This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newdateformat

ukdate\ordinaldate\THEDAY \monthname[\THEMONTH] \THEYEAR

Inertia of two-qutrit entanglement witnesses

Changchun Feng LMIB(Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, China    Lin Chen [email protected] (corresponding author) LMIB(Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, China International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China    Chang Xu [email protected] Science College, Northeastern University, Shenyang, 110000, China    Yi Shen LMIB(Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, China School of Science, Jiangnan University, Wuxi 214122, China
(\ukdate)
Abstract

Entanglement witnesses (EWs) are a fundamental tool for the detection of entanglement. We investigate the inertias of bipartite EWs constructed by the partial transpose of NPT states. Furthermore, we find out most of the inertias of the partial transpose of the two-qutrit bipartite NPT states. As an application, we extend our results to high dimensional states.

pacs:
03.65.Ud, 03.67.Mn

I Introduction

Einstein, Podolsky, Rosen, Schrodinger, et al discovered quantum entanglement. Then it became a remarkable feature of quantum mechanics. It lies in the heart of quantum information theory 2007Quantum ; GUHNE20091 . In recent decades, entanglement has been recognized as a kind of valuable resource 2007Quantum ; 2019Quantum ; Patricia2019Resource . It is widely used in various quantum information processing tasks such as quantum computing 2005Experimental , teleportation 2004Deterministic , dense coding 2002Quantum , cryptography 2020Entanglement , and quantum key distribution Xu2020 .

Although several useful separability criteria such as positive-partial-transpose (PPT) criterion Peres1996 ; horodecki1997 , range criterion, and realignment criterion Rudolph2002Some were developed, all of them cannot strictly distinguish between the set of entangled states and that of separable ones. According to PPT criterion, any state with non positive partial transpose (NPT) must be entangled. Nevertheless, the converse only holds for two-qubit and qubit-qutrit systems. It has been shown that determining whether a bipartite state is entangled is an NP-hard problem 2003Proceedings . In 20002000, Terhal first introduced the term entanglement witness (EW) by indicating that a violation of a Bell inequality can be expressed as a witness for entanglement 2000Entanglement . Nowadays, EWs are a fundamental tool for the detection of entanglement both theoretically and experimentally. Actually, many EWs have been implemented with local measurements 2000Entanglement ; 2019Design ; 2020Measurement .

As we know, the partial transpose of NPT state ρ\rho is an EW. The negative eigenvalues of ρΓ\rho^{\Gamma} are a signature of entanglement. They are closely related to other problems in entanglement theory. The negativity is a well-known computable entanglement measure 2002Computable . At the same time, it is the sum of the absolute values of negative eigenvalues of ρΓ\rho^{\Gamma}. Also, by the definition of 11-distillable state Micha1998Mixed , when ρΓ\rho^{\Gamma} has more negative eigenvalues, ρ\rho is more likely to be 11-distillable. Thus, it is important to explore the negative eigenvalues of ρΓ\rho^{\Gamma}. The problem of determining how many negative eigenvalues the partial transpose of NPT state could contain has attracted great interest 2008Universal ; 2012Qubit ; 2013Negative ; 2013Non . It was first specified in 2008Universal that ρΓ\rho^{\Gamma} has one negative eigenvalue and three positive eigenvalues for any two-qubit entangled state ρ\rho. Next the inertias of the partial transpose of 2×n2\times n NPT states has been investigated in 2020Inertias . As far as we know, many quantum information queestions turn into intractable when 2×n2\times n systems are replaced by 3×33\times 3 systems, such as distillability problem Micha1998Mixed ; 1999Evidence , distinguishable subspace problem 2007On , and separability problem 2002Distinguishing .

Due to Sylvester theorem 2011Matrix , we introduce a tool to study the inertia of EW, namely the inertia of a Hermitian operator is invariant under SLOCC. Firstly, we introduce what the two-qutrit subspaces contain for subspaces with various dimensions in Lemma 9. Then we explore a property of the inertia of the partial transpose of bipartite NPT states in Lemma 10. Further we investigate the number of positive eigenvalues of bipartite EWs in Lemma 11. Then we give some observations on the relation between the number of positive eigenvalues and that of negative eigenvalues in Lemma 12. Then we propose two observations on the partial transpose of the two-qutrit NPT states in Lemmas 13 and 14, demonstrated by Example 15. Then we discuss all cases in the partial transpose of the two-qutrit bipartite NPT state in Theorem 16. We draw a conclusion about the inertias of (the partial transpose) of the two-qutrit bipartite NPT states in Theorem 17. Next we propose Example 18 to illustrate Theorem 17(i). We propose Example 19 to show the relationship between the inertias of 2×32\times 3 states and those of 3×33\times 3 states. Finally, we extend some conclusions on the inertias from 2×n2\times n states to 3×n3\times n states in Lemma 20.

The remainder of this paper is organized as follows. In section II we introduce the preliminaries by clarifying the notations and presenting necessary definitions and results. In section III we focus on the bipartite EWs constructed by (the partial transpose) of NPT state, and determine intertias of such EWs. In section IV we investigate the inertias of the partial transpose of the two-qutrit bipartite NPT states. Finally, we conclude in section VI. In section V we find out the relationship between the inertias of 2×32\times 3 states and those of 2×32\times 3 states and extend some conclusions on the inertias from 2×n2\times n states to 3×n3\times n states. We also partially test the existence of two unverified inertias using python program.

II Preliminaries

In this section we introduce the facts used in this paper. We refer to d\mathbb{C}^{d} as the dd-dimensional Hilbert space. We define InI_{n} as the identity matrix of order nn. We denote i=1ndi:=i=1nAi\otimes^{n}_{i=1}\mathbb{C}^{d_{i}}:=\otimes^{n}_{i=1}\mathcal{H}_{A_{i}} as the n-partite Hilbert space, where did_{i}’s are local dimensions. Let 𝕄n\mathbb{M}_{n} be the set of n×nn\times n matrices. If ρ(i=1ndi)\rho\in\mathcal{B}(\otimes^{n}_{i=1}\mathbb{C}^{d_{i}}) is a positive semidefinite matrix of trace one, then ρ\rho is an nn-partite quantum state. The partial transpose w.r.t. system A of a bipartite matrix ρ(AB)\rho\in\mathcal{B}(\mathcal{H}_{A}\otimes\mathcal{H}_{B}) is definied as, ρΓ:=i,jci|Aρ|cj|cjci|A\rho^{\Gamma}:=\sum_{i,j}\langle c_{i}|_{A}\rho|c_{j}\rangle\otimes|c_{j}\rangle\langle c_{i}|_{A}, where the set of |ci|c_{i}\rangle is an arbitrary orthonormal basis in A\mathcal{H}_{A}. If ρΓ\rho^{\Gamma} has at least one negative eigenvalue then ρ\rho has non-positive partial transpose (NPT). If ρΓ\rho^{\Gamma} does not have negative eigenvalues then ρ\rho has positive partial transpose (PPT). We refer to an M×NM\times N state as a bipartite ρ\rho such that rank ρA=M\rho_{A}=M and rank ρB=N\rho_{B}=N. Given the Schmidt decomposition |ψ=ici|ai,bi|\psi\rangle=\sum_{i}\sqrt{c_{i}}|a_{i},b_{i}\rangle, we refer to the number of nonzero cic_{i} as the Schmidt rank of ψ\psi. We denote the number as SR(ψ\psi). There is an essential proposition for the matrix inertia, namely Sylvester theorem Horn1985 . It states that Hermitian matrices A,B𝕄nA,B\in\mathbb{M}^{n} have the same inertia if and only if there is a non-singular matrix SS such that B=SASB=SAS^{\dagger}.

In the following we review the entanglement witness (EW), inertia and stochastic local operations and classical communications (SLOCC) equivalence.

Definition 1

Suppose W(i=1ndi)W\in\mathcal{B}(\otimes^{n}_{i=1}\mathbb{C}^{d_{i}}) is Hermitian. We say that W is an nn-partite EW if

(i) it is non-positive semidefinite,

(ii) ψ|W|ψ0\langle\psi|W|\psi\rangle\geq 0 for any product vector |ψ=i=1n|ai|\psi\rangle=\otimes^{n}_{i=1}|a_{i}\rangle with |aii|a_{i}\rangle\in\mathcal{H}_{i}.

Definition 2

Let A𝕄nA\in\mathbb{M}_{n} be Hermitian. The inertia of AA, denoted by ln(A)\ln(A), is defined as the following sequence

ln(A):=(v,v0,v+),\displaystyle\ln(A):=(v_{-},v_{0},v_{+}), (1)

where v,v0v_{-},v_{0} and v+v_{+} are respectively the numbers of negative, zero and positive eigenvalues of AA.

Note that if ρ\rho is PPT, then v=0v_{-}=0.

Definition 3

Two nn-partite pure state |α|\alpha\rangle, |β|\beta\rangle are SLOCC equivalent if there exists a product invertible operation Y=Y1YnY=Y_{1}\otimes...\otimes Y_{n} such that |α=Y|β|\alpha\rangle=Y|\beta\rangle.

Then we present several results for the state ρ\rho and the EWs 2013Non ; 2020Inertias ; Chen2013 ; 3tensors1983 .

Lemma 4

3tensors1983 Suppose 𝒱mn\mathcal{V}\subseteq\mathbb{C}^{m}\otimes\mathbb{C}^{n} is a bipartite Hilbert subspace.

(i) If Dim(𝒱)=mn1\mathop{\rm Dim}(\mathcal{V})=mn-1, then 𝒱\mathcal{V} is spanned by product vectors.

(ii) If Dim(𝒱)=mn2\mathop{\rm Dim}(\mathcal{V})=mn-2, then 𝒱\mathcal{V} is either spanned by product vectors or up to SLOCC equivalence spanned by {|0,0+|1,1,|i,j:(i,j)(0,0),(0,1),(1,1)}\{|0,0\rangle+|1,1\rangle,|i,j\rangle:(i,j)\neq(0,0),(0,1),(1,1)\}.

Lemma 5

2013Non Suppose ρ\rho is an m×nm\times n NPT state. If ρ\rho is a pure state with Schmidt rank rr, then

ln(ρΓ)=(r2r2,mnr2,r2+r2).\displaystyle\ln(\rho^{\Gamma})=(\frac{r^{2}-r}{2},mn-r^{2},\frac{r^{2}+r}{2}). (2)
Lemma 6

(Chen2013, , Proposition 66) Suppose 𝒱mn\mathcal{V}\subseteq\mathbb{C}^{m}\otimes\mathbb{C}^{n}. If Dim(𝒱)>(m1)(n1)\mathop{\rm Dim}(\mathcal{V})>(m-1)(n-1) then 𝒱\mathcal{V} contains at least one product vector. Furthermore, if Dim(𝒱)>(m1)(n1)+1\mathop{\rm Dim}(\mathcal{V})>(m-1)(n-1)+1 then 𝒱\mathcal{V} has infinitely many product vectors.

Lemma 7

(2020Inertias, , Lemma 55) Suppose WW is an EW on mn\mathbb{C}^{m}\otimes\mathbb{C}^{n}.

(i) Let AA be the non-positive eigen-space of WW, i.e., the sum of negative and zero eigen-spaces of W. Then the product vectors in AA all belong to the zero eigen-space of W. In particular, every vector in the negative eigen-space of W is a pure entangled state.

(ii) The number of negative eigenvalues of W is in [1,(m1)(n1)][1,(m-1)(n-1)]. The decomposable EW containing exactly (m1)(n1)(m-1)(n-1) negative eigenvalues exists.

(iii) The number of positive eigenvalues of W is in [2,mn1][2,mn-1].

We will apply Lemma 4 to prove Lemma 11. We will use Lemmas 5, 6 and 7 to prove Lemma 17. Then we denote the inertia set, 𝒩m,n:={ln(ρΓ)|ρisanm×nNPTstate.}\mathcal{N}_{m,n}:=\{\ln(\rho^{\Gamma})|\rho\quad is\quad an\quad m\times n\quad NPT\quad state.\}. We introduce some observations on the inertias.

Lemma 8

(2020Inertias, , Lemma 88) (i) Suppose ρ\rho is an m×nm\times n NPT state and ρΓ\rho^{\Gamma} has the inertia (a,b,c)(a,b,c). Then there is a small enough x>0x>0 and NPT state σ:=ρ+xImn\sigma:=\rho+xI_{mn}, such that ln(σΓ)=(a,0,b+c)\ln(\sigma^{\Gamma})=(a,0,b+c).

(ii) Suppose m1m2m_{1}\leq m_{2} and n1n2n_{1}\leq n_{2}. If (a1,b1,c1)𝒩m1,n1(a_{1},b_{1},c_{1})\in\mathcal{N}_{m_{1},n_{1}}, with a1+b1+c1=m1n1a_{1}+b_{1}+c_{1}=m_{1}n_{1}, then for any l[0,m2n2m1n1]l\in[0,m_{2}n_{2}-m_{1}n_{1}] we have (a1,m2n2m1n1l,b1+c1+l)𝒩m2,n2(a_{1},m_{2}n_{2}-m_{1}n_{1}-l,b_{1}+c_{1}+l)\in\mathcal{N}_{m_{2},n_{2}}.

Based on the above preliminary knowledge we are ready to study the inertia of the partial transposes of NPT states.

III Inertias of the partial transposes of NPT states

In this section we focus on the bipartite EWs constructed by the partial transpose of NPT state, and determine intertias of such EWs.

At first, we introduce what the two-qutrit subspaces contain for subspaces with various dimensions.

Lemma 9

Suppose 𝒱33\mathcal{V}\subseteq\mathbb{C}^{3}\otimes\mathbb{C}^{3} has infinitely many pairwise linearly independent product vectors.

(i) If the dimension of 𝒱\mathcal{V} is two, then 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\}.

(ii) If the dimension of 𝒱\mathcal{V} is three, then 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} or {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\}.

(iii) If the dimension of 𝒱\mathcal{V} is four, then 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} or {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\} or {|0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(|0+f|1)}\{|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle)\} satisfying the conditions a,b0a,b\neq 0 and f0,1f\neq 0,1.

(iv) If the dimension of 𝒱\mathcal{V} is five, then 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} or {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\} or {|0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(|0+f|1)}\{|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle)\}, {|0,0,|1,1,|2,2,}\{|0,0\rangle,|1,1\rangle,|2,2\rangle,\}

Proof.

(i) If the dimension of 𝒱\mathcal{V} is two, then we obtain that one product vector is SLOCC equivalent to |0,0|0,0\rangle. One can verify that the other product vector can only be SLOCC equivalent or system permutated to |0,1|0,1\rangle.

(ii) Suppose the dimension of 𝒱\mathcal{V} is three. Since 𝒱\mathcal{V} has infinitely many product vectors, it may contain the set {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} from (i). Suppose 𝒱\mathcal{V} does not contain the set. It contains product vectors {|a0,b0,|a1,b1,|a2,b2}\{|a_{0},b_{0}\rangle,|a_{1},b_{1}\rangle,|a_{2},b_{2}\rangle\}. Up to SLOCC equivalence, we may assume that |a0,b0=|0,0|a_{0},b_{0}\rangle=|0,0\rangle and |a1,b1=|1,1|a_{1},b_{1}\rangle=|1,1\rangle. Suppose the third product vector is (a|0+b|1+c|2)(d|0+f|1+g|2)(a|0\rangle+b|1\rangle+c|2\rangle)(d|0\rangle+f|1\rangle+g|2\rangle). Recall that 𝒱\mathcal{V} has infinitely many pairwise linearly independent product vectors. So we have that x|0,0+y|1,1+(a|0+b|1+c|2)(d|0+f|1+g|2)x|0,0\rangle+y|1,1\rangle+(a|0\rangle+b|1\rangle+c|2\rangle)(d|0\rangle+f|1\rangle+g|2\rangle) is a product vector and x,y0x,y\neq 0. Then we obtain that the rank of x|00|+y|11|+(a|0+b|1+c|2)(d0|+f1|+g2|)=[x+adafagbdy+bfbgcdcfcg]x|0\rangle\!\langle 0|+y|1\rangle\!\langle 1|+(a|0\rangle+b|1\rangle+c|2\rangle)(d\langle 0|+f\langle 1|+g\langle 2|)=\begin{bmatrix}x+ad&af&ag\\ bd&y+bf&bg\\ cd&cf&cg\end{bmatrix} is one. Because these three row vectors are pairwise linearly dependent and x,y0x,y\neq 0, we have c=f=0c=f=0. Then we obtain that (a|0+b|1)(d|0+f|1)(a|0\rangle+b|1\rangle)(d|0\rangle+f|1\rangle) is SLOCC equivalent to (|0+|1)(|0+|1)(|0\rangle+|1\rangle)(|0\rangle+|1\rangle). Then 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\}.

(iii) Suppose the dimension of 𝒱\mathcal{V} is four. Since 𝒱\mathcal{V} has infinitely many product vectors, it may contain the sets {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} or {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\} from (ii). Suppose 𝒱\mathcal{V} does not contain the sets. That is, we hypothesize that the space spanned by any three product vectors of the set does not generate infinitely many product vectors. The sets contains product vectors {|a0,b0,|a1,b1,|a2,b2,|a3,b3}\{|a_{0},b_{0}\rangle,|a_{1},b_{1}\rangle,|a_{2},b_{2}\rangle,|a_{3},b_{3}\rangle\}. Up to SLOCC equivalence, we may assume that |a0,b0=|0,0|a_{0},b_{0}\rangle=|0,0\rangle and |a1,b1=|1,1|a_{1},b_{1}\rangle=|1,1\rangle. Then we discuss three cases (iii.A)-(iii.C) in terms of the third product vector |a2,b2=|α|a_{2},b_{2}\rangle=|\alpha\rangle and the fouth product vector |a3,b3=|β|a_{3},b_{3}\rangle=|\beta\rangle.

Because of the hypothesis, |α|\alpha\rangle can only be |2(a|0+b|1+c|2)|2\rangle(a|0\rangle+b|1\rangle+c|2\rangle). We will divide |α|\alpha\rangle into two cases up to SLOCC equivalence and permutation. One is |2,2|2,2\rangle, the other is |2(m|0+n|1)|2\rangle(m|0\rangle+n|1\rangle). When α\alpha is |2,2|2,2\rangle, we will prove it is impossible that |α|\alpha\rangle is |2,2|2,2\rangle and |β|\beta\rangle is (a|0+b|1+c|2)(d|0+f|1+g|2)(a|0\rangle+b|1\rangle+c|2\rangle)(d|0\rangle+f|1\rangle+g|2\rangle) in (iii.A). Then we obtain that |α|\alpha\rangle and |β|\beta\rangle are not up to SLOCC equivalent to |2,2|2,2\rangle. Then we consider the other case for |α=|2(m|0+n|1)|\alpha\rangle=|2\rangle(m|0\rangle+n|1\rangle). If m=0m=0 or n=0n=0, one can prove that {|0,0,|1,1,|α}\{|0,0\rangle,|1,1\rangle,|\alpha\rangle\} generates infinitely many product vectors. We draw a contradiction. So m,n0m,n\neq 0. We obtain that |α|\alpha\rangle is SLOCC equivalent to |2(|0+|1)|2\rangle(|0\rangle+|1\rangle) in this case. Because |β|\beta\rangle are not up to SLOCC equivalent to |2,2|2,2\rangle, we will divide |β|\beta\rangle into two cases when |α=|2(|0+|1)|\alpha\rangle=|2\rangle(|0\rangle+|1\rangle). Then we will dicuss the case that |α|\alpha\rangle is |2(|0+|1)|2\rangle(|0\rangle+|1\rangle) and |β|\beta\rangle is (a|0+b|1)(d|0+f|1+|2)(a|0\rangle+b|1\rangle)(d|0\rangle+f|1\rangle+|2\rangle) in (iii.B), and the case that |α|\alpha\rangle is |2(|0+|1)|2\rangle(|0\rangle+|1\rangle) and |β|\beta\rangle is (a|0+b|1+|2)(d|0+f|1)(a|0\rangle+b|1\rangle+|2\rangle)(d|0\rangle+f|1\rangle) in (iii.C). Suppose d=0d=0 or f=0f=0. 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|1,1,(a|0+b|1+|2)(d|0+f|1)}\{|0,0\rangle,|1,1\rangle,(a|0\rangle+b|1\rangle+|2\rangle)(d|0\rangle+f|1\rangle)\}. We get that 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\}. We draw a contradiction. Then we have d,f0d,f\neq 0. We will suppose d=1d=1 and f0f\neq 0 in (iii.C).

(iii.A) Suppose |α|\alpha\rangle is |2,2|2,2\rangle and |β|\beta\rangle is (a|0+b|1+c|2)(d|0+f|1+g|2)(a|0\rangle+b|1\rangle+c|2\rangle)(d|0\rangle+f|1\rangle+g|2\rangle). 𝒱\mathcal{V} has infinitely many pairwise linearly independent product vectors. Then we obtain that the rank of x|00|+y|11|+z|22|+(a|0+b|1+c|2)(d0|+f1|+g2|)=[x+adafagbdy+bfbgcdcfz+cg]x|0\rangle\!\langle 0|+y|1\rangle\!\langle 1|+z|2\rangle\!\langle 2|+(a|0\rangle+b|1\rangle+c|2\rangle)(d\langle 0|+f\langle 1|+g\langle 2|)=\begin{bmatrix}x+ad&af&ag\\ bd&y+bf&bg\\ cd&cf&z+cg\end{bmatrix} is one. These three row vectors are pairwise linearly dependent. Because of the hypothesis, we get that x,y,z0x,y,z\neq 0. Then one can verify that the rank of the above matrix is more than one. Then we draw a contradiction.

(iii.B) Suppose |α|\alpha\rangle is |2(|0+|1)|2\rangle(|0\rangle+|1\rangle), |β|\beta\rangle is (a|0+b|1)(d|0+f|1+|2)(a|0\rangle+b|1\rangle)(d|0\rangle+f|1\rangle+|2\rangle). Then we obtain that the rank of x|00|+y|11|+z|2(0|+1|)+(a|0+b|1)(d0|+f1|+2|)=[x+adafabdy+bfbzz0]x|0\rangle\!\langle 0|+y|1\rangle\!\langle 1|+z|2\rangle(\langle 0|+\langle 1|)+(a|0\rangle+b|1\rangle)(d\langle 0|+f\langle 1|+\langle 2|)=\begin{bmatrix}x+ad&af&a\\ bd&y+bf&b\\ z&z&0\end{bmatrix} is one. One can verify that if the rank of the matrix is one, then a=b=x=y=0a=b=x=y=0. We draw a contradiction.

(iii.C) Suppose |α|\alpha\rangle is |2(|0+|1)|2\rangle(|0\rangle+|1\rangle), |β|\beta\rangle is (a|0+b|1+|2)(|0+f|1)(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle) and f0f\neq 0. Then we obtain that the rank of x|00|+y|11|+z|2(0|+1|)+(a|0+b|1+|2)(0|+f1|)=[x+aaf0by+f0z+1z+f0]x|0\rangle\!\langle 0|+y|1\rangle\!\langle 1|+z|2\rangle(\langle 0|+\langle 1|)+(a|0\rangle+b|1\rangle+|2\rangle)(\langle 0|+f\langle 1|)=\begin{bmatrix}x+a&af&0\\ b&y+f&0\\ z+1&z+f&0\end{bmatrix} is one. Because of the hypothesis, we get that x,y,z0x,y,z\neq 0. If f=1f=1, then by (ii) we have that {|0,0,|2(|0+|1),(a|0+b|1+|2)(|0+|1)}\{|0,0\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+|1\rangle)\} can generate infinitely many product vectors when b=0b=0. We draw a contradiction. We obtain that f1f\neq 1. Then we consider the values of aa and bb. Suppose a=0a=0. We have that {|11|,|2(0|+1|),(b|1+|2)(0|+f1|)}\{|1\rangle\langle 1|,|2\rangle(\langle 0|+\langle 1|),(b|1\rangle+|2\rangle)(\langle 0|+f\langle 1|)\} is a 33-dimensional subspace. We draw a contradiction. So we have that a0a\neq 0. Similarly, we get that b0b\neq 0. Suppose a,b0a,b\neq 0 and f0,1f\neq 0,1. We define n=x+aafn=\dfrac{x+a}{af}. x+aaf=by+f=z+1z+f=n\dfrac{x+a}{af}=\dfrac{b}{y+f}=\dfrac{z+1}{z+f}=n, if and only if the rank of [x+aaf0by+f0z+1z+f0]\begin{bmatrix}x+a&af&0\\ b&y+f&0\\ z+1&z+f&0\end{bmatrix} is one. We obtain that x=afnax=afn-a, y=bfnny=\dfrac{b-fn}{n} and z=1fn1nz=\dfrac{1-fn}{1-n}. Because the value of nn is arbitrary, there are various combinations of values of x,y,z0x,y,z\neq 0. So we get that 𝒱\mathcal{V} up to SLOCC equivalence and system permutation contains {|0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(d|0+f|1)}\{|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(d|0\rangle+f|1\rangle)\} and a,b0a,b\neq 0 and f0,1f\neq 0,1.

\sqcap\sqcup

Then we introduce a property of the inertia of an n×nn\times n bipartite NPT state.

Lemma 10

Suppose ρ\rho is an n×nn\times n bipartite NPT state, and ρΓ=PQ\rho^{\Gamma}=P-Q where P,Q0P,Q\geq 0 and PQP\perp Q. If |a,b(ρΓ)|a,b\rangle\in{\cal R}(\rho^{\Gamma}), then ρΓ+|a,ba,b|\rho^{\Gamma}+|a,b\rangle\!\langle a,b| has the inertia (rankQ,nrankPrankQ,rankP)(\mathop{\rm rank}Q,n-\mathop{\rm rank}P-\mathop{\rm rank}Q,\mathop{\rm rank}P) or (1+rankQ,nrankPrankQ,1+rankP)(-1+\mathop{\rm rank}Q,n-\mathop{\rm rank}P-\mathop{\rm rank}Q,1+\mathop{\rm rank}P) or (1+rankQ,n+1rankPrankQ,rankP)(-1+\mathop{\rm rank}Q,n+1-\mathop{\rm rank}P-\mathop{\rm rank}Q,\mathop{\rm rank}P).

Proof.

Because |a,b(ρΓ)=(P)+(Q)|a,b\rangle\in{\cal R}(\rho^{\Gamma})={\cal R}(P)+{\cal R}(Q), we have |a,b(P)|a,b\rangle\in{\cal R}(P), |a,b(Q)|a,b\rangle\in{\cal R}(Q), or |a,b{|x,|y}|a,b\rangle\in\{|x\rangle,|y\rangle\} where |x(P)|x\rangle\in{\cal R}(P) and |y(Q)|y\rangle\in{\cal R}(Q). If |a,b(P)|a,b\rangle\in{\cal R}(P) or (Q){\cal R}(Q) then by the definition of inertia, we obtain that ρΓ+|a,ba,b|\rho^{\Gamma}+|a,b\rangle\!\langle a,b| has inertia (rankQ,nrankPrankQ,rankP)(\mathop{\rm rank}Q,n-\mathop{\rm rank}P-\mathop{\rm rank}Q,\mathop{\rm rank}P). Next suppose |a,b{|x,|y}|a,b\rangle\in\{|x\rangle,|y\rangle\}. We can write up P=P1+|xx|P=P_{1}+|x\rangle\!\langle x| and Q=Q1+|yy|Q=Q_{1}+|y\rangle\!\langle y| where

P1,Q10,\displaystyle P_{1},Q_{1}\geq 0,
rankP=1+rankP1,\displaystyle\mathop{\rm rank}P=1+\mathop{\rm rank}P_{1},
rankQ=1+rankQ1.\displaystyle\mathop{\rm rank}Q=1+\mathop{\rm rank}Q_{1}. (3)

We have

ρΓ+|a,ba,b|\displaystyle\rho^{\Gamma}+|a,b\rangle\!\langle a,b| (4)
=\displaystyle= PQ+|a,ba,b|\displaystyle P-Q+|a,b\rangle\!\langle a,b| (5)
=\displaystyle= (P1+|xx|)(Q1+|yy|)+|a,ba,b|\displaystyle(P_{1}+|x\rangle\!\langle x|)-(Q_{1}+|y\rangle\!\langle y|)+|a,b\rangle\!\langle a,b| (6)
=\displaystyle= P1Q1+σ,\displaystyle P_{1}-Q_{1}+\sigma, (7)

where σ=|xx||yy|+|a,ba,b|\sigma=|x\rangle\!\langle x|-|y\rangle\!\langle y|+|a,b\rangle\!\langle a,b| has rank one or two. Further, (III) implies that the nonzero vector in (σ){\cal R}(\sigma) is linearly independent from any nonzero vector in (P1)+(Q1){\cal R}(P_{1})+{\cal R}(Q_{1}). If rankσ=1\mathop{\rm rank}\sigma=1 then σ\sigma is positive semidefinite. So ρΓ+|a,ba,b|\rho^{\Gamma}+|a,b\rangle\!\langle a,b| has the inertia (1+rankQ,n+1rankPrankQ,rankP)(-1+\mathop{\rm rank}Q,n+1-\mathop{\rm rank}P-\mathop{\rm rank}Q,\mathop{\rm rank}P). On the other hand if rankσ=2\mathop{\rm rank}\sigma=2 then σ\sigma has at least one positive eigenvalue. So ρΓ+|a,ba,b|\rho^{\Gamma}+|a,b\rangle\!\langle a,b| has the inertia (rankQ,nrankPrankQ,rankP)(\mathop{\rm rank}Q,n-\mathop{\rm rank}P-\mathop{\rm rank}Q,\mathop{\rm rank}P) or (1+rankQ,nrankPrankQ,1+rankP)(-1+\mathop{\rm rank}Q,n-\mathop{\rm rank}P-\mathop{\rm rank}Q,1+\mathop{\rm rank}P). We have proven the assertion.       \sqcap\sqcup

Then we investigate the number of positive eigenvalues of bipartite EWs.

Lemma 11

Every bipartite EW has at least three positive eigenvalues.

Proof.

It is known that every bipartite EW has at least two positive eigenvalues. Thus, we have to show that there is no EW with exact two positive eigenvalues. Assume that WW is an m×nm\times n EW which has inertia (a,b,2)(a,b,2). Then the spectral decomposition of ρΓ\rho^{\Gamma} reads as

W=j=1a|vjvj|+0j=a+1a+b|vjvj|+|vmn1vmn1|+|vmnvmn|,\displaystyle W=-\sum_{j=1}^{a}|v_{j}\rangle\!\langle v_{j}|+0\cdot\sum_{j=a+1}^{a+b}|v_{j}\rangle\!\langle v_{j}|+|v_{mn-1}\rangle\!\langle v_{mn-1}|+|v_{mn}\rangle\!\langle v_{mn}|, (8)

where {|vj}j=1mn\{|v_{j}\rangle\}_{j=1}^{mn} are pairwisely orthogonal. It follows from Lemma 4 that the non-positive eigenspace of WW is either spanned by product vectors or up to SLOCC equivalence spanned by {|0,0+|1,1,|i,j:(i,j)(0,0),(0,1),(1,1)}\{|0,0\rangle+|1,1\rangle,|i,j\rangle:(i,j)\neq(0,0),(0,1),(1,1)\}.

First, if span{|vj}j=1a+b\mathop{\rm span}\{|v_{j}\rangle\}_{j=1}^{a+b} is spanned by product vectors, there exists a product vector |x,y|x,y\rangle which is orthogonal to span{|vmn1,|vmn}\mathop{\rm span}\{|v_{mn-1}\rangle,|v_{mn}\rangle\} but non-orthogonal to |v1|v_{1}\rangle. Hence, we obtain that

0x,y|W|x,yx,y|(|v1v1|)|x,y<0.\displaystyle 0\leq\langle x,y|W|x,y\rangle\leq-\langle x,y|(|v_{1}\rangle\!\langle v_{1}|)|x,y\rangle<0. (9)

It is a contradiction.

Second, if span{|vj}j=1a+b\mathop{\rm span}\{|v_{j}\rangle\}_{j=1}^{a+b} is spanned by {|0,0+|1,1,|i,j:(i,j)(0,0),(0,1),(1,1)}\{|0,0\rangle+|1,1\rangle,|i,j\rangle:(i,j)\neq(0,0),(0,1),(1,1)\} up to SLOCC equivalence. It follows that span{|vmn1,|vmn}\mathop{\rm span}\{|v_{mn-1}\rangle,|v_{mn}\rangle\} is spanned by |0,0|1,1,|0,1|0,0\rangle-|1,1\rangle,|0,1\rangle. It is known that every two-qubit EW has inertia (1,0,3)(1,0,3). Hence, we assume one of m,nm,n is greater than two. Suppose one of the local dimensions is two. For example, we may assume m=2m=2. Using the projector (I20n2)(In(I20n2))(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2})) we obtain that

W~:=((I20n2)(In(I20n2)))W((I20n2)(In(I20n2)))=(I2(In(I20n2)))(j=1a|vjvj|)((I20n2)(In(I20n2))).\displaystyle\begin{split}\tilde{W}&:=\big{(}(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}W\big{(}(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}\\ &=-\big{(}I_{2}\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}(\sum_{j=1}^{a}|v_{j}\rangle\!\langle v_{j}|)\big{(}(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}.\end{split} (10)

It follows that W~\tilde{W} is negative semidefinite. It implies Tr(W~)<0\mathop{\rm Tr}(\tilde{W})<0. However, we have

Tr(W~)=Tr(((I20n2)(In(I20n2)))W((I20n2)(In(I20n2))))=i,ji,j|((I20n2)(In(I20n2)))W((I20n2)(In(I20n2)))|i,j0.\displaystyle\begin{split}\mathop{\rm Tr}(\tilde{W})&=\mathop{\rm Tr}\Big{(}\big{(}(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}W\big{(}(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}\Big{)}\\ &=\sum_{i,j}\langle i,j|\big{(}(I_{2}\oplus 0_{n-2})\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}W\big{(}(I_{2}\oplus 0_{n-2})\otimes\\ &(I_{n}-(I_{2}\oplus 0_{n-2}))\big{)}|i,j\rangle\\ &\geq 0.\end{split} (11)

The last inequality follows from WW is an EW. Thus, we derive a contradiction. Finally, suppose m,n>2m,n>2. Using the projector (Im(I20m2))(In(I20n2))(I_{m}-(I_{2}\oplus 0_{m-2}))\otimes(I_{n}-(I_{2}\oplus 0_{n-2})) we similarly obtain that W~=(Im(I20m2))(In(I20n2))W(Im(I20m2))(In(I20m2))\tilde{W}=(I_{m}-(I_{2}\oplus 0_{m-2}))\otimes(I_{n}-(I_{2}\oplus 0_{n-2}))W(I_{m}-(I_{2}\oplus 0_{m-2}))\otimes(I_{n}-(I_{2}\oplus 0_{m-2})) is negative semidefinite. It follows that Tr(W~)<0\mathop{\rm Tr}(\tilde{W})<0. However, for the same reason (11) we also have Tr(W~)0\mathop{\rm Tr}(\tilde{W})\geq 0. We derive a contradiction again. Therefore, such an EW which has exact two positive eigenvalues does not exist.

This completes the proof.       \sqcap\sqcup

We give some observations on the relation between vv_{-} and v+v_{+} on the inertia.

Lemma 12

Suppose WW is an EW on mn\mathbb{C}^{m}\otimes\mathbb{C}^{n}. Suppose the negative space of WW is spanned by {|uj}\{|u_{j}\rangle\} and the positive space is spanned by {|vj}\{|v_{j}\rangle\}. If {|uj}\{|u_{j}\rangle\} is supported in m1n1\mathbb{C}^{m_{1}}\otimes\mathbb{C}^{n_{1}} and {|vj}\{|v_{j}\rangle\} is supported in m2n2\mathbb{C}^{m_{2}}\otimes\mathbb{C}^{n_{2}} and m1>m2m_{1}>m_{2} and n1>n2n_{1}>n_{2}, then we can choose a projector P=((Im1(Im20m1m2))0mm1)((In1(In20n1n2))0nn1)P=((I_{m_{1}}-(I_{m_{2}}\oplus 0_{m_{1}-m_{2}}))\oplus 0_{m-m_{1}})\otimes((I_{n_{1}}-(I_{n_{2}}\oplus 0_{n_{1}-n_{2}}))\oplus 0_{n-n_{1}}) such that V=PWPV=PWP is negative semidefinite.

IV Inertias of the partial transpose of the two-qutrit bipartite NPT states

In this section we focus on the inertias of the two-qutrit bipartite NPT states. In Subsec. IV.1, we propose two observations on of the two-qutrit NPT states in Lemmas 14 and 13 firstly. For understanding the partial transpose of the two-qutrit bipartite NPT states in Example 15. Then we discuss all cases in the two-qutrit bipartite NPT state in detail in Theorem 16. In Subsec. IV.2, we draw a conclusion about 𝒩3,3\mathcal{N}_{3,3} in Theorem 17. Finally we propose Example 18 to illustrate Theorem 17(i).

IV.1 Supporting lemmas

At first, we propose some observations on the two-qutrit NPT states.

Lemma 13

Let ρ\rho be a two-qutrit NPT state. Then we have,

(i) if |0,0|0,0\rangle and |0,1|0,1\rangle are in kerρΓ\ker\rho^{\Gamma}, then ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 1313 arrays in Theorem 17(i).

(ii) (4,2,3)𝒩3,3(4,2,3)\notin\mathcal{N}_{3,3}.

Proof.

(i) If |0,0kerρΓ|0,0\rangle\in\ker\rho^{\Gamma}, then we have ρΓ|0,0=0\rho^{\Gamma}|0,0\rangle=0. Then we have that the first row and column of ρΓ\rho^{\Gamma} consist of zero entries. Similarly, if |0,1kerρΓ|0,1\rangle\in\ker\rho^{\Gamma}, then we have ρΓ|0,1=0\rho^{\Gamma}|0,1\rangle=0. Then we have that the second row and column of ρΓ\rho^{\Gamma} consist of zero entries.

So ρΓ\rho^{\Gamma} can be written as [00000000000000000000000000000000].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&*&*&*&*&*&*\\ 0&0&*&*&*&*&*&*&*\\ 0&0&*&*&*&*&*&*&*\\ 0&0&*&*&*&*&*&*&*\\ 0&0&*&*&*&*&*&*&*\\ 0&0&*&*&*&*&*&*&*\\ 0&0&*&*&*&*&*&*&*\end{bmatrix}. Because |0,0,|0,1ker(ρΓ)|0,0\rangle,|0,1\rangle\in\ker(\rho^{\Gamma}), we have |0,0,|0,1ker(ρ)|0,0\rangle,|0,1\rangle\in\ker(\rho). Then ρ\rho can be written as [00000000000000000000a00b00c00000000bd00000000c]\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&a&0&0&b&0&0&c\\ 0&0&0&*&*&*&*&*&*\\ 0&0&0&*&*&*&*&*&*\\ 0&0&b^{*}&*&*&d&*&*&*\\ 0&0&0&*&*&*&*&*&*\\ 0&0&0&*&*&*&*&*&*\\ 0&0&c^{*}&*&*&*&*&*&*\end{bmatrix}. We have [abbd]0\begin{bmatrix}a&b\\ b^{*}&d\end{bmatrix}\geq 0 by ρ0\rho\geq 0. If a=0a=0, then b=c=0b=c=0.

If a0a\neq 0, then we have ρ=[00000000000000000000a00b00c00000000bd00000000c]0\rho=\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&a&0&0&b&0&0&c\\ 0&0&0&*&*&*&*&*&*\\ 0&0&0&*&*&*&*&*&*\\ 0&0&b^{*}&*&*&d&*&*&*\\ 0&0&0&*&*&*&*&*&*\\ 0&0&0&*&*&*&*&*&*\\ 0&0&c^{*}&*&*&*&*&*&*\end{bmatrix}\geq 0. There exists a local invertible product operator V=ABV=A\otimes B such that VρV+=[00000000a]σV\rho V^{+}=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&a\end{bmatrix}\oplus\sigma, where σ\sigma is a 2×32\times 3 state.

We have known that 𝒩2,3={(1,2,3),(1,1,4),(1,0,5),(2,0,4)}\mathcal{N}_{2,3}=\{(1,2,3),(1,1,4),(1,0,5),(2,0,4)\} from (2020Inertias, , Corollary 11(a)11(a)). Then one can verify that ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 13 arrays in Theorem 17(i).

(ii) Suppose ln(ρΓ)=(4,2,3)\ln(\rho^{\Gamma})=(4,2,3). Then we have Dim(ker(ρΓ))=2\mathop{\rm Dim}(\ker(\rho^{\Gamma}))=2. Because the dimension of non-positive eigen-space of ρ\rho is 6>(31)×(31)+16>(3-1)\times(3-1)+1, we obtain that the non-positive eigen-space of ρ\rho has infinitely many product vectors from Lemma 6. From Lemma 7 we obtain that ker(ρΓ)\ker(\rho^{\Gamma}) contains infinitely many product vectors. We have ker(ρΓ)=span{|a,b,|c,d}\ker(\rho^{\Gamma})=\mathrm{span}\{|a,b\rangle,|c,d\rangle\}. If |a|a\rangle and |c|c\rangle are linearly dependent, then we can find an invertible operator W=CDW=C\otimes D such that W|a,b=|0,0W|a,b\rangle=|0,0\rangle and W|c,d=|0,1W|c,d\rangle=|0,1\rangle. Then we have ker((W1)ρW1)=span{|0,0,|0,1}\ker((W^{-1})^{\dagger}\rho W^{-1})=\mathrm{span}\{|0,0\rangle,|0,1\rangle\}. Let σ=(W1)ρW1\sigma=(W^{-1})^{\dagger}\rho W^{-1}. We obtain that ln(σΓ)=ln(ρΓ)\ln(\sigma^{\Gamma})=\ln(\rho^{\Gamma}) by Sylvester theorem. Then |0,0|0,0\rangle and |0,1|0,1\rangle are in ker(σΓ)\ker(\sigma^{\Gamma}). From (i) we derive a contradiction. So we have (4,2,3)𝒩3,3(4,2,3)\notin\mathcal{N}_{3,3}.

\sqcap\sqcup

Lemma 14

Let ρ\rho be a two-qutrit NPT state. Then we have,

(i) if |0,0|0,0\rangle, |1,1|1,1\rangle and (|0+|1)(|0+|1)(|0\rangle+|1\rangle)(|0\rangle+|1\rangle) are in kerρΓ\ker\rho^{\Gamma}, then ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 1313 arrays in Theorem 17(i).

(ii) if |0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(|0+f|1)|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle) satisfying the conditions a,b0a,b\neq 0 and f0,1f\neq 0,1 are in kerρΓ\ker\rho^{\Gamma}, then ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 1212 arrays in theorem 17(i).

(iii) (3,3,3),(2,4,3)𝒩3,3(3,3,3),(2,4,3)\notin\mathcal{N}_{3,3}.

Proof.

(i) If |0,0kerρΓ|0,0\rangle\in\ker\rho^{\Gamma}, then we have ρΓ|0,0=0\rho^{\Gamma}|0,0\rangle=0. Then we have that the first row and column of ρΓ\rho^{\Gamma} consist of zero entries. Similarly, if |1,1kerρΓ|1,1\rangle\in\ker\rho^{\Gamma}, then we have ρΓ|1,1=0\rho^{\Gamma}|1,1\rangle=0. Then we have that the fifth row and column of ρΓ\rho^{\Gamma} consist of zero entries. We have (|0+|1)(|0+|1)kerρΓ(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\in\ker\rho^{\Gamma}.

So ρΓ\rho^{\Gamma} can be written as [0000000000aa00bb00cc00000000000dd00ee00ff00gg0].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&a&*&-a&0&*&*&*&*\\ 0&b&*&-b&0&*&*&*&*\\ 0&c&*&-c&0&*&*&*&*\\ 0&0&0&0&0&0&0&0&0\\ 0&d&*&-d&0&*&*&*&*\\ 0&e&*&-e&0&*&*&*&*\\ 0&f&*&-f&0&*&*&*&*\\ 0&g&*&-g&0&*&*&*&*\end{bmatrix}. Because |0,0,|1,1,(|0+|1)(|0+|1)ker(ρΓ)|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\in\ker(\rho^{\Gamma}), we have |0,0,|1,1,(|0+|1)(|0+|1)ker(ρ)|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\in\ker(\rho). Then ρ\rho can be written as [00000000000000000h00000g00000000h0000000000000g000000g00g0000hh0].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&h^{*}\\ 0&0&*&0&0&*&0&g&*\\ 0&0&0&0&0&0&0&0&-h^{*}\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&-g&0&*\\ 0&0&0&0&0&-g^{*}&*&*&*\\ 0&0&g^{*}&0&0&0&*&*&*\\ 0&h&*&-h&0&*&*&*&*\end{bmatrix}.

Because ρ\rho is a positive semi-definite matrix, then ρ\rho can be written as [00000000000000000000000g0000000000000000000000g000000g00g0000000].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&0&g&*\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&-g&0&*\\ 0&0&0&0&0&-g^{*}&*&*&*\\ 0&0&g^{*}&0&0&0&*&*&*\\ 0&0&*&0&0&*&*&*&*\end{bmatrix}.

Then we obtain that |0,0|0,0\rangle and |0,1|0,1\rangle are in the ker(ρΓ)\ker(\rho^{\Gamma}). We obtain that ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 1313 arrays in Theorem 17(i) from Lemma 13(i).

(ii) If |0,0kerρΓ|0,0\rangle\in\ker\rho^{\Gamma}, then we have ρΓ|0,0=0\rho^{\Gamma}|0,0\rangle=0. Then we have that the first row and column of ρΓ\rho^{\Gamma} consist of zero entries. Similarly, if |1,1kerρΓ|1,1\rangle\in\ker\rho^{\Gamma}, then we have ρΓ|1,1=0\rho^{\Gamma}|1,1\rangle=0. Then we have that the fifth row and column of ρΓ\rho^{\Gamma} consist of zero entries. We have |2(|0+|1)kerρΓ|2\rangle(|0\rangle+|1\rangle)\in\ker\rho^{\Gamma}. Then we have that ρΓ|2(|0+|1)=0\rho^{\Gamma}|2\rangle(|0\rangle+|1\rangle)=0.

So ρΓ\rho^{\Gamma} can be written as [00000000000ll0mm00nn00000000000oo00pp00qq00rr].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&*&*&*&0&*&l&-l&*\\ 0&*&*&*&*&*&m&-m&*\\ 0&*&*&*&0&*&n&-n&*\\ 0&0&0&0&0&0&0&0&0\\ 0&*&*&*&0&*&o&-o&*\\ 0&*&*&*&0&*&p&-p&*\\ 0&*&*&*&0&*&q&-q&*\\ 0&*&*&*&0&*&r&-r&*\end{bmatrix}. Because |0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(|0+f|1)ker(ρΓ)|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle)\in\ker(\rho^{\Gamma}), we have |0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(|0+f|1)ker(ρ)|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle)\in\ker(\rho). Then we have that ρ|0,0=0\rho|0,0\rangle=0, ρ|1,1=0\rho|1,1\rangle=0, ρ|2(|0+|1)=0\rho|2\rangle(|0\rangle+|1\rangle)=0 and ρ(a|0+b|1+|2)(|0+f|1)=0\rho(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle)=0. Then ρ\rho can be written as [000000000000000000000000000000000000000000000000000000000000000].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&0&0&0&*\\ 0&0&*&0&0&*&0&0&*\\ 0&0&0&0&0&*&0&0&*\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&0&0&*\\ 0&0&0&0&0&*&0&0&*\\ 0&0&*&0&0&*&0&0&*\\ 0&0&*&0&0&*&0&0&*\end{bmatrix}. Because ρ\rho is a positive semi-definite matrix and ρ\rho is a hermitian matrix, then ρ\rho can be written as [000000000000000000000000000000000000000000000000000000000000000000000000].\begin{bmatrix}0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&0&0&*\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&0&0&*\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&*&0&0&*&0&0&*\end{bmatrix}.

Then we obtain that |0,0|0,0\rangle and |0,1|0,1\rangle are in the ker(ρΓ)\ker(\rho^{\Gamma}). We obtain that ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 1313 arrays in Theorem 17(i) from Lemma 13(i).

(iii) If ln(ρΓ)=(3,3,3)\ln(\rho^{\Gamma})=(3,3,3) or (2,4,3)(2,4,3), we obtain that the non-positive eigen-space of ρ\rho has infinitely many product vectors form Lemma 6. Then we obtain that the zero eigen-space of ρ\rho has infinitely many product vectors from Lemma 7(i). If ln(ρΓ)=(3,3,3)\ln(\rho^{\Gamma})=(3,3,3), then the zero eigen-space of ρ\rho is up to SLOCC equivalence spanned by {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} or {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\} by Lemma 9(ii). If ln(ρΓ)=(2,4,3)\ln(\rho^{\Gamma})=(2,4,3), then the zero eigen-space of ρ\rho is up to SLOCC equivalence spanned by {|0,0,|0,1}\{|0,0\rangle,|0,1\rangle\} or {|0,0,|1,1,(|0+|1)(|0+|1)}\{|0,0\rangle,|1,1\rangle,(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\} or {|0,0,|1,1,|2(|0+|1),(a|0+b|1+|2)(|0+f|1)}\{|0,0\rangle,|1,1\rangle,|2\rangle(|0\rangle+|1\rangle),(a|0\rangle+b|1\rangle+|2\rangle)(|0\rangle+f|1\rangle)\} satisfying the conditions a,b0a,b\neq 0 and f0,1f\neq 0,1 by Lemma 9(iii). Then in these two cases we obtain that |0,0|0,0\rangle and |0,1|0,1\rangle are in the ker(ρΓ)\ker(\rho^{\Gamma}). ln(ρΓ)\ln(\rho^{\Gamma}) is one of the 12 arrays in Theorem 17(i) from (i) and (ii). Then we derive a contradiction. So we have (3,3,3),(2,4,3)𝒩3,3(3,3,3),(2,4,3)\notin\mathcal{N}_{3,3}.       \sqcap\sqcup

We propose an example to understand the two-qutrit bipartite NPT states in Example 15. Then we discussed all cases in the two-qutrit bipartite NPT states in detail in Theorem 16.

Example 15

Suppose ρ=(|0,0+|1,1+|2,2)(0,0|+1,1|+2,2|)+(|0(a|0+b|1))(0|(a0|+b1|))\rho=(|0,0\rangle+|1,1\rangle+|2,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 2,2|)+(|0\rangle(a|0\rangle+b|1\rangle))(\langle 0|(a^{*}\langle 0|+b^{*}\langle 1|)) is a two-qutrit bipartite NPT state.

Then ρ\rho can be written as [1+|a|2ab0010001ab|b|20000000000000000000000000100010001000000000000000000000000000100010001]\begin{bmatrix}1+\left|a\right|^{2}&ab^{*}&0&0&1&0&0&0&1\\ a^{*}b&\left|b\right|^{2}&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 1&0&0&0&1&0&0&0&1\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 1&0&0&0&1&0&0&0&1\\ \end{bmatrix}. Then ρΓ\rho^{\Gamma} can be written as [1+|a|2ab0000000ab|b|20100000000000100010000000000010000000000010001000000000001000000000001]\begin{bmatrix}1+\left|a\right|^{2}&ab^{*}&0&0&0&0&0&0&0\\ a^{*}b&\left|b\right|^{2}&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. Then we obtain that detρΓ=1|a|2\det\rho^{\Gamma}=-1-\left|a\right|^{2}. We get that ρΓ\rho^{\Gamma} has six constant eigenvalues, 1,1,1,1,1,1-1,-1,1,1,1,1. The other three eigenvalues of ρΓ\rho^{\Gamma} are the three roots of x3+(1|a|2|b|2)x2+(1+|b|2)x+1+|a|2x^{3}+(-1-\left|a\right|^{2}-\left|b\right|^{2})x^{2}+(-1+\left|b\right|^{2})x+1+\left|a\right|^{2}. Suppose these three roots are x1>x2>x3x_{1}>x_{2}>x_{3} respectively. We obtain that x1+x2+x3=1|b|2x_{1}+x_{2}+x_{3}=1-\left|b\right|^{2} and x1x2x3=1|a|2x_{1}x_{2}x_{3}=-1-\left|a\right|^{2}. Then we obtain that three eigenvalues are 11, 12(|a|2+|b|24+4|a|2+|a|4+2|a|2|b|2+|b|4)\frac{1}{2}(\left|a\right|^{2}+\left|b\right|^{2}-\sqrt{4+4\left|a\right|^{2}+\left|a\right|^{4}+2\left|a\right|^{2}\left|b\right|^{2}+\left|b\right|^{4}}) and 12(|a|2+|b|2+4+4|a|2+|a|4+2|a|2|b|2+|b|4)\frac{1}{2}(\left|a\right|^{2}+\left|b\right|^{2}+\sqrt{4+4\left|a\right|^{2}+\left|a\right|^{4}+2\left|a\right|^{2}\left|b\right|^{2}+\left|b\right|^{4}}). We get that x1,x2>0x_{1},x_{2}>0 and x3<0x_{3}<0. So nine eigenvalues of ρΓ\rho^{\Gamma} are 1,1,x3,1,1,1,1,x1,x2-1,-1,x_{3},1,1,1,1,x_{1},x_{2}. The interia lnρΓ=(3,0,6)\ln\rho^{\Gamma}=(3,0,6).

In this example, we investigate the interia of a two-qutrit bipartite NPT state ρ=|αα|+|ββ|\rho=|\alpha\rangle\!\langle\alpha|+|\beta\rangle\!\langle\beta| of rank two. We define the case of SR(|α)=m(|\alpha\rangle)=m and SR(β)=n(\beta)=n as a binary array (m,n)(m,n). We get that ρ\rho has six cases, (1,1)(1,1), (2,1)(2,1), (2,2)(2,2), (3,1)(3,1), (3,2)(3,2), (3,3)(3,3). In the case of (1,1)(1,1), ρ\rho is a separable state. We need to get rid of (1,1)(1,1). On the other hand, the case (3,3)(3,3) is equivalent to the one of the remaining four cases. So it suffices to study four cases of two-qutrit bipartite NPT states of rank two as follows.

Theorem 16

Suppose ρ=|αα|+|ββ|\rho=|\alpha\rangle\!\langle\alpha|+|\beta\rangle\!\langle\beta| is a two-qutrit bipartite NPT state.

(i) If SR(|α)=2(|\alpha\rangle)=2 and SR(|β)=1(|\beta\rangle)=1, then we have lnρΓ=(1,4,4)\ln\rho^{\Gamma}=(1,4,4).

(ii) If SR(|α)=2(|\alpha\rangle)=2 and SR(|β)=2(|\beta\rangle)=2, then we have lnρΓ=(2,2,5)\ln\rho^{\Gamma}=(2,2,5).

(iii) If SR(|α)=3(|\alpha\rangle)=3 and SR(|β)=1(|\beta\rangle)=1, then we have lnρΓ=(3,0,6)\ln\rho^{\Gamma}=(3,0,6).

(iv) If SR(|α)=3(|\alpha\rangle)=3 and SR(|β)=2(|\beta\rangle)=2, then we have lnρΓ=(2,2,5),(2,1,6),(2,0,7),(3,0,6),(3,1,5)\ln\rho^{\Gamma}=(2,2,5),(2,1,6),(2,0,7),(3,0,6),(3,1,5).

Proof.

Suppose ρ=|αα|+|ββ|\rho=|\alpha\rangle\!\langle\alpha|+|\beta\rangle\!\langle\beta| is a two-qutrit bipartite NPT state,

ρ=|αα|+|ββ|\displaystyle\rho=|\alpha\rangle\!\langle\alpha|+|\beta\rangle\!\langle\beta| (12)

.

(i) If SR(|α)=2(|\alpha\rangle)=2 in Eq(12), then we have that |α|\alpha\rangle is up to SLOCC equivalent to |0,0+|1,1|0,0\rangle+|1,1\rangle. If SR(|β)=1(|\beta\rangle)=1, then we have that |β|\beta\rangle is up to LOCC equivalent to |2,2|2,2\rangle. Then we have ρΓ=[100000000000100000000000000010000000000010000000000000000000000000000000000000001]\rho^{\Gamma}=\begin{bmatrix}1&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. Then we get that nine eigenvalues are 1,0,0,0,0,1,1,1,1-1,0,0,0,0,1,1,1,1. Then lnρΓ=(1,4,4)\ln\rho^{\Gamma}=(1,4,4). In conclusion, we obtain that if SR(|α)=2(|\alpha\rangle)=2 and SR(|β)=1(|\beta\rangle)=1, then we have lnρΓ=(1,4,4)\ln\rho^{\Gamma}=(1,4,4).

(ii) If SR(|α)=2(|\alpha\rangle)=2 in Eq(12), then we have that |α|\alpha\rangle is up to SLOCC equivalent to |0,0+|1,1|0,0\rangle+|1,1\rangle. If SR(|β)=2(|\beta\rangle)=2, then we have that |β|\beta\rangle cotains |2,y2|2,y_{2}\rangle and (a|0+b|1)(|y2)(a|0\rangle+b|1\rangle)(|y_{2}\rangle). Because (a|0+b|1)(|y0)(a|0\rangle+b|1\rangle)(|y_{0}\rangle) is equivalent to |0,y0|0,y_{0}\rangle, we have that |β|\beta\rangle is up to SLOCC equivalent to |0,y0+|2,y2|0,y_{0}\rangle+|2,y_{2}\rangle. We get that at least one of |y0|y_{0}\rangle and |y2|y_{2}\rangle contains |2|2\rangle. So |β|\beta\rangle has two cases. One case is that |β|\beta\rangle is up to SLOCC equivalent to |0(a|0+b|1)+|2,2|0\rangle(a|0\rangle+b|1\rangle)+|2,2\rangle, the other case is that |β|\beta\rangle is up to SLOCC equivalent to |0,2+|2(a|0+b|1)|0,2\rangle+|2\rangle(a|0\rangle+b|1\rangle).

(ii.a) Suppose |β=|0(a|0+b|1)+|2,2|\beta\rangle=|0\rangle(a|0\rangle+b|1\rangle)+|2,2\rangle in Eq(12). Then we have ρΓ=[1+|a|2ab0000000ba|b|20100000000000ab001000000000001000000000000000a00000000b000000000000001]\rho^{\Gamma}=\begin{bmatrix}1+\left|a\right|^{2}&ab^{*}&0&0&0&0&0&0&0\\ ba^{*}&\left|b\right|^{2}&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&a^{*}&b^{*}&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&a&0&0&0&0&0&0\\ 0&0&b&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. Then we get that nine eigenvalues are (a2+b2)12,12(a2+b2(4+4a2+a4+2a2b2+b4)12,0,0,1,1,1,(a2+b2)12,12(a2+b2(4+4a2+a4+2a2b2+b4)12-(a^{2}+b^{2})^{-\frac{1}{2}},\frac{1}{2}(a^{2}+b^{2}-(4+4a^{2}+a^{4}+2a^{2}b^{2}+b^{4})^{-\frac{1}{2}},0,0,1,1,1,(a^{2}+b^{2})^{-\frac{1}{2}},\frac{1}{2}(a^{2}+b^{2}-(4+4a^{2}+a^{4}+2a^{2}b^{2}+b^{4})^{-\frac{1}{2}}. Then lnρΓ=(2,2,5)\ln\rho^{\Gamma}=(2,2,5).

(ii.b) Suppose |β=|0,2+|2(a|0+b|1)|\beta\rangle=|0,2\rangle+|2\rangle(a|0\rangle+b|1\rangle) in Eq(12).

Then we have ρΓ=[10000000a00010000b001000000010000000000010000000000000000000|a|2ab0000000ba|b|20ab0000000]\rho^{\Gamma}=\begin{bmatrix}1&0&0&0&0&0&0&0&a\\ 0&0&0&1&0&0&0&0&b\\ 0&0&1&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&\left|a\right|^{2}&ab^{*}&0\\ 0&0&0&0&0&0&ba^{*}&\left|b\right|^{2}&0\\ a^{*}&b^{*}&0&0&0&0&0&0&0\\ \end{bmatrix}. Then we get that six eigenvalues are 0,0,1,1,1,a2+b20,0,1,1,1,a^{2}+b^{2}. The other three eigenvalues are the roots of x3+(1a2b2)xa2x^{3}+(-1-a^{2}-b^{2})x-a^{2}. These three roots are two negative roots and one positive root. Then lnρΓ=(2,2,5)\ln\rho^{\Gamma}=(2,2,5). In conclusion, we obtain that if SR(|α)=2(|\alpha\rangle)=2 and SR(|β)=2(|\beta\rangle)=2, then we have lnρΓ=(2,2,5)\ln\rho^{\Gamma}=(2,2,5).

(iii) If SR(|α)=3(|\alpha\rangle)=3 in Eq(12), then we have that |α|\alpha\rangle is up to SLOCC equivalent to |0,0+|1,1+|2,2|0,0\rangle+|1,1\rangle+|2,2\rangle. If SR(|β)=1(|\beta\rangle)=1, then we have that |β|\beta\rangle is up to SLOCC equivalent to |0(a|0+b|1)|0\rangle(a|0\rangle+b|1\rangle). From Example 15, we get that lnρΓ=(3,0,6)\ln\rho^{\Gamma}=(3,0,6).

(iv) If SR(|α)=3(|\alpha\rangle)=3 in Eq(12), then we have that |α|\alpha\rangle is up to SLOCC equivalent to |0,0+|1,1+|2,2|0,0\rangle+|1,1\rangle+|2,2\rangle. If SR(|β)=2(|\beta\rangle)=2, then we have that |β|\beta\rangle is up to SLOCC equivalent to |0(a|0+b|1+c|2)+|1(d|0+e|1)|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+|1\rangle(d|0\rangle+e|1\rangle). Suppose MM is a two-qutrit invertible matrix. There exists a two-qutrit invertible matrix MM, such that (M(MT)1I3)(|0,0+|1,1+|2,2)=(|0,0+|1,1+|2,2)(M(M^{T})^{-1}\otimes I_{3})(|0,0\rangle+|1,1\rangle+|2,2\rangle)=(|0,0\rangle+|1,1\rangle+|2,2\rangle) and M(MT)1(|0(a|0+b|1+c|2)+|1(d|0+e|1))=|0(a|0+b|1+c|2)+e|1,1M(M^{T})^{-1}(|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+|1\rangle(d|0\rangle+e|1\rangle))=|0\rangle(a^{\prime}|0\rangle+b^{\prime}|1\rangle+c^{\prime}|2\rangle)+e^{\prime}|1,1\rangle or |0(a|0+b|1+c|2)+d|1,0|0\rangle(a^{\prime}|0\rangle+b^{\prime}|1\rangle+c^{\prime}|2\rangle)+d^{\prime}|1,0\rangle. Then |β|\beta\rangle has two cases, |0(a|0+b|1+c|2)+e|1,1|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+e|1,1\rangle and |0(a|0+b|1+c|2)+d|1,0|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+d|1,0\rangle. The case |0(a|0+b|1+c|2)+d|1,0|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+d|1,0\rangle is SLOCC equivalent to the case |0(a|0+b|1+c|2)+|1,0|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+|1,0\rangle. There exists a two-qutrit invertible matrix M1M_{1}, such that (M1(M1T)1I3)(|0,0+|1,1+|2,2)=(|0,0+|1,1+|2,2)(M_{1}(M_{1}^{T})^{-1}\otimes I_{3})(|0,0\rangle+|1,1\rangle+|2,2\rangle)=(|0,0\rangle+|1,1\rangle+|2,2\rangle) and (M1(M1T)1I3)(|0(a|0+b|1+c|2)+d|1,0)=|0(a′′|0+b′′|1)+d′′|1,0(M_{1}(M_{1}^{T})^{-1}\otimes I_{3})(|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+d|1,0\rangle)=|0\rangle(a^{\prime\prime}|0\rangle+b^{\prime\prime}|1\rangle)+d^{\prime\prime}|1,0\rangle or |0(a′′|0+c′′|2)+d′′|1,0|0\rangle(a^{\prime\prime}|0\rangle+c^{\prime\prime}|2\rangle)+d^{\prime\prime}|1,0\rangle. The case |0(a|0+b|1+c|2)+|1,0|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+|1,0\rangle is divided into two cases |0(a|0+b|1)+|1,0|0\rangle(a|0\rangle+b|1\rangle)+|1,0\rangle and |0(a|0+c|2)+|1,0|0\rangle(a|0\rangle+c|2\rangle)+|1,0\rangle. Similarly, the case |0(a|0+b|1+c|2)+e|1,1|0\rangle(a|0\rangle+b|1\rangle+c|2\rangle)+e|1,1\rangle is divided into two cases |0(a|0+b|1)+e|1,1|0\rangle(a|0\rangle+b|1\rangle)+e|1,1\rangle and |0(b|1+c|2)+e|1,1|0\rangle(b|1\rangle+c|2\rangle)+e|1,1\rangle. If SR(|β)=2(|\beta\rangle)=2, then |β|\beta\rangle has four cases |0(a|0+b|1)+|1,0|0\rangle(a|0\rangle+b|1\rangle)+|1,0\rangle, |0(a|0+c|2)+|1,0|0\rangle(a|0\rangle+c|2\rangle)+|1,0\rangle, |0(a|0+b|1)+e|1,1|0\rangle(a|0\rangle+b|1\rangle)+e|1,1\rangle, |0(b|1+c|2)+e|1,1|0\rangle(b|1\rangle+c|2\rangle)+e|1,1\rangle.

(iv.a) Suppose |β=|0(a|0+b|1)+|1,0|\beta\rangle=|0\rangle(a|0\rangle+b|1\rangle)+|1,0\rangle in Eq(12). Then we have ρΓ=[1+|a|2ab0ab0000ba|b|20100000000000100a10100000b00010000000000010001000000000001000000000001]\rho^{\Gamma}=\begin{bmatrix}1+\left|a\right|^{2}&ab^{*}&0&a^{*}&b^{*}&0&0&0&0\\ ba^{*}&\left|b\right|^{2}&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ a&1&0&1&0&0&0&0&0\\ b&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. We know that AρΓAA\rho^{\Gamma}A^{\dagger} and ρΓ\rho^{\Gamma} have the same inertia when AA is an elementary matrix. We obtain that S=BρΓB=[1000000000|b|2|aba|210000000000000100000100000000010000000000010001000000000001000000000001]S=B\rho^{\Gamma}B^{\dagger}=\begin{bmatrix}1&0&0&0&0&0&0&0&0\\ 0&\left|b\right|^{2}-\left|ab^{*}-a^{*}\right|^{2}-1&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ 0&0&0&1&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix} has the same inertia as ρΓ\rho^{\Gamma}, where BB is a product of some elementary matrices. Then we get that the six eigenvalues of ρΓ\rho^{\Gamma} are 1,1,1,1,1,1,1,1,|b|2|aba|21-1,-1,1,1,1,1,1,1,\left|b\right|^{2}-\left|ab^{*}-a^{*}\right|^{2}-1. |b|2|aba|21\left|b\right|^{2}-\left|ab^{*}-a^{*}\right|^{2}-1 can be a positive or zero or negative number. Then lnρΓ=(3,0,6)\ln\rho^{\Gamma}=(3,0,6) when |b|2|aba|21<0\left|b\right|^{2}-\left|ab^{*}-a^{*}\right|^{2}-1<0, lnρΓ=(2,1,6)\ln\rho^{\Gamma}=(2,1,6) when |b|2|aba|21=0\left|b\right|^{2}-\left|ab^{*}-a^{*}\right|^{2}-1=0, lnρΓ=(2,0,7)\ln\rho^{\Gamma}=(2,0,7) when |b|2|aba|21>0\left|b\right|^{2}-\left|ab^{*}-a^{*}\right|^{2}-1>0.

(iv.b) Suppose |β=|0(a|0+c|2)+|1,0|\beta\rangle=|0\rangle(a|0\rangle+c|2\rangle)+|1,0\rangle in Eq(12). If c=0c=0, then SR(|β)=1(|\beta\rangle)=1 and we reduce to (iii). Then we have c0c\neq 0 and [10001000c][10001000c1]|β=|0(a|0+|2)+|1,0\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&c\\ \end{bmatrix}\otimes\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&c^{-1}\\ \end{bmatrix}|\beta\rangle=|0\rangle(a|0\rangle+|2\rangle)+|1,0\rangle. So we have |β|\beta\rangle is equivalent to |0(a|0+|2)+|1,0|0\rangle(a|0\rangle+|2\rangle)+|1,0\rangle. Then we have ρΓ=[1+|a|20aa01000000100000a01000100a10100000000010000100000010001000000000001000000000001]\rho^{\Gamma}=\begin{bmatrix}1+\left|a\right|^{2}&0&a&a^{*}&0&1&0&0&0\\ 0&0&0&1&0&0&0&0&0\\ a^{*}&0&1&0&0&0&1&0&0\\ a&1&0&1&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 1&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. We have known that AρΓAA\rho^{\Gamma}A^{\dagger} and ρΓ\rho^{\Gamma} have the same inertia when AA is an elementary matrix. We obtain that S=BρΓB=[1+|a|200000000000100000001000100010000000000010000000000010001000000000001000000000001]S=B\rho^{\Gamma}B^{\dagger}=\begin{bmatrix}1+\left|a\right|^{2}&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0\\ 0&0&1&0&0&0&1&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix} has the same inertia as ρΓ\rho^{\Gamma}, where BB is a product of some elementary matrices. Then we get that nine enigenvalues are 1,1,1,1,1,1,1,1,1+|a|2-1,-1,-1,1,1,1,1,1,1+\left|a\right|^{2}. Then lnρΓ=lnS=(3,0,6)\ln\rho^{\Gamma}=\ln S=(3,0,6).

(iv.c) Suppose |β=|0(a|0+b|1)+e|1,1|\beta\rangle=|0\rangle(a|0\rangle+b|1\rangle)+e|1,1\rangle in Eq(12). Then we have ρΓ=[1+|a|2ab0000000ba|b|201+eaeb000000000010001+ae00000000be001+|e|20000000000010001000000000001000000000001]\rho^{\Gamma}=\begin{bmatrix}1+\left|a\right|^{2}&ab^{*}&0&0&0&0&0&0&0\\ ba^{*}&\left|b\right|^{2}&0&1+ea^{*}&eb^{*}&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ 0&1+ae^{*}&0&0&0&0&0&0&0\\ 0&be^{*}&0&0&1+\left|e\right|^{2}&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. Suppose 1+ae01+ae^{*}\neq 0. Similar to (iv.a), we get that S=BρΓB=[1+|a|2000000000001+ea0000000000010001+ae000000000001+|e|20000000000010001000000000001000000000001]S=B\rho^{\Gamma}B^{\dagger}=\begin{bmatrix}1+\left|a\right|^{2}&0&0&0&0&0&0&0&0\\ 0&0&0&1+ea^{*}&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ 0&1+ae^{*}&0&0&0&0&0&0&0\\ 0&0&0&0&1+\left|e\right|^{2}&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix} has the same inertia as ρΓ\rho^{\Gamma}, where BB is a product of some elementary matrices. Then we get that nine enigenvalues are 1,1,1+ae1+ea,1,1,1,1+a2,1+e2,1+ae1+ea-1,-1,-\sqrt{1+ae^{*}}\sqrt{1+ea^{*}},1,1,1,1+a^{2},1+e^{2},\sqrt{1+ae^{*}}\sqrt{1+ea^{*}}. Then ln(ρΓ)=(3,0,6)\ln(\rho^{\Gamma})=(3,0,6). If 1+ae=01+ae^{*}=0, we get that S=BρΓB=[1+|a|2000000000|b|2|be|21+|e|2|ab|21+|a|2000000000000010000000000000001+|e|20000000000010001000000000001000000000001]S^{\prime}=B\rho^{\Gamma}B^{\dagger}=\begin{bmatrix}1+\left|a\right|^{2}&0&0&0&0&0&0&0&0\\ 0&\left|b\right|^{2}-\frac{\left|be\right|^{2}}{1+\left|e\right|^{2}}-\frac{\left|ab\right|^{2}}{1+\left|a\right|^{2}}&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1+\left|e\right|^{2}&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix} has the same inertia as ρΓ\rho^{\Gamma}, where BB is a product of some elementary matrices. Then we get that nine enigenvalues are 1,1,0,1,1,1,1+a2,1+e2,|b|2|be|21+|e|2|ab|21+|a|2-1,-1,0,1,1,1,1+a^{2},1+e^{2},\left|b\right|^{2}-\frac{\left|be\right|^{2}}{1+\left|e\right|^{2}}-\frac{\left|ab\right|^{2}}{1+\left|a\right|^{2}}. |b|2|be|21+|e|2|ab|21+|a|2\left|b\right|^{2}-\frac{\left|be\right|^{2}}{1+\left|e\right|^{2}}-\frac{\left|ab\right|^{2}}{1+\left|a\right|^{2}} can be a positive or zero or negative number. Then ln(ρΓ)=(3,1,5),(2,2,5),(2,1,6)\ln(\rho^{\Gamma})=(3,1,5),(2,2,5),(2,1,6). In conclusion, we obtain that ln(ρΓ)=(3,0,6),(3,1,5),(2,2,5),(2,1,6)\ln(\rho^{\Gamma})=(3,0,6),(3,1,5),(2,2,5),(2,1,6).

(iv.d) Suppose |β=|0(b|1+c|2)+e|1,1|\beta\rangle=|0\rangle(b|1\rangle+c|2\rangle)+e|1,1\rangle in Eq(12). If c=0c=0, then SR(|β)=1(|\beta\rangle)=1 and we reduce to (iii). Then we have c0c\neq 0 and [10001000c][10001000c1]|β=|0(a|0+|2)+|1,0\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&c\\ \end{bmatrix}\otimes\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&c^{-1}\\ \end{bmatrix}|\beta\rangle=|0\rangle(a|0\rangle+|2\rangle)+|1,0\rangle. So |β|\beta\rangle is equivalent to |0(b|1+|2)+e|1,1|0\rangle(b|1\rangle+|2\rangle)+e|1,1\rangle. Then we have ρΓ=[1000000000|b|2b1ebe0000b10001000100000000be001+|e|200000e0000010001000000000001000000000001]\rho^{\Gamma}=\begin{bmatrix}1&0&0&0&0&0&0&0&0\\ 0&\left|b\right|^{2}&b&1&eb^{*}&e&0&0&0\\ 0&b^{*}&1&0&0&0&1&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&be^{*}&0&0&1+\left|e\right|^{2}&0&0&0&0\\ 0&e^{*}&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix}. Similar to (iv.b), we get that S=BρΓB=[10000000000010000000000010001000000000001+|e|20000000000010001000000000001000000000001]S=B\rho^{\Gamma}B^{\dagger}=\begin{bmatrix}1&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1+\left|e\right|^{2}&0&0&0&0\\ 0&0&0&0&0&0&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1\\ \end{bmatrix} has the same inertia as ρΓ\rho^{\Gamma}, where BB is a product of some elementary matrices. Then we get that nine enigenvalues are 1,1,1,1,1,1,1,1,1+|e|2-1,-1,-1,1,1,1,1,1,1+\left|e\right|^{2}. Then lnρΓ=lnS=(3,0,6)\ln\rho^{\Gamma}=\ln S=(3,0,6).

In conlusion, if SR(|α)=3(|\alpha\rangle)=3 and SR(|β)=2(|\beta\rangle)=2, then we have lnρΓ=(2,2,5),(2,1,6),(2,0,7),(3,0,6),(3,1,5)\ln\rho^{\Gamma}=(2,2,5),(2,1,6),(2,0,7),(3,0,6),(3,1,5).

\sqcap\sqcup

IV.2 Main conclusion

We have proposed some observations about two-qutrit bipartite NPT states in Subsec. IV.1. Then we investigate the set 𝒩3,3\mathcal{N}_{3,3}. We have the following observations.

Theorem 17

(i) 𝒩3,3\mathcal{N}_{3,3} has the following 1313 arrays, (1,0,8)(1,0,8), (1,1,7)(1,1,7), (1,2,6)(1,2,6), (1,3,5)(1,3,5), (1,4,4)(1,4,4), (1,5,3)(1,5,3), (2,0,7)(2,0,7), (2,1,6)(2,1,6), (2,2,5)(2,2,5), (2,3,4)(2,3,4), (3,0,6)(3,0,6), (3,1,5)(3,1,5), (4,0,5)(4,0,5).

(ii) 𝒩3,3\mathcal{N}_{3,3} does not have the following three arrays, (2,4,3)(2,4,3), (3,3,3)(3,3,3), (4,2,3)(4,2,3).

(iii) 𝒩3,3\mathcal{N}_{3,3} might have the following two arrays, (3,2,4)(3,2,4), (4,1,4)(4,1,4).

(iv) 13|𝒩3,3|1513\leq|\mathcal{N}_{3,3}|\leq 15, 𝒩3,3\mathcal{N}_{3,3} is a subset of above (i) and (iii)’s arrays.

Proof.

(i) We obtain that (1,2,3),(2,0,4)𝒩2,3(1,2,3),(2,0,4)\in\mathcal{N}_{2,3} by (2020Inertias, , Corollary 1111). Using Lemma 8 we obtain that, (1,0,8),(1,1,7),(1,2,6),(1,3,5),(1,4,4),(1,5,3),(2,0,7),(2,1,6),(2,2,5),(2,3,4)𝒩3,3(1,0,8),(1,1,7),(1,2,6),(1,3,5),(1,4,4),(1,5,3),(2,0,7),(2,1,6),\\ (2,2,5),(2,3,4)\in\mathcal{N}_{3,3}. We obtain that (3,0,6)𝒩3,3(3,0,6)\in\mathcal{N}_{3,3} by Lemma 5. We obtain that (4,0,5)𝒩3,3(4,0,5)\in\mathcal{N}_{3,3} by (2013Negative, , Example 22). We obtain that (3,1,5)𝒩3,3(3,1,5)\in\mathcal{N}_{3,3} by Theorem 16.

(ii) We have known that v4v_{-}\leq 4 by (2020Inertias, , Lemma 55) and v+3v_{+}\geq 3 by Lemma 17. We have that v+v0+v+=9v_{-}+v_{0}+v_{+}=9. Then 𝒩3,3\mathcal{N}_{3,3} migtht have the following five arrays, (2,4,3)(2,4,3), (3,2,4)(3,2,4), (3,3,3)(3,3,3), (4,1,4)(4,1,4), (4,2,3)(4,2,3). Then we have that (2,4,3),(3,3,3),(4,2,3)𝒩3,3(2,4,3),(3,3,3),(4,2,3)\notin\mathcal{N}_{3,3} by Lemma 13 and 14.

(iii) From (ii), we get that 𝒩3,3\mathcal{N}_{3,3} might have the following two arrays, (3,2,4)(3,2,4), (4,1,4)(4,1,4).

(iii) We have 13|𝒩3,3|1513\leq|\mathcal{N}_{3,3}|\leq 15 by the results in (i),(ii),(iii) and 𝒩3,3\mathcal{N}_{3,3} is a subset of above (i) and (iii)’s 1515 arrays.       \sqcap\sqcup

Then we propose the following example to illustrate the Theorem 17(i).

Example 18

Suppose ρ\rho is a two-qutrit bipartite NPT state. (i) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+110I9\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+\frac{1}{10}I_{9}. Then lnρΓ=(1,0,8)\ln\rho^{\Gamma}=(1,0,8).

(ii) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+110I9110|2,22,2|\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+\frac{1}{10}I_{9}-\frac{1}{10}|2,2\rangle\langle 2,2|. Then lnρΓ=(1,1,7)\ln\rho^{\Gamma}=(1,1,7).

(iii) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+110I9110(|2,22,2|+|2,12,1|)\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+\frac{1}{10}I_{9}-\frac{1}{10}(|2,2\rangle\langle 2,2|+|2,1\rangle\langle 2,1|). Then lnρΓ=(1,2,6)\ln\rho^{\Gamma}=(1,2,6).

(iv) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+110I9110(|2,22,2|+|2,12,1||2,02,0|)\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+\frac{1}{10}I_{9}-\frac{1}{10}(|2,2\rangle\langle 2,2|+|2,1\rangle\langle 2,1|-|2,0\rangle\langle 2,0|). Then lnρΓ=(1,3,5)\ln\rho^{\Gamma}=(1,3,5).

(v) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+(|2,2)(2,2|)\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+(|2,2\rangle)(\langle 2,2|). Then lnρΓ=(1,4,,4)\ln\rho^{\Gamma}=(1,4,,4).

(vi) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|). Then lnρΓ=(1,5,3)\ln\rho^{\Gamma}=(1,5,3).

(vii) Suppose ρ=(|0,0+|1,1+|2,2)(0,0|+1,1|+2,2|)+(|0,1+|1,0)(0,1|+1,0|)\rho=(|0,0\rangle+|1,1\rangle+|2,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 2,2|)+(|0,1\rangle+|1,0\rangle)(\langle 0,1|+\langle 1,0|). Then lnρΓ=(2,0,7)\ln\rho^{\Gamma}=(2,0,7).

(viii) Suppose ρ=(|0,0+|1,1+|2,2)(0,0|+1,1|+2,2|)+(|0,0+|0,1+|1,1)(0,0|+0,1|+1,1|)\rho=(|0,0\rangle+|1,1\rangle+|2,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 2,2|)+(|0,0\rangle+|0,1\rangle+|1,1\rangle)(\langle 0,0|+\langle 0,1|+\langle 1,1|). Then lnρΓ=(2,1,6)\ln\rho^{\Gamma}=(2,1,6).

(ix) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+(|0,0+|0,1+|2,2)(0,0|+0,1|+2,2|)\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+(|0,0\rangle+|0,1\rangle+|2,2\rangle)(\langle 0,0|+\langle 0,1|+\langle 2,2|). Then lnρΓ=(2,2,5)\ln\rho^{\Gamma}=(2,2,5).

(x) Suppose ρ=(|0,0+|1,1)(0,0|+1,1|)+(|0,1+|0,1)(1,2|+1,2|)\rho=(|0,0\rangle+|1,1\rangle)(\langle 0,0|+\langle 1,1|)+(|0,1\rangle+|0,1\rangle)(\langle 1,2|+\langle 1,2|). Then lnρΓ=(2,3,4)\ln\rho^{\Gamma}=(2,3,4).

(xi) Suppose ρ=(|0,0+|1,1+|2,2)(0,0|+1,1|+2,2|)+|1,11,1|\rho=(|0,0\rangle+|1,1\rangle+|2,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 2,2|)+|1,1\rangle\langle 1,1|. Then lnρΓ=(3,0,6)\ln\rho^{\Gamma}=(3,0,6).

(xii) Suppose ρ=(|0,0+|1,1+|2,2)(0,0|+1,1|+2,2|)+(|0,0+2|0,1+2|1,1)(0,0|+20,1|+21,1|)\rho=(|0,0\rangle+|1,1\rangle+|2,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 2,2|)+(|0,0\rangle+2|0,1\rangle+2|1,1\rangle)(\langle 0,0|+2\langle 0,1|+2\langle 1,1|). Then lnρΓ=(3,1,5)\ln\rho^{\Gamma}=(3,1,5).

(xiii) Suppose ρ=(|0,0+14|1,1+|2,2)(0,0|+141,1|+2,2|)+(|0,1+13|1,2+13|2,0)(0,1|+131,2|+132,0|)+(|0,2+12|1,0+|2,1)(0,2|+121,0|+2,1|)\rho=(|0,0\rangle+\frac{1}{4}|1,1\rangle+|2,2\rangle)(\langle 0,0|+\frac{1}{4}\langle 1,1|+\langle 2,2|)+(|0,1\rangle+\frac{1}{3}|1,2\rangle+\frac{1}{3}|2,0\rangle)(\langle 0,1|+\frac{1}{3}\langle 1,2|+\frac{1}{3}\langle 2,0|)+(|0,2\rangle+\frac{1}{2}|1,0\rangle+|2,1\rangle)(\langle 0,2|+\frac{1}{2}\langle 1,0|+\langle 2,1|). Then lnρΓ=(4,0,5)\ln\rho^{\Gamma}=(4,0,5).

V application

In this section, we study the relationship between the inertias of 2×32\times 3 states and those of 3×33\times 3 states firstly. Next we extend some conclusions on the inertias from 2×n2\times n states to 3×n3\times n states. We also partially test the existence of two unverified inertias using python program.

We have obtained that 𝒩2,3={(1,2,3),(1,1,4),(1,0,5),(2,0,4)}\mathcal{N}_{2,3}=\{(1,2,3),(1,1,4),(1,0,5),(2,0,4)\} 2020Inertias . Then we have obtained that (1,0,8)(1,0,8), (1,1,7)(1,1,7), (1,2,6)(1,2,6), (1,3,5)(1,3,5), (1,4,4)(1,4,4), (1,5,3)(1,5,3), (2,0,7)(2,0,7), (2,1,6)(2,1,6), (2,2,5)(2,2,5), (2,3,4)(2,3,4), (3,0,6)(3,0,6), (3,1,5)(3,1,5), (4,0,5)(4,0,5) 𝒩3,3\in\mathcal{N}_{3,3} in Theorem 17. By Theorem 17 (i), we have also obtained that (1,0,8)(1,0,8), (1,1,7)(1,1,7), (1,2,6)(1,2,6), (1,3,5)(1,3,5), (1,4,4)(1,4,4), (1,5,3)(1,5,3) are from (1,2,3)(1,2,3), and (2,0,7)(2,0,7), (2,1,6)(2,1,6), (2,2,5)(2,2,5), (2,3,4)(2,3,4) are from (2,0,4)(2,0,4). Next we consider the remaining three inertias, (3,0,6)(3,0,6), (3,1,5)(3,1,5) and (4,0,5)(4,0,5). From Example 18 (xi), (xii), (xiii), we propose the following example.

Example 19

Suppose ρ\rho is a 2×32\times 3 bipartite NPT state.

(xi) Suppose ρ=(|0,0+|1,1+|1,2)(0,0|+1,1|+1,2|)+|1,11,1|\rho=(|0,0\rangle+|1,1\rangle+|1,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 1,2|)+|1,1\rangle\langle 1,1|. Then lnρΓ=(1,1,4)\ln\rho^{\Gamma}=(1,1,4).

(xii) Suppose ρ=(|0,0+|1,1+|1,2)(0,0|+1,1|+2,2|)+(|0,0+2|0,1+2|1,1)(0,0|+20,1|+21,1|)\rho=(|0,0\rangle+|1,1\rangle+|1,2\rangle)(\langle 0,0|+\langle 1,1|+\langle 2,2|)+(|0,0\rangle+2|0,1\rangle+2|1,1\rangle)(\langle 0,0|+2\langle 0,1|+2\langle 1,1|). Then lnρΓ=(2,0,4)\ln\rho^{\Gamma}=(2,0,4).

(xiii) Suppose ρ=(|0,0+14|1,1+|1,2)(0,0|+141,1|+1,2|)+(|0,1+13|1,2+13|1,0)(0,1|+131,2|+131,0|)+(|0,2+12|1,0+|1,1)(0,2|+121,0|+1,1|)\rho=(|0,0\rangle+\frac{1}{4}|1,1\rangle+|1,2\rangle)(\langle 0,0|+\frac{1}{4}\langle 1,1|+\langle 1,2|)+(|0,1\rangle+\frac{1}{3}|1,2\rangle+\frac{1}{3}|1,0\rangle)(\langle 0,1|+\frac{1}{3}\langle 1,2|+\frac{1}{3}\langle 1,0|)+(|0,2\rangle+\frac{1}{2}|1,0\rangle+|1,1\rangle)(\langle 0,2|+\frac{1}{2}\langle 1,0|+\langle 1,1|). Then lnρΓ=(2,0,4)\ln\rho^{\Gamma}=(2,0,4).

From this example, we get that (3,0,6)(3,0,6) is from (1,1,4)(1,1,4), and (3,1,5)(3,1,5), (4,0,5)(4,0,5) are from (2,0,4)(2,0,4) by Example 19. We conclude the above findings in the following table.

Table 1: the relationship between 2×32\times 3 states and 3×33\times 3 states
𝒩2,3\mathcal{N}_{2,3} 𝒩3,3\mathcal{N}_{3,3}
(1,2,3)(1,2,3) (1,5,3)(1,5,3)
(1,4,4)(1,4,4)
(1,3,5)(1,3,5)
(1,2,6)(1,2,6)
(1,1,7)(1,1,7)
(1,0,8)(1,0,8)
(1,1,4)(1,1,4) (3,0,6)(3,0,6)
(2,0,4)(2,0,4) (2,3,4)(2,3,4)
(2,2,5)(2,2,5)
(2,1,6)(2,1,6)
(2,0,7)(2,0,7)
(3,1,5)(3,1,5)
(4,0,5)(4,0,5)

So far we have investigated the 3×33\times 3 states. Next we will extend the conclusions from low dimensional states to high dimensional states. For extending the conclusions on the inertias from 2×n2\times n states to 3×n3\times n states, we consider the inertias of 𝒩3,n\mathcal{N}_{3,n} in the following.

Lemma 20

There are at least (n1)(2n1)(n-1)(2n-1) inertias in 𝒩3,n\mathcal{N}_{3,n}, i.e.,

|𝒩3,n|(n1)(2n1)|\mathcal{N}_{3,n}|\geq(n-1)(2n-1), for n2\forall n\geq 2.

Furthermore, these (n1)(2n1)(n-1)(2n-1) inertias in 𝒩3,n\mathcal{N}_{3,n} are as follows.

(1,3n4j,j+3)(1,3n-4-j,j+3), 0j3n4\forall 0\leq j\leq 3n-4,

(2,3n6j,j+4)(2,3n-6-j,j+4), 0j3n6\forall 0\leq j\leq 3n-6,

(n1,nj,n+1+j)(n-1,n-j,n+1+j), 0jn\forall 0\leq j\leq n.

Proof.

We have obtained that (1,2n4,3)𝒩2,n(1,2n-4,3)\in\mathcal{N}_{2,n} 2020Inertias . Using Lemma 8 we have that (1,3n4j,j+3)𝒩3,n(1,3n-4-j,j+3)\in\mathcal{N}_{3,n}, 0j3n4\forall 0\leq j\leq 3n-4.

Similarly, we also have that

(2,3n6j,j+4)𝒩3,n(2,3n-6-j,j+4)\in\mathcal{N}_{3,n}, 0j3n6\forall 0\leq j\leq 3n-6,

(n1,nj,n+1+j)(n-1,n-j,n+1+j), 0jn\forall 0\leq j\leq n.

So we obtain that 𝒩3,n\mathcal{N}_{3,n} obtains at least (3n3)+(3n5)++(n+1)(3n-3)+(3n-5)+...+(n+1), namely (n1)(2n1)(n-1)(2n-1) inertias.       \sqcap\sqcup

Finally, we partially investigate the existence of inertia (4,1,4)(4,1,4) and (3,2,4)(3,2,4) in terms of numerical test by using a python program. We utilize a program package named numpy 111Oliphant,T.E. A guide to NumPy (Vol.1, p.85).USA: Trelgol Publishing.(2006). to generate a 9×39\times 3 real random matrix RR 222https://machinelearningmastery.com/how-to-generate-random-numbers-in-python/(2018).. Then we multiply RR by its transpose RTR^{T} to obtain a random positive semi-definite matrix M=RRTM=RR^{T} 333https://en.m.wikipedia.org/wiki/Definite matrixNegative-definite.2C semidefinite and indefinite matrices(2002).. After transforming MM into MΓM^{\Gamma}, the program only need to calculate the feature values of MΓ\rm M^{\Gamma} and judge its inertia index, which turns out to be neither of the two inertias (4,1,4)(4,1,4) or (3,2,4)(3,2,4). Such a numerical test supports the conjecture that neither of the two inertias exists.

VI Conclusion

We have investigated two-qutrit EWs constructed by the partial transpose of NPT states. Furthermore, we investigated the inertias of the two-qutrit bipartite NPT states. One open problem is to deterimine whether (3,2,4),(4,1,4)(3,2,4),(4,1,4) are in 𝒩3,3\mathcal{N}_{3,3}. In the future, we need to extend more conclusions on the inertias from low dimensional states to high dimensional states.

References

  • [1] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, and Karol Horodecki. Quantum entanglement. Review of Modern Physics, 2007.
  • [2] Otfried Gühne and Géza Tóth. Entanglement detection. Physics Reports, 474(1):1–75, 2009.
  • [3] E. Chitambar and G. Gour. Quantum resource theories. Review of Modern Physics, 91(2), 2019.
  • [4] Patricia, Contreras-Tejada, Carlos, Palazuelos, Julio, I, de, and Vicente. Resource theory of entanglement with a unique multipartite maximally entangled state. Physical review letters, 2019.
  • [5] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger. Experimental one-way quantum computing. Nature, 2005.
  • [6] M. Riebe, H Haffner, C. F. Roos, W Hansel, J. Benhelm, and Lancaster Gpt. Deterministic quantum teleportation with atoms. Nature, 429(6993):734–7, 2004.
  • [7] X. Li, Q. Pan, J. Jing, J. Zhang, and K. Peng. Quantum dense coding exploiting a bright einstein-podolsky-rosen beam. Physical Review Letters, 88(4):047904, 2002.
  • [8] J. Yin, Y. H. Li, S. K. Liao, M. Yang, and J. W. Pan. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582(7813):1–5, 2020.
  • [9] Zhang Q Lo H-K Xu F, Ma X and Pan J-W. Secure quantum key distribution with realistic devices, 2020.
  • [10] A. Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413, 1996.
  • [11] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A, 232:333, 1997.
  • [12] Rudolph and Oliver. Some properties of the computable cross norm criterion for separability. Physical Review A, 67(3):535–542, 2002.
  • [13] Lawrence L Larmore and Michel X Goemans. Proceedings of the 35th annual acm symposium on theory of computing, june 9-11, 2003, san diego, ca, usa. In STOC, 2003.
  • [14] B. M. Terhal and Kgh Vollbrecht. Entanglement of formation for isotropic states. Physical Review Letters, 85(12):2625, 2000.
  • [15] D. Amaro and M Müller. Design and experimental performance of local entanglement witness operators. 2019.
  • [16] Zheng Da Li, Qi Zhao, Rui Zhang, Li Zheng Liu, and Jian Wei Pan. Measurement-device-independent entanglement witness of tripartite entangled states and its applications. Physical Review Letters, 124(16), 2020.
  • [17] G. Vidal and R. F. Werner. Computable measure of entanglement. Physical Review A, 65(3):032314, 2002.
  • [18] Micha, Horodecki, Pawe, Horodecki, Ryszard, and Horodecki. Mixed-state entanglement and distillation: Is there a ”bound” entanglement in nature? Physical Review Letters, 80(24):5239–5242, 1998.
  • [19] R. Augusiak, M. Demianowicz, and P. Horodecki. Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Physical Review A, 2008.
  • [20] C. Lin and Dragomir Z. Djokovic. Qubit-qudit states with positive partial transpose. Physical Review A, 86(6):12510–12517, 2012.
  • [21] S. Rana. Negative eigenvalues of partial transposition of arbitrary bipartite states. PHYSICAL REVIEW A, 87(5):1–4, 2013.
  • [22] N. Johnston. Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Physical Review A, 87(6):459–496, 2013.
  • [23] Y. Shen, L. Chen, and L. J. Zhao. Inertias of entanglement witnesses. Journal of Physics A: Mathematical and Theoretical, 53(48):485302 (27pp), 2020.
  • [24] D. P. Divincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal. Evidence for bound entangled states with negative partial transpose. 1999.
  • [25] C. King and D. Matysiak. On the existence of locc-distinguishable bases in three-dimensional subspaces of bipartite 3 × n systems. Journal of Physics A Mathematical and Theoretical, 40(28):7939, 2007.
  • [26] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri. Distinguishing separable and entangled states. Physical Review Letters, 88(18):187904–187904, 2002.
  • [27] R. Bhatia. Matrix Analysis. Matrix Analysis, 2011.
  • [28] Horn R A and Johnson C R (ed). Matrix analysis (cambridge: Cambridge university press), 1985.
  • [29] Chen L and Djokovic D Z. Properties and construction of extreme bipartite states having positive partial transpose, 2013.
  • [30] M. D. Atkinson and S. Lloyd. The ranks of. SIAM Journal on Computing, 12(4):611–615, 1983.