This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inducing and controlling superconductivity in Hubbard honeycomb model using an electromagnetic drive

Umesh Kumar Theoretical Division, T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    Shi-Zeng Lin Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Abstract

The recent successful experimental observation of quantum anomalous Hall effect in graphene under laser irradiation demonstrates the feasibility of controlling single particle band structure by lasers. Here we study superconductivity in a Hubbard honeycomb model in the presence of an electromagnetic drive. We start with Hubbard honeycomb model in the presence of an electromagnetic field drive, both circularly and linearly polarized light and map it onto a Floquet tt-JJ model. We explore conditions on the drive under which one can induce superconductivity (SC) in the system. We study the Floquet tt-JJ model within the mean-field theory in the singlet pairing channel and explore superconductivity for small doping in the system using the Bogoliubov-de Gennes approach. We uncover several superconducting phases, which break lattice or time reversal symmetries in addition to the standard U(1)U(1) symmetry. We show that the unconventional chiral SC order parameter (d±idd\pm id) can be driven to a nematic SC order parameter (s+ds+d) in the presence of a circularly polarized light. The d+idd+id SC order parameter breaks time reversal symmetry and is topologically nontrivial, and supports chiral edge modes. We further show that the three-fold nematic degeneracy can be lifted using linearly polarized light. Our work, therefore, provides a generic framework for inducing and controlling SC in the Hubbard honeycomb model, with possible application to graphene and other two-dimensional materials.

I Introduction

Graphene has been one of the most studied materials with hexagonal geometry due to its number of intriguing properties Novoselov et al. (2004); Geim and Novoselov (2007); Castro Neto et al. (2009). Recently, superconductivity was observed in a twisted bilayer at the magic angle Cao et al. (2018), after the theoretical prediction of the existence of flat bands for Moiré lattice of the twisted bilayer graphene at the magic angle Bistritzer and MacDonald (2011). Superconductivity has also been observed in intercalated graphite such as CaC6{\mathrm{CaC}}_{6} Emery et al. (2005), and C6Yb Weller et al. (2005). But, in pristine graphene, superconductivity is still missing in spite of a number of theoretical studies predicting the existence of superconductivity Black-Schaffer and Doniach (2007); Honerkamp (2008); Profeta et al. (2012); Nandkishore et al. (2012). Ref. Nandkishore et al. (2012) predicted chiral superconductivity with nontrivial topology at van Hove singularity, which was an experimental challenge. More recently, doping graphene at and beyond van Hove singularity the have been achieved Rosenzweig et al. (2020) and can possibly open new venues for exotic states. Many of these studies start with the assumption that honeycomb lattice has is a spin-1/21/2 antiferromagnet at half-filling, which has, in fact been observed in another honeycomb material, In3Cu2VO9 Möller et al. (2008); Yan et al. (2012). More recently, valence bond fluctuations were reported in another spin-1/2 honeycomb compound, YbBr3 Wessler et al. (2020). On the other hand, tunable honeycomb lattice in the cold atom system has been realized Tarruell et al. (2012).

In recent years, there has also been an enormous interest in understanding the periodically driven systems. A recent study on graphene McIver et al. (2020) reported the light-induced anomalous quantum Hall effect by tuning its band structure using light  Oka and Aoki (2009). Controlling the magnetic interaction in materials using an electromagnetic drive has been intensively studied Beaurepaire et al. (1996); Mentink et al. (2015, 2012); Kirilyuk et al. (2010); Li et al. (2013); Oka and Kitamura (2019). The earlier work on photo-manipulation has largely focused on ferromagnets. But in recent years, study of antiferromagnets driven by light have also gained significant interest Nemec et al. (2018).

A recent study Dehghani and Mitra (2017) on hexagonal lattice proposed the realization of light-induced time-reversal symmetry broken (TRSB) topological superconductor. In this study, the effect of electromagnetic drive was studied using a Pierls substitution and did not delve into how the frequency restricts the realization of the relevant Floquet tt-JJ model. Also, in one of the most studied superconductors, i.ei.e cuprate, there has been significant interest in enhancing superconductivity in the presence of a drive Fausti et al. (2011); Mankowsky et al. (2014) resonant with phonon mode, and the mechanism it is usually understood as phonon-assisted. More recently Liu et al. (2020), it has been shown that the enhancement in the superconductivity can be observed even when one is away from the resonance with the phonon. The mechanism, in this case, has been attributed to the effect of light on the superexchange coupling.

The observation of band tuning in graphene McIver et al. (2020) and the possibility of light-induced superconductivity mediated by charge transfer Liu et al. (2020) opens new avenues for exploring light-induced superconductivity. Additionally, it has been widely reported in the literature that strong correlations can induce superconductivity in honeycomb lattice at low doping Black-Schaffer and Honerkamp (2014); Wu et al. (2013) and van Hove singularity Nandkishore et al. (2012). In our work, we explore the conditions for realizing superconductivity in honeycomb lattice mediated by strong correlations that can be controlled using light. We explore the effect of both the circularly and linearly polarized light on the electronic states. We show that in the frequency limit (tωUt\ll\omega\ll U. Here tt is the hopping strength and UU is the onsite Coulomb interaction.), the superconductivity can be induced and enhanced. The honeycomb lattice is shown to host both the time reversal symmetry breaking (TRSB) (d+idd+id) and the nematic (s+ds+d) superconductor in the singlet pairing channel. The nematic superconducting order parameter is three-fold degenerate. We further show that the three-fold degeneracy can be lifted using linearly polarized light.

The paper is organized as follows: Sec II presents the Floquet tt-JJ model derived from Hubbard honeycomb model in the presence of circularly and linearly polarized light. Sec. III discusses the density of states for the lattice in the presence of drive. Sec. IV discusses the mean-field treatment of Floquet tt-JJ model, which reveals several superconducting phases in the presence of EM drive. Sec. V presents a discussion on the physical challenges in realizing the these Floquet systems and summarizes the various findings of our work.

II Floquet Hamiltonian for Strongly correlated systems

Strongly correlated materials can be modeled using Hubbard model. Time-dependence of the Hamiltonian in the presenc of a drive can be is taken into account by time-periodic Peierls phase Dehghani and Mitra (2017); Wang et al. (2018); Eckardt and Anisimovas (2015). We start with a time-dependent Hamiltonian for a Hubbard honeycomb lattice given by

H(t)=ij,σtijeiδFij(t)ciσcjσ+h.c.+Uinini.\begin{split}H(t)&=\sum_{\langle ij\rangle,\sigma}t_{ij}e^{i\delta F_{ij}(t)}c_{i\sigma}^{\dagger}c_{j\sigma}+\text{h.c.}+U\sum_{i}n_{i\uparrow}n_{i\downarrow}.\end{split} (1)

Here, tijt_{ij} is the hopping between nearest neighbor sites-i,ji,j, and UU is the onsite electron repulsion. δFij(t)=F(t)(rirj)\delta F_{ij}(t)=\textbf{F}(t)\cdot(\textbf{r}_{i}-\textbf{r}_{j}), where F(t)\textbf{F}(t) is the vector potential of the light. The above time-dependent Hubbard Hamiltonian can be mapped onto a Floquet tt-JJ model dependent using Schrieffer-Wolff Transformation (SWT) Bukov et al. (2016); MacDonald et al. (1988). The details for the SWT are discussed in the supplemental material Sup .

We investigate the Floquet tt-JJ model for two types of drive,  F(t)\textbf{ F}(t): a) circularly polarized light (CPL) and b) linearly polarized light (LPL) in the supplemental material Sup . The time-dependent Hamiltonian in the high frequency limit (t/ω1t/\omega\ll 1), and tUt\ll U can be mapped onto a set of time-independent Floquet tt-JJ Hamiltonians depending on the drive frequency (ω\omegaEckardt and Anisimovas (2015); Bukov et al. (2016). Here, we present the Floquet Hamiltonian for both circularly and linearly polarized light in the discussion below.

Refer to caption
Figure 1: Schematics for the honeycomb lattice in the presence of (a) Circularly polarized light (CPL), and (b) Linearly polarized light (LPL) along yy-direction. (c) and (d) show the rescaling of the Floquet hopping (t~\tilde{t}) and superexchange (J~\tilde{J}) with the drive parameter ζ(=A/ω)\zeta(=A/\omega) in the limit UωU\ll\omega (c) and ωU\omega\ll U (d).

Circularly Polarized Light:— We consider a vector potential given by F(t)=ζ[sin(ωt)e^xcos(ωt)e^y]\textbf{F}(t)=\zeta[\sin(\omega t)\hat{e}_{x}-\cos(\omega t)\hat{e}_{y}], where ζ=A/ω\zeta=A/\omega for the circularly polarized light (CPL) and e^x\hat{e}_{x} (e^y\hat{e}_{y}) is a unit vector in the xx (yy) direction. In this case, the D6hD_{\text{6h}} point group symmetry of the Hamiltonian is preserved. This is because the CPL affects both the hopping and interaction isotropically along the three bonds in the hexagonal lattice. We have two sets of Floquet Hamiltonian depending on the conditions on the frequency.

In the limit tUωt\ll U\ll\omega, the Floquet Hamiltonian is given by

HFt𝒥0(ζ)ij,σc~i,σc~j,σ+h.c.+J𝒥02(ζ)ij,σ(SiSjσ14n~iσn~jσ).\begin{split}H_{F}&\approx t\mathcal{J}_{0}(\zeta)\sum_{\langle ij\rangle,\sigma}\tilde{c}_{i,\sigma}^{\dagger}\tilde{c}_{j,\sigma}+\text{h.c.}\\ &+J\mathcal{J}_{0}^{2}(\zeta)\sum_{\langle ij\rangle,\sigma}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}\tilde{n}_{i\sigma}\tilde{n}_{j\sigma^{\prime}}).\end{split} (2)

Here, c~jσ=(1njσ¯)cjσ\tilde{c}_{j\sigma}=(1-n_{j\bar{\sigma}})c_{j\sigma}, n~jσ=(1njσ¯)njσ\tilde{n}_{j\sigma}=(1-n_{j\bar{\sigma}})n_{j\sigma} and J=4t2UJ=\frac{4t^{2}}{U} is the superexchange interaction. 𝒥0(ζ)\mathcal{J}_{0}(\zeta) is a Bessel function of first kind with ζ=A/ω\zeta=A/\omega. In this limit of ω\omega, both the hopping and superexchange are rescaled in the Floquet Hamiltonian as shown in the panel (b) of Fig. 1.

On the other hand in the limit tωUt\ll\omega\ll U, one can write the Floquet Hamiltonian as

HFt𝒥0(ζ)ij,σc~i,σc~j,σ+h.c.+Jij,σ(SiSjσ14n~iσn~jσ).\begin{split}H_{F}&\approx t\mathcal{J}_{0}(\zeta)\sum_{\langle ij\rangle,\sigma}\tilde{c}_{i,\sigma}^{\dagger}\tilde{c}_{j,\sigma}+\text{h.c.}\\ &+J\sum_{\langle ij\rangle,\sigma}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}\tilde{n}_{i\sigma}\tilde{n}_{j\sigma^{\prime}}).\end{split} (3)

In this limit, only the hopping term is rescaled, whereas the superexchange term remains unchanged. This limit can allows for flattening the non-interacting band and whereas the superexchange term interaction is constant, and hence an ideal condition for inducing and enhancing superconductivity.

Additionally, we have chiral next-nearest neighbor (NNN) hopping terms of the order of 1/ω1/\omega that can be neglected owing to high-frequency approximation. Further, there are additional three site hopping terms that contribute at the same order as superexchange in the high-frequency approximation of the Floquet theory MacDonald et al. (1988); Bukov et al. (2016). We further comment on the conditions under which these extra terms can be neglected in the supplemental Sup .

Linearly Polarized Light:— We consider a linearly polarized light (LPL) polarized along the yy-direction for which the vector potential is given by F(t)=ζsin(ωt)e^y\textbf{F}(t)=\zeta\sin(\omega t)\hat{e}_{y}, where ζ=A/ω\zeta=A/\omega. In this case, drive breaks the C3C_{\text{3}}-rotation symmetry along the three bonds in the Hamiltonian, and can lead to anisotropic hopping and interactions. As in the CPL case, here too, the Hamiltonian depends on the UU and ω\omega strength.

In the limit tUωt\ll U\ll\omega limit, the Floquet Hamiltonian is given by

HFtij,σ[𝒥0(ζ)c~i0σc~jσ+𝒥0(ζ2)=1,2c~iσc~jσ+h.c.]+Jij,σ[𝒥02(ζ)(Si0Sjσ14n~i0σn~jσ)+𝒥02(ζ2)=1,2(SiSjσ14n~i2σn~jσ)].\begin{split}H_{F}&\approx t\sum_{\langle ij\rangle,\sigma}\Big{[}\mathcal{J}_{0}(\zeta)\tilde{c}_{i_{0}\sigma}^{\dagger}\tilde{c}_{j\sigma}+\mathcal{J}_{0}(\tfrac{\zeta}{2})\sum_{\ell=1,2}\tilde{c}_{i_{\ell}\sigma}^{\dagger}\tilde{c}_{j\sigma}+\text{h.c.}\Big{]}\\ &+J\sum_{\langle ij\rangle,\sigma}\Big{[}\mathcal{J}_{0}^{2}(\zeta)(\textbf{S}_{i_{0}}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}\tilde{n}_{i_{0}\sigma}\tilde{n}_{j\sigma^{\prime}})\\ &+\mathcal{J}_{0}^{2}(\tfrac{\zeta}{2})\sum_{\ell=1,2}(\textbf{S}_{i_{\ell}}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}\tilde{n}_{i_{2}\sigma}\tilde{n}_{j\sigma^{\prime}})\Big{]}.\end{split} (4)

In this case, both the hopping and superexchange are rescaled as is the case in CPL drive. In addition, the system develops anisotropy along the three bonds due to the explicit C3C_{3} rotation symmetry breaking by the LPL.

On the other hand in the limit tωUt\ll\omega\ll U, the Hamiltonian is given by

HFtij,σ[𝒥0(ζ)c~i0σc~jσ+=1,2𝒥0(ζ2)c~iσc~jσ+h.c.]+Jij,σ(SiSjσ14n~iσn~jσ).\begin{split}H_{F}&\approx t\sum_{\langle ij\rangle,\sigma}\Big{[}\mathcal{J}_{0}(\zeta)\tilde{c}_{i_{0}\sigma}^{\dagger}\tilde{c}_{j\sigma}+\sum_{\ell=1,2}\mathcal{J}_{0}(\tfrac{\zeta}{2})\tilde{c}_{i_{\ell}\sigma}^{\dagger}\tilde{c}_{j\sigma}+\text{h.c.}\Big{]}\\ &+J\sum_{\langle ij\rangle,\sigma}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}\tilde{n}_{i\sigma}\tilde{n}_{j\sigma^{\prime}}).\end{split} (5)

In this case, the hopping is rescaled and develop anisotropy, whereas the superexchange is unaffected. It leads to flattening of the non-interacting band, whereas the superexchange term interaction is constant, and hence is useful for inducing and enhancing superconductivity

As in the CPL case, we do have NNN hopping terms, but the chiral hopping term is absent in the LPL drive as the Hamiltonian does not break time-reversal symmetry.

III Non-interacting Honeycomb

The effect of EM drive on non-interacting honeycomb lattice has been widely studied in literature, where the EM drive was found to have significant effects on electronic properties Oka and Aoki (2009). Here, we analyze the impact of drive on the honeycomb lattice without the superexchange term to prepare ourselves for understanding the more complicated Hamiltonian with strong correlations. We report the density of states (DOS) for non-interacting bands in the presence of both circularly and linearly polarized light.

Circularly polarized light:— In the case of CPL, the hopping is renormalized isotropically and, therefore, preserves the C3C_{\text{3}}-rotation symmetry of the bonds. Panel (a) in Fig. 2 shows the density of states for CPL drive. We can see that on driving the system (ζ\zeta), only the bandwidth in the density of states shown in panel (a) of Fig. 2 gets smaller.

Refer to caption
Figure 2: Density of states for non-interacting honeycomb lattice in the presence of; a) circularly polarized light and b) linearly polarized along yy-direction with the laser strength ζ\zeta indicated in each panel for tωt\ll\omega. The bandwidth gets smaller with increasing ζ\zeta.

Linearly polarized light:— Linearly polarized light can induce anisotropy in the hopping along with different bonds. It breaks C3C_{\text{3}}-rotation symmetry of the bonds and can generate effects on the honeycomb sites similar to the strain Naumis et al. (2017). Panel (b) shows the DOS for the LPL.

Additionally, CPL can breaks time-reversal symmetry in the Floquet tt-JJ model if the next nearest neighbor chiral hoppings are included. This term can lead to an anomalous quantum Hall effect (AQHE). The observation of light-induced AQHE in monolayer graphene was reported very recently McIver et al. (2020). This TRSB breaking term appears as a higher-order correction, and is only important when the leading order term proportional to the zeroth order Bessel function vanishes, i.e.i.e. at A/ω=2.4A/\omega=2.4 Mikami et al. (2016). For the sake of simplicity, we study the effects of drive in the limit of ζ<2\zeta<2, which allows us to ignore the TRSB term.

IV Mean-field treatement of the Floquet tt-JJ model

In Sec. II, we have presented the Floquet Hamiltonian that can be engineered from a honeycomb Hubbard model. The derived tt-JJ Floquet model has an explicit many-body effect, which cannot be solved exactly. To simplify the many-body effects, one can use Gutzwiller projection to replace the strict double occupancy prohibition with a rescaling factor Zhang et al. (1988); Anderson et al. (2004); Paramekanti et al. (2004); Black-Schaffer and Honerkamp (2014). The Gutzwiller projected Hamiltonian could then be mapped to renormalized mean-field theory, using the mean-field for singlet pairing channel. In this renormalized mean-field theory, t2tδ/(1+δ)t\rightarrow 2t\delta/(1+\delta) and J2J/(1+δ)2J\rightarrow 2J/(1+\delta)^{2} and superconducting order parameter, Δ2Δδ/(1+δ)\Delta\rightarrow 2\Delta\delta/(1+\delta), where δ(=1n)\delta~{}(=1-n) is the doping away from half-filling. For the sake of simplicity, we will treat these rescaling factors as a constant. The Gutzwiller projected mean-field can be written as,

HMF=ij,σtijaiσbjσ+h.c.+μi,σaiσaiσ+biσbiσ+ij,σ(aibjaibj)Δij+Δij(aibjaibj).\begin{split}H_{\text{MF}}&=-\sum_{\langle ij\rangle,\sigma}t_{ij}a_{i\sigma}^{\dagger}b_{j\sigma}+\text{h.c.}+\mu\sum_{i,\sigma}a_{i\sigma}^{\dagger}a_{i\sigma}+b_{i\sigma}^{\dagger}b_{i\sigma}\\ &+\sum_{\langle ij\rangle,\sigma}(a_{i\uparrow}^{\dagger}b_{j\downarrow}^{\dagger}-a_{i\downarrow}^{\dagger}b_{j\uparrow}^{\dagger})\Delta_{ij}+\Delta_{ij}^{*}(a_{i\downarrow}b_{j\uparrow}-a_{i\uparrow}b_{j\downarrow}).\end{split} (6)

Here, tijt_{ij} is the hopping between nearest neighbor sublattices, A(aiσ)A~{}(a_{i\sigma}) and B(biσ)B~{}(b_{i\sigma}). Here we restrict to the nearest neighbor singlet pairing superconducting order parameter (SCOP) Δij=Jij(aibjaibj)/2\Delta_{ij}=-J_{ij}(a_{i\downarrow}b_{j\uparrow}-a_{i\uparrow}b_{j\downarrow})/2.

Equation  (6) can be written in the momentum basis as

HMF=k[akbkakbk]×(μtk0ΔktkμΔk00ΔkμtkΔk0tkμ)[akbkakbk].\begin{split}H_{\text{MF}}=&\sum_{k}\begin{bmatrix}a_{k\uparrow}^{\dagger}b_{k\uparrow}^{\dagger}&a_{-k\downarrow}&b_{-k\downarrow}\end{bmatrix}\times\\ &\begin{pmatrix}\mu&-t_{k}&0&\Delta_{k}\\ -t_{k}^{*}&\mu&\Delta_{-k}&0\\ 0&\Delta_{-k}^{*}&-\mu&t_{-k}^{*}\\ \Delta_{k}^{*}&0&t_{-k}&-\mu\\ \end{pmatrix}\begin{bmatrix}a_{k\uparrow}\\ b_{k\uparrow}\\ a_{-k\downarrow}^{\dagger}\\ b_{-k\downarrow}^{\dagger}\\ \end{bmatrix}.\end{split} (7)

Here tk=α=0,1,2eiklαtαt_{\textbf{k}}=\sum_{\alpha=0,1,2}e^{i\textbf{k}\cdot\textbf{l}_{\alpha}}t_{\alpha} and Δk=α=0,1,2eiklαΔα\Delta_{\textbf{k}}=\sum_{\alpha=0,1,2}e^{i\textbf{k}\cdot\textbf{l}_{\alpha}}\Delta_{\alpha}, where Rj=Ri+lα\textbf{R}_{j}=\textbf{R}_{i}+\textbf{l}_{\alpha} with l0=(0,1),l1=(32,12),l2=(32,12)l_{0}=(0,-1),~{}l_{1}=(\frac{\sqrt{3}}{2},\frac{1}{2}),~{}l_{2}=(-\frac{\sqrt{3}}{2},\frac{1}{2}). Also, one can write the gap as, Δα=Jα2keiklαakbkeiklαakbk\Delta_{\alpha}=-\frac{J_{\alpha}}{2}\sum_{k}\langle e^{i\textbf{k}\cdot\textbf{l}_{\alpha}}a_{-k\downarrow}b_{k\uparrow}-e^{-i\textbf{k}\cdot\textbf{l}_{\alpha}}a_{k\uparrow}b_{-k\downarrow}\rangle. Equation (7) can be diagonalized to evaluate HMF|ψm=Em|ψmH_{\text{MF}}|\psi_{m}\rangle=E_{m}|\psi_{m}\rangle, the eigenstates (|ψm|\psi_{m}\rangle) of which are the Bogoliubov quasiparticles  Su and Lin (2018). The gap equation in this new basis is then given by

Δα=Jα4k,meiklαuka,m(vkb,m)γkm(γkm)+eiklαukb,m(vka,m)(γkm)γkm.\begin{split}\Delta_{\alpha}&=\frac{J_{\alpha}}{4}\sum_{k,m}\langle e^{i\textbf{k}\cdot\textbf{l}_{\alpha}}u_{k\uparrow}^{a,m}(v_{-k\downarrow}^{b,m})^{*}\gamma_{k}^{m}(\gamma_{k}^{m})^{\dagger}\\ &+e^{-i\textbf{k}\cdot\textbf{l}_{\alpha}}u_{k\uparrow}^{b,m}(v_{-k\downarrow}^{a,m})^{*}(\gamma_{k}^{m})^{\dagger}\gamma_{k}^{m}\rangle.\end{split} (8)
n¯=k,m(|uka,m|2+|ukb,m|2)f(Ekm)+(|vka,m|2+|vkb,m|2)f(Ekm).\begin{split}\bar{n}&=\sum_{k,m}(|u_{k\uparrow}^{a,m}|^{2}+|u_{-k\downarrow}^{b,m}|^{2})f(E_{k}^{m})\\ &+(|v_{k\uparrow}^{a,m}|^{2}+|v_{-k\downarrow}^{b,m}|^{2})f(-E_{k}^{m}).\end{split} (9)

Here, |ψkm=(uka,m,vkb,m,(uka,m),(vkb,m))T|\psi_{k}^{m}\rangle=\big{(}u_{k\uparrow}^{a,m},~{}v_{k\uparrow}^{b,m},~{}(u_{-k\downarrow}^{a,m})^{*},~{}(v_{-k\downarrow}^{b,m})^{*}\big{)}^{T} and EkmE_{k}^{m} are the mthm^{\text{th}} eigenvector and eigenvalue of the Eq. (7). f(Ekm)=(γkm)γkm=1eβEkm+1f(E_{k}^{m})=\langle(\gamma_{k}^{m})^{\dagger}\gamma_{k}^{m}\rangle=\frac{1}{e^{\beta E_{k}^{m}}+1} is the Fermi distribution function for the Bogoliubov quasiparticles. We solve Eqs. (8) and (9) self-consistently to evaluate the SC order parameter.

Refer to caption
Figure 3: Superconducting order parameter (SCOP) as a function of CPL drive (ζ\zeta). Panels (a) and (b) show the SCOP components for J=1.0J=1.0, n=1.05n=1.05 and J=2.0J=2.0, n=1.10n=1.10 respectively. Inset in each panels show the corresponding phase between the different component. Note that there is a global U(1)U(1) phase ambiguity.

The basis functions; Ψdx2y2=16(2,1,1)\Psi_{d_{x^{2}-y^{2}}}=\tfrac{1}{\sqrt{6}}(2,-1,-1), Ψdxy=12(0,1,1)\Psi_{d_{xy}}=\tfrac{1}{\sqrt{2}}(0,1,-1) and Ψs=13(1,1,1)\Psi_{s}=\tfrac{1}{\sqrt{3}}(1,1,1) form a complete basis set for symmetric superconducting order parameter (Δα\Delta_{\alpha}) for point group D6hD_{\text{6h}} and D2hD_{\text{2h}}. Moreover, dx2y2d_{x^{2}-y^{2}} and dxyd_{xy} are degenerate for D6hD_{\text{6h}} point group, which allows for the existence of interesting chiral superconductivity dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy}. We evaluate the SCOP in these basis functions. All throughout the discussion, we set t=1t=1 and all other parameters are defined in terms of tt.

IV.1 Superconducting order parameter dependence on the drive at T=0T=0

We start by discussing the superconducting order parameter (SCOP) dependence on the EM drive at T=0T=0 for tωUt\ll\omega\ll U. In this limit, the EM drive (ζ\zeta) modifies the hopping parameter tt. We plot SCOP for the circularly and linearly polarized light, respectively, for a set of JJ and filling nn near the critical limit to induce different phases using the EM drive.

Figure 3 plots the SCOP in the (s,ds,d) basis in the presence of a circularly polarized light. The drive isotropically decreases the hopping (tα=t𝒥0(ζ),α{0,1,2}t_{\alpha}=t\mathcal{J}_{0}(\zeta),~{}\forall~{}\alpha\in\{0,1,2\}) along three bonds in the Floquet Hamiltonian as shown in Eq. (3). The interaction parameter Jα(=J,α{0,1,2})J_{\alpha}~{}(=J,~{}\forall~{}\alpha\in\{0,1,2\}) is unaffected. The Hamiltonian, therefore, preserves the D6hD_{\text{6h}} symmetry. Panel (a) plots the amplitude of the components of SCOP as a function of drive (ζ\zeta) for J=t(U4t)J=t~{}(U\approx 4t) and n=1.05n=1.05, whereas panel (b) plots for J=2t(U2t)J=2t~{}(U\approx 2t), n=1.1n=1.1. Inset in each panels show the phase of the different components along the different components of the SCOP.

Panel (a) shows that one can drive the onset of superconductivity at ζ=1.2\zeta=1.2 using the EM drive. From the inset, it is clear that the initial SCOP is dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy}, which spontaneously breaks the time reversal symmetry in addition to the U(1)U(1) symmetry. The dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy} is topological nontrivial and can be characterized by a Chern number C=2C=2. The nontrivial topology implies the existence of spontaneous edge current. dx2y2idxyd_{x^{2}-y^{2}}-id_{xy} is another degenerate solution, guaranteed by time-reversal symmetry in the Hamiltonian. There exists another phase transition at ζ=1.8\zeta=1.8, associated with the onset of ss-component. This transition is emphasized in panel (b).

To further elucidate on the new transition, panel (b) plots SCOP for J=2tJ=2t and n=1.1n=1.1. In this parameter, at the onset of the drive, we have TRSB SCOP, signaled by ±π/2\pm\pi/2 phase difference between different components of the SCOP. At ζ=1.2\zeta=1.2, we see an onset of ss-component. Further, in the inset, one can see that phase difference between the different components of the SCOP is either 0 or π\pi. The SCOP can be made real by choosing a global U(1)U(1) phase, therefore the time reversal symmetry is restored above this critical ζc\zeta_{c}. As will be discussed below, C3C_{3} rotation symmetry is broken in this state, and therefore the superconductivity is nematic.

k-dependence of superconducting order parameter:— We plot the momentum dependence of the SCOP, Δ(k)=keikRαΔα\Delta(k)=\sum_{k}e^{i\textbf{k}\cdot R_{\alpha}}\Delta_{\alpha}. Fig. 4 shows the gap amplitude, |Δ(k)||\Delta(k)| distribution over the Brillouin Zone.

SCOP, dx2y2±idxyd_{x^{2}-y^{2}}\pm id_{xy}, shown in panel (a) and (b) have point nodes and is not invariant for any global U(1)U(1) phase over the time-reversal operation, 𝒯Δ(k)Δ(k)\mathcal{T}\Delta(\textbf{k})\rightarrow\Delta^{*}(-\textbf{k}), and is indeed TRSB SCOP. But this SCOP is invariant up to a global U(1)U(1) phase over C3C_{\text{3}} rotation and the SCOP components along the the three bonds (Δ0,Δ1,Δ2)(\Delta_{0},\Delta_{1},\Delta_{2}) have the same amplitude. Note, while the SCOP has point node, the dispersion for the Bogoliubon quasiparticle is gapped.

With the onset of ss-wave component, the SCOP breaks the three-fold rotation symmetry C3C_{\text{3}} and the SCOP component along one of the bond (Δ0,Δ1,Δ2)(\Delta_{0},\Delta_{1},\Delta_{2}) becomes inequivalent, which indeed leads to nematic SCOP. There are three degenerate SCOPs that are related by C3C_{3} rotation (This is further emphasized in Fig. 7). In the nematic phase, the SCOP spontaneously breaks the C3C_{\text{3}} point group symmetry and is reduced to D2hD_{\text{2h}}. The SCOP has form Δαexp(iθ)(α,β,β,),exp(iθ)(β,α,β),\Delta_{\alpha}\propto\exp(i\theta)(\alpha,-\beta,-\beta,),~{}\exp(i\theta)(-\beta,\alpha,-\beta), and exp(iθ)(β,β,α)α>β>0\exp(i\theta)(-\beta,-\beta,\alpha)~{}\forall~{}\alpha>\beta>0. Panel (c), (d), (e) plots the momentum dependence of the nematic SCOP for α=1\alpha=1 and β=1/2\beta=1/2. As can be seen in these panels, the nematic order parameter (s+ds+d) is nodeless and preserves the time reversal symmetry, but breaks the C3C_{\text{3}} rotation symmetry. Conversely, in the (s,dx2y2,dxys,~{}d_{x^{2}-y^{2}},~{}d_{xy}) basis, these nematic order parameters can be written as; exp(iθ)(α2β3s+2α+2β6dx2y2)\exp(i\theta)\big{(}\tfrac{\alpha-2\beta}{\sqrt{3}}s+\tfrac{2\alpha+2\beta}{\sqrt{6}}d_{x^{2}-y^{2}}\big{)}, exp(iθ)(α2β3s+βα6dx2y2+α+β2dxy)\exp(i\theta)\big{(}\tfrac{\alpha-2\beta}{\sqrt{3}}s+\tfrac{-\beta-\alpha}{\sqrt{6}}d_{x^{2}-y^{2}}+\tfrac{\alpha+\beta}{\sqrt{2}}d_{xy}\big{)} and exp(iθ)(α2β3s+αβ6dx2y2+βα2dxy)\exp(i\theta)\big{(}\tfrac{\alpha-2\beta}{\sqrt{3}}s+\tfrac{-\alpha-\beta}{\sqrt{6}}d_{x^{2}-y^{2}}+\tfrac{-\beta-\alpha}{\sqrt{2}}d_{xy}\big{)} respectively. Note, in the panel (b) of Fig. 3, we have plotted only one of the solution of the nematic SCOP, the other two solutions can be recovered by rotation.

Refer to caption
Figure 4: Top panels shows the superconducting order parameter (SCOP), |Δ(k)||\Delta(k)| for the time-reversal symmetry-breaking; dx2y2±idxyd_{x^{2}-y^{2}}\pm id_{xy}. Bottom panels show SCOP for the three degenerate nematic states which breaks C3C_{3} rotation symmetry along the three bonds. The Black hexagon denotes the first Brillouin Zone.
Refer to caption
Figure 5: SCOP as a function of LPL drive (ζ\zeta). Panels (a) and (b) show the SCOP components for J=2.0J=2.0, n=1.10n=1.10 and J=3.0J=3.0, n=1.10n=1.10 respectively. Inset in each panels shows the corresponding phase between the different component. Note that there is a global U(1)U(1) phase ambiguity.

Fig. 5 plots the SCOP in the presence of a linearly polarized light. For LPL polarized along yy-direction, the parameters rescales as i.e.i.e. t0=t𝒥0(ζ),t1=t2=t𝒥0(ζ/2)t_{0}=t\mathcal{J}_{0}(\zeta),t_{1}=t_{2}=t\mathcal{J}_{0}(\zeta/2), whereas Jα=J,α{0,1,2}J_{\alpha}=J,~{}\forall\alpha\in\{0,1,2\} as can be seen from Fig. 1 (d). In yy-polarized LPL, D6hD_{\text{6h}} symmetry of the Hamiltonian is reduced to D2hD_{\text{2h}}. Panel (a) plots the amplitude of the components of SCOP as a function of drive (ζ\zeta) for J=2t(U2t)J=2t~{}(U\approx 2t) and n=1.1n=1.1, whereas panel (b) plots for J=3t(U8t/3)J=3t~{}(U\approx 8t/3), n=1.1n=1.1. Inset in each panels show the phase of the different components along the different components of the SCOP. Note, we have plotted for larger value of JJ in this case as the onset of SCOP is slower in the case of LPL. Also, the SCOP in the case of LPL are distinct from the CPL case.

Panel (a) shows that in the case of J=2t(U2t)J=2t~{}(U\approx 2t) and n=1.1n=1.1, the SCOP is always complex for arbitrary choice of the U(1)U(1) phase and is TRSB. We choose a global phase such that the real part is composed of dx2y2d_{x^{2}-y^{2}} and ss, unlike in CPL where it consists of only dx2y2d_{x^{2}-y^{2}}. From the inset, it is clear that the initial SCOP is indeed Ψsd+idxy\Psi_{sd}+id_{xy}. Ψsdidxy\Psi_{sd}-id_{xy} is another degenerate solution, which is guaranteed by time-reversal symmetry in the Hamiltonian. Here Ψsd\Psi_{sd} represents SCOP with the mixed ss and dx2y2d_{x^{2}-y^{2}}.

Refer to caption
Figure 6: Phase diagrams for the SCOP as a function of temperature (TT) and the CPL drive (ζ\zeta) for J=2.0,n=1.1J=2.0,~{}n=1.1 and t=1t=1. Panels (a) and (b) show the SCOP evaluated using projected dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy} and ss state respectively as initial guess. The top and bottom lines in each panel indicate the TcT_{c} for vanishing dd-wave and ss-wave SCOP respectively evaluated using linearized gap equation. Panel (c) plots the free energy at ζ=1.23\zeta=1.23 and shows that nematic state with (s+d)(s+d)-wave component is the true SCOP at lower temperature, and at intermediate temperature (d+idd+id) dominates before the SCOP vanishes.

Panel (b) plot SCOP for larger J=3tJ=3t to enter into the nematic state observed in the case of CPL. We notice that the SCOP becomes real at ζ=0.5\zeta=0.5, as was also observed in the CPL case. In this phase, the time-reversal symmetry of the SCOP is preserved. The three-fold degeneracy of the nematic state observed in the CPL case is reduced to two-fold degeneracy. This will be further evident from the discussion on Fig. 8. Again note, we have plotted only one of the nematic phase solutions in panel (b).

Refer to caption
Figure 7: Nematic SCOP degeneracy in the presence of CPL drive at ζ=1.4\zeta=1.4 for J=2tJ=2t and n=1.1n=1.1. Panels (a), (b) and (c) plot the SCOP components along the three bonds (Δ0,Δ1,Δ2)(\Delta_{0},\Delta_{1},\Delta_{2}) as a function of temperature for the three states. Panel (d) plots the free energy for the three states, showing state all the states are degenerate.
Refer to caption
Figure 8: Nematic SCOP in the presence of LPL drive at ζ=0.5\zeta=0.5 for J=2t~J=2\tilde{t}, t~=t𝒥0(1.4)\tilde{t}=t\mathcal{J}_{0}(1.4) and n=1.1n=1.1. Panels (a), (b) and (c) plot the SCOP components along the three bonds (Δ0,Δ1,Δ2)(\Delta_{0},\Delta_{1},\Delta_{2}) as a function of temperature for the three states. Panel (d) plots the free energy for the three states, showing state in panel (a) becomes non-degenerate.

IV.2 Effect of temperature on the superconducting order parameter

In this section, we discuss the effect of temperature on the superconducting order parameter for the CPL drive. The vanishing SCOP reveals the critical temperature, TcT_{c} for the phase transitions. We further estimate the TcT_{c} by linearizing the gap equations. We describe both the methods for evaluating the temperature dependence of SCOP.

We evaluate the SCOP by solving the Eqs. (8) and (9) self-consistently for finite temperature (TT). We plot the phase diagram starting with a SCOP ansatz given by, Δα=|Ψdx2y2+idxyΨdx2y2+idxy|Δα\Delta_{\alpha}=|\Psi_{{d_{x^{2}-y^{2}}}+i{d_{xy}}}\rangle\langle\Psi_{{d_{x^{2}-y^{2}}}+i{d_{xy}}}|\Delta_{\alpha}\rangle to evaluate for TRSB state and Δα=|ΨdsΨds|Δα\Delta_{\alpha}=|\Psi_{d_{s}}\rangle\langle\Psi_{d_{s}}|\Delta_{\alpha}\rangle for the nematic state. Since the TRSB and nematic order parameter competes, we also evaluate the free energy of the system Kosztin et al. (1998) to get the true ground state. The free energy is evaluated using the relation,

=k,mEkmf(Ekm)+TkBk,m(f(Ekm)ln(f(Ekm))+(1f(Ekm))ln(1f(Ekm)))+2α|Δα2|/N.\begin{split}\mathcal{F}&=\sum_{k,m}E_{k}^{m}f(E_{k}^{m})+Tk_{B}\sum_{k,m}\Big{(}f(E_{k}^{m})\ln(f(E_{k}^{m}))\\ &+\big{(}1-f(E_{k}^{m})\big{)}\ln\big{(}1-f(E_{k}^{m})\big{)}\Big{)}+2\sum_{\alpha}|\Delta_{\alpha}^{2}|/N.\end{split} (10)

Here mm is indices for the Bogoliubons evaluated in the Eq. 7.

We know that at the critical transition temperature, TcT_{c}, the SC gap vanishes, and therefore one can linearize the gap equation. This approximation allows us to directly calculate the TcT_{c}, which is discussed in Appendix A. The linearized gap equation can be written in a matrix form

[Δ0Δ1Δ2]=J(A1B1B1B1A2B2B1B2A2)[Δ0Δ1Δ2],\begin{bmatrix}\Delta_{0}\\ \Delta_{1}\\ \Delta_{2}\\ \end{bmatrix}=J\begin{pmatrix}A_{1}&B_{1}&B_{1}\\ B_{1}&A_{2}&B_{2}\\ B_{1}&B_{2}&A_{2}\\ \end{pmatrix}\begin{bmatrix}\Delta_{0}\\ \Delta_{1}\\ \Delta_{2}\\ \end{bmatrix}, (11)

where A1A_{1}, A2A_{2}, B1B_{1} and B2B_{2} are components in the Eq. (20) when Jα=J,α{0,1,2}J_{\alpha}=J,~{}\forall~{}\alpha\in\{0,1,2\}, discussed in Appendix A. In the case of CPL, A1=A2=AA_{1}=A_{2}=A and B1=B2=BB_{1}=B_{2}=B. The solutions of the above equation is given by, a) A+2B=1JA+2B=\frac{1}{J} ss-wave; (1,1,1)/3(1,1,1)/\sqrt{3}, and b) AB=1JA-B=\frac{1}{J}, two-fold dd-wave degenerate solutions: (2,1,1)/6(2,-1,-1)/\sqrt{6} and (0,1,1)/2(0,1,-1)/\sqrt{2}. Using these equations, we evaluate the TcT_{c} for the dd-wave and ss-wave solution

IV.2.1 Phase diagram of SCOP dependence on temperature and CPL drive

Figure 6 shows the phase diagram for the temperature dependence of the SCOP in the presence of CPL drive evaluated for J=2tJ=2t and n=1.1n=1.1. We reveal distinct phase boundaries for the TRSB and nematic superconductivity. TRSB and nematic SCOP can compete at lower temperatures, and therefore, one has to compare the free energy in order to determine the true ground state.

Panels (a) plots the phase diagram with a mean-field gap ansatz given by, Δα=|Ψdx2y2+idxyΨdx2y2+idxy|Δα\Delta_{\alpha}=|\Psi_{d_{x^{2}-y^{2}}+id_{xy}}\rangle\langle\Psi_{d_{x^{2}-y^{2}}+id_{xy}}|\Delta_{\alpha}\rangle. We further evaluate that TcT_{c} for the dd-wave solution using the linearized gap equations and compare it with the results from the SCOP calculation with (d+id)(d+id) ansatz. We notice the TRSB SCOP vanishes at the TcT_{c} (top white line) of the dd-wave solution.

Panels (b) plots the phase diagram with a mean-field gap ansatz given by, Δα=|ΨdsΨds|Δα\Delta_{\alpha}=|\Psi_{d_{s}}\rangle\langle\Psi_{d_{s}}|\Delta_{\alpha}\rangle. We further evaluate that TcT_{c} for the ss-wave solution using the linearized gap equations and compare it with the results from the SCOP calculation with ss-wave ansatz. We notice the nematic SCOP vanishes at the TcT_{c} (bottom white line) of the ss-wave solution. We notice that there is a discrepancy in the critical drive strength for the onset of the ss-wave state; ζc=0.85\zeta_{c}=0.85 from the TcT_{c} calculation, whereas, ζc=1.25\zeta_{c}=1.25 from the SCOP calculation. This late onset of ss-wave SCOP is due to numerical limitation, a smaller grid used for evaluating the SCOP.

From panel (a) and (b), it is clear that (d+id)(d+id) and (s+d)(s+d)-wave solutions compete at a lower temperature after the onset of ss-wave state. We, therefore, plot free energy for both the solution to find the real ground state. Panel (c) plots the free energy at ζ=1.23\zeta=1.23 to show that the (s+d)(s+d)-wave solution is the real ground state at the lower temperature after the onset of ss-wave. At a higher temperature, the (d+id)(d+id)-wave solution has lower free energy after the (s+d)(s+d)-wave solution vanishes.

Additionally, we notice that the TcT_{c} for TRSB and nematic SCOP converge for a large ζ\zeta.

Analysis of the three-fold degeneracy of nematic state:— SCOP in the nematic state has a three-fold degeneracy. In Fig. 7, we plot a cut at ζ=1.4\zeta=1.4 from panel (b) of Fig. 6 to explore the temperature dependence of the components of SCOP along all the three bonds. We plot all the three nematic states shown in panels (a), (b) and (c) by biasing the initial SCOP along each of the bond. Inset plots the phases of the three components along the bonds. We notice that the SCOP has a higher amplitude along one of the bond in each state and are related by a C3C_{3} rotation along the three bonds.

We further plot the free energy for these three solutions in panel (d) and observe that these solutions’ free energy is equal for all the temperature to confirm that these solutions are indeed degenerate.

Breaking the three-fold degeneracy in the nematic state:— We know that LPL reduces the D6hD_{\text{6h}} symmetry to D2hD_{\text{2h}} in the presence of yy-polarized light. We use this property and show that the use of linearly polarized light can lift the three-fold degeneracy of the SCOP. For the sake of consistency with the above results, we start with J=2tJ=2t, and a modified hopping t~=t𝒥0(1.4)\tilde{t}=t\mathcal{J}_{0}(1.4), which reproduces the results in the case of CPL at ζ=1.4\zeta=1.4. Additionally, we use a yy-direction LPL with ζ=1/2\zeta=1/2 to break the three-fold degeneracy, as shown in Fig. 8. The three nematic states shown in panels (a), (b) and (c) are plotted by biasing the SCOP along each of the bonds. We notice that the SCOP in panel (a) has a slightly different amplitude from that in panel (b) and (c).

To understand the true nature of the ground state, we plot the Free energy in panel (d). We notice that the free energy for polarization along the l0l_{0} is higher than the other two directions. Therefore, the three-fold degeneracy of the SCOP is reduced to two-fold degeneracy in the presence of LPL.

V Discussion and Conclusions

In our work, we explored the conditions for enhancing superconductivity in strongly correlated honeycomb lattice in the presence of both circularly and linearly polarized light. An earlier work Dehghani and Mitra (2017) on honeycomb lattice also explored the same system by treating EM drive through a Pierls-substitution. On the other hand, we have treated the effect of strong correlation systematically using SWT and find that the limit tωUt\ll\omega\ll U is useful in enhancing superconductivity. We want to point out that two conditions are important for realizing such enhancement; a) tωUt\ll\omega\ll U, such that the higher-order corrections in the high-frequency approximations can be neglected, and b) thermal heating is minimal to realize Floquet Hamiltonian. To have a minimal effect on the higher-order correction, we study the system for ζ<2\zeta<2. In driven systems, a number of studies have reported the effect of heating and shown that, indeed, it can be controlled. For example, it has been shown that the Floquet heating in the many-body systems in the high frequency t,U<ωt,U<\omega is exponentially slow in frequency  Abanin et al. (2015). Further, it has been shown that Floquet prethermalized state can be realized in a resonantly driven Hubbard model Herrmann et al. (2017); Coulthard et al. (2017). Additionally, the recent experimental observation of off-resonance superconductivity enhancement in cuprate Liu et al. (2020), possibly mediated by charge fluctuations, provides further impetus to our work.

In conclusion, we have shown that light can be a useful tool for controlling the bandwidth and strong correlations in a hexagonal lattice. We show that in the frequency limit, t<ωt<\omega and ω<U\omega<U, the EM field drive can induce and enhance superconductivity mediated through strong correlations. We show that light-induced superconductivity is exotic; a) time-reversal symmetry breaking (d+idd+id) with nontrivial topology and b) nematic (s+ds+d) in these honeycomb antiferromagnets. We also show how the TRSB state can be driven into a nematic superconductor in the presence of both; circularly and linearly polarized light. Our study also explores the effect of temperature on the SCOP and presents a phase diagram for the temperature dependence of the SCOP in the presence of a CPL drive. On the discussion of the temperature of dependence, we also present all the three-fold degenerate nematic state and confirm their degeneracy using a calculation of the free energy. We further show that this three-fold degeneracy of the nematic state can be reduced to a two-fold in the presence of an LPL. Our work, therefore, presents a detailed analysis of exploring the superconductivity mediated through a strong correlation in the presence of electromagnetic drive. Though our work explored the driven honeycomb lattice, but is not limited and is applicable to generic strongly correlated systems.

VI Acknowledgements

The authors thank Ying Su for helpful discussion at the initial stage of the work. Computer resources for numerical calculations were supported by the Institutional Computing Program at LANL. This work was carried out under the auspices of the U.S. DOE NNSA under contract No. 89233218CNA000001 through the LDRD Program. S.-Z. L was also supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Condensed Matter Theory Program.

Appendix A Evaluating Tc\textbf{T}_{c} by linearizing the Gap equation

Here we present an analysis of the Hamiltonian to further investigate the nature of the superconductivity in the lattice. We map the bipartite lattice to a band basis. Following the work in Ref. Black-Schaffer and Doniach (2007); Black-Schaffer and Honerkamp (2014), one can transform the Hamiltonian in Eq. (7) to intraband and interband pairing, using the basis transformation:

(akσbkσ)=12(ckσ+dkσeiϕk(ckσdkσ))\begin{pmatrix}a_{\textbf{k}\sigma}\\ b_{\textbf{k}\sigma}\\ \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}c_{\textbf{k}\sigma}+d_{\textbf{k}\sigma}\\ e^{-i\phi_{\textbf{k}}}(c_{\textbf{k}\sigma}-d_{\textbf{k}\sigma})\\ \end{pmatrix} (12)

And the Hamiltonian is terms of this new basis given by

HMF=k[ckckdkdk](ξ1Δi0ΔIΔiξ1ΔI00ΔIξ2ΔiΔI0Δiξ2)[ckckdkdk]\begin{split}H_{\text{MF}}=&\sum_{k}\begin{bmatrix}c_{k\uparrow}^{\dagger}&c_{-k\downarrow}&d_{k\uparrow}^{\dagger}&d_{-k\downarrow}\end{bmatrix}\begin{pmatrix}\xi_{1}&\Delta_{i}&0&-\Delta_{I}\\ \Delta_{i}^{\dagger}&-\xi_{1}&\Delta_{I}^{\dagger}&0\\ 0&\Delta_{I}&\xi_{2}&-\Delta_{i}\\ -\Delta_{I}^{\dagger}&0&-\Delta_{i}^{\dagger}&-\xi_{2}\\ \end{pmatrix}\begin{bmatrix}c_{k\uparrow}\\ c_{-k\downarrow}^{\dagger}\\ d_{k\uparrow}\\ d_{-k\downarrow}^{\dagger}\\ \end{bmatrix}\end{split} (13)

Here ξ1=μϵk\xi_{1}=\mu-\epsilon_{\textbf{k}}, ξ2=μ+ϵk\xi_{2}=\mu+\epsilon_{\textbf{k}} where ϵk=|αtαeikRα|\epsilon_{\textbf{k}}=|\sum_{\alpha}t_{\alpha}e^{i\textbf{k}\cdot\textbf{R}_{\alpha}}| and ϕk=arg(αeikRαtα)\phi_{\textbf{k}}=\text{arg}(\sum_{\alpha}e^{i\textbf{k}\cdot\textbf{R}_{\alpha}}t_{\alpha}). Δα=Jαkcos(kRαϕk)(ckck+dkdk)+isin(kRαϕk)(ckdkdkck)\Delta_{\alpha}=J_{\alpha}\sum_{\textbf{k}}\cos(\textbf{k}\cdot\textbf{R}_{\alpha}-\phi_{\textbf{k}})\big{(}c_{k\uparrow}c_{-k\downarrow}+d_{k\uparrow}d_{-k\downarrow}\big{)}+i\sin(\textbf{k}\cdot\textbf{R}_{\alpha}-\phi_{\textbf{k}})\big{(}c_{k\uparrow}d_{-k\downarrow}-d_{k\uparrow}c_{-k\downarrow}\big{)}. Further, we rewrite the gap as, intraband gap, Δi(k)=Re[αei(kRαϕk)Δα]\Delta_{i}(\textbf{k})=\text{Re}[\sum_{\alpha}e^{i(\textbf{k}\cdot\textbf{R}_{\alpha}-\phi_{\textbf{k}})}\Delta_{\alpha}], and interband gap, ΔI(k)=Im[αei(kRαϕk)Δα]\Delta_{I}(\textbf{k})=\text{Im}[\sum_{\alpha}e^{i(\textbf{k}\cdot\textbf{R}_{\alpha}-\phi_{\textbf{k}})}\Delta_{\alpha}].

The dispersion of the Bogoliubov quasiparticles can be solved exactly by diagonalizing Eq. (13) and is given by,

EQP=±(ϵk2+μ2+|Δα|2±Δα2Δα2sin2(2k)+4ϵk2(|Δα|2sin2(k)+μ2))1/2\begin{split}E_{QP}&=\pm\Bigg{(}\epsilon_{\textbf{k}}^{2}+\mu^{2}+|\Delta_{\alpha}|^{2}\pm\sqrt{\Delta_{\alpha}^{2}{\Delta_{\alpha}^{\dagger}}^{2}\sin^{2}(2\textbf{k})+4\epsilon_{\textbf{k}}^{2}(|\Delta_{\alpha}|^{2}\sin^{2}(\textbf{k})+\mu^{2})}\Bigg{)}^{1/2}\end{split} (14)

As temperature approaches critical transition temperature TcT_{c}, the gap becomes small. Therefore, we can treat the gap perturbatively as

HMF=H0+V=(ξ10000ξ10000ξ20000ξ2)+(0Δi0ΔIΔi0ΔI00ΔI0ΔiΔI0Δi0)H_{MF}=H_{0}+V=\begin{pmatrix}\xi_{1}&0&0&0\\ 0&-\xi_{1}&0&0\\ 0&0&\xi_{2}&0\\ 0&0&0&-\xi_{2}\\ \end{pmatrix}+\begin{pmatrix}0&\Delta_{i}&0&-\Delta_{I}\\ \Delta_{i}^{\dagger}&0&\Delta_{I}^{\dagger}&0\\ 0&\Delta_{I}&0&-\Delta_{i}\\ -\Delta_{I}^{\dagger}&0&-\Delta_{i}^{\dagger}&0\\ \end{pmatrix} (15)

Using the pertubation theory, one can write the new eigenstates (|Ψα|\Psi_{\alpha}\rangle) in terms of eigenstates of H0H_{0} (|Ψα0|\Psi_{\alpha}^{0}\rangle) as

|Ψα=|Ψα0+βαΨβ0|Vβα|Ψα0EαEβ|Ψβ0|\Psi_{\alpha}\rangle=|\Psi_{\alpha}^{0}\rangle+\sum_{\beta\neq\alpha}\frac{\langle\Psi_{\beta}^{0}|V_{\beta\alpha}|\Psi_{\alpha}^{0}\rangle}{E_{\alpha}-E_{\beta}}|\Psi_{\beta}^{0}\rangle (16)

The new eigenstates and eigenergies are as follows:

γ1=ck+Δi2ξ1ckΔIξ1+ξ2dk,E1=ξ1;γ2=ckΔi2ξ1ckΔIξ1+ξ2dk,E2=ξ1;γ3=dkΔi2ξ2dk+ΔIξ1+ξ2ck,E2=ξ2;γ4=dk+Δi2ξ2dk+ΔIξ1+ξ2ck,E4=ξ2.\begin{split}\gamma_{1}&=c_{k\uparrow}+\frac{\Delta_{i}}{2\xi_{1}}c_{-k\downarrow}^{\dagger}-\frac{\Delta_{I}}{\xi_{1}+\xi_{2}}d_{-k\downarrow}^{\dagger},~{}~{}E_{1}=\xi_{1};\qquad\gamma_{2}=c_{-k\downarrow}^{\dagger}-\frac{\Delta_{i}^{\dagger}}{2\xi_{1}}c_{k\uparrow}-\frac{\Delta_{I}^{\dagger}}{\xi_{1}+\xi_{2}}d_{k\uparrow},~{}~{}E_{2}=-\xi_{1};\\ \gamma_{3}&=d_{k\uparrow}-\frac{\Delta_{i}}{2\xi_{2}}d_{-k\downarrow}^{\dagger}+\frac{\Delta_{I}}{\xi_{1}+\xi_{2}}c_{-k\downarrow}^{\dagger},~{}~{}E_{2}=\xi_{2};\qquad\gamma_{4}=d_{-k\downarrow}^{\dagger}+\frac{\Delta_{i}^{\dagger}}{2\xi_{2}}d_{k\uparrow}+\frac{\Delta_{I}^{\dagger}}{\xi_{1}+\xi_{2}}c_{k\uparrow},~{}~{}E_{4}=-\xi_{2}.\\ \end{split} (17)

Using the relation, that different component of γm\gamma_{m} are orthogonal, one can simplify the below equations,

ckck=Δi2ξ1(γ1γ1γ2γ2),dkdk=Δi2ξ2(γ3γ3+γ4γ4),ckdk=ΔIξ1+ξ2(γ1γ1+γ4γ4),dkck=ΔIξ1+ξ2(γ3γ3γ2γ2)\begin{split}\langle c_{k\uparrow}c_{-k\downarrow}\rangle&=\frac{\Delta_{i}}{2\xi_{1}}(\gamma_{1}\gamma_{1}^{\dagger}-\gamma_{2}\gamma_{2}^{\dagger}),\qquad\langle d_{k\uparrow}d_{-k\downarrow}\rangle=\frac{\Delta_{i}}{2\xi_{2}}(-\gamma_{3}\gamma_{3}^{\dagger}+\gamma_{4}\gamma_{4}^{\dagger}),~{}\\ \langle c_{k\uparrow}d_{-k\downarrow}\rangle&=\frac{\Delta_{I}}{\xi_{1}+\xi_{2}}(-\gamma_{1}\gamma_{1}^{\dagger}+\gamma_{4}\gamma_{4}^{\dagger}),\qquad\langle d_{k\uparrow}c_{-k\downarrow}\rangle=\frac{\Delta_{I}}{\xi_{1}+\xi_{2}}(\gamma_{3}\gamma_{3}^{\dagger}-\gamma_{2}\gamma_{2}^{\dagger})\end{split} (18)

Bogoliubons follow the Fermi-Dirac distribution and their expectation value is given by γmγm=11+eβEm\langle\gamma_{m}^{\dagger}\gamma_{m}\rangle=\frac{1}{1+e^{\beta E_{m}}}. Therefore, one can write the pairing terms as,

ckckdkdk=Δi(tanh(βξ12)2ξ1+tanh(βξ22)2ξ2),dkckckdk=ΔIξ1+ξ2(tanh(βξ12)+tanh(βξ22))\begin{split}\langle c_{k\uparrow}c_{-k\downarrow}-d_{k\uparrow}&d_{-k\downarrow}\rangle=\Delta_{i}\Big{(}\frac{\tanh(\tfrac{\beta\xi_{1}}{2})}{2\xi_{1}}+\frac{\tanh(\tfrac{\beta\xi_{2}}{2})}{2\xi_{2}}\Big{)},~{}\langle d_{k\uparrow}c_{-k\downarrow}-c_{k\uparrow}d_{-k\downarrow}\rangle=\frac{\Delta_{I}}{\xi_{1}+\xi_{2}}\Big{(}\tanh(\tfrac{\beta\xi_{1}}{2})+\tanh(\tfrac{\beta\xi_{2}}{2})\Big{)}\end{split} (19)

Using the definition of the Δi\Delta_{i} and ΔI\Delta_{I}, the gap equation is simplified as,

Δα=Jαkcos(klαϕk)ckckdkdkisin(klαϕk)dkckckdk=Jαk,β[cos(klαϕk)cos(klβϕk)(tanh(βξ12)2ξ1+tanh(βξ22)2ξ2)+sin(klαϕk)sin(klβϕk)(tanh(βξ12)+tanh(βξ22))ξ1+ξ2]Δβ\begin{split}\Delta_{\alpha}&=J_{\alpha}\sum_{k}\cos(\textbf{k}\cdot\textbf{l}_{\alpha}-\phi_{\textbf{k}})\langle c_{k\uparrow}c_{-k\downarrow}-\langle d_{k\uparrow}d_{-k\downarrow}\rangle-i\sin(\textbf{k}\cdot\textbf{l}_{\alpha}-\phi_{\textbf{k}})\langle d_{k\uparrow}c_{-k\downarrow}-\langle c_{k\uparrow}d_{-k\downarrow}\rangle\\ =&J_{\alpha}\sum_{k,\beta}\bigg{[}\cos(\textbf{k}\cdot\textbf{l}_{\alpha}-\phi_{\textbf{k}})\cos(\textbf{k}\cdot\textbf{l}_{\beta}-\phi_{\textbf{k}})\Big{(}\frac{\tanh(\tfrac{\beta\xi_{1}}{2})}{2\xi_{1}}+\frac{\tanh(\tfrac{\beta\xi_{2}}{2})}{2\xi_{2}}\Big{)}\\ &+\sin(\textbf{k}\cdot\textbf{l}_{\alpha}-\phi_{\textbf{k}})\sin(\textbf{k}\cdot\textbf{l}_{\beta}-\phi_{\textbf{k}})\frac{\big{(}\tanh(\tfrac{\beta\xi_{1}}{2})+\tanh(\tfrac{\beta\xi_{2}}{2})\big{)}}{\xi_{1}+\xi_{2}}\bigg{]}\Delta_{\beta}\end{split} (20)

The above linearized can be solved to evaluate the TcT_{c} for the superconducting phases in the lattice.

We are interested in the lattice with D6hD_{\text{6h}} and D2hD_{2h} symmetry with isotopic interaction along the three bonds. Therefore, we present results relevant to linearly polarized light polarized along yy-direction discussed in the main text. In which the Hamiltonian has a reduced D2hD_{\text{2h}} symmetry with anisotorpic hoppings. In the linearized gap equation this leads to anisotropy in the ϕk(=arg(αeikRαtα))\phi_{\textbf{k}}~{}(=\text{arg}(\sum_{\alpha}e^{i\textbf{k}\cdot\textbf{R}_{\alpha}}t_{\alpha})) and is reduced it to D2hD_{\text{2h}} symmetry due to reduced symmetry in the Hamiltonian. The linearized gap equation can be written in a matrix form

[Δ0Δ1Δ2]=J(A1B1B1B1A2B2B1B2A2)[Δ0Δ1Δ2]\begin{bmatrix}\Delta_{0}\\ \Delta_{1}\\ \Delta_{2}\\ \end{bmatrix}=J\begin{pmatrix}A_{1}&B_{1}&B_{1}\\ B_{1}&A_{2}&B_{2}\\ B_{1}&B_{2}&A_{2}\\ \end{pmatrix}\begin{bmatrix}\Delta_{0}\\ \Delta_{1}\\ \Delta_{2}\\ \end{bmatrix} (21)

Here, A{1,2}A_{\{1,2\}} and B{1,2}B_{\{1,2\}} are the corresponding prefactors of Δβ\Delta_{\beta} in the Eq. (20). The solutions of the above equation is given by, A2B2=1JA_{2}-B_{2}=\frac{1}{J} with the eigenvector: (0,1,1)/2(0,1,-1)/\sqrt{2}) which is dxyd_{xy}-wave. Another set of solutions are 12(A1+A2+B2±(A1A2B2)2+8B12)=1J\frac{1}{2}(A_{1}+A_{2}+B_{2}\pm\sqrt{(A_{1}-A_{2}-B_{2})^{2}+8B_{1}^{2}})=\frac{1}{J}. The eigenvectors of these solutions are a superposition of the ss and dx2y2d_{x^{2}-y^{2}}-wave: a1(2,1,1)/6+a2(1,1,1)/2a_{1}(2,-1,-1)/\sqrt{6}+a_{2}(1,1,1)/\sqrt{2}. The prefactor a1a_{1} and a2a_{2} are a function of A1,A2,B1A_{1},A_{2},B_{1} and B2B_{2}. These results simplify to ss, dx2y2d_{x^{2}-y^{2}} and dxyd_{xy}-wave solution for the isotropic case preserving D6hD_{\text{6h}} symmetry as reported in Ref. Black-Schaffer and Honerkamp (2014).

References

Supplemental Materials: Inducing and controlling superconductivity in Hubbard honeycomb model using an electromagnetic drive

In this supplemental, we present the mapping of time-dependent Hubbard model to the Floquet tt-JJ model. We start with a time-dependent Hamiltonian for a Hubbard honeycomb lattice given by

H(t)=ij,σtijeiδFij(t)ciσcjσ+h.c.+Uinini.\begin{split}H(t)&=\sum_{\langle ij\rangle,\sigma}t_{ij}e^{i\delta F_{ij}(t)}c_{i\sigma}^{\dagger}c_{j\sigma}+\text{h.c.}+U\sum_{i}n_{i\uparrow}n_{i\downarrow}.\end{split} (S1)

Here, tijt_{ij} is the hopping between nearest neighbour sites-i,ji,j and UU is the onsite electron repulsions. δFij(t)\delta F_{ij}(t) is the Peierls phase given by δFij(t)=F(t)(rirj)\delta F_{ij}(t)=\textbf{F}(t)\cdot(\textbf{r}_{i}-\textbf{r}_{j}) where F(t)\textbf{F}(t) is the vector potential of the light. Also, the Hamiltonian is periodic in time with the interval TT, H(t+T)=H(t)H(t+T)=H(t).

Appendix S-I Schrieffer-Wolff transformation

We change to a rotating frame given by the transformation (t)=VH(t)ViVV˙\mathcal{H}(t)=V^{\dagger}H(t)V-iV^{\dagger}\dot{V} using the unitary operator, V(t)=eiUtini,ni,V(t)=e^{-iUt\sum_{i}n_{i,\uparrow}n_{i,\downarrow}} Bukov et al. (2016); Eckardt and Anisimovas (2015). Here, =1\hbar=1.

The Hamiltonian in new gauge is given by

(t)=eiUtininiij,σtij(eiδFij(t)ciσcjσ+h.c.)eiUtinini=ij,σtij[hiσ¯+eiUtniσ¯](eiδFij(t)ciσcjσ)[hjσ¯+eiUtnjσ¯]+h.c.\begin{split}\mathcal{H}(t)&=e^{iUt\sum_{i}n_{i\uparrow}n_{i\downarrow}}\sum_{\langle ij\rangle,\sigma}t_{ij}\big{(}e^{i\delta F_{ij}(t)}c_{i\sigma}^{\dagger}c_{j\sigma}+\text{h.c.}\big{)}e^{-iUt\sum_{i}n_{i\uparrow}n_{i\downarrow}}\\ &=\sum_{\langle ij\rangle,\sigma}t_{ij}[h_{i\bar{\sigma}}+e^{iUt}n_{i\bar{\sigma}}]\big{(}e^{i\delta F_{ij}(t)}c_{i\sigma}^{\dagger}c_{j\sigma}\big{)}[h_{j\bar{\sigma}}+e^{-iUt}n_{j\bar{\sigma}}]+\text{h.c.}\end{split} (S2)

In the above equation, we have used the relations; ci,σni,σ=ci,σ,ni,σci,σ=ci,σ,ni,σci,σ=0,ci,σni,σ=0c_{i,\sigma}n_{i,\sigma}=c_{i,\sigma},~{}n_{i,\sigma}c_{i,\sigma}^{\dagger}=c_{i,\sigma}^{\dagger},~{}n_{i,\sigma}c_{i,\sigma}=0,~{}c_{i,\sigma}^{\dagger}n_{i,\sigma}=0 and hiσ=1niσh_{i\sigma}=1-n_{i\sigma}. One can further reorganize the above Hamiltonian (i>ji>j) as

(t)=ij,σtijeiδFij(t)gijσ+h.c.+ij,σtijeiδFij(t)+iUthijσ+tijeiδFij(t)iUthijσ+h.c.\begin{split}\mathcal{H}(t)=\sum_{\langle ij\rangle,\sigma}&t_{ij}e^{i\delta F_{ij}(t)}g_{ij\sigma}+\text{h.c.}+\sum_{\langle ij\rangle,\sigma}t_{ij}e^{i\delta F_{ij}(t)+iUt}h_{ij\sigma}^{\dagger}+t_{ij}e^{i\delta F_{ij}(t)-iUt}h_{ij\sigma}+\text{h.c.}\end{split} (S3)

The terms gijσg_{ij\sigma} and hijσh_{ij\sigma} in the above equation arise due to the restrictions imposed by the Hubbard term and are given by

gijσ=hiσ¯ciσcj,σhjσ¯+ni,σ¯ci,σcj,σnj,σ¯hijσ=hi,σ¯ciσcjσnjσ¯,hjiσ=hj,σ¯cjσciσniσ¯,hijσ=ni,σ¯ciσcjσhjσ¯,hjiσ=nj,σ¯cjσciσhiσ¯\begin{split}g_{ij\sigma}&=h_{i\bar{\sigma}}c_{i\sigma}^{\dagger}c_{j,\sigma}h_{j\bar{\sigma}}+n_{i,\bar{\sigma}}c_{i,\sigma}^{\dagger}c_{j,\sigma}n_{j,\bar{\sigma}}\\ h_{ij\sigma}&=h_{i,\bar{\sigma}}c_{i\sigma}^{\dagger}c_{j\sigma}n_{j\bar{\sigma}},\qquad h_{ji\sigma}=h_{j,\bar{\sigma}}c_{j\sigma}^{\dagger}c_{i\sigma}n_{i\bar{\sigma}},\\ h_{ij\sigma}^{\dagger}&=n_{i,\bar{\sigma}}c_{i\sigma}^{\dagger}c_{j\sigma}h_{j\bar{\sigma}},\qquad h_{ji\sigma}^{\dagger}=n_{j,\bar{\sigma}}c_{j\sigma}^{\dagger}c_{i\sigma}h_{i\bar{\sigma}}\end{split} (S4)

Notice that gijσ=gjiσg_{ij\sigma}^{\dagger}=g_{ji\sigma}, but hijσhjiσh_{ij\sigma}^{\dagger}\neq h_{ji\sigma}. The first term in gijσg_{ij\sigma} denotes the hopping of holons, whereas the second term denotes the doublons. hijσh_{ij\sigma}^{\dagger} denote hoping from a holon to doublon. After deriving the Hamiltonian in the new gauge, one can map these Hamiltonian to a time-independent Floquet Hamiltonian. We consider the case of both cirularly and linearly polarized light to map these onto Floquet tt-JJ model.

S-I.1 Circularly Polarized Light

We consider a circularly polarized light (CPL) for which vector potential is given by F(t)=ζ[sin(ωt)e^xcos(ωt)e^y]\textbf{F}(t)=\zeta[\sin(\omega t)\hat{e}_{x}-\cos(\omega t)\hat{e}_{y}], where ζ=A/ω\zeta=A/\omega. Peierls phase in the Hamiltonian, δFij(t)=F(t)(rirj)=ζsin(ωtϕij)\delta F_{ij}(t)=\textbf{F}(t)\cdot(\textbf{r}_{i}-\textbf{r}_{j})=\zeta\sin(\omega t-\phi_{ij}), where rirj=cos(ϕij)e^x+sin(ϕij)e^y\textbf{r}_{i}-\textbf{r}_{j}=\cos(\phi_{ij})\hat{e}_{x}+\sin(\phi_{ij})\hat{e}_{y}.

To map the time-dependent Hamiltonian to the time-independent form, we make use of the time-periodicity and use the Fourier transform (FT) given by Hl=1T0T𝑑t(t)eilωtH_{l}=\frac{1}{T}\int_{0}^{T}dt\mathcal{H}(t)e^{-il\omega t}. We Fourier transform each term in the Eq. (S2). FT of gijσg_{ij\sigma} is given by

1T0T𝑑teiδFij(t)eilωtgijσ=1T0T𝑑tei(ζsin(ωtϕij)lωt)gijσ=eilϕij𝒥lgijσ\begin{split}\frac{1}{T}\int_{0}^{T}dte^{i\delta F_{ij}(t)}e^{-il\omega t}g_{ij\sigma}&=\frac{1}{T}\int_{0}^{T}dte^{i(\zeta\sin(\omega t-\phi_{ij})-l\omega t)}g_{ij\sigma}=e^{-il\phi_{ij}}\mathcal{J}_{l}g_{ij\sigma}\end{split} (S5)

For the FT of hijσh_{ij\sigma}, one consider U=kωU=k\omega, with kk and ll being co-prime. FT is then given by

1T0T𝑑teiδFij(t)+iUteilωthijσ=1T0T𝑑tei(ζsin(ωtϕij)(lk)ωt)hijσ=ei(lk)ϕij𝒥lkhijσ\begin{split}\frac{1}{T}\int_{0}^{T}dte^{i\delta F_{ij}(t)+iUt}e^{-il\omega t}h_{ij\sigma}^{\dagger}&=\frac{1}{T}\int_{0}^{T}dte^{i(\zeta\sin(\omega t-\phi_{ij})-(l-k)\omega t)}h_{ij\sigma}^{\dagger}=e^{-i(l-k)\phi_{ij}}\mathcal{J}_{l-k}h_{ij\sigma}^{\dagger}\end{split} (S6)

In the above equations, 𝒥l(ζ)=1T0Tei(ζsin(ωt)lωt)𝑑ωt\mathcal{J}_{l}(\zeta)={\frac{1}{T}}\int_{0}^{T}e^{i(\zeta\sin(\omega t)-l\omega t)}\,d\omega t is the Bessel functions of first kind and hence follows the relation 𝒥l(ζ)=(1)l𝒥l(ζ)\mathcal{J}_{-l}(\zeta)=(-1)^{l}\mathcal{J}_{l}(\zeta). Hamiltonian in Eq. (S3) can hence be written in the Fourier basis given by

Hl=ij,σ𝒥l(ζ)eilϕijgijσ+𝒥l(ζ)eilϕijgijσ+𝒥lk(ζ)ei(lk)ϕijhijσ+𝒥l+k(ζ)ei(l+k)ϕijhijσ+𝒥l+k(ζ)ei(lk)ϕijhjiσ+𝒥lk(ζ)ei(l+k)ϕijhjiσ\begin{split}H_{l}=\sum_{\langle ij\rangle,\sigma}&\mathcal{J}_{l}(\zeta)e^{-il\phi_{ij}}g_{ij\sigma}+\mathcal{J}_{-l}(\zeta)e^{-il\phi_{ij}}g_{ij\sigma}^{\dagger}+\mathcal{J}_{l-k}(\zeta)e^{-i(l-k)\phi_{ij}}h_{ij\sigma}^{\dagger}+\mathcal{J}_{l+k}(\zeta)e^{-i(l+k)\phi_{ij}}h_{ij\sigma}\\ +&\mathcal{J}_{-l+k}(\zeta)e^{-i(l-k)\phi_{ij}}h_{ji\sigma}^{\dagger}+\mathcal{J}_{-l-k}(\zeta)e^{-i(l+k)\phi_{ij}}h_{ji\sigma}\end{split} (S7)

For the sake of convenience, we have have dropped the prefactors (tijt_{ij}), but will retrieve it in final form of the Hamiltonian.

High-frequency expansion:— In the high-frequency limit, the effective time-independent Floquet Hamiltonian Bukov et al. (2016) can be written as,

Heff=n=0Heff(n),where,Heff(0)=Hl=0,Heff(1)=l=11lω[Hl,Hl]\begin{split}H_{\text{eff}}&=\sum_{n=0}^{\infty}H_{\text{eff}}^{(n)},\quad~{}~{}\text{where},\quad H_{\text{eff}}^{(0)}=H_{l=0},\qquad H_{\text{eff}}^{(1)}=\sum_{l=1}^{\infty}\frac{1}{l\omega}[H_{l},H_{-l}]\end{split} (S8)

The high order (NN) terms are of the order (1/ωN1/\omega^{N}) and hence allows for simplification. In our our work here, we evaluate only the leading correction. Also, we are interested in the low energy dynamics, we therefore, use a projector P0=Πi=1N(1ni,ni,)P_{0}=\Pi_{i=1}^{N}(1-n_{i,\uparrow}n_{i,\downarrow}) to remove doubly occupied states. The zeroth order term is given by

P0Heff(0)P0=P0Hl=0P0=𝒥0ij,σ(hi,σ¯)ci,σcj,σ(hj,σ¯)\begin{split}P_{0}H_{\text{eff}}^{(0)}P_{0}=P_{0}H_{l=0}P_{0}=\mathcal{J}_{0}\sum_{\langle ij\rangle,\sigma}(h_{i,\bar{\sigma}})c_{i,\sigma}^{\dagger}c_{j,\sigma}(h_{j,\bar{\sigma}})\end{split} (S9)

To evaluate the leading correction, we need to evaluate P0[H,Hl]P0/lP_{0}[H_{,}H_{-l}]P_{0}/l. The term corresponding to gijσg_{ij\sigma} simplifies as,

P0ij,σij,σ[𝒥l(ζ)eilϕijgijσ,𝒥l(ζ)eilϕijgijσ]P0=𝒥l(ζ)𝒥l(ζ)iij,σ[2isin(l[ϕiiϕij])]hi,σ¯ci,σhi,σ¯cj,σhj,σ¯\begin{split}&P_{0}\sum_{\begin{subarray}{c}\langle ij\rangle,\sigma\\ \langle i^{\prime}j^{\prime}\rangle,\sigma^{\prime}\end{subarray}}[\mathcal{J}_{l}(\zeta)e^{-il\phi_{i^{\prime}j^{\prime}}}g_{i^{\prime}j^{\prime}\sigma^{\prime}},\mathcal{J}_{-l}(\zeta)e^{il\phi_{ij}}g_{ij\sigma}]P_{0}=\mathcal{J}_{l}(\zeta)\mathcal{J}_{-l}(\zeta)\sum_{\langle i^{\prime}ij\rangle,\sigma}[-2i\sin(l[\phi_{i^{\prime}i}-\phi_{ij}])]h_{i^{\prime},\bar{\sigma}}c_{i^{\prime},\sigma}^{\dagger}h_{i,\bar{\sigma}}c_{j,\sigma}h_{j,\bar{\sigma}}\end{split} (S10)

Here ii^{\prime} and jj are next nearest neighbours (NNN) and similarly the other terms corresponding to gijσg_{ij\sigma} can be evaluated.

In the term corresponding to doublon to holon and vice versa hopping, only the terms without any double occupancy survive. We here present terms of the form, hjiσhijσh_{ji\sigma}h_{ij\sigma^{\prime}}^{\dagger} and hiiσhijσh_{i^{\prime}i\sigma}h_{ij\sigma^{\prime}}^{\dagger}. There are two possibilities: a) i=ii^{\prime}=i and j=jj^{\prime}=j (two-sites)

P0ij,σ,ij,σ[𝒥l+k(ζ)ei(l+k)ϕijhjiσ,𝒥lk(ζ)ei(lk)ϕijhijσ]P0=+(1)l+k𝒥l+k2(ζ)ij,σ,σhjiσhijσP0ij,σ,ij,σ[𝒥lk(ζ)ei(lk)ϕijhijσ,𝒥l+k(ζ)ei(l+k)ϕijhjiσ]P0=(1)lk𝒥lk2(ζ)ij,σ,σhjiσhijσ\begin{split}&P_{0}\sum_{\begin{subarray}{c}\langle ij\rangle,\sigma,\\ \langle i^{\prime}j^{\prime}\rangle,\sigma^{\prime}\end{subarray}}[\mathcal{J}_{l+k}(\zeta)e^{-i(l+k)\phi_{i^{\prime}j^{\prime}}}h_{j^{\prime}i^{\prime}\sigma^{\prime}},\mathcal{J}_{-l-k}(\zeta)e^{-i(-l-k)\phi_{ij}}h_{ij\sigma}^{\dagger}]P_{0}=+(-1)^{l+k}\mathcal{J}_{l+k}^{2}(\zeta)\sum_{\langle ij\rangle,\sigma,\sigma^{\prime}}h_{ji\sigma^{\prime}}h_{ij\sigma}^{\dagger}\\ &P_{0}\sum_{\begin{subarray}{c}\langle ij\rangle,\sigma,\\ \langle ij\rangle,\sigma^{\prime}\end{subarray}}[\mathcal{J}_{l-k}(\zeta)e^{-i(l-k)\phi_{ij}}h_{ij\sigma}^{\dagger},\mathcal{J}_{-l+k}(\zeta)e^{-i(-l+k)\phi_{i^{\prime}j^{\prime}}}h_{j^{\prime}i^{\prime}\sigma^{\prime}}]P_{0}=-(-1)^{l-k}\mathcal{J}_{l-k}^{2}(\zeta)\sum_{\langle ij\rangle,\sigma,\sigma^{\prime}}h_{ji\sigma^{\prime}}h_{ij\sigma}^{\dagger}\end{split} (S11)

and b) j=ij^{\prime}=i (three-sites)

P0ij,σ,ij,σ[𝒥l+k(ζ)ei(l+k)ϕijhijσ,𝒥lk(ζ)ei(lk)ϕijhijσ]P0=+(1)l+k𝒥l+k2iij,σ,σei(l+k)(ϕiiϕij)hiiσhijσP0ij,σ,ij,σ[𝒥lk(ζ)ei(lk)ϕijhijσ,𝒥l+k(ζ)ei(l+k)ϕijhijσ]P0=(1)lk𝒥lk2iij,σ,σei(lk)(ϕiiϕij)hiiσhijσ\begin{split}&P_{0}\sum_{\begin{subarray}{c}\langle ij\rangle,\sigma,\\ \langle i^{\prime}j^{\prime}\rangle,\sigma^{\prime}\end{subarray}}[\mathcal{J}_{l+k}(\zeta)e^{-i(l+k)\phi_{i^{\prime}j^{\prime}}}h_{i^{\prime}j^{\prime}\sigma^{\prime}},\mathcal{J}_{-l-k}(\zeta)e^{-i(-l-k)\phi_{ij}}h_{ij\sigma}^{\dagger}]P_{0}=+(-1)^{l+k}\mathcal{J}_{l+k}^{2}\sum_{\langle i^{\prime}ij\rangle,\sigma,\sigma^{\prime}}e^{-i(l+k)(\phi_{i^{\prime}i}-\phi_{ij})}h_{i^{\prime}i\sigma^{\prime}}h_{ij\sigma}^{\dagger}\\ &P_{0}\sum_{\begin{subarray}{c}\langle ij\rangle,\sigma,\\ \langle i^{\prime}j^{\prime}\rangle,\sigma^{\prime}\end{subarray}}[\mathcal{J}_{l-k}(\zeta)e^{-i(l-k)\phi_{ij}}h_{ij\sigma}^{\dagger},\mathcal{J}_{-l+k}(\zeta)e^{-i(-l+k)\phi_{i^{\prime}j^{\prime}}}h_{i^{\prime}j^{\prime}\sigma}]P_{0}=-(-1)^{l-k}\mathcal{J}_{l-k}^{2}\sum_{\langle i^{\prime}ij\rangle,\sigma,\sigma^{\prime}}e^{i(l-k)(\phi_{i^{\prime}i}-\phi_{ij})}h_{i^{\prime}i\sigma^{\prime}}h_{ij\sigma}^{\dagger}\end{split} (S12)

Similarly, one can evaluate the expression of the form, hijσhjiσh_{ij\sigma}h_{ji\sigma^{\prime}}^{\dagger} and hijσhjiσh_{i^{\prime}j\sigma}h_{ji\sigma^{\prime}}^{\dagger}.

Using the above expression for the term in the Fourier basis, the first-order correction is given by

P0[Hl,Hl]lωP0=(1)l(𝒥l)2(2isin(l[ϕiiϕij])lωhi,σ¯ci,σhi,σ¯cj,σhj,σ¯+2isin(l[ϕjjϕij])lωhj,σ¯cj,σhj,σ¯ci,σhi,σ¯)+(𝒥l+k)2lωhjiσhijσ(𝒥lk)2lωllhjiσhijσ+(𝒥l+k)2lωhijσhjiσ(𝒥l+k)2lωllhijσhjiσ[2-sites]+((1)l+k𝒥l+k2lωei(l+k)(ϕiiϕij)(1)lk𝒥lk2lωei(lk)(ϕijϕii)ll)hiiσhijσ[3-sites]+(1)l+k𝒥l+k2lωei(l+k)(ϕjjϕij)(1)lk𝒥lk2lωei(lk)(ϕijϕjj)ll)hjjσhjiσ\begin{split}P_{0}\frac{[H_{l},H_{-l}]}{l\omega}P_{0}&=-(-1)^{l}(\mathcal{J}_{l})^{2}\Big{(}\frac{2i\sin(l[\phi_{i^{\prime}i}-\phi_{ij}])}{l\omega}h_{i^{\prime},\bar{\sigma}}c_{i^{\prime},\sigma}^{\dagger}h_{i,\bar{\sigma}}c_{j,\sigma}h_{j,\bar{\sigma}}+\frac{2i\sin(l[\phi_{j^{\prime}j}-\phi_{ij}])}{l\omega}h_{j^{\prime},\bar{\sigma}}c_{j^{\prime},\sigma}^{\dagger}h_{j,\bar{\sigma}}c_{i,\sigma}h_{i,\bar{\sigma}}\Big{)}\\ &+\frac{(\mathcal{J}_{l+k})^{2}}{l\omega}h_{ji\sigma^{\prime}}h_{ij\sigma}^{\dagger}-\underbrace{\frac{(\mathcal{J}_{l-k})^{2}}{l\omega}}_{l\rightarrow-l}h_{ji\sigma^{\prime}}h_{ij\sigma}^{\dagger}+\frac{(\mathcal{J}_{l+k})^{2}}{l\omega}h_{ij\sigma^{\prime}}h_{ji\sigma}^{\dagger}-\underbrace{\frac{(\mathcal{J}_{-l+k})^{2}}{l\omega}}_{l\rightarrow-l}h_{ij\sigma^{\prime}}h_{ji\sigma}^{\dagger}~{}[\text{2-sites}]\\ &+((-1)^{l+k}\frac{\mathcal{J}_{l+k}^{2}}{l\omega}e^{-i(l+k)(\phi_{i^{\prime}i}-\phi_{ij})}-\underbrace{(-1)^{l-k}\frac{\mathcal{J}_{l-k}^{2}}{l\omega}e^{-i(l-k)(\phi_{ij}-\phi_{i^{\prime}i})}}_{l\rightarrow-l})h_{i^{\prime}i\sigma^{\prime}}h_{ij\sigma}^{\dagger}\quad[\text{3-sites}]\\ &+(-1)^{l+k}\frac{\mathcal{J}_{l+k}^{2}}{l\omega}e^{-i(l+k)(\phi_{jj^{\prime}}-\phi_{ij})}-\underbrace{(-1)^{l-k}\frac{\mathcal{J}_{l-k}^{2}}{l\omega}e^{-i(l-k)(\phi_{ij}-\phi_{jj^{\prime}})}}_{l\rightarrow-l})h_{j^{\prime}j\sigma^{\prime}}h_{ji\sigma}^{\dagger}\\ \end{split} (S13)

Notice that in the above equation, the substitution lll\rightarrow-l, allows one to change the summation over ll from l[1,)l\in[1,\infty) to l{(,)0}l\in\{(-\infty,\infty)-0\} and also remember 𝒥l(ζ)=(1)l𝒥l(ζ)\mathcal{J}_{-l}(\zeta)=(-1)^{l}\mathcal{J}_{l}(\zeta). One can therefore, rewrite the first order correction as

l=1P0[Hl,Hl]lωP0=ij,σ,σl=,l0(𝒥l)2isin(l[ϕiiϕij+π])lωhi,σ¯ci,σhj,σ¯cj,σhj,σ¯+h.c.+(𝒥l+k)2lωhijσhjiσ+(𝒥l+k)2lωhjiσhijσ+(𝒥l+k)2lω(ei(l+k)(ϕiiϕijπ)hiiσhijσ+ei(l+k)(ϕjjϕij+π)hjjσhjiσ)\begin{split}\sum_{l=1}^{\infty}P_{0}\frac{[H_{l},H_{-l}]}{l\omega}P_{0}&=\sum_{\langle ij\rangle,\sigma,\sigma^{\prime}}\sum_{\begin{subarray}{c}l=-\infty,\\ l\neq 0\end{subarray}}^{\infty}-(\mathcal{J}_{l})^{2}\frac{i\sin(l[\phi_{i^{\prime}i}-\phi_{ij}+\pi])}{l\omega}h_{i,\bar{\sigma}}c_{i,\sigma}^{\dagger}h_{j,\bar{\sigma}}c_{j^{\prime},\sigma}h_{j^{\prime},\bar{\sigma}}+h.c.+\frac{(\mathcal{J}_{l+k})^{2}}{l\omega}h_{ij\sigma}h_{ji\sigma}^{\dagger}\\ &+\frac{(\mathcal{J}_{l+k})^{2}}{l\omega}h_{ji\sigma}h_{ij\sigma}^{\dagger}+\frac{(\mathcal{J}_{l+k})^{2}}{l\omega}(e^{-i(l+k)(\phi_{i^{\prime}i}-\phi_{ij}-\pi)}h_{i^{\prime}i\sigma^{\prime}}h_{ij\sigma}^{\dagger}+e^{-i(l+k)(\phi_{jj^{\prime}}-\phi_{ij}+\pi)}h_{j^{\prime}j\sigma^{\prime}}h_{ji\sigma}^{\dagger})\\ \end{split} (S14)

In the honeycomb lattice, ϕiiϕij=+()π/3\phi_{i^{\prime}i}-\phi_{ij}=+(-)~{}\pi/3 and ϕjjϕij=+()π/3\phi_{jj^{\prime}}-\phi_{ij}=+(-)~{}\pi/3 for the anticlockwise(clockwise) next-nearest hopping given by τij=+()\tau_{ij}=+(-). Also, using the substitution l+kll+k\rightarrow-l^{\prime} and ll-l^{\prime}\rightarrow l^{\prime}. We can then rewrite the above equation as

l=1P0[Hl,Hl]lωP0=ij,σ,σ[l=,l0τij(𝒥l)2isin(2πl/3)lωhi,σ¯ci,σcj,σhj,σ¯+h.c.l=,lk(𝒥l)2lω+U(hijσhjiσ+hjiσhijσ)l=,lkτij(𝒥l)2lω+U[cos(2πl/3)(hiiσhijσ+hjjσhjiσ)+isin(2πl/3)(hijσhjiσ+hjiσhijσ)]]\begin{split}\sum_{l=1}^{\infty}P_{0}\frac{[H_{l},H_{-l}]}{l\omega}P_{0}&=\sum_{\langle ij\rangle,\sigma,\sigma^{\prime}}\Bigg{[}\sum_{\begin{subarray}{c}l=-\infty,\\ l\neq 0\end{subarray}}^{\infty}\tau_{ij}(\mathcal{J}_{l})^{2}\frac{i\sin(2\pi l/3)}{l\omega}h_{i,\bar{\sigma}}c_{i,\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+h.c.-\sum_{\begin{subarray}{c}l^{\prime}=-\infty,\\ l^{\prime}\neq-k\end{subarray}}^{\infty}\frac{(\mathcal{J}_{l^{\prime}})^{2}}{l^{\prime}\omega+U}(h_{ij\sigma}h_{ji\sigma}^{\dagger}+h_{ji\sigma}h_{ij\sigma}^{\dagger})\\ &-\sum_{\begin{subarray}{c}l^{\prime}=-\infty,\\ l^{\prime}\neq-k\end{subarray}}^{\infty}\tau_{ij}\frac{(\mathcal{J}_{l^{\prime}})^{2}}{l^{\prime}\omega+U}[\cos(2\pi l^{\prime}/3)(h_{i^{\prime}i\sigma^{\prime}}h_{ij\sigma}^{\dagger}+h_{j^{\prime}j\sigma^{\prime}}h_{ji\sigma}^{\dagger})+i\sin(2\pi l^{\prime}/3)(h_{ij\sigma}h_{ji\sigma}^{\dagger}+h_{ji\sigma}h_{ij\sigma}^{\dagger})]\Bigg{]}\end{split} (S15)

We make use the relations given below to rewrite the Hamiltonian into a tt-JJ model MacDonald et al. (1988); Spalek (2007)

ij,σ,σ(hijσhjiσ+hjiσhijσ)=2ijσ(SiSjσ14hi,σ¯niσnjσhjσ¯)[2sites]ij,σ,σ(hiiσhijσ+hjjσhjiσ)=ikj,σ[hiσ¯ci,σnkσ¯hkσcjσhjσ¯hiσ¯ci,σ(ckσ¯ckσ)hkσ¯cjσ¯hjσ][3sites]\begin{split}\sum_{\langle ij\rangle,\sigma,\sigma^{\prime}}(h_{ij\sigma^{\prime}}h_{ji\sigma}^{\dagger}+h_{ji\sigma^{\prime}}h_{ij\sigma}^{\dagger})&=-2\sum_{ij\sigma}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i,\bar{\sigma}}n_{i\sigma}n_{j\sigma^{\prime}}h_{j\bar{\sigma}})\quad\quad~{}[2-\text{sites}]\\ \sum_{\langle ij\rangle,\sigma,\sigma^{\prime}}(h_{i^{\prime}i\sigma^{\prime}}h_{ij\sigma}^{\dagger}+h_{j^{\prime}j\sigma^{\prime}}h_{ji\sigma}^{\dagger})&=-\sum_{ikj,\sigma}~{}[h_{i\bar{\sigma}}c_{i,\sigma}^{\dagger}n_{k\bar{\sigma}}h_{k\sigma}c_{j\sigma}h_{j\bar{\sigma}}-h_{i\bar{\sigma}}c_{i,\sigma}^{\dagger}(c_{k\bar{\sigma}}^{\dagger}c_{k\sigma})h_{k\bar{\sigma}}c_{j\bar{\sigma}}h_{j\sigma}]\quad[3-\text{sites}]\end{split} (S16)

In the above equation, the first term corresponds to the double spin flips and the second term corresponds to three-site hopping both with and without spin-flips. We notice that the leading corrections given by Eq. (S15) are of the order of 1/ω1/\omega. Further, the first terms of NNN hopping does not contain the term l=0l=0, which is the only Bessel term that contributes for small ζ\zeta, this can become important when 𝒥0(ζ)\mathcal{J}_{0}({\zeta}) vanishes Mikami et al. (2016). Also, the three-site hopping given by the is ignored for the sake of simplicity as is usually the case in these downfolded tt-JJ models at low doping. In this work, we limit ourselves in the small ζ\zeta regime. We therefore use the high-frequency approximation which leads to two set of cases:

a) tUωt\ll U\ll\omega: In this case only the l=0l^{\prime}=0 contribute to the leading correction term in Eq. (S15), and the Floquet Hamiltonian is given by,

HFtUω𝒥0(ζ)ij,σtijhi,σ¯ci,σcj,σhj,σ¯+ij,σ(𝒥0(ζ))22tij2U(SiSjσ14hi,σ¯niσnjσhjσ¯)\begin{split}H_{\text{F}}^{t\ll U\ll\omega}&\approx\mathcal{J}_{0}(\zeta)\sum_{ij,\sigma}t_{ij}h_{i,\bar{\sigma}}c_{i,\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+\sum_{ij,\sigma}(\mathcal{J}_{0}(\zeta))^{2}\frac{2t_{ij}^{2}}{U}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i,\bar{\sigma}}n_{i\sigma}n_{j\sigma^{\prime}}h_{j\bar{\sigma}})\end{split} (S17)

b) tωUt\ll\omega\ll U: In this case, since UU is the larger energy scale, we use the approximation lω/U1l\omega/U\ll 1 and the relation l=(𝒥l)2=1\sum_{l=-\infty}^{\infty}(\mathcal{J}_{l})^{2}=1. The leading correction is given by

Heff(1)ij,σ,σ2tij2U(hijσhjiσ+hjiσhijσ)l=,lk(𝒥l)21+lω/U=ijσ2tij2U(SiSjσ14hi,σ¯niσnjσhjσ¯)\begin{split}H_{\text{eff}}^{(1)}\approx&\sum_{ij,\sigma,\sigma^{\prime}}-\frac{2t_{ij}^{2}}{U}(h_{ij\sigma^{\prime}}h_{ji\sigma}^{\dagger}+h_{ji\sigma}h_{ij\sigma^{\prime}}^{\dagger})\sum_{\begin{subarray}{c}l^{\prime}=-\infty,\\ l^{\prime}\neq-k\end{subarray}}^{\infty}\frac{(\mathcal{J}_{l^{\prime}})^{2}}{1+l^{\prime}\omega/U}=\sum_{ij\sigma}\frac{2t_{ij}^{2}}{U}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i,\bar{\sigma}}n_{i\sigma}n_{j\sigma^{\prime}}h_{j\bar{\sigma}})\end{split} (S18)

Therefore, in this limit, the Floquet Hamiltonian is given by

HF𝒥0(ζ)i,j,σtijhi,σ¯ci,σcj,σhj,σ¯+ijσ2t02U(SiSjσ14hi,σ¯niσnjσhjσ¯)\begin{split}H^{F}&\approx\mathcal{J}_{0}(\zeta)\sum_{i,j,\sigma}t_{ij}h_{i,\bar{\sigma}}c_{i,\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+\sum_{ij\sigma}\frac{2t_{0}^{2}}{U}(\textbf{S}_{i}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i,\bar{\sigma}}n_{i\sigma}n_{j\sigma^{\prime}}h_{j\bar{\sigma}})\end{split} (S19)

In above equation, with the definition of superexchange given by J=2t02UJ=\frac{2t_{0}^{2}}{U}, we have presented a simplified time-independent Floquet tt-JJ model derived from the time-dependent Hubbard model.

S-I.2 Linerarly polarized light

We consider a linearly polarized light along the yy-direction for which the vector potential is given by F(t)=ζsin(ωt)e^y\textbf{F}(t)=\zeta\sin(\omega t)\hat{e}_{y}, where ζ=A/ω\zeta=A/\omega. Peierls phase is given by δF(t)=F(t)(rirj)=ζsin(ωt)sin(ϕij)\delta F(t)=\textbf{F}(t)\cdot(\textbf{r}_{i}-\textbf{r}_{j})=\zeta\sin(\omega t)\sin(\phi_{ij}) where rirj=cos(ϕij)e^x+sin(ϕij)e^y\textbf{r}_{i}-\textbf{r}_{j}=\cos({\phi_{ij}})\hat{e}_{x}+\sin({\phi_{ij}})\hat{e}_{y}.

To map the time-dependent Hamiltonian in Eq. (S2) onto a time-independent form, we Fourier transform (FT) the rotated Hamiltonian given by Hl=1T0T𝑑t(t)eilωtH_{l}=\frac{1}{T}\int_{0}^{T}dt\mathcal{H}(t)e^{-il\omega t}. FT of the gijσg_{ij\sigma} term is given by

1T0T𝑑teiδFij(t)eilωtgijσ=1T0T𝑑tei(ζsin(ωt)sin(ϕij)lωt)gijσ=𝒥l(ζsin(ϕij))giαjσ\begin{split}\frac{1}{T}\int_{0}^{T}dte^{i\delta F_{ij}(t)}e^{-il\omega t}g_{ij\sigma}&=\frac{1}{T}\int_{0}^{T}dte^{i(\zeta\sin(\omega t)\sin(\phi_{ij})-l\omega t)}g_{ij\sigma}=\mathcal{J}_{l}(\zeta\sin(\phi_{ij}))g_{i_{\alpha}j\sigma}\end{split} (S20)

Whereas, for the FT of terms of form hijσh_{ij\sigma}, one assumes U=kωU=k\omega, with kk and ll being co-prime. The FT in this case is given by

1T0T𝑑teiδFij(t)+iUteilωthijσ=1T0T𝑑tei(ζsin(ωt)sin(ϕij)(lk)ωt)hijσ=𝒥lk(ζsin(ϕij))hiαjσ\begin{split}\frac{1}{T}\int_{0}^{T}dte^{i\delta F_{ij}(t)+iUt}e^{-il\omega t}h_{ij\sigma}^{\dagger}&=\frac{1}{T}\int_{0}^{T}dte^{i(\zeta\sin(\omega t)\sin(\phi_{ij})-(l-k)\omega t)}h_{ij\sigma}^{\dagger}=\mathcal{J}_{l-k}(\zeta\sin(\phi_{ij}))h_{i_{\alpha}j\sigma}^{\dagger}\end{split} (S21)

The three nearest neighbours for every site are given by ϕij=π/2+2π/3\phi_{i_{\ell}j}=\pi/2+2\pi\ell/3 for ={0,1,2}\ell=\{0,1,2\}. The magnitude of the phase factors along the three bonds are anisotropic and are given by sin(ϕij)={1,12,12}\sin(\phi_{i_{\ell}j})=\{1,-\frac{1}{2},-\frac{1}{2}\} for the three bonds ={0,1,2}\ell=\{0,1,2\} respectively. Finally, one can write the Fourier-transformed Hamiltonian as

Hl=ij,σ=0,1,2[𝒥lgijσ+𝒥lgijσ+𝒥lkhijσ+𝒥l+khjiσ+𝒥l+khijσ+𝒥lkhjiσ]=ij,σ[𝒥l(ζ)gi0jσ+𝒥l(ζ)gi0jσ+𝒥lk(ζ)hi0jσ+𝒥l+k(ζ)hji0σ+𝒥l+k(ζ)hi0jσ+𝒥lk(ζ)hji0σ+=1,2𝒥l(ζ/2)gijσ+𝒥l(ζ/2)gijσ+𝒥l+k(ζ/2)hijσ+𝒥lk(ζ/2)hjiσ+𝒥lk(ζ/2)hijσ+𝒥l+k(ζ/2)hjiσ]\begin{split}H_{l}&=\sum_{ij,\sigma}\sum_{\ell=0,1,2}\Big{[}\mathcal{J}_{l}^{\ell}g_{i_{\ell}j\sigma}+\mathcal{J}_{-l}^{\ell}g_{i_{\ell}j\sigma}^{\dagger}+\mathcal{J}_{l-k}^{\ell}h_{i_{\ell}j\sigma}^{\dagger}+\mathcal{J}_{-l+k}^{\ell}h_{ji_{\ell}\sigma}^{\dagger}+\mathcal{J}_{l+k}^{\ell}h_{i_{\ell}j\sigma}+\mathcal{J}_{-l-k}^{\ell}h_{ji_{\ell}\sigma}\Big{]}\\ &=\sum_{ij,\sigma}\Big{[}\mathcal{J}_{l}(\zeta)g_{i_{0}j\sigma}+\mathcal{J}_{-l}(\zeta)g_{i_{0}j\sigma}^{\dagger}+\mathcal{J}_{l-k}(\zeta)h_{i_{0}j\sigma}^{\dagger}+\mathcal{J}_{-l+k}(\zeta)h_{ji_{0}\sigma}^{\dagger}+\mathcal{J}_{l+k}(\zeta)h_{i_{0}j\sigma}+\mathcal{J}_{-l-k}(\zeta)h_{ji_{0}\sigma}\\ &+\sum_{\ell=1,2}\mathcal{J}_{-l}(\zeta/2)g_{i_{\ell}j\sigma}+\mathcal{J}_{l}(\zeta/2)g_{i_{\ell}j\sigma}^{\dagger}+\mathcal{J}_{-l+k}(\zeta/2)h_{i_{\ell}j\sigma}^{\dagger}+\mathcal{J}_{l-k}(\zeta/2)h_{ji_{\ell}\sigma}^{\dagger}+\mathcal{J}_{-l-k}(\zeta/2)h_{i_{\ell}j\sigma}+\mathcal{J}_{l+k}(\zeta/2)h_{ji_{\ell}\sigma}\Big{]}\end{split} (S22)

and here 𝒥l=𝒥l(ζsin(ϕij))\mathcal{J}_{l}^{\ell}=\mathcal{J}_{l}(\zeta\sin(\phi_{i_{\ell}j})). Following the discussion in CPL case, one can write the time-independent equation using high-frequency approximation. Since, we are only interested in the singly occupied sector, we project the Hamiltonian with projector P0=Πi=1N(1ni,ni,)P_{0}=\Pi_{i=1}^{N}(1-n_{i,\uparrow}n_{i,\downarrow}) and the zeroth order term is given by

P0Heff(0)P0=P0Hl=0P0=ij,σ[𝒥0(ζ)hi0,σ¯ci0,σcj,σhj,σ¯+=1,2𝒥0(ζ/2)hi,σ¯ci,σcj,σhj,σ¯+h.c.]\begin{split}P_{0}H_{\text{eff}}^{(0)}P_{0}=P_{0}H_{l=0}P_{0}=\sum_{ij,\sigma}\big{[}\mathcal{J}_{0}(\zeta)h_{i_{0},\bar{\sigma}}c_{i_{0},\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+\sum_{\ell=1,2}\mathcal{J}_{0}(\zeta/2)h_{i_{\ell},\bar{\sigma}}c_{i_{\ell},\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+\text{h.c.}\big{]}\end{split} (S23)

The leading correction is given by [Hl,Hl]/l[H_{l},H_{-l}]/l. Since, there is no phase factor associated with the terms, the chiral NNN hopping term vanishes. In this case also, we neglect the three site-hopping term as in the case of CPL. The commutation for superexchnage terms are given by

P0ijσ,ijσ[𝒥lkhjiσ,𝒥lkhijσ]P0=ij,σ,σ+[𝒥lk(ζsin(ϕij))]2hjiσhijσP0ij,σ,ij,σ[𝒥lkhijσ,𝒥lkhjiσ]P0=ij,σ,σ[𝒥lk(ζsin(ϕij))]2hjiσhijσ[j=j,i=i]\begin{split}&P_{0}\sum_{\begin{subarray}{c}ij\sigma,\\ i^{\prime}j^{\prime}\sigma^{\prime}\end{subarray}}[\mathcal{J}_{-l-k}^{\ell}h_{j^{\prime}i^{\prime}_{\ell}\sigma^{\prime}},\mathcal{J}_{-l-k}^{\ell}h_{i_{\ell}j\sigma}^{\dagger}]P_{0}=\sum_{\begin{subarray}{c}ij,\sigma,\sigma^{\prime}\end{subarray}}+[\mathcal{J}_{-l-k}(\zeta\sin(\phi_{i_{\ell}j}))]^{2}h_{ji\sigma^{\prime}}h_{ij\sigma}^{\dagger}\\ &P_{0}\sum_{\begin{subarray}{c}ij,\sigma,\\ i^{\prime}j^{\prime},\sigma^{\prime}\end{subarray}}[\mathcal{J}_{l-k}^{\ell}h_{i_{\ell}j\sigma}^{\dagger},\mathcal{J}_{l-k}^{\ell}h_{j^{\prime}i^{\prime}_{\ell}\sigma^{\prime}}]P_{0}=\sum_{\begin{subarray}{c}ij,\sigma,\sigma^{\prime}\end{subarray}}-[\mathcal{J}_{l-k}(\zeta\sin(\phi_{i_{\ell}j}))]^{2}h_{ji_{\ell}\sigma^{\prime}}h_{i_{\ell}j\sigma}^{\dagger}\qquad[j^{\prime}=j,~{}i^{\prime}=i]\end{split} (S24)

The leading order correction without the three site terms is given by

l=1P0[Hl,Hl]lωP0=l=,lkij,σ,σ(𝒥l)2tijlω+U(hijσhjiσ+hjiσhijσ)\begin{split}\sum_{l=1}^{\infty}P_{0}\frac{[H_{l},H_{-l}]}{l\omega}P_{0}&=\sum_{\begin{subarray}{c}l=-\infty,\\ l^{\prime}\neq-k\end{subarray}}^{\infty}\sum_{\begin{subarray}{c}ij,\sigma,\sigma^{\prime}\end{subarray}}-(\mathcal{J}_{l^{\prime}}^{\ell})^{2}\frac{t_{ij}}{l^{\prime}\omega+U}(h_{i_{\ell}j\sigma^{\prime}}h_{ji_{\ell}\sigma}^{\dagger}+h_{ji_{\ell}\sigma^{\prime}}h_{i_{\ell}j\sigma}^{\dagger})\end{split} (S25)

Explicitly, one can write the leading correction term as

Heff(1)ij,σ,σtij2U[(hi0jσhji0σ+hji0σhi0jσ)l=,lk(𝒥l(ζ))21+lω/U+=1,2(hijσhjiσ+hjiσhijσ)l=,lk(𝒥l(ζ/2))21+lω/U]\begin{split}H_{\text{eff}}^{(1)}\approx\sum_{\begin{subarray}{c}ij,\sigma,\sigma^{\prime}\end{subarray}}-\frac{t_{ij}^{2}}{U}\Bigg{[}(&h_{i_{0}j\sigma}h_{ji_{0}\sigma}^{\dagger}+h_{ji_{0}\sigma}h_{i_{0}j\sigma}^{\dagger})\sum_{\begin{subarray}{c}l^{\prime}=-\infty,\\ l^{\prime}\neq-k\end{subarray}}^{\infty}\frac{(\mathcal{J}_{l^{\prime}}(\zeta))^{2}}{1+l^{\prime}\omega/U}+\sum_{\ell=1,2}(h_{i_{\ell}j\sigma}h_{ji_{\ell}\sigma}^{\dagger}+h_{ji_{\ell}\sigma}h_{i_{\ell}j\sigma}^{\dagger})\sum_{\begin{subarray}{c}l^{\prime}=-\infty,\\ l^{\prime}\neq-k\end{subarray}}^{\infty}\frac{(\mathcal{J}_{l^{\prime}}(\zeta/2))^{2}}{1+l^{\prime}\omega/U}\Bigg{]}\end{split} (S26)

We limit ourselves in the small ζ\zeta regime as was the case in CPL. In the high-frequency approximation depending on the UU and ω\omega, we have two cases:

a) tUωt\ll U\ll\omega: in this case, only the l=0l^{\prime}=0 term contribute to the terms with UU and the leading correction is given by

Heff(1)ij,σ,σ2tij2U[(𝒥0(ζ))2(hi0jσhji0σ+hji0σhi0jσ)+=1,2(𝒥0(ζ/2))2(hijσhjiσ+hjiσhijσ)].\begin{split}H_{\text{eff}}^{(1)}\approx\sum_{\begin{subarray}{c}ij,\sigma,\sigma^{\prime}\end{subarray}}-&\frac{2t_{ij}^{2}}{U}\Big{[}(\mathcal{J}_{0}(\zeta))^{2}(h_{i_{0}j\sigma}h_{ji_{0}\sigma}^{\dagger}+h_{ji_{0}\sigma}h_{i_{0}j\sigma}^{\dagger})+\sum_{\ell=1,2}(\mathcal{J}_{0}(\zeta/2))^{2}(h_{i_{\ell}j\sigma}h_{ji_{\ell}\sigma}^{\dagger}+h_{ji_{\ell}\sigma}h_{i_{\ell}j\sigma}^{\dagger})\Big{]}.\end{split} (S27)

Using Eq. (S16), one can write the above equations in as a spin Hamiltonian. The leading correction is given by

Heff(1)ij,σ2tij2U[(𝒥0(ζ))2(Si0Sjσ14hi0,σ¯ni0σnjσhj,σ¯)+=1,2(𝒥0(ζ/2))2(SiSjσ14hi,σ¯niσnjσhj,σ¯))]\begin{split}H_{\text{eff}}^{(1)}&\approx\sum_{\begin{subarray}{c}ij,\sigma\end{subarray}}\frac{2t_{ij}^{2}}{U}\Big{[}(\mathcal{J}_{0}(\zeta))^{2}(\textbf{S}_{i_{0}}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i_{0},\bar{\sigma}}n_{i_{0}\sigma}n_{j\sigma^{\prime}}h_{j,\bar{\sigma^{\prime}}})+\sum_{\ell=1,2}(\mathcal{J}_{0}(\zeta/2))^{2}(\textbf{S}_{i_{\ell}}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i_{\ell},\bar{\sigma}}n_{i_{\ell}\sigma}n_{j\sigma^{\prime}}h_{j,\bar{\sigma}^{\prime}}))\Big{]}\end{split} (S28)

b) tωUt\ll\omega\ll U: In this case, we use the approximation lω/U1l\omega/U\ll 1 and the identity l=𝒥l(ζ)𝒥l(ζ)=1\sum_{l=-\infty}^{\infty}\mathcal{J}_{l}(\zeta)\mathcal{J}_{l}(\zeta)=1 for all ζ\zeta, and l=𝒥l(ζ)𝒥l(ζ/2)1\sum_{l=-\infty}^{\infty}\mathcal{J}_{l}(\zeta)\mathcal{J}_{l}(\zeta/2)\rightarrow 1 for small ζ\zeta. Here, the leading correction is given by

Heff(1)ij,σ2tij2U[=0,1,2(SiSjσ14hi,σ¯niσnjσhj,σ¯].\begin{split}H_{\text{eff}}^{(1)}\approx\sum_{\begin{subarray}{c}ij,\sigma\end{subarray}}\frac{2t_{ij}^{2}}{U}\Big{[}\sum_{\ell=0,1,2}(\textbf{S}_{i_{\ell}}\cdot\textbf{S}_{j}-\sum_{\sigma^{\prime}}\frac{1}{4}h_{i_{\ell},\bar{\sigma}}n_{i_{\ell}\sigma}n_{j\sigma^{\prime}}h_{j,\bar{\sigma}^{\prime}}\Big{]}.\end{split} (S29)

Therefore, using the above equations and Eq. (S23), the tt-JJ Floquet Hamiltonian is given by

HF=ij,σtij[𝒥0(ζ)hi0,σ¯ci0,σcj,σhj,σ¯+=1,2𝒥0(ζ/2)hi,σ¯ci,σcj,σhj,σ¯+h.c.]+Heff(1)\begin{split}H_{F}=\sum_{ij,\sigma}t_{ij}\big{[}\mathcal{J}_{0}(\zeta)h_{i_{0},\bar{\sigma}}c_{i_{0},\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+\sum_{\ell=1,2}\mathcal{J}_{0}(\zeta/2)h_{i_{\ell},\bar{\sigma}}c_{i_{\ell},\sigma}^{\dagger}c_{j,\sigma}h_{j,\bar{\sigma}}+\text{h.c.}\big{]}+H_{\text{eff}}^{(1)}\end{split} (S30)

From the above equations one can see that that in the limit tUωt\ll U\ll\omega, superexchange is modified whereas, in the limit tωUt\ll\omega\ll U, it is unaffected. On the other hand, hopping is rescaled by the Bessel function in both the cases.