T_{00}^{(1)}=\sum_{I=A,B}m_{I}\delta^{(3)}\left({\bm{x}}-{\bm{x}}_{I}\right)\,. (60)

In the Newtonian limit the background spacetime is stationary, so the (00)(00) component of Eq. (51) yields

2θ00(𝒙)=1G4(ϕ0)I=A,BmIδ(3)(𝒙𝒙I).\nabla^{2}\theta_{00}({\bm{x}})=-\frac{1}{G_{4}(\phi_{0})}\sum_{I=A,B}m_{I}\delta^{(3)}\left({\bm{x}}-{\bm{x}}_{I}\right)\,. (61)

This is integrated to give

θ00(𝒙)=U(𝒙)4πG4(ϕ0),\theta_{00}({\bm{x}})=\frac{U({\bm{x}})}{4\pi G_{4}(\phi_{0})}\,, (62)

where

U(𝒙)I=A,BmI|𝒙𝒙I|,U({\bm{x}})\equiv\sum_{I=A,B}\frac{m_{I}}{|{\bm{x}}-{\bm{x}}_{I}|}\,, (63)

with the trace θ(𝒙)=U(𝒙)/[4πG4(ϕ0)]\theta({\bm{x}})=-U({\bm{x}})/[4\pi G_{4}(\phi_{0})].

At linear order, the scalar-field perturbation obeys Eq. (49) with T(1)=T00(1)T^{(1)}=-T_{00}^{(1)}. In the stationary Newtonian limit, this equation yields

(2ms2)φ(𝒙)=I=A,Bα^ImIζ0MPlδ(3)(𝒙𝒙A),\left(\nabla^{2}-m_{s}^{2}\right)\varphi({\bm{x}})=\sum_{I=A,B}\frac{\hat{\alpha}_{I}m_{I}}{\zeta_{0}M_{\rm Pl}}\delta^{(3)}\left({\bm{x}}-{\bm{x}}_{A}\right)\,, (64)

which is integrated to give

φ(𝒙)=Us(𝒙)8πζ0MPl,\varphi({\bm{x}})=\frac{U_{s}({\bm{x}})}{8\pi\zeta_{0}M_{\rm Pl}}\,, (65)

where

Us(𝒙)2I=A,Bα^ImIems|𝒙𝒙I||𝒙𝒙I|.U_{s}({\bm{x}})\equiv-2\sum_{I=A,B}\hat{\alpha}_{I}m_{I}\frac{e^{-m_{s}|{\bm{x}}-{\bm{x}}_{I}|}}{|{\bm{x}}-{\bm{x}}_{I}|}\,. (66)

Substituting Eqs. (62) and (65) into Eq. (40), the leading-order components of hμνh_{\mu\nu} are given by

h00=18π[UG4(ϕ0)+g4Usζ0MPl2],h0i=0,hij=18π[UG4(ϕ0)g4Usζ0MPl2]δij.h_{00}=\frac{1}{8\pi}\left[\frac{U}{G_{4}(\phi_{0})}+\frac{g_{4}U_{s}}{\zeta_{0}M_{\rm Pl}^{2}}\right]\,,\qquad h_{0i}=0\,,\qquad h_{ij}=\frac{1}{8\pi}\left[\frac{U}{G_{4}(\phi_{0})}-\frac{g_{4}U_{s}}{\zeta_{0}M_{\rm Pl}^{2}}\right]\delta_{ij}\,. (67)

On using the solutions (65) and (67) for a binary system, the equations of motion of particles AA and BB following from Eq. (59) are

d2xAidt2=G~mBrir3,d2xBidt2=G~mArir3,\frac{{\rm d}^{2}x_{A}^{i}}{{\rm d}t^{2}}=-\frac{\tilde{G}m_{B}r^{i}}{r^{3}}\,,\qquad\frac{{\rm d}^{2}x_{B}^{i}}{{\rm d}t^{2}}=\frac{\tilde{G}m_{A}r^{i}}{r^{3}}\,, (68)

where ri=xAixBir^{i}=x_{A}^{i}-x_{B}^{i}, r=|ri|r=|r^{i}|, and

G~116πG4(ϕ0)[1+4G4(ϕ0)ζ0MPl2α^Aα^B(1+msr)emsr].\tilde{G}\equiv\frac{1}{16\pi G_{4}(\phi_{0})}\left[1+\frac{4G_{4}(\phi_{0})}{\zeta_{0}M_{\rm Pl}^{2}}\hat{\alpha}_{A}\hat{\alpha}_{B}\left(1+m_{s}r\right)e^{-m_{s}r}\right]\,. (69)

The quantity G~\tilde{G} corresponds to an effective gravitational coupling between two point-like particles, which contains the product of α^A\hat{\alpha}_{A} and α^B\hat{\alpha}_{B}. The relative displacement of two sources obeys the differential equation

μr¨i=G~mAmBr3ri,\mu\ddot{r}^{i}=-\frac{\tilde{G}m_{A}m_{B}}{r^{3}}r^{i}\,, (70)

where a dot represents the derivative with respect to tt, and μ\mu is the reduced mass defined by

μmAmBmA+mB.\mu\equiv\frac{m_{A}m_{B}}{m_{A}+m_{B}}\,. (71)

III.4 Tensor waves at quadrupole order from a quasicircular orbit

For a quasicircular orbit of a binary system, we will simplify the quadrupole formula (58). Introducing the center of mass

xCMi=mAxAi+mBxBim,withmmA+mB,x^{i}_{\rm CM}=\frac{m_{A}x^{i}_{A}+m_{B}x^{i}_{B}}{m}\,,\qquad{\rm with}\qquad m\equiv m_{A}+m_{B}\,, (72)

we can express Eq. (58) in the form

θij(x)=18πG4(ϕ0)D2t2(mxCMixCMj+μrirj),\theta^{ij}(x)=\frac{1}{8\pi G_{4}(\phi_{0})D}\frac{\partial^{2}}{\partial t^{2}}\left(mx_{\rm CM}^{i}x_{\rm CM}^{j}+\mu r^{i}r^{j}\right)\,, (73)

For an isolated binary system the center of mass is not accelerating, so it does not contribute to the generation of GWs. Then, we can choose the frame xCMi=0x_{\rm CM}^{i}=0, i.e.,

mAxAi+mBxBi=0,m_{A}x^{i}_{A}+m_{B}x^{i}_{B}=0\,, (74)

without loss of generality. Then, Eq. (73) reduces to

θij(x)=μ8πG4(ϕ0)D(2r˙ir˙j+r¨irj+rir¨j).\theta^{ij}(x)=\frac{\mu}{8\pi G_{4}(\phi_{0})D}\left(2\dot{r}^{i}\dot{r}^{j}+\ddot{r}^{i}r^{j}+r^{i}\ddot{r}^{j}\right)\,. (75)

Substituting Eq. (70) into Eq. (75), we obtain

θij(x)=μ4πG4(ϕ0)D(vivjG~mrirjr3),\theta^{ij}(x)=\frac{\mu}{4\pi G_{4}(\phi_{0})D}\left(v^{i}v^{j}-\tilde{G}m\frac{r^{i}r^{j}}{r^{3}}\right)\,, (76)

where vir˙i=x˙Aix˙Biv^{i}\equiv\dot{r}^{i}=\dot{x}_{A}^{i}-\dot{x}_{B}^{i}. The relative velocity and displacement between two point-like particles affect the value of θij\theta^{ij} at the observed point xx.

Let us consider a relative circular orbit around the center of mass. From Eq. (70), the Newtonian equation along the radial direction is given by

μv2r=G~mAmBr2,\mu\frac{v^{2}}{r}=\frac{\tilde{G}m_{A}m_{B}}{r^{2}}\,, (77)

and hence v2=G~m/rv^{2}=\tilde{G}m/r. We introduce the unit vectors v^i\hat{v}^{i} and r^i\hat{r}^{i} such that vi=vv^iv^{i}=v\hat{v}^{i} and ri=rr^ir^{i}=r\hat{r}^{i}. Then, Eq. (76) reduces to

θij(x)=G~μm4πG4(ϕ0)rD(v^iv^jr^ir^j).\theta^{ij}(x)=\frac{\tilde{G}\mu m}{4\pi G_{4}(\phi_{0})rD}\left(\hat{v}^{i}\hat{v}^{j}-\hat{r}^{i}\hat{r}^{j}\right)\,. (78)

This is the leading-order solution to θij(x)\theta^{ij}(x) for the quasicircular orbit. Note that the positions of particles AA and BB can be expressed as

xAi=μmAri,xBi=μmBri,x_{A}^{i}=\frac{\mu}{m_{A}}r^{i}\,,\qquad x_{B}^{i}=-\frac{\mu}{m_{B}}r^{i}\,, (79)

together with their velocities x˙Ai=μvi/mA\dot{x}_{A}^{i}=\mu v^{i}/m_{A} and x˙Bi=μvi/mB\dot{x}_{B}^{i}=-\mu v^{i}/m_{B}.

IV Gravitational waves from compact binary systems

IV.1 Solutions to scalar-field perturbations

Since we derived the quadrupole formula (78) for tensor waves, the next procedure is to obtain solutions to the scalar-field perturbation φ\varphi. For this purpose, we perform the PN expansion up to quadrupole order for the scalar-field perturbation equation. We first express the derivative term ϕ\square\phi by using the d’Alembertian M\square_{\rm M} in Minkowski spacetime as

ϕ=(1+12θ+g4φMPl)Mϕθμνμνφg4MPlμφμφ+𝒪(ε3),\square\phi=\left(1+\frac{1}{2}\theta+g_{4}\frac{\varphi}{M_{\rm Pl}}\right)\square_{\rm M}\phi-\theta^{\mu\nu}\partial_{\mu}\partial_{\nu}\varphi-\frac{g_{4}}{M_{\rm Pl}}\partial_{\mu}\varphi\partial^{\mu}\varphi+{\cal O}(\varepsilon^{3})\,, (80)

where θ\theta is a trace of the metric tensor θμν\theta_{\mu\nu}. Up to second order in perturbations φ\varphi and θ\theta, the scalar-field Eq. (13) is given by

(Mms2)φ\displaystyle\left(\square_{\rm M}-m_{s}^{2}\right)\varphi =\displaystyle= 1ζ0(112θg4φMPlζ1ζ0φ)(T,ϕG4,ϕ2G4T)\displaystyle-\frac{1}{\zeta_{0}}\left(1-\frac{1}{2}\theta-g_{4}\frac{\varphi}{M_{\rm Pl}}-\frac{\zeta_{1}}{\zeta_{0}}\varphi\right)\left(T_{,\phi}-\frac{G_{4,\phi}}{2G_{4}}T\right) (81)
+𝒪(φ2,μφμφ,(Mφ)2,μνφμνφ,θφ,θμνμνφ),\displaystyle+{\cal O}\left(\varphi^{2},\partial_{\mu}\varphi\partial^{\mu}\varphi,(\square_{\rm M}\varphi)^{2},\partial^{\mu}\partial^{\nu}\varphi\partial_{\mu}\partial_{\nu}\varphi,\theta\varphi,\theta^{\mu\nu}\partial_{\mu}\partial_{\nu}\varphi\right)\,,

where ζ0\zeta_{0} is defined in Eq. (50), and

ζ1G2,ϕX2G3,ϕϕ+6G4,ϕG4,ϕϕG43G4,ϕ3(G4)2|ϕ=ϕ0.\zeta_{1}\equiv G_{2,\phi X}-2G_{3,\phi\phi}+\frac{6G_{4,\phi}G_{4,\phi\phi}}{G_{4}}-\frac{3G_{4,\phi}^{3}}{(G_{4})^{2}}\biggr{|}_{\phi=\phi_{0}}\,. (82)

We perform a PN expansion of the source term corresponding to the first term on the right hand-side of Eq. (81). In the expression of the trace TT given by Eq. (9), we pick up terms up to the orders of UU, UsU_{s}, and vI2v_{I}^{2}. We also exploit the expansions

1g=112h=118π[UG4(ϕ0)2g4Usζ0MPl2],\displaystyle\frac{1}{\sqrt{-g}}=1-\frac{1}{2}h=1-\frac{1}{8\pi}\left[\frac{U}{G_{4}(\phi_{0})}-\frac{2g_{4}U_{s}}{\zeta_{0}M_{\rm Pl}^{2}}\right]\,, (83)
1uI0=112h0012vI2=1116π[UG4(ϕ0)+g4Usζ0MPl2]12vI2,\displaystyle\frac{1}{u_{I}^{0}}=1-\frac{1}{2}h_{00}-\frac{1}{2}v_{I}^{2}=1-\frac{1}{16\pi}\left[\frac{U}{G_{4}(\phi_{0})}+\frac{g_{4}U_{s}}{\zeta_{0}M_{\rm Pl}^{2}}\right]-\frac{1}{2}v_{I}^{2}\,, (84)

as well as Eqs. (24) and (25). Then, it follows that

T,ϕG4,ϕ2G4T=I=A,BmI(ϕ0)MPl[α^I(13U16πG4(ϕ0)12vI2)+Us16πζ0MPl2(2α^I2+4g4α^I+2βIγ4)]δ(3)(𝒙𝒙A(t)).T_{,\phi}-\frac{G_{4,\phi}}{2G_{4}}T=-\sum_{I=A,B}\frac{m_{I}(\phi_{0})}{M_{\rm Pl}}\left[\hat{\alpha}_{I}\left(1-\frac{3U}{16\pi G_{4}(\phi_{0})}-\frac{1}{2}v_{I}^{2}\right)+\frac{U_{s}}{16\pi\zeta_{0}M_{\rm Pl}^{2}}\left(2\hat{\alpha}_{I}^{2}+4g_{4}\hat{\alpha}_{I}+2\beta_{I}-\gamma_{4}\right)\right]\delta^{(3)}({\bm{x}}-{\bm{x}}_{A}(t)). (85)

Terms in the second line of Eq. (81) are at most of order U2U^{2}, Us2U_{s}^{2}, UUsUU_{s}. Since they are higher than quadrupole order in the PN expansion, we neglect them in the following discussion. In the presence of a cubic derivative interaction G3(X)ϕG_{3}(X)\square\phi, nonlinear terms like (Mφ)2(\square_{\rm M}\varphi)^{2} and μνφμνφ\partial^{\mu}\partial^{\nu}\varphi\partial_{\mu}\partial_{\nu}\varphi can dominate over the left hand-side of Eq. (81) within a Vainshtein radius rVr_{V} Vainshtein (1972); Burrage and Seery (2010); De Felice et al. (2012); Kimura et al. (2012); Koyama et al. (2013). In the following we assume that rVr_{V} is at most of order the radius rsr_{s} of the star (rVrsr_{V}\lesssim r_{s}), so that the PN expansion given below is valid outside the source. In other words, our analysis loses its validity for rVrsr_{V}\gg r_{s} due to the dominance of nonlinear derivative terms in the scalar-field equation inside the Vainshtein radius.

On using Eq. (85), the scalar-wave Eq. (81) up to quadrupole order can be expressed as

(Mms2)φ=16πS,\left(\square_{\rm M}-m_{s}^{2}\right)\varphi=-16\pi S\,, (86)

where the source term is

S\displaystyle S =\displaystyle= 116πζ0MPlI=A,BmI(ϕ0)δ(3)(𝒙𝒙I(t))[α^I(1U16πG4(ϕ0)12vI2)\displaystyle-\frac{1}{16\pi\zeta_{0}M_{\rm Pl}}\sum_{I=A,B}m_{I}(\phi_{0})\delta^{(3)}({\bm{x}}-{\bm{x}}_{I}(t))\biggl{[}\hat{\alpha}_{I}\left(1-\frac{U}{16\pi G_{4}(\phi_{0})}-\frac{1}{2}v_{I}^{2}\right) (87)
+Us16πζ0MPl2(2α^I2+2g4α^I+2βIγ42α^IMPlζ1ζ0)].\displaystyle+\frac{U_{s}}{16\pi\zeta_{0}M_{\rm Pl}^{2}}\left(2\hat{\alpha}_{I}^{2}+2g_{4}\hat{\alpha}_{I}+2\beta_{I}-\gamma_{4}-2\hat{\alpha}_{I}\frac{M_{\rm Pl}\zeta_{1}}{\zeta_{0}}\right)\biggr{]}\,.

At spatial point 𝒙=𝒙A{\bm{x}}={\bm{x}}_{A} of the source AA, we have U(𝒙A)=mB/rU({\bm{x}}_{A})=m_{B}/r and Us(𝒙A)=2α^BmBemsr/rU_{s}({\bm{x}}_{A})=-2\hat{\alpha}_{B}m_{B}e^{-m_{s}r}/r. Similarly, at 𝒙=𝒙B{\bm{x}}={\bm{x}}_{B}, U(𝒙B)=mA/rU({\bm{x}}_{B})=m_{A}/r and Us(𝒙B)=2α^AmAemsr/rU_{s}({\bm{x}}_{B})=-2\hat{\alpha}_{A}m_{A}e^{-m_{s}r}/r. The solution to Eq. (86) measured by an observer at the position vector 𝑫=D𝒏{\bm{D}}=D{\bm{n}} and time tt is expressed by the sum of a “massless” solution φB\varphi_{B} and “massive” solution φm\varphi_{m} Alsing et al. (2012); Liu et al. (2020), such that

φ=φB+φm,\varphi=\varphi_{B}+\varphi_{m}\,, (88)

where

φB(t,𝑫)\displaystyle\varphi_{B}(t,{\bm{D}}) =\displaystyle= 4d3𝒙dtS(t,𝒙)|𝑫𝒙|δ(tt|𝑫𝒙|),\displaystyle 4\int{\rm d}^{3}{\bm{x}}^{\prime}{\rm d}t^{\prime}\frac{S(t^{\prime},{\bm{x}}^{\prime})}{|{\bm{D}}-{\bm{x}}^{\prime}|}\delta(t-t^{\prime}-|{\bm{D}}-{\bm{x}}^{\prime}|)\,, (89)
φm(t,𝑫)\displaystyle\varphi_{m}(t,{\bm{D}}) =\displaystyle= 4d3𝒙dtmsS(t,𝒙)J1(ms(tt)2|𝑫𝒙|2)(tt)2|𝑫𝒙|2Θ(tt|𝑫𝒙|),\displaystyle-4\int{\rm d}^{3}{\bm{x}}^{\prime}{\rm d}t^{\prime}\frac{m_{s}S(t^{\prime},{\bm{x}}^{\prime})J_{1}(m_{s}\sqrt{(t-t^{\prime})^{2}-|{\bm{D}}-{\bm{x}}^{\prime}|^{2}})}{\sqrt{(t-t^{\prime})^{2}-|{\bm{D}}-{\bm{x}}^{\prime}|^{2}}}\Theta(t-t^{\prime}-|{\bm{D}}-{\bm{x}}^{\prime}|)\,, (90)

where J1J_{1} is a Bessel function of the first kind, and Θ\Theta is a Heaviside function. Far away from the source (D|𝒙|D\gg|{\bm{x}}^{\prime}|), we exploit the approximation |𝑫𝒙|=D𝒙𝒏|{\bm{D}}-{\bm{x}}^{\prime}|=D-{\bm{x}}^{\prime}\cdot{\bm{n}} and replace the tt^{\prime} dependence in SS with t=tD+𝒙𝒏t^{\prime}=t-D+{\bm{x}}^{\prime}\cdot{\bm{n}}. Performing multipole expansions for the time-dependent part of SS, it follows that

φB(t,𝑫)\displaystyle\varphi_{B}(t,{\bm{D}}) =\displaystyle= 4D=01!td3𝒙S(tD,𝒙)(𝒙𝒏),\displaystyle\frac{4}{D}\sum_{\ell=0}^{\infty}\frac{1}{\ell!}\frac{\partial^{\ell}}{\partial t^{\ell}}\int{\rm d}^{3}{\bm{x}}^{\prime}S(t-D,{\bm{x}}^{\prime})({\bm{x}}^{\prime}\cdot{\bm{n}})^{\ell}\,, (91)
φm(t,𝑫)\displaystyle\varphi_{m}(t,{\bm{D}}) =\displaystyle= 4D=01!td3𝒙(𝒙𝒏)0dzS(tDu,𝒙)J1(z)u+1,\displaystyle-\frac{4}{D}\sum_{\ell=0}^{\infty}\frac{1}{\ell!}\frac{\partial^{\ell}}{\partial t^{\ell}}\int{\rm d}^{3}{\bm{x}}^{\prime}({\bm{x}}^{\prime}\cdot{\bm{n}})^{\ell}\int_{0}^{\infty}{\rm d}z\frac{S(t-Du,{\bm{x}}^{\prime})J_{1}(z)}{u^{\ell+1}}\,, (92)

where

u1+z2ms2D2,zms(tt)2|𝑫𝒙|2.u\equiv\sqrt{1+\frac{z^{2}}{m_{s}^{2}D^{2}}}\,,\qquad z\equiv m_{s}\sqrt{(t-t^{\prime})^{2}-|{\bm{D}}-{\bm{x}}^{\prime}|^{2}}\,. (93)

We consider a quasicircular orbit of the binary system given by the point-like particle equations of motion (68) with Eq. (79). We pick up the contributions up to quadrupole (=2\ell=2) terms in Eqs. (91) and (92). For the dipole and quadrupole contributions, we use the following relations

I=A,BmI(ϕ0)α^It(𝒙I𝒏)=μ(α^Aα^B)𝒗𝒏,\displaystyle\sum_{I=A,B}m_{I}(\phi_{0})\hat{\alpha}_{I}\frac{\partial}{\partial t}({\bm{x}}_{I}\cdot{\bm{n}})=\mu\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right){\bm{v}}\cdot{\bm{n}}\,, (94)
I=A,BmI(ϕ0)α^I12!2t2(𝒙I𝒏)2=12μΓ(𝒗𝒏)2+G~μm2r3Γ(𝒓𝒏)2,\displaystyle\sum_{I=A,B}m_{I}(\phi_{0})\hat{\alpha}_{I}\frac{1}{2!}\frac{\partial^{2}}{\partial t^{2}}({\bm{x}}_{I}\cdot{\bm{n}})^{2}=-\frac{1}{2}\mu\Gamma({\bm{v}}\cdot{\bm{n}})^{2}+\frac{\tilde{G}\mu m}{2r^{3}}\Gamma({\bm{r}}\cdot{\bm{n}})^{2}\,, (95)

where 𝒗=𝒙˙A𝒙˙B{\bm{v}}=\dot{{\bm{x}}}_{A}-\dot{{\bm{x}}}_{B}, μ\mu and mm are defined in Eqs. (71) and (72) respectively, and

Γ2mBα^A+mAα^Bm.\Gamma\equiv-2\frac{m_{B}\hat{\alpha}_{A}+m_{A}\hat{\alpha}_{B}}{m}\,. (96)

There are time-independent contributions to φB\varphi_{B} and φm\varphi_{m} (i.e., those without containing the dependence of 𝒓{\bm{r}} and 𝒗{\bm{v}}) irrelevant to the gravitational radiation power. Dropping such terms, we obtain the following solution far away from the source

φB\displaystyle\varphi_{B} =\displaystyle= μ4πζ0MPlD{α^A+α^B16πG4(ϕ0)mr14Γv2s16πζ0MPl2memsrr\displaystyle\frac{\mu}{4\pi\zeta_{0}M_{\rm Pl}D}\biggl{\{}\frac{\hat{\alpha}_{A}+\hat{\alpha}_{B}}{16\pi G_{4}(\phi_{0})}\frac{m}{r}-\frac{1}{4}\Gamma v^{2}-\frac{{\cal F}_{s}}{16\pi\zeta_{0}M_{\rm Pl}^{2}}\frac{me^{-m_{s}r}}{r} (97)
(α^Aα^B)𝒗𝒏+12Γ(𝒗𝒏)2Γ2G~mr3(𝒓𝒏)2}|tD,\displaystyle\qquad\qquad\qquad-\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right){\bm{v}}\cdot{\bm{n}}+\frac{1}{2}\Gamma({\bm{v}}\cdot{\bm{n}})^{2}-\frac{\Gamma}{2}\frac{\tilde{G}m}{r^{3}}({\bm{r}}\cdot{\bm{n}})^{2}\biggr{\}}\biggr{|}_{t-D}\,,
φm\displaystyle\varphi_{m} =\displaystyle= μ4πζ0MPlD{α^A+α^B16πG4(ϕ0)I1[mr]14ΓI1[v2]s16πζ0MPl2I1[memsrr]\displaystyle-\frac{\mu}{4\pi\zeta_{0}M_{\rm Pl}D}\biggl{\{}\frac{\hat{\alpha}_{A}+\hat{\alpha}_{B}}{16\pi G_{4}(\phi_{0})}I_{1}\left[\frac{m}{r}\right]-\frac{1}{4}\Gamma I_{1}\left[v^{2}\right]-\frac{{\cal F}_{s}}{16\pi\zeta_{0}M_{\rm Pl}^{2}}I_{1}\left[\frac{me^{-m_{s}r}}{r}\right] (98)
(α^Aα^B)I2[𝒗𝒏]+12ΓI3[(𝒗𝒏)2]Γ2I3[G~mr3(𝒓𝒏)2]}|tDu,\displaystyle\qquad\qquad\qquad-\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right)I_{2}\left[{\bm{v}}\cdot{\bm{n}}\right]+\frac{1}{2}\Gamma I_{3}\left[({\bm{v}}\cdot{\bm{n}})^{2}\right]-\frac{\Gamma}{2}I_{3}\biggl{[}\frac{\tilde{G}m}{r^{3}}({\bm{r}}\cdot{\bm{n}})^{2}\biggr{]}\biggr{\}}\biggr{|}_{t-Du}\,,

where

s\displaystyle{\cal F}_{s} \displaystyle\equiv 2α^B(2α^A2+2g4α^A+2βAγ42α^AMPlζ1ζ0)2α^A(2α^B2+2g4α^B+2βBγ42α^BMPlζ1ζ0),\displaystyle-2\hat{\alpha}_{B}\left(2\hat{\alpha}_{A}^{2}+2g_{4}\hat{\alpha}_{A}+2\beta_{A}-\gamma_{4}-2\hat{\alpha}_{A}\frac{M_{\rm Pl}\zeta_{1}}{\zeta_{0}}\right)-2\hat{\alpha}_{A}\left(2\hat{\alpha}_{B}^{2}+2g_{4}\hat{\alpha}_{B}+2\beta_{B}-\gamma_{4}-2\hat{\alpha}_{B}\frac{M_{\rm Pl}\zeta_{1}}{\zeta_{0}}\right)\,, (99)
In[f(t)]\displaystyle I_{n}[f(t)] \displaystyle\equiv 0dzf(tDu)J1(z)un.\displaystyle\int_{0}^{\infty}{\rm d}z\frac{f(t-Du)J_{1}(z)}{u^{n}}\,. (100)

Terms proportional to 𝒗𝒏{\bm{v}}\cdot{\bm{n}} correspond to the dipole mode, whereas terms proportional to (𝒗𝒏)2({\bm{v}}\cdot{\bm{n}})^{2} and (𝒓𝒏)2({\bm{r}}\cdot{\bm{n}})^{2} represent the quadrupole contributions. Terms in the first lines of Eqs. (97) and (98) correspond to the monopole mode. Since we are interested in the wavelike behavior of scalar-field perturbations, we will drop the monopole terms in the discussion below. We note that φB\varphi_{B} and φm\varphi_{m} acquire the time dependence through the changes of 𝒓{\bm{r}} and 𝒗{\bm{v}} induced by the energy loss of gravitational radiation. We will discuss this issue in Sec. V.

IV.2 Solutions to GW fields

The observed GWs at the detector can be quantified by the deviation from a geodesic equation. The distance ξi\xi^{i} between freely moving test particles is modified by the propagation of GWs. As long as the test particles move slowly and ξi\xi^{i} is smaller than the wavelength of GWs, the geodesic deviation equation reduces to d2ξi/dt2=R0i0jξj{\rm d}^{2}\xi^{i}/{\rm d}t^{2}=-R_{0i0j}\xi^{j} Maggiore (2007), where R0i0jR_{0i0j}’s are components of the Riemann tensor. The GW field 𝒉ij{\bm{h}}_{ij} is defined by

02𝒉ij=2R0i0j.\partial_{0}^{2}{\bm{h}}_{ij}=-2R_{0i0j}\,. (101)

At linear order in hμνh_{\mu\nu}, we have R0i0j=(02hij+ijh00)/2R_{0i0j}=-(\partial_{0}^{2}h_{ij}+\partial_{i}\partial_{j}h_{00})/2. We choose the traceless-transverse (TT) gauge

jθij=0,θ=0,\partial^{j}\theta_{ij}=0\,,\qquad\theta=0\,, (102)

under which h00=g4φ/MPlh_{00}=g_{4}\varphi/M_{\rm Pl}. Then, Eq. (101) yields

02𝒉ij=02θijTTδijg402φMPl+g4ijφMPl,\partial_{0}^{2}{\bm{h}}_{ij}=\partial_{0}^{2}\theta_{ij}^{\rm TT}-\delta_{ij}g_{4}\frac{\partial_{0}^{2}\varphi}{M_{\rm Pl}}+g_{4}\frac{\partial_{i}\partial_{j}\varphi}{M_{\rm Pl}}\,, (103)

where “TT” represents the TT gauge. The solution to φ\varphi without the monopole terms is expressed as

φ=φB(tD,𝒏)+φm(tDu,𝒏),\varphi=\varphi_{B}(t-D,{\bm{n}})+\varphi_{m}(t-Du,{\bm{n}})\,, (104)

where

φB(tD,𝒏)\displaystyle\varphi_{B}(t-D,{\bm{n}}) =\displaystyle= μ4πζ0MPlD{(α^Aα^B)𝒗𝒏12Γ(𝒗𝒏)2+Γ2G~mr3(𝒓𝒏)2},\displaystyle-\frac{\mu}{4\pi\zeta_{0}M_{\rm Pl}D}\biggl{\{}\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right){\bm{v}}\cdot{\bm{n}}-\frac{1}{2}\Gamma({\bm{v}}\cdot{\bm{n}})^{2}+\frac{\Gamma}{2}\frac{\tilde{G}m}{r^{3}}({\bm{r}}\cdot{\bm{n}})^{2}\biggr{\}}\,, (105)
φm(tDu,𝒏)\displaystyle\varphi_{m}(t-Du,{\bm{n}}) =\displaystyle= μ4πζ0MPlD0dzJ1(z)ψm,\displaystyle\frac{\mu}{4\pi\zeta_{0}M_{\rm Pl}D}\int_{0}^{\infty}{\rm d}zJ_{1}(z)\psi_{m}\,, (106)

where

ψm=(α^Aα^B)𝒗𝒏u212Γ(𝒗𝒏)2u3+Γ2G~mr3(𝒓𝒏)2u3|tDu.\psi_{m}=\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right)\frac{{\bm{v}}\cdot{\bm{n}}}{u^{2}}-\frac{1}{2}\Gamma\frac{({\bm{v}}\cdot{\bm{n}})^{2}}{u^{3}}+\frac{\Gamma}{2}\frac{\tilde{G}m}{r^{3}}\frac{({\bm{r}}\cdot{\bm{n}})^{2}}{u^{3}}\biggr{|}_{t-Du}\,. (107)

To compute the last term of Eq. (103), we exploit the following properties Liu et al. (2018)

ijφB(tD,𝒏)=ninj02φB(tD,𝒏),\displaystyle\partial_{i}\partial_{j}\varphi_{B}(t-D,{\bm{n}})=n_{i}n_{j}\partial_{0}^{2}\varphi_{B}(t-D,{\bm{n}})\,, (108)
ijψm(tDu,𝒏)=ninju202ψm(tDu,𝒏),\displaystyle\partial_{i}\partial_{j}\psi_{m}(t-Du,{\bm{n}})=\frac{n_{i}n_{j}}{u^{2}}\partial_{0}^{2}\psi_{m}(t-Du,{\bm{n}})\,, (109)

where ni=xi/Dn_{i}=x_{i}/D, and we ignored the next-to-leading order contributions to ijφB\partial_{i}\partial_{j}\varphi_{B} arising from the spatial derivative of the term proportional to 1/D1/D in Eq. (105) (and likewise for ijψm\partial_{i}\partial_{j}\psi_{m}). Then, Eq. (103) reduces to

02𝒉ij=02[θijTT(δijninj)g4φMPl+ninjg4μ4πζ0MPl2D0dzJ1(z)(1u21)ψm].\partial_{0}^{2}{\bm{h}}_{ij}=\partial_{0}^{2}\left[\theta_{ij}^{\rm TT}-\left(\delta_{ij}-n_{i}n_{j}\right)g_{4}\frac{\varphi}{M_{\rm Pl}}+n_{i}n_{j}\frac{g_{4}\mu}{4\pi\zeta_{0}M_{\rm Pl}^{2}D}\int_{0}^{\infty}{\rm d}zJ_{1}(z)\left(\frac{1}{u^{2}}-1\right)\psi_{m}\right]\,. (110)

In the three dimensional Cartesian coordinate (x1,x2,x3)(x_{1},x_{2},x_{3}), we consider the GWs propagating along the x3x_{3} direction, in which case nx1=nx2=0n_{x_{1}}=n_{x_{2}}=0 and nx3=1n_{x_{3}}=1. We express the GW field in the form

𝒉ij=(h++hbh×0h×h++hb000hL).\displaystyle{\bm{h}}_{ij}=\left(\begin{array}[]{ccc}h_{+}+h_{b}&h_{\times}&0\\ h_{\times}&-h_{+}+h_{b}&0\\ 0&0&h_{L}\\ \end{array}\right)\,. (114)

From Eq. (110), it follows that

h+=θ11TT=θ22TT,h×=θ12TT=θ21TT,\displaystyle h_{+}=\theta_{11}^{\rm TT}=-\theta_{22}^{\rm TT}\,,\qquad h_{\times}=\theta_{12}^{\rm TT}=\theta_{21}^{\rm TT}\,, (115)
hb=g4φMPl,\displaystyle h_{b}=-g_{4}\frac{\varphi}{M_{\rm Pl}}\,, (116)
hL=g4μ4πζ0MPl2D0dzJ1(z)(1u21)ψm.\displaystyle h_{L}=\frac{g_{4}\mu}{4\pi\zeta_{0}M_{\rm Pl}^{2}D}\int_{0}^{\infty}{\rm d}zJ_{1}(z)\left(\frac{1}{u^{2}}-1\right)\psi_{m}\,. (117)

Besides the TT polarizations h+h_{+} and h×h_{\times}, the presence of a nonminimally coupled scalar field (g40g_{4}\neq 0) gives rise to a breathing mode hbh_{b} and a longitudinal mode hLh_{L} Eardley et al. (1973); Maggiore and Nicolis (2000). The longitudinal mode, which has a polarization along the propagating direction of GWs, arises from the nonvanishing mass msm_{s} of the scalar field.

In the Cartesian coordinate system (x1,x2,x3)(x_{1},x_{2},x_{3}) whose origin O coincides with the center of mass of the binary system, we choose the unit vector field 𝒏{\bm{n}} from O to the observer in the (x2,x3)(x_{2},x_{3}) plane with an angle γ\gamma inclined from the x3x_{3} axis. The quasicircular motion of the binary system, which is characterized by the relative vector 𝒓{\bm{r}}, is confined on the (x1,x2)(x_{1},x_{2}) plane with an angle Φ\Phi inclined from the x1x_{1} axis. Then, we can express the unit vectors 𝒏{\bm{n}}, 𝒓^\hat{{\bm{r}}}, and 𝒗^\hat{{\bm{v}}} as

𝒏=(0,sinγ,cosγ),𝒓^=(cosΦ,sinΦ,0),𝒗^=(sinΦ,cosΦ,0),{\bm{n}}=(0,\sin\gamma,\cos\gamma)\,,\qquad\hat{{\bm{r}}}=(\cos\Phi,\sin\Phi,0)\,,\qquad\hat{{\bm{v}}}=(-\sin\Phi,\cos\Phi,0)\,, (118)

with 𝒓=r𝒓^{\bm{r}}=r\hat{{\bm{r}}} and 𝒗=v𝒗^{\bm{v}}=v\hat{{\bm{v}}}.

From Eq. (78), the TT components of θij\theta_{ij} for the GWs propagating along the x3x_{3} axis are θx1x1=θx2x2=Aθcos(2Φ)\theta_{x_{1}x_{1}}=-\theta_{x_{2}x_{2}}=-A_{\theta}\cos(2\Phi) and θx1x2=θx2x1=Aθsin(2Φ)\theta_{x_{1}x_{2}}=\theta_{x_{2}x_{1}}=-A_{\theta}\sin(2\Phi), where Aθ=G~μm/[4πG4(ϕ0)rD]A_{\theta}=\tilde{G}\mu m/[4\pi G_{4}(\phi_{0})rD]. After rotation of the angle γ\gamma, the GWs propagating along the direction of 𝒏{\bm{n}} have the components θ~11=θx1x1\tilde{\theta}_{11}=\theta_{x_{1}x_{1}}, θ~12=θ~21=θx1x2cosγ\tilde{\theta}_{12}=\tilde{\theta}_{21}=\theta_{x_{1}x_{2}}\cos\gamma, and θ~22=θx2x2cos2γ\tilde{\theta}_{22}=\theta_{x_{2}x_{2}}\cos^{2}\gamma. The TT components θijTT\theta_{ij}^{\rm TT} are derived by using a Lambda tensor Λij,kl\Lambda_{ij,kl} Maggiore (2007), as θijTT=Λij,klθ~kl\theta_{ij}^{\rm TT}=\Lambda_{ij,kl}\tilde{\theta}_{kl}. Since θ11TT=θ22TT=(θ~11θ~22)/2\theta_{11}^{\rm TT}=-\theta_{22}^{\rm TT}=(\tilde{\theta}_{11}-\tilde{\theta}_{22})/2 and θ12TT=θ21TT=θ~12\theta_{12}^{\rm TT}=\theta_{21}^{\rm TT}=\tilde{\theta}_{12}, we obtain the following TT components

h+\displaystyle h_{+} =\displaystyle= (1+δ)2/34(GMc)5/3ω2/3D1+cos2γ2cos(2Φ),\displaystyle-(1+\delta)^{2/3}\frac{4(G_{*}M_{c})^{5/3}\omega^{2/3}}{D}\frac{1+\cos^{2}\gamma}{2}\cos(2\Phi)\,, (119)
h×\displaystyle h_{\times} =\displaystyle= (1+δ)2/34(GMc)5/3ω2/3Dcosγsin(2Φ),\displaystyle-(1+\delta)^{2/3}\frac{4(G_{*}M_{c})^{5/3}\omega^{2/3}}{D}\cos\gamma\sin(2\Phi)\,, (120)

where ω=v/r\omega=v/r is an orbital frequency, Mc=μ3/5m2/5M_{c}=\mu^{3/5}m^{2/5} is a chirp mass, and

G116πG4(ϕ0),δ4κ4α^Aα^B(1+msr)emsr,κ4G4(ϕ0)ζ0MPl2,G_{*}\equiv\frac{1}{16\pi G_{4}(\phi_{0})}\,,\qquad\delta\equiv 4\kappa_{4}\hat{\alpha}_{A}\hat{\alpha}_{B}\left(1+m_{s}r\right)e^{-m_{s}r}\,,\qquad\kappa_{4}\equiv\frac{G_{4}(\phi_{0})}{\zeta_{0}M_{\rm Pl}^{2}}\,, (121)

with G~=G(1+δ)\tilde{G}=G_{*}(1+\delta). From Eqs. (105), (106), (116), and (117), the breathing and longitudinal modes of 𝒉ij{\bm{h}}_{ij} are expressed as

hb\displaystyle h_{b} =\displaystyle= g4μ4πζ0MPl2D{(α^Aα^B)vsinγcosΦ12Γv2sin2γcos(2Φ)\displaystyle\frac{g_{4}\mu}{4\pi\zeta_{0}M_{\rm Pl}^{2}D}\biggl{\{}(\hat{\alpha}_{A}-\hat{\alpha}_{B})v\sin\gamma\cos\Phi-\frac{1}{2}\Gamma v^{2}\sin^{2}\gamma\cos(2\Phi) (122)
0dzJ1(z)[1u2(α^Aα^B)vsinγcosΦ12u3Γv2sin2γcos(2Φ)]},\displaystyle-\int_{0}^{\infty}{\rm d}z\,J_{1}(z)\left[\frac{1}{u^{2}}(\hat{\alpha}_{A}-\hat{\alpha}_{B})v\sin\gamma\cos\Phi-\frac{1}{2u^{3}}\Gamma v^{2}\sin^{2}\gamma\cos(2\Phi)\right]\biggl{\}}\,,
hL\displaystyle h_{L} =\displaystyle= g4μ4πζ0MPl2D0dzJ1(z)(1u21)[1u2(α^Aα^B)vsinγcosΦ12u3Γv2sin2γcos(2Φ)],\displaystyle\frac{g_{4}\mu}{4\pi\zeta_{0}M_{\rm Pl}^{2}D}\int_{0}^{\infty}{\rm d}z\,J_{1}(z)\left(\frac{1}{u^{2}}-1\right)\left[\frac{1}{u^{2}}(\hat{\alpha}_{A}-\hat{\alpha}_{B})v\sin\gamma\cos\Phi-\frac{1}{2u^{3}}\Gamma v^{2}\sin^{2}\gamma\cos(2\Phi)\right]\,, (123)

where we used the relation v2=G~m/rv^{2}=\tilde{G}m/r. Performing the integrals in Eqs. (122) and (123) with the limit DD\to\infty, one can show that both hbh_{b} and hLh_{L} are nonvanishing only for high frequency modes with ωms\omega\gtrsim m_{s} Liu et al. (2018, 2020). The longitudinal mode hLh_{L} is about ms2/ω2m_{s}^{2}/\omega^{2} times as large as the breathing mode hbh_{b}. We note that both hbh_{b} and hLh_{L} vanish in the limit α^I0\hat{\alpha}_{I}\to 0 (where I=A,BI=A,B). For the scalar charge in the range |α^I|1|\hat{\alpha}_{I}|\ll 1, hbh_{b} and hLh_{L} are generally suppressed in comparison to h+h_{+} and h×h_{\times}.

V Fourier-transformed gravitational waveforms

The inspiraling compact binary loses the energy through gravitational radiation. This leads to the time variation of the orbital frequency ω\omega. In this section, we derive gravitational waveforms of TT polarizations in the frequency domain under a stationary phase approximation.

V.1 Time variation of orbital frequency

In Refs. Hou and Gong (2018); Chowdhuri and Bhattacharyya (2022), the effective GW stress-energy tensor tμνt_{\mu\nu} in Horndeski theories was derived under a short-wavelength approximation. This is based on the approximation that the wavelength of GWs is much smaller than a typical background curvature scale Isaacson (1968). In the TT gauge, the explicit form of tμνt_{\mu\nu} is given by

tμν=12G4(ϕ0)μθαβTTνθTTαβ+ζ0μφνφ+ms2G4,ϕ(ϕ0)φθμνTT,t_{\mu\nu}=\bigg{\langle}\frac{1}{2}G_{4}(\phi_{0})\partial_{\mu}\theta_{\alpha\beta}^{\rm TT}\partial_{\nu}\theta^{\alpha\beta}_{\rm TT}+\zeta_{0}\partial_{\mu}\varphi\partial_{\nu}\varphi+m_{s}^{2}G_{4,\phi}(\phi_{0})\varphi\,\theta_{\mu\nu}^{\rm TT}\bigg{\rangle}\,, (124)

where the symbol \langle\cdots\rangle represents the time average over an orbital period. The conservation of tμνt^{\mu\nu} inside a volume VV implies that Vd3x(0t00+it0i)=0\int_{V}{\rm d}^{3}x\,(\partial_{0}t^{00}+\partial_{i}t^{0i})=0. Thus, the time derivative of the GW energy EGW=Vd3xt00E_{\rm GW}=\int_{V}{\rm d}^{3}x\,t^{00} is

dEGWdt=Vd3xit0i=SdAN^it0i,\frac{{\rm d}E_{\rm GW}}{{\rm d}t}=-\int_{V}{\rm d}^{3}x\,\partial_{i}t^{0i}=-\int_{S}{\rm d}A\,\hat{N}_{i}t^{0i}\,, (125)

where N^i\hat{N}_{i} is an outer normal to the surface, and the last term represents a surface integral. Taking the surface of a sphere with the radius DD and using the property 0θαβTT(tD)=DθαβTT(tD)\partial_{0}\theta^{\rm TT}_{\alpha\beta}(t-D)=-\partial_{D}\theta^{\rm TT}_{\alpha\beta}(t-D) with Eq. (115), it follows that

dEGWdt=SdAt0D=dΩD2[G4(ϕ0)h˙+2+h˙×2ζ00φDφ],\frac{{\rm d}E_{\rm GW}}{{\rm d}t}=-\int_{S}{\rm d}A\,t^{0D}=-\int{\rm d}\Omega\,D^{2}\left[G_{4}(\phi_{0})\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\rangle-\zeta_{0}\langle\partial_{0}\varphi\partial_{D}\varphi\rangle\right]\,, (126)

where Ω\Omega is the solid angle element. On using Eqs. (119) and (120) with Φ=ω(tD)\Phi=\omega(t-D), we obtain

dΩD2G4(ϕ0)h˙+2+h˙×2=5125πG4(ϕ0)(1+δ)4/3(GMcω)10/3.-\int{\rm d}\Omega\,D^{2}G_{4}(\phi_{0})\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\rangle=-\frac{512}{5}\pi G_{4}(\phi_{0})(1+\delta)^{4/3}(G_{*}M_{c}\omega)^{10/3}\,. (127)

The scalar-field perturbation φ\varphi is the sum of φB\varphi_{B} and φm\varphi_{m} given by Eqs. (105) and (106), respectively. From Eqs. (70) and (77) as well as the relation d(Du)/dD=1/u{\rm d}(Du)/{\rm d}D=1/u, we obtain

0φ\displaystyle\partial_{0}\varphi =\displaystyle= G~μm4πζ0MPlD{(α^Aα^B)(𝒓𝒏r3I2[𝒓𝒏r3])2Γ((𝒓𝒏)(𝒗𝒏)r3I3[(𝒓𝒏)(𝒗𝒏)r3])},\displaystyle\frac{\tilde{G}\mu m}{4\pi\zeta_{0}M_{\rm Pl}D}\left\{(\hat{\alpha}_{A}-\hat{\alpha}_{B})\left(\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}-I_{2}\left[\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}\right]\right)-2\Gamma\left(\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}-I_{3}\left[\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}\right]\right)\right\}\,, (128)
Dφ\displaystyle\partial_{D}\varphi =\displaystyle= G~μm4πζ0MPlD{(α^Aα^B)(𝒓𝒏r3I3[𝒓𝒏r3])2Γ((𝒓𝒏)(𝒗𝒏)r3I4[(𝒓𝒏)(𝒗𝒏)r3])},\displaystyle-\frac{\tilde{G}\mu m}{4\pi\zeta_{0}M_{\rm Pl}D}\left\{(\hat{\alpha}_{A}-\hat{\alpha}_{B})\left(\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}-I_{3}\left[\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}\right]\right)-2\Gamma\left(\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}-I_{4}\left[\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}\right]\right)\right\}\,, (129)

where 𝒓𝒏=rsinγsinΦ{\bm{r}}\cdot{\bm{n}}=r\sin\gamma\sin\Phi and 𝒗𝒏=vsinγcosΦ{\bm{v}}\cdot{\bm{n}}=v\sin\gamma\cos\Phi. For the quantities like 𝒓𝒏/r3{\bm{r}}\cdot{\bm{n}}/r^{3}, the angle Φ\Phi has the dependence Φ=ω(tD)\Phi=\omega(t-D), while, for the quantities like I2[𝒓𝒏/r3]I_{2}[{\bm{r}}\cdot{\bm{n}}/r^{3}], Φ=ω(tDu)\Phi=\omega(t-Du). Taking the time average of 0φDφ\partial_{0}\varphi\partial_{D}\varphi over the orbital period, it follows that

0φDφ\displaystyle\langle\partial_{0}\varphi\partial_{D}\varphi\rangle =\displaystyle= (G~μm4πζ0MPlD)2(α^Aα^B)2(𝒓𝒏r3I2[𝒓𝒏r3])(𝒓𝒏r3I3[𝒓𝒏r3])\displaystyle-\left(\frac{\tilde{G}\mu m}{4\pi\zeta_{0}M_{\rm Pl}D}\right)^{2}\biggl{\langle}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}\left(\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}-I_{2}\left[\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}\right]\right)\left(\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}-I_{3}\left[\frac{{\bm{r}}\cdot{\bm{n}}}{r^{3}}\right]\right) (130)
+4Γ2((𝒓𝒏)(𝒗𝒏)r3I3[(𝒓𝒏)(𝒗𝒏)r3])((𝒓𝒏)(𝒗𝒏)r3I4[(𝒓𝒏)(𝒗𝒏)r3]).\displaystyle+4\Gamma^{2}\left(\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}-I_{3}\left[\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}\right]\right)\left(\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}-I_{4}\left[\frac{({\bm{r}}\cdot{\bm{n}})({\bm{v}}\cdot{\bm{n}})}{r^{3}}\right]\right)\biggr{\rangle}\,.

For the computation on the right hand-side of Eq. (130), we introduce the following integrals

Cn=0dzcos(ωDu)J1(z)un,Sn=0dzsin(ωDu)J1(z)un,\displaystyle C_{n}=\int_{0}^{\infty}{\rm d}z\,\cos(\omega Du)\frac{J_{1}(z)}{u^{n}}\,,\qquad S_{n}=\int_{0}^{\infty}{\rm d}z\,\sin(\omega Du)\frac{J_{1}(z)}{u^{n}}\,, (131)
C~n=0dzcos(2ωDu)J1(z)un,S~n=0dzsin(2ωDu)J1(z)un.\displaystyle\tilde{C}_{n}=\int_{0}^{\infty}{\rm d}z\,\cos(2\omega Du)\frac{J_{1}(z)}{u^{n}}\,,\qquad\tilde{S}_{n}=\int_{0}^{\infty}{\rm d}z\,\sin(2\omega Du)\frac{J_{1}(z)}{u^{n}}\,. (132)

Then, the last integral in Eq. (126) reads

dΩD2ζ00φDφ\displaystyle\int{\rm d}\Omega\,D^{2}\zeta_{0}\langle\partial_{0}\varphi\partial_{D}\varphi\rangle =\displaystyle= (G~μm)212πζ0MPl2r4[(α^Aα^B)2{1cos(ωD)(C2+C3)sin(ωD)(S2+S3)+C2C3+S2S3}\displaystyle-\frac{(\tilde{G}\mu m)^{2}}{12\pi\zeta_{0}M_{\rm Pl}^{2}r^{4}}\biggl{[}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}\left\{1-\cos(\omega D)(C_{2}+C_{3})-\sin(\omega D)(S_{2}+S_{3})+C_{2}C_{3}+S_{2}S_{3}\right\} (133)
+45Γ2v2{1cos(2ωD)(C~3+C~4)sin(2ωD)(S~3+S~4)+C~3C~4+S~3S~4}].\displaystyle+\frac{4}{5}\Gamma^{2}v^{2}\left\{1-\cos(2\omega D)(\tilde{C}_{3}+\tilde{C}_{4})-\sin(2\omega D)(\tilde{S}_{3}+\tilde{S}_{4})+\tilde{C}_{3}\tilde{C}_{4}+\tilde{S}_{3}\tilde{S}_{4}\right\}\biggr{]}\,.

In the large-distance limit DD\to\infty, the asymptotic forms of CnC_{n} and SnS_{n} are given, respectively, by

Cn\displaystyle C_{n} \displaystyle\simeq cos(ωD)(1ms2ω2)(n1)/2cos(Dω2ms2)Θ(ωms),\displaystyle\cos(\omega D)-\left(1-\frac{m_{s}^{2}}{\omega^{2}}\right)^{(n-1)/2}\cos\left(D\sqrt{\omega^{2}-m_{s}^{2}}\right)\Theta(\omega-m_{s})\,, (134)
Sn\displaystyle S_{n} \displaystyle\simeq sin(ωD)(1ms2ω2)(n1)/2sin(Dω2ms2)Θ(ωms).\displaystyle\sin(\omega D)-\left(1-\frac{m_{s}^{2}}{\omega^{2}}\right)^{(n-1)/2}\sin\left(D\sqrt{\omega^{2}-m_{s}^{2}}\right)\Theta(\omega-m_{s})\,. (135)

As for C~n\tilde{C}_{n} and S~n\tilde{S}_{n} in the limit DD\to\infty, we only need to change ω\omega in Eqs. (134) and (135) to 2ω2\omega, respectively. Then, at large DD, the energy loss of GWs induced by the stress-energy tensor tμνt_{\mu\nu} yields

dEGWdt\displaystyle\frac{{\rm d}E_{\rm GW}}{{\rm d}t} =\displaystyle= 5125πG4(ϕ0)(1+δ)4/3(GMcω)10/3\displaystyle-\frac{512}{5}\pi G_{4}(\phi_{0})(1+\delta)^{4/3}(G_{*}M_{c}\omega)^{10/3} (136)
(G~μm)212πζ0MPl2r4[(α^Aα^B)2(1ms2ω2)3/2Θ(ωms)+45Γ2v2(1ms24ω2)5/2Θ(2ωms)],\displaystyle-\frac{(\tilde{G}\mu m)^{2}}{12\pi\zeta_{0}M_{\rm Pl}^{2}r^{4}}\left[(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}\left(1-\frac{m_{s}^{2}}{\omega^{2}}\right)^{3/2}\Theta(\omega-m_{s})+\frac{4}{5}\Gamma^{2}v^{2}\left(1-\frac{m_{s}^{2}}{4\omega^{2}}\right)^{5/2}\Theta(2\omega-m_{s})\right]\,,

where the terms on the second line arise from scalar radiation. For the frequency in the range ω<ms/2\omega<m_{s}/2 there is no scalar radiation, but, for ω>ms\omega>m_{s}, the two terms in the square bracket of (136) are nonvanishing.

The energy EE associated with the binary system is given by

E=12μv2G~μmr=G~μm2r=12μ(G~mω)2/3.E=\frac{1}{2}\mu v^{2}-\tilde{G}\frac{\mu m}{r}=-\frac{\tilde{G}\mu m}{2r}=-\frac{1}{2}\mu\left(\tilde{G}m\omega\right)^{2/3}\,. (137)

The orbital frequency ω\omega changes in time due to the decrease of EE induced by the energy loss EGWE_{\rm GW}. Since dE/dt=dEGW/dt{\rm d}E/{\rm d}t={\rm d}E_{\rm GW}/{\rm d}t, we obtain the time variation of ω\omega, as

ω˙\displaystyle\dot{\omega} =\displaystyle= 965(GMc)5/3ω11/3[(1+δ)2/3\displaystyle\frac{96}{5}(G_{*}M_{c})^{5/3}\omega^{11/3}\biggl{[}\left(1+\delta\right)^{2/3} (138)
+524κ4{(α^Aα^B)2(1ms2ω2)3/2Θ(ωms)(Gmω)2/3+45Γ2(1+δ)2/3(1ms24ω2)5/2Θ(2ωms)}],\displaystyle+\frac{5}{24}\kappa_{4}\biggl{\{}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}\left(1-\frac{m_{s}^{2}}{\omega^{2}}\right)^{3/2}\frac{\Theta(\omega-m_{s})}{(G_{*}m\omega)^{2/3}}+\frac{4}{5}\Gamma^{2}(1+\delta)^{2/3}\left(1-\frac{m_{s}^{2}}{4\omega^{2}}\right)^{5/2}\Theta(2\omega-m_{s})\biggr{\}}\biggr{]}\,,

where we used the relation

μω34πζ0MPl2=4κ4(GMc)5/3ω11/3(Gmω)2/3.\frac{\mu\omega^{3}}{4\pi\zeta_{0}M_{\rm Pl}^{2}}=4\kappa_{4}\frac{(G_{*}M_{c})^{5/3}\omega^{11/3}}{(G_{*}m\omega)^{2/3}}\,. (139)

We recall that GG_{*}, δ\delta, and κ4\kappa_{4} are defined in Eq. (121).

V.2 Gravitational waveforms

When we confront the gravitational waveform with observations, it is common to perform a Fourier transformation of h+h_{+}, h×h_{\times}, hbh_{b}, and hLh_{L} with a frequency ff. Since the amplitudes of h+h_{+} and h×h_{\times} are typically much larger than those of hbh_{b} and hLh_{L} Liu et al. (2018, 2020), we will estimate the deviation from GR for the two polarizations h+h_{+} and h×h_{\times} in Fourier space. Let us perform the Fourier transformation

h~λ(f)=dthλ(t)ei2πft,\tilde{h}_{\lambda}(f)=\int{\rm d}t\,h_{\lambda}(t)e^{i\cdot 2\pi ft}\,, (140)

where λ=+,×\lambda=+,\times. For the λ=+\lambda=+ mode, using Eq. (119) with Φ=ω(tD)\Phi=\omega(t-D) leads to

h~+(f)=(1+δ)2/3(GMc)5/3D(1+cos2γ)ei2πfDdtω(t)2/3[ei(2Φ(t)+2πft)+ei(2Φ(t)+2πft)].\tilde{h}_{+}(f)=-(1+\delta)^{2/3}\frac{(G_{*}M_{c})^{5/3}}{D}(1+\cos^{2}\gamma)\,e^{i\cdot 2\pi fD}\int{\rm d}t\,\omega(t)^{2/3}\left[e^{i(2\Phi(t)+2\pi ft)}+e^{i(-2\Phi(t)+2\pi ft)}\right]\,. (141)

There is a stationary phase point for the second term in the square bracket of Eq. (141), such that

ddt[2Φ(t)+2πft]|t=t=0ω(t)=πf.\frac{{\rm d}}{{\rm d}t}\left[-2\Phi(t)+2\pi ft\right]\biggr{|}_{t=t_{*}}=0\qquad\to\qquad\omega(t_{*})=\pi f\,. (142)

Since the first term in the square bracket of Eq. (141) exhibits fast oscillations, we ignore such a contribution in the following discussion. Expanding Φ(t)\Phi(t) around t=tt=t_{*} as Φ(t)=Φ(t)+πf(tt)+ω˙(t)(tt)2/2+𝒪((tt)3)\Phi(t)=\Phi(t_{*})+\pi f(t-t_{*})+\dot{\omega}(t_{*})(t-t_{*})^{2}/2+{\cal O}((t-t_{*})^{3}), it follows that

h~+(f)=(1+δ)2/3(GMc)5/3D(1+cos2γ)ei[2πfD2Φ(t)+2πft]dtω(t)2/3eiω˙(t)(tt)2.\tilde{h}_{+}(f)=-(1+\delta)^{2/3}\frac{(G_{*}M_{c})^{5/3}}{D}(1+\cos^{2}\gamma)\,e^{i[2\pi fD-2\Phi(t_{*})+2\pi ft_{*}]}\int{\rm d}t\,\omega(t)^{2/3}e^{-i\dot{\omega}(t_{*})(t-t_{*})^{2}}\,. (143)

Since dtω(t)2/3eiω˙(t)(tt)2ω(t)2/3π/ω˙(t)eiπ/4\int{\rm d}t\,\omega(t)^{2/3}e^{-i\dot{\omega}(t_{*})(t-t_{*})^{2}}\simeq\omega(t_{*})^{2/3}\sqrt{\pi/\dot{\omega}(t_{*})}\,e^{-i\pi/4}, we obtain

h~+(f)=(1+δ)2/3(GMc)5/3D(1+cos2γ)ω(t)2/3πω˙(t)eiΨ+,\tilde{h}_{+}(f)=-(1+\delta)^{2/3}\frac{(G_{*}M_{c})^{5/3}}{D}(1+\cos^{2}\gamma)\,\omega(t_{*})^{2/3}\sqrt{\frac{\pi}{\dot{\omega}(t_{*})}}e^{i\Psi_{+}}\,, (144)

where

Ψ+=2πft2Φ(t)+2πfDπ4.\Psi_{+}=2\pi ft_{*}-2\Phi(t_{*})+2\pi fD-\frac{\pi}{4}\,. (145)

Similarly, the Fourier-transformed mode of h×(f)h_{\times}(f) is given by

h~×(f)=2(1+δ)2/3(GMc)5/3D(cosγ)ω(t)2/3πω˙(t)eiΨ×,\tilde{h}_{\times}(f)=-2(1+\delta)^{2/3}\frac{(G_{*}M_{c})^{5/3}}{D}(\cos\gamma)\,\omega(t_{*})^{2/3}\sqrt{\frac{\pi}{\dot{\omega}(t_{*})}}e^{i\Psi_{\times}}\,, (146)

where

Ψ×=Ψ++π2.\Psi_{\times}=\Psi_{+}+\frac{\pi}{2}\,. (147)

The orbital frequency ω\omega increases according to Eq. (138). At a critical time tct_{c}, ω\omega grows sufficiently large, such that ω(tc)\omega(t_{c})\to\infty. Then, the time tt_{*} can be expressed as

2πft2Φ(t)=2πftc2Φc+πfdω2πf2ωω˙,2\pi ft_{*}-2\Phi(t_{*})=2\pi ft_{c}-2\Phi_{c}+\int_{\infty}^{\pi f}{\rm d}\omega\frac{2\pi f-2\omega}{\dot{\omega}}\,, (148)

where Φc=Φ(tc)\Phi_{c}=\Phi(t_{c}). Substituting this relation into Eq. (145), it follows that

Ψ+=2πf(D+tc)2Φcπ4+πfdω2πf2ωω˙,\Psi_{+}=2\pi f\left(D+t_{c}\right)-2\Phi_{c}-\frac{\pi}{4}+\int_{\infty}^{\pi f}{\rm d}\omega\frac{2\pi f-2\omega}{\dot{\omega}}\,, (149)

where the last integral should be performed after the substitution of Eq. (138).

It is important to recognize that terms in the second line of Eq. (138) vanish for ω<ms/2\omega<m_{s}/2, whereas this is not the case for ω>ms/2\omega>m_{s}/2. Moreover, ω˙\dot{\omega} contains the term δ\delta, whose behavior is different dependent on whether the mass is in the range msr1m_{s}r\ll 1 or msr1m_{s}r\gg 1. Using the quasicircular equation of motion v2=G~m/rv^{2}=\tilde{G}m/r with v=rωv=r\omega and ω=2πf\omega=2\pi f, the relative distance between the binary system is given by

r=(c2rg8π2f2)1/3=(1.7×105m)(f50Hz)2/3(rg104m)1/3,r=\left(\frac{c^{2}r_{g}}{8\pi^{2}f^{2}}\right)^{1/3}=(1.7\times 10^{5}\,{\rm m})\left(\frac{f}{50\,{\rm Hz}}\right)^{-2/3}\left(\frac{r_{g}}{10^{4}\,{\rm m}}\right)^{1/3}\,\,, (150)

where rg=2G~m/c2r_{g}=2\tilde{G}m/c^{2} and we restored the speed of light cc for the numerical computation. The critical scalar mass m~s\tilde{m}_{s} corresponding to m~sr=1\tilde{m}_{s}r=1 can be estimated as

m~s=1r1012eV(f50Hz)2/3(rg104m)1/3,\tilde{m}_{s}=\frac{1}{r}\simeq 10^{-12}~{}{\rm eV}\left(\frac{f}{50\,{\rm Hz}}\right)^{2/3}\left(\frac{r_{g}}{10^{4}\,{\rm m}}\right)^{-1/3}\,, (151)

so that m~s1012\tilde{m}_{s}\simeq 10^{-12} eV for the typical frequency f=50f=50 Hz during the inspiral phase with rg=104r_{g}=10^{4} m. In the heavy mass range msm~sm_{s}\gg\tilde{m}_{s}, we have δ0\delta\simeq 0 due to the suppression arising from the exponential factor emsre^{-m_{s}r}. For msm~sm_{s}\ll\tilde{m}_{s}, δ\delta has a constant value

δ0=4κ4α^Aα^B.\delta_{0}=4\kappa_{4}\hat{\alpha}_{A}\hat{\alpha}_{B}\,. (152)

We note that the frequency f=50f=50 Hz corresponds to the order ω=2πf1013\omega=2\pi f\simeq 10^{-13} eV. Provided the mass msm_{s} is in the range ms<ω1013m_{s}<\omega\simeq 10^{-13} eV, we have msr<0.1m_{s}r<0.1 and hence δ\delta can be approximated as δ0\delta_{0}. In the following, we will first consider the light mass region msωm_{s}\ll\omega and then proceed to the discussion in the massive limit msωm_{s}\gg\omega.

V.2.1 msωm_{s}\ll\omega

For ms<ωm_{s}<\omega, terms in the second line of Eq. (138), which correspond to scalar radiation, are nonvanishing. In the limit that msωm_{s}\ll\omega, we have

ω˙=965(GMc)5/3ω11/3[(1+δ0)2/3(1+κ46Γ2)+5κ4(α^Aα^B)224(Gmω)2/3].\dot{\omega}=\frac{96}{5}(G_{*}M_{c})^{5/3}\omega^{11/3}\left[(1+\delta_{0})^{2/3}\left(1+\frac{\kappa_{4}}{6}\Gamma^{2}\right)+\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{24(G_{*}m\omega)^{2/3}}\right]\,. (153)

If ω\omega is not much different from msm_{s}, there are corrections arising from the terms (1ms2/ω2)3/2(1-m_{s}^{2}/\omega^{2})^{3/2} and [1ms2/(4ω2)]5/2[1-m_{s}^{2}/(4\omega^{2})]^{5/2}. We ignored such higher-order corrections to the right hand-side of Eq. (153). Under the conditions

|δ0|1,|κ4Γ2|1,|\delta_{0}|\ll 1\,,\qquad|\kappa_{4}\Gamma^{2}|\ll 1\,, (154)

Eq. (153) can be approximated as

ω˙965(GMc)5/3ω11/3[1+23δ0+κ46Γ2+5κ4(α^Aα^B)224(Gmω)2/3],\dot{\omega}\simeq\frac{96}{5}(G_{*}M_{c})^{5/3}\omega^{11/3}\left[1+\frac{2}{3}\delta_{0}+\frac{\kappa_{4}}{6}\Gamma^{2}+\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{24(G_{*}m\omega)^{2/3}}\right]\,, (155)

where δ0\delta_{0} and κ4Γ2\kappa_{4}\Gamma^{2} are at most of order κ4α^I2\kappa_{4}\hat{\alpha}_{I}^{2}. Since (Gmω)2/3v2(G_{*}m\omega)^{2/3}\approx v^{2}, the last term in the square bracket of Eq. (155) is at most of order κ4α^I2(c2/v2)\kappa_{4}\hat{\alpha}_{I}^{2}(c^{2}/v^{2}), where we restored the speed of light cc. Then, under the PN expansion, the leading-order correction to ω˙\dot{\omega} arising from the modification to gravity is the last term in the square bracket of Eq. (155). As long as the condition

ϵ5κ4(α^Aα^B)224(Gmω)2/31\epsilon\equiv\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{24(G_{*}m\omega)^{2/3}}\ll 1 (156)

is satisfied together with inequalities (154), we have 1/ω˙(5/96)(GMc)5/3ω11/3(12δ0/3κ4Γ2/6ϵ)1/\dot{\omega}\simeq(5/96)(G_{*}M_{c})^{-5/3}\omega^{-11/3}(1-2\delta_{0}/3-\kappa_{4}\Gamma^{2}/6-\epsilon) approximately. Then, the phase terms are integrated to give

Ψ+=Ψ×π2=2πf(D+tc)2Φcπ4+3128(GMcπf)5/3[123δ0κ46Γ25κ4(α^Aα^B)242(Gmπf)2/3],\displaystyle\Psi_{+}=\Psi_{\times}-\frac{\pi}{2}=2\pi f\left(D+t_{c}\right)-2\Phi_{c}-\frac{\pi}{4}+\frac{3}{128}(G_{*}M_{c}\pi f)^{-5/3}\left[1-\frac{2}{3}\delta_{0}-\frac{\kappa_{4}}{6}\Gamma^{2}-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{42(G_{*}m\pi f)^{2/3}}\right]\,, (157)

where we ignored corrections higher than the orders κ4α^I2(c2/v2)\kappa_{4}\hat{\alpha}_{I}^{2}(c^{2}/v^{2}) and κ4α^I2\kappa_{4}\hat{\alpha}_{I}^{2}. We also obtain

h~+(f)\displaystyle\tilde{h}_{+}(f) =\displaystyle= (GMc)5/6D(1+cos2γ)5π96(πf)7/6[1+13δ0κ412Γ25κ4(α^Aα^B)248(Gmπf)2/3]eiΨ+,\displaystyle-\frac{(G_{*}M_{c})^{5/6}}{D}(1+\cos^{2}\gamma)\,\sqrt{\frac{5\pi}{96}}\,(\pi f)^{-7/6}\left[1+\frac{1}{3}\delta_{0}-\frac{\kappa_{4}}{12}\Gamma^{2}-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{48(G_{*}m\pi f)^{2/3}}\right]e^{i\Psi_{+}}\,, (158)
h~×(f)\displaystyle\tilde{h}_{\times}(f) =\displaystyle= 2(GMc)5/6D(cosγ)5π96(πf)7/6[1+13δ0κ412Γ25κ4(α^Aα^B)248(Gmπf)2/3]eiΨ×.\displaystyle-2\frac{(G_{*}M_{c})^{5/6}}{D}(\cos\gamma)\,\sqrt{\frac{5\pi}{96}}\,(\pi f)^{-7/6}\left[1+\frac{1}{3}\delta_{0}-\frac{\kappa_{4}}{12}\Gamma^{2}-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{48(G_{*}m\pi f)^{2/3}}\right]e^{i\Psi_{\times}}\,. (159)

If we take higher-order PN corrections into account, they appear as the form 1+𝒪(v2/c2)+1+{\cal O}(v^{2}/c^{2})+\cdots in the square brackets of Eqs. (157)-(159). Unlike the δ0\delta_{0} and κ4Γ2\kappa_{4}\Gamma^{2} terms, such PN corrections depend on the frequency ff.

V.2.2 msωm_{s}\gg\omega

For ω<ms/2\omega<m_{s}/2 we have Θ(ωms)=0\Theta(\omega-m_{s})=0 and Θ(2ωms)=0\Theta(2\omega-m_{s})=0, so there is no scalar radiation in Eq. (138). For the orbital frequency ω1013\omega\simeq 10^{-13} eV with the distance r1012r\simeq 10^{12} eV-1, we have ωr0.1\omega r\simeq 0.1. Then, in the mass range ms102ω=1011m_{s}\gtrsim 10^{2}\omega=10^{-11} eV, we have δ1\delta\ll 1 and hence ω˙(96/5)(GMc)5/3ω11/3\dot{\omega}\simeq(96/5)(G_{*}M_{c})^{5/3}\omega^{11/3}. For such heavy scalar masses, Ψ+,Ψ×\Psi_{+},\Psi_{\times} and h~+,h~×\tilde{h}_{+},\tilde{h}_{\times} reduce to the values in GR as

Ψ+GR=Ψ×GRπ2=2πf(D+tc)2Φcπ4+3128(GMcπf)5/3,\Psi_{+}^{\rm GR}=\Psi_{\times}^{\rm GR}-\frac{\pi}{2}=2\pi f\left(D+t_{c}\right)-2\Phi_{c}-\frac{\pi}{4}+\frac{3}{128}(G_{*}M_{c}\pi f)^{-5/3}\,, (160)

and

h~+GR(f)\displaystyle\tilde{h}_{+}^{\rm GR}(f) =\displaystyle= (GMc)5/6D(1+cos2γ)5π96(πf)7/6eiΨ+GR,\displaystyle-\frac{(G_{*}M_{c})^{5/6}}{D}(1+\cos^{2}\gamma)\,\sqrt{\frac{5\pi}{96}}\,(\pi f)^{-7/6}e^{i\Psi_{+}^{\rm GR}}\,, (161)
h~×GR(f)\displaystyle\tilde{h}_{\times}^{\rm GR}(f) =\displaystyle= 2(GMc)5/6D(cosγ)5π96(πf)7/6eiΨ×GR.\displaystyle-2\frac{(G_{*}M_{c})^{5/6}}{D}(\cos\gamma)\,\sqrt{\frac{5\pi}{96}}\,(\pi f)^{-7/6}e^{i\Psi_{\times}^{\rm GR}}\,. (162)

The reduction to the gravitational waveforms in GR is attributed to the absence of scalar radiation besides the exponential suppression of fifth forces outside compact objects in the mass range ms1011m_{s}\gtrsim 10^{-11} eV.

V.3 ppE parameters

In the light mass regime msωm_{s}\ll\omega, the gravitational waveforms deviate from those in GR. Since the last terms in the square brackets of Eqs. (157)-(159) are the dominant terms arising from the modification of gravity, we ignore other correction terms such as δ0\delta_{0} and κ4Γ2\kappa_{4}\Gamma^{2}. Then, one can express Eqs. (158) and (159) in the forms

h~λ(f)h~λGR(f)[15κ4(α^Aα^B)248(Gmπf)2/3]eiΨ^λ,\tilde{h}_{\lambda}(f)\simeq\tilde{h}_{\lambda}^{\rm GR}(f)\left[1-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{48(G_{*}m\pi f)^{2/3}}\right]e^{i\hat{\Psi}_{\lambda}}\,, (163)

where h~λGR(f)\tilde{h}_{\lambda}^{\rm GR}(f) (with λ=+,×\lambda=+,\times) are given in Eqs. (161)-(162), and

Ψ^λ\displaystyle\hat{\Psi}_{\lambda} \displaystyle\equiv ΨλΨλGR5κ4(α^Aα^B)21792(GMcπ)5/3(Gmπ)2/3f7/3.\displaystyle\Psi_{\lambda}-\Psi_{\lambda}^{\rm GR}\simeq-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{1792(G_{*}M_{c}\pi)^{5/3}(G_{*}m\pi)^{2/3}f^{7/3}}\,. (164)

These waveforms can be encompassed in the ppE framework Yunes and Pretorius (2009); Cornish et al. (2011); Chatziioannou et al. (2012); Tahura and Yagi (2018) given by

h~λ(f)=h~λGR(f)[1+j=1αj(GMcπf)aj/3]exp[ij=1βj(GMcπf)bj/3],\tilde{h}_{\lambda}(f)=\tilde{h}_{\lambda}^{\rm GR}(f)\left[1+\sum_{j=1}\alpha_{j}\left(G_{*}M_{c}\pi f\right)^{a_{j}/3}\right]\exp\left[i\sum_{j=1}\beta_{j}\left(G_{*}M_{c}\pi f\right)^{b_{j}/3}\right]\,, (165)

where αj\alpha_{j}, aja_{j}, βj\beta_{j}, and bjb_{j} are constants parametrizing the deviation from GR. Comparing Eqs. (163)-(164) with Eq. (165), the ppE parameters in the light mass limit msωm_{s}\ll\omega are given by

α1=548κ4(α^Aα^B)2η2/5,a1=2,β1=51792κ4(α^Aα^B)2η2/5,b1=7,\alpha_{1}=-\frac{5}{48}\kappa_{4}\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right)^{2}\eta^{2/5}\,,\qquad a_{1}=-2\,,\qquad\beta_{1}=-\frac{5}{1792}\kappa_{4}\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right)^{2}\eta^{2/5}\,,\qquad b_{1}=-7\,, (166)

where

ημm=(Mcm)5/3.\eta\equiv\frac{\mu}{m}=\left(\frac{M_{c}}{m}\right)^{5/3}\,. (167)

In massless BD theories, the above ppE parameters reproduce those derived in Refs. Chatziioannou et al. (2012); Liu et al. (2020). For α^Aα^B\hat{\alpha}_{A}\neq\hat{\alpha}_{B}, there are frequency-dependent corrections to the waveforms arising from the modification of gravity.

For the mass msm_{s} which is not much smaller than ω\omega, there are corrections to h~λ(f)\tilde{h}_{\lambda}(f) arising from the terms ms2/ω2m_{s}^{2}/\omega^{2}. In this case, the second term in the square bracket of Eq. (155) is multiplied by the factor (1ms2/ω2)3/213ms2/(2ω2)(1-m_{s}^{2}/\omega^{2})^{3/2}\simeq 1-3m_{s}^{2}/(2\omega^{2}). Then, the GW solution (163) with the phase (164) is modified to

h~λ(f)\displaystyle\tilde{h}_{\lambda}(f) =\displaystyle= h~λGR(f)[15κ4(α^Aα^B)248(Gmπf)2/3(13ms22π2f2)]eiΨ^λ,\displaystyle\tilde{h}_{\lambda}^{\rm GR}(f)\left[1-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{48(G_{*}m\pi f)^{2/3}}\left(1-\frac{3m_{s}^{2}}{2\pi^{2}f^{2}}\right)\right]e^{i\hat{\Psi}_{\lambda}}\,, (168)
Ψ^λ\displaystyle\hat{\Psi}_{\lambda} =\displaystyle= 5κ4(α^Aα^B)21792(GMcπ)5/3(Gmπ)2/3f7/3(1105ms2208π2f2).\displaystyle-\frac{5\kappa_{4}(\hat{\alpha}_{A}-\hat{\alpha}_{B})^{2}}{1792(G_{*}M_{c}\pi)^{5/3}(G_{*}m\pi)^{2/3}f^{7/3}}\left(1-\frac{105m_{s}^{2}}{208\pi^{2}f^{2}}\right)\,. (169)

The leading-order ppE parameters are the same as those given in Eq. (166). The light scalar mass msm_{s} gives rise to the following correction terms

α2=532κ4(α^Aα^B)2(GMcms)2η2/5,a2=8,β2=151664α2,b2=13.\alpha_{2}=\frac{5}{32}\kappa_{4}\left(\hat{\alpha}_{A}-\hat{\alpha}_{B}\right)^{2}(G_{*}M_{c}m_{s})^{2}\eta^{2/5}\,,\qquad a_{2}=-8\,,\qquad\beta_{2}=\frac{15}{1664}\alpha_{2}\,,\qquad b_{2}=-13\,. (170)

In the limit that msπfm_{s}\ll\pi f, these corrections are negligibly small compared to the leading-order ppE contributions given in Eq. (166). In massive BD theories, the ppE parameters (170) coincide with those derived in Ref. Liu et al. (2020).

VI Application to concrete theories

As we showed in the previous section, the ppE parameters crucially depend on α^I\hat{\alpha}_{I}. In this section, we compute α^I\hat{\alpha}_{I} in concrete theories where the NS can have scalar hairs. In doing so, we first discuss an explicit relation between α^I\hat{\alpha}_{I} and a scalar charge by transforming the theory to an Einstein frame. The calculations of α^I\hat{\alpha}_{I} are important to probe the modification of gravity in strong gravity regimes in future observations of GWs emitted from compact binaries.

VI.1 Nonminimally coupled theories and Einstein frame

Let us consider theories given by the action (1) with the nonminimal coupling G4(ϕ)=MPl2F(ϕ)/2G_{4}(\phi)=M_{\rm Pl}^{2}F(\phi)/2, i.e.,

𝒮=d4xg[MPl22F(ϕ)R+G2(ϕ,X)G3(ϕ,X)ϕ]+𝒮m(gμν,Ψm),{\cal S}=\int{\rm d}^{4}x\sqrt{-g}\left[\frac{M_{\rm Pl}^{2}}{2}F(\phi)R+G_{2}(\phi,X)-G_{3}(\phi,X)\square\phi\right]+{\cal S}_{m}(g_{\mu\nu},\Psi_{m})\,, (171)

which is known as the action in the Jordan frame where the matter fields Ψm\Psi_{m} are minimally coupled to gravity. To compute the quantities like α^I\hat{\alpha}_{I}, it is convenient to perform a conformal transformation of the metric tensor as Fujii and Maeda (2007); De Felice and Tsujikawa (2010); Wald (1984)

g^μν=Ω2(ϕ)gμν,\hat{g}_{\mu\nu}=\Omega^{2}(\phi)g_{\mu\nu}\,, (172)

where Ω2(ϕ)\Omega^{2}(\phi) is a field-dependent conformal factor, and a hat represents quantities in the transformed frame. To obtain the action in the Einstein frame, we use the following transformation properties

g=Ω4g^,R=Ω2(R^+6^ω6g^μνμωνω),X=Ω2X^,ϕ=Ω2(^ϕ2g^μνμωνϕ),\sqrt{-g}=\Omega^{-4}\sqrt{-\hat{g}}\,,\qquad R=\Omega^{2}\left(\hat{R}+6\hat{\square}\omega-6\hat{g}^{\mu\nu}\nabla_{\mu}\omega\nabla_{\nu}\omega\right)\,,\qquad X=\Omega^{2}\hat{X}\,,\qquad\square\phi=\Omega^{2}\left(\hat{\square}\phi-2\hat{g}^{\mu\nu}\nabla_{\mu}\omega\nabla_{\nu}\phi\right)\,, (173)

where ω=lnΩ\omega=\ln\Omega. To transform the action (171) to that in the Einstein frame, we choose the conformal factor to be Ω2(ϕ)=F(ϕ)\Omega^{2}(\phi)=F(\phi). Dropping boundary terms, the action in the Einstein frame is given by

S^=d4xg^[MPl22R^+G^2(ϕ,X^)G^3(ϕ,X^)^ϕ]+𝒮m(F1(ϕ)g^μν,Ψm),\hat{S}=\int{\rm d}^{4}x\sqrt{-\hat{g}}\left[\frac{M_{\rm Pl}^{2}}{2}\hat{R}+\hat{G}_{2}(\phi,\hat{X})-\hat{G}_{3}(\phi,\hat{X})\hat{\square}\phi\right]+{\cal S}_{m}\left(F^{-1}(\phi)\hat{g}_{\mu\nu},\Psi_{m}\right)\,, (174)

where X^=F1X\hat{X}=F^{-1}X, and

G^2=1F2[G2+F,ϕX^(32MPl2F,ϕ2G3)],G^3=G3F.\hat{G}_{2}=\frac{1}{F^{2}}\left[G_{2}+F_{,\phi}\hat{X}\left(\frac{3}{2}M_{\rm Pl}^{2}F_{,\phi}-2G_{3}\right)\right]\,,\qquad\hat{G}_{3}=\frac{G_{3}}{F}\,. (175)

After the transformation, the matter fields Ψm\Psi_{m} are coupled to the scalar field ϕ\phi through the metric tensor g^μν\hat{g}_{\mu\nu}.

We will consider theories in which a standard kinetic term X^\hat{X} is present in the Einstein frame. This is realized for the coupling function Kase et al. (2020); Minamitsuji and Tsujikawa (2022a)

G2=(13MPl2F,ϕ22F2)F(ϕ)X+K(ϕ,X),G_{2}=\left(1-\frac{3M_{\rm Pl}^{2}F_{,\phi}^{2}}{2F^{2}}\right)F(\phi)X+K(\phi,X)\,, (176)

where KK is a function of ϕ\phi and XX. Then, it follows that

G^2=X^+KF22F,ϕF2G3X^,G^3=G3F.\hat{G}_{2}=\hat{X}+\frac{K}{F^{2}}-\frac{2F_{,\phi}}{F^{2}}G_{3}\hat{X}\,,\qquad\hat{G}_{3}=\frac{G_{3}}{F}\,. (177)

We can further specify theories containing a quadratic kinetic term μ2X2\mu_{2}X^{2} and a scalar potential V(ϕ)V(\phi) in KK, such that K=μ2X2V(ϕ)K=\mu_{2}X^{2}-V(\phi). Taking the cubic Galileon term G3=μ3XG_{3}=\mu_{3}X into account as well, the coupling functions in the Jordan frame yield

G2=(13MPl2F,ϕ22F2)F(ϕ)X+μ2X2V(ϕ),G3=μ3X,G4(ϕ)=MPl22F(ϕ),G_{2}=\left(1-\frac{3M_{\rm Pl}^{2}F_{,\phi}^{2}}{2F^{2}}\right)F(\phi)X+\mu_{2}X^{2}-V(\phi)\,,\qquad G_{3}=\mu_{3}X\,,\qquad G_{4}(\phi)=\frac{M_{\rm Pl}^{2}}{2}F(\phi)\,, (178)

where μ2\mu_{2} and μ3\mu_{3} are constants. In the Einstein frame, the coupling functions G^2\hat{G}_{2} and G^3\hat{G}_{3} yield

G^2=X^+μ2X^22F,ϕFμ3X^2VF2,G^3=μ3X^.\hat{G}_{2}=\hat{X}+\mu_{2}\hat{X}^{2}-\frac{2F_{,\phi}}{F}\mu_{3}\hat{X}^{2}-\frac{V}{F^{2}}\,,\qquad\hat{G}_{3}=\mu_{3}\hat{X}\,. (179)

In the following, we present theories that belong to the action (171) with the coupling functions (178).

  • (i) BD theories with a scalar potential V(ϕ)V(\phi) Brans and Dicke (1961):

    G2=(16Q2)e2Qϕ/MPlXV(ϕ),G3=0,G4=MPl22e2Qϕ/MPl,G_{2}=(1-6Q^{2})e^{-2Q\phi/M_{\rm Pl}}X-V(\phi)\,,\qquad G_{3}=0\,,\qquad G_{4}=\frac{M_{\rm Pl}^{2}}{2}e^{-2Q\phi/M_{\rm Pl}}\,, (180)

    where the nonminimal coupling corresponds to F(ϕ)=e2Qϕ/MPlF(\phi)=e^{-2Q\phi/M_{\rm Pl}}, and QQ is a constant characterizing the coupling strength between the scalar field and gravity sector. Setting χ=F=e2Qϕ/MPl\chi=F=e^{-2Q\phi/M_{\rm Pl}} with MPl=1M_{\rm Pl}=1, it follows that the above theory is equivalent to the action 𝒮=d4xg[χR/2ωBDμχμχ/(2χ)V]+𝒮m{\cal S}=\int{\rm d}^{4}x\sqrt{-g}\,[\chi R/2-\omega_{\rm BD}\nabla^{\mu}\chi\nabla_{\mu}\chi/(2\chi)-V]+{\cal S}_{m} originally propsed by Brans and Dicke Brans and Dicke (1961). Here, the BD parameter ωBD\omega_{\rm BD} is related to the coupling QQ according to Khoury and Weltman (2004b); Tsujikawa et al. (2008)

    3+2ωBD=12Q2.3+2\omega_{\rm BD}=\frac{1}{2Q^{2}}\,. (181)

    GR corresponds to the limit ωBD\omega_{\rm BD}\to\infty, i.e., Q0Q\to 0. Metric f(R)f(R) gravity with the action 𝒮=d4xgMPl2f(R)/2{\cal S}=\int{\rm d}^{4}x\sqrt{-g}\,M_{\rm Pl}^{2}f(R)/2 belongs to a subclass of BD theories given by the coupling functions (180), with the correspondence Q=1/6Q=-1/\sqrt{6}, V(ϕ)=MPl2(FRf)/2V(\phi)=M_{\rm Pl}^{2}(FR-f)/2, and F=f/R=e2Qϕ/MPlF=\partial f/\partial R=e^{-2Q\phi/M_{\rm Pl}} Amendola et al. (2007); De Felice and Tsujikawa (2010). If the mass of ϕ\phi is as light as today’s Hubble constant H0H_{0} at low redshifts, the scalar field ϕ\phi can be also the source for dark energy Amendola (1999); Bartolo and Pietroni (2000); Boisseau et al. (2000); Tsujikawa et al. (2008); Tsujikawa (2019).

  • (ii) Theories with spontaneous scalarization Damour and Esposito-Farese (1993, 1996):

    G2=(13MPl2F,ϕ22F2)F(ϕ)X,G3=0,G4=MPl22F(ϕ),G_{2}=\left(1-\frac{3M_{\rm Pl}^{2}F_{,\phi}^{2}}{2F^{2}}\right)F(\phi)X\,,\qquad G_{3}=0\,,\qquad G_{4}=\frac{M_{\rm Pl}^{2}}{2}F(\phi)\,, (182)

    where FF is a function containing the even power-law dependence of ϕ\phi. The nonminimal coupling chosen by Damour and Esposite-Farase is given by F(ϕ)=eβϕ2/(2MPl2)F(\phi)=e^{-\beta\phi^{2}/(2M_{\rm Pl}^{2})}, where β\beta is a constant. On the static and spherically symmetric background, there is a nonvanishing scalar-field branch ϕ(r)0\phi(r)\neq 0 besides the GR branch ϕ(r)=0\phi(r)=0, where rr is the distance from the center of symmetry. For strong gravitational stars like the NS, the necessary condition for the occurrence of spontaneous scalarization from the GR branch to the other branch is given by F,ϕϕ(0)>0F_{,\phi\phi}(0)>0, which translates to the condition β<0\beta<0. If we apply this model to cosmology, there is tachyonic growth of ϕ\phi that can violate the dynamics of successful cosmic expansion history Damour and Nordtvedt (1993a, b). This problem is circumvented by the presence of a coupling g2ϕ2χ2/2g^{2}\phi^{2}\chi^{2}/2 between ϕ\phi and an inflaton field χ\chi Anson et al. (2019); Nakarachinda et al. (2022), in which case ϕ\phi is exponentially suppressed during inflation. Note that this coupling does not affect the mechanism of spontaneous scalarization because of the decay of χ\chi by the end of reheating.

  • (iii) Scalarized NSs with a scalar potential V(ϕ)V(\phi) and a positive nonminimal coupling constant β>0\beta>0 Minamitsuji and Tsujikawa (2022a):

    G2=(13β2ϕ22MPl2)eβϕ2/(2MPl2)XV(ϕ),G3=0,G4=MPl22eβϕ2/(2MPl2).G_{2}=\left(1-\frac{3\beta^{2}\phi^{2}}{2M_{\rm Pl}^{2}}\right)e^{-\beta\phi^{2}/(2M_{\rm Pl}^{2})}X-V(\phi)\,,\qquad G_{3}=0\,,\qquad G_{4}=\frac{M_{\rm Pl}^{2}}{2}e^{-\beta\phi^{2}/(2M_{\rm Pl}^{2})}\,. (183)

    The difference from original spontaneous scalarization is that there is a self-interacting potential of the type

    V(ϕ)=ms2fB2[1+cos(ϕfB)],V(\phi)=m_{s}^{2}f_{B}^{2}\left[1+\cos\left(\frac{\phi}{f_{B}}\right)\right]\,, (184)

    where msm_{s} and fBf_{B} are constants. Far away from the NS, the scalar field sits at the vacuum expectation value ϕv=πfB\phi_{v}=\pi f_{B}. Inside the NS, a nonminimal coupling with β>0\beta>0 can dominate over a negative mass squared of the bare potential ms2-m_{s}^{2}. This leads to the symmetry restoration with the central field value ϕc\phi_{c} close to 0. Then, there are scalarized NS solutions connecting ϕv\phi_{v} with ϕc\phi_{c} whose difference is significant on strong gravitational backgrounds (see Ref. Babichev et al. (2022) for a model of scalarized BHs based on a scalar-Gauss-Bonnet coupling). In this scenario, the scalar field is not subject to tachyonic instability during inflation and it finally approaches a vacuum expectation value without spoiling a successful cosmological evolution Minamitsuji and Tsujikawa (2022a).

In Refs. Chagoya et al. (2014); Ogawa et al. (2020), the authors took into account the cubic Galileon coupling G3=μ3XG_{3}=\mu_{3}X for the theories of types (i) and (ii) and showed that the deviation from GR is suppressed even for relativistic stars through the Vainshtein mechanism. If the Vainshtein radius rVr_{V} is much larger than the radius rsr_{s} of star, nonlinear scalar derivative terms like (Mφ)2(\square_{\rm M}\varphi)^{2} and μνφμνφ\partial^{\mu}\partial^{\nu}\varphi\partial_{\mu}\partial_{\nu}\varphi dominate over Mφ\square_{\rm M}\varphi at the distance r<rVr<r_{V}. For rVrsr_{V}\gg r_{s}, the computation of the gravitational waveform based on the PN expansion (86) outside the star loses its validity inside the Vainshtein radius. If rVr_{V} is at most of order rsr_{s}, i.e., rVrsr_{V}\lesssim r_{s}, the PN solutions outside the star are still valid. In this latter situation, the screening of fifth forces should occur only inside the star. In this case, the cubic coupling constant μ3\mu_{3} needs to be tuned to realize rVr_{V} same order as rs=𝒪(10km)r_{s}={\cal O}(10~{}{\rm km}). We will not address such a specific case in this paper.

Instead, we study the effect of the μ2X2\mu_{2}X^{2} term on α^I\hat{\alpha}_{I} by setting μ3=0\mu_{3}=0 in Eq. (178). We also consider the case in which the scalar potential is absent, so that the coupling functions in the Jordan frame are

G2=(13MPl2F,ϕ22F2)F(ϕ)X+μ2X2,G3=0,G4(ϕ)=MPl22F(ϕ).G_{2}=\left(1-\frac{3M_{\rm Pl}^{2}F_{,\phi}^{2}}{2F^{2}}\right)F(\phi)X+\mu_{2}X^{2}\,,\qquad G_{3}=0\,,\qquad G_{4}(\phi)=\frac{M_{\rm Pl}^{2}}{2}F(\phi)\,. (185)

In the Einstein frame, the action is given by Eq. (174) with

G^2=X^+μ2X^2,G^3=0.\hat{G}_{2}=\hat{X}+\mu_{2}\hat{X}^{2}\,,\qquad\hat{G}_{3}=0\,. (186)

In this class of theories, there are no asymptotically flat hairy BH solutions known in the literature Hawking (1972); Bekenstein (1995); Sotiriou and Faraoni (2012); Graham and Jha (2014); Faraoni (2017); Minamitsuji et al. (2022). Thus, we only consider a static and spherically symmetric NS to compute the quantities appearing in Eq. (166).

VI.2 How to compute α^I\hat{\alpha}_{I}

The line element corresponding to the static and spherically symmetric background in the Jordan frame is given by

ds2=f(r)dt2+h1(r)dr2+r2dΩ2,{\rm d}s^{2}=-f(r){\rm d}t^{2}+h^{-1}(r){\rm d}r^{2}+r^{2}{\rm d}\Omega^{2}\,, (187)

where f(r)f(r) and h(r)h(r) are functions of the radial coordinate rr. For the matter fields Ψm\Psi_{m} inside the NS, we consider a perfect fluid given by the energy-momentum tensor Tμν=diag[ρ(r),P(r),P(r),P(r)]{T^{\mu}}_{\nu}={\rm diag}[-\rho(r),P(r),P(r),P(r)] minimally coupled to gravity, where ρ\rho is the density and PP is the pressure. On the background given by the line element (187), the field equations of motion are Kobayashi et al. (2012, 2014); Kase et al. (2020); Minamitsuji and Silva (2016); Kase and Tsujikawa (2022)

ff=F2[4MPl2(h1)2hr2ϕ2]+3MPl2r2hϕ2F,ϕ2+rF[hϕ(8F,ϕMPl2+3μ2rhϕ3)4rP]2F(2F+F,ϕrϕ)MPl2rh,\displaystyle\frac{f^{\prime}}{f}=-\frac{F^{2}[4M_{\rm Pl}^{2}(h-1)-2hr^{2}\phi^{\prime 2}]+3M_{\rm Pl}^{2}r^{2}h\phi^{\prime 2}F_{,\phi}^{2}+rF[h\phi^{\prime}(8F_{,\phi}M_{\rm Pl}^{2}+3\mu_{2}rh\phi^{\prime 3})-4rP]}{2F(2F+F_{,\phi}r\phi^{\prime})M_{\rm Pl}^{2}rh}\,, (188)
hhff=r2F2hϕ2+2F[hMPl2(F,ϕϕϕ2+F,ϕϕ′′)μ2h2ϕ4+ρ+P]3MPl2F,ϕ2hϕ2F(2F+F,ϕrϕ)MPl2h,\displaystyle\frac{h^{\prime}}{h}-\frac{f^{\prime}}{f}=-r\frac{2F^{2}h\phi^{\prime 2}+2F[hM_{\rm Pl}^{2}(F_{,\phi\phi}\phi^{\prime 2}+F_{,\phi}\phi^{\prime\prime})-\mu_{2}h^{2}\phi^{\prime 4}+\rho+P]-3M_{\rm Pl}^{2}F_{,\phi}^{2}h\phi^{\prime 2}}{F(2F+F_{,\phi}r\phi^{\prime})M_{\rm Pl}^{2}h}\,, (189)
1r2hf(r2fhJr)+𝒫ϕ=0,\displaystyle\frac{1}{r^{2}}\sqrt{\frac{h}{f}}\left(r^{2}\sqrt{\frac{f}{h}}J^{r}\right)^{\prime}+{\cal P}_{\phi}=0\,, (190)
P+f2f(ρ+P)=0,\displaystyle P^{\prime}+\frac{f^{\prime}}{2f}(\rho+P)=0\,, (191)

where a prime represents the derivative with respect to rr, and

Jr\displaystyle J^{r} =\displaystyle= hϕ(F3MPl2F,ϕ22Fμ2hϕ2),\displaystyle h\phi^{\prime}\left(F-\frac{3M_{\rm Pl}^{2}F_{,\phi}^{2}}{2F}-\mu_{2}h\phi^{\prime 2}\right)\,, (192)
𝒫ϕ\displaystyle{\cal P}_{\phi} =\displaystyle= F,ϕ4[MPl2{r2hf24f2(rh+h1)rf(2rhf′′+rfh+4hf)}r2f2hϕ2{2F2+3MPl2(F,ϕ22FF,ϕϕ)}F2].\displaystyle\frac{F_{,\phi}}{4}\left[\frac{M_{\rm Pl}^{2}\{r^{2}hf^{\prime 2}-4f^{2}(rh^{\prime}+h-1)-rf(2rhf^{\prime\prime}+rf^{\prime}h^{\prime}+4hf^{\prime})\}}{r^{2}f^{2}}-\frac{h\phi^{\prime 2}\{2F^{2}+3M_{\rm Pl}^{2}(F_{,\phi}^{2}-2FF_{,\phi\phi})\}}{F^{2}}\right]. (193)

The Arnowitt-Deser-Misner (ADM) mass mm of the star is related to the metric component hh as

m=4πMPl2r[1h(r)]|r.m=4\pi M_{\rm Pl}^{2}r\left[1-h(r)\right]|_{r\to\infty}\,. (194)

At r=0r=0, we impose the regular boundary conditions f(0)=fcf(0)=f_{c}, h(0)=1h(0)=1, ϕ(0)=ϕc\phi(0)=\phi_{c}, ρ(0)=ρc\rho(0)=\rho_{c}, P(0)=PcP(0)=P_{c}, and f(0)=h(0)=ϕ(0)=ρ(0)=P(0)=0f^{\prime}(0)=h^{\prime}(0)=\phi^{\prime}(0)=\rho^{\prime}(0)=P^{\prime}(0)=0. Then, the solutions expanded around the center of star consistent with these boundary conditions are

f\displaystyle f =\displaystyle= fc+fc6F(ϕc)MPl2[ρc+3Pc+MPl2F,ϕ2(ϕc)(ρc3Pc)2F2(ϕc)]r2+𝒪(r4),\displaystyle f_{c}+\frac{f_{c}}{6F(\phi_{c})M_{\rm Pl}^{2}}\left[\rho_{c}+3P_{c}+\frac{M_{\rm Pl}^{2}F_{,\phi}^{2}(\phi_{c})(\rho_{c}-3P_{c})}{2F^{2}(\phi_{c})}\right]r^{2}+{\cal O}(r^{4})\,, (195)
h\displaystyle h =\displaystyle= 113F(ϕc)MPl2[ρcMPl2F,ϕ2(ϕc)(ρc3Pc)2F2(ϕc)]r2+𝒪(r4),\displaystyle 1-\frac{1}{3F(\phi_{c})M_{\rm Pl}^{2}}\left[\rho_{c}-\frac{M_{\rm Pl}^{2}F_{,\phi}^{2}(\phi_{c})(\rho_{c}-3P_{c})}{2F^{2}(\phi_{c})}\right]r^{2}+{\cal O}(r^{4})\,, (196)
ϕ\displaystyle\phi =\displaystyle= ϕcF,ϕ(ϕc)(ρc3Pc)12F2(ϕc)r2+𝒪(r4),\displaystyle\phi_{c}-\frac{F_{,\phi}(\phi_{c})(\rho_{c}-3P_{c})}{12F^{2}(\phi_{c})}r^{2}+{\cal O}(r^{4})\,, (197)
P\displaystyle P =\displaystyle= Pc(ρc+Pc)[2F2(ϕc)(ρc+3Pc)+F,ϕ2(ϕc)MPl2(ρc3Pc)]24F3(ϕc)MPl2r2+𝒪(r4).\displaystyle P_{c}-\frac{(\rho_{c}+P_{c})[2F^{2}(\phi_{c})(\rho_{c}+3P_{c})+F_{,\phi}^{2}(\phi_{c})M_{\rm Pl}^{2}(\rho_{c}-3P_{c})]}{24F^{3}(\phi_{c})M_{\rm Pl}^{2}}r^{2}+{\cal O}(r^{4})\,. (198)

From Eq. (197) it is clear that the hairy NS solution arises through the coupling between the scalar field and matter mediated by the nonminimal coupling F(ϕ)RF(\phi)R. For larger values of |F,ϕ(ϕc)||F_{,\phi}(\phi_{c})| and |ρc3Pc||\rho_{c}-3P_{c}|, the derivative |ϕ(r)||\phi^{\prime}(r)| tends to be larger. The contribution of the term μ2X2\mu_{2}X^{2} appears at the order of r4r^{4} in Eqs. (195)-(198). Since |ϕ(r)||\phi^{\prime}(r)| grows as a function of rr inside the star, the higher-order term μ2X2\mu_{2}X^{2} can also contribute to the solutions around r=rsr=r_{s}.

We define the radius of star rsr_{s} according to the condition P(rs)=0P(r_{s})=0 and assume that ρ=0=P\rho=0=P in the exterior region of star. To study the scalar-field solution for r>rsr>r_{s}, it is convenient to transform the metric to that in the Einstein frame such that

ds^2=F(ϕ)ds2=f^(r^)dt2+h^1(r^)dr^2+r^2dΩ2,{\rm d}\hat{s}^{2}=F(\phi){\rm d}s^{2}=-\hat{f}(\hat{r}){\rm d}t^{2}+\hat{h}^{-1}(\hat{r}){\rm d}\hat{r}^{2}+\hat{r}^{2}{\rm d}\Omega^{2}\,, (199)

where r^\hat{r}, f^\hat{f}, and h^\hat{h} are related to those in the Jordan frame as

r^=Fr,f^=Ff,h^=(1+F,ϕϕ2Fr)2h.\hat{r}=\sqrt{F}\,r\,,\qquad\hat{f}=Ff\,,\qquad\hat{h}=\left(1+\frac{F_{,\phi}\phi^{\prime}}{2F}r\right)^{2}h\,. (200)

The fluid density ρ^\hat{\rho}, pressure P^\hat{P}, and ADM mass m^I\hat{m}_{I} of the NS (labeled by II) in the Einstein frame are expressed as

ρ^=ρF2,P^=PF2,m^I=mIF.\hat{\rho}=\frac{\rho}{F^{2}}\,,\qquad\hat{P}=\frac{P}{F^{2}}\,,\qquad\hat{m}_{I}=\frac{m_{I}}{\sqrt{F}}\,. (201)

In the Einstein frame, the scalar-field equation of motion is written in the form

1r^2h^f^ddr^{[1μ2h^(dϕdr^)2]r^2f^h^dϕdr^}=F,ϕ2F(ρ^3P^).\frac{1}{\hat{r}^{2}}\sqrt{\frac{\hat{h}}{\hat{f}}}\frac{{\rm d}}{{\rm d}\hat{r}}\left\{\left[1-\mu_{2}\hat{h}\left(\frac{{\rm d}\phi}{{\rm d}\hat{r}}\right)^{2}\right]\hat{r}^{2}\sqrt{\hat{f}\hat{h}}\frac{{\rm d}\phi}{{\rm d}\hat{r}}\right\}=-\frac{F_{,\phi}}{2F}\left(\hat{\rho}-3\hat{P}\right)\,. (202)

Since ρ^=0=P^\hat{\rho}=0=\hat{P} outside the NS, Eq. (202) is integrated to give

[1μ2h^(dϕdr^)2]dϕdr^=qsr^2f^h^,\left[1-\mu_{2}\hat{h}\left(\frac{{\rm d}\phi}{{\rm d}\hat{r}}\right)^{2}\right]\frac{{\rm d}\phi}{{\rm d}\hat{r}}=\frac{q_{s}}{\hat{r}^{2}\sqrt{\hat{f}\hat{h}}}\,, (203)

where qsq_{s} is a constant corresponding to a scalar charge. At spatial infinity (r^\hat{r}\to\infty), we impose the asymptotically flat boundary conditions dϕ/dr^0{\rm d}\phi/{\rm d}\hat{r}\to 0, f^1\hat{f}\to 1, and h^1\hat{h}\to 1. Then, far away from the star, the scalar field has the following asymptotic behavior

dϕdr^=qsr^2,ϕ(r^)=ϕ0qsr^,\frac{{\rm d}\phi}{{\rm d}\hat{r}}=\frac{q_{s}}{\hat{r}^{2}}\,,\qquad\phi(\hat{r})=\phi_{0}-\frac{q_{s}}{\hat{r}}\,, (204)

where ϕ0\phi_{0} is the asymptotic value of ϕ\phi. The higher-order kinetic term μ2X^2\mu_{2}\hat{X}^{2} is suppressed in this regime, so that the canonical kinetic term X^\hat{X} gives a dominant contribution to the ADM mass m^I\hat{m}_{I} in the Einstein frame. In other words, m^I\hat{m}_{I} acquires the ϕ\phi dependence through the Lagrangian Lϕ=X^=(1/2)g^ijiϕjϕL_{\phi}=\hat{X}=-(1/2)\hat{g}^{ij}\partial_{i}\phi\partial_{j}\phi, where LϕL_{\phi} does not contain the time dependence of ϕ\phi on the static background (199). Since LϕL_{\phi} contributes to m^I(ϕ)\hat{m}_{I}(\phi) through the three dimensional volume integral d3xLϕ-\int{\rm d}^{3}x\,L_{\phi}, varying m^I(ϕ)\hat{m}_{I}(\phi) with respect to ϕ\phi leads to Damour and Esposito-Farese (1992)

δm^I(ϕ)=d3xδLϕ=d3xi[L(iϕ)δϕ]=d2SiL(iϕ)δϕ=d2Siiϕδϕ,\delta\hat{m}_{I}(\phi)=-\int{\rm d}^{3}x\,\delta L_{\phi}=-\int{\rm d}^{3}x\,\partial_{i}\left[\frac{\partial L}{\partial(\partial_{i}\phi)}\delta\phi\right]=-\int{\rm d}^{2}S_{i}\frac{\partial L}{\partial(\partial_{i}\phi)}\delta\phi=\int{\rm d}^{2}S_{i}\,\partial^{i}\phi\,\delta\phi\,, (205)

where in the second equality we used the Euler-Lagrange equation, and in the third equality the volume integral is changed to the surface integral upon using the Gauss’s theorem. Then, it follows that

m^I,ϕ=d2Siiϕ=4πr^2qsr^2=4πqs.\hat{m}_{I,\phi}=\int{\rm d}^{2}S_{i}\partial^{i}\phi=4\pi\hat{r}^{2}\frac{q_{s}}{\hat{r}^{2}}=4\pi q_{s}\,. (206)

On using the correspondence m^I=mI/F\hat{m}_{I}=m_{I}/\sqrt{F}, the quantity α^I\hat{\alpha}_{I} defined in Eq. (29) can be expressed as111Damour and Esposite-Farese Damour and Esposito-Farese (1993) introduced a dimensionless scalar field ϕDEF=ϕ/(2MPl)\phi_{\rm DEF}=\phi/(\sqrt{2}M_{\rm Pl}) and defined the quantity α^IDEF=dlnm^I/dϕDEF\hat{\alpha}_{I}^{\rm DEF}={\rm d}\ln\hat{m}_{I}/{\rm d}\phi_{\rm DEF}. Hence α^IDEF\hat{\alpha}_{I}^{\rm DEF} is 2\sqrt{2} times as large as our definition of α^I\hat{\alpha}_{I}, i.e., α^IDEF=2α^I\hat{\alpha}_{I}^{\rm DEF}=\sqrt{2}\hat{\alpha}_{I}.

α^I=MPldlnm^I(ϕ)dϕ|ϕ=ϕ0.\hat{\alpha}_{I}=M_{\rm Pl}\frac{{\rm d}\ln\hat{m}_{I}(\phi)}{{\rm d}\phi}\biggr{|}_{\phi=\phi_{0}}\,. (207)

Then, we obtain the following relation

qs=m^I4πMPlα^I,q_{s}=\frac{\hat{m}_{I}}{4\pi M_{\rm Pl}}\hat{\alpha}_{I}\,, (208)

which shows that α^I\hat{\alpha}_{I} is directly related to the scalar charge qsq_{s}. It is worth mentioning that the quantity αI\alpha_{I} defined in the Jordan frame does not correspond the scalar charge due to the presence of the nonminimal coupling G4(ϕ)RG_{4}(\phi)R. At large distances, the scalar-field solution (204) is expressed as

ϕ(r^)=ϕ0m^Iα^I4πMPlr^.\phi(\hat{r})=\phi_{0}-\frac{\hat{m}_{I}\hat{\alpha}_{I}}{4\pi M_{\rm Pl}\hat{r}}\,. (209)

On using Eqs. (200)-(201), we can write Eq. (209) in terms of the quantities in the Jordan frame as

ϕ(r)=ϕ0mIα^I4πF(ϕ0)MPlr.\phi(r)=\phi_{0}-\frac{m_{I}\hat{\alpha}_{I}}{4\pi F(\phi_{0})M_{\rm Pl}r}\,. (210)

To estimate the values of α^I\hat{\alpha}_{I}, we extrapolate the two asymptotic solutions (197) and (210) up to the distance r=rsr=r_{s} and match the rr derivatives of them at r=rsr=r_{s}, i.e.,

F,ϕ(ϕc)ρc(13wc)6F2(ϕc)rsmIα^I4πF(ϕ0)MPlrs2,-\frac{F_{,\phi}(\phi_{c})\rho_{c}(1-3w_{c})}{6F^{2}(\phi_{c})}r_{s}\simeq\frac{m_{I}\hat{\alpha}_{I}}{4\pi F(\phi_{0})M_{\rm Pl}r_{s}^{2}}\,, (211)

where wc=Pc/ρcw_{c}=P_{c}/\rho_{c} is the fluid equation of state (EOS) parameter at r=0r=0. For a star with a nearly constant density ρc\rho_{c}, we can use the approximation mI4πrs3ρc/3m_{I}\simeq 4\pi r_{s}^{3}\rho_{c}/3. Exploiting the approximation F(ϕc)F(ϕ0)F(\phi_{c})\simeq F(\phi_{0}) further, the order of α^I\hat{\alpha}_{I} can be estimated as

α^Ig4(ϕc)2(13wc),\hat{\alpha}_{I}\simeq-\frac{g_{4}(\phi_{c})}{2}(1-3w_{c})\,, (212)

where

g4(ϕc)=MPlF,ϕ(ϕc)F(ϕc).g_{4}(\phi_{c})=\frac{M_{\rm Pl}F_{,\phi}(\phi_{c})}{F(\phi_{c})}\,. (213)

This shows that α^I\hat{\alpha}_{I} is related to the ϕ\phi dependence of nonminimal couplings at r=0r=0. In the limit of point-like sources, i.e., rs0r_{s}\to 0, the relation (212) becomes exact. For nonrelativistic stars (wc1w_{c}\ll 1), we have α^Ig4(ϕc)/2\hat{\alpha}_{I}\simeq-g_{4}(\phi_{c})/2. For NSs, wcw_{c} can be of order 0.1 and hence the approach to the value wc=1/3w_{c}=1/3 tends to suppress α^I\hat{\alpha}_{I}.

The approximate formula (212) is valid for both relativistic and nonrelativistic stars, but it cannot be applied to BHs. Indeed, it is known that there are no asymptotically flat hairy BH solutions with α^I0\hat{\alpha}_{I}\neq 0 in theories under consideration. Then, for the BH-BH binary system, we have α^A=0=α^B\hat{\alpha}_{A}=0=\hat{\alpha}_{B} and hence the ppE parameters are not modified in comparison to GR. On the other hand, the NS can have scalar hairs for theories like (i)-(ii) mentioned in Sec. VI.1. As we will see in Sec. VI.3 in concrete theories, the values of α^I\hat{\alpha}_{I} are different depending on the ADM mass of NSs. Provided that there are some mass difference between two NSs, it is possible to place constraints on the difference α^Aα^B\hat{\alpha}_{A}-\hat{\alpha}_{B} from the gravitational waveform emitted from the NS-NS binary.

For the NS-BH binary system, the difference between the scalarized NS (α^A0\hat{\alpha}_{A}\neq 0) and the no-hair BH (α^B=0\hat{\alpha}_{B}=0) can be generally larger than that of the NS-NS binary. We will focus on such a case in the following discussion. The ppE parameter β1\beta_{1} can be constrained from the phase of observed gravitational waveforms emitted from the NS-BH binary. If the GW observations give the bound |β1||β1|max|\beta_{1}|\leq|\beta_{1}|^{\rm max}, it translates to

|α^A|1675|β1|max(mμ)1/5ζ0MPl2G4(ϕ0).|\hat{\alpha}_{A}|\leq 16\sqrt{\frac{7}{5}|\beta_{1}|^{\rm max}}\left(\frac{m}{\mu}\right)^{1/5}\sqrt{\frac{\zeta_{0}M_{\rm Pl}^{2}}{G_{4}(\phi_{0})}}\,. (214)

In this way, we can constrain α^A\hat{\alpha}_{A} from the GW observations.

Before computing α^A\hat{\alpha}_{A} in concrete theories, we discuss the stability of NSs against odd- and even-parity perturbations on the static and spherically symmetric background. For theories given by the coupling functions (185) in the Jordan frame, there are neither ghost nor Laplacian instabilities under the following three conditions Kase and Tsujikawa (2022)

G4>0,G2,XG4+3G4,ϕ2>0,G2,XG4+3G4,ϕ2+2XG2,XXG4>0,G_{4}>0\,,\qquad G_{2,X}G_{4}+3G_{4,\phi}^{2}>0\,,\qquad G_{2,X}G_{4}+3G_{4,\phi}^{2}+2XG_{2,XX}G_{4}>0\,, (215)

which translate, respectively, to

F>0,μ2hϕ2<F,3μ2hϕ2<F.F>0\,,\qquad\mu_{2}h\phi^{\prime 2}<F\,,\qquad 3\mu_{2}h\phi^{\prime 2}<F\,. (216)

The first inequality is ensured for the choices of nonminimal couplings like F=e2Qϕ/MPlF=e^{-2Q\phi/M_{\rm Pl}} and F=eβϕ2/(2MPl2)F=e^{-\beta\phi^{2}/(2M_{\rm Pl}^{2})}. For μ2<0\mu_{2}<0, the second and third conditions are automatically satisfied. For μ2>0\mu_{2}>0, the second and third inequalities give the condition

3μ2hϕ2<F,3\mu_{2}h\phi^{\prime 2}<F\,, (217)

so that the positive coupling μ2\mu_{2} is bounded from above. With the condition F>0F>0, Eq. (217) translates to

3μ2h^(dϕdr^)2<1,3\mu_{2}\hat{h}\left(\frac{{\rm d}\phi}{{\rm d}\hat{r}}\right)^{2}<1\,, (218)

which corresponds to the stability condition in the Einstein frame.

VI.3 Concrete theories

VI.3.1 BD theories with G2μ2X2G_{2}\supset\mu_{2}X^{2}

Let us first consider theories given by the nonminimal coupling

F(ϕ)=e2Qϕ/MPl,F(\phi)=e^{-2Q\phi/M_{\rm Pl}}\,, (219)

with the coupling functions (185). For μ2=0\mu_{2}=0, this is equivalent to massless BD theory, where the BD parameter ωBD\omega_{\rm BD} is related to the coupling QQ as Eq. (181). As in the case of solutions (197) and (210) derived for NSs, stars on the weak gravity background acquire the scalar charge through the nonminimal coupling as well. This mediates fifth forces in the solar system, which are constrained by local gravity experiments. The solar-system tests of gravity have placed the bound ωBD>4.0×104\omega_{\rm BD}>4.0\times 10^{4} Will (2014), which translates to the upper limit

|Q|<2.5×103.|Q|<2.5\times 10^{-3}\,. (220)

For the nonminimal coupling (219), the NS has a scalar charge given by Eq. (212), i.e.,

α^AQ(13wc)(forμ2=0).\hat{\alpha}_{A}\simeq Q(1-3w_{c})\qquad\quad({\rm for}~{}\mu_{2}=0). (221)

If we consider nonrelativistic point-like sources (wc0w_{c}\to 0 and rs0r_{s}\to 0), Eq. (221) gives the exact relation α^A=Q\hat{\alpha}_{A}=Q. In this case, Eq. (69) yields

G~=GF(1+2Q2)=GF4+2ωBD3+2ωBD(forμ2=0,wc0,rs0),\tilde{G}=\frac{G}{F}\left(1+2Q^{2}\right)=\frac{G}{F}\frac{4+2\omega_{\rm BD}}{3+2\omega_{\rm BD}}\qquad\quad({\rm for}~{}\mu_{2}=0,~{}w_{c}\to 0,~{}r_{s}\to 0), (222)

where G=(8πMPl2)1G=(8\pi M_{\rm Pl}^{2})^{-1}, and we used the relation (181) in the second equality. Thus, in massless BD theories, the effective gravitational coupling between two nonrelativistic point-like sources is given by Eq. (222).

For NSs, wcw_{c} can be of order 0.1. To compute α^A\hat{\alpha}_{A} for NSs with finite radius rsr_{s}, we also need to consider realistic EOSs inside the star (0rrs0\leq r\leq r_{s}) without approximating it as a point particle. We numerically integrate Eqs. (188)-(191) from a central region of the star to a sufficiently large distance by specifying a NS EOS and compute α^A\hat{\alpha}_{A} by comparing numerical solutions of ϕ\phi with the asymptotic solution (210). For μ2=0\mu_{2}=0 the similar analysis was already performed in the literature Niu et al. (2021), so we will not repeat it here. Numerically, we confirmed that the approximate formula (221) gives a good criterion for the estimation of α^A\hat{\alpha}_{A} with the EOS parameter wcw_{c} in the range wc<1/3w_{c}<1/3. From the solar-system constraint (220), the parameter α^A\hat{\alpha}_{A} should be in the range |α^A|<0.0025(13wc)|\hat{\alpha}_{A}|<0.0025(1-3w_{c}). If we consider a NS-BH binary with the masses mA=1.7Mm_{A}=1.7M_{\odot} and mB=2.5Mm_{B}=2.5M_{\odot}, for example, the scalar charge |α^A|=0.002|\hat{\alpha}_{A}|=0.002 corresponds to the ppE parameter |β1||\beta_{1}| of order 10910^{-9}. If the future GW observations can pin down the value |β1|max|\beta_{1}|^{\rm max} to the order 10910^{-9}, it is possible to obtain tighter bounds on |Q||Q| than those constrained from the solar-system tests of gravity.

For μ20\mu_{2}\neq 0, the higher-order derivative term μ2X2\mu_{2}X^{2} can contribute to solutions of ϕ\phi, ff, and hh around the surface of star. We are interested in the case where the effect of μ2X2\mu_{2}X^{2} becomes important in strong gravity regimes, while it is suppressed relative to XX in the solar system. In other words, we search for the possibility for enhancing |α^A||\hat{\alpha}_{A}| by the derivative term μ2X2\mu_{2}X^{2} relative to (221), while respecting the bound (220). For this purpose, we write the scalar-field Eq. (202) explicitly as

(13μ2h^ϕ^2)h^ϕ^′′+(1μ2h^ϕ^2)h^(2r^+f^2f^+h^2h^)ϕ^μ2h^h^ϕ^3=F,ϕ2F(ρ^3P^),\left(1-3\mu_{2}\hat{h}\hat{\phi}^{\prime 2}\right)\hat{h}\hat{\phi}^{\prime\prime}+\left(1-\mu_{2}\hat{h}\hat{\phi}^{\prime 2}\right)\hat{h}\left(\frac{2}{\hat{r}}+\frac{\hat{f}^{\prime}}{2\hat{f}}+\frac{\hat{h}^{\prime}}{2\hat{h}}\right)\hat{\phi}^{\prime}-\mu_{2}\hat{h}\hat{h}^{\prime}\hat{\phi}^{\prime 3}=-\frac{F_{,\phi}}{2F}\left(\hat{\rho}-3\hat{P}\right)\,, (223)

where we used the notations ϕ^=dϕ/dr^\hat{\phi}^{\prime}={\rm d}\phi/{\rm d}\hat{r} and ϕ^′′=d2ϕ/dr^2\hat{\phi}^{\prime\prime}={\rm d}^{2}\phi/{\rm d}\hat{r}^{2}. A prime here represents the derivative with respect to r^\hat{r}. A positive coupling μ2\mu_{2} gives the coefficient 13μ2h^ϕ^21-3\mu_{2}\hat{h}\hat{\phi}^{\prime 2} smaller than 1, so it may be possible to enhance the overall amplitude of |ϕ^||\hat{\phi}^{\prime}|. Unless the term 13μ2h^ϕ^21-3\mu_{2}\hat{h}\hat{\phi}^{\prime 2} is very close to 0 or is negative, however, we numerically find that α^A\hat{\alpha}_{A} is practically the same as that for μ2=0\mu_{2}=0. Since the stability of NSs requires the condition (218), the coupling μ2\mu_{2} with 13μ2h^ϕ^2<01-3\mu_{2}\hat{h}\hat{\phi}^{\prime 2}<0 is excluded. When the term 13μ2h^ϕ^21-3\mu_{2}\hat{h}\hat{\phi}^{\prime 2} is very close to 0, there is a strong coupling problem associated with a small coefficient of the second derivative ϕ^′′\hat{\phi}^{\prime\prime} in Eq. (223). Hence it is not possible to realize a value of |α^A||\hat{\alpha}_{A}| whose order is larger than (221). We note that the negative coupling μ2\mu_{2} tends to suppress |ϕ^||\hat{\phi}^{\prime}|, so |α^A||\hat{\alpha}_{A}| does not exceed the value for μ2=0\mu_{2}=0.

VI.3.2 Spontaneous scalarization with G2μ2X2G_{2}\supset\mu_{2}X^{2}

For μ2=0\mu_{2}=0, spontaneous scalarization of NSs can be realized by nonminimal couplings containing the even power-law dependence of ϕ\phi. A typical example is given by the coupling function Damour and Esposito-Farese (1993, 1996)

F(ϕ)=eβϕ2/(2MPl2),F(\phi)=e^{-\beta\phi^{2}/(2M_{\rm Pl}^{2})}\,, (224)

which allows the existence of a nontrivial branch ϕ(r)0\phi(r)\neq 0 besides the GR branch ϕ(r)=0\phi(r)=0. On the strong gravitational background, the GR branch can be subject to tachyonic instability for β<0\beta<0, which is triggered by spontaneous growth of ϕ\phi toward the other nontrivial branch. Spontaneous scalarization of NSs is a nonperturbative phenomenon which can occur for largely negative couplings in the range β4.35\beta\leq-4.35 Harada (1998); Novak (1998); Sotani and Kokkotas (2004); Silva et al. (2015); Barausse et al. (2013).

From Eq. (212), the scalar charge can be estimated as

α^Iβϕc2MPl(13wc).\hat{\alpha}_{I}\simeq\frac{\beta\phi_{c}}{2M_{\rm Pl}}(1-3w_{c})\,. (225)

Since ϕc\phi_{c} is nonvanishing for the scalarized branch, NSs acquire the scalar charge. The asymptotic field value ϕ0\phi_{0} at spatial infinity is constrained by solar-system tests of gravity. Since the parametrized PN parameter in the current theory is γPPN1=2β2ϕ2/(2MPl2+β2ϕ2)\gamma_{\rm PPN}-1=-2\beta^{2}\phi^{2}/(2M_{\rm Pl}^{2}+\beta^{2}\phi^{2}) Damour and Esposito-Farese (1992), the constraint γPPN1=(2.1±2.3)×105\gamma_{\rm PPN}-1=(2.1\pm 2.3)\times 10^{-5} arising from the Shapiro time delay experiment Will (2014) gives the upper limit

|ϕ0|1.4×103MPl|β|1.|\phi_{0}|\leq 1.4\times 10^{-3}M_{\rm Pl}|\beta|^{-1}\,. (226)

For given model parameters, we iteratively search for a central field value ϕc\phi_{c} consistent with the bound (226). To describe realistic nuclear interactions inside NSs, we exploit an analytic representation of the SLy EOS given in Ref. Haensel and Potekhin (2004). For the numerical purpose, we introduce the following constants

ρ0=1.6749×1014g/cm3,r0=8πMPl2ρ0=89.664km,\rho_{0}=1.6749\times 10^{14}~{}{\rm g/cm}^{3}\,,\qquad r_{0}=\sqrt{\frac{8\pi M_{\rm Pl}^{2}}{\rho_{0}}}=89.664~{}{\rm km}\,, (227)

which are used to normalize ρ\rho and rr, respectively.

Refer to caption
Refer to caption
Figure 1: (Left) Field derivative |ϕ(r)||\phi^{\prime}(r)| normalized by MPl/r0M_{\rm Pl}/r_{0} in models of spontaneous scalarization with β=5\beta=-5 for the SLy EOS with ρc=8ρ0\rho_{c}=8\rho_{0}. Each line corresponds to μ2=0,1,10\mu_{2}=0,-1,-10, respectively, where μ2\mu_{2} is normalized by r02/MPl2r_{0}^{2}/M_{\rm Pl}^{2}. (Right) α^A-\hat{\alpha}_{A} versus mA/Mm_{A}/M_{\odot} for β=5\beta=-5 and μ2=0,1,10\mu_{2}=0,-1,-10. In this plot, the central matter density is in the range ρc12ρ0\rho_{c}\leq 12\rho_{0}. The negative coupling μ2\mu_{2} leads to the suppression of α^A-\hat{\alpha}_{A} in comparison to standard spontaneous scalarization (μ2=0\mu_{2}=0).

In the left panel of Fig. 1, we plot the field derivative |ϕ(r)||\phi^{\prime}(r)| (normalized by MPl/r0M_{\rm Pl}/r_{0}) with the central density ρc=8ρ0\rho_{c}=8\rho_{0} for β=5\beta=-5 and μ2=0\mu_{2}=0 (black line). In this case, the radius of NS is rs0.13r0=11.7r_{s}\simeq 0.13r_{0}=11.7 km with the ADM mass mA1.74Mm_{A}\simeq 1.74M_{\odot}, where MM_{\odot} is the solar mass. Deep inside the star (rrsr\ll r_{s}), the scalar field varies according to Eq. (197), i.e., ϕβϕcρc(13wc)r/[6MPl2F(ϕc)]<0\phi^{\prime}\simeq\beta\phi_{c}\rho_{c}(1-3w_{c})r/[6M_{\rm Pl}^{2}F(\phi_{c})]<0 with wc=0.239w_{c}=0.239 and ϕc>0\phi_{c}>0. For rrsr\gg r_{s}, the solution to ϕ\phi is given by Eq. (210), i.e., ϕ(r)mAα^A/[4πF(ϕ0)MPlr2]<0\phi^{\prime}(r)\simeq m_{A}\hat{\alpha}_{A}/[4\pi F(\phi_{0})M_{\rm Pl}r^{2}]<0 with α^A<0\hat{\alpha}_{A}<0. As we observe in Fig. 1, the two solutions smoothly join each other around r=rsr=r_{s}. The scalar field continuously decreases from the central value ϕc0.2835MPl\phi_{c}\simeq 0.2835M_{\rm Pl} to the asymptotic value ϕ0\phi_{0} close to 0 [which is in the range (226)]. In this case, the numerical value of α^A\hat{\alpha}_{A} is 0.29-0.29. The approximate analytic formula (225) gives the value α^A0.20\hat{\alpha}_{A}\simeq-0.20, so it is sufficient to estimate the order of the scalar charge.

The black line in the right panel of Fig. 1 shows α^A-\hat{\alpha}_{A} versus mA/Mm_{A}/M_{\odot} for β=5\beta=-5 and μ2=0\mu_{2}=0. With the central density in the range ρc5.25ρ0\rho_{c}\lesssim 5.25\rho_{0}, the scalar-field solution is close to the GR one (ϕ(r)=0\phi(r)=0) and hence |α^A||\hat{\alpha}_{A}| is much smaller than 1. For ρc5.25ρ0\rho_{c}\gtrsim 5.25\rho_{0}, which corresponds to the ADM mass mA1.25Mm_{A}\gtrsim 1.25M_{\odot}, the scalarized branch starts to appear. With the increase of ρc\rho_{c}, α^A-\hat{\alpha}_{A} grows to reach the maximum value 0.290.29 around ρc=8ρ0\rho_{c}=8\rho_{0}. As ρc\rho_{c} increases further, α^A-\hat{\alpha}_{A} starts to decrease and approaches 0 for ρc12ρ0\rho_{c}\gtrsim 12\rho_{0}. This is attributed to the fact that wcw_{c} approaches 1/31/3 in the analytic estimation of Eq. (225). For μ2=0\mu_{2}=0, the observed orbital decay of binary pulsars put a stringent limit β4.5\beta\geq-4.5 Freire et al. (2012); Shao et al. (2017); Anderson et al. (2019). This bound arises from the scalar radiation of GWs induced by a large scalar charge. Note that the coupling constant β=5\beta=-5, which corresponds to the black line shown in the right panel of Fig. 1, has been already excluded by binary pulsar measurements.

In the presence of the higher-order derivative term μ2X2\mu_{2}X^{2} with μ2<0\mu_{2}<0, it is possible to reduce |α^A||\hat{\alpha}_{A}|. The scalar-field equation in the Einstein frame is given by Eq. (223), where the right hand-side is βϕ(ρ^3P^)/(2MPl2)\beta\phi(\hat{\rho}-3\hat{P})/(2M_{\rm Pl}^{2}). When μ2<0\mu_{2}<0, the stability condition (218) is always satisfied. Since the term (13μ2h^ϕ^2)h^(1-3\mu_{2}\hat{h}\hat{\phi}^{\prime 2})\hat{h} gets larger for decreasing negative values of μ2\mu_{2}, this leads to the suppression of |ϕ^||\hat{\phi}^{\prime}| especially around the surface of star. Then, the scalar field decreases slowly around r=rsr=r_{s}. Hence we need to choose smaller values of ϕc\phi_{c} to realize ϕ0\phi_{0} consistent with (226). In the left panel of Fig. 1, we plot |ϕ(r)||\phi^{\prime}(r)| versus r/r0r/r_{0} for β=5\beta=-5 and μ2=1,10\mu_{2}=-1,-10, where μ2\mu_{2} is normalized by r02/MPl2r_{0}^{2}/M_{\rm Pl}^{2}. Since ϕc\phi_{c} tends to be smaller for decreasing μ2\mu_{2}, the term βϕc(ρ^3P^)/(2MPl2)\beta\phi_{c}(\hat{\rho}-3\hat{P})/(2M_{\rm Pl}^{2}) is subject to suppression, which results in overall decrease of |ϕ(r)||\phi^{\prime}(r)| both inside and outside the NS.

The suppression of ϕc\phi_{c} induced by the negative coupling constant μ2\mu_{2} leads to the decrease of |α^A||\hat{\alpha}_{A}| through Eq. (225). In the right panel of Fig. 1, we can confirm that, as μ2\mu_{2} decreases, |α^A||\hat{\alpha}_{A}| gets smaller. For μ2=1\mu_{2}=-1 and μ2=10\mu_{2}=-10, the maximum numerical values of |α^A||\hat{\alpha}_{A}| are 0.14 and 0.05, respectively. Thus, even when β=5\beta=-5, it is possible to realize small values of |α^A||\hat{\alpha}_{A}| that can be consistent with binary pulsar constraints. For the NS-BH binary with mA=1.7Mm_{A}=1.7M_{\odot} and mB=2.5Mm_{B}=2.5M_{\odot}, the scalar charge with |α^A|=0.05|\hat{\alpha}_{A}|=0.05 corresponds to the ppE parameter β1\beta_{1} of order |β1|=𝒪(106)|\beta_{1}|={\cal O}(10^{-6}). If the future GW observations were to put limits on β1\beta_{1} at this level, it is possible to probe the signature of spontaneous scalarization in the coupling ranges β<4.5\beta<-4.5 and μ2<0\mu_{2}<0.

VI.3.3 Massive theories with ms0m_{s}\neq 0

Finally, we comment on theories with a nonvanishing scalar-field mass msm_{s}. If msm_{s} is larger than the typical orbital frequency ω1013\omega\simeq 10^{-13} eV during the inspiral phase of compact binaries, we showed in Sec. V.2 that the gravitational waveforms reduce to those in GR. For example, let us consider scalarized NSs realized by the coupling functions (183) with the potential (184) Minamitsuji and Tsujikawa (2022a). In this setup, the scalar field is in a state of symmetry restoration deep inside the NS due to the dominance of a positive nonminimal coupling (β>0\beta>0) over a negative mass squared of the potential. Away from the star, the field settles down at its vacuum expectation value ϕv=πfB\phi_{v}=\pi f_{B} with a positive mass squared ms2m_{s}^{2}. In this scenario, the Compton radius ms1m_{s}^{-1} of the scalar field is of order the typical size of NS, i.e., ms1=𝒪(10km)m_{s}^{-1}={\cal O}(10\,{\rm km}), so that ms=𝒪(1011eV)m_{s}={\cal O}(10^{-11}~{}{\rm eV}). Since msm_{s} is larger than the typical orbital frequency ω1013\omega\simeq 10^{-13} eV, this model evades constraints from the observed gravitational waveform emitted during the inspiral phase.

There are also chameleon theories Khoury and Weltman (2004a, b) in which the effective mass of ϕ\phi is large inside the star, while the field is light outside the star. If the mass msm_{s} outside the NS is smaller than the order ω1013\omega\simeq 10^{-13} eV, there are next-to-leading order ppE parameters (170) arising from the correction term ms2/ω2m_{s}^{2}/\omega^{2} besides the leading-order ppE parameters (166). The gravitational waveforms in massive BD theories Alsing et al. (2012); Berti et al. (2012); Sagunski et al. (2018); Liu et al. (2020) and screened modified gravity in the Einstein frame Zhang et al. (2017); Liu et al. (2018); Niu et al. (2019) have been already studied in the literature. Our formulation in this paper can accommodate more general k-essence theories.

VII Conclusions

In this paper, we studied the gravitational waveform emitted during the inspiral phase of quasicircular compact binaries in a subclass of Horndeski theories. In this class of theories the speed of gravity ctc_{t} is equivalent to that of light on the cosmological background, so it automatically evades observational bounds on ctc_{t}. Our general analysis accommodates not only (massive) BD theories and spontaneous scalarization but also k-essence and cubic derivative interactions. We exploited the PN expansion of a source energy-momentum tensor to derive solutions to the scalar-field perturbation from the source to the observer. In the presence of a cubic Galileon coupling μ3Xϕ\mu_{3}X\square\phi, our formulation is valid for the Vainshtein radius rVr_{V} at most of order the star radius rsr_{s}.

In our theory there are no hairy BH solutions known in the literature, but nonminimal couplings G4(ϕ)G_{4}(\phi) can give rise to NSs endowed with scalar charges. We have taken the description of point-like particles of the source whose mass mIm_{I} depends on the scalar field, with αI\alpha_{I} defined in Eq. (26). Due to the presence of nonminimal couplings in the Jordan frame, the combination α^I=αIg4/2\hat{\alpha}_{I}=\alpha_{I}-g_{4}/2 is a quantity directly related to the scalar charge, where g4g_{4} is defined in Eq. (27). We clarified this point in Sec. VI by transforming the action (1) to that in the Einstein frame. The nonvanishing values of α^I\hat{\alpha}_{I} for NSs are crucial to probe the signature of modifications of gravity through the GW observations.

In Sec. III, we performed the expansion of metric and scalar field about a Minkowski background and derived the perturbation equations up to second order. We then obtained the quadrupole formula of tensor waves as Eq. (58), which reduces to the form (78) for a quasicircular orbit of the binary system. In Sec. IV, we showed that the solution to scalar-field perturbations up to quadrupole order is given by the sum of a massless mode (97) and a massive mode (98). The existence of scalar perturbations nonminimally coupled to gravity gives rise to breathing (hbh_{b}) and longitudinal (hLh_{L}) polarizations for the GW field, which are of the forms (122) and (123) respectively. We also derived solutions to the TT polarizations of GWs in the forms (119) and (120).

In Sec. V, we first discussed the energy loss induced by gravitational radiation and computed the time variation of an orbital frequency ω\omega. We then derived the gravitational waveform in Fourier space under a stationary phase approximation. If the scalar-field mass msm_{s} is much smaller than ω\omega, we obtained the waveforms of two TT polarizations as Eqs. (158) and (159) under the conditions (154) and (156). For msωm_{s}\gg\omega, the TT modes are practically equivalent to those in GR due to the absence of scalar radiation and the exponential suppression of fifth forces outside the star. In the massless limit ms/ω0m_{s}/\omega\to 0, we showed that the leading-order gravitational waveforms reduce to those in the ppE formalism, with the ppE parameters (166). If msm_{s} is not very much smaller than ω\omega, there are corrections to the ppE parameters given by Eq. (170).

In Sec. VI, we computed α^A\hat{\alpha}_{A} for NSs in several concrete theories to confront them with the future observations of GWs. In particular, we took into account a higher-order kinetic term μ2X2\mu_{2}X^{2} in G2G_{2} for massless BD theories and theories of spontaneous scalarization. In BD theories, it is difficult to increase the scalar charge by the coupling μ2\mu_{2} due to the appearance of ghost or strong coupling problems. On the other hand, in theories of spontaneous scalarization, the negative coupling μ2\mu_{2} leads to the suppression of |α^A||\hat{\alpha}_{A}| without inducing ghost instabilities (see the right panel of Fig. 1). For μ2=0\mu_{2}=0, the binary pulsar measurements already put a tight bound β4.5\beta\geq-4.5 on the nonminimal coupling. The presence of μ2X2\mu_{2}X^{2} should make the theory compatible with binary pulsar observations even for β<4.5\beta<-4.5. It remains to be seen how future events of the NS-BH binary system place bounds on the values of β\beta and μ2\mu_{2}. Finally, we also showed that the recently proposed scalarized NSs realized in massive theories with ms=𝒪(1011eV)m_{s}={\cal O}(10^{-11}~{}{\rm eV}) and β>0\beta>0 give rise to gravitational waveforms similar to those in GR.

It will be of interest to apply our formula of gravitational waveforms to the cubic Galileon coupling with the Vainshtein radius rVrsr_{V}\lesssim r_{s}. Moreover, the extension of our analysis to full Horndeski theories allows us to accommodate more general modified gravity theories including the scalar-Gauss-Bonnet coupling Maselli et al. (2016); Pani et al. (2011); Kleihaus et al. (2014); Doneva and Yazadjiev (2018); Carson and Yagi (2020); Minamitsuji and Tsujikawa (2022b). We leave these topics for future works.

Acknowledgements

We are grateful to Luca Amendola, Rampei Kimura, Kei-ichi Maeda, Masato Minamitsuji, Atsushi Nishizawa, Hirotada Okawa, Hiroki Takeda, David Trestini, and Nicolas Yunes for useful discussions and comments. We also thank Tan Liu for answering questions to the paper Liu et al. (2020). ST was supported by the Grant-in-Aid for Scientific Research Fund of the JSPS Nos. 19K03854 and 22K03642.

References