This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Initial Tukey Structure Below A Stable Ordered-Union Ultrafilter

Tan Özalp Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA [email protected]
Abstract.

Answering a question of Dobrinen and Todorcevic asked in [DT11], we prove that below any stable ordered-union ultrafilter 𝒰\mathcal{U}, there are exactly four nonprincipal Tukey classes: [𝒰],[𝒰min],[𝒰max][\mathcal{U}],[\mathcal{U}_{\operatorname{min}}],[\mathcal{U}_{\operatorname{max}}], and [𝒰minmax][\mathcal{U}_{\operatorname{minmax}}]. This parallels the classification of ultrafilters Rudin-Keisler below 𝒰\mathcal{U} by Blass in [Bla87]. A key step in the proof involves modifying the proof of a canonization theorem of Klein and Spinas [KS05] for Borel functions on FIN[]\mathrm{FIN}^{[\infty]} to obtain a simplified canonization theorem for fronts on FIN[]\mathrm{FIN}^{[\infty]}, recovering Lefmann’s ([Lef96]) canonization for fronts of finite uniformity rank as a special case. We use this to classify the Rudin-Keisler classes of all ultrafilters Tukey below 𝒰\mathcal{U}, which is then applied to achieve the main result.

Key words and phrases:
Ultrafilter, Tukey, cofinal types, canonical Ramsey theory, block sequences, Rudin-Keisler.
2020 Mathematics Subject Classification:
Primary 03E05, 03E04, 05D10, 06A07; Secondary 03E02, 54H05, 54D80.

1. Introduction

Tukey introduced the notion of Tukey ordering to study the theory of convergence in topology [Tuk40]. The study of the Tukey ordering of a particular class of partial orders, namely that of the class of ultrafilters, started with Isbell’s [Isb65] and independently Juhász’s [Juh67] constructions of ultrafilters with maximum Tukey degree. This study was revived with Milovich [Mil08], and continued with a detailed investigation by Dobrinen and Todorcevic in [DT11]. Further major developments include [RT12], [DT14], [DT15], [BDR15], [Dob16a], [Dob16b], [DMT17], [RS17], [KR18] [RV19], [Dob20], [BD23], [Ben23], [BD], [BW24], and the survey papers [Dob15], [Dob21], and [KR24].

Two types of the important questions asked about the structure of the Tukey types of ultrafilters are the following: Which partial orders can be embedded into the Tukey ordering of the ultrafilters? Given an ultrafilter 𝒰\mathcal{U}, what is the structure of the Tukey/Rudin-Keisler types of ultrafilters below 𝒰\mathcal{U}? In Section 66 of [DT11], Dobrinen and Todorcevic obtained partial results on the initial Tukey structure below a stable ordered-union ultrafilter, but left the question of exact classification open. We shall answer this question in this paper.

In order to discuss our results, we now provide some definitions. Ultrafilters considered throughout the paper are assumed to be on countable base sets. For ultrafilters 𝒰\mathcal{U} and 𝒱\mathcal{V}, we say 𝒱\mathcal{V} is Tukey reducible to 𝒰\mathcal{U} (or 𝒱\mathcal{V} is Tukey below 𝒰\mathcal{U}), and write 𝒱T𝒰\mathcal{V}\leq_{T}\mathcal{U}, if there is a map f:𝒰𝒱f:\mathcal{U}\to\mathcal{V} which sends every filter base for 𝒰\mathcal{U} to a filter base for 𝒱\mathcal{V}. We say that 𝒰\mathcal{U} and 𝒱\mathcal{V} are Tukey equivalent, and write 𝒰T𝒱\mathcal{U}\equiv_{T}\mathcal{V}, if both 𝒰T𝒱\mathcal{U}\leq_{T}\mathcal{V} and 𝒱T𝒰\mathcal{V}\leq_{T}\mathcal{U}. We call the collection of ultrafilters Tukey equivalent to 𝒰\mathcal{U} the Tukey type of 𝒰\mathcal{U}, and denote it by [𝒰][\mathcal{U}]. We call the collection of Tukey types Tukey below 𝒰\mathcal{U} the initial Tukey structure below 𝒰\mathcal{U}.

The first initial Tukey structure result was Todorcevic’s 111It is explained in the introduction of [RT12] that the result is due to Todorcevic. proof of the Tukey minimality of Ramsey ultrafilters in [RT12], which mirrors the result of Blass that Ramsey ultrafilters are Rudin-Keisler minimal ([Bla73]). Later, the initial Tukey structures below ultrafilters forced by to Laflamme’s partial orders ([Laf89]), and the isomorphism classes inside these Tukey classes were classified in [DT14] and [DT15], analogously to Laflamme’s results for the Rudin-Keisler order. Further work includes the classification of the initial Tukey structure and the isomorphism classes inside the Tukey classes below ultrafilters forced by 𝒫(ωk)/Fink\mathcal{P}(\omega^{k})/{\mathrm{Fin}}^{\otimes k} for all k2k\geq 2 in [Dob16a], and below ultrafilters associated to topological Ramsey spaces constructed from Fraïssé classes in [DMT17]. See the survey [Dob21] for the full results.

We let FIN\mathrm{FIN} denote the set of all finite nonempty subsets of ω\omega and define the maps sm:FIN[]ω\operatorname{sm}:\mathrm{FIN}^{[\infty]}\to\omega, id:FINFIN\operatorname{id}:\mathrm{FIN}\to\mathrm{FIN}, min:FINω\operatorname{min}:\mathrm{FIN}\to\omega, max:FINω\operatorname{max}:\mathrm{FIN}\to\omega and minmax:FINω2\operatorname{minmax}:\mathrm{FIN}\to\omega^{2} by sm(s)=\operatorname{sm}(s)=\varnothing, id(s)=s\operatorname{id}(s)=s, min(s)=the least element of s\operatorname{min}(s)=\text{the least element of $s$}, max(s)=the greatest element of s\operatorname{max}(s)=\text{the greatest}\text{ element of $s$}, and minmax(s)=(min(s),max(s))\operatorname{minmax}(s)=(\operatorname{min}(s),\operatorname{max}(s)) for all sFINs\in\mathrm{FIN}. The object of our study is an ultrafilter 𝒰\mathcal{U} on the base set FIN\mathrm{FIN} satisfying a certain partition property, called a stable ordered-union ultrafilter (see Definition 2.13). Letting 𝟏\bf{1} denote a principal ultrafilter and writing 𝒰min\mathcal{U}_{\operatorname{min}}, 𝒰max\mathcal{U}_{\operatorname{max}} and 𝒰minmax\mathcal{U}_{\operatorname{minmax}} for the RK\mathrm{RK}-images of 𝒰\mathcal{U} under the respective maps (see Definition 2.2), we have 𝟏T𝒰min,𝒰maxT𝒰minmaxT𝒰{\bf 1}\leq_{T}\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}}\leq_{T}\mathcal{U}_{\operatorname{minmax}}\leq_{T}\mathcal{U}.

We fix an arbitrary stable ordered-union ultrafilter 𝒰\mathcal{U} on the base set FIN\mathrm{FIN}. Denote the Rudin-Keisler equivalence of ultrafilters by \cong (Definition 2.2), and let us note that Rudin-Keisler reduction implies Tukey reduction. Recall the following theorem of Blass:

Theorem 1.1 ([Bla87]).

Let 𝒱\mathcal{V} be a nonprincipal ultrafilter on ω\omega such that 𝒱RK𝒰\mathcal{V}\leq_{RK}\mathcal{U}. Then 𝒱\mathcal{V} is Rudin-Keisler equivalent to exactly one of 𝒰,𝒰min,𝒰max\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}} or 𝒰minmax\mathcal{U}_{\operatorname{minmax}}. Moreover, 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} are RK\mathrm{RK}-incomparable. This results in the following picture, where the arrows represent strict Rudin-Keisler reducibility:

𝒰\textstyle{\mathcal{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰minmax\textstyle{\mathcal{U}_{\operatorname{minmax}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰min\textstyle{\mathcal{U}_{\operatorname{min}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰max\textstyle{\mathcal{U}_{\operatorname{max}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝟏\textstyle{\mathbf{1}}
Figure 1. Rudin-Keisler classes below 𝒰\mathcal{U}.

As for the Tukey order, Corollary 6969 and the subsequent remark in [DT11] showed that 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} are Tukey-incomparable. Theorem 7474 of the same paper included the construction of a particular stable ordered-union 𝒰\mathcal{U} such that 𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}}, assuming CH\mathrm{CH}. This results in a similar picture to Figure 1 with respect to the Tukey order, but the exact Tukey structure below 𝒰\mathcal{U} was not classified, even under CH\mathrm{CH}.

1.2 and 1.4 below are Question 7777 and Question 7575 in [DT11]. 1.3 is motivated by prior work on initial Tukey structures:

Question 1.2.

What ultrafilters are Tukey reducible to 𝒰\mathcal{U}?

Question 1.3.

What are the isomorphism types of ultrafilters Tukey reducible to 𝒰\mathcal{U}?

Question 1.4.

If 𝒰\mathcal{U} is any stable ordered-union, does it follow that 𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}}?

Let 𝒰\mathcal{U} be an arbitrary stable ordered-union ultrafilter. We answer 1.2 in Theorem 5.12 by proving that every nonprincipal ultrafilter 𝒱T𝒰\mathcal{V}\leq_{T}\mathcal{U} is Tukey equivalent to exactly one of 𝒰,𝒰min,𝒰max\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}} or 𝒰minmax\mathcal{U}_{\operatorname{minmax}}, and so the Tukey structure below 𝒰\mathcal{U} is exactly like the Rudin-Keisler structure illustrated in Figure 1 (the exactness part of the statement is proved in Theorem 3.6, which answers 1.4). 1.3 is answered in Theorem 5.4, which proves that every nonprincipal ultrafilter Tukey below 𝒰\mathcal{U} is isomorphic to a countable Fubini iterate of ultrafilters from the set {𝒰,𝒰min,𝒰max,𝒰minmax}\{\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}},\mathcal{U}_{\operatorname{minmax}}\} (see Definition 2.15).

Recall the first initial Tukey structure result:

Theorem 1.5 ([RT12]).

Let 𝒰\mathcal{U} be a Ramsey ultrafilter on ω\omega and assume that 𝒱\mathcal{V} is nonprincipal with 𝒱T𝒰\mathcal{V}\leq_{T}\mathcal{U}. Then 𝒱\mathcal{V} is a countable Fubini iterate of 𝒰\mathcal{U}, and in particular 𝒱T𝒰\mathcal{V}\equiv_{T}\mathcal{U}.

The proof of this theorem included Pudlák and Rödl’s canonization theorem ([PR82]) as a key step. In [DT14] and [DT15], new topological Ramsey spaces dense in Laflamme’s forcings were constructed, and new canonization results for equivalence relations (equivalently, functions) on the fronts on these spaces were proved to be employed in the classifications of the initial Tukey structures. Ramsey-classification results, i.e., canonization theorems for fronts on the newly constructed topological Ramsey spaces, were proved and used as a key step of the classifications of the initial Tukey structures in [Dob16a], [Dob16b], and [DMT17], as well.

In this paper, we will work with Milliken’s ([Mil75]) topological Ramsey space FIN[]\mathrm{FIN}^{[\infty]} (see Definition 2.5), and adapt the main result of [KS05] to prove a simplified canonization result for equivalence relations on fronts on FIN[]\mathrm{FIN}^{[\infty]}. This will yield Lefmann’s canonization in [Lef96] as a special case. The canonization theorem will then be used in the proof of the main result.

Section 2 provides the notation and states some well-known facts that will be used throughout the paper. Section 3 states more facts related to 𝒰\mathcal{U}. In that section, we prove that 𝒰\mathcal{U} is rapid and 𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}}, in ZFC\mathrm{ZFC}. This answers 1.4, which was asked in [DT11], and was restated in [KR24]. In Section 4, we modify the main theorem of [KS05] to prove a canonization theorem that will better serve our purposes. Finally, Section 5 includes the main results, Theorem 5.4 and Theorem 5.12.

Acknowledgments

I am profoundly grateful to my advisor Natasha Dobrinen for introducing me to this problem, for her constant support and guidance, and for her invaluable feedback throughout the writing process. I would also like to thank Burak Kaya for his influence on my education and for his helpful comments.

2. Notation and Background

Whenever ff is a function and Xdom(f)X\subseteq\operatorname{dom}(f), we will use f′′Xf^{\prime\prime}X and f[X]f[X] interchangeably to mean the image of XX under ff. Let us define the following well-known notions:

Definition 2.1.

Let 𝒰\mathcal{U} and 𝒱\mathcal{V} be ultrafilters on countable base sets I1I_{1} and I2I_{2}, respectively.

  1. (i)

    𝒰\mathcal{B}\subseteq\mathcal{U} is a filter base for (or a cofinal subset of) 𝒰\mathcal{U} if for every U𝒰U\in\mathcal{U}, there is BB\in\mathcal{B} such that BUB\subseteq U.

  2. (ii)

    f:𝒰𝒱f:\mathcal{U}\to\mathcal{V} is monotone if ABf(A)f(B)A\subseteq B\Rightarrow f(A)\subseteq f(B) for all A,B𝒰A,B\in\mathcal{U}.

  3. (iii)

    f:𝒰𝒱f:\mathcal{U}\to\mathcal{V} is cofinal if for every base 𝒰\mathcal{B}\subseteq\mathcal{U}, f′′f^{\prime\prime}\mathcal{B} is a base for 𝒱\mathcal{V}.

Note that if f:𝒰𝒱f:\mathcal{U}\to\mathcal{V} is a monotone map, then ff is cofinal if and only if f′′𝒰f^{\prime\prime}\mathcal{U} is a filter base for 𝒱\mathcal{V}.

Let II be a countable base set. Let \mathcal{B} be a set of infinite subsets of II. We define ={XI:(Y1,,Yn)Y1YnX}\langle\mathcal{B}\rangle=\{X\subseteq I:(\exists Y_{1},\ldots,Y_{n}\in\mathcal{B})\ Y_{1}\cap\ldots\cap Y_{n}\subseteq X\}.

Let us also define the appropriate notion of isomorphism between ultrafilters:

Definition 2.2.

Let 𝒰\mathcal{U} and 𝒱\mathcal{V} be ultrafilters on countable base sets I1I_{1} and I2I_{2}, respectively. Let f:I1I2f:I_{1}\to I_{2} be a map. Then f(𝒰)={YI2:(X𝒰)f[X]Y}={YI2:f1(Y)𝒰}f(\mathcal{U})=\{Y\subseteq I_{2}:(\exists X\in\mathcal{U})\ f[X]\subseteq Y\}=\{Y\subseteq I_{2}:f^{-1}(Y)\in\mathcal{U}\} is an ultrafilter on I2I_{2} called the RK\mathrm{RK}-image of 𝒰\mathcal{U} under ff. We say 𝒱\mathcal{V} is Rudin-Keisler reducible to 𝒰\mathcal{U} (or 𝒱\mathcal{V} is Rudin-Keisler below 𝒰\mathcal{U}) and write 𝒱RK𝒰\mathcal{V}\leq_{RK}\mathcal{U}, if there is a map f:I1I2f:I_{1}\to I_{2} such that f(𝒰)=𝒱f(\mathcal{U})=\mathcal{V}. We say that 𝒰\mathcal{U} and 𝒱\mathcal{V} are isomorphic or Rudin-Keisler equivalent and write 𝒰𝒱\mathcal{U}\cong\mathcal{V}, if there are maps f1:I1I2f_{1}:I_{1}\to I_{2} and f2:I2I1f_{2}:I_{2}\to I_{1} such that f1(𝒰1)=𝒱f_{1}(\mathcal{U}_{1})=\mathcal{V} and f2(𝒱)=𝒰f_{2}(\mathcal{V})=\mathcal{U}. Equivalently, 𝒰𝒱\mathcal{U}\cong\mathcal{V} if there is a bijection (equivalently, an injection) f:I1I2f:I_{1}\to I_{2} such that f(𝒰)=𝒱f(\mathcal{U})=\mathcal{V}. More information on the Rudin-Keisler order on ultrafilters can be found in [Bla10] and [Hal17].

It follows from the definitions that 𝒱RK𝒰𝒱T𝒰\mathcal{V}\leq_{RK}\mathcal{U}\Rightarrow\mathcal{V}\leq_{T}\mathcal{U}. The following fact can be found in [DT11]:

Fact 2.3.

For ultrafilters 𝒰\mathcal{U} and 𝒱\mathcal{V}, if 𝒰T𝒱\mathcal{U}\geq_{T}\mathcal{V}, then there exists a monotone cofinal map f:𝒰𝒱f:\mathcal{U}\to\mathcal{V}.

For an ultrafilter 𝒰\mathcal{U} on the base set II and U𝒰U\in\mathcal{U}, let 𝒰U\mathcal{U}\upharpoonright U denote {V𝒰:VU}\{V\in\mathcal{U}:V\subseteq U\}; note that 𝒰U\mathcal{U}\upharpoonright U is an ultrafilter on the base set UU. Consider i:UIi:U\to I given by i(x)=xi(x)=x for all xUx\in U. Then ii is injective and for all X𝒰UX\in\mathcal{U}\upharpoonright U, we get i′′X=X𝒰i^{\prime\prime}X=X\in\mathcal{U}. Hence,

Fact 2.4.

For any U𝒰U\in\mathcal{U}, 𝒰𝒰U\mathcal{U}\cong\mathcal{U}\upharpoonright U.

Definition 2.5.

By a block sequence, we mean a sequence X:dom(X)X:\operatorname{dom}(X) \to FIN\mathrm{FIN} such that max(X(i))<min(X(i+1))\operatorname{max}(X(i))<\operatorname{min}(X(i+1)) for all idom(X)ω{ω}i\in\operatorname{dom}(X)\in\omega\cup\{\omega\}. \sqsubseteq will mean initial segment and \sqsubset will mean proper initial segment. We assume that the empty sequence is an initial segment of every sequence. Let FIN[n]\mathrm{FIN}^{[n]} denote the set of all finite block sequences of length nωn\in\omega, and let FIN[]{\mathrm{FIN}}^{[\infty]} denote the set of all infinite block sequences. For nω{ω}n\in\omega\cup\{\omega\}, we denote FIN[<n]=k<nFIN[k]\mathrm{FIN}^{[<n]}=\bigcup_{k<n}\mathrm{FIN}^{[k]}, including the empty sequence. Finally, when we refer to a topology on FIN[]\mathrm{FIN}^{[\infty]}, we refer to the topology arising from the metric d(X,Y)=12id(X,Y)=\frac{1}{2^{i}} for XYFIN[]X\neq Y\in\mathrm{FIN}^{[\infty]}, where iωi\in\omega is the least with X(i)Y(i)X(i)\neq Y(i).

Definition 2.6.

Throughout the paper capital letters A,B,C,X,YA,B,C,X,Y, and ZZ denote elements of FIN[]\mathrm{FIN}^{[\infty]}; small letters a,b,c,x,y,a,b,c,x,y, and zz denote elements of FIN[<]\mathrm{FIN}^{[<\infty]}; s,ts,t and uu denote elements of FIN\mathrm{FIN}.

  1. (i)

    s<bts<_{b}t if and only if max(s)<min(t)\operatorname{max}(s)<\operatorname{min}(t). Similarly, s<bas<_{b}a if and only if max(s)<min(a(0))\operatorname{max}(s)<\operatorname{min}(a(0)) and a<bba<_{b}b if and only if max(a(|a|1))<min(b(0))\operatorname{max}(a(|a|-1))<\operatorname{min}(b(0)), whenever a,ba,b\neq\varnothing. s<bXs<_{b}X and a<bXa<_{b}X are defined similarly.

  2. (ii)

    Assume that s,a<bbs,a<_{b}b. sbs^{\smallfrown}b denotes the block sequence (s,b(0),(s,b(0), b(1),,b(1),\ldots, b(|b|1))b(|b|-1)). aba^{\smallfrown}b is defined similarly.

  3. (iii)

    [X]={sFIN:s=iIX(i)for some finite Iω}[X]=\{s\in\mathrm{FIN}:s=\bigcup_{i\in I}X(i)\ \text{for some finite $I\subseteq\omega$}\} and [a]={sFIN:s=iIa(i)for some finite Iω}[a]=\{s\in\mathrm{FIN}:s=\bigcup_{i\in I}a(i)\ \text{for some finite $I\subseteq\omega$}\}. Whenever we write expressions of the kind “[X]𝒰[X]\in\mathcal{U}”, XX is implicitly assumed to be an infinite block sequence.

  4. (iv)

    XYX\leq Y if and only if for all iωi\in\omega, X(i)[Y]X(i)\in[Y]. aXa\leq X and aba\leq b are defined similarly. [X][][X]^{[\infty]} denotes the set of infinite block sequences XX^{\prime} with XXX^{\prime}\leq X. For nωn\in\omega, [X][n][X]^{[n]} denotes the set of block sequences aFIN[n]a\in\mathrm{FIN}^{[n]} with aXa\leq X, and [X][<n]=n<n[X][n][X]^{[<n]}=\bigcup_{n^{\prime}<n}[X]^{[n^{\prime}]}.

  5. (v)

    Let nωn\in\omega. X/n=(X(i))ii0X/n=(X(i))_{i\geq i_{0}}, where i0i_{0} is the least index with min(X(i0))>n\operatorname{min}(X(i_{0}))>n. We will also write X/sX/s to mean X/max(s)X/\operatorname{max}(s) for sFINs\in\mathrm{FIN}, and X/aX/a to mean X/max(a(|a|1))X/\operatorname{max}(a(|a|-1)) for aFIN[<]\varnothing\neq a\in\mathrm{FIN}^{[<\infty]}.

  6. (vi)

    XYX\leq^{*}Y if and only if there is nωn\in\omega with X/nYX/n\leq Y.

For nω{0}n\in\omega\setminus\{0\} and XFIN[]X\in\mathrm{FIN}^{[\infty]}, let rn(X)=(X(0),X(1),,X(n1))r_{n}(X)=(X(0),X(1),\ldots,X(n-1)). r0(X)r_{0}(X) is defined to be the empty sequence. Recall the famous theorem of Hindman:

Theorem 2.7 ([Hin74]).

Let rωr\in\omega. For every coloring c:FINrc:\mathrm{FIN}\to r, there is some XFIN[]X\in\mathrm{FIN}^{[\infty]} such that c[X]c\upharpoonright[X] is constant.

It was first proved by Milliken in [Mil75] that (FIN[],,r)(\mathrm{FIN}^{[\infty]},\leq,r) is a topological Ramsey space. The following is a straightforward corollary of Theorem 2.7, proved in [Tay76]:

Lemma 2.8 ([Tay76]).

Let 1l<ω1\leq l<\omega, XFIN[]X\in\mathrm{FIN}^{[\infty]}, and rωr\in\omega. For any coloring c:[X][l]rc:[X]^{[l]}\to r, there is YXY\leq X such that c[Y][l]c\upharpoonright[Y]^{[l]} is constant.

Finally, let us briefly review the theory of fronts on FIN[]\mathrm{FIN}^{[\infty]}, which we take from [AT05].

Definition 2.9 ([AT05]).

Let FIN[<]\mathcal{B}\subseteq\mathrm{FIN}^{[<\infty]}.

  1. (i)

    \mathcal{B} is Ramsey if for every 𝒳\mathcal{X}\subseteq\mathcal{B} and for every XFIN[]X\in\mathrm{FIN}^{[\infty]}, there is YXY\leq X such that |Y𝒳\mathcal{B}|Y\subseteq\mathcal{X} or |Y𝒳=\mathcal{B}|Y\cap\mathcal{X}=\varnothing, where |Y={a:aY}\mathcal{B}|Y=\{a\in\mathcal{B}:a\leq Y\}.

  2. (ii)

    \mathcal{B} is Nash-Williams if for all aba\neq b\in\mathcal{B}, a⊏̸ba\not\sqsubset b.

  3. (iii)

    \mathcal{B} is a front on XFIN[]X\in\mathrm{FIN}^{[\infty]} if \mathcal{B} is Nash-Williams, [X][<]\mathcal{B}\subseteq[X]^{[<\infty]}, and for all YXY\leq X, there is a (unique) aa\in\mathcal{B} with aYa\sqsubset Y.

For FIN[<]\mathcal{B}\subseteq\mathrm{FIN}^{[<\infty]} and sFINs\in\mathrm{FIN}, we let (s)={s<ba[FIN][<]:sa}\mathcal{B}_{(s)}=\{s<_{b}a\in[\mathrm{FIN}]^{[<\infty]}:s^{\smallfrown}a\in\mathcal{B}\}. Similarly, for aFIN[<]a\in\mathrm{FIN}^{[<\infty]}, we will write (a)={a<bbFIN[<]:ab}\mathcal{F}_{(a)}=\{a<_{b}b\in\mathrm{FIN}^{[<\infty]}:a^{\smallfrown}b\in\mathcal{F}\}.

Definition 2.10 ([AT05]).

A set 𝒜FIN\mathcal{A}\subseteq\mathrm{FIN} is called small if it does not contain [X][X] for any XFIN[]X\in\mathrm{FIN}^{[\infty]}. Let XFIN[]X\in\mathrm{FIN}^{[\infty]}, let FIN[<]\mathcal{B}\subseteq\mathrm{FIN}^{[<\infty]} be a family, and let α<ω1\alpha<\omega_{1}. \mathcal{B} is α\alpha-uniform on XX if one of the following holds:

  1. (i)

    α=0\alpha=0 and ={}\mathcal{B}=\{\varnothing\},

  2. (ii)

    α=β+1\alpha=\beta+1 and for all s[X]s\in[X], (s)\mathcal{B}_{(s)} is β\beta-uniform on [X/s][X/s].

  3. (iii)

    α\alpha is a limit ordinal and for all s[X]s\in[X], (s)\mathcal{B}_{(s)} is αs\alpha_{s}-uniform for some αs<α\alpha_{s}<\alpha, and for each γ<α\gamma<\alpha {s[X]:αsγ}\{s\in[X]:\alpha_{s}\leq\gamma\} is small.

We call \mathcal{B} a uniform family on XX if it is α\alpha-uniform for some α<ω1\alpha<\omega_{1}.

Note that for every XFIN[]X\in\mathrm{FIN}^{[\infty]}, every uniform family on XX is a front. Also, it follows by induction on α\alpha that if \mathcal{F} is α\alpha-uniform on XX and YXY\leq X, then |Y\mathcal{F}|Y is also α\alpha-uniform on YY. In this case, we will call α\alpha the uniformity rank of \mathcal{F}. Observe that fronts of finite uniformity rank have the form [X][n][X]^{[n]} for XFIN[]X\in\mathrm{FIN}^{[\infty]}, and nωn\in\omega.

Fact 2.11 ([Mil75]).

Every Nash-Williams family is Ramsey.

For s,tFINs,t\in\mathrm{FIN}, we define sts\trianglelefteq t iff max(sΔt)t\operatorname{max}(s\Delta t)\in t. Then \trianglelefteq well-orders FIN\mathrm{FIN} with order-type ω\omega. For a,bFIN[<]a,b\in\mathrm{FIN}^{[<\infty]}, we let a<lexba<_{lex}b iff aba\sqsubset b or a(i)b(i)a(i)\vartriangleleft b(i), where ii is minimal with a(i)b(i)a(i)\neq b(i). If \mathcal{F} is a front on some XX, then <lex<_{lex} well-orders \mathcal{F}, and the following can be proved by induction on the order-type of \mathcal{F} with respect to this ordering:

Lemma 2.12 ([AT05]).

Let \mathcal{F} be a front on XFIN[]X\in\mathrm{FIN}^{[\infty]}. Then there is YXY\leq X such that |Y\mathcal{F}|Y is an α\alpha-uniform front on YY, for some αω1\alpha\in\omega_{1}.

The defining property of the ultrafilters we are interested in is that they give witnesses to Lemma 2.8. These ultrafilters are called stable ordered-union ultrafilters, which were studied in detail by Blass and Hindman in [Bla87] and [BH87].

Definition 2.13.

Let 𝒰\mathcal{U} be a an ultrafilter on the base set FIN\mathrm{FIN}. 𝒰\mathcal{U} is called ordered-union, if there is a filter basis \mathcal{B} for 𝒰\mathcal{U} such that every member of \mathcal{B} is of the form [X][X] for some XFIN[]X\in\mathrm{FIN}^{[\infty]}. 𝒰\mathcal{U} is called stable ordered-union, if it is ordered-union and for every (Xi)iωFIN[](X_{i})_{i\in\omega}\subseteq\mathrm{FIN}^{[\infty]} with [Xi]𝒰[X_{i}]\in\mathcal{U} and Xi+1XiX_{i+1}\leq^{*}X_{i} for all iωi\in\omega, there is [X]𝒰[X]\in\mathcal{U} such that XXiX\leq^{*}X_{i} for all iωi\in\omega.

In the following, (v) is motivated by 2.11 and (vi) is motivated by Theorem 4.1. The equivalence of (i), (ii), (iii), and (vi) was proved in [Bla87], and their equivalence to (iv), and (v) is in [Mij07] and [Zhe17].

Theorem 2.14.

Let 𝒰\mathcal{U} be an ordered-union ultrafilter on FIN\mathrm{FIN}. The following are equivalent:

  1. (i)

    𝒰\mathcal{U} is a stable ordered-union ultrafilter.

  2. (ii)

    For all 1n<ω1\leq n<\omega and for all f:FIN[n]2f:\mathrm{FIN}^{[n]}\to 2, there is [X]𝒰[X]\in\mathcal{U} such that ff is constant on [X][n][X]^{[n]} (Ramsey property).

  3. (iii)

    If 𝒜FIN[]\mathcal{A}\subseteq\mathrm{FIN}^{[\infty]} is metrically analytic, then there is [X]𝒰[X]\in\mathcal{U} such that [X][]𝒜[X]^{[\infty]}\subseteq\mathcal{A} or [X][]𝒜=[X]^{[\infty]}\cap\mathcal{A}=\varnothing (\infty-dimensional Ramsey property) .

  4. (iv)

    If [Xa]𝒰[X_{a}]\in\mathcal{U} for all aFIN[<]a\in\mathrm{FIN}^{[<\infty]}, then there is [X]𝒰[X]\in\mathcal{U} such that [X/a][Xa][X/a]\subseteq[X_{a}] for all aXa\leq X (selectivity).

  5. (v)

    For every Nash-Williams family FIN\mathcal{F}\subseteq\mathrm{FIN} and every 𝒜\mathcal{A}\subseteq\mathcal{F}, there is [X]𝒰[X]\in\mathcal{U} such that |X𝒜\mathcal{F}|X\subseteq\mathcal{A} or |X𝒜=\mathcal{F}|X\cap\mathcal{A}=\varnothing (Nash-Williams property).

  6. (vi)

    For every function f:FINωf:\mathrm{FIN}\to\omega, there is [X]𝒰[X]\in\mathcal{U} and c{sm,min,max,c\in\{\operatorname{sm},\operatorname{min},\operatorname{max}, minmax,id}\operatorname{minmax},\operatorname{id}\} such that; f(s)=f(t)f(s)=f(t) if and only if c(s)=c(t)c(s)=c(t), for all s,t[X]s,t\in[X] (canonical partition property).

Lastly, we define the Fubini limit of ultrafilters:

Definition 2.15.

Let 𝒱\mathcal{V} be an ultrafilter on II and let 𝒲i\mathcal{W}_{i} be ultrafilters on AA for all iIi\in I. We define the following ultrafilter on I×AI\times A:

limi𝒱𝒲i={XI×A:{iI:{aA:(i,a)X}𝒲i}𝒱}.\lim_{i\to\mathcal{V}}\mathcal{W}_{i}=\{X\subseteq I\times A:\{i\in I:\{a\in A:(i,a)\in X\}\in\mathcal{W}_{i}\}\in\mathcal{V}\}.

If all of the 𝒲i\mathcal{W}_{i}’s are the same ultrafilter 𝒲\mathcal{W}, we denote 𝒱𝒲=limi𝒱𝒲i\mathcal{V}\cdot\mathcal{W}=\lim_{i\to\mathcal{V}}\mathcal{W}_{i}. Finally, we will write 𝒱2\mathcal{V}^{2} instead of 𝒱𝒱\mathcal{V}\cdot\mathcal{V}.

To finish this section, let us remark that one can construct a stable ordered-union ultrafilter 𝒰\mathcal{U} under CH\mathrm{CH} (or just 𝔭=𝔠\mathfrak{p}=\mathfrak{c}) inductively, using Theorem 2.7. Another approach to construct 𝒰\mathcal{U} is the following: Take a generic filter GG for the poset (FIN[],)(\mathrm{FIN}^{[\infty]},\leq^{*}) and let 𝒰={[X]:XG}\mathcal{U}=\langle\{[X]:X\in G\}\rangle. However, the existence of a stable ordered-union is unprovable in ZFC\mathrm{ZFC}, since it implies the existence of selective ultrafilters (see Theorem 3.3), and there are models of ZFC\mathrm{ZFC} without selective ultrafilters ([Kun76], [Wim82], [She98]). Finally, we mention that Raghavan and Steprāns recently solved a longstanding open problem, asked in [Bla87], by constructing a model of ZFC\mathrm{ZFC} with at least two non-isomorphic selective ultrafilters, but without any stable ordered-union ultrafilters [RS23].

3. Properties of 𝒰\mathcal{U}

In this section, we recall some facts about 𝒰\mathcal{U} and answer a question asked in [DT11] by proving that 𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}} (Theorem 3.6). Let us recall the following types of ultrafilters on ω\omega:

Definition 3.1.

Let 𝒰\mathcal{U} be an ultrafilter on ω\omega.

  1. (i)

    𝒰\mathcal{U} is a p-point if for every {Xn:nω}𝒰\{X_{n}:n\in\omega\}\subseteq\mathcal{U}, there is some X𝒰X\in\mathcal{U} such that |XXn|<0|X\setminus X_{n}|<\aleph_{0} for all nωn\in\omega.

  2. (ii)

    𝒰\mathcal{U} is a q-point if for each partition of ω\omega into finite pieces {In:nω}\{I_{n}:n\in\omega\}, there is X𝒰X\in\mathcal{U} such that |XIn|1|X\cap I_{n}|\leq 1 for all nωn\in\omega.

  3. (iii)

    𝒰\mathcal{U} is Ramsey if for every k,rωk,r\in\omega and every c:[ω]krc:[\omega]^{k}\to r, there is X𝒰X\in\mathcal{U} such that c[X]kc\upharpoonright[X]^{k} is constant.

  4. (iv)

    𝒰\mathcal{U} is rapid if for all f:ωωf:\omega\to\omega, there exists X𝒰X\in\mathcal{U} such that |Xf(n)|n|X\cap f(n)|\leq n for every nωn\in\omega.

In Theorem 33 of [Mil80], Miller proved the following alternate characterization of rapid ultrafilters:

Definition 3.2.

Let 𝒱\mathcal{V} be a nonprincipal ultrafilter on the countable base set II. 𝒱\mathcal{V} is called rapid if one of the following equivalent conditions holds:

  1. (i)

    Given finite subsets PnIP_{n}\subseteq I, there is X𝒱X\in\mathcal{V} with |XPn|n|X\cap P_{n}|\leq n for each nωn\in\omega.

  2. (ii)

    There is h:ωωh:\omega\to\omega such that given finite subsets PnIP_{n}\subseteq I, there is X𝒱X\in\mathcal{V} with |XPn|h(n)|X\cap P_{n}|\leq h(n) for each nωn\in\omega.

Now let 𝒰\mathcal{U} be a stable ordered-union ultrafilter. Denote the RK\mathrm{RK}-images by 𝒰min=min(𝒰)\mathcal{U}_{\operatorname{min}}=\operatorname{min}(\mathcal{U}), 𝒰max=max(𝒰)\mathcal{U}_{\operatorname{max}}=\operatorname{max}(\mathcal{U}), and 𝒰minmax=minmax(𝒰)\mathcal{U}_{\operatorname{minmax}}=\operatorname{minmax}(\mathcal{U}), which are ultrafilters on ω\omega, ω\omega and ω2\omega^{2}, respectively. By definition, 𝒰min,𝒰maxRK𝒰minmaxRK𝒰\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}}\leq_{RK}\mathcal{U}_{\operatorname{minmax}}\leq_{RK}\mathcal{U}; hence also 𝒰min,𝒰maxT𝒰minmaxT𝒰\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}}\leq_{T}\mathcal{U}_{\operatorname{minmax}}\leq_{T}\mathcal{U}. In the following theorem (i)-(ii) are well-known. We prove (v) because it seems to be missing from the previous literature.

Theorem 3.3.
  1. (i)

    ([BH87]) 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} are selective.

  2. (ii)

    (Lemma 3.73.7, [Bla87]) 𝒰min𝒰max𝒰minmax\mathcal{U}_{\operatorname{min}}\cdot\mathcal{U}_{\operatorname{max}}\cong\mathcal{U}_{\operatorname{minmax}}.

  3. (iii)

    (Fact 6565, [DT11]) 𝒰minmax\mathcal{U}_{\operatorname{minmax}} is rapid, but not a p-point or a q-point.

  4. (iv)

    (Fact 6565, [DT11]) 𝒰\mathcal{U} is not a p-point or a q-point.

  5. (v)

    𝒰\mathcal{U} is rapid.

Proof.

We prove (v): Let PnFINP_{n}\subseteq\mathrm{FIN} be finite for all nωn\in\omega. For each nωn\in\omega, let BnFIN[n]B_{n}\in\mathrm{FIN}^{[n]} denote the block sequence ({0},,{n1}).(\{0\},\ldots,\{n-1\}). Define h:ωωh:\omega\to\omega by h(n)=|[Bn]|h(n)=|[B_{n}]| for all nωn\in\omega. Let

𝒳={XFIN[]:(nω)|[X]Pn|h(n)}.\mathcal{X}=\{X\in\mathrm{FIN}^{[\infty]}:(\forall n\in\omega)\ |[X]\cap P_{n}|\leq h(n)\}.

Note that 𝒳\mathcal{X} is closed. Observe that for every XFIN[]X\in\mathrm{FIN}^{[\infty]}, there is XXX^{\prime}\leq X with X𝒳X^{\prime}\in\mathcal{X}. Thus, by Theorem 2.14 part (iii), there is [Z]𝒰[Z]\in\mathcal{U} with Z𝒳Z\in\mathcal{X}, and we get the result. ∎

To set the context for the Tukey order below 𝒰\mathcal{U}, let us quote the following theorems:

Theorem 3.4.
  1. (i)

    𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} are nonisomorphic [Bla87] and Tukey incomparable [DT11].

  2. (ii)

    (Lemma 3434, [DT11]) 𝒰min𝒰maxT𝒰max𝒰min\mathcal{U}_{\operatorname{min}}\cdot\mathcal{U}_{\operatorname{max}}\equiv_{T}\mathcal{U}_{\operatorname{max}}\cdot\mathcal{U}_{\operatorname{min}}.

  3. (iii)

    (Theorem 3535, [DT11]) 𝒰min2T𝒰min\mathcal{U}_{\operatorname{min}}^{2}\equiv_{T}\mathcal{U}_{\operatorname{min}} and 𝒰max2T𝒰max\mathcal{U}_{\operatorname{max}}^{2}\equiv_{T}\mathcal{U}_{\operatorname{max}}.

  4. (iv)

    ([BD23]) 𝒰minmax2T𝒰minmax\mathcal{U}_{\operatorname{minmax}}^{2}\equiv_{T}\mathcal{U}_{\operatorname{minmax}}.

  5. (v)

    ([BD23]) 𝒰2T𝒰\mathcal{U}^{2}\equiv_{T}\mathcal{U}.

To finish this section, we show that 𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}}. Following the notation in [Dob20], for a subset Aω2A\subseteq\omega^{2}, we let A^={b:(aA)ba}\hat{A}=\{b:(\exists a\in A)\ b\sqsubseteq a\}. For A[ω]<ωA\subseteq[\omega]^{<\omega} and nωn\in\omega, we let An={aA:max(a)<n}A\upharpoonright n=\{a\in A:\operatorname{max}(a)<n\}. Since 𝒰minmax𝒰min𝒰max\mathcal{U}_{\operatorname{minmax}}\cong\mathcal{U}_{\operatorname{min}}\cdot\mathcal{U}_{\operatorname{max}} and 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} are p-points, Theorem 4.44.4 of [Dob20] applied to 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} in our notation yields:

Lemma 3.5.

Let 𝒱\mathcal{V} be an ultrafilter on the base set II and let f:𝒰minmax𝒱f:\mathcal{U}_{\operatorname{minmax}}\to\mathcal{V} be a monotone cofinal map. Then there is [X~]𝒰[\tilde{X}]\in\mathcal{U}, an increasing sequence (nk)kωω(n_{k})_{k\in\omega}\subseteq\omega, and a map f^:{A^n:A=[X]minmaxnfor someXX~andnω}𝒫(I)\hat{f}:\{\hat{A}\upharpoonright n:A=[X]_{\operatorname{minmax}}\upharpoonright n\ \text{for some}\ X\leq\tilde{X}\ \text{and}\ n\in\omega\}\to\mathcal{P}(I) such that for all XX~X\leq\tilde{X} with [X]𝒰[X]\in\mathcal{U}, we have f([X]minmax)=kωf^(Ak^)f([X]_{\operatorname{minmax}})=\bigcup_{k\in\omega}\hat{f}(\hat{A_{k}}), where Ak=[X]minmaxnkA_{k}=[X]_{\operatorname{minmax}}\upharpoonright n_{k} for each kωk\in\omega.

In this case, we say that the finitary map f^\hat{f} generates ff on {A^n:A=[X]minmaxnfor someXX~with[X]𝒰,andnω}\{\hat{A}\upharpoonright n:A=[X]_{\operatorname{minmax}}\upharpoonright n\ \text{for some}\ X\leq\tilde{X}\ \text{with}\ [X]\in\mathcal{U},\ \text{and}\ n\in\omega\}. Recall that 𝒰T𝒰minmax\mathcal{U}\geq_{T}\mathcal{U}_{\operatorname{minmax}}. We now answer Question 7575 of [DT11] using this lemma:

Theorem 3.6.

𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}}.

Proof.

Assume towards a contradiction that 𝒰minmaxT𝒰\mathcal{U}_{\operatorname{minmax}}\geq_{T}\mathcal{U}. Then there is a monotone cofinal f:𝒰minmax𝒰f:\mathcal{U}_{\operatorname{minmax}}\to\mathcal{U}. By Lemma 3.5, we may take the corresponding [X~]𝒰[\tilde{X}]\in\mathcal{U} and the finitary map f^\hat{f} which generates ff on {A^n:A=[X]minmaxnfor someXX~with[X]𝒰,andnω}\{\hat{A}\upharpoonright n:A=[X]_{\operatorname{minmax}}\upharpoonright n\ \text{for some}\ X\leq\tilde{X}\ \text{with}\ [X]\in\mathcal{U},\ \text{and}\ n\in\omega\}. Note that f^\hat{f} generates a map, say gg, on the set {XFIN[]:XX~}\{X\in\mathrm{FIN}^{[\infty]}:X\leq\tilde{X}\} by g([X]minmax)=kωf^(Ak^)g([X]_{\operatorname{minmax}})=\bigcup_{k\in\omega}\hat{f}(\hat{A_{k}}), where Ak=[X]^minmaxnkA_{k}=\hat{[X]}_{\operatorname{minmax}}\upharpoonright n_{k} for each kωk\in\omega, and gg agrees with ff on {XFIN[]:XX~and[X]𝒰}\{X\in\mathrm{FIN}^{[\infty]}:X\leq\tilde{X}\ \text{and}\ [X]\in\mathcal{U}\}.

Let us note that {(X,Y)FIN[]×FIN[]:XY}\{(X,Y)\in\mathrm{FIN}^{[\infty]}\times\mathrm{FIN}^{[\infty]}:X\leq Y\} is a closed subset of FIN[]×FIN[]\mathrm{FIN}^{[\infty]}\times\mathrm{FIN}^{[\infty]}. Moreover, for fixed n0ωn_{0}\in\omega and s0FINs_{0}\in\mathrm{FIN}, {(X,Y):s0f^(A^),whereA=[X]minmaxnk0ands0[Y]}\{(X,Y):s_{0}\in\hat{f}(\hat{A}),\ \text{where}\ A=[X]_{\operatorname{minmax}}\upharpoonright n_{k_{0}}\ \text{and}\ s_{0}\notin[Y]\} is closed. We conclude that {(X,Y)FIN[]×FIN[]:XX~,f([X]minmax)[Y]}\{(X,Y)\in\mathrm{FIN}^{[\infty]}\times\mathrm{FIN}^{[\infty]}:X\leq\tilde{X},f([X]_{\operatorname{minmax}})\subseteq[Y]\} is also a closed subset of FIN[]×FIN[]\mathrm{FIN}^{[\infty]}\times\mathrm{FIN}^{[\infty]}.

Now define 𝒜1={XFIN[]:[X][X~]=}\mathcal{A}_{1}=\{X\in\mathrm{FIN}^{[\infty]}:[X]\cap[\tilde{X}]=\varnothing\}, 𝒜2={XX~:(XX)g([X]minmax)[X]}\mathcal{A}_{2}=\{X\leq\tilde{X}:(\exists X^{\prime}\leq X)\ g([X^{\prime}]_{\operatorname{minmax}})\subseteq[X]\}, and 𝒜3={XX~:g([X]minmax)[X]=}\mathcal{A}_{3}=\{X\leq\tilde{X}:g([X]_{\operatorname{minmax}})\cap[X]=\varnothing\}. By the previous paragraph, we see that 𝒜1\mathcal{A}_{1} is closed, 𝒜2\mathcal{A}_{2} is analytic, and 𝒜3\mathcal{A}_{3} is closed.

We let 𝒜c=𝒜1c𝒜2𝒜3c\mathcal{A}^{c}=\mathcal{A}_{1}^{c}\cap\mathcal{A}_{2}\cap\mathcal{A}_{3}^{c}. It follows that 𝒜c\mathcal{A}^{c} is analytic, so Theorem 2.14 part (iii) is applicable to 𝒜c\mathcal{A}^{c}. Hence, there is [Z]𝒰[Z]\in\mathcal{U} such that [Z][]𝒜[Z]^{[\infty]}\subseteq\mathcal{A} or [Z][]𝒜=[Z]^{[\infty]}\cap\mathcal{A}=\varnothing. Applying the argument from the proof of Theorem 7474 in [DT11] that was used to construct a stable ordered-union 𝒰\mathcal{U} with 𝒰>T𝒰minmax\mathcal{U}>_{T}\mathcal{U}_{\operatorname{minmax}}, we will show that the latter case is not possible.

Assume towards a contradiction that [Z][]𝒜=[Z]^{[\infty]}\cap\mathcal{A}=\varnothing. If there is no XZ,X~X^{\prime}\leq Z,\tilde{X}, then we can use Theorem 2.14 part (ii) to find [X]𝒰[X]\in\mathcal{U} with [X][X~]=[X]\cap[\tilde{X}]=\varnothing. Hence we would have X𝒜1X\in\mathcal{A}_{1}, which contradicts [Z][]𝒜=[Z]^{[\infty]}\cap\mathcal{A}=\varnothing.

Now we can assume that there is some XZ,X~X\leq Z,\tilde{X}. If there is WXW\leq X such that for all WWW^{\prime}\leq W, we have g([W]minmax)[W]g([W^{\prime}]_{\operatorname{minmax}})\nsubseteq[W], then W𝒜2cW\in\mathcal{A}_{2}^{c}, which contradicts [Z][]𝒜=[Z]^{[\infty]}\cap\mathcal{A}=\varnothing again.

Otherwise, for all WXW\leq X, there is some WWW^{\prime}\leq W with g([W]minmax)g([W^{\prime}]_{\operatorname{minmax}}) [W]\subseteq[W]. Let W(i)=X(3i)X(3i+1)X(3i+2)W(i)=X(3i)\cup X(3i+1)\cup X(3i+2) for all iωi\in\omega. Find WWW^{\prime}\leq W such that f([W]minmax)[W]f([W^{\prime}]_{\operatorname{minmax}})\subseteq[W]. Then W(j)=iIjW(i)W^{\prime}(j)=\bigcup_{i\in I_{j}}W(i) for all jωj\in\omega, where (Ij)jω(I_{j})_{j\in\omega} is itself a block sequence. Let mj=min(Ij)m_{j}=\operatorname{min}(I_{j}) and kj=max(Ij)k_{j}=\operatorname{max}(I_{j}). For all jωj\in\omega, set Y(j)=X(3mj)X(3kj+2)Y(j)=X(3m_{j})\cup X(3k_{j}+2). Then [W]minmax=[Y]minmax[W^{\prime}]_{\operatorname{minmax}}=[Y]_{\operatorname{minmax}}, [W][Y]=[W]\cap[Y]=\varnothing and YXY\leq X. Finally, we have

g([Y]minmax)=g([W]minmax)[W],g([Y]_{\operatorname{minmax}})=g([W^{\prime}]_{\operatorname{minmax}})\subseteq[W],

which is disjoint from [Y][Y]. Hence, Y𝒜3Y\in\mathcal{A}_{3} and we contradict [Z][]𝒜=[Z]^{[\infty]}\cap\mathcal{A}=\varnothing in this case as well.

It follows that [Z][]𝒜[Z]^{[\infty]}\subseteq\mathcal{A}, and in particular Z𝒜Z\in\mathcal{A}. If Z𝒜1Z\in\mathcal{A}_{1}, then [Z][X~]=[Z]\cap[\tilde{X}]=\varnothing, which cannot happen. If Z𝒜2cZ\in\mathcal{A}_{2}^{c}, then there is no [X]𝒰[X^{\prime}]\in\mathcal{U} with g([X]minmax)[Z]g([X^{\prime}]_{\operatorname{minmax}})\subseteq[Z], which contradicts the cofinality of gg. Finally, if Z𝒜3Z\in\mathcal{A}_{3}, then g([Z]minmax)[Z]=g([Z]_{\operatorname{minmax}})\cap[Z]=\varnothing, which is again a contradiction. ∎

4. Canonization Theorems on FIN[]\mathrm{FIN}^{[\infty]}

This section adapts a canonization result of Klein and Spinas in [KS05] to be applied in the classification of the initial Tukey structure in the next section. The results to be stated are about defining a class of canonical equivalence relations, and showing that every equivalence relation restricts to such a relation. Since every equivalence relation corresponds to a function and vice versa, we can state the results mentioning only functions.

We define the following maps as in [KS05]: For sFINs\in\mathrm{FIN}; sm(s)=\operatorname{sm}(s)=\varnothing, minsep(s)={\operatorname{min-sep}(s)=\{the least element of s}s\}, maxsep(s)={the greatest element of s}\operatorname{max-sep}(s)=\{\text{the greatest element of $s$}\}, minmaxsep(s)\operatorname{minmax-sep}(s) =minsep(s)maxsep(s)=\operatorname{min-sep}(s)\cup\operatorname{max-sep}(s), and sss(s)=s=vss(s)\operatorname{sss}(s)=s=\operatorname{vss}(s).

To motivate our result in this section, let us recall the remarkable theorem of Taylor:

Theorem 4.1 ([Tay76]).

For every function f:FINωf:\mathrm{FIN}\to\omega, there are XFIN[]X\in\mathrm{FIN}^{[\infty]} and c{sm,minsep,maxsep,minmaxsep,id}c\in\{\operatorname{sm},\operatorname{min-sep},\operatorname{max-sep},\operatorname{minmax-sep},\operatorname{id}\} such that for all s,t[X]s,t\in[X];

f(s)=f(t)if and only ifc(s)=c(t).f(s)=f(t)\ \text{if and only if}\ c(s)=c(t).

This theorem was generalized by Klein and Spinas [KS05] in the following way:

Definition 4.2 ([KS05]).

Let γ:FIN[<]{sm,minsep,maxsep,\gamma:\mathrm{FIN}^{[<\infty]}\to\{\operatorname{sm},\operatorname{min-sep},\operatorname{max-sep}, minmaxsep,\operatorname{minmax-sep}, sss,vss}\operatorname{sss},\operatorname{vss}\}. Let XFIN[]X\in\mathrm{FIN}^{[\infty]}. Let k0=0k_{0}=0 and let (ki:0<i<Nω)(k_{i}:0<i<N\leq\omega) increasingly enumerate those kk such that γ(X(k1))=vss\gamma(X\upharpoonright(k-1))=\operatorname{vss}. Also let k(N)=ωk(N)=\omega if N<ωN<\omega. We define

Γγ(X)=(kij<ki+1γ(Xj)(X(j)):i<N),\Gamma_{\gamma}(X)=(\bigcup_{k_{i}\leq j<k_{i+1}}\gamma(X\upharpoonright j)(X(j)):i<N),

with the convention that evaluating \varnothing at some sFINs\in\mathrm{FIN} means we ignore ss.

Theorem 4.3 ([KS05]).

Let Δ:FIN[]\Delta:\mathrm{FIN}^{[\infty]}\to\mathbb{R} be a Borel map. Then there exists AFIN[]A\in\mathrm{FIN}^{[\infty]} and γ:FIN[<]{sm,minsep,maxsep,\gamma:\mathrm{FIN}^{[<\infty]}\to\{\operatorname{sm},\operatorname{min-sep},\operatorname{max-sep}, minmaxsep,sss,vss}\operatorname{minmax-sep},\operatorname{sss},\operatorname{vss}\} such that for all X,YAX,Y\leq A;

Δ(X)=Δ(Y)if and only ifΓγ(X)=Γγ(Y).\Delta(X)=\Delta(Y)\ \text{if and only if}\ \Gamma_{\gamma}(X)=\Gamma_{\gamma}(Y).

In this section, using the same machinery as in [KS05] and the lemmas used in that paper, we will prove a simplified version of Theorem 4.3 for functions defined on fronts on FIN[]\mathrm{FIN}^{[\infty]}, which will be utilized in Section 5 to find the exact Tukey structure below 𝒰\mathcal{U}. This simplification includes the notion of admissibility (Definition 4.4), which is motivated by the canonization of Lefmann in [Lef96] (see Theorem 4.5). As a result, the simplified version will recover Lefmann’s canonization theorem for functions on fronts of finite uniformity rank as a special case. The essential modification we need concerns the definition of Γγ\Gamma_{\gamma}:

Definition 4.4.

Let \mathcal{F} be a front on XX. Define ^={aFIN[<]:abfor some b}\hat{\mathcal{F}}=\{a\in\mathrm{FIN}^{[<\infty]}:a\sqsubseteq b\ \text{for some $b\in\mathcal{F}$}\}, including the empty sequence. Consider a map γ:^{sm,minsep,\gamma:\hat{\mathcal{F}}\setminus\mathcal{F}\to\{\operatorname{sm},\operatorname{min-sep}, maxsep,minmaxsep,sss,vss}\operatorname{max-sep},\operatorname{minmax-sep},\operatorname{sss},\operatorname{vss}\}. We shall say that γ\gamma is admissible if the following hold:

  1. (i)

    For a^a\in\hat{\mathcal{F}}, if γ(a)=sss\gamma(a)=\operatorname{sss}, then for all a<bx[X][<]a<_{b}x\in[X]^{[<\infty]} with ax^a^{\smallfrown}x\in\hat{\mathcal{F}}, if there is a least kk with γ(a(xk))=vss\gamma(a^{\smallfrown}(x\upharpoonright k))=\operatorname{vss}, then for every l<kl<k we have γ(a(xl)){sm,sss}\gamma(a^{\smallfrown}(x\upharpoonright l))\in\{\operatorname{sm},\operatorname{sss}\}.

  2. (ii)

    Let a^a\in\hat{\mathcal{F}}\setminus\mathcal{F}. Then either for all a<bxXa<_{b}x\leq X with axa^{\smallfrown}x\in\mathcal{F} and for all k|x|k\leq|x|, we have γ(a(xk))=sm\gamma(a^{\smallfrown}(x\upharpoonright k))=\operatorname{sm}, or for all a<bxXa<_{b}x\leq X with axa^{\smallfrown}x\in\mathcal{F}, there is k|x|k\leq|x| such that γ(a(xk))sm\gamma(a^{\smallfrown}(x\upharpoonright k))\neq\operatorname{sm}.

  3. (iii)

    Let a^a\in\hat{\mathcal{F}}\setminus\mathcal{F} be with γ(a)=minsep\gamma(a)=\operatorname{min-sep}, and assume that for all a<bxXa<_{b}x\leq X with axa^{\smallfrown}x\in\mathcal{F}, there is 1k|x|1\leq k\leq|x| such that a(xk)sma^{\smallfrown}(x\upharpoonright k)\neq\operatorname{sm}. Then either for all a<bxXa<_{b}x\leq X with axa^{\smallfrown}x\in\mathcal{F}, we have γ(a(xl))=maxsep\gamma(a^{\smallfrown}(x\upharpoonright l))=\operatorname{max-sep}, where 1l1\leq l is the least with γ(a(xl))sm\gamma(a^{\smallfrown}(x\upharpoonright l))\neq\operatorname{sm}; or for all a<bxXa<_{b}x\leq X with axa^{\smallfrown}x\in\mathcal{F}, we have γ(a(xl))maxsep\gamma(a^{\smallfrown}(x\upharpoonright l))\neq\operatorname{max-sep}, where 1l1\leq l is the least with γ(a(xl))sm\gamma(a^{\smallfrown}(x\upharpoonright l))\neq\operatorname{sm}.

For admissible γ\gamma and a^a\in\hat{\mathcal{F}}, define (ki)0i<N(k_{i})_{0\leq i<N} as follows: k0=0k_{0}=0 and given |a|>ki|a|>k_{i}, if γ(aki)=sss\gamma(a\upharpoonright k_{i})=\operatorname{sss}, then |a|>ki+1>ki|a|>k_{i+1}>k_{i} is the least with γ(a(ki+11))=vss\gamma(a\upharpoonright(k_{i+1}-1))=\operatorname{vss} if it exists, otherwise ki+1=|a|k_{i+1}=|a|. If γ(aki)=minsep\gamma(a\upharpoonright k_{i})=\operatorname{min-sep} and the least ki<l<|t|k_{i}<l<|t| (if it exists) with γ(al)sm\gamma(a\upharpoonright l)\neq\operatorname{sm} satisfies γ(al)=maxsep\gamma(a\upharpoonright l)=\operatorname{max-sep}, then ki+1=l+1k_{i+1}=l+1. Finally, if γ(aki)sss\gamma(a\upharpoonright k_{i})\neq\operatorname{sss} and we are not in the previous case, then ki+1=ki+1k_{i+1}=k_{i}+1. Let NN be the least natural number with kN=|a|k_{N}=|a|. Now define

Γγ(a)=(kij<ki+1γ(aj)(a(j)):0i<N).\Gamma_{\gamma}(a)=(\bigcup_{k_{i}\leq j<k_{i+1}}\gamma(a\upharpoonright j)(a(j)):0\leq i<N).

Now we recall Lefmann’s canonization theorem for functions on fronts of finite uniformity rank, in our notation:

Theorem 4.5 ([Lef96]).

For every kω{0}k\in\omega\setminus\{0\} and every function f:FIN[k]ωf:\mathrm{FIN}^{[k]}\to\omega, there are XFINX\in\mathrm{FIN} and admissible γ:[X][<k]{sm,minsep,maxsep,\gamma:[X]^{[<k]}\to\{\operatorname{sm},\operatorname{min-sep},\operatorname{max-sep}, minmax-sep, sss,vss}\operatorname{sss},\operatorname{vss}\} such that γ(b)=γ(b)\gamma(b)=\gamma(b^{\prime}) whenever b,b[X][<k]b,b^{\prime}\in[X]^{[<k]} are with |b|=|b||b|=|b^{\prime}|, and for all a,a[X][<k]a,a^{\prime}\in[X]^{[<k]};

f(a)=f(a)if and only ifΓγ(a)=Γγ(a).f(a)=f(a^{\prime})\ \text{if and only if}\ \Gamma_{\gamma}(a)=\Gamma_{\gamma}(a^{\prime}).

We will use the separating and mixing technique which has its origins in [PV85] and was the main tool in [KS05]. Analogously to [KS05], for a=(a(0),,a(n1))<bb=(b(0),,b(m1))FIN[<]a=(a(0),\ldots,a(n-1))<_{b}b=(b(0),\ldots,b(m-1))\in\mathrm{FIN}^{[<\infty]}, aba^{\smallfrown}b denotes the block sequence (a(0),,a(n1),b(0),,b(m1))(a(0),\ldots,a(n-1),b(0),\ldots,b(m-1)), and aba\uparrow^{\smallfrown}b denotes the block sequence (a(0),,a(n1)b(0),,b(m1))(a(0),\ldots,a(n-1)\cup b(0),\ldots,b(m-1)). Finally, aa\square is a placeholder to mean either aa or aa\uparrow.

The main theorem of this section is the following, a simplification of Theorem 4.3 that employs Definition 4.4 to define Γγ\Gamma_{\gamma}, which has Theorem 4.5 as a special case:

Theorem 4.6.

Let \mathcal{F} be a front on some XFIN[]X\in\mathrm{FIN}^{[\infty]}, and let g:ωg:\mathcal{F}\to\omega be a function. Then there is YXY\leq X and γ:(^)|Y{sm,minsep,\gamma:(\hat{\mathcal{F}}\setminus\mathcal{F})|Y\to\{\operatorname{sm},\operatorname{min-sep}, maxsep,\operatorname{max-sep}, minmaxsep,sss,vss}\operatorname{minmax-sep},\operatorname{sss},\operatorname{vss}\} such that for each a,a|Ya,a^{\prime}\in\mathcal{F}|Y,

g(a)=g(a)if and only ifΓγ(a)=Γγ(a).g(a)=g(a^{\prime})\ \text{if and only if}\ \Gamma_{\gamma}(a)=\Gamma_{\gamma}(a^{\prime}).

Let us now define the notions we need and do the preparation for the proof of Theorem 4.6. Fix a front \mathcal{F} on XFIN[]X\in\mathrm{FIN}^{[\infty]} and let g:ωg:\mathcal{F}\to\omega be a function. We may as well assume that {}\mathcal{F}\neq\{\varnothing\}, since otherwise the result will follow trivially. By Lemma 2.12, we may assume that \mathcal{F} is α\alpha-uniform for some α<ω1\alpha<\omega_{1} to ease up the computations. Let a,b^\varnothing\neq a,b\in\hat{\mathcal{F}} and for YXY\leq X, denote Y/(a,b)=Y/max(a(|a|1)b(|b|1))Y/(a,b)=Y/\operatorname{max}(a(|a|-1)\cup b(|b|-1)).

Definition 4.7 ([KS05]).

For YXY\leq X and a,b^a,b\in\hat{\mathcal{F}}, we say that YY separates aa\square and bb\square if for every x,yY/(a,b)x,y\leq Y/(a,b) such that ax,bya\square^{\smallfrown}x,b\square^{\smallfrown}y\in\mathcal{F}, g(ax)g(by)g(a\square^{\smallfrown}x)\neq g(b\square^{\smallfrown}y) (note that we allow the cases x=x=\varnothing or y=y=\varnothing). We say that YY mixes aa\square and bb\square if no ZYZ\leq Y separates aa\square and bb\square. Finally, we say that YY decides aa\square and bb\square if it either separates or mixes aa\square and bb\square.

The proof of the following general Ramsey theoretic fact is a straightforward fusion argument and in the lines of the proof of Lemma 4.64.6 in [DT14]:

Lemma 4.8.

1) Let P(,)P(\cdot,\cdot) be a property such that:

  1. (i)

    For all a^a\in\hat{\mathcal{F}} and ZYXZ\leq Y\leq X, P(a,Y)P(a,Z)P(a\square,Y)\Rightarrow P(a\square,Z) (hereditary).

  2. (ii)

    For all a^a\in\hat{\mathcal{F}} and YXY\leq X, there is ZYZ\leq Y with P(a,Z)P(a\square,Z) (density).

Then for all YXY\leq X, there is YYY^{\prime}\leq Y such that for all a^|Ya\in\hat{\mathcal{F}}|Y^{\prime} and for all ZYZ\leq Y^{\prime}, P(a,Z/a)P(a\square,Z/a) holds.

2) Let Q(,,)Q(\cdot,\cdot,\cdot) be a property such that:

  1. (i)

    For all a,b^a,b\in\hat{\mathcal{F}} and ZYXZ\leq Y\leq X, Q(a,b,Y)Q(a,b,Z)Q(a\square,b\square,Y)\Rightarrow Q(a\square,b\square,Z) (hereditary).

  2. (ii)

    For all a,b^a,b\in\hat{\mathcal{F}} and YXY\leq X, there is ZYZ\leq Y with Q(a,b,Z)Q(a\square,b\square,Z) (density).

Then for all YXY\leq X, there is YYY^{\prime}\leq Y such that for all a,b^|Ya,b\in\hat{\mathcal{F}}|Y^{\prime} and for all ZYZ\leq Y^{\prime}, Q(a,b,Z/(a,b))Q(a\square,b\square,Z/(a,b)) holds.

It follows by definition that for every a,b^a,b\in\hat{\mathcal{F}} and for every YXY\leq X, there is ZYZ\leq Y which decides aa\square and bb\square. Also, if YY decides aa\square and bb\square, then any ZYZ\leq Y decides aa\square and bb\square in the same way as YY does. This observation together with Lemma 4.8 implies the following:

Lemma 4.9 ([KS05]).

For all YXY\leq X, there is YYY^{\prime}\leq Y such that for all a,b^|Ya,b\in\hat{\mathcal{F}}|Y^{\prime}, aa\square and bb\square are decided by YY^{\prime}.

We note that our separating-mixing notions are technically different from the ones used in [KS05]. The notions there were defined with respect to block sequences starting after aa and bb, since the function to be canonized there was a Borel function defined on FIN[]\mathrm{FIN}^{[\infty]}. Here, our theorem will be a simplified version only for fronts, so the notions are adjusted in a suitable way. Since any function g:ωg:\mathcal{F}\to\omega induces a unique continuous function on FIN[]\mathrm{FIN}^{[\infty]}, almost all of the lemmas in [KS05] will have straightforward translations to our setting and the proofs will essentially be the same. As a result, it should be noted here that most of the lemmas and definitions in this section will be direct translations of those that were used in [KS05], and they will be included for the readability of the proof of the main result in this section.

The first of such lemmas is the transitivity of mixing, which directly follows from Lemma 2.32.3 in [KS05]:

Lemma 4.10 ([KS05]).

Let a,b,c^a,b,c\in\hat{\mathcal{F}} and let YXY\leq X. If YY mixes aa\square and bb\square and YY mixes bb\square and cc\square, then YY mixes aa\square and cc\square.

Now that we know mixing is an equivalence relation, let us note the following direct consequence of Theorem 4.1:

Lemma 4.11 ([KS05]).

For every a^a\in\hat{\mathcal{F}}\setminus\mathcal{F}, there is YXY\leq X which decides every bb\square and cc\square with b,c^|Yb,c\in\hat{\mathcal{F}}|Y, and one of the following holds:

  1. (i)

    For all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by YY.

  2. (ii)

    For all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by YY if and only if minsep(s)=minsep(t)\operatorname{min-sep}(s)=\operatorname{min-sep}(t).

  3. (iii)

    For all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and sts^{\smallfrown}t are mixed by YY if and only if maxsep(s)=maxsep(t)\operatorname{max-sep}(s)=\operatorname{max-sep}(t).

  4. (iv)

    For all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by YY if and only if minmaxsep(s)\operatorname{minmax-sep}(s) =minmaxsep(t)=\operatorname{minmax-sep}(t).

  5. (v)

    For all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by YY if and only if s=ts=t.

Proof.

First, by Lemma 4.9, we pick XXX^{\prime}\leq X which decides every bb\square and cc\square with b,c^|Xb,c\in\hat{\mathcal{F}}|X^{\prime}. Then we note that for every a^a\in\hat{\mathcal{F}}\setminus\mathcal{F}, since (a)\mathcal{F}_{(a)} is α\alpha-uniform on X/aX/a for some 1α<ω11\leq\alpha<\omega_{1}, it follows that as^a^{\smallfrown}s\in\hat{\mathcal{F}} for all s[X/a]s\in[X^{\prime}/a]. To finish, we apply Theorem 4.1 to the function that corresponds to the equivalence relation on [X/a][X^{\prime}/a] defined by sEtsEt if and only if asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by XX^{\prime}, for s,t[X/a]s,t\in[X^{\prime}/a], and get the corresponding YXY\leq X^{\prime}. ∎

Let us remark here that, if aa\in\mathcal{F} and s[X/a]s\in[X/a], then similarly to the argument in the proof of Lemma 4.11, (a)s^(a\uparrow)^{\smallfrown}s\in\hat{\mathcal{F}}.

We repeat the following definition from [KS05]:

Definition 4.12 ([KS05]).

Let a^a\in\hat{\mathcal{F}} and let YXY\leq X.

  1. (i)

    We say aa\square is strongly mixed by YY if asa\square^{\smallfrown}s and ata\square^{\smallfrown}t are mixed by YY for all s,t[Y/a]s,t\in[Y/a].

  2. (ii)

    We say aa is min-separated by YY if for all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by YY if and only if minsep(s)=minsep(t)\operatorname{min-sep}(s)=\operatorname{min-sep}(t).

  3. (iii)

    We say aa\square is max-separated by YY if for all s,t[Y/a]s,t\in[Y/a], asa\square^{\smallfrown}s and ata\square^{\smallfrown}t are mixed by YY if and only if maxsep(s)=\operatorname{max-sep}(s)=max-sep(t)(t).

  4. (iv)

    We say aa is minmax-separated by YY if for all s,t[Y/a]s,t\in[Y/a], asa^{\smallfrown}s and ata^{\smallfrown}t are mixed by YY if and only if minmaxsep(s)=minmaxsep(t)\operatorname{minmax-sep}(s)=\operatorname{minmax-sep}(t).

  5. (v)

    We say aa\square is strongly separated by YY if for all s,t[Y/a]s,t\in[Y/a], asa\square^{\smallfrown}s and ata\square^{\smallfrown}t are mixed by YY if and only if s=ts=t.

  6. (vi)

    Finally, we say aa\square is separated in some sense by YY if one of the last four bullet points holds for aa\square. Also, aa\square is completely decided by YY if it is either strongly mixed or separated in some sense by YY.

Let us remark here that, for aa\in\mathcal{F}, although this definition still makes sense for aa\uparrow, it doesn’t make sense for aa. Thus, we will just declare aa to be strongly mixed whenever aa\in\mathcal{F}.

The following straightforward consequence, Lemma 2.72.7 in [KS05], is the reason we omitted the \square in some of the alternatives:

Lemma 4.13 ([KS05]).

Let a^a\in\hat{\mathcal{F}}\setminus\mathcal{F} and YXY\leq X.

  1. (i)

    Let aa be strongly mixed by YY. Then asa^{\smallfrown}s\uparrow is strongly mixed by YY for every s[Y/a]s\in[Y/a].

  2. (ii)

    Let aa be min-separated by YY. Then asa^{\smallfrown}s\uparrow is strongly mixed by YY for every s[Y/a]s\in[Y/a].

  3. (iii)

    Let aa be max-separated by YY. Then asa^{\smallfrown}s\uparrow is max-separated by YY for every s[Y/a]s\in[Y/a].

  4. (iv)

    Let aa be minmax-separated by YY. Then asa^{\smallfrown}s\uparrow is max-separated by YY for every s[Y/a]s\in[Y/a].

  5. (v)

    Let aa be strongly separated by YY. Then asa^{\smallfrown}s\uparrow is strongly separated by YY for every s[Y/a]s\in[Y/a].

Lemma 4.14 ([KS05]).

Let a^a\in\hat{\mathcal{F}}\setminus\mathcal{F} and YXY\leq X.

  1. (i)

    Let aa\square be strongly mixed by YY. Then aa\square and asa\square^{\smallfrown}s\square and also asa\square^{\smallfrown}s\square and ata\square^{\smallfrown}t\square are mixed by YY for all s,t[Y/a]s,t\in[Y/a].

  2. (ii)

    Let aa be min-separated by YY. Then asa^{\smallfrown}s\square and ata^{\smallfrown}t\square are mixed by YY for all s,t[Y/a]s,t\in[Y/a] with minsep(s)=minsep(t)\operatorname{min-sep}(s)=\operatorname{min-sep}(t).

  3. (iii)

    Let aa\square be max-separated by YY. Then aa\square and asa\square^{\smallfrown}s\uparrow and also asa\square^{\smallfrown}s\uparrow and ata\square^{\smallfrown}t\uparrow are mixed by YY for all s,t[Y/a]s,t\in[Y/a].

  4. (iv)

    Let aa be minmax-separated by YY. Then asa^{\smallfrown}s\uparrow and ata^{\smallfrown}t\uparrow are mixed by YY for all s,t[Y/a]s,t\in[Y/a] with minsep(s)=minsep(t)\operatorname{min-sep}(s)=\operatorname{min-sep}(t).

Now, Lemma 4.8 and Lemma 4.11 together imply that:

Lemma 4.15 ([KS05]).

For all YXY\leq X, there is YYY^{\prime}\leq Y which completely decides every aa\square with a^|Ya\in\hat{\mathcal{F}}|Y^{\prime}.

We augment the definition of canonical in [KS05] by adding the last condition in the following:

Definition 4.16.

We say that YXY\leq X is canonical for gg if the following hold:

  1. (i)

    For all a,b^|Ya,b\in\hat{\mathcal{F}}|Y, YY decides aa\square and bb\square.

  2. (ii)

    Every a^|Ya\in\hat{\mathcal{F}}|Y is completely decided by YY.

  3. (iii)

    Let a,b(^)|Ya,b\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y. Then aa\square and asa\square^{\smallfrown}s\square are either separated by YY for all s[Y/a]s\in[Y/a], or mixed by YY for all s[Y/a]s\in[Y/a]. If a|Ya\in\mathcal{F}|Y, then the same result holds for aa\uparrow and (a)s(a\uparrow)^{\smallfrown}s\square. Similarly, asa\square^{\smallfrown}s\square and asa\square^{\smallfrown}s\square, asa\square^{\smallfrown}s\square and bsb\square^{\smallfrown}s\square, asa\square^{\smallfrown}s\square and asta\square^{\smallfrown}s\square^{\smallfrown}t\square, and finally asa\square^{\smallfrown}s\square and tstt\square^{\smallfrown}s\square^{\smallfrown}t\square are in each case either separated by YY for all s<bt[Y/(a,b)]s<_{b}t\in[Y/(a,b)] or mixed by YY for all s<bt[Y/(a,b)]s<_{b}t\in[Y/(a,b)], whenever there are s0<bt0[Y/(a,b)]s_{0}<_{b}t_{0}\in[Y/(a,b)] with as0t0^|Ya\square^{\smallfrown}s_{0}\square^{\smallfrown}t_{0}\square\in\hat{\mathcal{F}}|Y and s1<bt1[Y/(a,b)]s_{1}<_{b}t_{1}\in[Y/(a,b)] with bs1t1^|Yb\square^{\smallfrown}s_{1}\square^{\smallfrown}t_{1}\square\in\hat{\mathcal{F}}|Y. The analogous result also holds for a=aa\square=a\uparrow if a|Ya\in\mathcal{F}|Y.

  4. (iv)

    If a(^)|Ya\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y, then either for all xYx\leq Y such that axa\square^{\smallfrown}x\in\mathcal{F} and for all 1k|x|1\leq k\leq|x|, a(xk)a\square^{\smallfrown}(x\upharpoonright k) is strongly mixed by YY; or for all xYx\leq Y with axa\square^{\smallfrown}x\in\mathcal{F}, there is 1k|x|1\leq k\leq|x| such that a(xk)a\square^{\smallfrown}(x\upharpoonright k) is separated in some sense by YY. The same also holds for aa\uparrow when a|Ya\in\mathcal{F}|Y.

  5. (v)

    Let a^|Ya\in\hat{\mathcal{F}}|Y and assume that aa is min-separated by YY. Assume also that for all xYx\leq Y with axa^{\smallfrown}x\in\mathcal{F}, there is 1k|x|1\leq k\leq|x| such that a(xk)a^{\smallfrown}(x\upharpoonright k) is separated in some sense by YY. Then either for all xYx\leq Y with axa^{\smallfrown}x\in\mathcal{F}, the least 1k|x|1\leq k\leq|x| such that a(xk)a^{\smallfrown}(x\upharpoonright k) is separated in some sense by YY is max-separated by YY; or for all xYx\leq Y with axa^{\smallfrown}x\in\mathcal{F}, the least 1k|x|1\leq k\leq|x| such that a(xk)a^{\smallfrown}(x\upharpoonright k) is separated in some sense by YY is not max-separated by YY.

Lemma 4.17.

There is YXY\leq X which is canonical for gg.

Proof.

The proof proceeds along the lines of the proof of Lemma 2.102.10 in [KS05]. By Lemma 4.9 and Lemma 4.15, we can find AXA\leq X such that (i) and (ii) of being canonical are satisfied for AA. Next, we can apply Lemma 2.8 and Lemma 4.8 to AA to get BAB\leq A such that (i)-(iii) of being canonical are satisfied for BB in the following way:

For the case with aa and asa^{\smallfrown}s, we color [Z/a][Z/a] for arbitrary ZAZ\leq A, into two colors by c(s)=0c(s)=0 if and only if aa and asa^{\smallfrown}s are mixed by ZZ. Then we pick homogeneous Z0ZZ_{0}\leq Z for this coloring. Hence the density assumption of Lemma 4.8 is satisfied, which means that there is BAB^{\prime}\leq A for which (iii) of canonical is satisfied for the case of aa and asa^{\smallfrown}s. The other mentioned combinations are handled via similar colorings. For example, assume that there are s0<bt0[A/(a,b)]s_{0}<_{b}t_{0}\in[A/(a,b)] with as0t0^|Aa^{\smallfrown}s_{0}^{\smallfrown}t_{0}\in\hat{\mathcal{F}}|A and s1<t1[A/(a,b)]s_{1}<t_{1}\in[A/(a,b)] with bs1t1^|Ab^{\smallfrown}s_{1}^{\smallfrown}t_{1}\in\hat{\mathcal{F}}|A. Hence, (a)|A\mathcal{F}_{(a)}|A is α\alpha-uniform for α\alpha at least 22. The same assertion also holds for (b)|A\mathcal{F}_{(b)}|A. We first color [A/(a,b)][2][A/(a,b)]^{[2]} into 22 colors by c(s,t)=0c(s,t)=0 if and only if ast^a^{\smallfrown}s^{\smallfrown}t\in\hat{\mathcal{F}}. The homogeneous ZAZ\leq A then has to be homogeneous with color 0, since α2\alpha\geq 2. Similarly, we get the corresponding Z0ZZ_{0}\leq Z for bb. Then for arbitrary Z1Z0Z_{1}\leq Z_{0}, we define c:[Z1][2]2c:[Z_{1}]^{[2]}\to 2 by c(s,t)=0c(s,t)=0 if and only if asta^{\smallfrown}s^{\smallfrown}t and bstb^{\smallfrown}s^{\smallfrown}t are mixed by Z1Z_{1}. We apply Lemma 2.8 to cc to get homogeneous Z2Z1Z_{2}\leq Z_{1}. It follows that the density assumption of Lemma 4.8 is satisfied again.

Now we look at (iv): For given a(^)|Ba\in(\hat{\mathcal{F}}\setminus\mathcal{F})|B and ZBZ\leq B, define

𝒳={x(a)|Z:1k|x|a(xk) is strongly mixed by Z}.\mathcal{X}=\{x\in\mathcal{F}_{(a\square)}|Z:\forall 1\leq k\leq|x|\ \text{$a\square^{\smallfrown}(x\upharpoonright k)$ is strongly mixed by $Z$}\}.

By 2.11, there is ZZZ^{\prime}\leq Z such that (a)|Z𝒳\mathcal{F}_{(a\square)}|Z^{\prime}\subseteq\mathcal{X} or (a)|Z𝒳=\mathcal{F}_{(a\square)}|Z^{\prime}\cap\mathcal{X}=\varnothing. The argument is exactly the same for aa\uparrow when a|Ba\in\mathcal{F}|B. This shows that the density assumption holds, so it follows by Lemma 4.8 that there is CBC\leq B such that (iv) holds for CC.

(v) is handled similarly to (iv) to get the final YCY\leq C. ∎

From now on we fix a canonical Y0XY_{0}\leq X and let Y=(Y0(3i)Y0(3i+1)Y0(3i+2):i<ω)Y^{\prime}=(Y_{0}(3i)\cup Y_{0}(3i+1)\cup Y_{0}(3i+2):i<\omega), which is also canonical, to make sure that the maps minsep,maxsep,\operatorname{min-sep},\operatorname{max-sep}, minmaxsep\operatorname{minmax-sep}, and sss\operatorname{sss} will have disjoint images on [Y][Y^{\prime}]. Finally, we let Y=(Y(3i)Y(3i+1)Y(3i+2):i<ω)Y=(Y^{\prime}(3i)\cup Y^{\prime}(3i+1)\cup Y^{\prime}(3i+2):i<\omega), for technical reasons. The rest of the results in this section until the main theorem hold for both YY and YY^{\prime}, but they will only be stated for YY.

Let a^|Ya\in\hat{\mathcal{F}}|Y be strongly separated by YY. Since YY is canonical, as in [KS05], we can split this into two cases:

  1. (i)

    We say aa\square is still strongly separated by YY if for all s[Y/a]s\in[Y/a], asa\square^{\smallfrown}s and asa^{\smallfrown}s\uparrow are mixed by YY.

  2. (ii)

    We say aa\square is very strongly separated by YY if for all s[Y/a]s\in[Y/a], asa\square^{\smallfrown}s and asa^{\smallfrown}s\uparrow are separated by YY.

It follows that for a^|Ya\in\hat{\mathcal{F}}|Y, if aa\square is still strongly separated by YY, then asa\square^{\smallfrown}s\uparrow is still strongly separated by YY for all s[Y/a]s\in[Y/a]. The same holds for very strong separation as well.

We will need the technical lemmas used in [KS05]. The following includes Lemmas 2.142.232.14-2.23 in [KS05] adapted to our setting. The proofs are exactly the same as the versions in [KS05].

Lemma 4.18 ([KS05]).

Let a,b^|Ya,b\in\hat{\mathcal{F}}|Y. In the following statement, all xx and yy are assumed to be nonempty.

  1. (i)

    Assume that aa and bb are mixed by YY and aa and bb are both min-separated by YY. If x(a)|Yx\in\mathcal{F}_{(a)}|Y and y(b)|Yy\in\mathcal{F}_{(b)}|Y are with g(ax)=g(by)g(a^{\smallfrown}x)=g(b^{\smallfrown}y), then minsep(x(0))=minsep(y(0))\operatorname{min-sep}(x(0))=\operatorname{min-sep}(y(0)). In this case, asa^{\smallfrown}s and btb^{\smallfrown}t are mixed by YY for all s,t[Y/(a,b)]s,t\in[Y/(a,b)] with minsep(s)=minsep(t)\operatorname{min-sep}(s)=\operatorname{min-sep}(t).

  2. (ii)

    Assume that aa\square and bb\square are mixed by YY and aa\square and bb\square are both max-separated by YY. If x(a)|Yx\in\mathcal{F}_{(a\square)}|Y and y(b)|Yy\in\mathcal{F}_{(b\square)}|Y are with g(ax)=g(by)g(a\square^{\smallfrown}x)=g(b\square^{\smallfrown}y), then maxsep(x(0))=maxsep(y(0))\operatorname{max-sep}(x(0))=\operatorname{max-sep}(y(0)). In this case, asa\square^{\smallfrown}s and btb\square^{\smallfrown}t are mixed by YY for all s,t[Y/(a,b)]s,t\in[Y/(a,b)] with maxsep(s)=maxsep(t)\operatorname{max-sep}(s)=\operatorname{max-sep}(t).

  3. (iii)

    Assume that aa and bb are mixed by YY and aa and bb are both minmax-separated by YY. If x(a)|Yx\in\mathcal{F}_{(a)}|Y and y(b)|Yy\in\mathcal{F}_{(b)}|Y are with g(ax)=g(by)g(a^{\smallfrown}x)=g(b^{\smallfrown}y), then minmaxsep(x(0))=minmaxsep(y(0))\operatorname{minmax-sep}(x(0))=\operatorname{minmax-sep}(y(0)). In this case, asa^{\smallfrown}s\uparrow and bsb^{\smallfrown}s\uparrow are mixed by YY for all s[Y/(a,b)]s\in[Y/(a,b)]. Furthermore, asa^{\smallfrown}s and btb^{\smallfrown}t are mixed by YY for all s,t[Y/(a,b]s,t\in[Y/(a,b] with minsep(s)=minsep(t)\operatorname{min-sep}(s)=\operatorname{min-sep}(t) and maxsep(t)=maxsep(t)\operatorname{max-sep}(t)=\operatorname{max-sep}(t).

  4. (iv)

    Assume that aa\square and bb\square are mixed by YY and aa\square and bb\square are both strongly separated by YY. If x(a)|Yx\in\mathcal{F}_{(a\square)}|Y and y(b)|Yy\in\mathcal{F}_{(b\square)}|Y are with g(ax)=g(by)g(a\square^{\smallfrown}x)=g(b\square^{\smallfrown}y), then either x(0)x(0) is an initial segment of y(0)y(0) or y(0)y(0) is an initial segment of x(0)x(0).

  5. (v)

    Assume that aa\square and bb\square are mixed by YY and aa\square and bb\square are both very strongly separated by YY. If x(a)|Yx\in\mathcal{F}_{(a\square)}|Y and y(b)|Yy\in\mathcal{F}_{(b\square)}|Y are with g(ax)=g(by)g(a\square^{\smallfrown}x)=g(b\square^{\smallfrown}y), then x(0)=y(0)x(0)=y(0). In this case, asa\square^{\smallfrown}s and bsb\square^{\smallfrown}s are mixed by YY for all s[Y/(a,b)]s\in[Y/(a,b)].

Now we state the translations of Lemma 2.272.27 and 2.282.28 of [KS05]:

Lemma 4.19 ([KS05]).

Let a,b^|Ya,b\in\hat{\mathcal{F}}|Y. Assume that aa and bb are mixed by YY. Furthermore, assume that aa is min-separated by YY and bb is minmax-separated by YY. Then if x(a)|Y\varnothing\neq x\in\mathcal{F}_{(a\square)}|Y and y(b)|Y\varnothing\neq y\in\mathcal{F}_{(b\square)}|Y are with g(ax)=g(by)g(a\square^{\smallfrown}x)=g(b\square^{\smallfrown}y), then minsep(x(0))=minsep(y(0))\operatorname{min-sep}(x(0))=\operatorname{min-sep}(y(0)) and maxsep(x(0))<bmaxsep(y(0))\operatorname{max-sep}(x(0))<_{b}\operatorname{max-sep}(y(0)). In this case, asa^{\smallfrown}s\uparrow and bsb^{\smallfrown}s\uparrow are mixed by YY for all s[Y/(a,b)]s\in[Y/(a,b)].

Lemma 4.20 ([KS05]).

Let a,b^|Ya,b\in\hat{\mathcal{F}}|Y. Assume that aa\square and bb\square are mixed by YY.

  1. (i)

    Assume that both aa\square and bb\square are still strongly separated by YY. Then asa\square^{\smallfrown}s\square and bsb\square^{\smallfrown}s\square are mixed by YY for every s[Y/(a,b)]s\in[Y/(a,b)].

  2. (ii)

    Assume that aa\square is still strongly separated by YY and bb\square is very strongly separated by YY. Then asa\square^{\smallfrown}s\square and bsb\square^{\smallfrown}s\uparrow are mixed by YY for all s[Y/(a,b)]s\in[Y/(a,b)]. Furthermore, asa\square^{\smallfrown}s\square and bsb\square^{\smallfrown}s are separated by YY for all s[Y/(a,b)]s\in[Y/(a,b)].

  3. (iii)

    Assume that both aa\square and bb\square are very strongly separated by YY. Then asa\square^{\smallfrown}s\uparrow and bsb\square^{\smallfrown}s\uparrow are mixed by YY for all s[Y/(a,b)]s\in[Y/(a,b)]. Furthermore, asa\square^{\smallfrown}s and bsb\square^{\smallfrown}s\uparrow are separated by YY for all s[Y/(a,b)]s\in[Y/(a,b)].

Finally, we state Lemmas 2.292.312.29-2.31 of [KS05] :

Lemma 4.21 ([KS05]).

Let a,b(^)|Ya,b\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y.

  1. (i)

    Assume that aa and bb\square are mixed by YY. If aa is min-separated by YY, then bb\square is neither max-separated nor strongly separated by YY. The same result holds when b|Yb\in\mathcal{F}|Y and b=bb\square=b\uparrow as well.

  2. (ii)

    Assume that aa\square and bb\square are mixed by YY. If aa\square is max-separated by YY, then bb\square is neither minmax-separated nor strongly separated by YY. The same result holds when a,b|Ya,b\in\mathcal{F}|Y and a=aa\square=a\uparrow and b=bb\square=b\uparrow as well.

  3. (iii)

    Assume that aa and bb\square are mixed by YY. If aa is minmax-separated by YY, then bb\square is not strongly separated by YY. The same result holds when b|Yb\in\mathcal{F}|Y and b=bb\square=b\uparrow as well.

Now we start to prove new lemmas to be used in this paper.

Lemma 4.22.

Assume that a^|Ya\in\hat{\mathcal{F}}|Y is still strongly separated by YY. Let a<bxYa<_{b}x\leq Y be with ax^|Ya^{\smallfrown}x\in\hat{\mathcal{F}}|Y. If there is a least kk with a(xk)a^{\smallfrown}(x\upharpoonright k) very strongly separated by YY, then for any l<kl<k a(xl)a^{\smallfrown}(x\upharpoonright l) is either strongly mixed or still strongly separated by YY.

Proof.

Let x=(x(0),,x(|x|1))x=(x(0),\ldots,x(|x|-1)). Since aa is still strongly separated, we know that ax(0)a^{\smallfrown}x(0) and ax(0)a^{\smallfrown}x(0)\uparrow are mixed by YY, and we also know that ax(0)a^{\smallfrown}x(0)\uparrow is still strongly separated by YY. Now, Lemma 4.21 implies that ax(0)a^{\smallfrown}x(0) is either strongly mixed or strongly separated by YY. If ax(0)a^{\smallfrown}x(0) is very strongly separated by YY, then we are done. If ax(0)a^{\smallfrown}x(0) is still strongly separated by YY, then we can do the same argument to see that ax(0)x(1)a^{\smallfrown}x(0)^{\smallfrown}x(1) is either strongly mixed or strongly separated by YY. Finally, if ax(0)a^{\smallfrown}x(0) is strongly mixed by YY, then Lemma 4.14 part (i) implies that ax(0)a^{\smallfrown}x(0) and ax(0)x(1)a^{\smallfrown}x(0)^{\smallfrown}x(1) are mixed by YY, which means ax(0)a^{\smallfrown}x(0)\uparrow and ax(0)x(1)a^{\smallfrown}x(0)^{\smallfrown}x(1) are mixed by YY, and so ax(0)x(1)a^{\smallfrown}x(0)^{\smallfrown}x(1) is either strongly mixed or strongly separated by YY. Now fix l<kl<k and suppose that a(xl)a^{\smallfrown}(x\upharpoonright l^{\prime}) is either strongly mixed or strongly separated by YY for all l<ll^{\prime}<l. Find the greatest l0ll_{0}\leq l for which a(xl0)a^{\smallfrown}(x\upharpoonright l_{0}) is strongly separated by YY. If a(xl0)a^{\smallfrown}(x\upharpoonright l_{0}) is very strongly separated by YY, then we get the result. Otherwise, by the argument in the base case and repeated applications of Lemma 4.14 part (i), a(xl0)a^{\smallfrown}(x\upharpoonright l_{0}) and a(xl)a^{\smallfrown}(x\upharpoonright l) are mixed by YY, and a(xl0)a^{\smallfrown}(x\upharpoonright l_{0}) is still strongly separated by YY. By Lemma 4.21, a(xl)a^{\smallfrown}(x\upharpoonright l) is either strongly mixed or strongly separated by YY, finishing the induction. ∎

Lemma 4.23.

Let a,b(^)|Ya,b\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y and assume that aa and bb are mixed by YY. Furthermore, assume that both aa and bb are separated in some sense by YY. Then either aa and bb have the same separation type, or aa is minmax-separated by YY and bb is min-separated by YY, or vice versa. Moreover, if bb is minmax-separated by YY and aa is min-separated by YY, then there is a<byYa<_{b}y\leq Y such that aya^{\smallfrown}y\in\mathcal{F} and there is 1k<|y|1\leq k<|y| for which a(yk)a^{\smallfrown}(y\upharpoonright k) is separated in some sense by YY. Finally, in this case, for all a<byYa<_{b}y\leq Y such that aya^{\smallfrown}y\in\mathcal{F}, there is some 1k<|y|1\leq k<|y| for which a(yk)a^{\smallfrown}(y\upharpoonright k) is separated in some sense by YY, and a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) is max-separated by YY, where k0k_{0} is the least such kk.

Proof.

The first assertion directly follows from Lemma 4.21. Now let us assume that a,b(^)|Ya,b\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y are mixed by YY, bb is minmax-separated by YY and aa is min-separated by YY. Take a,b<bx,ya,b<_{b}x,y with g(bx)=g(ay)g(b^{\smallfrown}x)=g(a^{\smallfrown}y). Assume towards a contradiction that for all 1k|y|1\leq k\leq|y|, a(yk)a^{\smallfrown}(y\upharpoonright k) is strongly mixed by YY. It follows that ay(0)a^{\smallfrown}y(0) and aya^{\smallfrown}y are mixed by YY. Take s[Y/a]s\in[Y/a] such that minsep(s)=minsep(y(0))\operatorname{min-sep}(s)=\operatorname{min-sep}(y(0)) but maxsep(s)>bmaxsep(x(0))\operatorname{max-sep}(s)>_{b}\operatorname{max-sep}(x(0)). By definition of mixing, bxb^{\smallfrown}x and aya^{\smallfrown}y are mixed by YY. Since aa is min-separated by YY, ay(0)a^{\smallfrown}y(0) and bmb^{\smallfrown}m are mixed by YY. It follows by transitivity of mixing that asa^{\smallfrown}s and bxb^{\smallfrown}x are mixed by YY. Find s,x<bzYs,x<_{b}z\leq Y such that asz|Ya^{\smallfrown}s^{\smallfrown}z\in\mathcal{F}|Y and g(bx)=g(asz)g(b^{\smallfrown}x)=g(a^{\smallfrown}s^{\smallfrown}z). This contradicts Lemma 4.19 since maxsep(s)>bmaxsep(x(0))\operatorname{max-sep}(s)>_{b}\operatorname{max-sep}(x(0)).

To finish, assume that a,b(^)|Ya,b\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y are mixed by YY, bb is minmax-separated by YY and aa is min-separated by YY. Take a,b<x,ya,b<x,y with g(bx)=g(ay)g(b^{\smallfrown}x)=g(a^{\smallfrown}y). By the preceding paragraph and (iv) of canonical, there is a least 1k0<|y|1\leq k_{0}<|y| such that a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) is separated in some sense by YY. By (v) of canonical, it suffices to show that a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) is max-separated by YY. Indeed, since g(bx)=g(ay)g(b^{\smallfrown}x)=g(a^{\smallfrown}y), by Lemma 4.19, we know that minsep(x(0))=minsep(y(0))\operatorname{min-sep}(x(0))=\operatorname{min-sep}(y(0)) and maxsep(x(0))>maxsep(y(0))\operatorname{max-sep}(x(0))>\operatorname{max-sep}(y(0)). Find jωj\in\omega and A,B[Y]A,B\in[Y], AA\neq\varnothing such that x(0)=Y(j)Ax(0)=Y(j)\cup A and y(0)=Y(j)By(0)=Y(j)\cup B. It follows by Lemma 4.19 that bY(j)b^{\smallfrown}Y(j)\uparrow and aY(j)a^{\smallfrown}Y(j)\uparrow are mixed by YY. By Lemma 4.14 part (ii), aY(j)a^{\smallfrown}Y(j)\uparrow and ay(0)a^{\smallfrown}y(0) are mixed by YY. Finally, by Lemma 4.14 part (i), we see that ay(0)a^{\smallfrown}y(0) and a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) are mixed by YY. It follows that bY(j)b^{\smallfrown}Y(j)\uparrow and a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) are mixed by YY. But now, by Lemma 4.13, bY(j)b^{\smallfrown}Y(j)\uparrow is max-separated by YY. Since a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) is separated in some sense by YY, it follows from Lemma 4.21 that a(yk0)a^{\smallfrown}(y\upharpoonright k_{0}) is max-separated by YY. ∎

We now define the parameter function γ:(^)|Y{sm,minsep,\gamma:(\hat{\mathcal{F}}\setminus\mathcal{F})|Y\to\{\operatorname{sm},\operatorname{min-sep}, maxsep,\operatorname{max-sep}, minmaxsep,sss,vss}\operatorname{minmax-sep},\operatorname{sss},\operatorname{vss}\}:

Definition 4.24.

For a(^)|Ya\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y, we let γ(a)=sm\gamma(a)=\operatorname{sm} if aa is strongly mixed by YY, γ(a)=minsep\gamma(a)=\operatorname{min-sep} if aa is min-separated by YY, γ(a)=maxsep\gamma(a)=\operatorname{max-sep} if aa is max-separated by YY, γ(a)=minmaxsep\gamma(a)=\operatorname{minmax-sep} if aa is minmax-separated by YY, γ(a)=sss\gamma(a)=\operatorname{sss} if aa is still strongly separated by YY, and γ(a)=vss\gamma(a)=\operatorname{vss} if aa is very strongly separated by YY.

Note that by Lemma 4.22 and (v) of canonical, γ\gamma is admissible. Let us assume that γ\gamma is not trivial; i.e., assume that there is a(^)|Ya\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y with γ(a)sm\gamma(a)\neq\operatorname{sm}. It then follows that Γγ(b)\Gamma_{\gamma}(b)\neq\varnothing for all b|Yb\in\mathcal{F}|Y. YXY\leq X and γ\gamma being defined, we can start the proof of the theorem:

Proof of Theorem 4.6.

Let \mathcal{F} be a front on some XFIN[]X\in\mathrm{FIN}^{[\infty]}, and let g:ωg:\mathcal{F}\to\omega be a function. Pick a canonical YXY\leq X for gg. The following four claims will finish the proof:

Claim 4.25.

Let a,a|Ya,a^{\prime}\in\mathcal{F}|Y. Take k|a|k\leq|a| and k|a|k^{\prime}\leq|a^{\prime}| with Γγ(ak)=Γγ(ak)\Gamma_{\gamma}(a\upharpoonright k)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime}), and assume it is not the case that γ(al)=sss\gamma(a\upharpoonright l)=\operatorname{sss} and γ(al)=vss\gamma(a^{\prime}\upharpoonright l^{\prime})=\operatorname{vss} (or vice versa) where lk1l\leq k-1 and lk1l^{\prime}\leq k^{\prime}-1 are maximal with γ(al),γ(al)sm\gamma(a\upharpoonright l),\gamma(a^{\prime}\upharpoonright l^{\prime})\neq\operatorname{sm}. Then aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are mixed by YY.

Proof.

Let a,a|Ya,a^{\prime}\in\mathcal{F}|Y, take k|a|k\leq|a| and k|a|k^{\prime}\leq|a^{\prime}| with Γγ(ak)=Γγ(ak)\Gamma_{\gamma}(a\upharpoonright k)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime}), and assume it is not the case that γ(al)=sss\gamma(a\upharpoonright l)=\operatorname{sss} and γ(al)=vss\gamma(a^{\prime}\upharpoonright l^{\prime})=\operatorname{vss} (or vice versa) where lk1l\leq k-1 and lk1l^{\prime}\leq k^{\prime}-1 are maximal with γ(al),γ(al)sm\gamma(a\upharpoonright l),\gamma(a^{\prime}\upharpoonright l^{\prime})\neq\operatorname{sm}. Let us prove the result by induction on |Γγ(ak)|=|Γγ(ak)||\Gamma_{\gamma}(a\upharpoonright k)|=|\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})|.

The case when |Γγ(ak)|=0=|Γγ(ak)||\Gamma_{\gamma}(a\upharpoonright k)|=0=|\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})| follows by successive applications of Lemma 4.14 part (i).

Now let us assume that |Γγ(ak)|=|Γγ(ak)|>0|\Gamma_{\gamma}(a\upharpoonright k)|=|\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})|>0 and the result holds for all blb\upharpoonright l, bl^|Yb^{\prime}\upharpoonright l^{\prime}\in\hat{\mathcal{F}}|Y with Γγ(bl)=Γγ(bl)\Gamma_{\gamma}(b\upharpoonright l)=\Gamma_{\gamma}(b^{\prime}\upharpoonright l^{\prime}) and |Γγ(bl)|<|Γγ(ak)||\Gamma_{\gamma}(b\upharpoonright l)|<|\Gamma_{\gamma}(a\upharpoonright k)|. Find maximal k0<kk_{0}<k and k0<kk_{0}^{\prime}<k^{\prime} with |Γγ(ak0)|=|Γγ(ak)|1|\Gamma_{\gamma}(a\upharpoonright k_{0})|=|\Gamma_{\gamma}(a\upharpoonright k)|-1 and |Γγ(ak0)|=|Γγ(ak)|1|\Gamma_{\gamma}(a^{\prime}\upharpoonright k_{0}^{\prime})|=|\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})|-1. It follows that Γγ(ak0)=Γγ(ak0)\Gamma_{\gamma}(a\upharpoonright k_{0})=\Gamma_{\gamma}(a^{\prime}\upharpoonright k_{0}^{\prime}), and so the induction hypothesis implies that ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} are mixed by YY. Recall that the images of minsep\operatorname{min-sep}, maxsep\operatorname{max-sep}, minmaxsep\operatorname{minmax-sep} and sss=vss\operatorname{sss}=\operatorname{vss} on [Y][Y] are disjoint. Let d=|Γγ(ak)|=|Γγ(ak)|d=|\Gamma_{\gamma}(a\upharpoonright k)|=|\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})|. We split into cases.

First, assume that Γγ(ak)(d1)=Γγ(ak)(d1)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1) is in the range of minsep\operatorname{min-sep}. Since k0k_{0} and k0k_{0}^{\prime} were maximal, it follows that ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} are both min-separated by YY and minsep(a(k0))=minsep(a(k0))\operatorname{min-sep}(a(k_{0}))=\operatorname{min-sep}(a^{\prime}(k^{\prime}_{0})). It follows by Lemma 4.18 part (i) that (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a(k_{0}^{\prime}) are mixed by YY. Since all of the proper initial segments of aka\upharpoonright k extending (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}), and all of the proper initial segments of aka^{\prime}\upharpoonright k^{\prime} extending (ak0)a(k0)(a^{\prime}\upharpoonright k^{\prime}_{0})^{\smallfrown}a^{\prime}(k^{\prime}_{0}) are strongly mixed by YY, by repeated applications of Lemma 4.14 part (i), we get that aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are mixed by YY.

If Γγ(ak)(d1)=Γγ(ak)(d1)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1) is in the range of maxsep\operatorname{max-sep}, then the claim similarly follows by Lemma 4.18 part (ii).

Assume that Γγ(ak)(d1)=Γγ(ak)(d1)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1) is in the range of minmaxsep\operatorname{minmax-sep}. Since k0k_{0} and k0k_{0}^{\prime} were maximal we have four alternatives:

If ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} are both minmax-separated by YY, then the proof works similarly to the previous two cases.

Assume that ak0a\upharpoonright k_{0} is minmax-separated by YY and ak0a^{\prime}\upharpoonright k_{0}^{\prime} is min-separated by YY, and the least k0<l<kk_{0}^{\prime}<l^{\prime}<k^{\prime} with γ(al)sm\gamma(a^{\prime}\upharpoonright l^{\prime})\neq\operatorname{sm} satisfies γ(al)=maxsep\gamma(a^{\prime}\upharpoonright l^{\prime})=\operatorname{max-sep}. Since Γγ(ak)(d1)=Γγ(ak)(d1)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1), we know that minsep(a(k0))=minsep(a(k0))\operatorname{min-sep}(a(k_{0}))=\operatorname{min-sep}(a^{\prime}(k^{\prime}_{0})). It follows that a(k0)=Y(j)Aa(k_{0})=Y^{\prime}(j)\cup A and a(k0)=Y(j)Ba^{\prime}(k^{\prime}_{0})=Y^{\prime}(j)\cup B for some jωj\in\omega and for some A,B[Y/Y(j)]A,B\in[Y^{\prime}/Y^{\prime}(j)] with A,BA,B\neq\varnothing. It follows by Lemma 4.19 that (ak0)Y(j)(a\upharpoonright k_{0})^{\smallfrown}Y^{\prime}(j)\uparrow and (ak0)Y(j)(a^{\prime}\upharpoonright k^{\prime}_{0})^{\smallfrown}Y^{\prime}(j)\uparrow are mixed by YY^{\prime}. Since ak0a^{\prime}\upharpoonright k^{\prime}_{0} is min-separated by YY^{\prime}, by Lemma 4.13 we may conclude that (ak0)Y(j)(a^{\prime}\upharpoonright k^{\prime}_{0})^{\smallfrown}Y^{\prime}(j)\uparrow is strongly mixed by YY^{\prime}, and it then follows by Lemma 4.14 part (i) that (ak0)Y(j)(a^{\prime}\upharpoonright k^{\prime}_{0})^{\smallfrown}Y^{\prime}(j)\uparrow and (ak0)a(k0)(a^{\prime}\upharpoonright k^{\prime}_{0})^{\smallfrown}a^{\prime}(k_{0}^{\prime}) are mixed by YY^{\prime}. Again by Lemma 4.14 part (i), we see that (ak0)a(k0)(a^{\prime}\upharpoonright k^{\prime}_{0})^{\smallfrown}a^{\prime}(k_{0}^{\prime}) and ala^{\prime}\upharpoonright l^{\prime} are mixed by YY^{\prime}. Finally, since by Lemma 4.13 (ak0)Y(j)(a\upharpoonright k_{0})^{\smallfrown}Y^{\prime}(j)\uparrow is max-separated by YY^{\prime}, (ak0)Y(j)(a\upharpoonright k_{0})^{\smallfrown}Y^{\prime}(j)\uparrow and ala^{\prime}\upharpoonright l^{\prime} being mixed by YY^{\prime} and the fact that maxsep(a(k0))=maxsep(a(l))\operatorname{max-sep}(a(k_{0}))=\operatorname{max-sep}(a^{\prime}(l^{\prime})), by Lemma 4.18 part (ii), implies that (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (al)a(l)(a^{\prime}\upharpoonright l^{\prime})^{\smallfrown}a^{\prime}(l^{\prime}) are mixed by YY^{\prime}. It then follows by successive applications of Lemma 4.14 part (i) that aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are mixed by YY^{\prime}, and hence also by YY.

Now assume that ak0a\upharpoonright k_{0} is min-separated by YY, and the least k0<l<kk_{0}<l<k with γ(al)sm\gamma(a\upharpoonright l)\neq\operatorname{sm} satisfies γ(al)=maxsep\gamma(a\upharpoonright l)=\operatorname{max-sep} and also ak0a^{\prime}\upharpoonright k_{0}^{\prime} is min-separated by YY, and the least k0<l<kk_{0}^{\prime}<l^{\prime}<k^{\prime} with γ(al)sm\gamma(a^{\prime}\upharpoonright l^{\prime})\neq\operatorname{sm} satisfies γ(al)=maxsep\gamma(a^{\prime}\upharpoonright l^{\prime})=\operatorname{max-sep}. It follows by Lemma 4.18 part (i) that (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a(k_{0}^{\prime}) are mixed by YY and so ala\upharpoonright l and ala^{\prime}\upharpoonright l^{\prime} are mixed by YY as well. Since maxsep(a(l))=maxsepa(l))\operatorname{max-sep}(a(l))=\operatorname{max-sep}a^{\prime}(l^{\prime})), we get the result.

Finally, assume that Γγ(ak)(d1)=Γγ(ak)(d1)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1) is in the range of sss=vss\operatorname{sss}=\operatorname{vss}. Since k0k_{0} and k0k_{0}^{\prime} were maximal, it follows that ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} are both strongly separated by YY. We shall consider three cases.

First, assume that both ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} are very strongly separated by YY. By construction it follows that Γγ(ak)(d1)=a(k0)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=a(k_{0}) and Γγ(ak)(d1)=a(k0)\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1)=a(k^{\prime}_{0}). Similarly to the above arguments, we see that aka\upharpoonright k and (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) as well as aka^{\prime}\upharpoonright k^{\prime} and (ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a(k_{0}^{\prime}) are mixed by YY. Since a(k0)=a(k0)a(k_{0})=a^{\prime}(k_{0}^{\prime}), by Lemma 4.18 part (v) we conclude that aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are mixed by YY.

Second, assume that one of ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} is still strongly separated by YY and the other is very strongly separated by YY. Without loss of generality, we may assume that ak0a\upharpoonright k_{0} is still strongly separated by YY and ak0a^{\prime}\upharpoonright k_{0}^{\prime} is very strongly separated by YY. It follows that Γγ(ak)(d1)=Γγ(ak)(d1)=a(k0)\Gamma_{\gamma}(a\upharpoonright k)(d-1)=\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})(d-1)=a^{\prime}(k_{0}^{\prime}). By Lemma 4.22, we define a sequence {ki}i<N\{k_{i}\}_{i<N} as follows: Let ki>k0k_{i}>k_{0} be given and find the least ki+1>kik_{i+1}>k_{i} with γ(aki+1)=sss\gamma(a\upharpoonright k_{i+1})=\operatorname{sss} or vss\operatorname{vss}. If γ(aki+1)=vss\gamma(a\upharpoonright k_{i+1})=\operatorname{vss}, stop; if γ(aki+1)=sss\gamma(a\upharpoonright k_{i+1})=\operatorname{sss}, then similarly find the least ki+2>ki+1k_{i+2}>k_{i+1} with γ(aki+2)=sss\gamma(a\upharpoonright k_{i+2})=\operatorname{sss} or vss\operatorname{vss}. At the end, we find an N<ωN<\omega, and obtain a sequence (ki)1iN(k_{i})_{1\leq i\leq N} for some kNk1k_{N}\leq k-1 (by the assumption on kk and kk^{\prime}) such that γ(aki)=sss\gamma(a\upharpoonright k_{i})=\operatorname{sss} for all i<Ni<N and γ(akN)=vss\gamma(a\upharpoonright k_{N})=\operatorname{vss}. It follows that 0iNa(ki)=a(k0)\bigcup_{0\leq i\leq N}a(k_{i})=a^{\prime}(k_{0}^{\prime}). Lemma 4.20 part (ii) implies that (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a(k_{0})\uparrow are mixed by YY. By Lemma 4.14 part (i), (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and ak1a\upharpoonright k_{1} are mixed by YY. It follows that ak1a\upharpoonright k_{1} and (ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a(k_{0})\uparrow are also mixed by YY. Since ak0a^{\prime}\upharpoonright k_{0}^{\prime} is very strongly separated, (ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a(k_{0})\uparrow is very strongly separated as well. In general, given akia\upharpoonright k_{i} and (ak0)j<ia(kj)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}\bigcup_{j<i}a(k_{j})\uparrow mixed by YY, we can do the same argument to see that aki+1a\upharpoonright k_{i+1} and (ak0)j<i+1a(kj)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}\bigcup_{j<i+1}a(k_{j})\uparrow are mixed by YY. At the end we will see that akNa\upharpoonright k_{N} and (ak0)(0i<Na(ki))(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}(\bigcup_{0\leq i<N}a(k_{i}))\uparrow are mixed by YY, and akNa\upharpoonright k_{N} and (ak0)(0i<Na(ki))(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}(\bigcup_{0\leq i<N}a(k_{i}))\uparrow are both very strongly separated by YY. It follows by Lemma 4.18 part (v) that (akN)a(kN)(a\upharpoonright k_{N})^{\smallfrown}a(k_{N}) and (ak0)(0i<Na(ki)a(kN))=(ak0)a(k0)(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}(\bigcup_{0\leq i<N}a(k_{i})\cup a(k_{N}))=(a^{\prime}\upharpoonright k_{0}^{\prime})^{\smallfrown}a^{\prime}(k_{0}^{\prime}) are mixed by YY, and we get the result by Lemma 4.14 part (i).

To finish, assume that both ak0a\upharpoonright k_{0} and ak0a^{\prime}\upharpoonright k_{0}^{\prime} are still strongly separated by YY. Repeating the construction from the previous paragraph, we get sequences (ki)0iN(k_{i})_{0\leq i\leq N} and (ki)0iN(k^{\prime}_{i})_{0\leq i\leq N^{\prime}} for some kNk1k_{N}\leq k-1 and kNk1k^{\prime}_{N^{\prime}}\leq k^{\prime}-1 such that γ(aki)=sss\gamma(a\upharpoonright k_{i})=\operatorname{sss} for all i<Ni<N, and γ(akN)=sss\gamma(a\upharpoonright k_{N})=\operatorname{sss} or vss\operatorname{vss}; and similarly γ(aki)=sss\gamma(a^{\prime}\upharpoonright k^{\prime}_{i})=\operatorname{sss} for all i<Ni<N^{\prime}, and γ(akN)=sss\gamma(a^{\prime}\upharpoonright k^{\prime}_{N^{\prime}})=\operatorname{sss} or vss\operatorname{vss}. Note by the assumption on kk and kk^{\prime} that γ(akN)=sss\gamma(a\upharpoonright k_{N})=\operatorname{sss} if and only if γ(akN)=sss\gamma(a^{\prime}\upharpoonright k^{\prime}_{N^{\prime}})=\operatorname{sss}. By the assumption, 0iNa(ki)=0iNa(ki)\bigcup_{0\leq i\leq N}a(k_{i})=\bigcup_{0\leq i\leq N^{\prime}}a^{\prime}(k^{\prime}_{i}).

We claim that (akN)a(kN)(a\upharpoonright k_{N})^{\smallfrown}a(k_{N}) and (akN)a(kN)(a^{\prime}\upharpoonright{k^{\prime}}_{N^{\prime}})^{\smallfrown}a({k^{\prime}}_{N^{\prime}}) are mixed by YY. Indeed, find the least 0i0N0\leq i_{0}\leq N with a(ki0)a(ki0)a(k_{i_{0}})\neq a^{\prime}(k^{\prime}_{i_{0}}) (if N=NN=N^{\prime} and a(ki)=a(ki)a(k_{i})=a^{\prime}(k^{\prime}_{i}) for all i<Ni<N, then it follows from successive applications of Lemma 4.20 part (ii) that akNa\upharpoonright k_{N} and akNa^{\prime}\upharpoonright k^{\prime}_{N^{\prime}} are mixed by YY, and the respective part of Lemma 4.19 or Lemma 4.18 proves the claim). Note that i0<Ni_{0}<N. Since 0iNa(ki)=0iNa(ki)\bigcup_{0\leq i\leq N}a(k_{i})=\bigcup_{0\leq i\leq N^{\prime}}a^{\prime}(k^{\prime}_{i}), either a(ki0)a(k_{i_{0}}) is a proper initial segment of a(ki0)a^{\prime}({k^{\prime}}_{i_{0}}) or vice versa. Without loss of generality, assume that a(ki0)a(k_{i_{0}}) is a proper initial segment of a(ki0)a^{\prime}({k^{\prime}}_{i_{0}}). It follows by Lemma 4.20 part (i) that (aki0)a(ki0)(a\upharpoonright k_{i_{0}})^{\smallfrown}a(k_{i_{0}}) and (aki0)a(ki0)(a^{\prime}\upharpoonright{k^{\prime}}_{i_{0}})^{\smallfrown}a({k}_{i_{0}})\uparrow are mixed by YY. Note that (aki0)a(ki0)(a^{\prime}\upharpoonright{k^{\prime}}_{i_{0}})^{\smallfrown}a({k}_{i_{0}})\uparrow is still strongly separated by YY. Find the least i1>i0i_{1}>i_{0} with a(ki0)0ii1a(ki)a^{\prime}(k^{\prime}_{i_{0}})\subseteq\bigcup_{0\leq i\leq i_{1}}a(k_{i}). If a(ki0)=0ii1a(ki)a^{\prime}(k^{\prime}_{i_{0}})=\bigcup_{0\leq i\leq i_{1}}a(k_{i}), let v=a(ki0)a(ki0)v=a^{\prime}(k^{\prime}_{i_{0}})\setminus a(k_{i_{0}}); otherwise let v=(a(ki0)a(ki0))v=(a^{\prime}(k^{\prime}_{i_{0}})\setminus a(k_{i_{0}}))\uparrow. In either case, (aki0)a(ki0)v(a\upharpoonright k_{i_{0}})^{\smallfrown}a(k_{i_{0}})^{\smallfrown}v and (aki0)a(ki0)(a^{\prime}\upharpoonright{k^{\prime}}_{i_{0}})^{\smallfrown}a^{\prime}(k^{\prime}_{i_{0}}) are still strongly separated by YY; also (aki0)a(ki0)v(a\upharpoonright k_{i_{0}})^{\smallfrown}a(k_{i_{0}})^{\smallfrown}v and ((aki0)a(ki0))(a(ki0)a(ki0))=(aki0)a(ki0)((a^{\prime}\upharpoonright{k^{\prime}}_{i_{0}})^{\smallfrown}a({k}_{i_{0}})\uparrow)^{\smallfrown}(a^{\prime}(k^{\prime}_{i_{0}})\setminus a(k_{i_{0}}))=(a^{\prime}\upharpoonright{k^{\prime}}_{i_{0}})^{\smallfrown}a^{\prime}(k^{\prime}_{i_{0}}) are mixed by YY. Repeating this argument, by 0iNa(ki)\bigcup_{0\leq i\leq N}a(k_{i}) =0iNa(ki)=\bigcup_{0\leq i\leq N^{\prime}}a^{\prime}(k^{\prime}_{i}), we without loss of generality see that (akN)w(a\upharpoonright k_{N})^{\smallfrown}w\uparrow and (akN)(a^{\prime}\upharpoonright{k^{\prime}}_{N^{\prime}}) are mixed by YY for some akN<w[Y]a\upharpoonright k_{N}<w\in[Y] with a(kN)w=a(kN)a(k_{N})\setminus w=a^{\prime}({k^{\prime}}_{N^{\prime}}) (we allow w=w=\varnothing with the convention “=\varnothing\uparrow=\varnothing”). Note that either both (akN)w(a\upharpoonright k_{N})^{\smallfrown}w\uparrow and (akN)(a^{\prime}\upharpoonright{k^{\prime}}_{N^{\prime}}) are still strongly separated by YY or both (akN)w(a\upharpoonright k_{N})^{\smallfrown}w\uparrow and (akN)(a^{\prime}\upharpoonright{k^{\prime}}_{N^{\prime}}) are very strongly separated by YY. In the former case, since wa(kN)=a(kN)w\cup a^{\prime}({k^{\prime}}_{N^{\prime}})=a(k_{N}), we see by Lemma 4.20 part (i) that (akN)a(kN)(a\upharpoonright k_{N})^{\smallfrown}a(k_{N}) and (akN)a(kN)(a^{\prime}\upharpoonright{k^{\prime}}_{N^{\prime}})^{\smallfrown}a({k^{\prime}}_{N^{\prime}}) are mixed by YY. In the latter case, this time by Lemma 4.18 part (v), we see that (akN)a(kN)(a\upharpoonright k_{N})^{\smallfrown}a(k_{N}) and (akN)a(kN)(a^{\prime}\upharpoonright{k^{\prime}}_{N^{\prime}})^{\smallfrown}a({k^{\prime}}_{N^{\prime}}) are mixed by YY, and we are done. ∎

Claim 4.26.

Let a,a|Ya,a^{\prime}\in\mathcal{F}|Y. If Γγ(a)=Γγ(a)\Gamma_{\gamma}(a)=\Gamma_{\gamma}(a^{\prime}), then g(a)=g(a)g(a)=g(a^{\prime}).

Proof.

Let k=|a|k=|a| and take maximal k0<kk_{0}<k with γ(ak0)sm\gamma(a\upharpoonright k_{0})\neq\operatorname{sm}. Assume towards a contradiction that γ(ak0)=sss\gamma(a\upharpoonright k_{0})=\operatorname{sss}. It follows that (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (ak0)(a(k0))(a\upharpoonright k_{0})^{\smallfrown}(a(k_{0})\uparrow) are mixed. Take (ak0)a(k0)<x,y(a\upharpoonright k_{0})^{\smallfrown}a(k_{0})<x,y (possibly empty) with g((ak0)a(k0)x)=g((ak0)(a(k0))y)g((a\upharpoonright k_{0})^{\smallfrown}a(k_{0})^{\smallfrown}x)=g((a\upharpoonright k_{0})^{\smallfrown}(a(k_{0})\uparrow)^{\smallfrown}y). Since k0<kk_{0}<k were maximal, it follows by Lemma 4.14 part (i) that (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (ak0)a(k0)x(a\upharpoonright k_{0})^{\smallfrown}a(k_{0})^{\smallfrown}x are mixed by YY. Similarly, (ak0)(a(k0)y(0))(a\upharpoonright k_{0})^{\smallfrown}(a(k_{0})\cup y(0)) and (ak0)(a(k0))y(a\upharpoonright k_{0})^{\smallfrown}(a(k_{0})\uparrow)^{\smallfrown}y are also mixed by YY. Hence, (ak0)a(k0)(a\upharpoonright k_{0})^{\smallfrown}a(k_{0}) and (ak0)(a(k0)y(0))(a\upharpoonright k_{0})^{\smallfrown}(a(k_{0})\cup y(0)) are mixed by YY, which contradicts the fact that ak0a\upharpoonright k_{0} is strongly separated by YY.

It follows that 4.25 is applicable. Therefore, a=aka=a\upharpoonright k and a=aka^{\prime}=a^{\prime}\upharpoonright k^{\prime} are mixed by YY. By definition of mixing, since a,a|Ya,a^{\prime}\in\mathcal{F}|Y, it follows that g(a)=g(a)g(a)=g(a^{\prime}). ∎

Claim 4.27.

Let a,a|Ya,a^{\prime}\in\mathcal{F}|Y. Then Γγ(a)⊏̸Γγ(a)\Gamma_{\gamma}(a)\not\sqsubset\Gamma_{\gamma}(a^{\prime}).

Proof.

This directly follows by the observation that no a|Ya\in\mathcal{F}|Y can be mixed with some b(^)|Yb\in(\hat{\mathcal{F}}\setminus\mathcal{F})|Y which is separated in some sense by YY. Indeed, if there is b<byYb<_{b}y\leq Y such that g(a)=g(by)g(a)=g(b^{\smallfrown}y), it follows that bb and by(0)b^{\smallfrown}y(0) are mixed by YY, contradicting the fact that bb is separated in some sense by YY. ∎

Claim 4.28.

Let a,a|Ya,a^{\prime}\in\mathcal{F}|Y. If Γγ(a)Γγ(a)\Gamma_{\gamma}(a)\neq\Gamma_{\gamma}(a^{\prime}), then g(a)g(a)g(a)\neq g(a^{\prime}).

Proof.

Let Γγ(a)Γγ(a)\Gamma_{\gamma}(a)\neq\Gamma_{\gamma}(a^{\prime}) and assume towards a contradiction that g(a)=g(a)g(a)=g(a^{\prime}). By 4.27, choose l<|Γγ(a)|,|Γγ(a)|l<|\Gamma_{\gamma}(a)|,|\Gamma_{\gamma}(a^{\prime})| maximal with Γγ(a)l=Γγ(a)l\Gamma_{\gamma}(a)\upharpoonright l=\Gamma_{\gamma}(a^{\prime})\upharpoonright l (we allow l=0l=0). Choose maximal k<|a|k<|a| and k<|a|k^{\prime}<|a^{\prime}| with Γγ(ak)=Γγ(a)l\Gamma_{\gamma}(a\upharpoonright k)=\Gamma_{\gamma}(a)\upharpoonright l and Γγ(ak)=Γγ(a)l\Gamma_{\gamma}(a^{\prime}\upharpoonright k^{\prime})=\Gamma_{\gamma}(a^{\prime})\upharpoonright l. Note that both aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are separated in some sense by YY. By definition of Γγ\Gamma_{\gamma}, the hypothesis of 4.25 is satisfied for aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime}. It follows that aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are mixed by YY. By Lemma 4.23, we only have the following cases:

First, assume that both aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are min-separated by YY. By Lemma 4.18 part (i), it follows that minsep(a(k))=minsep(a(k))\operatorname{min-sep}(a(k))=\operatorname{min-sep}(a^{\prime}(k^{\prime})). Since ll was chosen to be maximal, without loss of generality there is minimal k<jk<j such that aja\upharpoonright j is separated in some sense by YY. It follows from the above proof that there is also minimal k<jk^{\prime}<j^{\prime} such that aja^{\prime}\upharpoonright j^{\prime} is separated in some sense by YY. By construction of Γγ\Gamma_{\gamma}, both aja\upharpoonright j and aja^{\prime}\upharpoonright j^{\prime} are max-separated by YY. It follows that aja\upharpoonright j and aja^{\prime}\upharpoonright j^{\prime} are mixed by YY. By Lemma 4.18 part (ii), we get maxsep(a(j))=maxsep(a(j))\operatorname{max-sep}(a(j))=\operatorname{max-sep}(a^{\prime}(j^{\prime})), which contradicts the maximality of ll.

The cases when either aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are both max-separated by YY or are both minmax-separated by YY reach a contradiction by the respective parts of Lemma 4.18.

Assume that aka\upharpoonright k is min-separated by YY and aka^{\prime}\upharpoonright k^{\prime} is minmax-separated by YY. It follows by Lemma 4.19 that minsep(a(k))=minsep(a(k))\operatorname{min-sep}(a(k))=\operatorname{min-sep}(a^{\prime}(k^{\prime})), and maxsep(a(k))\operatorname{max-sep}(a(k)) <bmaxsep(a(k))<_{b}\operatorname{max-sep}(a^{\prime}(k^{\prime})). By Lemma 4.23, there is minimal k<jk<j such that aja\upharpoonright j is separated in some sense by YY, and actually aja\upharpoonright j is max-separated by YY. By the argument in the proof of Lemma 4.23, we in fact see that aja\upharpoonright j and (ak)Y(j0)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}Y(j_{0})\uparrow are mixed by YY, where j0ωj_{0}\in\omega satisfies minsep(a(k))Y(j0)\operatorname{min-sep}(a^{\prime}(k^{\prime}))\in Y(j_{0}). Since (ak)Y(j0)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}Y(j_{0})\uparrow is max-separated by YY, by Lemma 4.18 part (ii), it follows that maxsep(a(j))=maxsep(a(k))\operatorname{max-sep}(a(j))=\operatorname{max-sep}(a^{\prime}(k^{\prime})), which contradicts the maximality of ll.

Assume that both aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are strongly separated by YY. By Lemma 4.18 part (iv), either a(k)a(k) is an initial segment of a(k)a^{\prime}(k^{\prime}) or a(k)a^{\prime}(k^{\prime}) is an initial segment of a(k)a(k). By Lemma 4.18 part (v), at least one of aka\upharpoonright k or aka^{\prime}\upharpoonright k^{\prime} has to be still strongly separated by YY.

Assume that aka\upharpoonright k is still strongly separated by YY and aka^{\prime}\upharpoonright k^{\prime} is very strongly separated by YY. We cannot have a(k)=a(k)a(k)=a^{\prime}(k^{\prime}), since it would imply that (ak)a(k)(a\upharpoonright k)^{\smallfrown}a(k) and (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a(k) are mixed by YY, contradicting Lemma 4.20 part (ii). Again by Lemma 4.20 part (ii), a(k)a^{\prime}(k^{\prime}) cannot be a proper initial segment of a(k)a(k). It follows that a(k)a(k) is a proper initial segment of a(k)a^{\prime}(k^{\prime}), and so (ak)a(k)(a\upharpoonright k)^{\smallfrown}a(k) and (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a(k)\uparrow are mixed by YY. Find minimal k<j0k<j_{0} such that aj0a\upharpoonright j_{0} is separated in some sense by YY. By Lemma 4.22, aj0a\upharpoonright j_{0} is strongly separated by YY. Note that (ak)a(k)(a\upharpoonright k)^{\smallfrown}a(k) and aj0a\upharpoonright j_{0} are mixed by YY, and (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a(k)\uparrow is very strongly separated by YY. If aj0a\upharpoonright j_{0} is very strongly separated by YY, then a(j0)=a(k)a(k)a(j_{0})=a^{\prime}(k^{\prime})\setminus a(k) by Lemma 4.18 part (v), and we contradict the maximality of ll. If aj0a\upharpoonright j_{0} is still strongly separated by YY, then we can similarly find minimal j0<j1j_{0}<j_{1} such that aj1a\upharpoonright j_{1} is strongly separated by YY. In general, suppose that jij_{i} is given with ajia\upharpoonright j_{i} strongly separated by YY, ajia\upharpoonright j_{i} and (ak)(a(k)i<ia(ji))(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}(a(k)\cup\bigcup_{i^{\prime}<i}a(j_{i^{\prime}})) mixed by YY, and a(k)i<ia(ji)a(k)a(k)\cup\bigcup_{i^{\prime}<i}a(j_{i^{\prime}})\sqsubset a^{\prime}(k^{\prime}). If ajia\upharpoonright j_{i} is very strongly separated by YY, then by the above argument a(k)(a(k)i<ia(ji))=a(ji)a^{\prime}(k^{\prime})\setminus(a(k)\cup\bigcup_{i^{\prime}<i}a(j_{i^{\prime}}))=a(j_{i}), and we contradict the maximality of ll. If, on the other hand, ajia\upharpoonright j_{i} is still strongly separated by YY, then we find the least ji<ji+1j_{i}<j_{i+1} such that aji+1a\upharpoonright j_{i+1} is separated in some sense by YY. By the argument in the base case, a(ji)a(j_{i}) is a proper initial segment of a(k)(a(k)i<ia(ji))a^{\prime}(k^{\prime})\setminus(a(k)\cup\bigcup_{i^{\prime}<i}a(j_{i^{\prime}})). At the end we get some NN with ajNa\upharpoonright j_{N} and (ak)(a(k)i<Na(ji))(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}(a(k)\cup\bigcup_{i^{\prime}<N}a(j_{i^{\prime}})) mixed by YY, and ajNa\upharpoonright j_{N} is very strongly separated by YY. This contradicts the maximality of ll, as in the previous cases.

Assume that both aka\upharpoonright k and aka^{\prime}\upharpoonright k^{\prime} are still strongly separated by YY. By Lemma 4.18 part (iv), either a(k)a(k) is an initial segment of a(k)a^{\prime}(k^{\prime}) or a(k)a^{\prime}(k^{\prime}) is an initial segment of a(k)a(k). Let k<j0<j1<<jNk<j_{0}<j_{1}<\ldots<j_{N} increasingly enumerate the natural numbers such that ajia\upharpoonright j_{i} is still strongly separated by YY for all i<Ni<N and ajNa\upharpoonright j_{N} is very strongly separated by YY. Similarly, let k<j0<j1<<jNk^{\prime}<j^{\prime}_{0}<j^{\prime}_{1}<\ldots<j^{\prime}_{N^{\prime}} increasingly enumerate the natural numbers such that ajia^{\prime}\upharpoonright j^{\prime}_{i} is still strongly separated by YY for all i<Ni<N^{\prime} and ajNa\upharpoonright j^{\prime}_{N^{\prime}} is very strongly separated by YY. If a(k)=a(k)a(k)=a^{\prime}(k^{\prime}), then we see that (ak)a(k)(a\upharpoonright k)^{\smallfrown}a(k) and (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a^{\prime}(k^{\prime}) are mixed by YY, which implies that aj0a\upharpoonright j_{0} and aj0a^{\prime}\upharpoonright j^{\prime}_{0} are also mixed by YY, and the argument will be similar to the next case. Suppose now that a(k)a(k) is a proper initial segment of a(k)a^{\prime}(k^{\prime}). Then (ak)a(k)(a\upharpoonright k)^{\smallfrown}a(k) and (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a(k)\uparrow are mixed by YY, and so aj0a\upharpoonright j_{0} and (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a(k)\uparrow are also mixed by YY. Note that (ak)a(k)(a^{\prime}\upharpoonright k^{\prime})^{\smallfrown}a(k)\uparrow is still strongly separated by YY. It follows that either a(j0)a(j_{0}) is an initial segment of a(k)a(k)a^{\prime}(k^{\prime})\setminus a(k), or vice versa.

Observe that, if aj0a\upharpoonright j_{0} is very strongly separated by YY (i.e., if N=0N=0), then a(k)a(k)a^{\prime}(k^{\prime})\setminus a(k) has to be a proper initial segment of a(j0)a(j_{0}) (otherwise we contradict Lemma 4.20 part (ii)). We see that (aj0)a(k)(a\upharpoonright j_{0})^{\smallfrown}a^{\prime}(k^{\prime})\uparrow and aj0a^{\prime}\upharpoonright j^{\prime}_{0} are mixed by YY. Note that (aj0)a(k)(a\upharpoonright j_{0})^{\smallfrown}a^{\prime}(k^{\prime})\uparrow is very strongly separated by YY. If aj0a^{\prime}\upharpoonright j^{\prime}_{0} is very strongly separated by YY, then by Lemma 4.18 part (v) a(j0)a(k)=a(j0)a(j_{0})\setminus a^{\prime}(k^{\prime})=a^{\prime}(j^{\prime}_{0}), and we contradict the maximality of ll. If, on the other hand, aj0a^{\prime}\upharpoonright j^{\prime}_{0} is still strongly separated by YY, then it follows similarly that a(j0)a^{\prime}(j^{\prime}_{0}) has to be a proper initial segment of a(j0)a(k)a(j_{0})\setminus a^{\prime}(k^{\prime}). At the end of finitely many steps, we reach ajNa^{\prime}\upharpoonright j^{\prime}_{N^{\prime}}, which is very strongly separated by YY. Also, (aj0)a(jN1)(a\upharpoonright j_{0})^{\smallfrown}a^{\prime}(j^{\prime}_{N^{\prime}-1})\uparrow and ajNa^{\prime}\upharpoonright j^{\prime}_{N^{\prime}} are mixed by YY and we have a(j0)a(jN1)=a(jN)a(j_{0})\setminus a^{\prime}(j^{\prime}_{N^{\prime}-1})=a^{\prime}(j_{N^{\prime}}), which again contradicts the maximality of ll.

Finally, if aj0a\upharpoonright j_{0} is still strongly separated by YY, then we repeat the same argument until we without loss of generality reach i=Ni=N and ajNa\upharpoonright j_{N}, which is very strongly separated by YY. Then the argument in the preceding paragraph applied to ajNa\upharpoonright j_{N} contradicts the maximality of ll. ∎

We now apply 4.26 and 4.28 to finish the proof of Theorem 4.6. ∎

Remark.

Observe that the canonical function Γγ\Gamma_{\gamma} we defined on |Y\mathcal{F}|Y is minimal in the following sense: If we take an arbitrary ZYZ\leq Y and define a parameter γ\gamma^{\prime} with respect to the separation types by ZZ, for any a|Za\in\mathcal{F}|Z, we will have Γγ(a)=Γγ(a)\Gamma_{\gamma^{\prime}}(a)=\Gamma_{\gamma}(a).

We can now obtain Theorem 4.5 as a corollary of Theorem 4.6:

Proof of Theorem 4.5.

Let kω{0}k\in\omega\setminus\{0\} and take a function f:FIN[k]ωf:\mathrm{FIN}^{[k]}\to\omega. Since FIN[k]\mathrm{FIN}^{[k]} is a front, by Theorem 4.6, we may find YFIN[]Y\in\mathrm{FIN}^{[\infty]} and γ:i<k[Y][i]{sm,minsep,maxsep,minmaxsep,sss,vss}\gamma:\bigcup_{i<k}[Y]^{[i]}\to\{\operatorname{sm},\operatorname{min-sep},\operatorname{max-sep},\operatorname{minmax-sep},\operatorname{sss},\operatorname{vss}\} such that for all a,a[Y][k]a,a^{\prime}\in[Y]^{[k]}, f(a)=f(a)f(a)=f(a^{\prime}) if and only if Γγ(a)=Γγ(a)\Gamma_{\gamma}(a)=\Gamma_{\gamma}(a^{\prime}). For a[Y][k]a\in[Y]^{[k]}, define 𝒥a=(γ(),γ(a1),,γ(a(k1)))\mathcal{J}_{a}=(\gamma(\varnothing),\gamma(a\upharpoonright 1),\ldots,\gamma(a\upharpoonright(k-1))). Note that there are only finitely many 𝒥a\mathcal{J}_{a}’s. It follows by 2.11 that there is a 𝒥\mathcal{J} and YYY^{\prime}\leq Y such that 𝒥a=𝒥\mathcal{J}_{a}=\mathcal{J} for all a[Y][k]a\in[Y^{\prime}]^{[k]}, and the result follows. ∎

Before we conclude this section, recall that we fixed a stable ordered-union 𝒰\mathcal{U}. The following lemma, which follows the proof of Lemma 4.17, states that the canonical YXY\leq X can be chosen with [Y]𝒰[Y]\in\mathcal{U} as long as we have [X]𝒰[X]\in\mathcal{U} to begin with, and will be used in the next section:

Lemma 4.29.

Assume that \mathcal{F} is a front on some XX with [X]𝒰[X]\in\mathcal{U}, and g:ωg:\mathcal{F}\to\omega is a function. Then there is a canonical YXY\leq X with [Y]𝒰[Y]\in\mathcal{U}. In particular, there is some YXY\leq X with [Y]𝒰[Y]\in\mathcal{U} which satisfies the conclusion of Theorem 4.6, as well as of 4.25, 4.26, 4.27, and 4.28, which means that gg is canonized on |Y\mathcal{F}|Y.

Proof.

We sketch the argument. One can prove by induction on α<ω1\alpha<\omega_{1} that the set of ZFIN[]Z\in\mathrm{FIN}^{[\infty]} for which |Z\mathcal{F}|Z is α\alpha-uniform is a closed set. Moreover, for fixed a,bFIN[<]a,b\in\mathrm{FIN}^{[<\infty]}, the set of ZFIN[]Z\in\mathrm{FIN}^{[\infty]} which decides aa and bb is coanalytic. Thus, if we let 𝒜={ZFIN[]:|Zis uniform and Z decides a and b}\mathcal{A}=\{Z\in\mathrm{FIN}^{[\infty]}:\mathcal{F}|Z\ \text{is uniform and $Z$ decides $a$ and $b$}\}, by Theorem 2.14 part (iii), there will be some [Z]𝒰[Z^{\prime}]\in\mathcal{U} such that [Z][]𝒜[Z^{\prime}]^{[\infty]}\subseteq\mathcal{A} or [Z][]𝒜=[Z^{\prime}]^{[\infty]}\cap\mathcal{A}=\varnothing. The latter cannot happen by density of the block sequences that decide aa and bb. It follows that, for any bFIN[<]b\in\mathrm{FIN}^{[<\infty]}, one can find [Y0]𝒰[Y_{0}]\in\mathcal{U}, Y0XY_{0}\leq X which decides every aa with max(a(|a|1))max(b(|b|1))\operatorname{max}(a(|a|-1))\leq\operatorname{max}(b(|b|-1)). Utilizing Theorem 2.14 part (iv) in place of Lemma 4.8, one can find [Y1]𝒰[Y_{1}]\in\mathcal{U}, Y1XY_{1}\leq X, which satisfies (i) of canonical. Similarly, one can use Theorem 2.14 part (vi) for (ii) of canonical, part (ii) for (iii) of canonical, and part (v) for (iv) and (v) of canonical to get [Y]𝒰[Y]\in\mathcal{U} with YXY\leq X, which is canonical for gg. ∎

5. Initial Tukey Structure Below 𝒰\mathcal{U}

This section contains the main results of the paper, Theorem 5.4 and Theorem 5.12. We fix a stable ordered-union ultrafilter 𝒰\mathcal{U} on FIN\mathrm{FIN}. Since min:FINω\operatorname{min}:\mathrm{FIN}\to\omega and minsep:FIN{{n}:nω}\operatorname{min-sep}:\mathrm{FIN}\to\{\{n\}:n\in\omega\}, the maps minsep\operatorname{min-sep} and min\operatorname{min} are technically different, as well as the other ones. The following is routine to show:

Fact 5.1.

Assume that the maps minsep\operatorname{min-sep}, maxsep\operatorname{max-sep}, minmaxsep\operatorname{minmax-sep}, and sss\operatorname{sss} have disjoint images on [X]𝒰[X]\in\mathcal{U}. Then the RK\mathrm{RK}-image minmaxsep(𝒰[X])\operatorname{minmax-sep}(\mathcal{U}\upharpoonright[X]) is an ultrafilter on [X][2][X]^{[2]}. Moreover, minsep(𝒰[X])𝒰min\operatorname{min-sep}(\mathcal{U}\upharpoonright[X])\cong\mathcal{U}_{\operatorname{min}}, maxsep(𝒰[X])𝒰max\operatorname{max-sep}(\mathcal{U}\upharpoonright[X])\cong\mathcal{U}_{\operatorname{max}} and minmaxsep(𝒰[X])𝒰minmax\operatorname{minmax-sep}(\mathcal{U}\upharpoonright[X])\cong\mathcal{U}_{\operatorname{minmax}}.

Therefore, from now on, it is justified to use the maps ()(\cdot) and ()sep(\cdot)\operatorname{-sep} interchangeably.

For notational simplicity, define ={XFIN[]:[X]𝒰}\mathcal{B}=\{X\in\mathrm{FIN}^{[\infty]}:[X]\in\mathcal{U}\} and define [<]={aFIN[<]:aXfor some X}\mathcal{B}^{[<\infty]}=\{a\in\mathrm{FIN}^{[<\infty]}:a\sqsubset X\ \text{for some $X\in\mathcal{B}$}\}. Also, for XX\in\mathcal{B}, denote X={X:XX}\mathcal{B}\upharpoonright X=\{X^{\prime}\in\mathcal{B}:X^{\prime}\leq X\} and [<]X={aFIN[<]:aXfor some XX}\mathcal{B}^{[<\infty]}\upharpoonright X=\{a\in\mathrm{FIN}^{[<\infty]}:a\sqsubset X^{\prime}\ \text{for some $X^{\prime}\in\mathcal{B}\upharpoonright X$}\}. We will need the following lemma:

Lemma 5.2 (Theorem 5656, [DMT17]).

Whenever 𝒱\mathcal{V} is a nonprincipal ultrafilter on ω\omega and f:𝒱f:\mathcal{B}\to\mathcal{V} is monotone (meaning that XYf(X)f(Y)X\leq Y\Rightarrow f(X)\subseteq f(Y)) and cofinal, there is XX\in\mathcal{B} and a monotone function f~:FIN[]𝒫(ω)\tilde{f}:\mathrm{FIN}^{[\infty]}\to\mathcal{P}(\omega) such that

  1. (i)

    f~\tilde{f} is continuous with respect to the metric topology on FIN[]\mathrm{FIN}^{[\infty]},

  2. (ii)

    f~(X)=f(X)\tilde{f}\upharpoonright(\mathcal{B}\upharpoonright X)=f\upharpoonright(\mathcal{B}\upharpoonright X),

  3. (iii)

    There is f^:FIN[<][ω]<ω\hat{f}:\mathrm{FIN}^{[<\infty]}\to[\omega]^{<\omega} such that; abFIN[<]f^(a)f^(b)a\sqsubseteq b\in\mathrm{FIN}^{[<\infty]}\Rightarrow\hat{f}(a)\sqsubseteq\hat{f}(b), abFIN[<]f^(a)f^(b)a\leq b\in\mathrm{FIN}^{[<\infty]}\Rightarrow\hat{f}(a)\subseteq\hat{f}(b), and for all YFIN[]Y\in\mathrm{FIN}^{[\infty]}, f~(Y)=kωf^(rk(Y))\tilde{f}(Y)=\bigcup_{k\in\omega}\hat{f}(r_{k}(Y)).

Define the following class of ultrafilters on ω\omega for α<ω1\alpha<\omega_{1}:

  1. (i)

    𝒞0={𝒰,𝒰min,𝒰max,𝒰minmax}\mathcal{C}_{0}=\{\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}},\mathcal{U}_{\operatorname{minmax}}\},

  2. (ii)

    𝒞α+1={limx𝒱𝒲x:𝒱𝒞0,and each𝒲x𝒞α}\mathcal{C}_{\alpha+1}=\{\lim_{x\to\mathcal{V}}\mathcal{W}_{x}:\mathcal{V}\in\mathcal{C}_{0},\text{and each}\ \mathcal{W}_{x}\in\mathcal{C}_{\alpha}\}.

  3. (iii)

    𝒞γ=α<γ𝒞α\mathcal{C}_{\gamma}=\bigcup_{\alpha<\gamma}\mathcal{C}_{\alpha} for limit γ\gamma,

  4. (iv)

    Cω1=α<ω1𝒞αC_{\omega_{1}}=\bigcup_{\alpha<\omega_{1}}\mathcal{C}_{\alpha}.

Before stating Theorem 5.4, let us note that given a front \mathcal{F} on some XX\in\mathcal{B}, we may construct a new ultrafilter on the base set \mathcal{F} in the following way:

Definition 5.3.

Let \mathcal{F} be a front on XX. We define 𝒰={|Y:YX,[Y]𝒰}\mathcal{U}\upharpoonright\mathcal{F}=\langle\{\mathcal{F}|Y:Y\leq X,[Y]\in\mathcal{U}\}\rangle.

By Theorem 2.14 part (v), 𝒰\mathcal{U}\upharpoonright\mathcal{F} is an ultrafilter on the base set \mathcal{F}.

We will build on the technique Todorcevic developed in [RT12] to prove that Ramsey ultrafilters are Tukey minimal, which was outlined in [Dob21], and was extended to other ultrafilters in [DT14], [DT15], [Dob16a], and [DMT17].

Theorem 5.4.

Let 𝒱\mathcal{V} be a nonprincipal ultrafilter on a countable index set II with 𝒰T𝒱\mathcal{U}\geq_{T}\mathcal{V}. Then 𝒱\mathcal{V} is isomorphic to an ultrafilter from the class 𝒞ω1\mathcal{C}_{\omega_{1}}.

Proof.

Let 𝒱\mathcal{V} be a nonprincipal ultrafilter, without loss of generality on ω\omega, such that 𝒰T𝒱\mathcal{U}\geq_{T}\mathcal{V}. By 2.3, there is a monotone and cofinal f:𝒰𝒱f:\mathcal{U}\to\mathcal{V}. Define f:𝒱f\upharpoonright\mathcal{B}:\mathcal{B}\to\mathcal{V} by (f)(X)=f([X])(f\upharpoonright\mathcal{B})(X)=f^{\prime}([X]). By Lemma 5.2, find XX\in\mathcal{B} and f^:FIN[<][ω]<ω\hat{f}:{\mathrm{FIN}}^{[<\infty]}\to{[\omega]}^{<\omega} such that abf^(a)f^(b)a\sqsubseteq b\Rightarrow\hat{f}(a)\sqsubseteq\hat{f}(b), abf^(a)f^(b)a\subseteq b\Rightarrow\hat{f}(a)\subseteq\hat{f}(b), and for all XXX^{\prime}\in\mathcal{B}\upharpoonright X, (f)(X)=nωf^(rn(X))(f\upharpoonright\mathcal{B})(X^{\prime})=\bigcup_{n\in\omega}\hat{f}(r_{n}(X^{\prime})). By Theorem 2.14 part (iii), we can find XXX^{\prime}\in\mathcal{B}\upharpoonright X such that for all YXY\leq X^{\prime}, there is a[Y][<]a\in[Y]^{[<\infty]} with f^(a)\hat{f}(a)\neq\varnothing.

Define ={a[<]X:f^(a)andf^(a(|a|1))=}\mathcal{F}=\{a\in{\mathcal{B}}^{[<\infty]}\upharpoonright X^{\prime}:\hat{f}(a)\neq\varnothing\ \text{and}\ \hat{f}(a\upharpoonright(|a|-1))=\varnothing\}. By the minimality condition and the choice of XX^{\prime}, \mathcal{F} is a front on XX^{\prime}. Without loss of generality we may assume that \mathcal{F} is a uniform front on XX^{\prime}. Consider the map g:|Xωg:\mathcal{F}|X^{\prime}\to\omega given by g(a)=min(f^(a))g(a)=\operatorname{min}(\hat{f}(a)) for all aa\in\mathcal{F}. The following is straightforward to show:

Claim 5.5.

g(𝒰(|X))g(𝒰)=𝒱g(\mathcal{U}\upharpoonright(\mathcal{F}|X^{\prime}))\cong g(\mathcal{U}\upharpoonright\mathcal{F})=\mathcal{V}.

By Lemma 4.29, we may take canonical YXY\in\mathcal{B}\upharpoonright X^{\prime} which witnesses the conclusion of Theorem 4.6, along with all of the results in Section 3. Let γ:(^)|Y{sm,minsep,maxsep,minmaxsep,sss,vss}\gamma:(\hat{\mathcal{F}}\setminus\mathcal{F})|Y\to\{\operatorname{sm},\operatorname{min-sep},\operatorname{max-sep},\operatorname{minmax-sep},\operatorname{sss},\operatorname{vss}\} be the corresponding parameter function (Definition 4.24).

Note that 𝒰(|Y)𝒰(|X)\mathcal{U}\upharpoonright(\mathcal{F}|Y)\cong\mathcal{U}\upharpoonright(\mathcal{F}|X^{\prime}), hence g(𝒰(|Y))𝒱g(\mathcal{U}\upharpoonright(\mathcal{F}|Y))\cong\mathcal{V}. The rest of the proof will contain similar arguments to the related results in [DT14], in [DT15], or in [DMT17]. Define

𝒮={Γγ(a):a|Y}.\mathcal{S}=\{\Gamma_{\gamma}(a):a\in\mathcal{F}|Y\}.

Let 𝒲\mathcal{W} denote the RK\mathrm{RK}-image Γγ(𝒰(|Y))\Gamma_{\gamma}(\mathcal{U}\upharpoonright(\mathcal{F}|Y)), an ultrafilter on the base set 𝒮\mathcal{S}.

Claim 5.6.

𝒲g(𝒰(|Y))\mathcal{W}\cong g(\mathcal{U}\upharpoonright(\mathcal{F}|Y)).

Proof.

Define φ:𝒮ω\varphi:\mathcal{S}\to\omega by φ(Γγ(a))=g(a)\varphi(\Gamma_{\gamma}(a))=g(a), for each a|Ya\in\mathcal{F}|Y. Since Γγ(a)=Γγ(a)\Gamma_{\gamma}(a)=\Gamma_{\gamma}(a^{\prime}) if and only if g(a)=g(a)g(a)=g(a^{\prime}) for all a,a|Ya,a^{\prime}\in\mathcal{F}|Y, φ\varphi is well-defined and injective. Thus it suffices to show that φ(𝒲)=g(𝒰(|Y))\varphi(\mathcal{W})=g(\mathcal{U}\upharpoonright(\mathcal{F}|Y)).

Indeed, let YYY^{\prime}\in\mathcal{B}\upharpoonright Y be arbitrary. Then φ(Γγ[|Y])=g[|Y]\varphi(\Gamma_{\gamma}[\mathcal{F}|Y^{\prime}])=g[\mathcal{F}|Y^{\prime}]. Note that by definition of RK\mathrm{RK}-image (Definition 2.2), {Γγ[|Y]:YY}\{\Gamma_{\gamma}[\mathcal{F}|Y^{\prime}]:Y^{\prime}\in\mathcal{B}\upharpoonright Y\} is cofinal in Γγ(𝒰(|Y))=𝒲\Gamma_{\gamma}(\mathcal{U}\upharpoonright(\mathcal{F}|Y))=\mathcal{W}. Therefore, φ\varphi sends a cofinal subset of 𝒲\mathcal{W} to a cofinal subset of g(𝒰(|Y))g(\mathcal{U}\upharpoonright(\mathcal{F}|Y)), and we are done. ∎

Let us assume that Γγ\Gamma_{\gamma} is not constant, i.e., γ\gamma is not the constant sm\operatorname{sm}-map; otherwise 𝒲\mathcal{W} is a principal ultrafilter. Now we classify 𝒲\mathcal{W}. Let

𝒮^={Γγ(ak):a|Y(k=|a||Γγ(ak)|<|Γγ(a(k+1))|)}.\hat{\mathcal{S}}=\{\Gamma_{\gamma}(a\upharpoonright k):a\in\mathcal{F}|Y\land(k=|a|\lor|\Gamma_{\gamma}(a\upharpoonright k)|<|\Gamma_{\gamma}(a\upharpoonright(k+1))|)\}.

Since |Y\mathcal{F}|Y is a front on YY, ^|Y\hat{\mathcal{F}}|Y has no infinite ascending sequences with respect to \sqsubset. The following is a straightforward consequence of this fact and the construction of Γγ\Gamma_{\gamma}:

Lemma 5.7.

There is no (σn)nω𝒮^(\sigma_{n})_{n\in\omega}\subseteq\hat{\mathcal{S}} such that σiσi+1\sigma_{i}\sqsubset\sigma_{i+1} for all iωi\in\omega.

For σ𝒮^𝒮\sigma\in\hat{\mathcal{S}}\setminus\mathcal{S}, define the set σ={ak:a|Y,k is maximal with\mathcal{I}_{\sigma}=\{a\upharpoonright k:a\in\mathcal{F}|Y,\ \text{$k$ is maximal with} Γγ(ak)=σ}\Gamma_{\gamma}(a\upharpoonright k)=\sigma\}. Since σ𝒮\sigma\notin\mathcal{S}, by 4.27, any akσa\upharpoonright k\in\mathcal{I}_{\sigma} is separated in some sense by YY.

For σ𝒮^𝒮\sigma\in\hat{\mathcal{S}}\setminus\mathcal{S}, fix some aσkσσa_{\sigma}\upharpoonright k_{\sigma}\in\mathcal{I}_{\sigma}. Set lσ=|Γγ(aσkσ)|l_{\sigma}=|\Gamma_{\gamma}(a_{\sigma}\upharpoonright k_{\sigma})|. We define the following filter:

𝒲σ={Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}:Z(Y/(aσkσ)).\mathcal{W}_{\sigma}=\langle\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}:Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma}))\rangle.
Lemma 5.8.

For all σ𝒮^𝒮\sigma\in\hat{\mathcal{S}}\setminus\mathcal{S}, 𝒲σ\mathcal{W}_{\sigma} is an ultrafilter isomorphic to an ultrafilter from the set {𝒰,𝒰min,𝒰max,𝒰minmax}\{\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}},\mathcal{U}_{\operatorname{minmax}}\}.

Proof.

Let σ𝒮^𝒮\sigma\in\hat{\mathcal{S}}\setminus\mathcal{S}.

First, assume that aσkσa_{\sigma}\upharpoonright k_{\sigma} is max-separated by YY. For all Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})), it follows that {Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}=maxsep′′[Z]\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}=\operatorname{max-sep}^{\prime\prime}[Z], and the result follows.

Assume that aσkσa_{\sigma}\upharpoonright k_{\sigma} is minmax-separated by YY. For all Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})), it follows that {Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}=minmaxsep′′[Z]\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}=\operatorname{minmax-sep}^{\prime\prime}[Z], and the result follows.

Assume that aσkσa_{\sigma}\upharpoonright k_{\sigma} is min-separated by YY and suppose it is not the case that the least kσ<k<|aσ|k_{\sigma}<k<|a_{\sigma}| such that aσka_{\sigma}\upharpoonright k is separated in some sense by YY is max-separated by YY. For all Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})), it follows that {Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}=minsep′′[Z]\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}=\operatorname{min-sep}^{\prime\prime}[Z], and the result follows.

Assume that aσkσa_{\sigma}\upharpoonright k_{\sigma} is min-separated by YY, and suppose there is least kσ<k<|aσ|k_{\sigma}<k<|a_{\sigma}| such that aσka_{\sigma}\upharpoonright k is separated in some sense by YY, and moreover aσka_{\sigma}\upharpoonright k is max-separated by YY. For all Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})), it follows that {Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}minmaxsep′′[Z]\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}\subseteq\operatorname{minmax-sep}^{\prime\prime}[Z]. Conversely, let Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})). Define c:[Z]2c:[Z]\to 2 by c(s)=0c(s)=0 if and only if there is x(aσkσ)|Zx\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z such that Γγ((aσkσ)x)(lσ)=minmaxsep(s)\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma})=\operatorname{minmax-sep}(s), for all s[Z]s\in[Z]. By Theorem 2.14 part (ii), find ZZZ^{\prime}\in\mathcal{B}\upharpoonright Z such that c[Z]c\upharpoonright[Z^{\prime}] is constant. Take any y(aσkσ)|Zy\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z^{\prime}. Let a=(aσkσ)ya^{\prime}=(a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}y. Find the least kσ<j<|a|k_{\sigma}<j<|a^{\prime}| such that aja^{\prime}\upharpoonright j is separated in some sense by YY. It follows that γ(aj)=maxsep\gamma(a^{\prime}\upharpoonright j)=\operatorname{max-sep}. But then Γγ((aσkσ)y)(lσ)=minmaxsep(y(0)y(jkσ))\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}y)(l_{\sigma})=\operatorname{minmax-sep}(y(0)\cup y(j-k_{\sigma})). It follows that c(y(0)y(jkσ))=0c(y(0)\cup y(j-k_{\sigma}))=0, and so c[Z]={0}c[Z^{\prime}]=\{0\}. But then minmaxsep′′[Z]{Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}\operatorname{minmax-sep}^{\prime\prime}[Z^{\prime}]\subseteq\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}. Therefore, 𝒲σ\mathcal{W}_{\sigma} is cofinal in minmaxsep′′[Z]:Z(Y/(aσkσ))\langle\operatorname{minmax-sep}^{\prime\prime}[Z]:Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma}))\rangle and minmaxsep′′[Z]:Z(Y/(aσkσ))\langle\operatorname{minmax-sep}^{\prime\prime}[Z]:Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma}))\rangle is cofinal in 𝒲σ\mathcal{W}_{\sigma}, and the result follows.

Assume that aσkσa_{\sigma}\upharpoonright k_{\sigma} is strongly separated by YY. For all Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})), it follows that {Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}[Z]\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}\subseteq[Z]. Conversely, let Z(Y/(aσkσ))Z\in\mathcal{B}\upharpoonright(Y/(a_{\sigma}\upharpoonright k_{\sigma})). Define c:[Z]2c:[Z]\to 2 by c(s)=0c(s)=0 if and only if there is x(aσkσ)|Zx\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z such that Γγ((aσkσ)x)(lσ)=s\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma})=s, for all s[Z]s\in[Z]. Take any y(aσkσ)|Zy\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z^{\prime}. Let a=(aσkσ)ya^{\prime}=(a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}y. Let kσ<j0<<jk<kσ+|y|k_{\sigma}<j_{0}<\ldots<j_{k}<k_{\sigma}+|y| increasingly enumerate those jj’s such that aja^{\prime}\upharpoonright j is strongly separated by YY. It follows that γ(aji)=sss\gamma(a^{\prime}\upharpoonright j_{i})=\operatorname{sss} for all i<ki<k and γ(ajk)=vss\gamma(a^{\prime}\upharpoonright j_{k})=\operatorname{vss}. But then Γγ((aσkσ)y)(lσ)=kσijky(ikσ)\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}y)(l_{\sigma})=\bigcup_{k_{\sigma}\leq i\leq j_{k}}y(i-k_{\sigma}). Thus, c(kσijky(ikσ))=0c(\bigcup_{k_{\sigma}\leq i\leq j_{k}}y(i-k_{\sigma}))=0 and so c[Z]={0}c[Z^{\prime}]=\{0\}. We see that [Z]{Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}[Z^{\prime}]\subseteq\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z\}, and the result follows similarly to above. ∎

Recall the following notion used in [DT14], [DT15], and [DMT17]:

Definition 5.9.

We call T𝒮^T\subseteq\hat{\mathcal{S}} a tree if T\varnothing\in T, TT is closed under initial segments, and maximal nodes of TT are in 𝒮\mathcal{S}. We call T𝒮^T\subseteq\hat{\mathcal{S}} well-founded if TT does not have any infinite cofinal branches. We call TT a 𝒲\vec{\mathcal{W}}-tree if TT is a tree and for all Γγ(ak)T(𝒮^𝒮)\Gamma_{\gamma}(a\upharpoonright k)\in T\cap(\hat{\mathcal{S}}\setminus\mathcal{S}), where a|Ya\in\mathcal{F}|Y and |Γγ(ak)|<|Γγ(a(k+1))||\Gamma_{\gamma}(a\upharpoonright k)|<|\Gamma_{\gamma}(a\upharpoonright(k+1))|, if we denote l=|Γγ(ak)|l=|\Gamma_{\gamma}(a\upharpoonright k)|, then {Γγ(bj)(l):Γγ(ak)Γγ(bj)T,for some b|Y and j|b|}𝒲a\{\Gamma_{\gamma}(b\upharpoonright j)(l):\Gamma_{\gamma}(a\upharpoonright k)\sqsubset\Gamma_{\gamma}(b\upharpoonright j)\in T,\ \text{for some $b\in\mathcal{F}|Y$ and $j\leq|b|$}\}\in\mathcal{W}_{a}. For a well-founded 𝒲\vec{\mathcal{W}}-tree TT, [T]=T𝒮[T]=T\cap\mathcal{S} will denote the set of cofinal branches through TT.

By Lemma 5.7, 𝒮^𝒮\hat{\mathcal{S}}\setminus\mathcal{S} is a well-founded tree. It is straightforward to check that the set of [T][T]’s, where T𝒮^T\subseteq\hat{\mathcal{S}} is a 𝒲\vec{\mathcal{W}}-tree, generates a filter on 𝒮\mathcal{S}. Let us call this filter 𝒯\mathcal{T}. Following is the key result:

Lemma 5.10.

𝒱𝒲=Γγ(𝒰(|Y))=𝒯\mathcal{V}\cong\mathcal{W}=\Gamma_{\gamma}(\mathcal{U}\upharpoonright(\mathcal{F}|Y))=\mathcal{T}. Therefore, 𝒱\mathcal{V} is isomorphic to an ultrafilter of 𝒲\vec{\mathcal{W}}-trees, where 𝒮^𝒮\hat{\mathcal{S}}\setminus\mathcal{S} is a well-founded tree, 𝒲=(𝒲σ:σ𝒮^𝒮)\vec{\mathcal{W}}=(\mathcal{W}_{\sigma}:\sigma\in\hat{\mathcal{S}}\setminus\mathcal{S}), and each 𝒲σ\mathcal{W}_{\sigma} is isomorphic to exactly one of 𝒰\mathcal{U}, 𝒰min\mathcal{U}_{\operatorname{min}}, 𝒰max\mathcal{U}_{\operatorname{max}}, or 𝒰minmax\mathcal{U}_{\operatorname{minmax}}.

Proof.

It suffices to show that 𝒯\mathcal{T} contains a cofinal subset of 𝒲\mathcal{W}. Let ZYZ\in\mathcal{B}\upharpoonright Y be arbitrary. Set S={Γγ(a):a|Z}S=\{\Gamma_{\gamma}(a):a\in\mathcal{F}|Z\}. Let S^\hat{S} denote the set of initial segments of elements of SS (including the empty sequence). The proof will be complete if we can show that S^\hat{S} is a 𝒲\vec{\mathcal{W}}-tree, since 𝒲={Γγ(a):a|Z}:ZY\mathcal{W}=\langle\{\Gamma_{\gamma}(a):a\in\mathcal{F}|Z\}:Z\in\mathcal{B}\upharpoonright Y\rangle and the set of cofinal branches through S^\hat{S} is SS.

Indeed, let σS^S\sigma\in\hat{S}\setminus S. Pick a|Za\in\mathcal{F}|Z and maximal k<|a|k<|a| such that Γγ(ak)=σ\Gamma_{\gamma}(a\upharpoonright k)=\sigma. It follows that aka\upharpoonright k and aσkσa_{\sigma}\upharpoonright k_{\sigma} are mixed by YY, and hence by ZZ. Set l=|Γγ(ak)|l=|\Gamma_{\gamma}(a\upharpoonright k)|. Let 𝒳={x((aσkσ))|Z):(y((ak))|Z)Γγ((aσkσ)x)(lσ)=Γγ((ak)y)(l)}.\mathcal{X}=\{x\in(\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})})|Z):(\exists y\in(\mathcal{F}_{(a\upharpoonright k)})|Z)\ \Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma})=\Gamma_{\gamma}((a\upharpoonright k)^{\smallfrown}y)(l)\}.

By Theorem 2.14 part (v), we can find ZZZ^{\prime}\in\mathcal{B}\upharpoonright Z such that (aσkσ)|Z𝒳\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z^{\prime}\subseteq\mathcal{X} or ((aσkσ)|Z)𝒳=(\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z^{\prime})\cap\mathcal{X}=\varnothing. The latter case cannot happen since aka\upharpoonright k and aσkσa_{\sigma}\upharpoonright k_{\sigma} are mixed. Therefore,

{Γγ(bj)(l):Γγ(ak)Γγ(bj)T,for some b|Y and j|b|}\{\Gamma_{\gamma}(b\upharpoonright j)(l):\Gamma_{\gamma}(a\upharpoonright k)\sqsubset\Gamma_{\gamma}(b\upharpoonright j)\in T,\ \text{for some $b\in\mathcal{F}|Y$ and $j\leq|b|$}\}
{Γγ((ak)x)(l):x(ak)|Z}\supseteq\{\Gamma_{\gamma}((a\upharpoonright k)^{\smallfrown}x)(l):x\in\mathcal{F}_{(a\upharpoonright k)}|Z\}
{Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}.\supseteq\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z^{\prime}\}.

Since {Γγ((aσkσ)x)(lσ):x(aσkσ)|Z}𝒲σ\{\Gamma_{\gamma}((a_{\sigma}\upharpoonright k_{\sigma})^{\smallfrown}x)(l_{\sigma}):x\in\mathcal{F}_{(a_{\sigma}\upharpoonright k_{\sigma})}|Z^{\prime}\}\in\mathcal{W}_{\sigma}, we are done. ∎

For σ,τ𝒮^\sigma,\tau\in\hat{\mathcal{S}}, we define στ\sigma\preccurlyeq\tau if and only if τσ\tau\sqsubseteq\sigma. By Lemma 5.7, \preccurlyeq is well-founded on 𝒮^\hat{\mathcal{S}}. Hence, for σ𝒮^\sigma\in\hat{\mathcal{S}}, we can define rk(σ)={rk(τ):τσ}\operatorname{rk}(\sigma)=\{\operatorname{rk}(\tau):\tau\prec\sigma\}. We let rk(𝒮)=rk()\operatorname{rk}(\mathcal{S})=\operatorname{rk}(\varnothing). The following now follows by induction on rk(𝒮)\operatorname{rk}(\mathcal{S}):

Claim 5.11.

𝒯\mathcal{T} is isomorphic to an ultrafilter from the set 𝒞ω1\mathcal{C}_{\omega_{1}}. In other words, 𝒯\mathcal{T} is a countable Fubini iterate of 𝒰\mathcal{U}, 𝒰min\mathcal{U}_{\operatorname{min}}, 𝒰max\mathcal{U}_{\operatorname{max}}, and 𝒰minmax\mathcal{U}_{\operatorname{minmax}}.

As 𝒱𝒲=𝒯\mathcal{V}\cong\mathcal{W}=\mathcal{T}, we see that 𝒱\mathcal{V} is a countable Fubini iterate of 𝒰\mathcal{U}, 𝒰min\mathcal{U}_{\operatorname{min}}, 𝒰max\mathcal{U}_{\operatorname{max}}, and 𝒰minmax\mathcal{U}_{\operatorname{minmax}}. This completes the proof of Theorem 5.4. ∎

Theorem 5.12.

Let 𝒱\mathcal{V} be a nonprincipal ultrafilter on a countable index set II with 𝒰T𝒱\mathcal{U}\geq_{T}\mathcal{V}. Then 𝒱\mathcal{V} is Tukey equivalent to an ultrafilter from the set {𝒰,𝒰min,𝒰max,\{\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}}, 𝒰minmax}\mathcal{U}_{\operatorname{minmax}}\}.

Proof.

By Theorem 5.4, 𝒱\mathcal{V} is isomorphic to an ultrafilter from the class 𝒞ω1\mathcal{C}_{\omega_{1}}. It suffices to show that the ultrafilters in 𝒞α\mathcal{C}_{\alpha} are Tukey equivalent to one from the set {𝒰,𝒰min,𝒰max,𝒰minmax}=𝒞0\{\mathcal{U},\mathcal{U}_{\operatorname{min}},\mathcal{U}_{\operatorname{max}},\mathcal{U}_{\operatorname{minmax}}\}=\mathcal{C}_{0}. This is indeed clear for α=0\alpha=0. Now assume that every ultrafilter from 𝒞β\mathcal{C}_{\beta} is Tukey equivalent to one from 𝒞0\mathcal{C}_{0} for all β<α\beta<\alpha. Take 𝒲𝒞α\mathcal{W}\in\mathcal{C}_{\alpha}. Write 𝒲=limi𝒲𝒲i\mathcal{W}=\lim_{i\to\mathcal{W}^{\prime}}\mathcal{W}_{i}, where 𝒲𝒞0\mathcal{W}^{\prime}\in\mathcal{C}_{0} and each 𝒲i𝒞β\mathcal{W}_{i}\in\mathcal{C}_{\beta} for some β<α\beta<\alpha. By the induction assumption, each 𝒲i\mathcal{W}_{i} is Tukey equivalent to an ultrafilter from 𝒞0\mathcal{C}_{0}. Let 𝒱𝒞0\mathcal{V}^{\prime}\in\mathcal{C}_{0} be the one for which there is some W𝒲W\in\mathcal{W}^{\prime} with 𝒲iT𝒱\mathcal{W}_{i}\equiv_{T}\mathcal{V}^{\prime} for every iWi\in W. It follows that 𝒲T𝒲𝒱\mathcal{W}\equiv_{T}\mathcal{W}^{\prime}\cdot\mathcal{V}^{\prime}, where 𝒲,𝒱𝒞0\mathcal{W}^{\prime},\mathcal{V}^{\prime}\in\mathcal{C}_{0}. By Theorem 3.4, we see that 𝒲𝒱\mathcal{W}^{\prime}\cdot\mathcal{V}^{\prime} is Tukey equivalent to an ultrafilter from 𝒞0\mathcal{C}_{0}. ∎

By Theorem 5.4, Theorem 5.12, Theorem 3.4, Theorem 3.3, and Theorem 1.5, we can now give the following description of each Tukey class below 𝒰\mathcal{U}:

Corollary 5.13.

[𝒰min][\mathcal{U}_{\operatorname{min}}] and [𝒰max][\mathcal{U}_{\operatorname{max}}] consist of countable Fubini iterates of 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}}, respectively. [𝒰minmax][\mathcal{U}_{\operatorname{minmax}}] consists of countable Fubini iterates of 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} that include both of 𝒰min\mathcal{U}_{\operatorname{min}} and 𝒰max\mathcal{U}_{\operatorname{max}} at a step of the iteration. Finally, [𝒰][\mathcal{U}] consists of countable Fubini iterates of 𝒰\mathcal{U}, 𝒰min\mathcal{U}_{\operatorname{min}}, and 𝒰max\mathcal{U}_{\operatorname{max}} that include 𝒰\mathcal{U} at a step of the iteration.

References

  • [AT05] Spiros A. Argyros and Stevo Todorcevic, Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005.
  • [BD] Tom Benhamou and Natasha Dobrinen, Cofinal types of ultrafilters over measurable cardinals, arXiv:2304.07214, Journal of Symbolic Logic, To appear.
  • [BD23] by same author, On the Tukey types of Fubini products, arXiv:2311.15492, (2023).
  • [BDR15] Andreas Blass, Natasha Dobrinen, and Dilip Raghavan, The next best thing to a P-point, The Journal of Symbolic Logic 80 (2015), no. 3, 866–900.
  • [Ben23] Tom Benhamou, Commutativity of cofinal types, arXiv:2312.15261, (2023).
  • [BH87] Andreas Blass and Neil Hindman, On strongly summable ultrafilters and union ultrafilters, Transactions of the American Mathematical Society 304 (1987), no. 1, 83–97.
  • [Bla73] Andreas Blass, The Rudin-Keisler ordering of PP-points, Transactions of the American Mathematical Society 179 (1973), 145–166.
  • [Bla87] Andreas Blass, Ultrafilters related to Hindman’s finite-unions theorem and its extensions, Contemporary Mathematics 65 (1987), no. 3, 89–124.
  • [Bla10] Andreas Blass, Ultrafilters and set theory, Ultrafilters across mathematics, Contemp. Math., vol. 530, Amer. Math. Soc., Providence, RI, 2010, pp. 49–71.
  • [BW24] Tom Benhamou and Fanxin Wu, Diamond principles and Tukey-top ultrafilters on a countable set, arXiv:2404.02379, (2024).
  • [DMT17] Natasha Dobrinen, José G. Mijares, and Timothy Trujillo, Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points, Archive for Mathematical Logic 56 (2017), no. 7-8, 733–782.
  • [Dob15] Natasha Dobrinen, Survey on the Tukey theory of ultrafilters, Zbornik Radova. (Beograd) 17(25) (2015), 53–80.
  • [Dob16a] by same author, High dimensional Ellentuck spaces and initial chains in the, The Journal of Symbolic Logic 81 (2016), no. 1, 237–263.
  • [Dob16b] by same author, Infinite-dimensional Ellentuck spaces and Ramsey-classification theorems, Journal of Mathematical Logic 16 (2016), no. 1, 1650003, 37.
  • [Dob20] by same author, Continuous and other finitely generated canonical cofinal maps on ultrafilters, Fundamenta Mathematicae 249 (2020), no. 2, 111–147.
  • [Dob21] by same author, Topological Ramsey spaces dense in forcings, Structure and randomness in computability and set theory, World Sci. Publ., Hackensack, NJ, [2021] ©2021, pp. 3–58.
  • [DT11] Natasha Dobrinen and Stevo Todorcevic, Tukey types of ultrafilters, Illinois Journal of Mathematics 55 (2011), no. 3, 907–951.
  • [DT14] by same author, A new class of Ramsey-classification theorems and their application in the Tukey theory of ultrafilters, Part 1, Transactions of the American Mathematical Society 366 (2014), no. 3, 1659–1684.
  • [DT15] by same author, A new class of Ramsey-classification theorems and their applications in the Tukey theory of ultrafilters, Part 2, Transactions of the American Mathematical Society 367 (2015), no. 7, 4627–4659.
  • [Hal17] Lorenz J. Halbeisen, Combinatorial set theory: With a gentle introduction to forcing, second ed., Springer Monographs in Mathematics, Springer, Cham, 2017.
  • [Hin74] Neil Hindman, Finite sums from sequences within cells of a partition of NN, Journal of Combinatorial Theory. Series A 17 (1974), 1–11.
  • [Isb65] J. R. Isbell, The category of cofinal types. II, Transactions of the American Mathematical Society 116 (1965), 394–416.
  • [Juh67] I. Juhasz, Remarks on a theorem of B. Pospíšil, Commentationes Mathematicae Universitatis Carolinae 8 (1967), 231–247.
  • [KR18] Borisa Kuzeljevic and Dilip Raghavan, A long chain of P-points, Journal of Mathematical Logic 18 (2018), no. 1, 1850004, 38.
  • [KR24] Borisa Kuzeljevic and Dilip Raghavan, Order structure of P-point ultrafilters and their relatives, arXiv:2404.03238, (2024).
  • [KS05] Olaf Klein and Otmar Spinas, Canonical forms of Borel functions on the Milliken space, Transactions of the American Mathematical Society 357 (2005), no. 12, 4739–4769.
  • [Kun76] Kenneth Kunen, Some points in βN\beta N, Mathematical Proceedings of the Cambridge Philosophical Society 80 (1976), no. 3, 385–398.
  • [Laf89] Claude Laflamme, Forcing with filters and complete combinatorics, Annals of Pure and Applied Logic 42 (1989), no. 2, 125–163.
  • [Lef96] H. Lefmann, Canonical partition relations for ascending families of finite sets, Studia Scientiarum Mathematicarum Hungarica. Combinatorics, Geometry and Topology (CoGeTo) 31 (1996), no. 4, 361–374.
  • [Mij07] José G. Mijares, A notion of selective ultrafilter corresponding to topological Ramsey spaces, MLQ. Mathematical Logic Quarterly 53 (2007), no. 3, 255–267.
  • [Mil75] Keith R. Milliken, Ramsey’s theorem with sums or unions, Journal of Combinatorial Theory. Series A 18 (1975), 276–290.
  • [Mil80] Arnold W. Miller, There are no QQ-points in Laver’s model for the Borel conjecture, Proceedings of the American Mathematical Society 78 (1980), no. 1, 103–106.
  • [Mil08] David Milovich, Tukey classes of ultrafilters on ω\omega, Topology Proceedings 32 (2008), 351–362, Spring Topology and Dynamics Conference.
  • [PR82] Pavel Pudlák and Vojtˇech Rödl, Partition theorems for systems of finite subsets of integers, Discrete Mathematics 39 (1982), no. 1, 67–73.
  • [PV85] Hans Jürgen Prömel and Bernd Voigt, Canonical forms of Borel-measurable mappings Δ:[ω]ω𝐑\Delta\colon\ [\omega]^{\omega}\to{\bf R}, Journal of Combinatorial Theory. Series A 40 (1985), no. 2, 409–417.
  • [RS17] Dilip Raghavan and Saharon Shelah, On embedding certain partial orders into the P-points under Rudin-Keisler and Tukey reducibility, Transactions of the American Mathematical Society 369 (2017), no. 6, 4433–4455.
  • [RS23] Dilip Raghavan and Juris Steprāns, Stable ordered-union versus selective ultrafilters, arXiv:2302.05539, (2023).
  • [RT12] Dilip Raghavan and Stevo Todorcevic, Cofinal types of ultrafilters, Annals of Pure and Applied Logic 163 (2012), no. 3, 185–199.
  • [RV19] Dilip Raghavan and Jonathan L. Verner, Chains of P-points, Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques 62 (2019), no. 4, 856–868.
  • [She98] Saharon Shelah, Proper and improper forcing, second ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998.
  • [Tay76] Alan D. Taylor, A canonical partition relation for finite subsets of ω\omega, Journal of Combinatorial Theory. Series A 21 (1976), no. 2, 137–146.
  • [Tuk40] John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, vol. No. 2, Princeton University Press, Princeton, NJ, 1940.
  • [Wim82] Edward L. Wimmers, The Shelah PP-point independence theorem, Israel Journal of Mathematics 43 (1982), no. 1, 28–48.
  • [Zhe17] Yuan Yuan Zheng, Selective ultrafilters on FIN, Proceedings of the American Mathematical Society 145 (2017), no. 12, 5071–5086.