This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inference of Random Effects for Linear Mixed-Effects Models with a Fixed Number of Clusters

Chih-Hao Changlabel=e1 [    mark][email protected]    Hsin-Cheng Huanglabel=e2][email protected] [    Ching-Kang Inglabel=e3][email protected] [ Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan. Institute of Statistical Science, Academia Sinica, Taipei, Taiwan. Institute of Statistics, National Tsing Hua University, HsinChu, Taiwan.
Abstract

We consider a linear mixed-effects model with a clustered structure, where the parameters are estimated using maximum likelihood (ML) based on possibly unbalanced data. Inference with this model is typically done based on asymptotic theory, assuming that the number of clusters tends to infinity with the sample size. However, when the number of clusters is fixed, classical asymptotic theory developed under a divergent number of clusters is no longer valid and can lead to erroneous conclusions. In this paper, we establish the asymptotic properties of the ML estimators of random-effects parameters under a general setting, which can be applied to conduct valid statistical inference with fixed numbers of clusters. Our asymptotic theorems allow both fixed effects and random effects to be misspecified, and the dimensions of both effects to go to infinity with the sample size.

confidence interval,
consistency,
maximum likelihood,
keywords:
\startlocaldefs\endlocaldefs

, and

1 Introduction

Over the past several decades, linear mixed-effects models have been broadly applied to clustered data [13], longitudinal data [12, 23], spatial data [15], and data in scientific fields [10, 11], particularly due to their usefulness in modeling data with clustered structures. Model parameters are traditionally estimated, for example, via minimum norm quadratic, maximum likelihood (ML), and restricted ML (REML) methods. ML and REML estimators are compared in Gumedze and Dunne [6].

Estimating random-effects variances in mixed-effects models is usually more challenging than estimating fixed-effects parameters. Although desired asymptotic properties have been developed for ML and REML estimators of random-effects variances [7, 8, 18], these are mainly obtained under the mathematical device of requiring the number of clusters (denoted as mm) to grow to infinity with the sample size (denoted as NN) and the numbers of fixed effects and random effects (denoted as pp and qq) to be fixed. In fact, most asymptotic results for likelihood ratio tests and model selection in linear mixed-effects models are established under a similar mathematical device; see Self and Liang [21], Stram and Lee [22], Crainiceanu and Ruppert [4], Pu and Niu [20], Fan and Li [5], and Peng and Lu [19]. However, in many practical situations, we are faced with a small mm, which does not grow to infinity with NN. As pointed out by McNeish and Stapleton [16] and Huang [9], data collected in the fields of education or developmental psychology typically have a small number of clusters, corresponding, for example, to classrooms or schools. Unfortunately, to the best of our knowledge, no theoretical justification has been provided for random-effects estimators when mm is fixed.

As shown by Maas and Hox [14], Bell et al. [1], and McNeish and Stapleton [17], for a linear mixed-effects model with few clusters, random-effects variances are not well estimated by either ML or REML. This is because when mm is fixed, the Fisher information for random-effects variances fails to grow with NN, and hence the corresponding ML estimators do not achieve consistency. A similar difficulty arises in a spatial-regression model of Chang et al. [2] under the fixed domain asymptotics, in which the spatial covariance parameters cannot be consistently estimated. A direct impact of this difficulty is that the classical central limit theorem established under mm\rightarrow\infty for the ML (or REML) estimators [7, 8, 18] is no longer valid. Consequently, statistical inference based on the asymptotic results for mm\rightarrow\infty can be misleading.

In this article, we focus on the ML estimators in linear mixed-effects models with possibly unbalanced data. We first develop the asymptotic properties of the ML estimators, without assuming that fixed- and random-effects models are correctly specified, pp and qq are fixed, or mm\rightarrow\infty. Based on the asymptotic properties of the ML estimators, we provide, for the first time in the mixed-effects models literature, the asymptotic valid confidence intervals for random-effects variances when mm is fixed. In addition, we present an example illustrating that empirical best linear unbiased predictors (BLUPs) of random effects (which are the BLUPs with the unknown parameters replaced by their ML estimators) compare favorably to least squares (LS) predictors even when the ML estimators are not consistent; see Section 3.1 for details. Also note that our asymptotic theorems allow both fixed- and random-effects models to be misspecified. Consequently, our results are crucial to facilitate further studies on model selection for linear mixed-effects models with fixed mm, in which investigating the impact of model misspecification is indispensable.

This article is organized as follows. Section 2 introduces the linear mixed-effects model and the regularity conditions. The asymptotic results for the ML estimators are given in Section 3. Section 4 describes simulation studies that confirm our asymptotic theory, including a comparison between the conventional confidence intervals and the proposed ones for random-effects variances. A brief discussion is given in Section 5. The proofs of all the theoretical results are deferred to the online supplementary material.

2 Linear Mixed-Effects Models

Consider a set of observations with mm clusters, {(𝒚i,𝑿i,𝒁i)}i=1m\{(\bm{y}_{i},\bm{X}_{i},\bm{Z}_{i})\}_{i=1}^{m}, where 𝒚i=(yi,1,,yi,ni)\bm{y}_{i}=(y_{i,1},\dots,y_{i,n_{i}})^{\prime} is the response vector, 𝑿i\bm{X}_{i} and 𝒁i\bm{Z}_{i} are ni×pn_{i}\times p and ni×qn_{i}\times q design matrices of pp and qq covariates with the (j,k)(j,k)-th entries xi,j,kx_{i,j,k} and zi,j,kz_{i,j,k}, respectively, and nin_{i} is the number of observations in cluster ii. A general linear mixed-effects model can be written as

𝒚i=𝑿i𝜷+𝒁i𝒃i+ϵi;i=1,,m,\displaystyle\bm{y}_{i}=\bm{X}_{i}\bm{\beta}+\bm{Z}_{i}\bm{b}_{i}+\bm{\epsilon}_{i};\quad i=1,\dots,m, (1)

where 𝜷=(β1,,βp)\bm{\beta}=(\beta_{1},\dots,\beta_{p})^{\prime} is the pp-vector of fixed effects, 𝒃i=(bi,1,,bi,q)N(𝟎,diag(σ21,,σ2q))\bm{b}_{i}=(b_{i,1},\dots,b_{i,q})^{\prime}\sim N(\bm{0},\mathrm{diag}(\sigma^{2}_{1},\dots,\sigma^{2}_{q})) is the qq-vector of random effects, ϵiN(𝟎,v2𝑰ni)\bm{\epsilon}_{i}\sim N(\bm{0},v^{2}\bm{I}_{n_{i}}), and 𝑰ni\bm{I}_{n_{i}} is the nin_{i}-dimensional identity matrix. Here {𝒃i}\{\bm{b}_{i}\} and {ϵi}\{\bm{\epsilon}_{i}\} are mutually independent. Let 𝒚\bm{y}, 𝑿\bm{X}, 𝒃\bm{b}, and ϵ\bm{\epsilon} be obtained by stacking {𝒚i}\{\bm{y}_{i}\}, {𝑿i}\{\bm{X}_{i}\}, {𝒃i}\{\bm{b}_{i}\}, and {ϵi}\{\bm{\epsilon}_{i}\}. Also let 𝒁=diag(𝒁1,,𝒁m)\bm{Z}=\mathrm{diag}(\bm{Z}_{1},\dots,\bm{Z}_{m}) be the block diagonal matrix with diagonal blocks {𝒁i}\{\bm{Z}_{i}\} and dimension N×(mq)N\times(mq), where N=n1++nmN=n_{1}+\cdots+n_{m} is the total sample size. Let θk=σ2k/v2\theta_{k}=\sigma^{2}_{k}/v^{2}; k=1,,qk=1,\dots,q and 𝑫=diag(θ1,,θq)\bm{D}=\mathrm{diag}(\theta_{1},\dots,\theta_{q}). Then we can rewrite (1) as

𝒚=𝑿𝜷+𝒁𝒃+ϵN(𝑿𝜷,v2𝑯),\displaystyle\bm{y}=\bm{X}\bm{\beta}+\bm{Z}\bm{b}+\bm{\epsilon}\sim N(\bm{X}\bm{\beta},v^{2}\bm{H}), (2)

where 𝑯=𝑹+𝑰N\bm{H}=\bm{R}+\bm{I}_{N}, 𝑹=diag(𝑹1,,𝑹m)\bm{R}=\mathrm{diag}(\bm{R}_{1},\dots,\bm{R}_{m}), and 𝑹i=𝒁i𝑫𝒁i\bm{R}_{i}=\bm{Z}_{i}\bm{D}\bm{Z}^{\prime}_{i}; i=1,,mi=1,\dots,m.

Let 𝒜×𝒢2{1,,p}×2{1,,q}\mathcal{A}\times\mathcal{G}\subset 2^{\{1,\dots,p\}}\times 2^{\{1,\dots,q\}} be the set of candidate models with α𝒜\alpha\in\mathcal{A} and γ𝒢\gamma\in\mathcal{G} corresponding to the fixed-effects and random-effects covariates indexed by α\alpha and γ\gamma, respectively. Then a linear mixed-effects model corresponding to (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} can be written as

𝒚=𝑿(α)𝜷(α)+𝒁(γ)𝒃(γ)+ϵ.\bm{y}=\bm{X}(\alpha)\bm{\beta}(\alpha)+\bm{Z}(\gamma)\bm{b}(\gamma)+\bm{\epsilon}. (3)

For i=1,,mi=1,\dots,m, let 𝒁i(γ)\bm{Z}_{i}(\gamma) be the sub-matrix of 𝒁i\bm{Z}_{i} and 𝒃i(γ)\bm{b}_{i}(\gamma) be the sub-vector of 𝒃i\bm{b}_{i} corresponding to γ\gamma. Then for γ𝒢\gamma\in\mathcal{G},

𝑹i(γ,𝜽(γ))\displaystyle\bm{R}_{i}(\gamma,\bm{\theta}(\gamma))\equiv var(𝒁i(γ)𝒃i(γ))=kγθk𝒛i,k𝒛i,k,\displaystyle~{}\mathrm{var}(\bm{Z}_{i}(\gamma)\bm{b}_{i}(\gamma))=\sum_{k\in\gamma}\theta_{k}\bm{z}_{i,k}\bm{z}_{i,k}^{\prime},

where 𝒛i,k\bm{z}_{i,k} is the kk-th column of 𝒁i\bm{Z}_{i} and 𝜽(γ)\bm{\theta}(\gamma) is the parameter vector of θk\theta_{k}; kγk\in\gamma. In other words, under (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G},

𝒚N(𝑿(α)𝜷(α),v2𝑯(γ,𝜽)),\displaystyle\bm{y}\sim N(\bm{X}(\alpha)\bm{\beta}(\alpha),v^{2}\bm{H}(\gamma,\bm{\theta})), (4)

where

𝑯(γ,𝜽)=\displaystyle\bm{H}(\gamma,\bm{\theta})= 𝑹(γ,𝜽)+𝑰N,\displaystyle~{}\bm{R}(\gamma,\bm{\theta})+\bm{I}_{N}, (5)
𝑹(γ,𝜽)=\displaystyle\bm{R}(\gamma,\bm{\theta})= diag(𝑹1(γ,𝜽),,𝑹m(γ,𝜽))=i=1mkγθk𝒉i,k𝒉i,k,\displaystyle~{}\mathrm{diag}(\bm{R}_{1}(\gamma,\bm{\theta}),\dots,\bm{R}_{m}(\gamma,\bm{\theta}))=\sum_{i=1}^{m}\sum_{k\in\gamma}\theta_{k}\bm{h}_{i,k}\bm{h}_{i,k}^{\prime},

𝒉i,k=(𝟎n1,,𝟎nk1,𝒛i,k,𝟎nk+1,,𝟎nm)\bm{h}_{i,k}=(\bm{0}_{n_{1}}^{\prime},\dots,\bm{0}_{n_{k-1}}^{\prime},\bm{z}_{i,k}^{\prime},\bm{0}_{n_{k+1}}^{\prime},\dots,\bm{0}_{n_{m}}^{\prime})^{\prime}, and 𝟎ni\bm{0}_{n_{i}} is the nin_{i}-vector of zeros. Here, for notational simplicity, we suppress the dependence of 𝜽\bm{\theta} on γ\gamma.

For (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, let p(α)p(\alpha) be the dimension of α\alpha and let q(γ)q(\gamma) be the dimension of γ\gamma. Assume that the true model of 𝒚\bm{y} is

𝒚N(𝝁0,v02𝑯0),\displaystyle\bm{y}\sim N(\bm{\mu}_{0},v_{0}^{2}\bm{H}_{0}), (6)

where 𝝁0\bm{\mu}_{0} is the underlying mean trend, v02>0v_{0}^{2}>0 is the true value of v2v^{2}, 𝑯0=𝑹0+𝑰N\bm{H}_{0}=\bm{R}_{0}+\bm{I}_{N}, 𝑹0=diag(𝒁1𝑫0𝒁1,,𝒁m𝑫0𝒁m)\bm{R}_{0}=\mathrm{diag}(\bm{Z}_{1}\bm{D}_{0}\bm{Z}^{\prime}_{1},\dots,\bm{Z}_{m}\bm{D}_{0}\bm{Z}_{m}^{\prime}), and 𝑫0=diag(θ1,0,,θq,0)\bm{D}_{0}=\mathrm{diag}(\theta_{1,0},\dots,\theta_{q,0}) for some θk,00\theta_{k,0}\geq 0; k=1,,qk=1,\dots,q. Similarly, let v02𝑫0=diag(σ1,02,,σq,02)v_{0}^{2}\bm{D}_{0}=\mathrm{diag}(\sigma_{1,0}^{2},\dots,\sigma_{q,0}^{2}) with σk,020\sigma_{k,0}^{2}\geq 0 being the true values of σk2\sigma_{k}^{2}, for k=1,,qk=1,\dots,q. We say that a fixed-effects model α\alpha is correct if there exists 𝜷(α)p(α)\bm{\beta}(\alpha)\in\mathbb{R}^{p(\alpha)} such that 𝝁0=𝑿(α)𝜷(α)\bm{\mu}_{0}=\bm{X}(\alpha)\bm{\beta}(\alpha). Similarly, a random-effects model γ\gamma is correct if {k:θk,0>0,k=1,,q}γ\{k:\theta_{k,0}>0,\,k=1,\dots,q\}\subset\gamma. Let 𝒜0\mathcal{A}_{0} and 𝒢0\mathcal{G}_{0} denote the sets of all correct fixed-effects and random-effects models, respectively. A linear mixed-effects model (α,γ)(\alpha,\gamma) is said to be correct if (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0}. We denote the smallest correct model by (α0,γ0)(\alpha_{0},\gamma_{0}), which satisfies

p0p(α0)=\displaystyle p_{0}\equiv p(\alpha_{0})= infα𝒜0p(α),\displaystyle~{}\inf_{\alpha\in\mathcal{A}_{0}}p(\alpha),
q0q(γ0)=\displaystyle q_{0}\equiv q(\gamma_{0})= infγ𝒢0q(γ),\displaystyle~{}\inf_{\gamma\in\mathcal{G}_{0}}q(\gamma),

where p0>0p_{0}>0 and q0>0q_{0}>0 are assumed fixed.

Given a model (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, the covariance parameters consist of 𝜽\bm{\theta} and v2v^{2}. We estimate these by ML. We assume that 𝑿\bm{X} and 𝒁\bm{Z} are of full column rank. The ML estimators 𝜽^(α,γ)\hat{\bm{\theta}}(\alpha,\gamma) and v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) of 𝜽\bm{\theta} and v2v^{2} based on model (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} can be obtained by minimizing the negative twice profile log-likelihood function:

2logL(𝜽,v2;α,γ)=Nlog(2π)+Nlog(v2)+logdet(𝑯(γ,𝜽))+𝒚𝑯1(γ,𝜽)𝑨(α,γ;𝜽)𝒚v2,\displaystyle\begin{split}-2\log L(\bm{\theta},v^{2};\alpha,\gamma)=&~{}N\log(2\pi)+N\log(v^{2})+\log\det(\bm{H}(\gamma,\bm{\theta}))\\ &~{}+\frac{\bm{y}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{A}(\alpha,\gamma;\bm{\theta})\bm{y}}{v^{2}},\\ \end{split} (7)

where

𝑨(α,γ;𝜽)\displaystyle\bm{A}(\alpha,\gamma;\bm{\theta})\equiv 𝑰N𝑴(α,γ;𝜽),\displaystyle~{}\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}), (8)
𝑴(α,γ;𝜽)\displaystyle\bm{M}(\alpha,\gamma;\bm{\theta})\equiv 𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽).\displaystyle~{}\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}). (9)

Note that 𝑴2(α,γ;𝜽)=𝑴(α,γ;𝜽)\bm{M}^{2}(\alpha,\gamma;\bm{\theta})=\bm{M}(\alpha,\gamma;\bm{\theta}), 𝑴(α,γ;𝜽)𝑿(α)=𝑿(α)\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha)=\bm{X}(\alpha) and

𝑴(α,γ;𝜽)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)=\displaystyle\bm{M}(\alpha,\gamma;\bm{\theta})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})= 𝑯1(γ,𝜽)𝑴(α,γ;𝜽).\displaystyle~{}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta}).

For model (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, the ML estimator of 𝜷(α)\bm{\beta}(\alpha) is given by

𝜷^(α,γ;𝜽^)=(𝑿(α)𝑯1(γ,𝜽^)𝑿(α))1𝑿(α)𝑯1(γ,𝜽^)𝒚,\displaystyle\hat{\bm{\beta}}(\alpha,\gamma;\hat{\bm{\theta}})=(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\hat{\bm{\theta}})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\hat{\bm{\theta}})\bm{y}, (10)

where 𝜽^=𝜽^(α,γ)\hat{\bm{\theta}}=\hat{\bm{\theta}}(\alpha,\gamma) satisfies

(𝜽^(α,γ),v^2(α,γ))=\displaystyle(\hat{\bm{\theta}}(\alpha,\gamma),\hat{v}^{2}(\alpha,\gamma))= argmin𝜽[0,)q(γ),v2(0,){2logL(𝜽,v2;α,γ)}.\displaystyle~{}\operatorname*{arg\,min}_{\bm{\theta}\in[0,\infty)^{q(\gamma)},v^{2}\in(0,\infty)}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}.

Then the ML estimator of σk2\sigma_{k}^{2} is

σ^k2(α,γ)=θ^k(α,γ)v^2(α,γ);kγ,\hat{\sigma}_{k}^{2}(\alpha,\gamma)=\hat{\theta}_{k}(\alpha,\gamma)\hat{v}^{2}(\alpha,\gamma);\quad k\in\gamma,

where θ^k(α,γ)\hat{\theta}_{k}(\alpha,\gamma) is the ML estimator of θk\theta_{k} based on model (α,γ)(\alpha,\gamma).

To establish the asymptotic theory for the ML estimators of the parameters in linear mixed-effects models, we impose regularity conditions on covariates of fixed effects and random effects.

  1. (A0)

    Let nmin=mini=1,,mnin_{\min}=\displaystyle\min_{i=1,\dots,m}n_{i}. Assume that p=cp+o(nminτ)p=c_{p}+o(n_{\min}^{\tau}) and q=cq+o(nminτ)q=c_{q}+o(n_{\min}^{\tau}), for some constant τ[0,1/2)\tau\in[0,1/2), where cp>0c_{p}>0 and cq>0c_{q}>0.

  2. (A1)

    With τ\tau given in (A0), there exist constants ξ(2τ,1]\xi\in(2\tau,1] and di,j>0d_{i,j}>0; i=1,,mi=1,\dots,m, j=1,,pj=1,\dots,p, with 0<inf{di,j}sup{di,j}<0<\inf\{d_{i,j}\}\leq\sup\{d_{i,j}\}<\infty such that for i=1,,mi=1,\dots,m and 1j,jp1\leq j,j^{*}\leq p,

    𝒙i,j𝒙i,j=\displaystyle\bm{x}_{i,j}^{\prime}\bm{x}_{i,j^{*}}= {di,jniξ+o(niξ);if j=j,o(niξτ);if jj,\displaystyle~{}\left\{\begin{array}[]{ll}d_{i,j}n_{i}^{\xi}+o(n_{i}^{\xi});&\mbox{if }j=j^{*},\\ o(n_{i}^{\xi-\tau});&\mbox{if }j\neq j^{*}\>,\end{array}\right.

    where 𝒙i,j\bm{x}_{i,j} is the jj-th column of 𝑿i\bm{X}_{i}, for i=1,,mi=1,\dots,m and j=1,,pj=1,\dots,p.

  3. (A2)

    With τ\tau given in (A0), there exist constants (2τ,1]\ell\in(2\tau,1] and ci,k>0c_{i,k}>0; i=1,,mi=1,\dots,m, k=1,,qk=1,\dots,q, with 0<inf{ci,k}sup{ci,k}<0<\inf\{c_{i,k}\}\leq\sup\{c_{i,k}\}<\infty such that for i=1,,mi=1,\dots,m and 1k,kq1\leq k,k^{*}\leq q,

    𝒛i,k𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{z}_{i,k^{*}}= {ci,kni+o(ni);if k=k,o(niτ);if kk.\displaystyle~{}\left\{\begin{array}[]{ll}c_{i,k}n_{i}^{\ell}+o(n_{i}^{\ell});&\mbox{if }k=k^{*},\\ o(n_{i}^{\ell-\tau});&\mbox{if }k\neq k^{*}\>.\end{array}\right.
  4. (A3)

    For i=1,,mi=1,\dots,m, j=1,,pj=1,\dots,p, and k=1,,qk=1,\dots,q,

    𝒙i,j𝒛i,k=\displaystyle\bm{x}_{i,j}^{\prime}\bm{z}_{i,k}= o(ni(ξ+)/2τ),\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau}),

    where τ\tau, ξ\xi, and \ell are given in (A0), (A1), and (A2), respectively.

Condition (A0) allows the numbers of fixed effects and random effects (i.e., pp and qq) to go to infinity with nminn_{\min} at a certain rate. Conditions (A1)–(A3) impose correlation constraints on {𝒙i,j}\{\bm{x}_{i,j}\} and {𝒛i,k}\{\bm{z}_{i,k}\}. For example, Condition (A2) implies that the maximum eigenvalue satisfies λmax(𝒁i𝑫𝒁i)=O(ni)\lambda_{\max}(\bm{Z}_{i}\bm{D}\bm{Z}_{i}^{\prime})=O(n_{i}^{\ell}), which is similar to an assumption given in Condition 3 of Fan and Li [5].

3 Asymptotic Properties

In this section, we investigate the asymptotic properties of the ML estimators of v2v^{2} and {σk2:kγ}\{\sigma_{k}^{2}:k\in\gamma\} for any (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}. We allow pp and qq to go to infinity with the sample size NN. In addition, as we allow mm to be fixed, we must account for the fact that {σk2:kγ}\{\sigma_{k}^{2}:k\in\gamma\} may not be estimated consistently.

3.1 Asymptotics under correct specification

In this subsection, we consider a correct (but possibly overfitted) model (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0}. We derive not only the convergence rates for the ML estimators of v2v^{2} and {σk2:kγ}\{\sigma_{k}^{2}:k\in\gamma\}, but also their asymptotic distributions.

Theorem 1.

Consider the data generated from (2) with the true parameters given by (6). Let (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0} be a correct model defined in (4). Denote σ^k2(α,γ)\hat{\sigma}_{k}^{2}(\alpha,\gamma) and v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) to be the ML estimators of σk2\sigma_{k}^{2} and v2v^{2}, respectively. Assume that (A0)–(A3) hold. Then

v^2(α,γ)=\displaystyle\hat{v}^{2}(\alpha,\gamma)= v02+Op(p+mqN)+Op(N1/2),\displaystyle~{}v_{0}^{2}+O_{p}\Big{(}\frac{p+mq}{N}\Big{)}+O_{p}(N^{-1/2}), (1)
σ^k2(α,γ)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha,\gamma)= {1mi=1mbi,k2+Op(1mi=1mni/2);if kγγ0,Op(nmax);if kγγ0,\displaystyle~{}\left\{\begin{array}[]{ll}\displaystyle\frac{1}{m}\sum_{i=1}^{m}b_{i,k}^{2}+O_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{-\ell/2}\bigg{)};&\mbox{if }k\in\gamma\cap\gamma_{0},\\ O_{p}\big{(}n_{\max}^{-\ell}\big{)};&\mbox{if }k\in\gamma\setminus\gamma_{0},\end{array}\right. (4)

where nmax=maxi=1,,mni\displaystyle n_{\max}=\max_{i=1,\ldots,m}n_{i}. In addition, if p+mq=o(N1/2)p+mq=o\big{(}N^{1/2}\big{)}, then

N1/2(v^2(α,γ)v02)𝑑N(0,2v04),as N.\displaystyle N^{1/2}\big{(}\hat{v}^{2}(\alpha,\gamma)-v_{0}^{2}\big{)}\xrightarrow{d}N\big{(}0,2v_{0}^{4}\big{)},\quad\mbox{as }N\rightarrow\infty.

When mm is fixed and (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0}, it follows from (4) that σ^k2(α,γ)\hat{\sigma}_{k}^{2}(\alpha,\gamma) does not converge to σk,02\sigma_{k,0}^{2}, for kγγ0k\in\gamma\cap\gamma_{0}. This is because the data do not contain enough information for {σk2:kγγ0}\{\sigma_{k}^{2}:k\in\gamma\cap\gamma_{0}\}. Nevertheless, σ^2k(α,γ)\hat{\sigma}^{2}_{k}(\alpha,\gamma) converges to σk,02=0\sigma_{k,0}^{2}=0, for kγγ0k\in\gamma\setminus\gamma_{0}, at a rate nmaxn_{\max}^{-\ell}, which can be faster than N1/2N^{-1/2}. On the other hand, when mm\rightarrow\infty, by applying the law of large numbers and the central limit theorem to bi,kb_{i,k}; i=1,,m,kγ0i=1,\dots,m,\,k\in\gamma_{0}, we immediately have the following corollary.

Corollary 1.

Under the assumptions of Theorem 1, σ^k2(α,γ)𝑝σk,02\hat{\sigma}_{k}^{2}(\alpha,\gamma)\xrightarrow{p}\sigma_{k,0}^{2} as mm\rightarrow\infty, for kγk\in\gamma. If, in addition, m=o(nmin)m=o(n_{\min}^{\ell}), then

m1/2(σ^k2(α,γ)σk,02)𝑑N(0,2σk,04);kγγ0,as N.\displaystyle m^{1/2}(\hat{\sigma}_{k}^{2}(\alpha,\gamma)-\sigma_{k,0}^{2})\xrightarrow{d}N(0,2\sigma_{k,0}^{4});\quad k\in\gamma\cap\gamma_{0},\quad\mbox{as }N\rightarrow\infty.

From Corollary 1, for kγ0k\in\gamma_{0}, we obtain a 100(1α)%100(1-\alpha)\% confidence interval of σ2k,0\sigma^{2}_{k,0} :

(σ^k2(α,γ)(2σ^4k(α,γ)m)1/2ζ1α/2,σ^k2(α,γ)(2σ^4k(α,γ)m)1/2ζα/2),\displaystyle\bigg{(}\hat{\sigma}_{k}^{2}(\alpha,\gamma)-\bigg{(}\frac{2\hat{\sigma}^{4}_{k}(\alpha,\gamma)}{m}\bigg{)}^{1/2}\zeta_{1-\alpha/2},\,\hat{\sigma}_{k}^{2}(\alpha,\gamma)-\bigg{(}\frac{2\hat{\sigma}^{4}_{k}(\alpha,\gamma)}{m}\bigg{)}^{1/2}\zeta_{\alpha/2}\bigg{)}, (5)

where ζa\zeta_{a} is the (100a)(100a)-th percentile of the standard normal distribution. Although this confidence interval is commonly applied in practice (e.g., Maas and Hox [14]; McNeish and Stapleton [17]), it is only valid when mm is large, as detailed in a simulation experiment of Section 4.2. Thanks to Theorem 1, we can derive a 100(1α)%100(1-\alpha)\% confidence interval of σk,02\sigma_{k,0}^{2} valid for a fixed mm.

Theorem 2.

Under the assumptions of Theorem 1, suppose that mm is fixed. Then for kγγ0k\in\gamma\cap\gamma_{0}, a 100(1α)%100(1-\alpha)\% confidence interval of σ2k\sigma^{2}_{k} is

(mσ^k2(α,γ)χ2m,1α/2,mσ^k2(α,γ)χ2m,α/2),\displaystyle\bigg{(}\frac{m\hat{\sigma}_{k}^{2}(\alpha,\gamma)}{\chi^{2}_{m,1-\alpha/2}},\frac{m\hat{\sigma}_{k}^{2}(\alpha,\gamma)}{\chi^{2}_{m,\alpha/2}}\bigg{)}, (6)

where χ2m,a\chi^{2}_{m,a} denotes the (100a)(100a)-th percentile of the chi-square distribution on mm degrees of freedom.

Note that the length of the confidence interval of σk,02\sigma_{k,0}^{2} in (6) does not shrink to 0 as NN\rightarrow\infty, which is not surprising due to the fact that σ^k2(α,γ)\hat{\sigma}_{k}^{2}(\alpha,\gamma) is not a consistent estimator of σk2\sigma_{k}^{2} when mm is fixed, for kγγ0k\in\gamma\cap\gamma_{0}.

We close this section by mentioning that although a fixed mm hinders us from consistently estimating σk2\sigma_{k}^{2}, the empirical BLUPs of random effects, based on the ML estimator of σk2\sigma_{k}^{2}, are still asymptotically more efficient than the LS predictors, as illustrated in the following example.

Example 1.

Consider model (2) with p=0p=0, q=1q=1, n1==nm=nn_{1}=\cdots=n_{m}=n and m>1m>1 fixed. Assume that (A2) holds with c1,1==cm,1=1c_{1,1}=\cdots=c_{m,1}=1 and =1\ell=1. Let 𝒃~i\tilde{\bm{b}}_{i} be the LS predictor of 𝒃i\bm{b}_{i} and 𝒃^i(σ12,v2)\hat{\bm{b}}_{i}(\sigma_{1}^{2},v^{2}) be the BLUP of 𝒃i\bm{b}_{i} given (σ12,v2)(\sigma_{1}^{2},v^{2}). Define

D(σ12,v2)\displaystyle D(\sigma_{1}^{2},v^{2})\equiv i=1m𝒁i(𝒃~i𝒃i)2i=1m𝒁i(𝒃^i(σ12,v2)𝒃i)2.\displaystyle~{}\sum_{i=1}^{m}\big{\|}\bm{Z}_{i}\big{(}\tilde{\bm{b}}_{i}-\bm{b}_{i})\big{\|}^{2}-\sum_{i=1}^{m}\big{\|}\bm{Z}_{i}\big{(}\hat{\bm{b}}_{i}(\sigma_{1}^{2},v^{2})-\bm{b}_{i}\big{)}\big{\|}^{2}.

Then, we show in Appendix B of the supplementary material that

nD(σ^12,v^2)=\displaystyle nD(\hat{\sigma}_{1}^{2},\hat{v}^{2})= Gn,m+op(1),\displaystyle~{}G_{n,m}+o_{p}(1),

where σ^12\hat{\sigma}_{1}^{2} and v^2\hat{v}^{2} are the ML estimators of σ12\sigma_{1}^{2} and v2v^{2}, and Gn,mG_{n,m} is some random variable depending on n,mn,m. Moreover, it is shown in the same appendix that the moments of Gn,mG_{n,m} do not exist for m4m\leq 4 and

E(Gn,m)=\displaystyle\mathrm{E}(G_{n,m})= m(m4)v04(m2)σ1,02\displaystyle~{}\frac{m(m-4)v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}} (7)

for m>4m>4. Equation (7) reveals that for any fixed m>4m>4, the empirical BLUP, 𝒁i𝒃^i(σ^12,v^2)\bm{Z}_{i}\hat{\bm{b}}_{i}(\hat{\sigma}_{1}^{2},\hat{v}^{2}) of 𝒁i𝒃i\bm{Z}_{i}\bm{b}_{i}, is asymptotically more efficient than its LS counterpart, 𝒁i𝒃~i\bm{Z}_{i}\tilde{\bm{b}}_{i}, even when σ^12\hat{\sigma}_{1}^{2} is not a consistent estimator of σ12\sigma_{1}^{2}. In addition, the advantage of the former over the latter rapidly increases with mm.

3.2 Asymptotics under misspecification

In this subsection, we consider a misspecified model (α,γ)(𝒜×𝒢)(𝒜0×𝒢0)(\alpha,\gamma)\in(\mathcal{A}\times\mathcal{G})\setminus(\mathcal{A}_{0}\times\mathcal{G}_{0}). We derive not only the convergence rates for v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {σ^k2(α,γ):kγ}\{\hat{\sigma}_{k}^{2}(\alpha,\gamma):k\in\gamma\}, but also their asymptotic distributions. These results are crucial for developing model selection consistency and efficiency in linear mixed-effects models under fixed mm; see Chang et al. [3].

We start by investigating the asymptotic properties for the ML estimators of v2v^{2} and {σk2:kγ}\{\sigma_{k}^{2}:k\in\gamma\} for (α,γ)𝒜0×(𝒢𝒢0)(\alpha,\gamma)\in\mathcal{A}_{0}\times(\mathcal{G}\setminus\mathcal{G}_{0}) under a misspecified random-effects model.

Theorem 3.

Under the assumptions of Theorem 1, except that (α,γ)𝒜0×(𝒢𝒢0)(\alpha,\gamma)\in\mathcal{A}_{0}\times(\mathcal{G}\setminus\mathcal{G}_{0}),

v^2(α,γ)=v02+1Ni=1m(nikγ0γci,kbi,k2)+op(1Ni=1mni)+Op(p+mqN)+Op(N1/2)\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}v_{0}^{2}+\frac{1}{N}\sum_{i=1}^{m}\bigg{(}n_{i}^{\ell}\sum_{k\in\gamma_{0}\setminus\gamma}c_{i,k}b_{i,k}^{2}\bigg{)}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}\\ &~{}+O_{p}\Big{(}\frac{p+mq}{N}\Big{)}+O_{p}(N^{-1/2})\end{split} (8)

and

σ^k2(α,γ)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha,\gamma)= {1mi=1mbi,k2+op(aN(ξ,))+op(1);if kγγ0,op(aN(ξ,))+op(1);if kγγ0,\displaystyle~{}\left\{\begin{array}[]{ll}\displaystyle\frac{1}{m}\sum_{i=1}^{m}b_{i,k}^{2}+\displaystyle o_{p}(a_{N}(\xi,\ell))+o_{p}(1);&\mbox{if }k\in\gamma\cap\gamma_{0},\\ \displaystyle o_{p}(a_{N}(\xi,\ell))+o_{p}(1);&\mbox{if }k\in\gamma\setminus\gamma_{0},\end{array}\right. (11)

where aN(ξ,)=(i=1mnii=1mniξ)(i=1mniξm)a_{N}(\xi,\ell)=\displaystyle\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\xi-\ell}}{m}\bigg{)}. In addition, if <1\ell<1, then

v^2(α,γ)𝑝v02,as N.\hat{v}^{2}(\alpha,\gamma)\xrightarrow{p}v_{0}^{2},\quad\mbox{as }N\rightarrow\infty.

Furthermore, if (0,1/2)\ell\in(0,1/2) and p+mq=o(N1/2)p+mq=o\big{(}N^{1/2}\big{)}, then

N1/2(v^2(α,γ)v02)𝑑N(0,2v04),as N.\displaystyle N^{1/2}(\hat{v}^{2}(\alpha,\gamma)-v_{0}^{2})\xrightarrow{d}N(0,2v_{0}^{4}),\quad\mbox{as }N\rightarrow\infty.

Note that 1Ni=1m(nikγ0γci,kbi,k2)\displaystyle\frac{1}{N}\sum_{i=1}^{m}\bigg{(}n_{i}^{\ell}\sum_{k\in\gamma_{0}\setminus\gamma}c_{i,k}b_{i,k}^{2}\bigg{)} in (8) is the dominant bias term for v^2(α,γ)\hat{v}^{2}(\alpha,\gamma), which is contributed by the non-negligible random effects missed by model γ\gamma. It is asymptotically positive with probability one when =1\ell=1. Hence v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) has a non-negligible positive bias when =1\ell=1. On the other hand, for ξ=\xi=\ell or nearly balanced data, the following corollary shows that σ^k2(α,γ)𝑝σk2\hat{\sigma}_{k}^{2}(\alpha,\gamma)\xrightarrow{p}\sigma_{k}^{2}; kγk\in\gamma, as mm\rightarrow\infty, even though (α,γ)𝒜0×(𝒢𝒢0)(\alpha,\gamma)\in\mathcal{A}_{0}\times(\mathcal{G}\setminus\mathcal{G}_{0}) is misspecified.

Corollary 2.

Under the assumptions of Theorem 3, with ξ=\xi=\ell or nmax=O(nmin)n_{\max}=O(n_{\min}),

σ^k2(α,γ)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha,\gamma)= {1mi=1mbi,k2+op(1);if kγγ0,op(1);if kγγ0.\displaystyle~{}\left\{\begin{array}[]{ll}\displaystyle\frac{1}{m}\sum_{i=1}^{m}b_{i,k}^{2}+o_{p}(1);&\mbox{if }k\in\gamma\cap\gamma_{0},\\ o_{p}(1);&\mbox{if }k\in\gamma\setminus\gamma_{0}.\end{array}\right.

If mm\rightarrow\infty, then

σ^k2(α,γ)𝑝σk,02;kγ,as N.\hat{\sigma}_{k}^{2}(\alpha,\gamma)\xrightarrow{p}\sigma_{k,0}^{2};\quad k\in\gamma,\quad\mbox{as }N\rightarrow\infty.

The following theorem presents the asymptotic properties of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {σ^k2(α,γ):kγ}\{\hat{\sigma}_{k}^{2}(\alpha,\gamma):k\in\gamma\} for (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G} under a misspecified fixed-effects model.

Theorem 4.

Under the assumptions of Theorem 1 except that (α,γ)(𝒜𝒜0)×𝒢0(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G}_{0},

v^2(α,γ)=v02+1Ni=1m(niξjα0αdi,jβj,02)+op(1Ni=1mniξ)+Op(p+mqN)+Op(N1/2)\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}v_{0}^{2}+\frac{1}{N}\sum_{i=1}^{m}\bigg{(}n_{i}^{\xi}\sum_{j\in\alpha_{0}\setminus\alpha}d_{i,j}\beta_{j,0}^{2}\bigg{)}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}\\ &~{}+O_{p}\Big{(}\frac{p+mq}{N}\Big{)}+O_{p}(N^{-1/2})\end{split} (12)

and

σ^k2(α,γ)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha,\gamma)= {1mi=1mbi,k2+op(1mi=1mniξ)+op(1);if kγγ0,op(1mi=1mniξ)+op(1);if kγγ0.\displaystyle~{}\left\{\begin{array}[]{ll}\displaystyle\frac{1}{m}\sum_{i=1}^{m}b_{i,k}^{2}+o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{)}+o_{p}(1);&\mbox{if }k\in\gamma\cap\gamma_{0},\\ \displaystyle o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{)}+o_{p}(1);&\mbox{if }k\in\gamma\setminus\gamma_{0}.\end{array}\right. (15)

In addition, if ξ<1\xi<1, then

v^2(α,γ)𝑝v02,as N.\hat{v}^{2}(\alpha,\gamma)\xrightarrow{p}v_{0}^{2},\quad\mbox{as }N\rightarrow\infty.

Furthermore, if ξ(0,1/2)\xi\in(0,1/2) and p+mq=o(N1/2)p+mq=o\big{(}N^{1/2}\big{)}, then

N1/2(v^2(α,γ)v02)𝑑N(0,2v04),as N.\displaystyle N^{1/2}(\hat{v}^{2}(\alpha,\gamma)-v_{0}^{2})\xrightarrow{d}N(0,2v_{0}^{4}),\quad\mbox{as }N\rightarrow\infty.

Note that 1Ni=1m(niξjα0αdi,jβj,02)\displaystyle\frac{1}{N}\sum_{i=1}^{m}\bigg{(}n_{i}^{\xi}\sum_{j\in\alpha_{0}\setminus\alpha}d_{i,j}\beta_{j,0}^{2}\bigg{)} in (12) is asymptotically positive with probability one when ξ=1\xi=1. Therefore, under the assumptions of Theorem 4, v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) has a non-negligible positive bias when ξ=1\xi=1. Nevertheless, σ^k2(α,γ)\hat{\sigma}_{k}^{2}(\alpha,\gamma) is consistent for γ𝒢0\gamma\in\mathcal{G}_{0} when ξ\xi\leq\ell, as mm\rightarrow\infty.

The following theorem establishes the asymptotic properties of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {σ^k2(α,γ):kγ}\{\hat{\sigma}_{k}^{2}(\alpha,\gamma):k\in\gamma\} for (α,γ)(𝒜𝒜0)×(𝒢𝒢0)(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times(\mathcal{G}\setminus\mathcal{G}_{0}) when both the fixed-effects model and the random-effects model are misspecified.

Theorem 5.

Under the assumptions of Theorem 1 except that (α,γ)(𝒜𝒜0)×(𝒢𝒢0)(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times(\mathcal{G}\setminus\mathcal{G}_{0}),

v^2(α,γ)=v02+1Ni=1m(niξjα0αdi,jβj,02+nikγ0γci,kbi,k2)+op(1Ni=1m(niξ+ni))+Op(p+mqN)+Op(N1/2)\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}v_{0}^{2}+\frac{1}{N}\sum_{i=1}^{m}\Bigg{(}n_{i}^{\xi}\sum_{j\in\alpha_{0}\setminus\alpha}d_{i,j}\beta_{j,0}^{2}+n_{i}^{\ell}\sum_{k\in\gamma_{0}\setminus\gamma}c_{i,k}b_{i,k}^{2}\Bigg{)}\\ &~{}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}(n_{i}^{\xi}+n_{i}^{\ell})\bigg{)}+O_{p}\Big{(}\frac{p+mq}{N}\Big{)}+O_{p}(N^{-1/2})\end{split} (16)

and

σ^k2(α,γ)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha,\gamma)= {1mi=1mbi,k2+op(aN(ξ,))+op(1);if kγγ0,op(aN(ξ,))+op(1);if kγγ0,\displaystyle~{}\left\{\begin{array}[]{ll}\displaystyle\frac{1}{m}\sum_{i=1}^{m}b_{i,k}^{2}+\displaystyle o_{p}(a_{N}^{*}(\xi,\ell))+o_{p}(1);&\mbox{if }k\in\gamma\cap\gamma_{0},\\ \displaystyle o_{p}(a_{N}^{*}(\xi,\ell))+o_{p}(1);&\mbox{if }k\in\gamma\setminus\gamma_{0},\end{array}\right. (19)

where aN(ξ,)=(1+i=1mnii=1mniξ)(i=1mniξm)a_{N}^{*}(\xi,\ell)=\displaystyle\bigg{(}1+\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\xi-\ell}}{m}\bigg{)}. In addition, if max{ξ,}<1\max\{\xi,\ell\}<1, then

v^2(α,γ)𝑝v02,as N.\hat{v}^{2}(\alpha,\gamma)\xrightarrow{p}v_{0}^{2},\quad\mbox{as }N\rightarrow\infty.

Furthermore, if (ξ,)(0,1/2)×(0,1/2)(\xi,\ell)\in(0,1/2)\times(0,1/2) and p+mq=o(N1/2)p+mq=o\big{(}N^{1/2}\big{)}, then

N1/2(v^2(α,γ)v02)𝑑N(0,2v04),as N.\displaystyle N^{1/2}(\hat{v}^{2}(\alpha,\gamma)-v_{0}^{2})\xrightarrow{d}N(0,2v_{0}^{4}),\quad\mbox{as }N\rightarrow\infty.

Note that 1Ni=1m(niξjα0αdi,jβj,02+nikγ0γci,kbi,k2)\displaystyle\frac{1}{N}\sum_{i=1}^{m}\Bigg{(}n_{i}^{\xi}\sum_{j\in\alpha_{0}\setminus\alpha}d_{i,j}\beta_{j,0}^{2}+n_{i}^{\ell}\sum_{k\in\gamma_{0}\setminus\gamma}c_{i,k}b_{i,k}^{2}\Bigg{)} in (16) is asymptotically positive with probability one when either ξ=1\xi=1 or =1\ell=1. Therefore, under the assumptions of Theorem 5, v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) has a non-negligible positive bias when either ξ=1\xi=1 or =1\ell=1. Also, we have the following corollary.

Corollary 3.

Under the assumptions of Theorem 5, with either (i) ξ=\xi=\ell or (ii) ξ<\xi<\ell and nmax=O(nmin)n_{\max}=O(n_{\min}),

σ^k2(α,γ)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha,\gamma)= {1mi=1mbi,k2+op(1);if kγγ0,op(1);if kγγ0.\displaystyle~{}\left\{\begin{array}[]{ll}\displaystyle\frac{1}{m}\sum_{i=1}^{m}b_{i,k}^{2}+o_{p}(1);&\mbox{if }k\in\gamma\cap\gamma_{0},\\ o_{p}(1);&\mbox{if }k\in\gamma\setminus\gamma_{0}.\end{array}\right.

If mm\rightarrow\infty, then

σ^k2(α,γ)𝑝σk,02;kγ,as N.\hat{\sigma}_{k}^{2}(\alpha,\gamma)\xrightarrow{p}\sigma_{k,0}^{2};\quad k\in\gamma,\quad\mbox{as }N\rightarrow\infty.

4 Simulations

We conduct two simulation experiments for linear mixed-effects models. The first one examines estimation of mixed-effects models, and the second concerns confidence intervals.

4.1 Experiment 1

We generate data according to (1) with p=q=5p=q=5, (σ1,02,σ2,02,σ3,02,σ4,02,σ5,02)=(0,0.5,1,1.5,0)(\sigma_{1,0}^{2},\sigma_{2,0}^{2},\sigma_{3,0}^{2},\sigma_{4,0}^{2},\sigma_{5,0}^{2})^{\prime}=(0,0.5,1,1.5,0)^{\prime}, 𝜷0=(1.2,0.7,0.8,0,0)\bm{\beta}_{0}=(1.2,-0.7,0.8,0,0)^{\prime}, and v2=1v^{2}=1, where 𝒙i,jN(𝟎,𝑰ni)\bm{x}_{i,j}\sim N(\bm{0},\bm{I}_{n_{i}}) and 𝒛i,kN(𝟎,𝑰ni)\bm{z}_{i,k}\sim N(\bm{0},\bm{I}_{n_{i}}) are independent, for i=1,,mi=1,\dots,m and j,k=1,,5j,k=1,\dots,5. This setup satisfies (A1)–(A3) with ξ==1\xi=\ell=1 and di,j=ci,k=1d_{i,j}=c_{i,k}=1, for i=1,,mi=1,\dots,m and j,k=1,,5j,k=1,\dots,5. We consider parameter estimation under two scenarios corresponding to balanced data and unbalanced data. We also consider model selection under balanced data.

For parameter estimation, we first consider balanced data with m{10,20,30}m\in\{10,20,30\}, n1==nm=mn_{1}=\cdots=n_{m}=m, and hence N=m2N=m^{2}. The ML estimators of σ12,,σ52\sigma_{1}^{2},\dots,\sigma_{5}^{2} and v2v^{2} under the full model ({1,,5},{1,,5})𝒜0×𝒢0(\{1,\dots,5\},\{1,\dots,5\})\in\mathcal{A}_{0}\times\mathcal{G}_{0} based on 100 simulated replicates are summarized in Table 1. The ML estimators of σ12,,σ32\sigma_{1}^{2},\dots,\sigma_{3}^{2} and v2v^{2} under model ({1,2,3},{1,2,3})𝒜0×(𝒢𝒢0)(\{1,2,3\},\{1,2,3\})\in\mathcal{A}_{0}\times(\mathcal{G}\setminus\mathcal{G}_{0}) with correct fixed effects but misspecified random effects based on 100 simulated replicates are summarized in Table 2. The ML estimators of σ42,σ52\sigma_{4}^{2},\sigma_{5}^{2}, and v2v^{2} under model ({2,3,4,5},{4,5})(𝒜𝒜0)×(𝒢𝒢0)(\{2,3,4,5\},\{4,5\})\in(\mathcal{A}\setminus\mathcal{A}_{0})\times(\mathcal{G}\setminus\mathcal{G}_{0}) with both misspecified fixed and random effects based on 100 simulated replicates are summarized in Table 3.

Table 1: Sample means and sample standard deviations (in parentheses) of ML estimators of σ12,,σ52\sigma_{1}^{2},\dots,\sigma_{5}^{2} and v2v^{2} for different values of mm obtained from full model in Section 4.1 with balanced data based on 100 simulated replicates. Values in row for m=m=\infty are probability limits of ML estimators.
mm σ^12\hat{\sigma}_{1}^{2} σ^22\hat{\sigma}_{2}^{2} σ^32\hat{\sigma}_{3}^{2} σ^42\hat{\sigma}_{4}^{2} σ^52\hat{\sigma}_{5}^{2} v^2\hat{v}^{2}
10 0.033 0.467 0.994 1.453 0.041 0.850
(0.062) (0.281) (0.564) (0.615) (0.073) (0.165)
20 0.008 0.512 1.028 1.470 0.008 0.983
(0.017) (0.194) (0.362) (0.490) (0.014) (0.087)
30 0.003 0.490 0.994 1.534 0.004 0.989
(0.006) (0.116) (0.260) (0.396) (0.007) (0.049)
\infty 0.000 0.500 1.000 1.500 0.000 1.000
True 0.000 0.500 1.000 1.500 0.000 1.000
Table 2: Sample means and sample standard deviations (in parentheses) of ML estimators of σ12,σ22,σ32\sigma_{1}^{2},\sigma_{2}^{2},\sigma_{3}^{2} and v2v^{2} for different values of mm obtained from model (α,γ)=({1,2,3},{1,2,3})(\alpha,\gamma)=(\{1,2,3\},\{1,2,3\}) in Section 4.1 with balanced data based on 100 simulated replicates. Values in row for m=m=\infty are probability limits of ML estimators.
mm         σ^12\hat{\sigma}_{1}^{2}         σ^22\hat{\sigma}^{2}_{2}         σ^23\hat{\sigma}^{2}_{3}         v^2\hat{v}^{2}
10 0.151 (0.541) 0.583 (0.546) 0.944 (0.572) 2.363 (1.054)
20 0.047 (0.091) 0.555 (0.285) 1.050 (0.392) 2.415 (0.650)
30 0.030 (0.070) 0.521 (0.198) 0.961 (0.268) 2.442 (0.666)
\infty 0.000 0.500 1.000 2.500
True 0.000 0.500 1.000 1.000
Table 3: Sample means and sample standard deviations (in parentheses) of ML estimators of σ42,σ52\sigma_{4}^{2},\sigma_{5}^{2} and v2v^{2} for different values of mm obtained from model (α,γ)=({2,3,4,5},{4,5})(\alpha,\gamma)=(\{2,3,4,5\},\{4,5\}) in Section 4.1 with balanced data based on 100 simulated replicates. Values in row for m=m=\infty are probability limits of ML estimators.
mm         σ^42\hat{\sigma}_{4}^{2}         σ^52\hat{\sigma}_{5}^{2}         v^2\hat{v}^{2}
10 1.604 (1.073) 0.176 (0.465) 3.494 (0.788)
20 1.353 (0.567) 0.043 (0.077) 3.915 (0.540)
30 1.525 (0.427) 0.030 (0.065) 3.880 (0.436)
\infty 1.500 0.000 3.690
True 1.500 0.000 1.000

As seen in Table 1, the ML estimators, σ^12,,σ^52\hat{\sigma}_{1}^{2},\dots,\hat{\sigma}_{5}^{2} and v^2\hat{v}^{2}, based on the full model, have small biases except for v^2\hat{v}^{2} with m=10m=10. We note that their standard deviations tend to be smaller when mm is larger. In particular, the standard deviations of σ^12\hat{\sigma}_{1}^{2} and σ^52\hat{\sigma}_{5}^{2} are much smaller than the others, which echoes Theorem 1, that which shows that v^2j\hat{v}^{2}_{j} has a faster convergence rate when it converges to zero. For model (α,γ)=({1,2,3},{1,2,3})(\alpha,\gamma)=(\{1,2,3\},\{1,2,3\}) with misspecified random effects, Table 2 shows that the ML estimator v^2\hat{v}^{2} overestimates v02=1v_{0}^{2}=1 by about σ4,02=1.5\sigma_{4,0}^{2}=1.5 on average, particularly for larger values of mm, which also complies with Theorem 3. Finally, for model (α,γ)=({2,3,4,5},{4,5})(\alpha,\gamma)=(\{2,3,4,5\},\{4,5\}) with both fixed and random effects misspecified, Table 3 confirms that v^2\hat{v}^{2} is far from its true value and reasonably close to its probability limit, v02+σ2,02+σ3,02+β1,02=3.69v_{0}^{2}+\sigma_{2,0}^{2}+\sigma_{3,0}^{2}+\beta_{1,0}^{2}=3.69, derived in Theorem 5. In addition, σ^42\hat{\sigma}_{4}^{2} tends to be closer to σ4,02\sigma_{4,0}^{2} when mm is larger, as expected from Theorem 5.

Next, we consider unbalanced data with m{10,20,30}m\in\{10,20,30\} and N=m2N=m^{2}. We set n1=[N1/4]n_{1}=[N^{1/4}], n2=[N3/4]n_{2}=[N^{3/4}], n3==nm1=[(Nn1n2)/(m2)]n_{3}=\cdots=n_{m-1}=[(N-n_{1}-n_{2})/(m-2)], and hence nm=Ni=1m1nin_{m}=N-\sum_{i=1}^{m-1}n_{i}. The ML estimators of σ12,,σ52\sigma_{1}^{2},\dots,\sigma_{5}^{2} and v2v^{2} under the full model ({1,,5},{1,,5})𝒜0×𝒢0(\{1,\dots,5\},\{1,\dots,5\})\in\mathcal{A}_{0}\times\mathcal{G}_{0} based on 100 simulated replicates are summarized in Table 4. The ML estimators of σ12,,σ32\sigma_{1}^{2},\dots,\sigma_{3}^{2} and v2v^{2} under model ({1,2,3},{1,2,3})𝒜0×(𝒢𝒢0)(\{1,2,3\},\{1,2,3\})\in\mathcal{A}_{0}\times(\mathcal{G}\setminus\mathcal{G}_{0}) with correct fixed effects but misspecified random effects based on 100 simulated replicates are summarized in Table 5. The ML estimators of σ42\sigma_{4}^{2}, σ52\sigma_{5}^{2}, and v2v^{2} under model ({2,3,4,5},{4,5})(𝒜𝒜0)×(𝒢𝒢0)(\{2,3,4,5\},\{4,5\})\in(\mathcal{A}\setminus\mathcal{A}_{0})\times(\mathcal{G}\setminus\mathcal{G}_{0}) with both misspecified fixed and random effects based on 100 simulated replicates are summarized in Table 6. The ML estimators of σ12,,σ52\sigma_{1}^{2},\dots,\sigma_{5}^{2} and v2v^{2} based on unbalanced data can be seen to perform similarly to those based on balanced data.

Table 4: Sample means and sample standard deviations (in parentheses) of ML estimators of σ12,,σ52\sigma_{1}^{2},\dots,\sigma_{5}^{2} and v2v^{2} for different values of mm obtained from full model in Section  4.1 with unbalanced data based on 100 simulated replicates. Values in row for m=m=\infty are probability limits of ML estimators.
mm nminn_{\min} ​​nmaxn_{\max} σ^12\hat{\sigma}_{1}^{2} σ^22\hat{\sigma}_{2}^{2} σ^32\hat{\sigma}_{3}^{2} σ^42\hat{\sigma}_{4}^{2} σ^52\hat{\sigma}_{5}^{2} v^2\hat{v}^{2}
10 3 32 0.017 0.500 1.011 1.414 0.021 0.877
(0.041) (0.330) (0.602) (0.790) (0.040) (0.154)
20 4 89 0.009 0.516 1.029 1.490 0.008 0.974
(0.020) (0.175) (0.399) (0.493) (0.014) (0.082)
30 5 164 0.002 0.497 1.007 1.539 0.004 0.991
(0.005) (0.121) (0.263) (0.374) (0.008) (0.049)
\infty 0.000 0.500 1.000 1.500 0.000 1.000
True 0.000 0.500 1.000 1.500 0.000 1.000
Table 5: Sample means and sample standard deviations (in parentheses) of ML estimators of σ12,σ22,σ32\sigma_{1}^{2},\sigma_{2}^{2},\sigma_{3}^{2}, and v2v^{2} for different values of mm obtained from model (α,γ)=({1,2,3},{1,2,3})(\alpha,\gamma)=(\{1,2,3\},\{1,2,3\}) in Section 4.1 with unbalanced data based on 100 simulated replicates. Values in row for m=m=\infty are probability limits of ML estimators.
mm nminn_{\min} ​​nmaxn_{\max}         σ^12\hat{\sigma}_{1}^{2}         σ^22\hat{\sigma}_{2}^{2}         σ^32\hat{\sigma}_{3}^{2}         v^2\hat{v}^{2}
10 3 32 0.213 (0.927) 0.576 (0.696) 1.175 (1.220) 2.283 (1.127)
20 4 89 0.044 (0.096) 0.536 (0.260) 1.091 (0.461) 2.456 (0.792)
30 5 165 0.028 (0.079) 0.500 (0.208) 0.959 (0.290) 2.426 (0.645)
\infty 0.000 0.500 1.000 2.500
True 0.000 0.500 1.000 1.000
Table 6: Sample means and sample standard deviations (in parentheses) of ML estimators of σ42,σ52\sigma_{4}^{2},\sigma_{5}^{2}, and v2v^{2} for different values of mm obtained from model (α,γ)=({2,3,4,5},{4,5})(\alpha,\gamma)=(\{2,3,4,5\},\{4,5\}) in Section 4.1 with unbalanced data based on 100 simulated replicates. Values in row for m=m=\infty are probability limits of ML estimators.
mm nminn_{\min} nmaxn_{\max}         σ^42\hat{\sigma}_{4}^{2}         σ^52\hat{\sigma}_{5}^{2}         v^2\hat{v}^{2}
10 3 32 1.522 (0.902) 0.065 (0.180) 3.535 (0.944)
20 4 89 1.362 (0.540) 0.057 (0.142) 3.960 (0.716)
30 5 164 1.494 (0.458) 0.030 (0.068) 3.892 (0.539)
\infty 1.500 0.000 3.690
True 1.500 0.000 1.000

4.2 Experiment 2

In the second experiment, we compare the conventional confidence interval given by (5) with the proposed confidence interval given by (6). Similar to Experiment 1, we generate data according to (1) with p=q=5p=q=5, 𝜷=(1.2,0.7,0.8,0,0)\bm{\beta}=(1.2,-0.7,0.8,0,0)^{\prime}, v2=1v^{2}=1, and (σ1,02,σ2,02,σ3,02,σ4,02,σ5,02)=(0,0.5,1,1.5,0)(\sigma_{1,0}^{2},\sigma_{2,0}^{2},\sigma_{3,0}^{2},\sigma_{4,0}^{2},\sigma_{5,0}^{2})^{\prime}=(0,0.5,1,1.5,0)^{\prime}, where 𝒙i,jN(𝟎,𝚺x)\bm{x}_{i,j}\sim N(\bm{0},\bm{\Sigma}_{x}) and 𝒛i,kN(𝟎,𝚺z)\bm{z}_{i,k}\sim N(\bm{0},\bm{\Sigma}_{z}) are independent, for i=1,,mi=1,\dots,m and j,k=1,,5j,k=1,\dots,5. Here we consider a more challenging situation of dependent covariates. Specifically, we assume that 𝚺x\bm{\Sigma}_{x} is a 5×55\times 5 matrix with the (i,j)(i,j)-th entry 0.4|ij|0.4^{|i-j|}, and 𝚺z\bm{\Sigma}_{z} is a 5×55\times 5 matrix with the (i,j)(i,j)-th entry 0.6|ij|0.6^{|i-j|}. We consider balanced data with n=n1==nm{10,50,100}n=n_{1}=\cdots=n_{m}\in\{10,50,100\} and three numbers of clusters, m{2,5,10}m\in\{2,5,10\}, resulting in a total of nine different combinations.

We compare the 95%\% confidence intervals of (5) and (6) for σ22\sigma_{2}^{2} and σ42\sigma_{4}^{2} based on model (α,γ)=({1,2,3},{2,3,4})(\alpha,\gamma)=(\{1,2,3\},\{2,3,4\}). The coverage probabilities of both confidence intervals obtained from the two methods for various cases based on 1,000 simulated replicates are shown in Table 7. The proposed method has better coverage probabilities than the conventional ones in almost all cases. The coverage probabilities of our confidence interval tend to the nominal level (i.e., 0.950.95) as nn increases for all cases even when mm is very small. In contrast, the conventional method tends to be too optimistic for both σ22\sigma_{2}^{2} and σ42\sigma_{4}^{2}. For example, the coverage probabilities are less than 0.730.73 when m=2m=2 regardless of nn. Although the coverage probabilities are a bit closer to the nominal level when mm is larger, they are still in the range of (0.82,0.87)(0.82,0.87) when m=10m=10, showing that the conventional confidence interval is not valid for small mm.

Table 7: Coverage probabilities (denoted by P^\hat{P}) for 95%95\% confidence intervals of σ22\sigma_{2}^{2} and σ42\sigma_{4}^{2} obtained from two methods in Section 4.2 based on 1,000 simulated replicates. Values given in parentheses are standard errors of coverage probabilities (evaluted by P^(1P^)/1000\sqrt{\hat{P}(1-\hat{P})/1000}).
mm nn Classical Proposed
σ22\sigma_{2}^{2} σ42\sigma_{4}^{2} σ22\sigma_{2}^{2} σ42\sigma_{4}^{2}
2 10 0.651 (0.015) 0.649 (0.015) 0.814 (0.012) 0.763 (0.013)
50 0.724 (0.014) 0.703 (0.014) 0.932 (0.008) 0.935 (0.008)
100 0.725 (0.014) 0.722 (0.014) 0.942 (0.007) 0.929 (0.008)
5 10 0.778 (0.013) 0.738 (0.014) 0.895 (0.010) 0.871 (0.011)
50 0.809 (0.012) 0.818 (0.012) 0.936 (0.008) 0.937 (0.008)
100 0.811 (0.012) 0.809 (0.012) 0.940 (0.008) 0.929 (0.008)
10 10 0.838 (0.012) 0.816 (0.012) 0.900 (0.009) 0.893 (0.010)
50 0.874 (0.010) 0.849 (0.011) 0.952 (0.007) 0.946 (0.007)
100 0.849 (0.011) 0.867 (0.011) 0.941 (0.007) 0.956 (0.006)

5 Discussion

In this article, we establish the asymptotic theory of the ML estimators of random-effects parameters in linear mixed-effects models for unbalanced data, without assuming that mm grows to infinity with NN. We not only allow the dimensions of both the fixed-effects and random-effects models to go to infinity with NN, but also allow both models to be misspecified. In addition, we provide an asymptotic valid confidence interval for the random-effects parameters when mm is fixed. These asymptotic results are essential for investigating the asymptotic properties of model-selection methods for linear mixed-effects models, which to the best of our knowledge have only been developed under the assumption of mm\rightarrow\infty.

Although it is common to assume the random effects to be uncorrelated as done in model (1), it is also of interest to consider correlated random effects with no structure imposed on 𝑫\bm{D}. However, the technique developed in this article may not be directly applicable to the latter situation; further research in this direction is thus warranted.

Conditions (A1) and (A2) assume that the covariates are asymptotically uncorrelated. These restrictions can be relaxed. Here is a simple example.

Lemma 1.

Consider the data generated from (2) with m=1m=1, n1=Nn_{1}=N, p=q=2p=q=2, and the true parameters given in (6). Suppose that (α0,γ0)=({1,2},{1,2})(\alpha_{0},\gamma_{0})=(\{1,2\},\{1,2\}) is the smallest true model and (α1,γ1)=({1},{1})(\alpha_{1},\gamma_{1})=(\{1\},\{1\}) is a misspecified model defined in (4). Let σ^k2(α,γ)\hat{\sigma}_{k}^{2}(\alpha,\gamma) and v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) be the ML estimators of σk2\sigma_{k}^{2} and v2v^{2} based on (α,γ)(\alpha,\gamma). Assume that (A1)–(A3) hold except that 𝐳1,1𝐳1,2=c1,12N+o(N)\bm{z}_{1,1}^{\prime}\bm{z}_{1,2}=c_{1,12}N+o(N) and 𝐱1,1𝐱1,2=d1,12N+o(N)\bm{x}_{1,1}^{\prime}\bm{x}_{1,2}=d_{1,12}N+o(N), for some constants c1,12,d1,12c_{1,12},d_{1,12}\in\mathbb{R}. Then

v^2(α0,γ0)=\displaystyle\hat{v}^{2}(\alpha_{0},\gamma_{0})= v02+Op(N1/2),\displaystyle~{}v_{0}^{2}+O_{p}(N^{-1/2}),
σ^k2(α0,γ0)=\displaystyle\hat{\sigma}_{k}^{2}(\alpha_{0},\gamma_{0})= bk2+Op(N1/2);k=1,2,\displaystyle~{}b_{k}^{2}+O_{p}(N^{-1/2});\quad k=1,2,
v^2(α1,γ1)=\displaystyle\hat{v}^{2}(\alpha_{1},\gamma_{1})= v02+(d1,2d1,122d1,1)β2,02+(c1,2c1,122c1,1)b22+op(1),\displaystyle~{}v_{0}^{2}+\bigg{(}d_{1,2}-\frac{d_{1,12}^{2}}{d_{1,1}}\bigg{)}\beta_{2,0}^{2}+\bigg{(}c_{1,2}-\frac{c_{1,12}^{2}}{c_{1,1}}\bigg{)}b_{2}^{2}+o_{p}(1),
σ^12(α1,γ1)=\displaystyle\hat{\sigma}_{1}^{2}(\alpha_{1},\gamma_{1})= (b1+c1,12c1,1b2)2+op(1),\displaystyle~{}\bigg{(}b_{1}+\frac{c_{1,12}}{c_{1,1}}b_{2}\bigg{)}^{2}+o_{p}(1),

where β2,00\beta_{2,0}\neq 0 is the true parameter of β2\beta_{2}.

From Lemma 1, it is not surprising to see that v^2(α0,γ0)𝑝v02\hat{v}^{2}(\alpha_{0},\gamma_{0})\xrightarrow{p}v_{0}^{2}. On the other hand, v^2(α1,γ1)\hat{v}^{2}(\alpha_{1},\gamma_{1}) tends to overestimate v02v_{0}^{2} by (d1,2d1,122/d1,1)β2,02+(c1,2c1,122/c1,1)b22(d_{1,2}-d_{1,12}^{2}/d_{1,1})\beta_{2,0}^{2}+(c_{1,2}-c_{1,12}^{2}/c_{1,1})b_{2}^{2}. Since d1,2d1,122/d1,10d_{1,2}-d_{1,12}^{2}/d_{1,1}\geq 0 and c1,2c1,122/c1,10c_{1,2}-c_{1,12}^{2}/c_{1,1}\geq 0, the amount of overestimation is smaller when either c1,122c_{1,12}^{2} or d1,122d_{1,12}^{2} is larger. In contrast, σ^12(α1,γ1)\hat{\sigma}_{1}^{2}(\alpha_{1},\gamma_{1}) tends to be more upward biased when c1,122c_{1,12}^{2} is larger, since E(b1+(c1,12/c1,1)b2)2=σ12+(c1,12/c1,1)2σ22\mathrm{E}\big{(}b_{1}+(c_{1,12}/c_{1,1})b_{2}\big{)}^{2}=\sigma_{1}^{2}+(c_{1,12}/c_{1,1})^{2}\sigma_{2}^{2}. Lemma 1 demonstrates how the correlations between the two covariates affect the behavior of v^2(α1,γ1)\hat{v}^{2}(\alpha_{1},\gamma_{1}) and σ^12(α1,γ1)\hat{\sigma}_{1}^{2}(\alpha_{1},\gamma_{1}). However, when the number of covariates is larger, the ML estimators of v2v^{2} and {σk2}\{\sigma_{k}^{2}\} become much more complicated. We leave this extension of Lemma 1 to the general case for future work.

Acknowledgements

The research of Chih-Hao Chang is supported by ROC Ministry of Science and Technology grant MOST 107-2118-M-390-001.

The research of Hsin-Cheng Huang is supported by ROC Ministry of Science and Technology grant MOST 106-2118-M-001-002-MY3.

The research of Ching-Kang Ing is supported by the Science Vanguard Research Program under the Ministry of Science and Technology, Taiwan, ROC.

References

  • [1] {barticle}[author] \bauthor\bsnmBell, \bfnmB. A.\binitsB. A., \bauthor\bsnmMorgan, \bfnmG. B.\binitsG. B., \bauthor\bsnmSchoeneberger, \bfnmJ. A.\binitsJ. A., \bauthor\bsnmKromney, \bfnmJ. D.\binitsJ. D. and \bauthor\bsnmFerron, \bfnmJ. M.\binitsJ. M. (\byear2014). \btitleHow low can you go? \bjournalMethodology: European Journal of Research Methods for the Behavioral and Social Sciences \bvolume10 \bpages1–11. \endbibitem
  • [2] {barticle}[author] \bauthor\bsnmChang, \bfnmC. H.\binitsC. H., \bauthor\bsnmHuang, \bfnmH. C.\binitsH. C. and \bauthor\bsnmIng, \bfnmC. K.\binitsC. K. (\byear2017). \btitleMixed domain asymptotics for a stochastic process model with time trend and measurement error. \bjournalBernoulli \bvolume23 \bpages159-190. \endbibitem
  • [3] {barticle}[author] \bauthor\bsnmChang, \bfnmC. H.\binitsC. H., \bauthor\bsnmHuang, \bfnmH. C.\binitsH. C. and \bauthor\bsnmIng, \bfnmC. K.\binitsC. K. (\byear2020). \btitleSelection of Linear Mixed-Effects Models with a Small Number of Clusters. \bjournalSubmitted. \endbibitem
  • [4] {barticle}[author] \bauthor\bsnmCrainiceanu, \bfnmC. M.\binitsC. M. and \bauthor\bsnmRuppert, \bfnmD.\binitsD. (\byear2004). \btitleLikelihood ratio tests in linear mixed models with one variance component. \bjournalJournal of Royal Statistical Society. Series B \bvolume66 \bpages165–185. \endbibitem
  • [5] {barticle}[author] \bauthor\bsnmFan, \bfnmY.\binitsY. and \bauthor\bsnmLi, \bfnmR.\binitsR. (\byear2012). \btitleVariable selection in linear mixed effects models. \bjournalThe Annals of Statistics \bvolume40 \bpages2043-2068. \endbibitem
  • [6] {barticle}[author] \bauthor\bsnmGumedze, \bfnmF. N.\binitsF. N. and \bauthor\bsnmDunne, \bfnmT. T.\binitsT. T. (\byear2011). \btitleParameter estimation and inference in the linear mixed model. \bjournalLinear Algebra and Its Applications \bvolume435 \bpages1920-1944. \endbibitem
  • [7] {barticle}[author] \bauthor\bsnmHartley, \bfnmH. O.\binitsH. O. and \bauthor\bsnmRao, \bfnmJ. N. K.\binitsJ. N. K. (\byear1967). \btitleMaximum likelihood estimation for the mixed analysis of variance model. \bjournalBiometrika \bvolume54 \bpages93-108. \endbibitem
  • [8] {barticle}[author] \bauthor\bsnmHarville, \bfnmD. A.\binitsD. A. (\byear1977). \btitleMaximum likelihood approaches to variance components estimation and related problems. \bjournalJournal of the American Statistical Association \bvolume72 \bpages320-338. \endbibitem
  • [9] {barticle}[author] \bauthor\bsnmHuang, \bfnmF.\binitsF. (\byear2018). \btitleUsing cluster bootstrapping to analyze nested data with a few clusters. \bjournalEducational and Psychological Measurement \bvolume78 \bpages297-318. \endbibitem
  • [10] {barticle}[author] \bauthor\bsnmJiang, \bfnmJ.\binitsJ. (\byear2007). \btitleLinear and Generalized Linear Mixed Models and Their Applications. \bjournalSpringer, New York. \endbibitem
  • [11] {barticle}[author] \bauthor\bsnmJiang, \bfnmJ.\binitsJ. (\byear2017). \btitleAsymptotic Analysis of Mixed Effects Models: Theory, Applications, and Open Problems. \bjournalSpringer, New York. \endbibitem
  • [12] {barticle}[author] \bauthor\bsnmLaird, \bfnmN. M.\binitsN. M. and \bauthor\bsnmWare, \bfnmJ. H.\binitsJ. H. (\byear1982). \btitleRandom-effects models for longitudinal data. \bjournalBiometrics \bvolume38 \bpages963-974. \endbibitem
  • [13] {barticle}[author] \bauthor\bsnmLongford, \bfnmN. T.\binitsN. T. (\byear1993). \btitleRandom Coefficient Models Oxford Statistical Science Series 11. \bjournalOxford University Press, New York. \endbibitem
  • [14] {barticle}[author] \bauthor\bsnmMaas, \bfnmC. J. M.\binitsC. J. M. and \bauthor\bsnmHox, \bfnmJ. J.\binitsJ. J. (\byear2004). \btitleRobustness issues in multilevel regression analysis. \bjournalStatistica Neerlandica \bvolume58 \bpages127-137. \endbibitem
  • [15] {barticle}[author] \bauthor\bsnmMardia, \bfnmK. V.\binitsK. V. and \bauthor\bsnmMarshall, \bfnmR. J.\binitsR. J. (\byear1984). \btitleMaximum likelihood estimation of models for residual covariance in spatial regression. \bjournalBiometrika \bvolume71 \bpages135-146. \endbibitem
  • [16] {barticle}[author] \bauthor\bsnmMcNeish, \bfnmD.\binitsD. and \bauthor\bsnmStapleton, \bfnmL. M.\binitsL. M. (\byear2016). \btitleModeling clustered data with very few clusters. \bjournalMultivariate Behavioral Research \bvolume51 \bpages495-518. \endbibitem
  • [17] {barticle}[author] \bauthor\bsnmMcNeish, \bfnmD.\binitsD. and \bauthor\bsnmStapleton, \bfnmL. M.\binitsL. M. (\byear2016). \btitleThe effect of small sample size on two-level model estimates: A review and illustration. \bjournalEducational Psychology Review \bvolume28 \bpages295-314. \endbibitem
  • [18] {barticle}[author] \bauthor\bsnmMiller, \bfnmJ. J.\binitsJ. J. (\byear1977). \btitleAsymptotic properties of maximum likelihood estimates in the mixed model of the analysis of variance. \bjournalThe Annals of Statistics \bvolume5 \bpages746-762. \endbibitem
  • [19] {barticle}[author] \bauthor\bsnmPeng, \bfnmH.\binitsH. and \bauthor\bsnmLu, \bfnmY.\binitsY. (\byear2012). \btitleModel selection in linear mixed effect models. \bjournalJournal of Multivariate Analysis \bvolume109 \bpages109-129. \endbibitem
  • [20] {barticle}[author] \bauthor\bsnmPu, \bfnmW.\binitsW. and \bauthor\bsnmNiu, \bfnmX. F.\binitsX. F. (\byear2006). \btitleSelecting mixed-effects models based on a generalized information criterion. \bjournalJournal of Multivariate Analysis \bvolume97 \bpages733-758. \endbibitem
  • [21] {barticle}[author] \bauthor\bsnmSelf, \bfnmS. G.\binitsS. G. and \bauthor\bsnmLiang, \bfnmK. Y.\binitsK. Y. (\byear1987). \btitleAsymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. \bjournalJournal of the American Statistical Association \bvolume82 \bpages605-610. \endbibitem
  • [22] {barticle}[author] \bauthor\bsnmStram, \bfnmD. O.\binitsD. O. and \bauthor\bsnmLee, \bfnmJ. W.\binitsJ. W. (\byear1994). \btitleVariance component testing in the longitudinal mixed effects model. \bjournalBiometrics \bvolume50 \bpages1171-1177. \endbibitem
  • [23] {barticle}[author] \bauthor\bsnmVerbeke, \bfnmG.\binitsG. and \bauthor\bsnmMolenberghs, \bfnmG.\binitsG. (\byear2000). \btitleLinear Mixed Models for Longitudinal Data. \bjournalSpringer, New York. \endbibitem

Supplementary Material

The supplementary materials consist of three appendices that prove all the theoretical results except for Theorem 2, whose proof is straightforward and is hence omitted. Appendix A contains auxiliary lemmas that are required in the proofs. Appendix B provides proofs for Example 1 and Theorems 1 and 35. Appendix C gives proofs for all the lemmas.

Appendix A Auxiliary Lemmas

We start with the following matrix identities, which will be repeated applied:

det(𝑨+𝒄𝒅)=\displaystyle\det(\bm{A}+\bm{c}\bm{d}^{\prime})= det(𝑨)(1+𝒅𝑨1𝒄),\displaystyle~{}\det(\bm{A})(1+\bm{d}^{\prime}\bm{A}^{-1}\bm{c}), (A.1)
(𝑨+𝒄𝒅)1=\displaystyle(\bm{A}+\bm{c}\bm{d}^{\prime})^{-1}= 𝑨1𝑨1𝒄𝒅𝑨11+𝒅𝑨1𝒄,\displaystyle~{}\bm{A}^{-1}-\frac{\bm{A}^{-1}\bm{c}\bm{d}^{\prime}\bm{A}^{-1}}{1+\bm{d}^{\prime}\bm{A}^{-1}\bm{c}}, (A.2)

where 𝑨\bm{A} is an n×nn\times n nonsingular matrix, and 𝒄\bm{c} and 𝒅\bm{d} are n×1n\times 1 column vectors. Note that (A.2) is applied iteratively to establish the decomposition of the precision matrix 𝑯i1(γ,𝜽)\bm{H}_{i}^{-1}(\gamma,\bm{\theta}), where

𝑯i(γ,𝜽)\displaystyle\bm{H}_{i}(\gamma,\bm{\theta})\equiv kγθk𝒛i,k𝒛i,k+𝑰ni.\displaystyle~{}\sum_{k\in\gamma}\theta_{k}\bm{z}_{i,k}\bm{z}_{i,k}^{\prime}+\bm{I}_{n_{i}}. (A.3)

Heuristically speaking, let 𝒛i,(s)\bm{z}_{i,(s)}; s=1,,q(γ)s=1,\dots,q(\gamma) be the ss-th column of 𝒁i(γ)\bm{Z}_{i}(\gamma) and

𝑯i,t(γ,𝜽)=s=1tθ(s)𝒛i,(s)𝒛i,(s)+𝑰ni;t=1,,q(γ),\displaystyle\bm{H}_{i,t}(\gamma,\bm{\theta})=\sum_{s=1}^{t}\theta_{(s)}\bm{z}_{i,(s)}\bm{z}_{i,(s)}^{\prime}+\bm{I}_{n_{i}};\quad t=1,\dots,q(\gamma), (A.4)

where θ(s)\theta_{(s)} denotes the ss-th element of 𝜽\bm{\theta}; s=1,,q(γ)s=1,\dots,q(\gamma). Suppose that q(γ)=qq(\gamma)=q. Then by (A.2),

𝑯i,q1(γ,𝜽)=\displaystyle\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})= 𝑯i,q11(γ,𝜽)θq𝑯i,q11(γ,𝜽)𝒛i,q𝒛i,q𝑯i,q11(γ,𝜽)1+θq𝒛i,q𝑯i,q11(γ,𝜽)𝒛i,q.\displaystyle~{}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})-\frac{\theta_{q}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,q}\bm{z}_{i,q}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})}{1+\theta_{q}\bm{z}_{i,q}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,q}}. (A.5)

Applying (A.2) iteratively, we obtain the decomposition

𝑯i,q1(γ,𝜽)=\displaystyle\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})= 𝑰nik=1qθk𝑯i,k11(γ,𝜽)𝒛i,k𝒛i,k𝑯i,k11(γ,𝜽)1+θk𝒛i,k𝑯i,k11(γ,𝜽)𝒛i,k;\displaystyle~{}\bm{I}_{n_{i}}-\sum_{k=1}^{q}\frac{\theta_{k}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}\bm{z}_{i,k}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})}{1+\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}}; (A.6)

note that 𝑯i,0(γ,𝜽)=𝑰ni\bm{H}_{i,0}(\gamma,\bm{\theta})=\bm{I}_{n_{i}}. The proofs of Lemmas 2, 3, and 4 are then based on the induction and the decomposition of (A.6).

The proofs of theorems in Section 3 heavily rely on the asymptotic properties of the quadratic forms, 𝒙i,j𝑯i1(γ,𝜽)𝒙i,j\bm{x}^{\prime}_{i,j}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}, 𝒛i,k𝑯i1(γ,𝜽)𝒛i,k\bm{z}^{\prime}_{i,k}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}, ϵi𝑯i1(γ,𝜽)ϵi\bm{\epsilon}^{\prime}_{i}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}, 𝒙i,j𝑯i1(γ,𝜽)𝒛i,k\bm{x}^{\prime}_{i,j}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}, 𝒙i,j𝑯i1(γ,𝜽)ϵi\bm{x}^{\prime}_{i,j}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}, and 𝒛i,k𝑯i1(γ,𝜽)ϵi\bm{z}^{\prime}_{i,k}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}, with 𝑯i(γ,𝜽)\bm{H}_{i}(\gamma,\bm{\theta}) defined in (A.3), for i=1,,mi=1,\dots,m; j,j=1,,pj,j^{*}=1,\dots,p and k,k=1,,qk,k^{*}=1,\dots,q. The following lemmas give their convergence rates.

Lemma 2.

Consider the linear mixed-effects model (α,γ)(\alpha,\gamma) of (4). Suppose that (A0)–(A3) hold. Then for 𝐇i(γ,𝛉)\bm{H}_{i}(\gamma,\bm{\theta}) defined in (A.3), we have

  1. (i)

    For i=1,,mi=1,\dots,m and j,j=1,,pj,j^{*}=1,\dots,p,

    sup𝜽[0,)q(γ)|𝒙i,j𝑯i1(γ,𝜽)𝒙i,j|=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}\big{|}= {di,jniξ+o(niξ);if j=j,o(niξτ);if jj.\displaystyle~{}\left\{\begin{array}[]{ll}d_{i,j}n_{i}^{\xi}+o(n_{i}^{\xi});&\mbox{if }j=j^{*},\\ o(n_{i}^{\xi-\tau});&\mbox{if }j\neq j^{*}.\end{array}\right.
  2. (ii)

    For i=1,,mi=1,\dots,m, j=1,,pj=1,\dots,p and kγk\notin\gamma,

    sup𝜽[0,)q(γ)|𝒙i,j𝑯i1(γ,𝜽)𝒛i,k|=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}\big{|}= o(ni(ξ+)/2τ).\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau}).
  3. (iii)

    For i=1,,mi=1,\dots,m, j=1,,pj=1,\dots,p and kγk\in\gamma,

    sup𝜽[0,)q(γ)θk|𝒙i,j𝑯i1(γ,𝜽)𝒛i,k|=op(ni(ξ)/2τ),sup𝜽[0,)q(γ)|𝒙i,j𝑯i1(γ,𝜽)𝒛i,k|=o(ni(ξ+)/2τ).\displaystyle\begin{split}\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\theta_{k}\big{|}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}\big{|}=&~{}o_{p}(n_{i}^{(\xi-\ell)/2-\tau}),\\ \sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}\big{|}=&~{}o(n_{i}^{(\xi+\ell)/2-\tau}).\end{split}
Lemma 3.

Consider the linear mixed-effects model (α,γ)(\alpha,\gamma) of (4). Suppose that (A0) and (A2) hold. Then for 𝐇i(γ,𝛉)\bm{H}_{i}(\gamma,\bm{\theta}) defined in (A.3), we have

  1. (i)

    For i=1,,mi=1,\dots,m and k,kγk,k^{*}\notin\gamma,

    sup𝜽[0,)q(γ)|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}\big{|}= {ci,kni+o(ni);if k=k,o(niτ);if kk.\displaystyle~{}\left\{\begin{array}[]{ll}c_{i,k}n_{i}^{\ell}+o(n_{i}^{\ell});&\mbox{if }k=k^{*},\\ o(n_{i}^{\ell-\tau});&\mbox{if }k\neq k^{*}.\end{array}\right.
  2. (ii)

    For i=1,,mi=1,\dots,m and kγk\in\gamma,

    sup𝜽[0,)q(γ)|θk2𝒛i,k𝑯i1(γ,𝜽)𝒛i,kθk|=O(ni),sup𝜽[0,)q(γ)|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=O(ni).\displaystyle\begin{split}\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\theta_{k}^{2}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}-\theta_{k}\big{|}=&~{}O(n_{i}^{-\ell}),\\ \sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}\big{|}=&~{}O(n_{i}^{\ell}).\end{split}
  3. (iii)

    For i=1,,mi=1,\dots,m and k,kγk,k^{*}\in\gamma with kkk\neq k^{*},

    sup𝜽[0,)q(γ)θkθk|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=o(niτ),sup𝜽[0,)q(γ)θk|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=o(niτ),sup𝜽[0,)q(γ)|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=o(niτ).\displaystyle\begin{split}\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\theta_{k}\theta_{k^{*}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}\big{|}=&~{}o(n_{i}^{-\ell-\tau}),\\ \sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\theta_{k}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}\big{|}=&~{}o(n_{i}^{-\tau}),\\ \sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}\big{|}=&~{}o(n_{i}^{\ell-\tau}).\end{split}
  4. (iv)

    For i=1,,mi=1,\dots,m, kγk\in\gamma and kγk^{*}\notin\gamma,

    sup𝜽[0,)q(γ)θk|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=o(niτ),sup𝜽[0,)q(γ)|𝒛i,k𝑯i1(γ,𝜽)𝒛i,k|=o(niτ).\displaystyle\begin{split}\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\theta_{k}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}\big{|}=&~{}o(n_{i}^{-\tau}),\\ \sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}\big{|}=&~{}o(n_{i}^{\ell-\tau}).\end{split}
Lemma 4.

Consider the linear mixed-effects model (α,γ)(\alpha,\gamma) of (4). Suppose that (A0)–(A3) hold. Then for 𝐇i(γ,𝛉)\bm{H}_{i}(\gamma,\bm{\theta}) defined in (A.3), we have

  1. (i)

    For i=1,,mi=1,\dots,m and kγk\in\gamma,

    sup𝜽[0,)q(γ)θk|𝒛i,k𝑯i1(γ,𝜽)ϵi|=Op(ni/2),sup𝜽[0,)q(γ)|𝒛i,k𝑯i1(γ,𝜽)ϵi|=Op(ni/2).\displaystyle\begin{split}\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\theta_{k}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}\big{|}=&~{}O_{p}(n_{i}^{-\ell/2}),\\ \sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}\big{|}=&~{}O_{p}(n_{i}^{\ell/2}).\end{split}
  2. (ii)

    For i=1,,mi=1,\dots,m and kγk\notin\gamma,

    sup𝜽[0,)q(γ)|𝒛i,k𝑯i1(γ,𝜽)ϵi|=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}\big{|}= Op(ni/2).\displaystyle~{}O_{p}(n_{i}^{\ell/2}).
  3. (iii)

    For i=1,,mi=1,\dots,m and j=1,,pj=1,\dots,p,

    sup𝜽[0,)q(γ)|𝒙i,j𝑯i1(γ,𝜽)ϵi|=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\big{|}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}\big{|}= Op(niξ/2).\displaystyle~{}O_{p}(n_{i}^{\xi/2}).

    In addition,

    sup𝜽[0,)q(γ)|i=1m𝒙i,j𝑯i1(γ,𝜽)ϵi|=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\bigg{|}\sum_{i=1}^{m}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}\bigg{|}= Op((i=1mniξ)1/2).\displaystyle~{}O_{p}\bigg{(}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}^{1/2}\bigg{)}.
  4. (iv)

    For i=1,,mi=1,\dots,m,

    sup𝜽[0,)q(γ)ϵi𝑯i1(γ,𝜽)ϵi=\displaystyle\sup_{\bm{\theta}\in[0,\infty)^{q(\gamma)}}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}= ϵiϵi+Op(q).\displaystyle~{}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+O_{p}(q).

Note that Lemma 2 (i) implies that, for (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G},

i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)=\displaystyle\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)= (i=1mniξ)𝑻(α)+{o(i=1mniξτ)}p(α)×p(α)\displaystyle~{}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}\bm{T}(\alpha)+\bigg{\{}o\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\tau}\bigg{)}\bigg{\}}_{p(\alpha)\times p(\alpha)}
=\displaystyle= (i=1mniξ)𝑻(α)+{o(nminτi=1mniξ)}p(α)×p(α)\displaystyle~{}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}\bm{T}(\alpha)+\bigg{\{}o\bigg{(}n_{\min}^{-\tau}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}\bigg{\}}_{p(\alpha)\times p(\alpha)}

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}, where {a}k×j\{a\}_{k\times j} denotes a k×jk\times j matrix with elements equal to aa and 𝑻(α)\bm{T}(\alpha) is a diagonal matrix with diagonal elements bounded away from 0 and \infty. Hence by (A.2) with 𝒄,𝒅={o(nminτ/2)}p(α)×1\bm{c},\bm{d}=\{o(n_{\min}^{-\tau/2})\}_{p(\alpha)\times 1} and 𝑨=𝑻(α)\bm{A}=\bm{T}(\alpha), we have, for (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G},

(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1=\displaystyle\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}= 𝑻1(α)+{o(nminτ)}p(α)×p(α)\displaystyle~{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)} (A.7)

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}, which plays a key role in proving lemmas for theorems.

The following lemma shows that θ^k\hat{\theta}_{k} does not converge to 0 in probability for kγγ0k\in\gamma\cap\gamma_{0}, which allows us to restrict the parameter space of 𝜽\bm{\theta} from [0,)q(γ)[0,\infty)^{q(\gamma)} to

Θγ={𝜽[0,)q(γ):𝜽(γγ0)(0,)q(γγ0)}.\displaystyle\Theta_{\gamma}=\{\bm{\theta}\in[0,\infty)^{q(\gamma)}:\bm{\theta}(\gamma\cap\gamma_{0})\in(0,\infty)^{q(\gamma\cap\gamma_{0})}\}. (A.8)
Lemma 5.

Under the assumptions of Theorem 1, let 𝛉0\bm{\theta}_{0}^{\dagger} be 𝛉\bm{\theta} except that {θk:kγγ0}\{\theta_{k}:k\in\gamma\cap\gamma_{0}\} are replaced by {θk,0:kγγ0}\{\theta_{k,0}:k\in\gamma\cap\gamma_{0}\}. Then for any (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, v2>0v^{2}>0, and 𝛉[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)} with θk0\theta_{k}\rightarrow 0 for some kγγ0k\in\gamma\cap\gamma_{0}, we have

2logL(𝜽,v2;α,γ){2logL(𝜽0,v2,α,γ)}𝑝\displaystyle-2\log L(\bm{\theta},v^{2};\alpha,\gamma)-\{-2\log L(\bm{\theta}_{0}^{\dagger},v^{2},\alpha,\gamma)\}\xrightarrow{p}\infty

as NN\rightarrow\infty, where 2logL(𝛉,v2;α,γ)-2\log L(\bm{\theta},v^{2};\alpha,\gamma) is given in (7).

Based on Lemma 5, the following lemma is needed to develop the convergence rates of components of the likelihood equations given in (B.1) and (B.2), uniformly over Θγ\Theta_{\gamma} defined in (A.8).

Lemma 6.

Consider a mixed-effects model (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} with 𝐇(γ,𝛉)\bm{H}(\gamma,\bm{\theta}) defined in (5) and Θγ\Theta_{\gamma} defined in (A.8). Suppose that (A0)–(A3) hold. Then

  1. (i)

    For i,i=1,,mi,i^{*}=1,\dots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and k,kγk,k^{*}\in\gamma,

    sup𝜽Θγθkθk|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k|=o(ni(ξ)/2ni(ξ)/2τi=1mniξ),sup𝜽Θγθk|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k|=o(ni(ξ)/2ni(ξ+)/2τi=1mniξ),sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k|=o(ni(ξ+)/2ni(ξ+)/2τi=1mniξ).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\theta_{k}\theta_{k^{*}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\big{|}=&~{}o\Bigg{(}\frac{n_{i}^{(\xi-\ell)/2}n_{i^{*}}^{(\xi-\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)},\\ \sup_{\bm{\theta}\in\Theta_{\gamma}}\theta_{k}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\big{|}=&~{}o\Bigg{(}\frac{n_{i}^{(\xi-\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)},\\ \sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\big{|}=&~{}o\Bigg{(}\frac{n_{i}^{(\xi+\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}.\end{split}
  2. (ii)

    For i,i=1,,mi,i^{*}=1,\dots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, kγk\in\gamma and kγk^{*}\notin\gamma,

    sup𝜽Θγθk|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k|=o(ni(ξ)/2ni(ξ+)/2τi=1mniξ),sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k|=o(ni(ξ+)/2ni(ξ+)/2τi=1mniξ).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\theta_{k}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\big{|}=&~{}o\Bigg{(}\frac{n_{i}^{(\xi-\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)},\\ \sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\big{|}=&~{}o\Bigg{(}\frac{n_{i}^{(\xi+\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}.\end{split}
  3. (iii)

    For i=1,,mi=1,\dots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and kγk\in\gamma,

    sup𝜽Θγθk|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ|=op(ni/2),sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ|=op(ni/2).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\theta_{k}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\big{|}=&~{}o_{p}(n_{i}^{-\ell/2}),\\ \sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\big{|}=&~{}o_{p}(n_{i}^{\ell/2}).\end{split}
  4. (iv)

    For i=1,,mi=1,\dots,m, (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G} and kγk\in\gamma,

    sup𝜽Θγθk|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)|=o(ni(ξ)/2τ),sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)|=o(ni(ξ+)/2τ).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\theta_{k}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\big{|}=&~{}o(n_{i}^{(\xi-\ell)/2-\tau}),\\ \sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\big{|}=&~{}o(n_{i}^{(\xi+\ell)/2-\tau}).\end{split}
  5. (v)

    For i=1,,mi=1,\dots,m and (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G},

    sup𝜽Θγϵ𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ=\displaystyle\sup_{\bm{\theta}\in\Theta_{\gamma}}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}= Op(p(α)).\displaystyle~{}O_{p}(p(\alpha)).
  6. (vi)

    For i=1,,mi=1,\dots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and kγk\notin\gamma,

    sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ|=\displaystyle\sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\big{|}= op(ni/2).\displaystyle~{}o_{p}(n_{i}^{\ell/2}).
  7. (vii)

    For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G},

    sup𝜽Θγ|ϵ𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)|=op((i=1mniξ)1/2).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\big{|}=o_{p}\bigg{(}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}^{1/2}\bigg{)}.\end{split}
  8. (viii)

    For i,i=1,,mi,i^{*}=1,\dots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and k,kγk,k^{*}\notin\gamma,

    sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k|=\displaystyle\sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\big{|}= op(ni(ξ+)/2ni(ξ+)/2τi=1mniξ).\displaystyle~{}o_{p}\Bigg{(}\frac{n_{i}^{(\xi+\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}.
  9. (ix)

    For i=1,,mi=1,\dots,m, (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G} and kγk\notin\gamma,

    sup𝜽Θγ|𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)|=o(ni(ξ+)/2τ).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\big{|}=o(n_{i}^{(\xi+\ell)/2-\tau}).\end{split}
  10. (x)

    For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G},

    sup𝜽Θγ|𝜷(α0α)𝑿(α0α)𝑯1(γ,𝜽)×𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)|=o(i=1mniξτ).\displaystyle\begin{split}\sup_{\bm{\theta}\in\Theta_{\gamma}}\big{|}&\bm{\beta}(\alpha_{0}\setminus\alpha)^{\prime}\bm{X}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\\ &~{}\times\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\big{|}=o\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\tau}\bigg{)}.\end{split}

Appendix B Theoretical Proofs

B.1 Proof of Theorem 1

We shall focus on the asymptotic properties of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {θ^k(α,γ):kγ}\big{\{}\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\big{\}}, and derive the asymptotic properties of {σ^k2(α,γ):kγ}\{\hat{\sigma}_{k}^{2}(\alpha,\gamma):k\in\gamma\} via σ^k2(α,γ)=v^2(α,γ)θ^k(α,γ)\hat{\sigma}_{k}^{2}(\alpha,\gamma)=\hat{v}^{2}(\alpha,\gamma)\hat{\theta}_{k}(\alpha,\gamma); kγk\in\gamma. If v^2(α,γ)>0\hat{v}^{2}(\alpha,\gamma)>0 and θ^k(α,γ)>0\hat{\theta}_{k}(\alpha,\gamma)>0; kγk\in\gamma, then we can derive them using the likelihood equations. Differentiating the profile log-likelihood function of (7) with respect to v2v^{2} and {θk:kγ}\{\theta_{k}:k\in\gamma\}, we obtain

v2{2logL(𝜽,v2;α,γ)}=Nv2𝒚𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚v4\frac{\partial}{\partial v^{2}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}=\frac{N}{v^{2}}-\frac{\bm{y}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}}{v^{4}} (B.1)

and

θk{2logL(𝜽,v2;α,γ)}=i=1m{𝒛i,k𝑯i1(γ,𝜽)𝒛i,k{𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2v2}.\displaystyle\begin{split}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta},v^{2};\alpha,&\gamma)\}=\sum_{i=1}^{m}\bigg{\{}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}\\ &~{}-\frac{\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\}^{2}}{v^{2}}\bigg{\}}.\end{split} (B.2)

To derive v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {θ^k(α,γ):kγ}\big{\{}\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\big{\}}, we must study the convergence rate of each term on the right-hand sides of both (B.1) and (B.2) by Lemmas 24 and Lemma 6.

We first prove (1) using (B.1). Consider the following decomposition of 𝒚𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚\bm{y}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y} in (B.1):

𝒚𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=𝝁0𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝝁0+2𝝁0𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)+(𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)(𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ).\displaystyle\begin{split}\bm{y}^{\prime}\bm{H}^{-1}&(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\\ =&~{}\bm{\mu}^{\prime}_{0}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{\mu}_{0}\\ &~{}+2\bm{\mu}^{\prime}_{0}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ &~{}+(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ &~{}-(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}).\end{split} (B.3)

The first two terms of (B.3) are zeros because

(𝑰N𝑴(α,γ;𝜽))𝝁0=𝟎;α𝒜0.\displaystyle(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{\mu}_{0}=\bm{0};\quad\alpha\in\mathcal{A}_{0}. (B.4)

By Lemma 3 (ii)–(iii), Lemma 4 (i), and Lemma 4 (iv), the third term of (B.3) can be written as

i=1m(𝒁i(γ0)\displaystyle\sum_{i=1}^{m}(\bm{Z}_{i}(\gamma_{0}) 𝒃i(γ0)+ϵi)𝑯i1(γ,𝜽)(𝒁i(γ0)𝒃i(γ0)+ϵi)\displaystyle\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})
=\displaystyle= i=1mϵiϵi+Op(kγ0mθk)+op(kγ0mθk2)+Op(mq)\displaystyle~{}\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+O_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+o_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}^{2}}\bigg{)}+O_{p}(mq)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Note that by the Cauchy–Schwarz inequality,

(i=1mni(ξ)/2)2=O(i=1mniξi=1mni).\displaystyle\bigg{(}\sum_{i=1}^{m}n_{i}^{(\xi-\ell)/2}\bigg{)}^{2}=O\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\sum_{i^{*}=1}^{m}n_{i^{*}}^{-\ell}\bigg{)}. (B.5)

Hence, by Lemma 6 (i), Lemma 6 (iii), and Lemma 6 (v), the last term of (B.3) can be written as

{(i=1m\displaystyle\bigg{\{}\bigg{(}\sum_{i=1}^{m} kγ0bi,k𝒉i,k)+ϵ}𝑯1(γ,𝜽)𝑴(α,γ;𝜽){(i=1mkγ0bi,k𝒉i,k)+ϵ}\displaystyle\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}\bigg{)}+\bm{\epsilon}\bigg{\}}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bigg{\{}\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}\bigg{)}+\bm{\epsilon}\bigg{\}}
=\displaystyle= op(k,kγ0mθkθk)+op(kγ0mθk)+Op(p+mq)\displaystyle~{}o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+o_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p+mq)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Therefore, we can rewrite (B.3) as

𝒚𝑯1(γ,𝜽)\displaystyle\bm{y}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}) (𝑰N𝑴(α,γ;𝜽))𝒚\displaystyle(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}
=\displaystyle= ϵϵ+op(k,kγ0mθkθk)+Op(kγ0mθk)+Op(p+mq).\displaystyle~{}\bm{\epsilon}^{\prime}\bm{\epsilon}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+O_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p+mq).

It follows from (B.1) that for v2(0,)v^{2}\in(0,\infty),

v4{v2{2logL(𝜽,v2;α,γ)}}=N(v2ϵϵN)+op(k,kγ0mθkθk)+Op(kγ0mθk)+Op(p+mq)\displaystyle\begin{split}v^{4}\bigg{\{}\frac{\partial}{\partial v^{2}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}=&~{}N\bigg{(}v^{2}-\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}\bigg{)}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}\\ &~{}+O_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p+mq)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and Lemma 5 imply that

v^2(α,γ)=ϵϵN+Op(p+mqN).\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+O_{p}\Big{(}\frac{p+mq}{N}\Big{)}.\end{split} (B.6)

Thus (1) follows by applying the law of large numbers to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N. In addition, the asymptotic normality of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) follows by p+mq=o(N1/2)p+mq=o(N^{1/2}) and an application of the central limit theorem to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N in (B.6).

Next, we prove (4), for kγγ0k\in\gamma\cap\gamma_{0}, using (B.2). By Lemma 6 (i) and Lemma 6 (iii), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽){(i=1mkγ0bi,k𝒉i,k)+ϵ}=op(kγ0ni(ξ)/2i=1mni(ξ)/2θki=1mniξ)+op(ni/2)\displaystyle\begin{split}\theta_{k}\bm{h}_{i,k}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bigg{\{}\bigg{(}\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}\bigg{)}+\bm{\epsilon}\bigg{\}}\\ =&~{}o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\theta_{k^{*}}\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{-\ell/2})\end{split} (B.7)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.4) imply that for kγγ0k\in\gamma\cap\gamma_{0},

θk\displaystyle\theta_{k} 𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚\displaystyle\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})
+op(kγ0ni(ξ)/2i=1mni(ξ)/2θki=1mniξ)+op(ni/2)\displaystyle~{}+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\theta_{k^{*}}\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= θk𝒛i,k𝑯i1(γ,𝜽)(𝒁i(γ0)𝒃i(γ0)+ϵi)\displaystyle~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})
+op(kγ0ni(ξ)/2i=1mni(ξ)/2θki=1mniξ)+op(ni/2)\displaystyle~{}+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\theta_{k^{*}}\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= bi,k+Op(ni/2)+op(kγ0ni(ξ)/2i=1mni(ξ)/2θki=1mniξ)\displaystyle~{}b_{i,k}+O_{p}(n_{i}^{-\ell/2})+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\theta_{k^{*}}\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from Lemma 3 (ii)–(iii) and Lemma 4 (i). Hence, for kγγ0k\in\gamma\cap\gamma_{0},

θk2\displaystyle\theta_{k}^{2} {𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2\displaystyle\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\}^{2}
=\displaystyle= bi,k2+Op(ni/2)+op(kγ0ni(ξ)/2i=1mni(ξ)/2θki=1mniξ)\displaystyle~{}b_{i,k}^{2}+O_{p}(n_{i}^{-\ell/2})+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\theta_{k^{*}}\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This together with Lemma 3 (ii) and (B.2) imply that for kγγ0k\in\gamma\cap\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=m(θk1mi=1mbi,k2v2)+Op(i=1mni/2)+op(kγ0i=1mni(ξ)/2i=1mni(ξ)/2τθki=1mniξ)\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}m\bigg{(}\theta_{k}-\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{v^{2}}\bigg{)}+O_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{-\ell/2}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{\sum_{i=1}^{m}n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2-\tau}}{\theta_{k^{*}}\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\end{split} (B.8)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. By (B.5), Lemma 5 and setting (B.8) to 0, we obtain

θ^k(α,γ)=1mi=1mbi,k2v^2(α,γ)+Op(1mi=1mni/2);kγγ0.\hat{\theta}_{k}(\alpha,\gamma)=\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{\hat{v}^{2}(\alpha,\gamma)}+O_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{-\ell/2}\bigg{)};\quad k\in\gamma\cap\gamma_{0}.

This proves (4), for kγγ0k\in\gamma\cap\gamma_{0}.

It remains to prove (4), for kγγ0k\in\gamma\setminus\gamma_{0}. We prove by showing that (B.2) is asymptotically nonnegative, for θk(nmax,)\theta_{k}\in\big{(}n_{\max}^{-\ell},\infty\big{)}; kγγ0k\in\gamma\setminus\gamma_{0} using a recursive argument. Let 𝜽\bm{\theta}^{\dagger} be 𝜽\bm{\theta} except that {θk:kγγ0}\{\theta_{k}:k\in\gamma\cap\gamma_{0}\} are replaced by {θ^k(α,γ):kγγ0}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\cap\gamma_{0}\}. By Lemma 6 (i) and Lemma 6 (iii), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉i,k\displaystyle\theta_{k}\bm{h}_{i,k}^{\prime} 𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})\bigg{(}\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}
=\displaystyle= op(ni(ξ)/2i=1mni(ξ)/2i=1mniξ)+op(ni/2)\displaystyle~{}o_{p}\bigg{(}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{-\ell/2})

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This and (B.4) imply that for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)+op(ni(ξ)/2i=1mni(ξ)/2i=1mniξ)+op(ni/2)=θk𝒛i,k𝑯i1(γ,𝜽)(kγ0𝒛i,kbi,k+ϵi)+op(ni(ξ)/2i=1mni(ξ)/2i=1mniξ)+op(ni/2)=Op(ni/2)+op(ni(ξ)/2i=1mni(ξ)/2i=1mniξ)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ &~{}+o_{p}\bigg{(}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{-\ell/2})\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta}^{\dagger})\bigg{(}\sum_{k^{*}\in\gamma_{0}}\bm{z}_{i,k^{*}}b_{i,k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{-\ell/2})\\ =&~{}O_{p}(n_{i}^{-\ell/2})+o_{p}\bigg{(}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\end{split} (B.9)

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}, where the last equality follows from Lemma 3 (iii) and Lemma 4 (i). Hence by (B.5), Lemma 3 (ii), and (B.2), we have, for 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})} and kγγ0k\in\gamma\setminus\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=mθk+Op(i=1mni)+op(i=1mni(ξ)/2i=1mni(ξ)/2τi=1mniξ)=mθk+Op(i=1mni)=mθk+op(mlog(nmin)nmin).\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta}^{\dagger},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}m\theta_{k}+O_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{-\ell}\bigg{)}+o_{p}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}m\theta_{k}+O_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{-\ell}\bigg{)}\\ =&~{}m\theta_{k}+o_{p}(m\log(n_{\min})n_{\min}^{-\ell}).\end{split}

This implies that 2logL(𝜽,v2;α,γ)-2\log L(\bm{\theta}^{\dagger},v^{2};\alpha,\gamma) is an asymptotically nondecreasing function on θk(log(nmin)nmin,)\theta_{k}\in(\log(n_{\min})n_{\min}^{-\ell},\infty), for kγγ0k\in\gamma\setminus\gamma_{0} given other 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. It follows that θ^k(α,γ)[0,log(nmin)nmin)\hat{\theta}_{k}(\alpha,\gamma)\in\big{[}0,\log(n_{\min})n_{\min}^{-\ell}\big{)}; kγγ0k\in\gamma\setminus\gamma_{0}. The above convergence rate can be recursively improved. Without loss of generality, assume that nmin=n1n2nm=nmaxn_{\min}=n_{1}\leq n_{2}\leq\cdots\leq n_{m}=n_{\max}. We can restrict the parameter space of θk\theta_{k} in the next step to

Θγ,k,i={𝜽(γγ0)[0,)q(γγ0):θklog(nmin)ni}\displaystyle\Theta_{\gamma,k,i}=\big{\{}\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}:\theta_{k}\leq\log(n_{\min})n_{i}^{-\ell}\big{\}} (B.10)

with i=1i=1. Then, by Lemma 6 (i) and Lemma 6 (iii), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk\displaystyle\theta_{k} 𝒉1,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{h}_{1,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})
=\displaystyle= op(n1(ξ)/2i=1mni(ξ)/2i=1mniξ)+op(θkn1/2)\displaystyle~{}o_{p}\bigg{(}\frac{n_{1}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(\theta_{k}n_{1}^{\ell/2})

uniformly over 𝜽(γγ0)Θγ,k,1\bm{\theta}(\gamma\setminus\gamma_{0})\in\Theta_{\gamma,k,1}. This and (B.4) imply that for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉1,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉1,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉1,k𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)+op(n1(ξ)/2i=1mni(ξ)/2i=1mniξ)+op(θkn1/2)=θk𝒛1,k𝑯11(γ,𝜽)(𝒁1(γ0)𝒃1(γ0)+ϵ1)+op(n1(ξ)/2i=1mni(ξ)/2i=1mniξ)+op(θkn1/2)=Op(θkn1/2)+op(n1(ξ)/2i=1mni(ξ)/2i=1mniξ)\displaystyle\begin{split}\theta_{k}\bm{h}_{1,k}^{\prime}\bm{H}^{-1}&(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{1,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\theta_{k}\bm{h}_{1,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ &~{}+o_{p}\bigg{(}\frac{n_{1}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(\theta_{k}n_{1}^{\ell/2})\\ =&~{}\theta_{k}\bm{z}_{1,k}^{\prime}\bm{H}_{1}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{Z}_{1}(\gamma_{0})\bm{b}_{1}(\gamma_{0})+\bm{\epsilon}_{1})\\ &~{}+o_{p}\bigg{(}\frac{n_{1}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(\theta_{k}n_{1}^{\ell/2})\\ =&~{}O_{p}(\theta_{k}n_{1}^{\ell/2})+o_{p}\bigg{(}\frac{n_{1}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi-\ell)/2}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\end{split}

uniformly over 𝜽(γγ0)Θγ,k,1\bm{\theta}(\gamma\setminus\gamma_{0})\in\Theta_{\gamma,k,1}, where the last equality follows from Lemma 3 (iii) and Lemma 4 (i). Hence by (B.5), Lemma 3 (ii), (B.2), and (B.9), we have

θk2\displaystyle\theta_{k}^{2} {θk{2logL(𝜽,v2;α,γ)}}\displaystyle\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta}^{\dagger},v^{2};\alpha,\gamma)\}\bigg{\}}
=\displaystyle= (m1)θk+Op(θk2n1)+Op(i=2mni)+op(i=1mni)\displaystyle~{}(m-1)\theta_{k}+O_{p}(\theta_{k}^{2}n_{1}^{\ell})+O_{p}\bigg{(}\sum_{i=2}^{m}n_{i}^{-\ell}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{-\ell}\bigg{)}
=\displaystyle= (m1)θk+Op(log(nmin)θk)+Op(i=2mni)\displaystyle~{}(m-1)\theta_{k}+O_{p}(\log(n_{\min})\theta_{k})+O_{p}\bigg{(}\sum_{i=2}^{m}n_{i}^{-\ell}\bigg{)}

uniformly over 𝜽(γγ0)Θγ,k,1\bm{\theta}(\gamma\setminus\gamma_{0})\in\Theta_{\gamma,k,1}. Hence, setting the above equation equal to 0, we have

θ^k(α,γ)=1m1+Op(log(nmin))Op(i=2mni)=Op(n2).\hat{\theta}_{k}(\alpha,\gamma)=\frac{1}{m-1+O_{p}(\log(n_{\min}))}O_{p}\bigg{(}\sum_{i=2}^{m}n_{i}^{-\ell}\bigg{)}=O_{p}(n_{2}^{-\ell}).

Now we can further restrict the parameter space of θk\theta_{k} to Θγ,k,2\Theta_{\gamma,k,2} in (B.10). Continuing this procedure, we can recursively obtain θ^k(α,γ)=Op(ni)\hat{\theta}_{k}(\alpha,\gamma)=O_{p}(n_{i}^{-\ell}); kγγ0k\in\gamma\setminus\gamma_{0}, for i=3,,mi=3,\dots,m. This completes the proof of (4), for kγγ0k\in\gamma\setminus\gamma_{0}. Hence the proof of Theorem 1 is complete.

B.2 Proof of Example 1

Note that for q=1q=1, 𝒁i=𝒛i,1\bm{Z}_{i}=\bm{z}_{i,1} and 𝒃i=bi,1\bm{b}_{i}=b_{i,1}. Note that by Lemma 5, we consider the sample space (σ12,v2)(0,)2(\sigma_{1}^{2},v^{2})\in(0,\infty)^{2}. We first derive the explicit forms of the ML estimators θ^1\hat{\theta}_{1} and v^2\hat{v}^{2}. By (B.2), we have

θ1{2logL(θ1,v2)}=\displaystyle\frac{\partial}{\partial\theta_{1}}\{-2\log L(\theta_{1},v^{2})\}= i=1m𝒛i,1𝒛i,11+θ1𝒛i,1𝒛i,11v2i=1m{𝒛i,1(𝑰nθ1𝒛i,1𝒛i,11+θ1𝒛i,1𝒛i,1)𝒚i}2\displaystyle~{}\sum_{i=1}^{m}\frac{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{1}{v^{2}}\sum_{i=1}^{m}\bigg{\{}\bm{z}_{i,1}^{\prime}\bigg{(}\bm{I}_{n}-\frac{\theta_{1}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}\bm{y}_{i}\bigg{\}}^{2}
=\displaystyle= i=1m𝒛i,1𝒛i,11+θ1𝒛i,1𝒛i,11v2i=1m{𝒛i,1𝒛i,1bi,11+θ1𝒛i,1𝒛i,1+𝒛i,1ϵi1+θ1𝒛i,1𝒛i,1}2\displaystyle~{}\sum_{i=1}^{m}\frac{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{1}{v^{2}}\sum_{i=1}^{m}\bigg{\{}\frac{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}b_{i,1}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{\}}^{2}
=\displaystyle= i=1m(1θ11θ1(1+θ1𝒛i,1𝒛i,1))\displaystyle~{}\sum_{i=1}^{m}\bigg{(}\frac{1}{\theta_{1}}-\frac{1}{\theta_{1}(1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}\bigg{)}
1v2i=1m{bi,1θ1bi,1θ1(1+θ1𝒛i,1𝒛i,1)+𝒛i,1ϵi1+θ1𝒛i,1𝒛i,1}2\displaystyle~{}-\frac{1}{v^{2}}\sum_{i=1}^{m}\bigg{\{}\frac{b_{i,1}}{\theta_{1}}-\frac{b_{i,1}}{\theta_{1}(1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}+\frac{\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{\}}^{2}
=\displaystyle= mθ1i=1mbi,12v2θ12+2i=1mbi,1𝒛i,1ϵiv2θ1(1+θ1𝒛i,1𝒛i,1)+R(σ12,v2),\displaystyle~{}\frac{m}{\theta_{1}}-\frac{\sum_{i=1}^{m}b_{i,1}^{2}}{v^{2}\theta_{1}^{2}}+2\sum_{i=1}^{m}\frac{b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{v^{2}\theta_{1}(1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}+R(\sigma_{1}^{2},v^{2}),

where σ12=θ1v2\sigma_{1}^{2}=\theta_{1}v^{2} and

R(σ12,v2)=i=1m1θ1(1+θ1𝒛i,1𝒛i,1)i=1m(𝒛i,1ϵi)2v2{1+θ1𝒛i,1𝒛i,1}2+i=1m2bi,1𝒛i,1ϵiv2θ1{1+θ1𝒛i,1𝒛i,1}2+i=1m2bi,12v2θ12(1+θ1𝒛i,1𝒛i,1)i=1mbi,12v2θ12{1+θ1𝒛i,1𝒛i,1}2.\displaystyle\begin{split}R(\sigma_{1}^{2},v^{2})=&~{}-\sum_{i=1}^{m}\frac{1}{\theta_{1}(1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}-\sum_{i=1}^{m}\frac{(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{v^{2}\{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}+\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{v^{2}\theta_{1}\{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}\\ &~{}+\sum_{i=1}^{m}\frac{2b_{i,1}^{2}}{v^{2}\theta_{1}^{2}(1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}-\sum_{i=1}^{m}\frac{b_{i,1}^{2}}{v^{2}\theta_{1}^{2}\{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}.\end{split} (B.11)

Note that ML estimators σ^12=θ^1v^2\hat{\sigma}_{1}^{2}=\hat{\theta}_{1}\hat{v}^{2} and v^2\hat{v}^{2} satisfy

0=\displaystyle 0= mθ^1i=1mbi,12v^2θ^12+i=1m2bi,1𝒛i,1ϵiv^2θ^1(1+θ^1(𝒛i,1𝒛i,1))+R(σ^12,v^2),\displaystyle~{}\frac{m}{\hat{\theta}_{1}}-\frac{\sum_{i=1}^{m}b_{i,1}^{2}}{\hat{v}^{2}\hat{\theta}_{1}^{2}}+\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{\hat{v}^{2}\hat{\theta}_{1}(1+\hat{\theta}_{1}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}))}+R(\hat{\sigma}_{1}^{2},\hat{v}^{2}),

which implies that

σ^12=θ^1v^2=1mi=1mbi,12+1mi=1m2θ^1bi,1𝒛i,1ϵi1+θ^1𝒛i,1𝒛i,1+θ^12mR(σ^12,v^2)=1mi=1mbi,12+1mi=1m2bi,1𝒛i,1ϵi𝒛i,1𝒛i,11mi=1m2bi,1𝒛i,1ϵi(1+θ^1𝒛i,1𝒛i,1)𝒛i,1𝒛i,1+θ^12mR(σ^12,v^2)=1mi=1mbi,12+1mi=1m2bi,1𝒛i,1ϵi𝒛i,1𝒛i,1+R(σ^12,v2^),\displaystyle\begin{split}\hat{\sigma}_{1}^{2}=&~{}\hat{\theta}_{1}\hat{v}^{2}=\frac{1}{m}\sum_{i=1}^{m}b_{i,1}^{2}+\frac{1}{m}\sum_{i=1}^{m}\frac{2\hat{\theta}_{1}b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{\hat{\theta}_{1}^{2}}{m}R(\hat{\sigma}_{1}^{2},\hat{v}^{2})\\ =&~{}\frac{1}{m}\sum_{i=1}^{m}b_{i,1}^{2}+\frac{1}{m}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{1}{m}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{(1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{\hat{\theta}_{1}^{2}}{m}R(\hat{\sigma}_{1}^{2},\hat{v}^{2})\\ =&~{}\frac{1}{m}\sum_{i=1}^{m}b_{i,1}^{2}+\frac{1}{m}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+R^{*}(\hat{\sigma}_{1}^{2},\hat{v^{2}}),\end{split} (B.12)

where

R(σ^12,v^2)=\displaystyle R^{*}(\hat{\sigma}_{1}^{2},\hat{v}^{2})= 1mi=1m2bi,1𝒛i,1ϵi(1+θ^1𝒛i,1𝒛i,1)𝒛i,1𝒛i,1+θ^12mR(θ^1,v^2)\displaystyle~{}-\frac{1}{m}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{(1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{\hat{\theta}_{1}^{2}}{m}R(\hat{\theta}_{1},\hat{v}^{2}) (B.13)

with R(σ12,v2)R(\sigma_{1}^{2},v^{2}) defined in (B.11). By (B.12), we have

i=1mbi,12=Op(σ^12),bi,12=Op(σ^12),bi,1𝒛i,1ϵi=Op(1+θ^1𝒛i,1𝒛i,1).\displaystyle\begin{split}\sum_{i=1}^{m}b_{i,1}^{2}=&~{}O_{p}(\hat{\sigma}_{1}^{2}),\\ b_{i,1}^{2}=&~{}O_{p}(\hat{\sigma}_{1}^{2}),\\ b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}=&~{}O_{p}(1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}).\end{split} (B.14)

By (B.13) and (B.14), we have

R(σ^12,v^2)=op(n1).\displaystyle\begin{split}R^{*}(\hat{\sigma}_{1}^{2},\hat{v}^{2})=&~{}o_{p}(n^{-1}).\end{split} (B.15)

Similarly, by (B.1), we have

v2{2logL(θ1,v2)}=\displaystyle\frac{\partial}{\partial v^{2}}\{-2\log L(\theta_{1},v^{2})\}= Nv21v4i=1m𝒚i(𝑰nθ1𝒛i,1𝒛i,11+θ1𝒛i,1𝒛i,1)𝒚i\displaystyle~{}\frac{N}{v^{2}}-\frac{1}{v^{4}}\sum_{i=1}^{m}\bm{y}_{i}^{\prime}\bigg{(}\bm{I}_{n}-\frac{\theta_{1}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}\bm{y}_{i}
=\displaystyle= Nv21v4i=1m(𝒛i,1bi,1+ϵi)(𝑰nθ1𝒛i,1𝒛i,11+θ1𝒛i,1𝒛i,1)(𝒛i,1bi,1+ϵi)\displaystyle~{}\frac{N}{v^{2}}-\frac{1}{v^{4}}\sum_{i=1}^{m}(\bm{z}_{i,1}b_{i,1}+\bm{\epsilon}_{i})^{\prime}\bigg{(}\bm{I}_{n}-\frac{\theta_{1}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}(\bm{z}_{i,1}b_{i,1}+\bm{\epsilon}_{i})
=\displaystyle= Nv21v4i=1m{bi,12𝒛i,1𝒛i,11+θ1𝒛i,1𝒛i,1+2bi,1𝒛i,1ϵi1+θ1𝒛i,1𝒛i,1+ϵiϵiθ1(𝒛i,1ϵi)21+θ1𝒛i,1𝒛i,1}.\displaystyle~{}\frac{N}{v^{2}}-\frac{1}{v^{4}}\sum_{i=1}^{m}\bigg{\{}\frac{b_{i,1}^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}-\frac{\theta_{1}(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{1+\theta_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{\}}.

The ML estimators θ^1\hat{\theta}_{1} and v^2\hat{v}^{2} satisfy

0=\displaystyle 0= Nv^2Nv^4i=1m{bi,12𝒛i,1𝒛i,11+θ^1𝒛i,1𝒛i,1+2bi,1𝒛i,1ϵi1+θ^1𝒛i,1𝒛i,1+ϵiϵiθ^1(𝒛i,1ϵi)21+θ^1𝒛i,1𝒛i,1},\displaystyle~{}\frac{N}{\hat{v}^{2}}-\frac{N}{\hat{v}^{4}}\sum_{i=1}^{m}\bigg{\{}\frac{b_{i,1}^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}-\frac{\hat{\theta}_{1}(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{\}},

which implies that

v^2=\displaystyle\hat{v}^{2}= 1Ni=1mϵiϵi+R(σ^12,v^2),\displaystyle~{}\frac{1}{N}\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2}), (B.16)

with

R(σ^12,v^2)=\displaystyle R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})= 1Ni=1m{bi,12𝒛i,1𝒛i,11+θ^1𝒛i,1𝒛i,1+2bi,1𝒛i,1ϵi1+θ^1𝒛i,1𝒛i,1θ^1(𝒛i,1ϵi)21+θ^1𝒛i,1𝒛i,1}.\displaystyle~{}\frac{1}{N}\sum_{i=1}^{m}\bigg{\{}\frac{b_{i,1}^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{\hat{\theta}_{1}(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{1+\hat{\theta}_{1}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{\}}.

This together with (B.14) yields

R(σ^12,v^2=Op(n1).\displaystyle\begin{split}R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2}=&~{}O_{p}(n^{-1}).\end{split} (B.17)

We are now ready to compare the asymptotic behaviors between the LS predictors and the empirical BLUPs. Note that for i=1,,mi=1,\ldots,m, we have

b~i,1=\displaystyle\tilde{b}_{i,1}= (𝒛i,1𝒛i,1)1𝒛i,1𝒚i,\displaystyle~{}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{-1}\bm{z}_{i,1}^{\prime}\bm{y}_{i},
b^i,1(σ12,v2)=\displaystyle\hat{b}_{i,1}(\sigma_{1}^{2},v^{2})= σ12𝒛i,1(σ12𝒛i,1𝒛i,1+v2𝑰n)1𝒚i.\displaystyle~{}\sigma_{1}^{2}\bm{z}_{i,1}^{\prime}(\sigma_{1}^{2}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}+v^{2}\bm{I}_{n})^{-1}\bm{y}_{i}.

Hence

𝒛i,1(b~i,1bi,1)=\displaystyle\bm{z}_{i,1}\big{(}\tilde{b}_{i,1}-b_{i,1}\big{)}= 𝒛i,1𝒛i,1ϵi𝒛i,1𝒛i,1,\displaystyle~{}\frac{\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}, (B.18)

and

b^i,1(σ^12,v^2)bi,1=σ^12𝒛i,1(σ^12𝒛i,1𝒛i,1+v^2𝑰n)1(𝒛i,1bi,1+ϵi)bi,1={σ^12𝒛i,1(σ^12𝒛i,1𝒛i,1+v^2𝑰n)1𝒛i,11}bi,1+σ^12𝒛i,1(σ^12𝒛i,1𝒛i,1+v^2𝑰n)1ϵi={(σ^12/v^2)𝒛i,1(𝑰n(σ^12/v^2)𝒛i,1𝒛i,11+(σ^12/v^2)𝒛i,1𝒛i,1)𝒛i,11}bi+(σ^12/v^2)𝒛i,1(𝑰n(σ^12/v^2)𝒛i,1𝒛i,11+(σ^12/v^2)𝒛i,1𝒛i,1)ϵi=(σ^12/v^2)𝒛i,1ϵibi1+(σ^12/v^2)𝒛i,1𝒛i,1,\displaystyle\begin{split}\hat{b}_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2})-b_{i,1}=&~{}\hat{\sigma}_{1}^{2}\bm{z}_{i,1}^{\prime}(\hat{\sigma}_{1}^{2}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}+\hat{v}^{2}\bm{I}_{n})^{-1}(\bm{z}_{i,1}b_{i,1}+\bm{\epsilon}_{i})-b_{i,1}\\ =&~{}\big{\{}\hat{\sigma}_{1}^{2}\bm{z}_{i,1}^{\prime}(\hat{\sigma}_{1}^{2}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}+\hat{v}^{2}\bm{I}_{n})^{-1}\bm{z}_{i,1}-1\big{\}}b_{i,1}+\hat{\sigma}_{1}^{2}\bm{z}_{i,1}^{\prime}(\hat{\sigma}_{1}^{2}\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}+\hat{v}^{2}\bm{I}_{n})^{-1}\bm{\epsilon}_{i}\\ =&~{}\bigg{\{}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bigg{(}\bm{I}_{n}-\frac{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}}{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}\bm{z}_{i,1}-1\bigg{\}}b_{i}\\ &~{}+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bigg{(}\bm{I}_{n}-\frac{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}\bm{z}_{i,1}^{\prime}}{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}\bm{\epsilon}_{i}\\ =&~{}\frac{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}-b_{i}}{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}},\end{split}

which implies that

𝒛i,1(b^i,1(σ^12,v^2)bi,1)=\displaystyle\bm{z}_{i,1}\big{(}\hat{b}_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2})-b_{i,1}\big{)}= 𝒛i,1{(σ^12/v^2)𝒛i,1ϵibi}1+(σ^12/v^2)𝒛i,1𝒛i,1.\displaystyle~{}\frac{\bm{z}_{i,1}\{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}-b_{i}\}}{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}. (B.19)

Note that by (B.18),

i=1m𝒛i,1(b~i,1bi,1)2=\displaystyle\sum_{i=1}^{m}\big{\|}\bm{z}_{i,1}\big{(}\tilde{b}_{i,1}-b_{i,1}\big{)}\big{\|}^{2}= i=1m(b~i,1bi,1)2𝒛i,1𝒛i,1=i=1m(𝒛i,1ϵi)2𝒛i,1𝒛i,1,\displaystyle~{}\sum_{i=1}^{m}(\tilde{b}_{i,1}-b_{i,1})^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}=\sum_{i=1}^{m}\frac{(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}},

and by (B.19),

i=1m𝒛i,1(b^i,1(σ^12,v^2)bi,1)2=\displaystyle\sum_{i=1}^{m}\big{\|}\bm{z}_{i,1}\big{(}\hat{b}_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2})-b_{i,1}\big{)}\big{\|}^{2}= i=1m{(σ^12/v^2)𝒛i,1ϵibi,1}2𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}2,\displaystyle~{}\sum_{i=1}^{m}\frac{\{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}-b_{i,1}\}^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}},

which implies that

D(σ^2,v^2)=i=1m((𝒛i,1ϵi)2𝒛i,1𝒛i,1{(σ^12/v^2)𝒛i,1ϵibi,1}2𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}2)=i=1m(𝒛i,1ϵi)2{1+(σ^12/v^2)𝒛i,1𝒛i,1}2{(σ^12/v^2)𝒛i,1ϵibi,1}2(𝒛i,1𝒛i,1)2𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}2=i=1m(𝒛i,1ϵi)2+2(σ^12/v^2)(𝒛i,1ϵi)2𝒛i,1𝒛i,1+2(σ^12/v^2)bi,1𝒛i,1ϵi(𝒛i,1𝒛i,1)2bi,12(𝒛i,1𝒛i,1)2𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}2.\displaystyle\begin{split}D(\hat{\sigma}^{2},\hat{v}^{2})=&~{}\sum_{i=1}^{m}\bigg{(}\frac{(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{\{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}-b_{i,1}\}^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}\bigg{)}\\ =&~{}\sum_{i=1}^{m}\frac{(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}-\{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}-b_{i,1}\}^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}\\ =&~{}\sum_{i=1}^{m}\frac{(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}+2(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}+2(\hat{\sigma}_{1}^{2}/\hat{v}^{2})b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}-b_{i,1}^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}.\end{split} (B.20)

Note that by (B.20) and

2(σ^12/v^2)(𝒛i,1ϵi)2{1+(σ^12/v^2)𝒛i,1𝒛i,1}2=\displaystyle\frac{2(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}= 2(𝒛i,1ϵi)2(𝒛i,1𝒛i,1)2(σ^12/v^2)2(𝒛i,1ϵi)2+4(σ^12/v^2)(𝒛i,1𝒛i,1)(𝒛i,1ϵi)2{1+(σ^12/v^2)𝒛i,1𝒛i,1}2(σ^12/v^2)(𝒛i,1𝒛i,1)2,\displaystyle~{}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})}-\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}+4(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}},
2(σ^12/v^2)bi,1𝒛i,1ϵi(𝒛i,1𝒛i,1){1+(σ^12/v^2)𝒛i,1𝒛i,1}2=\displaystyle\frac{2(\hat{\sigma}_{1}^{2}/\hat{v}^{2})b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}= 2bi,1𝒛i,1ϵi(σ^12/v^2)𝒛i,1𝒛i,12bi,1𝒛i,1ϵi+4bi,1𝒛i,1ϵi(σ^12/v^2)(𝒛i,1𝒛i,1){1+(σ^12/v^2)𝒛i,1𝒛i,1}2(σ^12/v^2)(𝒛i,1𝒛i,1),\displaystyle~{}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}+4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})},
bi,12(𝒛i,1𝒛i,1){1+(σ^12/v^2)𝒛i,1𝒛i,1}2=\displaystyle\frac{b_{i,1}^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}= bi,12(σ^12/v^2)2(𝒛i,1𝒛i,1)bi,12+2(σ^12/v^2)𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}2(σ^12/v^2)2(𝒛i,1𝒛i,1),\displaystyle~{}\frac{b_{i,1}^{2}}{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}-\frac{b_{i,1}^{2}+2(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})},

we have

D(σ^2,v^2)=\displaystyle D(\hat{\sigma}^{2},\hat{v}^{2})= i=1m(2(𝒛i,1ϵi)2(𝒛i,1𝒛i,1)2(σ^12/v^2)+2bi,1𝒛i,1ϵi(σ^12/v^2)𝒛i,1𝒛i,1bi,12(σ^12/v^2)2(𝒛i,1𝒛i,1))+R(σ^12,v^2)\displaystyle~{}\sum_{i=1}^{m}\bigg{(}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})}+\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}-\frac{b_{i,1}^{2}}{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}\bigg{)}+R^{{\ddagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2}) (B.21)

with

R(σ^12,v^2)=\displaystyle R^{{\ddagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})= i=1m((𝒛i,1ϵi)2𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}22(𝒛i,1ϵi)2+4(σ^12/v^2)(𝒛i,1𝒛i,1)(𝒛i,1ϵi)2{1+(σ^12/v^2)𝒛i,1𝒛i,1}2(σ^12/v^2)(𝒛i,1𝒛i,1)2\displaystyle~{}\sum_{i=1}^{m}\bigg{(}\frac{(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}}-\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}+4(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}}
2bi,1𝒛i,1ϵi+4bi,1𝒛i,1ϵi(σ^12/v^2)(𝒛i,1𝒛i,1){1+(σ^12/v^2)𝒛i,1𝒛i,1}2(σ^12/v^2)(𝒛i,1𝒛i,1)+bi,12+2(σ^12/v^2)𝒛i,1𝒛i,1{1+(σ^12/v^2)𝒛i,1𝒛i,1}2(σ^12/v^2)2(𝒛i,1𝒛i,1)).\displaystyle~{}-\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}+4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}+\frac{b_{i,1}^{2}+2(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}{\{1+(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\}^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}\bigg{)}.

Note that by (B.14),

R(σ^12,v^2)=Op(n3/2).\displaystyle\begin{split}R^{{\ddagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})=&~{}O_{p}(n^{-3/2}).\end{split} (B.22)

Further, by (B.12) and (B.16), we have

2(𝒛i,1ϵi)2(𝒛i,1𝒛i,1)2(σ^12/v^2)=2(𝒛i,1ϵi)2(k=1mϵkϵk/N)(𝒛i,1𝒛i,1)2(k=1mbk,12/m)+2(𝒛i,1ϵi)2(𝒛i,1𝒛i,1)2σ^12(k=1mbk,12/m)×{R(σ^12,v^2)k=1mbk,12m(k=1mϵkϵkN)(i=1m2bi,1𝒛i,1ϵim𝒛i,1𝒛i,1)R(σ^12,v^2)k=1mϵkϵkN}2(𝒛i,1ϵi)2k=1mϵkϵkn(𝒛i,1𝒛i,1)2k=1mbk,12+Ri,1(σ^12,v^2),\displaystyle\begin{split}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}(\hat{\sigma}_{1}^{2}/\hat{v}^{2})}=&~{}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}(\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}/N)}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}(\sum_{k=1}^{m}b_{k,1}^{2}/m)}+\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}\hat{\sigma}_{1}^{2}(\sum_{k=1}^{m}b_{k,1}^{2}/m)}\\ &~{}\times\bigg{\{}R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\frac{\sum_{k=1}^{m}b_{k,1}^{2}}{m}-\bigg{(}\frac{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{)}\bigg{(}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{m\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}-R^{*}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\frac{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{\}}\\ \equiv&~{}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{n(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}\sum_{k=1}^{m}b_{k,1}^{2}}+R_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2}),\end{split} (B.23)

with

Ri,1(σ^12,v^2)=\displaystyle R_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2})= 2(𝒛i,1ϵi)2(𝒛i,1𝒛i,1)2σ^12(k=1mbk,12/m){R(σ^12,v^2)k=1mbk,12m\displaystyle~{}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}\hat{\sigma}_{1}^{2}(\sum_{k=1}^{m}b_{k,1}^{2}/m)}\bigg{\{}R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\frac{\sum_{k=1}^{m}b_{k,1}^{2}}{m}
(k=1mϵkϵkN)(i=1m2bi,1𝒛i,1ϵim𝒛i,1𝒛i,1)R(σ^12,v^2)k=1mϵkϵkN}.\displaystyle~{}-\bigg{(}\frac{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{)}\bigg{(}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{m\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}-R^{*}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\frac{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{\}}.

Similarly,

2bi,1𝒛i,1ϵi(σ^12/v^2)𝒛i,1𝒛i,1=\displaystyle\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}= 2bi,1𝒛i,1ϵik=1mϵkϵkn{k=1mbk,12+2k=1mbk,1𝒛k,1ϵk/(𝒛k,1𝒛k,1)}(𝒛i,1𝒛i,1)+Ri,2(σ^12,v^2),\displaystyle~{}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{n\{\sum_{k=1}^{m}b_{k,1}^{2}+2\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}+R_{i,2}(\hat{\sigma}_{1}^{2},\hat{v}^{2}), (B.24)
bi,12(σ^12/v^2)2(𝒛i,1𝒛i,1)=\displaystyle\frac{b_{i,1}^{2}}{(\hat{\sigma}_{1}^{2}/\hat{v}^{2})^{2}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}= bi,12(k=1mϵkϵk)2n2(k=1mbk,12)2𝒛i,1𝒛i,1+Ri,3(σ^12,v^2)\displaystyle~{}\frac{b_{i,1}^{2}(\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k})^{2}}{n^{2}(\sum_{k=1}^{m}b_{k,1}^{2})^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+R_{i,3}(\hat{\sigma}_{1}^{2},\hat{v}^{2}) (B.25)

with

Ri,2(σ^12,v^2)=\displaystyle R_{i,2}(\hat{\sigma}_{1}^{2},\hat{v}^{2})= 2bi,1𝒛i,1ϵiσ^12𝒛i,1𝒛i,1{k=1mbk,12/m+2k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}\displaystyle~{}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{\hat{\sigma}_{1}^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}\{\sum_{k=1}^{m}b_{k,1}^{2}/m+2\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}}
×{R(σ^12,v^2)(k=1mbk,12m+k=1m2bk,1𝒛k,1ϵkm𝒛k,1𝒛k,1)R(σ^12,v^2)k=1mϵkϵkN},\displaystyle~{}\times\bigg{\{}R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\bigg{(}\frac{\sum_{k=1}^{m}b_{k,1}^{2}}{m}+\sum_{k=1}^{m}\frac{2b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}}{m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1}}\bigg{)}-R^{*}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\sum_{k=1}^{m}\frac{\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{\}},
Ri,3(σ^12,v^2)=\displaystyle R_{i,3}(\hat{\sigma}_{1}^{2},\hat{v}^{2})= bi,12σ^14(𝒛i,1𝒛i,1){k=1mbk,12/m}2(v^2k=1mbk,12m+σ^12k=1mϵkϵkN)\displaystyle~{}\frac{b_{i,1}^{2}}{\hat{\sigma}_{1}^{4}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\{\sum_{k=1}^{m}b_{k,1}^{2}/m\}^{2}}\bigg{(}\hat{v}^{2}\sum_{k=1}^{m}\frac{b_{k,1}^{2}}{m}+\hat{\sigma}_{1}^{2}\sum_{k=1}^{m}\frac{\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{)}
×{R(σ^12,v^2)k=1mbk,12m(k=1mϵkϵkN)(i=1m2bi,1𝒛i,1ϵim𝒛i,1𝒛i,1)R(σ^12,v^2)k=1mϵkϵkN}.\displaystyle~{}\times\bigg{\{}R^{{\dagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\frac{\sum_{k=1}^{m}b_{k,1}^{2}}{m}-\bigg{(}\frac{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{)}\bigg{(}\sum_{i=1}^{m}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}}{m\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\bigg{)}-R^{*}(\hat{\sigma}_{1}^{2},\hat{v}^{2})\frac{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{N}\bigg{\}}.

Hence by (B.14), (B.15), and (B.17), we have

Ri,1(σ^12,v^2)=Op(n3/2),i=1,2,3.\displaystyle\begin{split}R_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2})=&~{}O_{p}(n^{-3/2}),\quad i=1,2,3.\end{split} (B.26)

Furthermore, we have

1n2bi,1𝒛i,1ϵik=1mϵkϵk{k=1mbk,12+2k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}(𝒛i,1𝒛i,1)=1n(𝒛i,1𝒛i,1){2bi,1𝒛i,1ϵik=1mϵkϵkk=1mbk,124bi,1𝒛i,1ϵi{k=1mϵkϵk}{k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}{k=1mbk,12}2+8bi,1𝒛i,1ϵik=1mϵkϵk{k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}2{k=1mbk,12+2k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}{k=1mbk,12}2}{2bi,1𝒛i,1ϵik=1mϵkϵkn(𝒛i,1𝒛i,1)k=1mbk,124bi,1𝒛i,1ϵi{k=1mϵkϵk}{k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}n(𝒛i,1𝒛i,1){k=1mbk,12}2}+Ri,4,\displaystyle\begin{split}\frac{1}{n}&\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{\{\sum_{k=1}^{m}b_{k,1}^{2}+2\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}\\ =&~{}\frac{1}{n(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})}\bigg{\{}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{\sum_{k=1}^{m}b_{k,1}^{2}}-\frac{4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}}{\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\\ &~{}+\frac{8b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}^{2}}{\{\sum_{k=1}^{m}b_{k,1}^{2}+2\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{\}}\\ \equiv&~{}\bigg{\{}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{n(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\sum_{k=1}^{m}b_{k,1}^{2}}-\frac{4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}}{n(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{\}}\\ &~{}+R_{i,4},\end{split} (B.27)

with

Ri,4=\displaystyle R_{i,4}= 8bi,1𝒛i,1ϵik=1mϵkϵk{k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}2n(𝒛i,1𝒛i,1){k=1mbk,12+2k=1mbk,1𝒛k,1ϵk/(m𝒛k,1𝒛k,1)}{k=1mbk,12}2.\displaystyle~{}\frac{8b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}^{2}}{n(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\{\sum_{k=1}^{m}b_{k,1}^{2}+2\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(m\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}.

Note that

Ri,4=Op(n3/2).\displaystyle R_{i,4}=O_{p}(n^{-3/2}). (B.28)

By (B.21), (B.23), (B.24), (B.25), and (B.27), we have

nD(σ^12,v^2)=An,m+nR(σ^12,v^2)+ni=1m{Ri,1(σ^12,v^2)+Ri,2(σ^12,v^2)Ri,3(σ^12,v^2)+Ri,4}An,m+Op(n1/2)\displaystyle\begin{split}nD(\hat{\sigma}_{1}^{2},\hat{v}^{2})=&~{}A_{n,m}+nR^{{\ddagger}}(\hat{\sigma}_{1}^{2},\hat{v}^{2})+n\sum_{i=1}^{m}\bigg{\{}R_{i,1}(\hat{\sigma}_{1}^{2},\hat{v}^{2})+R_{i,2}(\hat{\sigma}_{1}^{2},\hat{v}^{2})-R_{i,3}(\hat{\sigma}_{1}^{2},\hat{v}^{2})+R_{i,4}\bigg{\}}\\ \equiv&~{}A_{n,m}+O_{p}(n^{-1/2})\end{split}

with

An,m=\displaystyle A_{n,m}= i=1m{2(𝒛i,1ϵi)2k=1mϵkϵk(𝒛i,1𝒛i,1)2k=1mbk,12bi,12(k=1mϵkϵk)2n(k=1mbk,12)2𝒛i,1𝒛i,12bi,1𝒛i,1ϵik=1mϵkϵk(𝒛i,1𝒛i,1)k=1mbk,12\displaystyle~{}\sum_{i=1}^{m}\bigg{\{}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}\sum_{k=1}^{m}b_{k,1}^{2}}-\frac{b_{i,1}^{2}(\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k})^{2}}{n(\sum_{k=1}^{m}b_{k,1}^{2})^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\sum_{k=1}^{m}b_{k,1}^{2}}
4bi,1𝒛i,1ϵi{k=1mϵkϵk}{k=1mbk,1𝒛k,1ϵk/(𝒛k,1𝒛k,1)}(𝒛i,1𝒛i,1){k=1mbk,12}2},\displaystyle~{}-\frac{4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{\}},

where the last equality follows from (B.22), (B.26), and (B.28). Note that (k=1mbi,k2/σ1,02)1\big{(}\sum_{k=1}^{m}b_{i,k}^{2}/\sigma_{1,0}^{2}\big{)}^{-1} follows the inverse-chi-squared distribution with mm degrees of freedom. We have

E(1i=1mbi,12)=1(m2)σ1,02,provided m>2,E(bi,12{k=1mbk,12}2)=1m(m2)σ1,02provided m>4.\displaystyle\begin{split}\mathrm{E}\bigg{(}\frac{1}{\sum_{i=1}^{m}b_{i,1}^{2}}\bigg{)}=&~{}\frac{1}{(m-2)\sigma_{1,0}^{2}},\quad\mbox{provided }m>2,\\ \mathrm{E}\bigg{(}\frac{b_{i,1}^{2}}{\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{)}=&~{}\frac{1}{m(m-2)\sigma_{1,0}^{2}}\quad\mbox{provided }m>4.\end{split} (B.29)

By (B.29) and

E({i=1mϵiϵi}2)=(2mn+m2n2)v04,E(ϵiϵi(𝒛i,1ϵi))=0,E(ϵiϵi(𝒛i,1ϵi)2)=n2v04+o(n2),\displaystyle\begin{split}\mathrm{E}\bigg{(}\bigg{\{}\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}\bigg{\}}^{2}\bigg{)}=&~{}(2mn+m^{2}n^{2})v_{0}^{4},\\ \mathrm{E}\big{(}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}(\bm{z}_{i,1}\bm{\epsilon}_{i})\big{)}=&~{}0,\\ \mathrm{E}\big{(}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}(\bm{z}_{i,1}\bm{\epsilon}_{i})^{2}\big{)}=&~{}n^{2}v_{0}^{4}+o(n^{2}),\end{split}

we have, for m>4m>4,

E(An,m)=Ei=1m{2(𝒛i,1ϵi)2k=1mϵkϵk(𝒛i,1𝒛i,1)2k=1mbk,12bi,12(k=1mϵkϵk)2n(k=1mbk,12)2𝒛i,1𝒛i,1+2bi,1𝒛i,1ϵik=1mϵkϵk(𝒛i,1𝒛i,1)k=1mbk,124bi,1𝒛i,1ϵi{k=1mϵkϵk}{k=1mbk,1𝒛k,1ϵk/(𝒛k,1𝒛k,1)}(𝒛i,1𝒛i,1){k=1mbk,12}2}=2m2v04(m2)σ1,02m2v04(m2)σ1,02+o(1)E(E(i=1m4bi,1𝒛i,1ϵi{k=1mϵkϵk}{k=1mbk,1𝒛k,1ϵk/(𝒛k,1𝒛k,1)}(𝒛i,1𝒛i,1){k=1mbk,12}2|b1,1,,bm,1))=2m2v04(m2)σ1,02m2v04(m2)σ1,02E(i=1m4mv04bi,12{k=1mbk,12}2)+o(1)=2m2v04(m2)σ1,02m2v04(m2)σ1,024mv04(m2)σ1,02+o(1)=m(m4)v04(m2)σ1,02+o(1).\displaystyle\begin{split}\mathrm{E}(A_{n,m})=&~{}\mathrm{E}\sum_{i=1}^{m}\bigg{\{}\frac{2(\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i})^{2}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})^{2}\sum_{k=1}^{m}b_{k,1}^{2}}-\frac{b_{i,1}^{2}(\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k})^{2}}{n(\sum_{k=1}^{m}b_{k,1}^{2})^{2}\bm{z}_{i,1}^{\prime}\bm{z}_{i,1}}+\frac{2b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\sum_{k=1}^{m}b_{k,1}^{2}}\\ &~{}-\frac{4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{\}}\\ =&~{}\frac{2m^{2}v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}-\frac{m^{2}v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}+o(1)\\ &~{}-\mathrm{E}\bigg{(}\mathrm{E}\bigg{(}\sum_{i=1}^{m}\frac{4b_{i,1}\bm{z}_{i,1}^{\prime}\bm{\epsilon}_{i}\{\sum_{k=1}^{m}\bm{\epsilon}_{k}^{\prime}\bm{\epsilon}_{k}\}\{\sum_{k=1}^{m}b_{k,1}\bm{z}_{k,1}^{\prime}\bm{\epsilon}_{k}/(\bm{z}_{k,1}^{\prime}\bm{z}_{k,1})\}}{(\bm{z}_{i,1}^{\prime}\bm{z}_{i,1})\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{|}b_{1,1},\ldots,b_{m,1}\bigg{)}\bigg{)}\\ =&~{}\frac{2m^{2}v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}-\frac{m^{2}v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}-\mathrm{E}\bigg{(}\sum_{i=1}^{m}\frac{4mv_{0}^{4}b_{i,1}^{2}}{\{\sum_{k=1}^{m}b_{k,1}^{2}\}^{2}}\bigg{)}+o(1)\\ =&~{}\frac{2m^{2}v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}-\frac{m^{2}v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}-\frac{4mv_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}+o(1)\\ =&~{}\frac{m(m-4)v_{0}^{4}}{(m-2)\sigma_{1,0}^{2}}+o(1).\end{split}

This completes the proofs.

B.3 Proof of Theorem 5

In this section, we first prove Theorem 5 to simplify the proofs of Theorems 3 and 4. As with the proof of Theorem 1, we shall focus on the asymptotic properties of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {θ^k(α,γ):kγ}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\}, and derive them by solving the likelihood equations directly.

We first prove (16) using (B.1). For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G}, we have

(𝑰N𝑴(α,γ;𝜽))𝝁0=\displaystyle(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{\mu}_{0}= (𝑰N𝑴(α,γ;𝜽))𝑿(α0α)𝜷0(α0α),\displaystyle~{}(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha), (B.30)

where 𝜷0(α0α)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha) denotes the sub-vector of 𝜷0\bm{\beta}_{0} corresponding to α0α\alpha_{0}\setminus\alpha. Note that by the Cauchy–Schwarz inequality, we have

(i=1mni(ξ+)/2)2=O(i=1mniξi=1mni).\displaystyle\bigg{(}\sum_{i=1}^{m}n_{i}^{(\xi+\ell)/2}\bigg{)}^{2}=O\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\sum_{i^{*}=1}^{m}n_{i}^{\ell}\bigg{)}. (B.31)

Hence by (B.31) and Lemma 6, we have

(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)=𝜷0(α0α)(𝑿(α0α)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷0(α0α)+𝒃(γ0)𝒁(γ0)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒁(γ0)𝒃(γ0)+ϵ𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ+2𝒃(γ0)𝒁(γ0)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷0(α0α)+2ϵ𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷0(α0α)+2𝒃(γ0)𝒁(γ0)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ=(i=1mkγ0bi,k𝒉i,k)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(i=1mkγ0bi,k𝒉i,k)+2(i=1mkγ0bi,k𝒉i,k)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷0(α0α)+2(i=1mkγ0bi,k𝒉i,k)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ+op(i=1mniξτ)+Op(p)\displaystyle\begin{split}\big{(}\bm{X}&(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\\ &~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ =&~{}\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)^{\prime}\big{(}\bm{X}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)\\ &~{}+\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})\\ &~{}+\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\\ &~{}+2\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)\\ &~{}+2\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)\\ &~{}+2\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\\ =&~{}\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}\bigg{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}\bigg{)}\\ &~{}+2\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}\bigg{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)\\ &~{}+2\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}\bigg{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\tau}\bigg{)}\\ &~{}+O_{p}(p)\\ \end{split}
=op(i=1mniτ)+op(i=1mni(ξ+)/2τ)+op(i=1mniξτ)+Op(p)=op(i=1mniξ)+op(i=1mni)+Op(p)\displaystyle\begin{split}=&~{}o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell-\tau}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{(\xi+\ell)/2-\tau}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\tau}\bigg{)}+O_{p}(p)\\ =&~{}o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}(p)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.30) imply

𝒚𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)×𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)=(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)+op(i=1mniξ)+op(i=1mni)+Op(p)=i=1m𝜷0(α0α)𝑿i(α0α)𝑯i1(γ,𝜽)𝑿i(α0α)𝜷0(α0α)+2i=1m𝜷0(α0α)𝑿i(α0α)𝑯i1(γ,𝜽)(𝒁i(γ0)𝒃i(γ0)+ϵi)+i=1m(kγ0𝒛i,kbi,k+ϵi)𝑯i1(γ,𝜽)(kγ0𝒛i,kbi,k+ϵi)+op(i=1mniξ)+op(i=1mni)+Op(p)\displaystyle\begin{split}\bm{y}^{\prime}\bm{H}^{-1}&(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\\ =&~{}\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}^{\prime}\\ &~{}\times\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\\ &~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ =&~{}\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\\ &~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ &~{}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}(p)\\ =&~{}\sum_{i=1}^{m}\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)^{\prime}\bm{X}_{i}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)\\ &~{}+2\sum_{i=1}^{m}\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)^{\prime}\bm{X}_{i}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})\\ &~{}+\sum_{i=1}^{m}\bigg{(}\sum_{k\in\gamma_{0}}\bm{z}_{i,k}b_{i,k}+\bm{\epsilon}_{i}\bigg{)}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bigg{(}\sum_{k\in\gamma_{0}}\bm{z}_{i,k}b_{i,k}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}(p)\end{split}
=i=1mϵiϵi+i=1mjα0αβj,02di,jniξ+i=1mkγ0γbi,k2ci,kni+op(k,kγγ0mθkθk)+Op(kγγ0mθk)+op(i=1mniξ)+op(i=1mni)+Op(p+mq)\displaystyle\begin{split}=&~{}\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}^{2}d_{i,j}n_{i}^{\xi}+\sum_{i=1}^{m}\sum_{k\in\gamma_{0}\setminus\gamma}b_{i,k}^{2}c_{i,k}n_{i}^{\ell}\\ &~{}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+O_{p}\bigg{(}\sum_{k\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}(p+mq)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from (B.5) and Lemmas 24. Hence by (B.1), we have, for v2(0,)v^{2}\in(0,\infty),

v4{v2{2logL(𝜽,v2;α,γ)}}=N(v2ϵϵN+1Ni=1mjα0αβj,02di,jniξ+1Ni=1mkγ0γbi,k2ci,kni)+op(i=1mniξ)+op(i=1mni)+Op(k,kγγ0mθkθk)+Op(kγγ0mθk)+Op(p+mq)\displaystyle\begin{split}v^{4}&\bigg{\{}\frac{\partial}{\partial v^{2}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}N\bigg{(}v^{2}-\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+\frac{1}{N}\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}^{2}d_{i,j}n_{i}^{\xi}+\frac{1}{N}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}\setminus\gamma}b_{i,k}^{2}c_{i,k}n_{i}^{\ell}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}\bigg{(}\sum_{k,k^{*}\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}\\ &~{}+O_{p}\bigg{(}\sum_{k\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p+mq)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and Lemma 5 imply that

v^2(α,γ)=ϵϵN+1Ni=1mjα0αβj,02di,jniξ+1Ni=1mkγ0γbi,k2ci,kni+op(1Ni=1mniξ)+op(1Ni=1mni)+Op(p+mqN).\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+\frac{1}{N}\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}^{2}d_{i,j}n_{i}^{\xi}+\frac{1}{N}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}\setminus\gamma}b_{i,k}^{2}c_{i,k}n_{i}^{\ell}\\ &~{}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}\Big{(}\frac{p+mq}{N}\Big{)}.\end{split} (B.32)

Thus (16) follows by applying the law of large numbers to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N. In addition, if (ξ,)(0,1/2)×(0,1/2)(\xi,\ell)\in(0,1/2)\times(0,1/2), the asymptotic normality of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) follows by p+mq=o(N1/2)p+mq=o(N^{1/2}) and an application of the central limit theorem to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N in (B.32).

Next, we prove (19), for kγγ0k\in\gamma\cap\gamma_{0}, using (B.2). By (B.31) and Lemma 6 (i)–(iv), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk\displaystyle\theta_{k} 𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})
×(𝑿(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\times\bigg{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}
=\displaystyle= op(ni(ξ)/2i=1mni(ξ+)/2τi=1mniξ)+op(ni(ξ)/2)+op(ni/2)\displaystyle~{}o_{p}\bigg{(}\frac{n_{i}^{(\xi-\ell)/2}\sum_{i^{*}=1}^{m}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)\displaystyle~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.30) imply that for kγγ0k\in\gamma\cap\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)=θk𝒛i,k𝑯i1(γ,𝜽)(𝑿i(α0α)𝜷0(α0α)+kγ0𝒛i,kbi,k+ϵi)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)=bi,k+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\\ &~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ &~{}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bigg{(}\bm{X}_{i}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{k^{*}\in\gamma_{0}}\bm{z}_{i,k^{*}}b_{i,k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\\ =&~{}b_{i,k}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from Lemma 2 (iii), Lemma 3 (ii)–(iv), and Lemma 4 (i). It follows that for kγγ0k\in\gamma\cap\gamma_{0},

θk2\displaystyle\theta_{k}^{2} {𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2\displaystyle\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\}^{2}
=\displaystyle= bi,k2+op(niξ(i=1mnii=1mniξ))+op(niξ)+op(1)\displaystyle~{}b_{i,k}^{2}+o_{p}\bigg{(}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(n_{i}^{\xi-\ell})+o_{p}(1)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Hence by Lemma 3 (ii) and (B.2), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=m(θk1mi=1mbi,k2v2)+op(i=1mniξ(1+i=1mnii=1mniξ))+op(m)\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}m\bigg{(}\theta_{k}-\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{v^{2}}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}1+\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(m)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This implies that for kγγ0k\in\gamma\cap\gamma_{0},

θ^k(α,γ)=\displaystyle\hat{\theta}_{k}(\alpha,\gamma)= 1mi=1mbi,k2v^2(α,γ)+op(1mi=1mniξ(1+i=1mnii=1mniξ))+op(1).\displaystyle~{}\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{\hat{v}^{2}(\alpha,\gamma)}+o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}1+\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(1).

This proves (19), for kγγ0k\in\gamma\cap\gamma_{0}.

It remains to prove (19), for kγγ0k\in\gamma\setminus\gamma_{0}. Let 𝜽\bm{\theta}^{\dagger} be 𝜽\bm{\theta} except that {θk:kγγ0}\{\theta_{k}:k\in\gamma\cap\gamma_{0}\} are replaced by {θ^k(α,γ):kγγ0}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\cap\gamma_{0}\}. By (B.31) and Lemma 6 (i)–(iv), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk\displaystyle\theta_{k} 𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})
×(𝑿(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\times\bigg{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}
=\displaystyle= op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2τ)+op(ni/2)\displaystyle~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2-\tau})+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)\displaystyle~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This and (B.30) imply that for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)+op(ni(ξ)/2nmax(ξ)/2)+op(ni(ξ)/2)+op(1)=θk𝒛i,k𝑯i1(γ,𝜽)(𝑿i(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵi)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)=op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni(ξ)/2)+op(1)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)\\ ~{}&+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ &~{}+o_{p}(n_{i}^{(\xi-\ell)/2}n_{\max}^{(\ell-\xi)/2})+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta}^{\dagger})\bigg{(}\bm{X}_{i}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\\ =&~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}, where the last equality follows from Lemma 2 (iii), Lemma 3 (iii)–(iv), and Lemma 4 (i). Therefore,

θk2\displaystyle\theta_{k}^{2} {𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2\displaystyle\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\}^{2}
=\displaystyle= op(niξ(i=1mnii=1mniξ))+op(niξ)+op(1)\displaystyle~{}o_{p}\bigg{(}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(n_{i}^{\xi-\ell})+o_{p}(1)

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. Hence by Lemma 3 (ii) and (B.2), we have for kγγ0k\in\gamma\setminus\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=mθk+op(i=1mniξ(1+i=1mnii=1mniξ))+op(m)\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta}^{\dagger},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}m\theta_{k}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}1+\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(m)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This implies that for kγγ0k\in\gamma\setminus\gamma_{0},

θ^k(α,γ)=op(1mi=1mniξ(1+i=1mnii=1mniξ))+op(1).\hat{\theta}_{k}(\alpha,\gamma)=o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}1+\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(1).

This completes the proof of (19). Thus the proof of Theorem 5 is complete.

B.4 Proof of Theorem 3

As with the proof of Theorem 1, we shall focus on the asymptotic properties of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {θ^k(α,γ):kγ}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\}, and derive them by solving the likelihood equations directly.

We first prove (8) using (B.1). Hence by (B.31), Lemma 6 (i)–(iii), Lemma 6 (v)–(vi), and Lemma 6 (viii), we have

(𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)=(i=1mkγ0bi,k𝒉i,k+ϵ)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(i=1mkγ0bi,k𝒉i,k+ϵ)=op(i=1mniτ)+op(i=1mni/2)+Op(p)=op(i=1mni)+Op(p)\displaystyle\begin{split}(\bm{Z}(\gamma_{0})&\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}+\bm{\epsilon}\bigg{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bigg{(}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}+\bm{\epsilon}\bigg{)}\\ =&~{}o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell-\tau}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell/2}\bigg{)}+O_{p}(p)\\ =&~{}o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}(p)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.4) imply

𝒚𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=(𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)=(𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)+op(i=1mni)+Op(p)=i=1m(𝒁i(γ0)𝒃i(γ0)+ϵi)𝑯i1(γ,𝜽)(𝒁i(γ0)𝒃i(γ0)+ϵi)+op(i=1mni)+Op(p)=i=1mϵiϵi+i=1mkγ0γbi,k2ci,kni+op(i=1mni)+Op(kγγ0mθk)+op(k,kγγ0mθkθk)+Op(p+mq)\displaystyle\begin{split}\bm{y}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\\ =&~{}(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}(p)\\ =&~{}\sum_{i=1}^{m}(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}\\ &~{}+O_{p}(p)\\ =&~{}\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+\sum_{i=1}^{m}\sum_{k\in\gamma_{0}\setminus\gamma}b_{i,k}^{2}c_{i,k}n_{i}^{\ell}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}\bigg{(}\sum_{k\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+O_{p}(p+mq)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from Lemma 3, Lemma 4 (i)–(ii), and Lemma 4 (iv). Hence by (B.1), we have, for v2(0,)v^{2}\in(0,\infty),

v4{v2{2logL(𝜽,v2;α,γ)}}=N(v2ϵϵN+1Nkγ0γbi,k2ci,kni)+op(i=1mni)+Op(kγγ0mθk)+op(k,kγγ0mθkθk)+Op(p+mq)\displaystyle\begin{split}v^{4}&~{}\bigg{\{}\frac{\partial}{\partial v^{2}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}N\bigg{(}v^{2}-\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+\frac{1}{N}\sum_{k\in\gamma_{0}\setminus\gamma}b_{i,k}^{2}c_{i,k}n_{i}^{\ell}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}\\ &~{}+O_{p}\bigg{(}\sum_{k\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma\cap\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+O_{p}(p+mq)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and Lemma 5 imply that for (ξ,)(0,1]×(0,1](\xi,\ell)\in(0,1]\times(0,1],

v^2(α,γ)=ϵϵN+1Ni=1mkγ0γbi,k2ci,kni+op(1Ni=1mni)+Op(p+mqN).\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+\frac{1}{N}\sum_{i=1}^{m}\sum_{k\in\gamma_{0}\setminus\gamma}b_{i,k}^{2}c_{i,k}n_{i}^{\ell}\\ &~{}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}n_{i}^{\ell}\bigg{)}+O_{p}\bigg{(}\frac{p+mq}{N}\bigg{)}.\end{split} (B.33)

Thus (8) follows by applying the law of large numbers to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N. In addition, if (0,1/2)\ell\in(0,1/2), the asymptotic normality of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) follows by p+mq=o(N1/2)p+mq=o(N^{1/2}) and an application of the central limit theorem to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N in (B.33).

Next, we prove (11), for kγγ0k\in\gamma\cap\gamma_{0}, using (B.2). By (B.31) and Lemma 6 (i)–(iii), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk𝒉i,k\displaystyle\theta_{k}\bm{h}_{i,k}^{\prime} 𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bigg{(}\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}
=\displaystyle= op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(ni/2)\displaystyle~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)\displaystyle~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.4) imply that for kγγ0k\in\gamma\cap\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)=θk𝒛i,k𝑯i1(γ,𝜽)(kγ0𝒛i,kbi,k+ϵi)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)=bi,k+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bigg{(}\sum_{k^{*}\in\gamma_{0}}\bm{z}_{i,k^{*}}b_{i,k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\\ =&~{}b_{i,k}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from Lemma 3 (ii)–(iv) and Lemma 4 (i). Hence, for kγγ0k\in\gamma\cap\gamma_{0},

θk2\displaystyle\theta_{k}^{2} {𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2\displaystyle\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\}^{2}
=\displaystyle= bi,k2+op(niξ(i=1mnii=1mniξ))+op(1)\displaystyle~{}b_{i,k}^{2}+o_{p}\bigg{(}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(1)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Hence by Lemma 3 (ii) and (B.2), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=m(θk1mi=1mbi,k2v2)+op(i=1mniξ(i=1mnii=1mniξ))+op(m)\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}m\bigg{(}\theta_{k}-\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{v^{2}}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(m)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Hence we have, for kγγ0k\in\gamma\cap\gamma_{0},

θ^k(α,γ)=\displaystyle\hat{\theta}_{k}(\alpha,\gamma)= 1mi=1mbi,k2v^2(α,γ)+op(1mi=1mniξ(i=1mnii=1mniξ))+op(1).\displaystyle~{}\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{\hat{v}^{2}(\alpha,\gamma)}+o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(1).

This completes the proof of (11), for kγγ0k\in\gamma\cap\gamma_{0}.

It remains to prove (11), for kγγ0k\in\gamma\setminus\gamma_{0}. Let 𝜽\bm{\theta}^{\dagger} be 𝜽\bm{\theta} except that {θk:kγγ0}\{\theta_{k}:k\in\gamma\cap\gamma_{0}\} are replaced by {θ^k(α,γ):kγγ0}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\cap\gamma_{0}\}. By (B.31) and Lemma 6 (i)–(iii), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(i=1mkγ0bi,k𝒉i,k+ϵ)=op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})\bigg{(}\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}\\ =&~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This and (B.4) imply that for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝒁(γ0)𝒃(γ0)+ϵ)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)=θk𝒛i,k𝑯i1(γ,𝜽)(kγ0𝒛i,kbi,k+ϵi)+op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)=op(ni(ξ)/2(i=1mnii=1mniξ)1/2)+op(1)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta}^{\dagger})\bigg{(}\sum_{k^{*}\in\gamma_{0}}\bm{z}_{i,k^{*}}b_{i,k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\\ =&~{}o_{p}\bigg{(}n_{i}^{(\xi-\ell)/2}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{1/2}\bigg{)}+o_{p}(1)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}, where the last equality follows from Lemma 3 (iii)–(iv) and Lemma 4 (i). Therefore,

θk2{𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2=\displaystyle\theta_{k}^{2}\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\}^{2}= op(niξ(i=1mnii=1mniξ))+op(1)\displaystyle~{}o_{p}\bigg{(}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(1)

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. Hence by Lemma 3 (ii) and (B.2), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=mθk+op(i=1mniξ(i=1mnii=1mniξ))+op(m)\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta}^{\dagger},v^{2};\alpha,\gamma)\}\bigg{\}}=m\theta_{k}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(m)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This implies that, for kγγ0k\in\gamma\setminus\gamma_{0},

θ^k(α,γ)=op(1mi=1mniξ(i=1mnii=1mniξ))+op(1).\displaystyle\hat{\theta}_{k}(\alpha,\gamma)=o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\ell}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{)}+o_{p}(1).

This completes the proof of (11). Hence the proof of Theorem 3 is complete.

B.5 Proof of Theorem 4

As with the proof of Theorem 1, we shall focus on the asymptotic properties of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) and {θ^k(α,γ):kγ}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\}, and derive them by solving the likelihood equations directly.

We first prove (12) using (B.1). By Lemma 6 (i), Lemma 6 (iii)–(v), Lemma 6 (vii), and Lemma 6 (x), we have

(𝑿\displaystyle\big{(}\bm{X} (α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)\displaystyle(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})
×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
=\displaystyle= (𝑿(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵ)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)\displaystyle~{}\bigg{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}+\bm{\epsilon}\bigg{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})
×(𝑿(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\times\bigg{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i=1}^{m}\sum_{k\in\gamma_{0}}b_{i,k}\bm{h}_{i,k}+\bm{\epsilon}\bigg{)}
=\displaystyle= o(i=1nniξ)+op(k,kγ0mθkθk)+op(kγ0mθk)+Op(p)\displaystyle~{}o\bigg{(}\sum_{i=1}^{n}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+o_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.30) imply

𝒚\displaystyle\bm{y}^{\prime} 𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}
=\displaystyle= (𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)\displaystyle~{}\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})
×(𝑰N𝑴(α,γ;𝜽))(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle~{}\times(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
=\displaystyle= (𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)\displaystyle~{}\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})
×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
+o(i=1nniξ)+op(k,kγ0mθkθk)+op(kγ0mθk)+Op(p)\displaystyle~{}+o\bigg{(}\sum_{i=1}^{n}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+o_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p)
=\displaystyle= i=1m𝜷0(α0α)𝑿i(α0α)𝑯i1(γ,𝜽)𝑿i(α0α)𝜷0(α0α)\displaystyle~{}\sum_{i=1}^{m}\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)^{\prime}\bm{X}_{i}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)
+2i=1m𝜷0(α0α)𝑿i(α0α)𝑯i1(γ,𝜽)(𝒁i(γ0)𝒃i(γ0)+ϵi)\displaystyle~{}+2\sum_{i=1}^{m}\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)^{\prime}\bm{X}_{i}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})
+i=1m(𝒁i(γ0)𝒃i(γ0)+ϵi)𝑯i1(γ,𝜽)(𝒁i(γ0)𝒃i(γ0)+ϵi)\displaystyle~{}+\sum_{i=1}^{m}(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})(\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})+\bm{\epsilon}_{i})
+o(i=1nniξ)+op(k,kγ0mθkθk)+op(kγ0mθk)+Op(p)\displaystyle~{}+o\bigg{(}\sum_{i=1}^{n}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+o_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p)
=\displaystyle= i=1mϵiϵi+i=1mjα0αβj,02di,jniξ+op(i=1mniξ)+op(k,kγ0mθkθk)\displaystyle~{}\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}^{2}d_{i,j}n_{i}^{\xi}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}
+Op(kγ0mθk)+Op(p+mq)\displaystyle~{}+O_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p+mq)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from Lemma 3 (ii)–(iv) and Lemma 4. Hence by (B.1), we have, for v2(0,)v^{2}\in(0,\infty),

v4{v2{2logL(𝜽,v2;α,γ)}}=N(v2ϵϵN+1Ni=1mjα0αβj,02di,jniξ)+op(i=1mniξ)+op(k,kγ0mθkθk)+Op(kγ0mθk)+Op(p+mq)\displaystyle\begin{split}v^{4}&\bigg{\{}\frac{\partial}{\partial v^{2}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}N\bigg{(}v^{2}-\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+\frac{1}{N}\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}^{2}d_{i,j}n_{i}^{\xi}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{m}{\theta_{k}\theta_{k^{*}}}\bigg{)}+O_{p}\bigg{(}\sum_{k\in\gamma_{0}}\frac{m}{\theta_{k}}\bigg{)}+O_{p}(p+mq)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and Lemma 5 imply that for (ξ,)(0,1]×(0,1](\xi,\ell)\in(0,1]\times(0,1],

v^2(α,γ)=ϵϵN+1Ni=1mjα0αβj,02di,jniξ+op(1Ni=1mniξ)+Op(p+mqN).\displaystyle\begin{split}\hat{v}^{2}(\alpha,\gamma)=&~{}\frac{\bm{\epsilon}^{\prime}\bm{\epsilon}}{N}+\frac{1}{N}\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}^{2}d_{i,j}n_{i}^{\xi}\\ &~{}+o_{p}\bigg{(}\frac{1}{N}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}+O_{p}\bigg{(}\frac{p+mq}{N}\bigg{)}.\end{split} (B.34)

Thus (12) follows by applying the law of large numbers to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N. In addition, if ξ(0,1/2)\xi\in(0,1/2), the asymptotic normality of v^2(α,γ)\hat{v}^{2}(\alpha,\gamma) follows by p+mq=o(N1/2)p+mq=o(N^{1/2}) and an application of the central limit theorem to ϵϵ/N\bm{\epsilon}^{\prime}\bm{\epsilon}/N in (B.34).

Next, we prove (15), for kγγ0k\in\gamma\cap\gamma_{0}, using (B.2). By Lemma 6 (i) and Lemma 6 (iii)–(iv), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk\displaystyle\theta_{k} 𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})
×(𝑿(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\times\bigg{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}
=\displaystyle= op(kγ0ni(ξ)/2θk)+op(ni(ξ)/2τ)+op(ni/2)\displaystyle~{}o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}}{\theta_{k^{*}}}\bigg{)}+o_{p}(n_{i}^{(\xi-\ell)/2-\tau})+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= op(kγ0ni(ξ)/2θk)+op(1)\displaystyle~{}o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}}{\theta_{k^{*}}}\bigg{)}+o_{p}(1)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and (B.30) imply that for kγγ0k\in\gamma\cap\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)+op(kγ0ni(ξ)/2θk)+op(1)=θk𝒛i,k𝑯i1(γ,𝜽)(𝑿i(α0α)𝜷0(α0α)+kγ0𝒛i,kbi,k+ϵi)+op(kγ0ni(ξ)/2θk)+op(1)=bi,k+op(kγ0ni(ξ)/2θk)+op(1)\displaystyle\begin{split}\theta_{k}\bm{h}_{i,k}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\\ &~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ &~{}+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}}{\theta_{k^{*}}}\bigg{)}+o_{p}(1)\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bigg{(}\bm{X}_{i}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{k^{*}\in\gamma_{0}}\bm{z}_{i,k^{*}}b_{i,k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}}{\theta_{k^{*}}}\bigg{)}+o_{p}(1)\\ =&~{}b_{i,k}+o_{p}\bigg{(}\sum_{k^{*}\in\gamma_{0}}\frac{n_{i}^{(\xi-\ell)/2}}{\theta_{k^{*}}}\bigg{)}+o_{p}(1)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the last equality follows from Lemma 2 (iii), Lemma 3 (ii)–(iii), and Lemma 4 (i). Hence, for kγγ0k\in\gamma\cap\gamma_{0},

θk2{𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2=\displaystyle\theta_{k}^{2}\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\bm{y}\}^{2}= bi,k2+op(k,kγ0niξθkθk)+op(1)\displaystyle~{}b_{i,k}^{2}+o_{p}\bigg{(}\sum_{k,k^{*}\in\gamma_{0}}\frac{n_{i}^{\xi-\ell}}{\theta_{k}\theta_{k^{*}}}\bigg{)}+o_{p}(1)

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Hence by Lemma 3 (ii) and (B.2), we have, for kγγ0k\in\gamma\cap\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=m(θk1mi=1mbi,k2v2)+op(i=1mk,kγ0niξθkθk)+op(1)\displaystyle\begin{split}\theta_{k}^{2}&\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta},v^{2};\alpha,\gamma)\}\bigg{\}}\\ =&~{}m\bigg{(}\theta_{k}-\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{v^{2}}\bigg{)}+o_{p}\bigg{(}\sum_{i=1}^{m}\sum_{k,k^{*}\in\gamma_{0}}\frac{n_{i}^{\xi-\ell}}{\theta_{k}\theta_{k^{*}}}\bigg{)}+o_{p}(1)\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This and Lemma 5 imply that for kγγ0k\in\gamma\cap\gamma_{0},

θ^k(α,γ)=\displaystyle\hat{\theta}_{k}(\alpha,\gamma)= 1mi=1mbi,k2v^2(α,γ)+op(1mi=1mniξ)+op(1).\displaystyle~{}\frac{1}{m}\sum_{i=1}^{m}\frac{b_{i,k}^{2}}{\hat{v}^{2}(\alpha,\gamma)}+o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{)}+o_{p}(1).

This completes the proof of (15) when kγγ0k\in\gamma\cap\gamma_{0}.

It remains to prove (15), for kγγ0k\in\gamma\setminus\gamma_{0}. Let 𝜽\bm{\theta}^{\dagger} be 𝜽\bm{\theta} except that {θk:kγγ0}\{\theta_{k}:k\in\gamma\cap\gamma_{0}\} are replaced by {θ^k(α,γ):kγγ0}\{\hat{\theta}_{k}(\alpha,\gamma):k\in\gamma\cap\gamma_{0}\}. By Lemma 6 (i) and Lemma 6 (iii)–(iv), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk\displaystyle\theta_{k} 𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}
=\displaystyle= θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)\displaystyle~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger})
×(𝑿(α0α)𝜷0(α0α)+i=1mkγ0bi,k𝒉i,k+ϵ)\displaystyle~{}\times\bigg{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{i^{*}=1}^{m}\sum_{k^{*}\in\gamma_{0}}b_{i^{*},k^{*}}\bm{h}_{i^{*},k^{*}}+\bm{\epsilon}\bigg{)}
=\displaystyle= op(ni(ξ)/2τ)+op(ni/2)\displaystyle~{}o_{p}(n_{i}^{(\xi-\ell)/2-\tau})+o_{p}(n_{i}^{-\ell/2})
=\displaystyle= op(ni(ξ)/2)+op(1)\displaystyle~{}o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This and (B.30) imply that for kγγ0k\in\gamma\setminus\gamma_{0},

θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚=θk𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))×(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)=θk𝒉i,k𝑯1(γ,𝜽)(𝑿(α0α)𝜷0(α0α)+𝒁(γ0)𝒃(γ0)+ϵ)+op(ni(ξ)/2)+op(1)=θk𝒛i,k𝑯i1(γ,𝜽)(𝑿i(α0α)𝜷0(α0α)+kγ0𝒛i,kbi,k+ϵi)+op(ni(ξ)/2)+op(1)=op(ni(ξ)/2)+op(1)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\\ &~{}\times\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ =&~{}\theta_{k}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})\big{(}\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}\big{)}\\ &~{}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\\ =&~{}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta}^{\dagger})\bigg{(}\bm{X}_{i}(\alpha_{0}\setminus\alpha)\bm{\beta}_{0}(\alpha_{0}\setminus\alpha)+\sum_{k^{*}\in\gamma_{0}}\bm{z}_{i,k^{*}}b_{i,k^{*}}+\bm{\epsilon}_{i}\bigg{)}\\ &~{}+o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\\ =&~{}o_{p}(n_{i}^{(\xi-\ell)/2})+o_{p}(1)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}, where the last equality follows from Lemma 2 (iii), Lemma 3 (iii), and Lemma 4 (i). Therefore,

θk2{𝒉i,k𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝒚}2=\displaystyle\theta_{k}^{2}\{\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}^{\dagger}))\bm{y}\}^{2}= op(niξ)+op(1)\displaystyle~{}o_{p}(n_{i}^{\xi-\ell})+o_{p}(1)

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. Hence by Lemma 3 (ii) and (B.2), we have, for kγγ0k\in\gamma\setminus\gamma_{0},

θk2{θk{2logL(𝜽,v2;α,γ)}}=mθk+op(i=1mniξ)+op(m)\displaystyle\begin{split}\theta_{k}^{2}\bigg{\{}\frac{\partial}{\partial\theta_{k}}\{-2\log L(\bm{\theta}^{\dagger},v^{2};\alpha,\gamma)\}\bigg{\}}=&~{}m\theta_{k}+o_{p}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{)}+o_{p}(m)\end{split}

uniformly over 𝜽(γγ0)[0,)q(γγ0)\bm{\theta}(\gamma\setminus\gamma_{0})\in[0,\infty)^{q(\gamma\setminus\gamma_{0})}. This and Lemma 5 imply that for kγγ0k\in\gamma\setminus\gamma_{0},

θ^k(α,γ)=op(1mi=1mniξ)+op(1).\displaystyle\hat{\theta}_{k}(\alpha,\gamma)=o_{p}\bigg{(}\frac{1}{m}\sum_{i=1}^{m}n_{i}^{\xi-\ell}\bigg{)}+o_{p}(1).

This completes the proof of (15), for kγγ0k\in\gamma\setminus\gamma_{0}. Hence the proof of Theorem 4 is complete.

Appendix C Proofs of Auxiliary Lemmas

C.1 Proof of Lemma 2

Let 𝒛i,(s)\bm{z}_{i,(s)}; s=1,,q(γ)s=1,\dots,q(\gamma) be the ss-th column of 𝒁i(γ)\bm{Z}_{i}(\gamma) and 𝑯i,t(γ,𝜽)\bm{H}_{i,t}(\gamma,\bm{\theta}) defined in (A.4). For Lemma 2 (i)–(ii) to hold, it suffices to prove that for kγk\notin\gamma and j,j=1,,pj,j^{*}=1,\dots,p,

𝒙i,j𝑯i,t1(γ,𝜽)𝒙i,j=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,t}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}= di,jniξ+o(niξ)+o(tniξ2τ),\displaystyle~{}d_{i,j}n_{i}^{\xi}+o(n_{i}^{\xi})+o(tn_{i}^{\xi-2\tau}), (C.1)
𝒙i,j𝑯i,t1(γ,𝜽)𝒙i,j=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,t}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}= o(niξτ)+o(tniξ2τ),\displaystyle~{}o(n_{i}^{\xi-\tau})+o(tn_{i}^{\xi-2\tau}), (C.2)
𝒙i,j𝑯i,t1(γ,𝜽)𝒛i,k=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,t}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}= o(ni(ξ+)/2τ)+o(tni(ξ+)/22τ)\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau})+o(tn_{i}^{(\xi+\ell)/2-2\tau}) (C.3)

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. We prove (C.1)–(C.3) by induction. For j=1,,pj=1,\dots,p and t=1t=1, by (A.2) and (A1)–(A3), we have

𝒙i,j𝑯i,11(γ,𝜽)𝒙i,j=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,1}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}= 𝒙i,j𝒙i,jθ(1)𝒙i,j𝒛i,(1)𝒛i,(1)𝒙i,j1+θ(1)𝒛i,(1)𝒛i,(1)\displaystyle~{}\bm{x}_{i,j}^{\prime}\bm{x}_{i,j}-\frac{\theta_{(1)}\bm{x}_{i,j}^{\prime}\bm{z}_{i,(1)}\bm{z}_{i,(1)}^{\prime}\bm{x}_{i,j}}{1+\theta_{(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,(1)}}
=\displaystyle= di,jniξ+o(niξ)+o(niξ2τ)\displaystyle~{}d_{i,j}n_{i}^{\xi}+o(n_{i}^{\xi})+o(n_{i}^{\xi-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. For j,j=1,,pj,j^{*}=1,\dots,p, jjj\neq j^{*} and t=1t=1, by (A.2) and (A1)–(A3), we have

𝒙i,j𝑯i,11(γ,𝜽)𝒙i,j=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,1}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}= 𝒙i,j𝒙i,jθ(1)𝒙i,j𝒛i,(1)𝒛i,(1)𝒙i,j1+θ(1)𝒛i,(1)𝒛i,(1)\displaystyle~{}\bm{x}_{i,j}^{\prime}\bm{x}_{i,j^{*}}-\frac{\theta_{(1)}\bm{x}_{i,j}^{\prime}\bm{z}_{i,(1)}\bm{z}_{i,(1)}^{\prime}\bm{x}_{i,j^{*}}}{1+\theta_{(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,(1)}}
=\displaystyle= o(niξτ)+o(niξ2τ)\displaystyle~{}o(n_{i}^{\xi-\tau})+o(n_{i}^{\xi-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. For j=1,,pj=1,\dots,p, kγk\notin\gamma and t=1t=1, by (A.2) and (A1)–(A3), we have

𝒙i,j𝑯i,11(γ,𝜽)𝒛i,k=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}= 𝒙i,j𝒛i,kθ(1)𝒙i,j𝒛i,(1)𝒛i,(1)𝒛i,k1+θ(1)𝒛i,(1)𝒛i,(1)\displaystyle~{}\bm{x}_{i,j}^{\prime}\bm{z}_{i,k}-\frac{\theta_{(1)}\bm{x}_{i,j}^{\prime}\bm{z}_{i,(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,k}}{1+\theta_{(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,(1)}}
=\displaystyle= o(ni(ξ+)/2τ)+o(ni(ξ+)/22τ)\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau})+o(n_{i}^{(\xi+\ell)/2-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. Now suppose that (C.1)–(C.3) hold for t=rt=r. Then for j=1,,pj=1,\dots,p and t=r+1t=r+1, by (A.2) and (C.1)–(C.3) with t=rt=r, and Lemma 3 (i), we have

𝒙i,j\displaystyle\bm{x}_{i,j}^{\prime} 𝑯i,r+11(γ,𝜽)𝒙i,j\displaystyle\bm{H}_{i,r+1}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}
=\displaystyle= 𝒙i,j𝑯i,r1(γ,𝜽)𝒙i,jθ(r+1)𝒙i,j𝑯i,r1(γ,𝜽)𝒛i,(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒙i,j1+θ(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,(r+1)\displaystyle~{}\bm{x}_{i,j}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}-\frac{\theta_{(r+1)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}}{1+\theta_{(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}}
=\displaystyle= di,jniξ+o(niξ)+o({r+1}niξ2τ)\displaystyle~{}d_{i,j}n_{i}^{\xi}+o(n_{i}^{\xi})+o(\{r+1\}n_{i}^{\xi-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. For j,j=1,,pj,j^{*}=1,\dots,p, jjj\neq j^{*}, and t=r+1t=r+1, by (A.2) and (C.1)–(C.3) with t=rt=r, and Lemma 3 (i), we have

𝒙i,j\displaystyle\bm{x}_{i,j}^{\prime} 𝑯i,r+11(γ,𝜽)𝒙i,j\displaystyle\bm{H}_{i,r+1}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}
=\displaystyle= 𝒙i,j𝑯i,r1(γ,𝜽)𝒙i,jθ(r+1)𝒙i,j𝑯i,r1(γ,𝜽)𝒛i,(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒙i,j1+θ(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,(r+1)\displaystyle~{}\bm{x}_{i,j}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}-\frac{\theta_{(r+1)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j^{*}}}{1+\theta_{(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}}
=\displaystyle= o(niξτ)+o({r+1}niξ2τ)\displaystyle~{}o(n_{i}^{\xi-\tau})+o(\{r+1\}n_{i}^{\xi-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. For j,j=1,,pj,j^{*}=1,\dots,p, kγk\notin\gamma, and t=r+1t=r+1, by (A.2) and (C.1)–(C.3) with t=rt=r, and Lemma 3 (i), we have

𝒙i,j\displaystyle\bm{x}_{i,j}^{\prime} 𝑯i,r+11(γ,𝜽)𝒛i,k\displaystyle\bm{H}_{i,r+1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}
=\displaystyle= 𝒙i,j𝑯i,r1(γ,𝜽)𝒛i,kθ(r+1)𝒙i,j𝑯i,r1(γ,𝜽)𝒛i,(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,k1+θ(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,(r+1)\displaystyle~{}\bm{x}_{i,j}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}-\frac{\theta_{(r+1)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}}{1+\theta_{(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}}
=\displaystyle= o(ni(ξ+)/2τ)+o({r+1}ni(ξ+)/22τ)\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau})+o(\{r+1\}n_{i}^{(\xi+\ell)/2-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. This completes the proofs of (C.1)–(C.3). Hence the proofs of Lemma 2 (i)–(ii) are complete.

We finally prove Lemma 2 (iii). Without loss of generality, we assume that q(γ)=qq(\gamma)=q, t=qt=q, and k=(q)k=(q). Then by (A.2),

θ(q)𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= θ(q){𝒙i,j𝑯i,q11(γ,𝜽)𝒛i,(q)\displaystyle~{}\theta_{(q)}\bigg{\{}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}
θ(q)𝒙i,j𝑯i,q11(γ,𝜽)𝒛i,(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,q1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)}\displaystyle~{}-\frac{\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,q}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{\}}
=\displaystyle= θ(q)𝒙i,j𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q),\displaystyle~{}\frac{\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}},

where we note that θ(q)\theta_{(q)} can be arbitrarily small and the dominant term of the denominator of the last equation can be equal to (i) θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)} or (ii) 11. For the case of (i), θ(q)ni\theta_{(q)}n_{i}^{\ell}\rightarrow\infty by Lemma 3 (i); hence, using Lemma 2 (ii) and Lemma 3 (i), we have

θ(q)𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= o(ni(ξ)/2τ),\displaystyle~{}o(n_{i}^{(\xi-\ell)/2-\tau}),

and thus

𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= o(ni(ξ+)/2τ).\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau}).

For the case of (ii), θ(q)=O(ni)\theta_{(q)}=O(n_{i}^{-\ell}) by Lemma 3 (i); hence, using Lemma 3 (i), we have

θ(q)𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= o(θ(q)ni(ξ+)/2τ),\displaystyle~{}o(\theta_{(q)}n_{i}^{(\xi+\ell)/2-\tau}),

which also gives the following two results:

𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= o(ni(ξ+)/2τ),\displaystyle~{}o(n_{i}^{(\xi+\ell)/2-\tau}),
θ(q)𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= o(ni(ξ)/2τ).\displaystyle~{}o(n_{i}^{(\xi-\ell)/2-\tau}).

In conclusion, we have

θ(q)𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=o(ni(ξ)/2τ),𝒙i,j𝑯i,q1(γ,𝜽)𝒛i,(q)=o(ni(ξ+)/2τ)\displaystyle\begin{split}\theta_{(q)}\bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}=&~{}o(n_{i}^{(\xi-\ell)/2-\tau}),\\ \bm{x}_{i,j}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}=&~{}o(n_{i}^{(\xi+\ell)/2-\tau})\end{split} (C.4)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. This completes the proof.

C.2 Proof of Lemma 3

Let 𝒛i,(s)\bm{z}_{i,(s)}; s=1,,q(γ)s=1,\dots,q(\gamma) be the ss-th column of 𝒁i(γ)\bm{Z}_{i}(\gamma) and 𝑯i,t(γ,𝜽)\bm{H}_{i,t}(\gamma,\bm{\theta}) defined in (A.4). We first prove Lemma 3 (i). By (A.4), it suffices to prove that for kγk\notin\gamma,

𝒛i,k𝑯i,t1(γ,𝜽)𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{H}_{i,t}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}= ci,kni+o(ni)+o(tni2τ),\displaystyle~{}c_{i,k}n_{i}^{\ell}+o(n_{i}^{\ell})+o(tn_{i}^{\ell-2\tau}), (C.5)

and for k,kγk,k^{*}\notin\gamma and kkk\neq k^{*},

𝒛i,k𝑯i,t1(γ,𝜽)𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{H}_{i,t}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}= o(niτ)+o(tni2τ)\displaystyle~{}o(n_{i}^{\ell-\tau})+o(tn_{i}^{\ell-2\tau}) (C.6)

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)} by induction. For t=1t=1 and kγk\notin\gamma, by (A.2) and (A2), we have

𝒛i,k𝑯i,11(γ,𝜽)𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{H}_{i,1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}= 𝒛i,k(𝑰niθ(1)𝒛i,(1)𝒛i,(1)1+θ(1)𝒛i,(1)𝒛i,(1))𝒛i,k\displaystyle~{}\bm{z}_{i,k}^{\prime}\bigg{(}\bm{I}_{n_{i}}-\frac{\theta_{(1)}\bm{z}_{i,(1)}\bm{z}_{i,(1)}^{\prime}}{1+\theta_{(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,(1)}}\bigg{)}\bm{z}_{i,k}
=\displaystyle= 𝒛i,k𝒛i,kθ(1)𝒛i,k𝒛i,(1)𝒛i,(1)𝒛i,k1+θ(1)𝒛i,(1)𝒛i,(1)\displaystyle~{}\bm{z}_{i,k}^{\prime}\bm{z}_{i,k}-\frac{\theta_{(1)}\bm{z}_{i,k}^{\prime}\bm{z}_{i,(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,k}}{1+\theta_{(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,(1)}}
=\displaystyle= ci,kni+o(ni)+o(ni2τ)\displaystyle~{}c_{i,k}n_{i}^{\ell}+o(n_{i}^{\ell})+o(n_{i}^{\ell-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. For k,kγk,k^{*}\notin\gamma and kkk\neq k^{*}, by (A.2) and (A2), we have

𝒛i,k𝑯i,11(γ,𝜽)𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{H}_{i,1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}= 𝒛i,k𝒛i,kθ(1)𝒛i,k𝒛i,(1)𝒛i,(1)𝒛i,k1+θ(1)𝒛i,(1)𝒛i,(1)\displaystyle~{}\bm{z}_{i,k}^{\prime}\bm{z}_{i,k^{*}}-\frac{\theta_{(1)}\bm{z}_{i,k}^{\prime}\bm{z}_{i,(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,k^{*}}}{1+\theta_{(1)}\bm{z}_{i,(1)}^{\prime}\bm{z}_{i,(1)}}
=\displaystyle= o(niτ)+o(ni2τ)\displaystyle~{}o(n_{i}^{\ell-\tau})+o(n_{i}^{\ell-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. Now suppose that (C.5) and (C.6) hold for t=rt=r. Then for kγk\notin\gamma and t=r+1t=r+1, by (A.2), and (C.5) and (C.6) with t=rt=r, we have

𝒛i,k𝑯i,r+11(γ,𝜽)𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{H}_{i,r+1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}= 𝒛i,k𝑯i,r1(γ,𝜽)𝒛i,k\displaystyle~{}\bm{z}_{i,k}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}
θ(r+1)𝒛i,k𝑯i,r1(γ,𝜽)𝒛i,(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,k1+θ(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,(r+1)\displaystyle~{}-\frac{\theta_{(r+1)}\bm{z}_{i,k}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k}}{1+\theta_{(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}}
=\displaystyle= ci,kni+o(ni)+o({r+1}ni2τ)\displaystyle~{}c_{i,k}n_{i}^{\ell}+o(n_{i}^{\ell})+o(\{r+1\}n_{i}^{\ell-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. For k,kγk,k^{*}\notin\gamma and t=r+1t=r+1, by (A.2), and (C.5) and (C.6) with t=rt=r, we have

𝒛i,k𝑯i,r+11(γ,𝜽)𝒛i,k=\displaystyle\bm{z}_{i,k}^{\prime}\bm{H}_{i,r+1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}= 𝒛i,k𝑯i,r1(γ,𝜽)𝒛i,k\displaystyle~{}\bm{z}_{i,k}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}
θ(r+1)𝒛i,k𝑯i,r1(γ,𝜽)𝒛i,(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,k1+θ(r+1)𝒛i,(r+1)𝑯i,r1(γ,𝜽)𝒛i,(r+1)\displaystyle~{}-\frac{\theta_{(r+1)}\bm{z}_{i,k}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,k^{*}}}{1+\theta_{(r+1)}\bm{z}_{i,(r+1)}^{\prime}\bm{H}_{i,r}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(r+1)}}
=\displaystyle= o(niτ)+o({r+1}ni2τ)\displaystyle~{}o(n_{i}^{\ell-\tau})+o(\{r+1\}n_{i}^{\ell-2\tau})

uniformly over 𝜽[0,)q(γ)\bm{\theta}\in[0,\infty)^{q(\gamma)}. This completes the proof of (C.5) and (C.6). Hence Lemma 3 (i) follows from (C.5), (C.6) with t=q(γ)t=q(\gamma) and q=o(nminτ)q=o(n_{\min}^{\tau}). This completes the proof of Lemma 3 (i).

We now prove Lemma 3 (ii). Without loss of generality, we assume that q(γ)=qq(\gamma)=q and k=(q)k=(q). Then by Lemma 3 (i) and (A.2),

θ(q)2𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}^{2}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= θ(q)2{𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)\displaystyle~{}\theta_{(q)}^{2}\bigg{\{}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}
θ(q)(𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))21+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)}\displaystyle~{}-\frac{\theta_{(q)}(\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)})^{2}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{\}}
=\displaystyle= θ(q)2𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)=O(θ(q)2ni)\displaystyle~{}\frac{\theta_{(q)}^{2}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}=O(\theta_{(q)}^{2}n_{i}^{\ell})

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. Again, by Lemma 3 (i), we have

θ(q)2𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}^{2}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= θ(q)2𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)\displaystyle~{}\frac{\theta_{(q)}^{2}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}
=\displaystyle= θ(q)θ(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)\displaystyle~{}\theta_{(q)}-\frac{\theta_{(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}
=\displaystyle= θ(q)+O(ni)\displaystyle~{}\theta_{(q)}+O(n_{i}^{-\ell})

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. This completes the proof of Lemma 3 (ii).

We now prove Lemma 3 (iii). Without loss of generality, we assume that q(γ)=qq(\gamma)=q, k=(q)k=(q), and k=(q1)k^{*}=(q-1). Then by (A.2),

θ(q)\displaystyle\theta_{(q)} θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)\displaystyle\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}
=\displaystyle= θ(q)θ(q1){𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q1)\displaystyle~{}\theta_{(q)}\theta_{(q-1)}\bigg{\{}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}
θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q1)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)}\displaystyle~{}-\frac{\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{\}}
=\displaystyle= θ(q)θ(q1)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q1)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)\displaystyle~{}\frac{\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}
=\displaystyle= θ(q)θ(q1)𝒛i,(q)𝑯i,q21(γ,𝜽)𝒛i,(q1)(1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))(1+θ(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q1)),\displaystyle~{}\frac{\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}}{(1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)})(1+\theta_{(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)})},

where we note that θ(q)\theta_{(q)} and θ(q1)\theta_{(q-1)} can be arbitrarily small and the dominant term of the denominator of the last equation can be equal to

  1. (i)

    θ(q)θ(q1)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q1)\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)};

  2. (ii)

    θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)+θ(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q1)\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}+\theta_{(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)};

  3. (iii)

    11.

For the case of (i), θ(q)ni\theta_{(q)}n_{i}^{\ell}\rightarrow\infty and θ(q1)ni\theta_{(q-1)}n_{i}^{\ell}\rightarrow\infty by Lemma 3 (i); hence, using Lemma 3 (i), we have

θ(q)θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ),\displaystyle~{}o_{p}(n_{i}^{-\ell-\tau}),

which also gives the following two results:

θ(q)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ),\displaystyle~{}o_{p}(n_{i}^{-\tau}),
𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ).\displaystyle~{}o_{p}(n_{i}^{\ell-\tau}).

For the case of (ii), θ(q)ni\theta_{(q)}n_{i}^{\ell}\rightarrow\infty and θ(q)=O(ni)\theta_{(q)}=O(n_{i}^{-\ell}) (or vice versa) by Lemma 3 (i); hence, using Lemma 3 (i), we have

θ(q)θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(θ(q1)niτ),\displaystyle~{}o_{p}(\theta_{(q-1)}n_{i}^{-\tau}),

which gives the following three results:

θ(q)θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ),\displaystyle~{}o_{p}(n_{i}^{-\ell-\tau}),
θ(q)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ),\displaystyle~{}o_{p}(n_{i}^{-\tau}),
𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ).\displaystyle~{}o_{p}(n_{i}^{\ell-\tau}).

For the case of (iii), θ(q)=O(ni)\theta_{(q)}=O(n_{i}^{-\ell}) and θ(q)=O(ni)\theta_{(q)}=O(n_{i}^{-\ell}) by Lemma 3 (i); hence, using Lemma 3 (i), we have

θ(q)θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(θ(q)θ(q1)niτ),\displaystyle~{}o_{p}(\theta_{(q)}\theta_{(q-1)}n_{i}^{\ell-\tau}),

which also gives the following three results:

θ(q)θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ),\displaystyle~{}o_{p}(n_{i}^{-\ell-\tau}),
θ(q)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ),\displaystyle~{}o_{p}(n_{i}^{-\tau}),
𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=\displaystyle\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}= op(niτ).\displaystyle~{}o_{p}(n_{i}^{\ell-\tau}).

In conclusion, we have

θ(q)θ(q1)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=op(niτ),θ(q)𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=op(niτ),𝒛i,(q)𝑯i,q1(γ,𝜽)𝒛i,(q1)=op(niτ)\displaystyle\begin{split}\theta_{(q)}\theta_{(q-1)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}=&~{}o_{p}(n_{i}^{-\ell-\tau}),\\ \theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}=&~{}o_{p}(n_{i}^{-\tau}),\\ \bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}=&~{}o_{p}(n_{i}^{\ell-\tau})\end{split} (C.7)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. This completes the proof of Lemma 3 (iii).

We finally prove Lemma 3 (iv). Without loss of generality, it suffices to prove Lemma 3 (iv) by replacing 𝑯i(γ,𝜽)\bm{H}_{i}(\gamma,\bm{\theta}) with 𝑯i,q1(γ,𝜽)\bm{H}_{i,q-1}(\gamma,\bm{\theta}) with q(γ)=qq(\gamma)=q, k=(q1)k=(q-1), and k=(q)k^{*}=(q). Then by (A.2),

θ(q1)\displaystyle\theta_{(q-1)} 𝒛i,(q1)𝑯i,q11(γ,𝜽)𝒛i,(q)\displaystyle\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}
=\displaystyle= θ(q1){𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q)\displaystyle~{}\theta_{(q-1)}\bigg{\{}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}
θ(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q)1+θ(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q1)}\displaystyle~{}-\frac{\theta_{(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}}\bigg{\}}
=\displaystyle= θ(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q)1+θ(q1)𝒛i,(q1)𝑯i,q21(γ,𝜽)𝒛i,(q1).\displaystyle~{}\frac{\theta_{(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q-1)}\bm{z}_{i,(q-1)}^{\prime}\bm{H}_{i,q-2}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q-1)}}.

Hence, Lemma 3 (iv) follows from Lemma 3 (i) and arguments similar to the proof of (C.4). This completes the proof.

C.3 Proof of Lemma 4

Note that for k=1,,qk=1,\ldots,q and j=1,,pj=1,\ldots,p,

ϵi𝒛i,k=\displaystyle\bm{\epsilon}_{i}^{\prime}\bm{z}_{i,k}= Op(ni/2),\displaystyle~{}O_{p}(n_{i}^{\ell/2}),
ϵi𝒙i,j=\displaystyle\bm{\epsilon}_{i}^{\prime}\bm{x}_{i,j}= Op(niξ/2).\displaystyle~{}O_{p}(n_{i}^{\xi/2}).

Lemma 4 (ii)–(iii) then follow arguments similarly from the induction and the proofs of Lemma 2 (iii) are hence omitted.

We next prove Lemma 4 (iv). Let 𝒛i,(s)\bm{z}_{i,(s)} be the ss-th column of 𝒁i(γ)\bm{Z}_{i}(\gamma) and 𝑯i,t(γ,𝜽)\bm{H}_{i,t}(\gamma,\bm{\theta}) be defined in (A.4). Without loss of generality, we assume q(γ)=qq(\gamma)=q. Hence by (A.6), Lemma 3 (i), and Lemma 4 (ii), we have

ϵi𝑯i,q1(γ,𝜽)ϵi=\displaystyle\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}= ϵiϵik=1qθ(k)ϵi𝑯i,k11(γ,𝜽)𝒛i,(k)𝒛i,(k)𝑯i,k11(γ,𝜽)ϵi1+θ(k)𝒛i,(k)𝑯i,k11(γ,𝜽)𝒛i,(k)\displaystyle~{}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}-\sum_{k=1}^{q}\frac{\theta_{(k)}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(k)}\bm{z}_{i,(k)}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{1+\theta_{(k)}\bm{z}_{i,(k)}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(k)}}
=\displaystyle= ϵiϵi+Op(q)\displaystyle~{}\bm{\epsilon}_{i}^{\prime}\bm{\epsilon}_{i}+O_{p}(q)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. This completes the proof of Lemma 4 (iv).

It remains to prove Lemma 4 (i). Again, without loss of generality, it suffices to prove Lemma 4 (i) for q(γ)=qq(\gamma)=q and k=(q)k=(q). Then by (A.2),

θ(q)ϵi𝑯i,q1(γ,𝜽)𝒛i,(q)=\displaystyle\theta_{(q)}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}= θ(q)ϵi𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q).\displaystyle~{}\frac{\theta_{(q)}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}.

Hence, Lemma 4 (i) follows from Lemma 3 (i), Lemma 4 (ii), and arguments similar to the proof of (C.4). This completes the proof.

C.4 Proof of Lemma 5

We show the lemma for (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0}, where the proofs with respect to the remaining models are similar and are hence omitted.

Let 𝒛i,(s)\bm{z}_{i,(s)} be the ss-th column of 𝒁i(γ)\bm{Z}_{i}(\gamma) and 𝑯i,t(γ,𝜽)\bm{H}_{i,t}(\gamma,\bm{\theta}) be defined in (A.4). Without loss of generality, we assume that q(γ)=qq(\gamma)=q and 𝒁i(γ0)𝒃i(γ0)=s=qq0+1q𝒛i,(s)bi,(s)\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})=\sum_{s=q-q_{0}+1}^{q}\bm{z}_{i,(s)}b_{i,(s)}. It then suffices to prove that for (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0} and v2>0v^{2}>0

2logL(𝜽,v2;α,γ){2logL(𝜽0,v2;α,γ)}𝑝,\displaystyle-2\log L(\bm{\theta},v^{2};\alpha,\gamma)-\{-2\log L(\bm{\theta}_{0}^{\dagger},v^{2};\alpha,\gamma)\}\xrightarrow{p}\infty, (C.8)

as both NN\rightarrow\infty and θ(k)0\theta_{(k)}\rightarrow 0 for some k{qq0+1,,q}k\in\{q-q_{0}+1,\dots,q\}, where 𝜽0(0,,0,θ(qq0+1),0,,θ(q),0)\bm{\theta}_{0}^{\dagger}\equiv(0,\dots,0,\theta_{(q-q_{0}+1),0},\dots,\theta_{(q),0})^{\prime}, and θ(s),0\theta_{(s),0} being the true value of θ(s)\theta_{(s)}; s=qq0+1,,qs=q-q_{0}+1,\dots,q. Note that by (A.3) and (A.1), we have

det(𝑯i(γ,𝜽))=\displaystyle\det(\bm{H}_{i}(\gamma,\bm{\theta}))= det(𝑰ni+s=1qθ(s)𝒛i,(s)𝒛i,(s))\displaystyle~{}\det\bigg{(}\bm{I}_{n_{i}}+\sum_{s=1}^{q}\theta_{(s)}\bm{z}_{i,(s)}\bm{z}_{i,(s)}^{\prime}\bigg{)}
=\displaystyle= det(𝑯i,q1(γ,𝜽)+θ(q)𝒛i,(q)𝒛i,(q))\displaystyle~{}\det(\bm{H}_{i,q-1}(\gamma,\bm{\theta})+\theta_{(q)}\bm{z}_{i,(q)}\bm{z}_{i,(q)}^{\prime})
=\displaystyle= det(𝑯i,q1(γ,𝜽))(1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)).\displaystyle~{}\det(\bm{H}_{i,q-1}(\gamma,\bm{\theta}))(1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}).

Continuously expanding the above equation by (A.1) yields

logdet(𝑯i(γ,𝜽))=log{s=1q(1+θ(s)𝒛i,(s)𝑯i,s11(γ,𝜽)𝒛i,(s))}=s=1qlog(1+θ(s)𝒛i,(s)𝑯i,s11(γ,𝜽)𝒛i,(s)),\displaystyle\begin{split}\log\det(\bm{H}_{i}(\gamma,\bm{\theta}))=&~{}\log\bigg{\{}\prod_{s=1}^{q}(1+\theta_{(s)}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(s)})\bigg{\}}\\ =&~{}\sum_{s=1}^{q}\log(1+\theta_{(s)}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(s)}),\end{split}

where 𝑯i,0(γ,𝜽)=𝑰ni\bm{H}_{i,0}(\gamma,\bm{\theta})=\bm{I}_{n_{i}}. This together with (7) and (B.4) yields for (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0} and fixed v2>0v^{2}>0,

2logL(𝜽,v2;α,γ)=Nlog(2π)+Nlog(v2)+logdet(𝑯(γ,𝜽))+𝒚𝑯1(γ,𝜽)𝑨(α,γ;𝜽)𝒚v2=Nlog(2π)+Nlog(v2)+i=1ms=1qlog(1+θ(s)𝒛i,(s)𝑯i,s11(γ,𝜽)𝒛i,(s))+(𝒁(γ0)𝒃(γ0)+ϵ)𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))(𝒁(γ0)𝒃(γ0)+ϵ)v2.\displaystyle\begin{split}-2&\log L(\bm{\theta},v^{2};\alpha,\gamma)\\ =&~{}N\log(2\pi)+N\log(v^{2})+\log\det(\bm{H}(\gamma,\bm{\theta}))+\frac{\bm{y}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{A}(\alpha,\gamma;\bm{\theta})\bm{y}}{v^{2}}\\ =&~{}N\log(2\pi)+N\log(v^{2})+\sum_{i=1}^{m}\sum_{s=1}^{q}\log(1+\theta_{(s)}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(s)})\\ &~{}+\frac{(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})}{v^{2}}.\end{split}

Hence, we have, for (α,γ)𝒜0×𝒢0(\alpha,\gamma)\in\mathcal{A}_{0}\times\mathcal{G}_{0},

2log\displaystyle-2\log L(𝜽,v2;α,γ){2logL(𝜽0,v2;α,γ)}\displaystyle L(\bm{\theta},v^{2};\alpha,\gamma)-\{-2\log L(\bm{\theta}_{0}^{\dagger},v^{2};\alpha,\gamma)\}
=\displaystyle= i=1m{s=qq0+1qlog(1+θ(s)𝒛i,(s)𝑯i,s11(γ,𝜽)𝒛i,(s)1+θ(s),0𝒛i,(s)𝑯i,s11(γ,𝜽0)𝒛i,(s))}\displaystyle~{}\sum_{i=1}^{m}\bigg{\{}\sum_{s=q-q_{0}+1}^{q}\log\bigg{(}\frac{1+\theta_{(s)}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(s)}}{1+\theta_{(s),0}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(s)}}\bigg{)}\bigg{\}}
+1v2(𝒁(γ0)𝒃(γ0)+ϵ){𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))\displaystyle~{}+\frac{1}{v^{2}}(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})^{\prime}\big{\{}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))
𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}(𝒁(γ0)𝒃(γ0)+ϵ),\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\big{\}}(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon}),

where

(𝒁(γ0)𝒃\displaystyle(\bm{Z}(\gamma_{0})\bm{b} (γ0)+ϵ){𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))\displaystyle(\gamma_{0})+\bm{\epsilon})^{\prime}\big{\{}\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))
𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}(𝒁(γ0)𝒃(γ0)+ϵ)\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\big{\}}(\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+\bm{\epsilon})
=\displaystyle= 𝒃(γ0)𝒁(γ0){𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))\displaystyle~{}\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))
𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}𝒁(γ0)𝒃(γ0)\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\}\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})
+2𝒃(γ0)𝒁(γ0){𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))\displaystyle~{}+2\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))
𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}ϵ\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\}\bm{\epsilon}
+ϵ{𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))\displaystyle~{}+\bm{\epsilon}^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))
𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}ϵ.\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\}\bm{\epsilon}.

Hence, for (C.8) to hold, it suffices to prove

ϵ{𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}ϵ=Op(m)\displaystyle\begin{split}\bm{\epsilon}^{\prime}&\{\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\\ &~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\}\bm{\epsilon}=O_{p}(m)\end{split} (C.9)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q} and

i=1m{s=qq0+1qlog(1+θ(s)𝒛i,(s)𝑯i,s11(γ,𝜽)𝒛i,(s)1+θ(s),0𝒛i,(s)𝑯i,s11(γ,𝜽0)𝒛i,(s))}+1v2(𝒃(γ0)𝒁(γ0){𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}𝒁(γ0)𝒃(γ0))+Op(m)𝑝,\displaystyle\begin{split}\sum_{i=1}^{m}&~{}\bigg{\{}\sum_{s=q-q_{0}+1}^{q}\log\bigg{(}\frac{1+\theta_{(s)}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(s)}}{1+\theta_{(s),0}\bm{z}_{i,(s)}^{\prime}\bm{H}_{i,s-1}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(s)}}\bigg{)}\bigg{\}}\\ &~{}+\frac{1}{v^{2}}\bigg{(}\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))\\ &~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\}\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})\bigg{)}+O_{p}(m)\xrightarrow{p}\infty,\end{split} (C.10)

as both NN\rightarrow\infty and θ(k)0\theta_{(k)}\rightarrow 0 for some k{qq0+1,,q}k\in\{q-q_{0}+1,\dots,q\}. Before proving (C.9) and (C.10), we prove the following equations, for 𝒉i,k\bm{h}_{i,k} being defined in (5) and k=qq0+1,,qk=q-q_{0}+1,\dots,q:

ϵ𝑯1(γ,𝜽0)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽)ϵ=\displaystyle\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}= Op(1),\displaystyle~{}O_{p}(1), (C.11)
ϵ𝑯1(γ,𝜽)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)ϵ=\displaystyle\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}= op(1),\displaystyle~{}o_{p}(1), (C.12)

and

ϵ𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1×𝑿(α)𝑯1(γ,𝜽0)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽)ϵ=op(1),\displaystyle\begin{split}\bm{\epsilon}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\\ &~{}\times\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}=o_{p}(1),\end{split} (C.13)
ϵ𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽0)𝑿(α))1×𝑿(α)𝑯1(γ,𝜽)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽0)𝑿(α)×(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)ϵ=op(1)\displaystyle\begin{split}\bm{\epsilon}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha))^{-1}\\ &~{}\times\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)\\ &~{}\times(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{\epsilon}=o_{p}(1)\end{split} (C.14)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. It suffices to prove (C.11)–(C.14) for k=qk=q. For (C.11) with k=qk=q, we have

ϵ\displaystyle\bm{\epsilon}^{\prime} 𝑯1(γ,𝜽0)𝒉i,(q)𝒉i,(q)𝑯1(γ,𝜽)ϵ\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{h}_{i,(q)}\bm{h}_{i,(q)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}
=\displaystyle= {ϵi𝑯i,q1(γ,𝜽0)𝒛i,(q)}{𝒛i,(q)𝑯i,q1(γ,𝜽)ϵi}\displaystyle~{}\{\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(q)}\}\{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}\}
=\displaystyle= {ϵi𝑯i,q1(γ,𝜽0)𝒛i,(q)}(𝒛i,(q)𝑯i,q11(γ,𝜽)ϵi1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))\displaystyle~{}\{\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(q)}\}\bigg{(}\frac{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{)}
=\displaystyle= {Op(ni/2)}1×1{Op(ni/2)}1×1\displaystyle~{}\{O_{p}(n_{i}^{-\ell/2})\}_{1\times 1}\{O_{p}(n_{i}^{\ell/2})\}_{1\times 1}
=\displaystyle= Op(1)\displaystyle~{}O_{p}(1)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, where the second last equality follows from Lemma 3 (i) and Lemma 4 (i)–(ii). For (C.12) with k=qk=q, we have

ϵ\displaystyle\bm{\epsilon}^{\prime} 𝑯1(γ,𝜽)𝒉i,(q)𝒉i,(q)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)ϵ\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(q)}\bm{h}_{i,(q)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}
=\displaystyle= {ϵi𝑯i,q1(γ,𝜽)𝒛i,(q)}𝒉i,(q)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)ϵ\displaystyle~{}\{\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}\}\bm{h}_{i,(q)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}
=\displaystyle= (ϵi𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))(𝒛i,(q)𝑯i,q1(γ,𝜽0)𝑿i(α)(i=1mniξ)1/2)\displaystyle~{}\bigg{(}\frac{\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{)}\bigg{(}\frac{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}
×(i=1m𝑿i(α)𝑯i,q1(γ,𝜽)𝑿i(α)i=1mniξ)1(i=1m𝑿i(α)𝑯i,q1(γ,𝜽)ϵi(i=1mniξ)1/2)\displaystyle~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}
=\displaystyle= {Op(ni/2)}1×1{o(ni/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}\displaystyle~{}\{O_{p}(n_{i}^{\ell/2})\}_{1\times 1}\{o(n_{i}^{-\ell/2-\tau})\}_{1\times p(\alpha)}\{\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\}
×{Op(1)}p(α)×1\displaystyle~{}\times\{O_{p}(1)\}_{p(\alpha)\times 1}
=\displaystyle= op(1)\displaystyle~{}o_{p}(1)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, where the second equality follows from (9) and (A.5) and the third equality follows from (A.7), Lemma 2 (iii), and Lemma 4 (ii)–(iii). For (C.13) with k=qk=q, we have

ϵ\displaystyle\bm{\epsilon}^{\prime} 𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}
×𝑿(α)𝑯1(γ,𝜽0)𝒉i,(q)𝒉i,(q)𝑯1(γ,𝜽)ϵ\displaystyle~{}\times\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{h}_{i,(q)}\bm{h}_{i,(q)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}
=\displaystyle= (i=1mϵi𝑯i,q1(γ,𝜽0)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i,q1(γ,𝜽)𝑿i(α)i=1mniξ)1\displaystyle~{}\bigg{(}\frac{\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}
×(𝑿i(α)𝑯i,q1(γ,𝜽0)𝒛i,(q)(i=1mniξ)1/2)(𝒛i,(q)𝑯i,q11(γ,𝜽)ϵi1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))\displaystyle~{}\times\bigg{(}\frac{\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(q)}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{)}
=\displaystyle= {Op(1)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{o(ni/2τ)}p(α)×1\displaystyle~{}\{O_{p}(1)\}_{1\times p(\alpha)}\{\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\}\{o(n_{i}^{-\ell/2-\tau})\}_{p(\alpha)\times 1}
×{Op(ni/2)}1×1\displaystyle~{}\times\{O_{p}(n_{i}^{\ell/2})\}_{1\times 1}
=\displaystyle= op(1)\displaystyle~{}o_{p}(1)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, where the second equality follows from (A.7), Lemma 2 (iii), and Lemma 4 (ii)–(iii). For (C.14) with k=qk=q,

ϵ\displaystyle\bm{\epsilon}^{\prime} 𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽0)𝑿(α))1𝑿(α)𝑯1(γ,𝜽)𝒉i,(q)\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(q)}
×𝒉i,(q)𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)ϵ\displaystyle~{}\times\bm{h}_{i,(q)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{\epsilon}
=\displaystyle= (i=1mϵi𝑯i,q1(γ,𝜽0)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i,q1(γ,𝜽0)𝑿i(α)i=1mniξ)1\displaystyle~{}\bigg{(}\frac{\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}
×(𝑿i(α)𝑯i,q11(γ,𝜽)𝒛i,(q)(i=1mniξ)1/2(1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)))(𝒛i,(q)𝑯i,q1(γ,𝜽0)𝑿i(α)(i=1mniξ)1/2)\displaystyle~{}\times\bigg{(}\frac{\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}(1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)})}\bigg{)}\bigg{(}\frac{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}
×(i=1m𝑿i(α)𝑯i,q1(γ,𝜽)𝑿i(α)i=1mniξ)1(i=1m𝑿i(α)𝑯i,q1(γ,𝜽0)ϵi(i=1mniξ)1/2)\displaystyle~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{\epsilon}_{i}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}
=\displaystyle= {Op(1)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{o(ni/2τ)}p(α)×1\displaystyle~{}\{O_{p}(1)\}_{1\times p(\alpha)}\{\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\}\{o(n_{i}^{\ell/2-\tau})\}_{p(\alpha)\times 1}
×{o(nminτ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{Op(1)}p(α)×1\displaystyle~{}\times\{o(n_{\min}^{-\tau})\}_{1\times p(\alpha)}\{\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\}\{O_{p}(1)\}_{p(\alpha)\times 1}
=\displaystyle= op(1)\displaystyle~{}o_{p}(1)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, where the second equality follows from (A.7), Lemma 2 (ii)–(iii), and Lemma 4 (iii). This completes the proofs of (C.11)–(C.14). We now prove (C.9). Note that

ϵ{𝑯1(γ,𝜽0)𝑴(α,γ;𝜽0)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)}ϵ=ϵ{𝑯1(γ,𝜽0)𝑴(α,γ;𝜽0)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)+𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)}ϵ=ϵ{𝑯1(γ,𝜽0)𝑴(α,γ;𝜽0)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)}ϵ+op(m)=ϵ𝑯1(γ,𝜽0){𝑴(α,γ;𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)+𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)}ϵ+op(m)=ϵ𝑯1(γ,𝜽0){𝑴(α,γ;𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)}ϵ+op(m)=op(m)\displaystyle\begin{split}\bm{\epsilon}^{\prime}&\{\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})-\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\}\bm{\epsilon}\\ =&~{}\bm{\epsilon}^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\\ &~{}+\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})-\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\}\bm{\epsilon}\\ =&~{}\bm{\epsilon}^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\}\bm{\epsilon}+o_{p}(m)\\ =&~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\{\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})\\ &~{}-\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\\ &~{}+\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\\ &~{}-\bm{M}(\alpha,\gamma;\bm{\theta})\}\bm{\epsilon}+o_{p}(m)\\ =&~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\{\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})\\ &~{}-\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\}\bm{\epsilon}+o_{p}(m)\\ =&~{}o_{p}(m)\end{split} (C.15)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, where the second equality follows from (C.12) that

ϵ\displaystyle\bm{\epsilon}^{\prime} {𝑯1(γ,𝜽0)𝑯1(γ,𝜽)}𝑴(α,γ;𝜽)ϵ\displaystyle\{\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})-\bm{H}^{-1}(\gamma,\bm{\theta})\}\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}
=\displaystyle= ϵ𝑯1(γ,𝜽){𝑯(γ,𝜽)𝑯(γ,𝜽0)}𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)ϵ\displaystyle~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\{\bm{H}(\gamma,\bm{\theta})-\bm{H}(\gamma,\bm{\theta}_{0}^{\dagger})\}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}
=\displaystyle= i=1mk=qq0+1q(θ(k)θ(k),0)ϵ𝑯1(γ,𝜽)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽0)𝑴(α,γ;𝜽)ϵ\displaystyle~{}\sum_{i=1}^{m}\sum_{k=q-q_{0}+1}^{q}(\theta_{(k)}-\theta_{(k),0})\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}
=\displaystyle= op(m)\displaystyle~{}o_{p}(m)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, the second last equality follows from (C.13) that

ϵ\displaystyle\bm{\epsilon}^{\prime} 𝑯1(γ,𝜽0){𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\{\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})
𝑴(α,γ;𝜽)}ϵ\displaystyle~{}-\bm{M}(\alpha,\gamma;\bm{\theta})\}\bm{\epsilon}
=\displaystyle= ϵ𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)\displaystyle~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}
×{𝑯1(γ,𝜽0)𝑯1(γ,𝜽)}ϵ\displaystyle~{}\times\{\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})-\bm{H}^{-1}(\gamma,\bm{\theta})\}\bm{\epsilon}
=\displaystyle= i=1mk=qq0+1q(θ(k)θ(k),0)ϵ𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽0)𝑿(α))1\displaystyle~{}\sum_{i=1}^{m}\sum_{k=q-q_{0}+1}^{q}(\theta_{(k)}-\theta_{(k),0})\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha))^{-1}
×𝑿(α)𝑯1(γ,𝜽)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽0)𝑿(α)\displaystyle~{}\times\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)
=\displaystyle= op(m)\displaystyle~{}o_{p}(m)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}, and the last equality follows from (C.14) that

ϵ\displaystyle\bm{\epsilon}^{\prime} 𝑯1(γ,𝜽0){𝑴(α,γ;𝜽0)\displaystyle~{}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\{\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})
𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)}ϵ\displaystyle~{}-\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\}\bm{\epsilon}
=\displaystyle= ϵ𝑯1(γ,𝜽0)𝑿(α){(𝑿(α)𝑯1(γ,𝜽0)𝑿(α))1\displaystyle~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)\{(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha))^{-1}
(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1}𝑿(α)𝑯1(γ,𝜽0)ϵ\displaystyle~{}-(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{\epsilon}
=\displaystyle= ϵ𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽0)𝑿(α))1𝑿(α){𝑯1(γ,𝜽)\displaystyle~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})
𝑯1(γ,𝜽0)}𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1𝑿(α)𝑯1(γ,𝜽0)ϵ\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\}\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{\epsilon}
=\displaystyle= i=1mk=qq0+1q(θ(k),0θ(k))ϵ𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽0)𝑿(α))1\displaystyle~{}\sum_{i=1}^{m}\sum_{k=q-q_{0}+1}^{q}(\theta_{(k),0}-\theta_{(k)})\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha))^{-1}
×𝑿(α)𝑯1(γ,𝜽)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽0)𝑿(α)(𝑿(α)𝑯1(γ,𝜽)𝑿(α))1\displaystyle~{}\times\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{X}(\alpha)(\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{X}(\alpha))^{-1}
×𝑿(α)𝑯1(γ,𝜽0)ϵ\displaystyle~{}\times\bm{X}(\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{\epsilon}
=\displaystyle= op(m)\displaystyle~{}o_{p}(m)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. Also, by (C.11),

ϵ\displaystyle\bm{\epsilon}^{\prime} {𝑯1(γ,𝜽)𝑯1(γ,𝜽0)}ϵ\displaystyle\{\bm{H}^{-1}(\gamma,\bm{\theta})-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\}\bm{\epsilon}
=\displaystyle= ϵ𝑯1(γ,𝜽0){𝑯(γ,𝜽0)𝑯(γ,𝜽)}𝑯1(γ,𝜽)ϵ\displaystyle~{}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\{\bm{H}(\gamma,\bm{\theta}_{0}^{\dagger})-\bm{H}(\gamma,\bm{\theta})\}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}
=\displaystyle= i=1mk=qq0+1q{θ(k),0θ(k)}ϵ𝑯1(γ,𝜽0)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽)ϵ\displaystyle~{}\sum_{i=1}^{m}\sum_{k=q-q_{0}+1}^{q}\{\theta_{(k),0}-\theta_{(k)}\}\bm{\epsilon}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}
=\displaystyle= Op(m)\displaystyle~{}O_{p}(m)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. This together with (C.15) gives (C.9). We now prove (C.10). As with the proof of (C.15), we have

𝒃(γ0)𝒁(γ0)\displaystyle\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime} {𝑯1(γ,𝜽0)𝑴(α,γ;𝜽0)\displaystyle\{\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger})
𝑯1(γ,𝜽)𝑴(α,γ;𝜽)}𝒁(γ0)𝒃(γ0)=op(m)\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\}\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})=o_{p}(m)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. Hence

𝒃(γ0)\displaystyle\bm{b}(\gamma_{0})^{\prime} 𝒁(γ0){𝑯1(γ,𝜽)(𝑰N𝑴(α,γ;𝜽))\displaystyle\bm{Z}(\gamma_{0})^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}))
𝑯1(γ,𝜽0)(𝑰N𝑴(α,γ;𝜽0))}𝒁(γ0)𝒃(γ0)\displaystyle~{}-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})(\bm{I}_{N}-\bm{M}(\alpha,\gamma;\bm{\theta}_{0}^{\dagger}))\}\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})
=\displaystyle= 𝒃(γ0)𝒁(γ0){𝑯1(γ,𝜽)𝑯1(γ,𝜽0)}𝒁(γ0)𝒃(γ0)+op(m)\displaystyle~{}\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\{\bm{H}^{-1}(\gamma,\bm{\theta})-\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\}\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+o_{p}(m)
=\displaystyle= i=1ms=qq0+1q(θ(s),0θ(s))𝒃(γ0)𝒁(γ0)𝑯1(γ,𝜽)𝒉i,(s)\displaystyle~{}\sum_{i=1}^{m}\sum_{s=q-q_{0}+1}^{q}(\theta_{(s),0}-\theta_{(s)})\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(s)}
×𝒉i,(s)𝑯1(γ,𝜽0)𝒁(γ0)𝒃(γ0)+op(m)\displaystyle~{}\times\bm{h}_{i,(s)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})+o_{p}(m)

uniformly over 𝜽[0,)q\bm{\theta}\in[0,\infty)^{q}. Hence, for (C.10) to hold, it suffices to prove that for k=qq0+1,,qk=q-q_{0}+1,\dots,q and i=1,,mi=1,\dots,m,

log(1+θ(k)𝒛i,(k)𝑯i,k11(γ,𝜽)𝒛i,(k)1+θ(k),0𝒛i,(k)𝑯i,k11(γ,𝜽0)𝒛i,(k))=op(𝒃(γ0)𝒁(γ0)𝑯1(γ,𝜽)𝒉i,(k)𝒉i,(k)𝑯1(γ,𝜽0)𝒁(γ0)𝒃(γ0)),\displaystyle\begin{split}\log\bigg{(}&~{}\frac{1+\theta_{(k)}\bm{z}_{i,(k)}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(k)}}{1+\theta_{(k),0}\bm{z}_{i,(k)}^{\prime}\bm{H}_{i,k-1}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(k)}}\bigg{)}\\ =&~{}o_{p}\bigg{(}\bm{b}(\gamma_{0})^{\prime}\bm{Z}(\gamma_{0})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(k)}\bm{h}_{i,(k)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})\bigg{)},\end{split} (C.16)

as both NN\rightarrow\infty and θ(k)0\theta_{(k)}\rightarrow 0 for some k{qq0+1,,q}k\in\{q-q_{0}+1,\ldots,q\}. It suffices to prove (C.16) for k=qk=q. By Lemma 3 (ii)–(iii), we have

𝒃(γ0)\displaystyle\bm{b}(\gamma_{0})^{\prime} 𝒁(γ0)𝑯1(γ,𝜽)𝒉i,(q)𝒉i,(q)𝑯1(γ,𝜽0)𝒁(γ0)𝒃(γ0)\displaystyle\bm{Z}(\gamma_{0})^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{h}_{i,(q)}\bm{h}_{i,(q)}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{Z}(\gamma_{0})\bm{b}(\gamma_{0})
=\displaystyle= (bi,(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q){1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)}){𝒛i,(q)𝑯i,q1(γ,𝜽0)𝒁i(γ0)𝒃i(γ0)}\displaystyle~{}\bigg{(}\frac{b_{i,(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{\{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}\}}\bigg{)}\{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{Z}_{i}(\gamma_{0})\bm{b}_{i}(\gamma_{0})\}
=\displaystyle= (bi,(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))(bi,(q)θ(q),0+op(niτ)).\displaystyle~{}\bigg{(}\frac{b_{i,(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{)}\bigg{(}\frac{b_{i,(q)}}{\theta_{(q),0}}+o_{p}(n_{i}^{-\ell-\tau})\bigg{)}.

Hence, for (C.16) with k=qk=q to hold, it suffices to prove that

log(\displaystyle\log\bigg{(} 1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q),0𝒛i,(q)𝑯i,q11(γ,𝜽0)𝒛i,(q))(𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q)1+θ(q)𝒛i,(q)𝑯i,q11(γ,𝜽)𝒛i,(q))1\displaystyle\frac{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q),0}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta}_{0}^{\dagger})\bm{z}_{i,(q)}}\bigg{)}\bigg{(}\frac{\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}{1+\theta_{(q)}\bm{z}_{i,(q)}^{\prime}\bm{H}_{i,q-1}^{-1}(\gamma,\bm{\theta})\bm{z}_{i,(q)}}\bigg{)}^{-1}
0,\displaystyle~{}\rightarrow 0,

as both NN\rightarrow\infty and θ(q)0\theta_{(q)}\rightarrow 0, which follows from Lemma 3 (i) and L’Hospital’s rule. This completes the proof of (C.16). This completes the proof.

C.5 Proof of Lemma 6

We first prove Lemma 6 (i). For i,i=1,,mi,i^{*}=1,\ldots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and k,kγk,k^{*}\in\gamma, we have

θkθk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k=(θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(θk𝑿i(α)𝑯i1(γ,𝜽)𝒛i,ki=1mniξ)={o(ni(ξ)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}×{o(ni(ξ)/2τi=1mniξ)}p(α)×1=o(ni(ξ)/2ni(ξ)/2τi=1mniξ)\displaystyle\begin{split}\theta_{k}\theta_{k^{*}}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\\ =&~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\theta_{k^{*}}\bm{X}_{i^{*}}(\alpha)^{\prime}\bm{H}_{i^{*}}^{-1}(\gamma,\bm{\theta})\bm{z}_{i^{*},k^{*}}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\{o(n_{i}^{(\xi-\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\\ &~{}\times\bigg{\{}o\bigg{(}\frac{n_{i^{*}}^{(\xi-\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{\}}_{p(\alpha)\times 1}\\ =&o\Bigg{(}\frac{n_{i}^{(\xi-\ell)/2}n_{i^{*}}^{(\xi-\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7) and Lemma 2 (iii). Similarly, by (A.7) and Lemma 2 (iii), we have

θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k=(θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(𝑿i(α)𝑯i1(γ,𝜽)𝒛i,ki=1mniξ)={o(ni(ξ)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}×{o(ni(ξ+)/2τi=1mniξ)}p(α)×1=o(ni(ξ)/2ni(ξ+)/2τi=1mniξ)\displaystyle\begin{split}\theta_{k}\bm{h}_{i,k}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\\ =&~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\bm{X}_{i^{*}}(\alpha)^{\prime}\bm{H}_{i^{*}}^{-1}(\gamma,\bm{\theta})\bm{z}_{i^{*},k^{*}}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\{o(n_{i}^{(\xi-\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\\ &~{}\times\Bigg{\{}o\Bigg{(}\frac{n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\Bigg{\}}_{p(\alpha)\times 1}\\ =&~{}o\Bigg{(}\frac{n_{i}^{(\xi-\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. Further, by (A.7) and Lemma 2 (iii), we have

𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k=(θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(𝑿i(α)𝑯i1(γ,𝜽)𝒛i,ki=1mniξ)={o(ni(ξ+)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}×{o(ni(ξ+)/2τi=1mniξ)}p(α)×1=o(ni(ξ+)/2ni(ξ+)/2τi=1mniξ)\displaystyle\begin{split}\bm{h}_{i,k}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}\\ =&~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\bm{X}_{i^{*}}(\alpha)^{\prime}\bm{H}_{i^{*}}^{-1}(\gamma,\bm{\theta})\bm{z}_{i^{*},k^{*}}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\{o(n_{i}^{(\xi+\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\\ &~{}\times\Bigg{\{}o\Bigg{(}\frac{n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\Bigg{\}}_{p(\alpha)\times 1}\\ =&~{}o\Bigg{(}\frac{n_{i}^{(\xi+\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This completes the proof of Lemma 6 (i).

We now prove Lemma 6 (ii). For i,i=1,,mi,i^{*}=1,\ldots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, kγk\in\gamma and kγk^{*}\notin\gamma,

θk\displaystyle\theta_{k} 𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k\displaystyle\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}
=\displaystyle= (θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1\displaystyle~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}
×(𝑿i(α)𝑯i1(γ,𝜽)𝒛i,ki=1mniξ)\displaystyle~{}\times\bigg{(}\frac{\bm{X}_{i^{*}}(\alpha)^{\prime}\bm{H}_{i^{*}}^{-1}(\gamma,\bm{\theta})\bm{z}_{i^{*},k^{*}}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}
=\displaystyle= {o(ni(ξ)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}\displaystyle~{}\{o(n_{i}^{(\xi-\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}
×{o(ni(ξ+)/2τi=1mniξ)}1×p(α)\displaystyle~{}\times\bigg{\{}o\bigg{(}\frac{n_{i}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{\}}_{1\times p(\alpha)}
=\displaystyle= o(ni(ξ)/2ni(ξ+)/2τi=1mniξ)\displaystyle~{}o\Bigg{(}\frac{n_{i}^{(\xi-\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from Lemma 2 (ii)–(iii) and (A.7). Similarly, by (A.7) and Lemma 2 (ii)–(iii), we have

𝒉i,k\displaystyle\bm{h}_{i,k}^{\prime} 𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}
=\displaystyle= (θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1\displaystyle~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}
×(𝑿i(α)𝑯i1(γ,𝜽)𝒛i,ki=1mniξ)\displaystyle~{}\times\bigg{(}\frac{\bm{X}_{i^{*}}(\alpha)^{\prime}\bm{H}_{i^{*}}^{-1}(\gamma,\bm{\theta})\bm{z}_{i^{*},k^{*}}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}
=\displaystyle= {o(ni(ξ+)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}\displaystyle~{}\{o(n_{i}^{(\xi+\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}
×{o(ni(ξ+)/2τi=1mniξ)}p(α)×1\displaystyle~{}\times\Bigg{\{}o\Bigg{(}\frac{n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\Bigg{\}}_{p(\alpha)\times 1}
=\displaystyle= o(ni(ξ+)/2ni(ξ+)/2τi=1mniξ)\displaystyle~{}o\Bigg{(}\frac{n_{i}^{(\xi+\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This completes the proof of Lemma 6 (ii).

We now prove Lemma 6 (iii). For (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and kγk\in\gamma,

θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ=(θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1m𝑿i(α)𝑯i1(γ,𝜽)ϵi(i=1mniξ)1/2)={o(ni/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{Op(1)}p(α)×1=op(ni/2)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\\ =&~{}\bigg{(}\frac{\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\\ =&~{}\{o(n_{i}^{-\ell/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{O_{p}(1)\}_{p(\alpha)\times 1}\\ =&~{}o_{p}(n_{i}^{-\ell/2})\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7), Lemma 2 (iii), and Lemma 4 (iii). Similarly, by (A.7), Lemma 2 (iii), and Lemma 4 (iii), we have

𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ=(𝒛i,k𝑯i1(γ,𝜽)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1m𝑿i(α)𝑯i1(γ,𝜽)ϵi(i=1mniξ)1/2)={o(ni/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{Op(1)}p(α)×1=op(ni/2)\displaystyle\begin{split}\bm{h}_{i,k}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\\ =&~{}\bigg{(}\frac{\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\\ =&~{}\{o(n_{i}^{\ell/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{O_{p}(1)\}_{p(\alpha)\times 1}\\ =&~{}o_{p}(n_{i}^{\ell/2})\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This completes the proof of Lemma 6 (iii).

We now prove Lemma 6 (iv). For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G}, kγk\in\gamma,

θk𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)=(θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1mjγ0α𝑿i(α)𝑯i1(γ,𝜽)𝒙i,jβj,0i=1mniξ)={o(ni(ξ)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{o(i=1mniξτi=1mniξ)}p(α)×1={o(ni(ξ)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{o(nminτ)}p(α)×1=o(ni(ξ)/2τ)\displaystyle\begin{split}\theta_{k}&\bm{h}_{i,k}^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\\ =&~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\sum_{j\in\gamma_{0}\setminus\alpha}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}\beta_{j,0}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\{o(n_{i}^{(\xi-\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\bigg{\{}o\bigg{(}\frac{\sum_{i=1}^{m}n_{i}^{\xi-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\bigg{\}}_{p(\alpha)\times 1}\\ =&~{}\{o(n_{i}^{(\xi-\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times 1}\\ =&~{}o(n_{i}^{(\xi-\ell)/2-\tau})\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7), Lemma 2 (i), and Lemma 2 (iii). Similarly, by (A.7) and Lemma 2 (i) and (iii), we have

𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)=(θk𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1mjα0α𝑿i(α)𝑯i1(γ,𝜽)𝒙i,jβj,0i=1mniξ)={o(ni(ξ+)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{o(nminτ)}p(α)×1=op(ni(ξ+)/2τ)\displaystyle\begin{split}\bm{h}_{i,k}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\\ =&~{}\big{(}\theta_{k}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}\beta_{j,0}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\{o(n_{i}^{(\xi+\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times 1}\\ =&~{}o_{p}(n_{i}^{(\xi+\ell)/2-\tau})\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}. This completes the proof of Lemma 6 (iv).

We now prove Lemma 6 (v). For (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G}, we have

ϵ𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ=(i=1mϵi𝑯i1(γ,𝜽)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1m𝑿i(α)𝑯i1(γ,𝜽)ϵi(i=1mniξ)1/2)={Op(1)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{Op(1)}p(α)×1=Op(p(α))\displaystyle\begin{split}\bm{\epsilon}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}\\ =&~{}\bigg{(}\frac{\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\\ =&~{}\{O_{p}(1)\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{O_{p}(1)\}_{p(\alpha)\times 1}\\ =&~{}O_{p}(p(\alpha))\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7) and Lemma 4 (iii). This completes the proof of Lemma 6 (v).

We now prove Lemma 6 (vi). For (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and kγk\notin\gamma, we have

𝒉i,k\displaystyle\bm{h}_{i,k}^{\prime} 𝑯1(γ,𝜽)𝑴(α,γ;𝜽)ϵ\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{\epsilon}
=\displaystyle= (𝒛i,k𝑯i1(γ,𝜽)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1\displaystyle~{}\bigg{(}\frac{\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}
×(i=1m𝑿i(α)𝑯i1(γ,𝜽)ϵi(i=1mniξ)1/2)\displaystyle~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{\epsilon}_{i}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}
=\displaystyle= {o(ni/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{Op(1)}p(α)×1\displaystyle~{}\{o(n_{i}^{\ell/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{O_{p}(1)\}_{p(\alpha)\times 1}
=\displaystyle= op(ni/2)\displaystyle~{}o_{p}(n_{i}^{\ell/2})

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7), Lemma 2 (ii), and Lemma 4 (iii). This completes the proof of Lemma 6 (vi).

We now prove Lemma 6 (vii). For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G}, we have

ϵ𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)=(i=1mϵi𝑯i1(γ,𝜽)𝑿i(α)(i=1mniξ)1/2)(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1mjα0α𝑿i(α)𝑯i1(γ,𝜽)𝒙i,jβj,0(i=1mniξ)1/2)={Op(1)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}×{o((i=1mniξ)1/2nminτ)}p(α)×1=op((i=1mniξ)1/2)\displaystyle\begin{split}\bm{\epsilon}^{\prime}&\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\\ =&~{}\bigg{(}\frac{\sum_{i=1}^{m}\bm{\epsilon}_{i}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}\beta_{j,0}}{(\sum_{i=1}^{m}n_{i}^{\xi})^{1/2}}\bigg{)}\\ =&~{}\{O_{p}(1)\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\\ &~{}\times\bigg{\{}o\bigg{(}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}^{1/2}n_{\min}^{-\tau}\bigg{)}\bigg{\}}_{p(\alpha)\times 1}\\ =&~{}o_{p}\bigg{(}\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi}\bigg{)}^{1/2}\bigg{)}\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7), Lemma 2 (i), and Lemma 4 (iii). This completes the proof of Lemma 6 (vii).

We now prove Lemma 6 (viii). For i,i=1,,mi,i^{*}=1,\ldots,m, (α,γ)𝒜×𝒢(\alpha,\gamma)\in\mathcal{A}\times\mathcal{G} and k,kγk,k^{*}\notin\gamma, we have

𝒉i,k\displaystyle\bm{h}_{i,k}^{\prime} 𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝒉i,k\displaystyle\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{h}_{i^{*},k^{*}}
=\displaystyle= (𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1\displaystyle~{}\big{(}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}
×(𝑿i(α)𝑯i1(γ,𝜽)𝒛i,ki=1mniξ)\displaystyle~{}\times\bigg{(}\frac{\bm{X}_{i^{*}}(\alpha)^{\prime}\bm{H}_{i^{*}}^{-1}(\gamma,\bm{\theta})\bm{z}_{i^{*},k^{*}}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}
=\displaystyle= {o(ni(ξ+)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}\displaystyle~{}\{o(n_{i}^{(\xi+\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}
×{op(ni(ξ+)/2τi=1mniξ)}p(α)×1\displaystyle~{}\times\Bigg{\{}o_{p}\Bigg{(}\frac{n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}\Bigg{\}}_{p(\alpha)\times 1}
=\displaystyle= `op(ni(ξ+)/2ni(ξ+)/2τi=1mniξ)\displaystyle~{}`o_{p}\Bigg{(}\frac{n_{i}^{(\xi+\ell)/2}n_{i^{*}}^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^{m}n_{i}^{\xi}}\Bigg{)}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7) and Lemma 2 (ii). This completes the proof of Lemma 6 (viii).

We now prove Lemma 6 (ix). For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G}, kγk\notin\gamma, we have

𝒉i,k𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)=(𝒛i,k𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1mjα0α𝑿i(α)𝑯i1(γ,𝜽)𝒙i,jβj,0i=1mniξ)={o(ni(ξ+)/2τ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}×{o(nminτ)}p(α)×1=o(ni(ξ+)/2τ)\displaystyle\begin{split}\bm{h}_{i,k}^{\prime}\bm{H}^{-1}&(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\\ =&~{}\big{(}\bm{z}_{i,k}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\big{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{x}_{i,j}\beta_{j,0}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\{o(n_{i}^{(\xi+\ell)/2-\tau})\}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\\ &~{}\times\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times 1}\\ =&~{}o(n_{i}^{(\xi+\ell)/2-\tau})\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7) and Lemma 2 (i)–(ii). This completes the proof of Lemma 6 (ix).

We finally prove Lemma 6 (x). For (α,γ)(𝒜𝒜0)×𝒢(\alpha,\gamma)\in(\mathcal{A}\setminus\mathcal{A}_{0})\times\mathcal{G}, we have

𝜷(α0α)𝑿(α0α)𝑯1(γ,𝜽)𝑴(α,γ;𝜽)𝑿(α0α)𝜷(α0α)=(i=1mjα0αβj,0𝒙i,j𝑯i1(γ,𝜽)𝑿i(α))(i=1m𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)i=1mniξ)1×(i=1mjα0α𝑿i(α)𝑯i1(γ,𝜽)𝑿i(α)𝒙i,ji=1mniξ)={o(i=1mniξτ)}1×p(α){𝑻1(α)+{o(nminτ)}p(α)×p(α)}{o(nminτ)}p(α)×1=o(i=1mniξτ)\displaystyle\begin{split}\bm{\beta}&(\alpha_{0}\setminus\alpha)^{\prime}\bm{X}(\alpha_{0}\setminus\alpha)^{\prime}\bm{H}^{-1}(\gamma,\bm{\theta})\bm{M}(\alpha,\gamma;\bm{\theta})\bm{X}(\alpha_{0}\setminus\alpha)\bm{\beta}(\alpha_{0}\setminus\alpha)\\ =&~{}\bigg{(}\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\beta_{j,0}\bm{x}_{i,j}^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\bigg{)}\bigg{(}\frac{\sum_{i=1}^{m}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}^{-1}\\ &~{}\times\bigg{(}\frac{\sum_{i=1}^{m}\sum_{j\in\alpha_{0}\setminus\alpha}\bm{X}_{i}(\alpha)^{\prime}\bm{H}_{i}^{-1}(\gamma,\bm{\theta})\bm{X}_{i}(\alpha)\bm{x}_{i,j}}{\sum_{i=1}^{m}n_{i}^{\xi}}\bigg{)}\\ =&~{}\bigg{\{}o\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\tau}\bigg{)}\bigg{\}}_{1\times p(\alpha)}\bigg{\{}\bm{T}^{-1}(\alpha)+\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times p(\alpha)}\bigg{\}}\{o(n_{\min}^{-\tau})\}_{p(\alpha)\times 1}\\ =&~{}o\bigg{(}\sum_{i=1}^{m}n_{i}^{\xi-\tau}\bigg{)}\end{split}

uniformly over 𝜽Θγ\bm{\theta}\in\Theta_{\gamma}, where the second equality follows from (A.7) and Lemma 2 (i). This completes the proof.