This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Improved expected L2L_{2}-discrepancy formulas on jittered sampling

Jun Xian, Xiaoda Xu J. Xian
Department of Mathematics and Guangdong Province Key Laboratory of Computational Science
Sun Yat-sen University
510275 Guangzhou
China.
[email protected] X. Xu
Department of Mathematics
Sun Yat-sen University
510275 Guangzhou
China.
[email protected]
Abstract.

We study the expected L2L_{2}-discrepancy under two classes of partitions, explicit and exact formulas are derived respectively. These results attain better expected L2L_{2}-discrepancy formulas than jittered sampling.

Key words and phrases:
Expected L2L_{2}-discrepancy; Stratified sampling.
2010 Mathematics Subject Classification:
65C10, 11K38, 65D30.

1. Introduction

Among various techniques for measuring the irregularity of point distribution, discrepancy methods have proven to be one of the most efficient approaches. In various notions of discrepancy, L2L_{2}-discrepancy is widely studied, see applications in areas of low discrepancy point sets [1, 2, 3, 4], and the best known asymptotic upper bounds of L2L_{2}-discrepancy for these point sets are of the form

O((lnN)d12N).O(\frac{(\ln N)^{\frac{d-1}{2}}}{N}).

In order to facilitate the comparison of L2L_{2}-discrepancy for different sampling point sets, it is necessary to derive explicit formulas for L2L_{2}-discrepancy of different sampling sets. Thanks to Warnock’s formula, explicit L2L_{2}-discrepancy formulas for deterministic point sets can be derived, see [3]. The interesting thing is to calculate the expected L2L_{2}-discrepancy formula for random sampling, this problem comes from the integration approximation, which is, for f𝟏(K)f\in\mathcal{H}^{\mathbf{1}}(K) and random sampling set Pη={xi}i=1NP_{\eta}=\{x_{i}\}_{i=1}^{N}, it is proved in [3]

(1.1) 𝔼[supf𝟏(K),f𝟏(K)1|1Nn=1Nf(xi)[0,1]df(x)𝑑x|2]𝔼L22(DN,Pη),\mathbb{E}[\sup_{f\in\mathcal{H}^{\mathbf{1}}(K),\|f\|_{\mathcal{H}^{\mathbf{1}}(K)}\leq 1}\Big{|}\frac{1}{N}\sum_{n=1}^{N}f(x_{i})-\int_{[0,1]^{d}}f(x)dx\Big{|}^{2}]\leq\mathbb{E}L_{2}^{2}(D_{N},P_{\eta}),

where 𝟏(K)\mathcal{H}^{\mathbf{1}}(K) is Sobolev space. It means that a smaller expected L2L_{2}-discrepancy implies a better expected uniform integration approximation in a class of functional space. Also, this means some practical approximation problems that can be converted into (1.1) are solvable.

The main purpose of this paper is to derive explicit L2L_{2}-discrepancy formulas for two classes of partitions in dd dimensions with sampling number N=mdN=m^{d}, and attain better results than jittered sampling under the same sampling conditions.

The explicit formula for L2L_{2}-discrepancy of jittered sampling set is a known result, which is recently derived in [7]. The significant application of improving this formula is to obtain a better and explicit upper bound of approximation error in formula (1.1). Our models are motivated by [6], which are for 22-dimensions with sampling sets N=2N=2, and the corresponding construction models for dd-dimensions are motivated by [5], see model 2.4 in Section 2.

The rest of this paper is organized as follows. Section 2 presents preliminaries. Section 3 presents our main result, which provides explicit expected L2L_{2}-discrepancy for two certain classes of partitions. Section 4 includes the proofs of the main results. Finally, in section 5 we conclude the paper with a short summary.

2. Preliminaries on random sampling

Before introducing the main result, we list the preliminaries used in this paper.

2.1. L2L_{2}-discrepancy

L2L_{2}-discrepancy of a sampling set PN,d={t1,t2,,tN}P_{N,d}=\{t_{1},t_{2},\ldots,t_{N}\} is defined by

(2.1) L2(DN,PN,d)=([0,1]d|λ([0,z))1Ni=1N𝟏[0,z)(ti)|2𝑑z)1/2,L_{2}(D_{N},P_{N,d})=\Big{(}\int_{[0,1]^{d}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(t_{i})|^{2}dz\Big{)}^{1/2},

where λ\lambda denotes the Lebesgue measure, 𝟏A\mathbf{1}_{A} denotes the characteristic function on set AA.

In the definition of L2L_{2}-discrepancy, if we introduce the counting measure #\#, (2.1) can also be expressed as

(2.2) L2(DN,PN,d)=([0,1]d|λ([0,z))1N#(PN,d[0,z))|2𝑑z)1/2,L_{2}(D_{N},P_{N,d})=\Big{(}\int_{[0,1]^{d}}|\lambda([0,z))-\frac{1}{N}\#\big{(}P_{N,d}\cap[0,z)\big{)}|^{2}dz\Big{)}^{1/2},

where #(PN,d[0,z))\#\big{(}P_{N,d}\cap[0,z)\big{)} denotes the number of points falling into the set [0,z).[0,z).

To simplify the expression of L2L_{2}-discrepancy, we employ the discrepancy function Δ(PN,d,z)\Delta(P_{N,d},z) via:

(2.3) Δ(PN,d,z)=λ([0,z))1N#(PN,d[0,z)).\Delta(P_{N,d},z)=\lambda([0,z))-\frac{1}{N}\#\big{(}P_{N,d}\cap[0,z)\big{)}.

2.2. Simple random sampling

In a sense, simple random sampling is Monte Carlo sampling. Uniform distributed point set is selected in [0,1]d[0,1]^{d}, see Figure 1.

Refer to caption
(a) Simple random sampling in two dimensions
Refer to caption
(b) Simple random sampling in three dimensions
Figure 1. Simple random sampling.

2.3. Jittered sampling

Jittered sampling is a type of grid-based equivolume partition. [0,1]d[0,1]^{d} is divided into mdm^{d} axis parallel boxes Qi,1iN,Q_{i},1\leq i\leq N, each with sides 1m,\frac{1}{m}, see illustration of Figure 2.

Refer to caption
(a) jittered sampling in two dimensions
Refer to caption
(b) jittered sampling in three dimensions
Figure 2. jittered sampling formed by isometric grid partition.

2.4. Partition model in [5]

For a grid-based equivolume partition in two dimensions, the two squares in the upper right corner are merged to form a rectangle

I=[a1,a1+2b]×[a2,a2+b],I=[a_{1},a_{1}+2b]\times[a_{2},a_{2}+b],

where a1,a2,ba_{1},a_{2},b are three positive constants. The diagonal of II is the partition line, which constitutes a special partition mode, and set

Ω\=(Ω1,\,Ω2,\,Q3,,QN),\Omega_{\backslash}=(\Omega_{1,\backslash},\Omega_{2,\backslash},Q_{3},\ldots,Q_{N}),

where Ω2,\=IΩ1,\\Omega_{2,\backslash}=I\setminus\Omega_{1,\backslash}.

Refer to caption
Refer to caption
Figure 3. The designed partition model in [5].

2.5. Class of partition model I

For the merged rectangle II, we use a series of straight line partitions to divide the rectangle into two equal-volume parts, which will be converted to a one-parameter model if we set the angle between the dividing line and horizontal line across the center θ\theta, where we suppose 0θπ20\leq\theta\leq\frac{\pi}{2}. From simple calculations, we can conclude the arbitrary straight line must pass through the center of the rectangle. For convenience of notation, we set this partition model Ω=(Ω1,,Ω2,,Q3,,QN)\Omega_{\sim}=(\Omega_{1,\sim},\Omega_{2,\sim},Q_{3},\ldots,Q_{N}) in two dimensional case.

Refer to caption
Figure 4. A class of partitions for two dimensions

2.6. Class of partition model II

For the rectangle

I=[a1,a1+2b]×[a2,a2+b],I=[a_{1},a_{1}+2b]\times[a_{2},a_{2}+b],

where a1,a2,ba_{1},a_{2},b are three positive constants. A straight line partition is used to divide the rectangle into two parts if we set the straight line parallel to the diagonal of II, and the distance from the intersection point qq to the endpoint at the upper right corner of II is b(0,2m)b\in(0,\frac{2}{m}).

For convenience of notation, we set this partition model

Ωb,=(Ω1,b,,Ω2,b,,Q3,,QN),\Omega_{b,\sim}=(\Omega_{1,b,\sim},\Omega_{2,b,\sim},Q_{3},\ldots,Q_{N}),

where Ω2,b,=IΩ1,b,\Omega_{2,b,\sim}=I\setminus\Omega_{1,b,\sim}.

Refer to caption
Figure 5. Uneqivolume partition

Now, consider dd-dimensional cuboid

(2.4) Id=I×i=3d[ai,ai+b]I_{d}=I\times\prod_{i=3}^{d}[a_{i},a_{i}+b]

and its two partitions Ω=(Ω1,,Ω2,)\Omega^{\prime}_{\sim}=(\Omega^{\prime}_{1,\sim},\Omega^{\prime}_{2,\sim}) and Ωb,=(Ω1,b,,Ω2,b,)\Omega^{\prime}_{b,\sim}=(\Omega^{\prime}_{1,b,\sim},\Omega^{\prime}_{2,b,\sim}) into two closed, convex bodies with

(2.5) Ω1,=Ω1,×i=3d[ai,ai+b],\Omega^{\prime}_{1,\sim}=\Omega_{1,\sim}\times\prod_{i=3}^{d}[a_{i},a_{i}+b],

and

Ω1,b,=Ω1,b,×i=3d[ai,ai+b].\displaystyle\Omega^{\prime}_{1,b,\sim}=\Omega_{1,b,\sim}\times\prod_{i=3}^{d}[a_{i},a_{i}+b].

We choose a1=m2m,a2=m1m,b=1ma_{1}=\frac{m-2}{m},a_{2}=\frac{m-1}{m},b=\frac{1}{m} in Ω1,\Omega^{\prime}_{1,\sim} and Ω1,b,\Omega^{\prime}_{1,b,\sim}, denoted by Ω1,\Omega^{*}_{1,\sim} and Ω1,b,\Omega^{*}_{1,b,\sim}, then we obtain

(2.6) Ω=(Ω1,,Ω2,,Q3,QN),\Omega^{*}_{\sim}=(\Omega^{*}_{1,\sim},\Omega^{*}_{2,\sim},Q_{3}\ldots,Q_{N}),

and

(2.7) Ωb,=(Ω1,b,,Ω2,b,,Q3,QN).\Omega^{*}_{b,\sim}=(\Omega^{*}_{1,b,\sim},\Omega^{*}_{2,b,\sim},Q_{3}\ldots,Q_{N}).

3. Explicit Expected L2L_{2}-discrepancy for stratified random sampling formed by two classes of partitions

3.1. Main results

In this section, explicit L2L_{2}-discrepancy formulas are given for Class of partition model I and II.

Theorem 3.1.

For partition Ωθ,\Omega^{*}_{\theta,\sim} of [0,1]d[0,1]^{d} and m2,0θπ2m\geq 2,0\leq\theta\leq\frac{\pi}{2}, then

(3.1) 𝔼L22(DN,PΩθ,)=1m2d[(m12+12)d(m12+13)d]+1m3d13dP(θ),\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{\theta,\sim}})=\frac{1}{m^{2d}}[(\frac{m-1}{2}+\frac{1}{2})^{d}-(\frac{m-1}{2}+\frac{1}{3})^{d}]+\frac{1}{m^{3d}}\cdot\frac{1}{3^{d}}\cdot P(\theta),

where

(3.2) P(θ)={25tan3θ+65tan2θ3tanθ2,0θ<arctan12,25,θ=arctan12,38tanθ+340tan2θ+1160tan3θ,arctan12<θπ2.P(\theta)=\left\{\begin{aligned} &\frac{2}{5}tan^{3}\theta+\frac{6}{5}tan^{2}\theta-\frac{3tan\theta}{2},\quad 0\leq\theta<arctan\frac{1}{2},\\ &-\frac{2}{5},\quad\theta=arctan\frac{1}{2},\\ &-\frac{3}{8tan\theta}+\frac{3}{40tan^{2}\theta}+\frac{1}{160tan^{3}\theta},\quad arctan\frac{1}{2}<\theta\leq\frac{\pi}{2}.\end{aligned}\right.
Remark 3.2.

Noticing that in Theorem 3.1, P(θ)P(\theta) is a continuous function, decreases monotonically between 0 and arctan12arctan\frac{1}{2} and increases monotonically between arctan12arctan\frac{1}{2} and π2\frac{\pi}{2}, see Figure 6. Choose parameter θ=π2\theta=\frac{\pi}{2} in Theorem 3.1, then we are back to the case of classical jittered sampling. Besides, the interesting thing is 𝔼L22(DN,PΩθ,)\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{\theta,\sim}}) is a continuous function of θ\theta, it dynamically establishes continuous dependency with partition parameters and provides ideas for continuous improvement of grid-based partition.

Refer to caption
Figure 6. P(θ)P(\theta) function
Corollary 3.3.

For partition Ωθ,\Omega^{*}_{\theta,\sim} of [0,1]d[0,1]^{d} and m2,0θπ2m\geq 2,0\leq\theta\leq\frac{\pi}{2}, then

(3.3) 𝔼(L22(DN,PΩθ,))𝔼L22(DN,PΩ|),\mathbb{E}(L_{2}^{2}(D_{N},P_{\Omega^{*}_{\theta,\sim}}))\leq\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{|}}),

where the equality holds if and only if θ=0\theta=0 and π2\frac{\pi}{2}.

Remark 3.4.

Noticing that P(θ)0P(\theta)\leq 0 and P(θ)=0P(\theta)=0 if and only if θ=0\theta=0 and π2\frac{\pi}{2}. We already know it is shown in [5] the following conclusion

𝔼(L22(DN,PΩ\))<𝔼L22(DN,PΩ|),\mathbb{E}(L_{2}^{2}(D_{N},P_{\Omega^{*}_{\backslash}}))<\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{|}}),

holds, this is a counterexample that gives a theoretic conclusion, which proves the existence of a partition that with lower expected L2L_{2}-discrepancy than jittered sampling. This partition is a special case of the Class of partition model I, Ωθ,\Omega^{*}_{\theta,\sim} for θ=arctan12\theta=arctan\frac{1}{2}. Besides, this partition happens to achieve optimal expected L2L_{2}-discrepancy among the Class of partition model I, however, in [5], the aim is to give a counterexample, that proves jittered sampling could not minimize expected L2L_{2}-discrepancy for all partition manners, the contribution of our Theorem 3.1 is giving explicit expected L2L_{2}-discrepancy formulas under a class of equivolume partitions and improving the known expected L2L_{2}-discrepancy formula

(3.4) 𝔼L22(DN,PΩ|)=1m2d[(m12+12)d(m12+13)d]\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{|}})=\frac{1}{m^{2d}}[(\frac{m-1}{2}+\frac{1}{2})^{d}-(\frac{m-1}{2}+\frac{1}{3})^{d}]

recently derived in [7]. A smaller expected L2L_{2}-discrepancy formula gives better integration approximation error in a certain class of functional space if we consider some application aspects.

Theorem 3.5.

For partition Ωb,\Omega^{*}_{b,\sim} of [0,1]d[0,1]^{d} and m2,b[32m,2m]m\geq 2,b\in[\frac{3}{2m},\frac{2}{m}], then

(3.5) 𝔼L22(DN,PΩb,)=1m2d[(m12+12)d(m12+13)d]P0(b)2dm3dP1(b)3dm3d,\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{b,\sim}})=\frac{1}{m^{2d}}[(\frac{m-1}{2}+\frac{1}{2})^{d}-(\frac{m-1}{2}+\frac{1}{3})^{d}]-\frac{P_{0}(b)}{2^{d}\cdot m^{3d}}-\frac{P_{1}(b)}{3^{d}\cdot m^{3d}},

where

P0(b)=8m2b2316243m2b2,P_{0}(b)=\frac{8-m^{2}b^{2}}{3}-\frac{16}{24-3m^{2}b^{2}},
P1(b)=m4b440+114m2b240+1956m3b33m5b5+352405m2b2.P_{1}(b)=\frac{m^{4}b^{4}}{40}+\frac{114m^{2}b^{2}}{40}+\frac{19}{5}-\frac{6m^{3}b^{3}-3m^{5}b^{5}+352}{40-5m^{2}b^{2}}.
Remark 3.6.

It can be easily analyzed that

𝔼L22(DN,PΩb,)<𝔼L22(DN,PΩθ,)\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{b,\sim}})<\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{\theta,\sim}})

for any θ[0,π2]\theta\in[0,\frac{\pi}{2}], thus it improves the expected L2L_{2}-discrepancy formula for jittered sampling, moreover, it attains better results than all cases of convex equivolume partitions as the class of partition model I. Therefore, expected L2L_{2}-discrepancy formulas under the class of partition I and II can be seen as the improvement of the Theorem 1 in [7], and the class of partition II can be seen as a class of partitions with lower expected L2L_{2}-discrepancy than jittered sampling and the partition model in [5]. The main contribution of Theorem 3.5 is giving explicit expected L2L_{2}-discrepancy formulas under a class of unequivolume partitions for N=mdN=m^{d} in dd-dimensional space, which provides a method to compute exact expected L2L_{2}-discrepancy formulas in dd-dimensional space with N=mdN=m^{d}, by the way, it is proved that in the grid-like partition of dd-dimensional space, the use of equivolume may not be optimal. This conclusion is a known result for two-dimensional space with two points, see [6, 8], [8] gives optimal partition manner(it happens to be unequivolume partition) for two-dimensional space with two points, for the case of dd-dimensional space partitions with N=mdN=m^{d}, the partition model may be easy to extend, but the exact formula of expected L2L_{2}-discrepancy formula as (3.4) under the optimal case remains unknown.

3.2. Some discussions

The model [8] gives a family of unequivolume partitions in two dimensions with sampling number N=2N=2, a certain type of symmetry along the y=xy=x diagonal is needed, and the partition is non-convex, expected L2L_{2}-discrepancy for N=2,d=2N=2,d=2 attains optimal in these restrictions. It is also proved in [6] some class of convex partitions could minimize the expected L2L_{2}-discrepancy for dd-dimensions with N=mdN=m^{d}, thus an interesting question is could some class of convex unequivolume partitions achieve better expected L2L_{2}-discrepancy formulas than the family of non-convex partitions for dd with N=mdN=m^{d}? The family of partitions in [8] is:

[0,1]2=Ω([0,1]2Ω),[0,1]^{2}=\Omega\cup([0,1]^{2}\setminus\Omega),

where Ω={(x,y)[0,1]2:yg(x)}\Omega=\{(x,y)\in[0,1]^{2}:y\leq g(x)\}. If g(x)g(x) satisfies a highly nonlinear integral equation, then the partition is optimal. This result can be extended to dd-dimensions with N=mdN=m^{d} as the partition model 2.4 in [5], but it may be difficult to obtain an explicit expected L2L_{2}-discrepancy formula due to the difficulty in computing the solution of the integral equation that g(x)g(x) has to satisfy. If we consider the convex partition, g(x)g(x) will satisfy a linear equation, then an explicit formula is within reach. The optimal expected L2L_{2}-discrepancy formula may be obtained from the class of unequivolume partitions formed by a special class of linear equations, but we have not yet carried out the accurate calculation and comparison. Besides, since theorem 3.5 satisfies certain symmetry, it can be converted into a one-parameter model. Considering the partition class formed by general linear equations, the result should be a two-parameter model. As the equation satisfied by g(x)g(x) becomes more and more complex, it is expected that the parameters contained in the L2L_{2}-discrepancy formula will become more complex, but it still has the value of numerical research, approximation error in (1.1) can still be accurately analyzed.

For some missing convex or non-convex partitions, we can naturally provide the following two examples, see Figure 7, similar to model 2.4, they can be easily extended to dd-dimensions with N=mdN=m^{d}. Expected L2L_{2}-discrepancy formulas are also easy to compute if we follow the proof process of Theorem 3.1 and 3.5, because their partition curve equations can always be explicitly displayed by some parameters.

Refer to caption
(a) Convex partitions
Refer to caption
(b) Non-convex partitions
Figure 7. Some examples.

4. Proofs

4.1. Proof of Theorem 3.1

For equivolume partition 𝛀𝟎,=(Ω1,,Ω2,)\mathbf{\Omega_{0,\sim}}=(\Omega_{1,\sim},\Omega_{2,\sim}) of II(the same argument if we replace 𝛀𝟎,\mathbf{\Omega_{0,\sim}} with 𝛀𝟎,|\mathbf{\Omega_{0,|}}), from [Proposition 22] in [5], which is, for an equivolume partition Ω^={Ω^1,Ω^2,,Ω^N}\hat{\Omega}=\{\hat{\Omega}_{1},\hat{\Omega}_{2},\ldots,\hat{\Omega}_{N}\} of a compact convex set KdK\subset\mathbb{R}^{d} with λ(K)>0\lambda(K)>0, PΩ^P_{\hat{\Omega}} is the corresponding stratified sampling set, then

(4.1) 𝔼L22(DN,PΩ^)=1N2λ(K)i=1NKqi(x)(1qi(x))𝑑x,\mathbb{E}L_{2}^{2}(D_{N},P_{\hat{\Omega}})=\frac{1}{N^{2}\lambda(K)}\sum_{i=1}^{N}\int_{K}q_{i}(x)(1-q_{i}(x))dx,

where

(4.2) qi(x)=λ(Ω^i[0,x])λ(Ω^i).q_{i}(x)=\frac{\lambda(\hat{\Omega}_{i}\cap[0,x])}{\lambda(\hat{\Omega}_{i})}.

Through simple derivation, it follows that

(4.3) 𝔼L22(DN,P𝛀𝟎,)=18i=12I𝐪i(x)(1𝐪i(x))𝑑x,\mathbb{E}L_{2}^{2}(D_{N},P_{\mathbf{\Omega_{0,\sim}}})=\frac{1}{8}\sum_{i=1}^{2}\int_{I}\mathbf{q}_{i}(x)(1-\mathbf{q}_{i}(x))dx,

and

(4.4) 𝐪i(x)=λ(Ωi,[0,x])λ(Ωi,)=λ(Ωi,[0,x]).\mathbf{q}_{i}(x)=\frac{\lambda(\Omega_{i,\sim}\cap[0,x])}{\lambda(\Omega_{i,\sim})}=\lambda(\Omega_{i,\sim}\cap[0,x]).

Conclusion (4.3) is equivalent to the following

8𝔼L22(DN,P𝛀𝟎,)=1i=12I𝐪i2(x)𝑑x.8\mathbb{E}L_{2}^{2}(D_{N},P_{\mathbf{\Omega_{0,\sim}}})=1-\sum_{i=1}^{2}\int_{I}\mathbf{q}_{i}^{2}(x)dx.

We first consider parameter arctan12θπ2arctan\frac{1}{2}\leq\theta\leq\frac{\pi}{2}, then we define the following two functions for simplicity of the expression.

F(𝐱)=12[(x11)tanθ+x212][(x11)+(x212)cotθ],F(\mathbf{x})=\frac{1}{2}\cdot[(x_{1}-1)tan\theta+x_{2}-\frac{1}{2}]\cdot[(x_{1}-1)+(x_{2}-\frac{1}{2})\cdot cot\theta],

and

G(𝐱)=x1x2x2cotθ2x2+12x22cotθ,G(\mathbf{x})=x_{1}x_{2}-x_{2}-\frac{cot\theta}{2}x_{2}+\frac{1}{2}x_{2}^{2}\cdot cot\theta,

where 𝐱=(x1,x2)\mathbf{x}=(x_{1},x_{2}).

Furthermore, for 𝛀𝟎,|=(Ω1,|,Ω2,|)\mathbf{\Omega_{0,|}}=(\Omega_{1,|},\Omega_{2,|}), (4.4) implies

𝐪1,|(𝐱)={x1x2,𝐱Ω1,|x2,𝐱Ω2,|,\mathbf{q}_{1,|}(\mathbf{x})=\left\{\begin{aligned} &x_{1}x_{2},\mathbf{x}\in\Omega_{1,|}\\ &x_{2},\mathbf{x}\in\Omega_{2,|},\end{aligned}\right.

and

𝐪2,|(𝐱)={0,𝐱Ω1,|(x11)x2,𝐱Ω2,|.\mathbf{q}_{2,|}(\mathbf{x})=\left\{\begin{aligned} &0,\mathbf{x}\in\Omega_{1,|}\\ &(x_{1}-1)x_{2},\mathbf{x}\in\Omega_{2,|}.\end{aligned}\right.

Besides,

𝐪1,(𝐱)={x1x2,𝐱Ω1,,x1x2F(𝐱),𝐱Ω2,,1,x1x2G(𝐱),𝐱Ω2,,2,\mathbf{q}_{1,\sim}(\mathbf{x})=\left\{\begin{aligned} &x_{1}x_{2},\mathbf{x}\in\Omega_{1,\sim},\\ &x_{1}x_{2}-F(\mathbf{x}),\mathbf{x}\in\Omega_{2,\sim,1},\\ &x_{1}x_{2}-G(\mathbf{x}),\mathbf{x}\in\Omega_{2,\sim,2},\end{aligned}\right.

and

𝐪2,(𝐱)={0,𝐱Ω1,,F(𝐱),𝐱Ω2,,1,G(𝐱),𝐱Ω2,,2,\mathbf{q}_{2,\sim}(\mathbf{x})=\left\{\begin{aligned} &0,\mathbf{x}\in\Omega_{1,\sim},\\ &F(\mathbf{x}),\mathbf{x}\in\Omega_{2,\sim,1},\\ &G(\mathbf{x}),\mathbf{x}\in\Omega_{2,\sim,2},\end{aligned}\right.

where Ω1,\Omega_{1,\sim}, Ω2,\Omega_{2,\sim} denote subsets of partition 𝛀𝟎,\mathbf{\Omega_{0,\sim}}. In the following, we shall continue to divide subsets Ω1,={Ω1,,1,Ω1,,2}\Omega_{1,\sim}=\{\Omega_{1,\sim,1},\Omega_{1,\sim,2}\} and Ω2,={Ω2,,1,Ω2,,2}\Omega_{2,\sim}=\{\Omega_{2,\sim,1},\Omega_{2,\sim,2}\} to facilitate calculation. See Figures 8 to 9.

Therefore, for θ=π2\theta=\frac{\pi}{2}, we introduce two symbols B1,|,B2,|B_{1,|},B_{2,|} and have

(4.5) B1,|=I𝐪1,|2(𝐱)𝑑𝐱=Ω1,|x12x22𝑑𝐱+Ω2,|x22𝑑𝐱=19+13=49,B_{1,|}=\int_{I}\mathbf{q}_{1,|}^{2}(\mathbf{x})d\mathbf{x}=\int_{\Omega_{1,|}}x_{1}^{2}x_{2}^{2}d\mathbf{x}+\int_{\Omega_{2,|}}x_{2}^{2}d\mathbf{x}=\frac{1}{9}+\frac{1}{3}=\frac{4}{9},

and

(4.6) B2,|=I𝐪2,|2(𝐱)𝑑𝐱=Ω2,|(x11)2x22𝑑𝐱=19.B_{2,|}=\int_{I}\mathbf{q}_{2,|}^{2}(\mathbf{x})d\mathbf{x}=\int_{\Omega_{2,|}}(x_{1}-1)^{2}x_{2}^{2}d\mathbf{x}=\frac{1}{9}.

Thus,

(4.7) 8𝔼(L22(P𝛀𝟎,|))=1(B1,|+B2,|)=49.8\mathbb{E}(L_{2}^{2}(P_{\mathbf{\Omega_{0,|}}}))=1-(B_{1,|}+B_{2,|})=\frac{4}{9}.

Furthermore, we introduce B1,B_{1,\sim} and B2,B_{2,\sim}, then

(4.8) B1,=I𝐪1,2(𝐱)𝑑𝐱\displaystyle B_{1,\sim}=\int_{I}\mathbf{q}_{1,\sim}^{2}(\mathbf{x})d\mathbf{x} =Ω1,x12x22𝑑𝐱+Ω2,,1(x1x2F(𝐱))2𝑑𝐱\displaystyle=\int_{\Omega_{1,\sim}}x_{1}^{2}x_{2}^{2}d\mathbf{x}+\int_{\Omega_{2,\sim,1}}(x_{1}x_{2}-F(\mathbf{x}))^{2}d\mathbf{x}
+Ω2,,2(x1x2G(𝐱))2𝑑𝐱,\displaystyle+\int_{\Omega_{2,\sim,2}}(x_{1}x_{2}-G(\mathbf{x}))^{2}d\mathbf{x},

and

B2,=I𝐪2,2(𝐱)𝑑𝐱=Ω2,,1F2(𝐱)𝑑𝐱+Ω2,,2G2(𝐱)𝑑𝐱.B_{2,\sim}=\int_{I}\mathbf{q}_{2,\sim}^{2}(\mathbf{x})d\mathbf{x}=\int_{\Omega_{2,\sim,1}}F^{2}(\mathbf{x})d\mathbf{x}+\int_{\Omega_{2,\sim,2}}G^{2}(\mathbf{x})d\mathbf{x}.

We divide our calculation into three steps. First, we compute Ω1,x12x22𝑑𝐱\int_{\Omega_{1,\sim}}x_{1}^{2}x_{2}^{2}d\mathbf{x}, see Figure 8 for illustration.

Refer to caption
Figure 8. Division of the integral region
(4.9) Ω1,,1x12x22𝑑𝐱\displaystyle\int_{\Omega_{1,\sim,1}}x_{1}^{2}x_{2}^{2}d\mathbf{x} =01cotθ2x12𝑑x101x22𝑑x2=(2cotθ)372.\displaystyle=\int_{0}^{1-\frac{cot\theta}{2}}x_{1}^{2}dx_{1}\cdot\int_{0}^{1}x_{2}^{2}dx_{2}=\frac{(2-cot\theta)^{3}}{72}.
(4.10) Ω1,,2x12x22𝑑𝐱\displaystyle\int_{\Omega_{1,\sim,2}}x_{1}^{2}x_{2}^{2}d\mathbf{x} =1cotθ21+cotθ2x12𝑑x10(1x1)tanθ+12x22𝑑x2\displaystyle=\int_{1-\frac{cot\theta}{2}}^{1+\frac{cot\theta}{2}}x_{1}^{2}dx_{1}\cdot\int_{0}^{(1-x_{1})\cdot tan\theta+\frac{1}{2}}x_{2}^{2}dx_{2}
=60tan2θ36tanθ+7720tan3θ.\displaystyle=\frac{60tan^{2}\theta-36tan\theta+7}{720tan^{3}\theta}.

Therefore, (4.9) and (4.10) imply

(4.11) Ω1,x12x22𝑑𝐱\displaystyle\int_{\Omega_{1,\sim}}x_{1}^{2}x_{2}^{2}d\mathbf{x} =Ω1,,1x12x22𝑑𝐱+Ω1,,2x12x22𝑑𝐱\displaystyle=\int_{\Omega_{1,\sim,1}}x_{1}^{2}x_{2}^{2}d\mathbf{x}+\int_{\Omega_{1,\sim,2}}x_{1}^{2}x_{2}^{2}d\mathbf{x}
=112tanθ+130tan2θ1240tan3θ+19.\displaystyle=-\frac{1}{12tan\theta}+\frac{1}{30tan^{2}\theta}-\frac{1}{240tan^{3}\theta}+\frac{1}{9}.

Second, we compute Ω2,,1(x1x2F(𝐱))2𝑑𝐱\int_{\Omega_{2,\sim,1}}(x_{1}x_{2}-F(\mathbf{x}))^{2}d\mathbf{x} and Ω2,,2(x1x2G(𝐱))2𝑑𝐱\int_{\Omega_{2,\sim,2}}(x_{1}x_{2}-G(\mathbf{x}))^{2}d\mathbf{x}.

Refer to caption
Refer to caption
Figure 9. Division of the integral region.
(4.12) Ω2,,1(x1x2F(𝐱))2𝑑𝐱\displaystyle\int_{\Omega_{2,\sim,1}}(x_{1}x_{2}-F(\mathbf{x}))^{2}d\mathbf{x} =1cotθ21+cotθ2(1x1)tanθ+121(x1x2F(𝐱))2𝑑x2𝑑x1\displaystyle=\int_{1-\frac{cot\theta}{2}}^{1+\frac{cot\theta}{2}}\int_{(1-x_{1})\cdot tan\theta+\frac{1}{2}}^{1}(x_{1}x_{2}-F(\mathbf{x}))^{2}dx_{2}dx_{1}
=180tan2θ12tanθ+5720tan3θ,\displaystyle=\frac{180tan^{2}\theta-12tan\theta+5}{720tan^{3}\theta},
(4.13) Ω2,,2(x1x2G(𝐱))2𝑑𝐱=1+cotθ2201(x1x2G(𝐱))2𝑑x2𝑑x1\displaystyle\int_{\Omega_{2,\sim,2}}(x_{1}x_{2}-G(\mathbf{x}))^{2}d\mathbf{x}=\int_{1+\frac{cot\theta}{2}}^{2}\int_{0}^{1}(x_{1}x_{2}-G(\mathbf{x}))^{2}dx_{2}dx_{1}
=cot3θ240cot2θ30cotθ12+13.\displaystyle=-\frac{cot^{3}\theta}{240}-\frac{cot^{2}\theta}{30}-\frac{cot\theta}{12}+\frac{1}{3}.

Thus, (4.12) and (4.13) imply

(4.14) Ω2,,1(x1x2F(𝐱))2𝑑𝐱+Ω2,,2(x1x2G(𝐱))2𝑑𝐱\displaystyle\int_{\Omega_{2,\sim,1}}(x_{1}x_{2}-F(\mathbf{x}))^{2}d\mathbf{x}+\int_{\Omega_{2,\sim,2}}(x_{1}x_{2}-G(\mathbf{x}))^{2}d\mathbf{x}
=13+16tanθ120tan2θ+1360tan3θ.\displaystyle=\frac{1}{3}+\frac{1}{6tan\theta}-\frac{1}{20tan^{2}\theta}+\frac{1}{360tan^{3}\theta}.

Combining (4.8), (4.11) and (4.14), we have

(4.15) B1,\displaystyle B_{1,\sim} =Ω1,x12x22𝑑𝐱+Ω2,,1(x1x2F(𝐱))2𝑑𝐱+Ω2,,2(x1x2G(𝐱))2𝑑𝐱\displaystyle=\int_{\Omega_{1,\sim}}x_{1}^{2}x_{2}^{2}d\mathbf{x}+\int_{\Omega_{2,\sim,1}}(x_{1}x_{2}-F(\mathbf{x}))^{2}d\mathbf{x}+\int_{\Omega_{2,\sim,2}}(x_{1}x_{2}-G(\mathbf{x}))^{2}d\mathbf{x}
=112tanθ160tan2θ1720tan3θ+49.\displaystyle=\frac{1}{12tan\theta}-\frac{1}{60tan^{2}\theta}-\frac{1}{720tan^{3}\theta}+\frac{4}{9}.

Third, we will compute Ω2,,1F2(𝐱)𝑑𝐱\int_{\Omega_{2,\sim,1}}F^{2}(\mathbf{x})d\mathbf{x} and Ω2,,2G2(𝐱)𝑑𝐱\int_{\Omega_{2,\sim,2}}G^{2}(\mathbf{x})d\mathbf{x} in the following.

In fact,

(4.16) Ω2,,1F2(𝐱)𝑑𝐱\displaystyle\int_{\Omega_{2,\sim,1}}F^{2}(\mathbf{x})d\mathbf{x} =1cotθ21+cotθ2(1x1)tanθ+121F2(𝐱)𝑑x2𝑑x1\displaystyle=\int_{1-\frac{cot\theta}{2}}^{1+\frac{cot\theta}{2}}\int_{(1-x_{1})\cdot tan\theta+\frac{1}{2}}^{1}F^{2}(\mathbf{x})dx_{2}dx_{1}
=1120tan3θ,\displaystyle=\frac{1}{120tan^{3}\theta},
(4.17) Ω2,,2G2(𝐱)𝑑𝐱=1+cotθ2201G2(𝐱)𝑑x2𝑑x1\displaystyle\int_{\Omega_{2,\sim,2}}G^{2}(\mathbf{x})d\mathbf{x}=\int_{1+\frac{cot\theta}{2}}^{2}\int_{0}^{1}G^{2}(\mathbf{x})dx_{2}dx_{1}
=19124tanθ+1120tan2θ111440tan3θ.\displaystyle=\frac{1}{9}-\frac{1}{24tan\theta}+\frac{1}{120tan^{2}\theta}-\frac{11}{1440tan^{3}\theta}.

Combining (4.16) and (4.17), we have

(4.18) B2,\displaystyle B_{2,\sim} =Ω2,,1F2(𝐱)𝑑𝐱+Ω2,,2G2(𝐱)𝑑𝐱\displaystyle=\int_{\Omega_{2,\sim,1}}F^{2}(\mathbf{x})d\mathbf{x}+\int_{\Omega_{2,\sim,2}}G^{2}(\mathbf{x})d\mathbf{x}
=19124tanθ+1120tan2θ+11440tan3θ.\displaystyle=\frac{1}{9}-\frac{1}{24tan\theta}+\frac{1}{120tan^{2}\theta}+\frac{1}{1440tan^{3}\theta}.

Thus,

(4.19) B1,+B2,=124tanθ1120tan2θ11440tan3θ+59.B_{1,\sim}+B_{2,\sim}=\frac{1}{24tan\theta}-\frac{1}{120tan^{2}\theta}-\frac{1}{1440tan^{3}\theta}+\frac{5}{9}.

Therefore,

(4.20) 8𝔼(L22(P𝛀𝟎,))\displaystyle 8\mathbb{E}(L_{2}^{2}(P_{\mathbf{\Omega_{0,\sim}}})) =1(B1,+B2,)\displaystyle=1-(B_{1,\sim}+B_{2,\sim})
=cotθ24+cot2θ120+cot3θ1440+49,\displaystyle=-\frac{cot\theta}{24}+\frac{cot^{2}\theta}{120}+\frac{cot^{3}\theta}{1440}+\frac{4}{9},

where arctan12θ<π2arctan\frac{1}{2}\leq\theta<\frac{\pi}{2}.

For θ=π2\theta=\frac{\pi}{2}, by (4.7) we have

(4.21) 8𝔼(L22(P𝛀𝟎,|))=49.8\mathbb{E}(L_{2}^{2}(P_{\mathbf{\Omega_{0,|}}}))=\frac{4}{9}.
Refer to caption
Refer to caption
Figure 10. Division of the integral region.

Considering the case 0θ<arctan120\leq\theta<arctan\frac{1}{2}, we denote the partition by Ω={Ω1,,Ω2,}\Omega^{\prime}_{\sim}=\{\Omega^{\prime}_{1,\sim},\Omega^{\prime}_{2,\sim}\}, see Figure 10. Let

𝐪1,(𝐱)={x1x2,𝐱Ω1,,x1x2H(𝐱),𝐱Ω2,,1,x1x2J(𝐱),𝐱Ω2,,2.\mathbf{q}^{\prime}_{1,\sim}(\mathbf{x})=\left\{\begin{aligned} &x_{1}x_{2},\mathbf{x}\in\Omega^{\prime}_{1,\sim},\\ &x_{1}x_{2}-H(\mathbf{x}),\mathbf{x}\in\Omega^{\prime}_{2,\sim,1},\\ &x_{1}x_{2}-J(\mathbf{x}),\mathbf{x}\in\Omega^{\prime}_{2,\sim,2}.\end{aligned}\right.

and

𝐪2,(𝐱)={0,𝐱Ω1,,H(𝐱),𝐱Ω2,,1,J(𝐱),𝐱Ω2,,2,\mathbf{q}^{\prime}_{2,\sim}(\mathbf{x})=\left\{\begin{aligned} &0,\mathbf{x}\in\Omega^{\prime}_{1,\sim},\\ &H(\mathbf{x}),\mathbf{x}\in\Omega^{\prime}_{2,\sim,1},\\ &J(\mathbf{x}),\mathbf{x}\in\Omega^{\prime}_{2,\sim,2},\end{aligned}\right.

where

(4.22) H(x)=12[x2(1x1)tanθ12][cotθx21+x112cotθ],H(x)=\frac{1}{2}\cdot[x_{2}-(1-x_{1})tan\theta-\frac{1}{2}]\cdot[cot\theta\cdot x_{2}-1+x_{1}-\frac{1}{2}cot\theta],

and

(4.23) J(x)=[x2tanθ12]x1+12x12tanθ.J(x)=[x_{2}-tan\theta-\frac{1}{2}]\cdot x_{1}+\frac{1}{2}x_{1}^{2}\cdot tan\theta.

Then we divide subsets Ω1,={Ω1,,1,Ω1,,2}\Omega^{\prime}_{1,\sim}=\{\Omega^{\prime}_{1,\sim,1},\Omega^{\prime}_{1,\sim,2}\} and Ω2,={Ω2,,1,Ω2,,2}\Omega^{\prime}_{2,\sim}=\{\Omega^{\prime}_{2,\sim,1},\Omega^{\prime}_{2,\sim,2}\} to facilitate calculation. See Figure 10.

So

(4.24) B1,=I𝐪1,2(𝐱)𝑑𝐱\displaystyle B^{\prime}_{1,\sim}=\int_{I}\mathbf{q}_{1,\sim}^{{}^{\prime}2}(\mathbf{x})d\mathbf{x} =Ω1,x12x22𝑑𝐱+Ω2,,1(x1x2H(𝐱))2𝑑𝐱\displaystyle=\int_{\Omega^{\prime}_{1,\sim}}x_{1}^{2}x_{2}^{2}d\mathbf{x}+\int_{\Omega^{\prime}_{2,\sim,1}}(x_{1}x_{2}-H(\mathbf{x}))^{2}d\mathbf{x}
+Ω2,,2(x1x2J(𝐱))2𝑑𝐱,\displaystyle+\int_{\Omega^{\prime}_{2,\sim,2}}(x_{1}x_{2}-J(\mathbf{x}))^{2}d\mathbf{x},

and

B2,=I𝐪2,2(𝐱)𝑑𝐱=Ω2,,1H2(𝐱)𝑑𝐱+Ω2,,2J2(𝐱)𝑑𝐱.B^{\prime}_{2,\sim}=\int_{I}\mathbf{q}_{2,\sim}^{{}^{\prime}2}(\mathbf{x})d\mathbf{x}=\int_{\Omega^{\prime}_{2,\sim,1}}H^{2}(\mathbf{x})d\mathbf{x}+\int_{\Omega^{\prime}_{2,\sim,2}}J^{2}(\mathbf{x})d\mathbf{x}.

If we follow the calculation process of (4.9)-(4.19), then we obtain

(4.25) B1,=445tan3θ415tan2θ+tanθ3+49,B^{\prime}_{1,\sim}=-\frac{4}{45}tan^{3}\theta-\frac{4}{15}tan^{2}\theta+\frac{tan\theta}{3}+\frac{4}{9},

and

(4.26) B2,=245tan3θ+215tan2θtanθ6+19.B^{\prime}_{2,\sim}=\frac{2}{45}tan^{3}\theta+\frac{2}{15}tan^{2}\theta-\frac{tan\theta}{6}+\frac{1}{9}.

Thus,

(4.27) B1,+B2,=245tan3θ215tan2θ+tanθ6+59.B^{\prime}_{1,\sim}+B^{\prime}_{2,\sim}=-\frac{2}{45}tan^{3}\theta-\frac{2}{15}tan^{2}\theta+\frac{tan\theta}{6}+\frac{5}{9}.

Hence,

(4.28) 8𝔼(L22(PΩ))\displaystyle 8\mathbb{E}(L_{2}^{2}(P_{\Omega^{\prime}_{\sim}})) =1(B1,+B2,)\displaystyle=1-(B^{\prime}_{1,\sim}+B^{\prime}_{2,\sim})
=49+245tan3θ+215tan2θtanθ6,\displaystyle=\frac{4}{9}+\frac{2}{45}tan^{3}\theta+\frac{2}{15}tan^{2}\theta-\frac{tan\theta}{6},

where 0θ<arctan120\leq\theta<arctan\frac{1}{2}.

Combining with (4.20) and considering the translation and stretch of the rectangle I=[0,2]×[0,1]I=[0,2]\times[0,1] into

[a1,a1+2b]×[a2,a2+b],[a_{1},a_{1}+2b]\times[a_{2},a_{2}+b],

we obtain

(4.29) 𝔼(L22(PΩ))𝔼(L22(PΩ|)),\mathbb{E}(L_{2}^{2}(P_{\Omega^{*}_{\sim}}))\leq\mathbb{E}(L_{2}^{2}(P_{\Omega^{*}_{|}})),

where a1=m2m,a2=m1m,b=1ma_{1}=\frac{m-2}{m},a_{2}=\frac{m-1}{m},b=\frac{1}{m}. The equal sign of (4.29) holds if and only if partition parameter θ=0,π2\theta=0,\frac{\pi}{2}. Noting that conclusion (4.29) is only for the two-dimensional case.

Next, we will give a proof of (4.29) for dd-dimensional case. We firstly prove the case b=1b=1 and (a1,a2,,ad)=(0,0,,0).(a_{1},a_{2},\ldots,a_{d})=(0,0,\ldots,0). Let Id=[0,2]×[0,1]×[0,1]d2I^{\prime}_{d}=[0,2]\times[0,1]\times[0,1]^{d-2} and we denote partition manner of this special case Ω′′={Ω1,′′,Ω2,′′}\Omega^{\prime\prime}_{\sim}=\{\Omega^{\prime\prime}_{1,\sim},\Omega^{\prime\prime}_{2,\sim}\}.

For i=1,2i=1,2, we have

𝐪i,(𝐱)=𝐪i,(x1,x2)j=3dxj,\mathbf{q}^{\prime}_{i,\sim}(\mathbf{x})=\mathbf{q}_{i,\sim}(x_{1},x_{2})\cdot\prod_{j=3}^{d}x_{j},

where 𝐪i,(𝐱)\mathbf{q}^{\prime}_{i,\sim}(\mathbf{x}) is defined as (4.4) for Ω′′\Omega^{\prime\prime}_{\sim}.

Thus,

Id𝐪i,2(𝐱)𝑑𝐱=Bi,[0,1]d2j=3dxj2dx3dx4dxd=13d2Bi,,\int_{I^{\prime}_{d}}\mathbf{q}^{\prime 2}_{i,\sim}(\mathbf{x})d\mathbf{x}=B_{i,\sim}\cdot\int_{[0,1]^{d-2}}\prod_{j=3}^{d}x_{j}^{2}dx_{3}dx_{4}\ldots dx_{d}=\frac{1}{3^{d-2}}\cdot B_{i,\sim},

where Bi,,i=1,2B_{i,\sim},i=1,2 have been calculated in (4.15) and (4.18) respectively.

As we have

Idλ([0,𝐱])𝑑𝐱=[0,1]d2j=3dxjdx3dx4dxd=12d2.\int_{I^{\prime}_{d}}\lambda([0,\mathbf{x}])d\mathbf{x}=\int_{[0,1]^{d-2}}\prod_{j=3}^{d}x_{j}dx_{3}dx_{4}\ldots dx_{d}=\frac{1}{2^{d-2}}.

Then we obtain,

(4.30) 8𝔼(L22(PΩ′′))=12d213d2(B1,+B2,).8\mathbb{E}(L_{2}^{2}(P_{\Omega^{\prime\prime}_{\sim}}))=\frac{1}{2^{d-2}}-\frac{1}{3^{d-2}}\cdot(B_{1,\sim}+B_{2,\sim}).

Now, for IdI_{d} in (2.4), we define a vector

(4.31) 𝐚={a1,a2,,ad}.\mathbf{a}=\{a_{1},a_{2},\ldots,a_{d}\}.

We then prove (4.1) is independent of 𝐚\mathbf{a}. In IdI_{d}, we choose 𝐚=0\mathbf{a}=0, set

(4.32) Id0=[0,2b]×[0,b]d1,I_{d}^{0}=[0,2b]\times[0,b]^{d-1},

and

(4.33) Id,m0=[0,2m]×[0,1m]d1.I_{d,m}^{0}=[0,\frac{2}{m}]\times[0,\frac{1}{m}]^{d-1}.

It suffices to show that

(4.34) 1N2λ(Id)i=1NIdqi(x)(1qi(x))𝑑x=1N2λ(Id0)i=1NId0qi(x)(1qi(x))𝑑x.\frac{1}{N^{2}\lambda(I_{d})}\sum_{i=1}^{N}\int_{I_{d}}q_{i}(x)(1-q_{i}(x))dx=\frac{1}{N^{2}\lambda(I_{d}^{0})}\sum_{i=1}^{N}\int_{I_{d}^{0}}q_{i}(x)(1-q_{i}(x))dx.

We only consider N=2N=2 in (4.34), this is because we choose K=IdK=I_{d} and K=Id0K=I_{d}^{0} in (4.1) respectively. This means Id,Id0I_{d},I_{d}^{0} are divided into two equal volume parts respectively.

Let

(4.35) xiai=ti,1id.x_{i}-a_{i}=t_{i},1\leq i\leq d.

According to (4.2) and plugging (4.35) into the left side of (4.34), the desired result is obtained.

From (4.1) and let K=[0,1]dK=[0,1]^{d}, we have

(4.36) 𝔼L22(PΩ)𝔼L22(PΩ|)\displaystyle\mathbb{E}L_{2}^{2}(P_{\Omega^{*}_{\sim}})-\mathbb{E}L_{2}^{2}(P_{\Omega^{*}_{|}})
=1N2i=1N[0,1]dq~i(x)(1q~i(x))𝑑x1N2i=1N[0,1]dq¯i(x)(1q¯i(x))𝑑x,\displaystyle=\frac{1}{N^{2}}\sum_{i=1}^{N}\int_{[0,1]^{d}}\tilde{q}_{i}(x)(1-\tilde{q}_{i}(x))dx-\frac{1}{N^{2}}\sum_{i=1}^{N}\int_{[0,1]^{d}}\bar{q}_{i}(x)(1-\bar{q}_{i}(x))dx,

where

q~i(x)=λ(Ωi,[0,x])λ(Ωi,),q¯i(x)=λ(Ωi,|[0,x])λ(Ωi,|),i=1,2,\tilde{q}_{i}(x)=\frac{\lambda(\Omega^{*}_{i,\sim}\cap[0,x])}{\lambda(\Omega^{*}_{i,\sim})},\bar{q}_{i}(x)=\frac{\lambda(\Omega^{*}_{i,|}\cap[0,x])}{\lambda(\Omega^{*}_{i,|})},i=1,2,

and

q~i(x)=q¯i(x)=λ(Qi[0,x])λ(Qi),i=3,4,,N.\tilde{q}_{i}(x)=\bar{q}_{i}(x)=\frac{\lambda(Q_{i}\cap[0,x])}{\lambda(Q_{i})},i=3,4,\ldots,N.

Let Id,m0={Ω1,,Ω2,}I_{d,m}^{0}=\{\Omega^{*}_{1,\sim},\Omega^{*}_{2,\sim}\}, Id,m0={Ω1,|,Ω2,|}I_{d,m}^{0}=\{\Omega^{*}_{1,|},\Omega^{*}_{2,|}\} denote two different partitions of Id,m0I_{d,m}^{0}. It can easily be seen only Id,m0I_{d,m}^{0} contributes to the difference between two expected L2L_{2}-discrepancies, thus

(4.37) 𝔼L22(PΩ)𝔼L22(PΩ|)\displaystyle\mathbb{E}L_{2}^{2}(P_{\Omega^{*}_{\sim}})-\mathbb{E}L_{2}^{2}(P_{\Omega^{*}_{|}})
=1N2i=12Id,m0(q~i(x)q¯i(x))𝑑x+1N2i=12Id,m0(q¯i2(x)q~i2(x))𝑑x\displaystyle=\frac{1}{N^{2}}\sum_{i=1}^{2}\int_{I_{d,m}^{0}}(\tilde{q}_{i}(x)-\bar{q}_{i}(x))dx+\frac{1}{N^{2}}\sum_{i=1}^{2}\int_{I_{d,m}^{0}}(\bar{q}^{2}_{i}(x)-\tilde{q}^{2}_{i}(x))dx
=1Ni=12Id,m0(λ(Ω~i[0,x])λ(Ω¯i[0,x]))𝑑x\displaystyle=\frac{1}{N}\sum_{i=1}^{2}\int_{I_{d,m}^{0}}(\lambda(\tilde{\Omega}_{i}\cap[0,x])-\lambda(\bar{\Omega}_{i}\cap[0,x]))dx
+i=12Id,m0(λ2(Ω¯i[0,x])λ2(Ω~i[0,x]))𝑑x\displaystyle+\sum_{i=1}^{2}\int_{I_{d,m}^{0}}(\lambda^{2}(\bar{\Omega}_{i}\cap[0,x])-\lambda^{2}(\tilde{\Omega}_{i}\cap[0,x]))dx
=1N3i=12Id(λ(Ωi,′′[0,x])λ(Ωi,|′′[0,x]))𝑑x\displaystyle=\frac{1}{N^{3}}\sum_{i=1}^{2}\int_{I^{\prime}_{d}}(\lambda(\Omega^{\prime\prime}_{i,\sim}\cap[0,x])-\lambda(\Omega^{\prime\prime}_{i,|}\cap[0,x]))dx
+1N3i=12Id(λ2(Ωi,|′′[0,x])λ2(Ωi,′′[0,x]))𝑑x.\displaystyle+\frac{1}{N^{3}}\sum_{i=1}^{2}\int_{I^{\prime}_{d}}(\lambda^{2}(\Omega^{\prime\prime}_{i,|}\cap[0,x])-\lambda^{2}(\Omega^{\prime\prime}_{i,\sim}\cap[0,x]))dx.

Furthermore, employing (4.1) again, we have

(4.38) 𝔼(L22(PΩ′′))𝔼(L22(PΩ|′′))\displaystyle\mathbb{E}(L_{2}^{2}(P_{\Omega^{\prime\prime}_{\sim}}))-\mathbb{E}(L_{2}^{2}(P_{\Omega^{\prime\prime}_{|}}))
=18i=12Id𝐪i,(𝐱)(1𝐪i,(𝐱))𝑑x18i=12Id𝐪i,|(𝐱)(1𝐪i,|(𝐱))𝑑x\displaystyle=\frac{1}{8}\sum_{i=1}^{2}\int_{I^{\prime}_{d}}\mathbf{q}^{\prime}_{i,\sim}(\mathbf{x})(1-\mathbf{q}^{\prime}_{i,\sim}(\mathbf{x}))dx-\frac{1}{8}\sum_{i=1}^{2}\int_{I^{\prime}_{d}}\mathbf{q}^{\prime}_{i,|}(\mathbf{x})(1-\mathbf{q}^{\prime}_{i,|}(\mathbf{x}))dx
=18i=12Id(λ(Ωi,′′[0,x])λ(Ωi,|′′[0,x]))𝑑x\displaystyle=\frac{1}{8}\sum_{i=1}^{2}\int_{I^{\prime}_{d}}(\lambda(\Omega^{\prime\prime}_{i,\sim}\cap[0,x])-\lambda(\Omega^{\prime\prime}_{i,|}\cap[0,x]))dx
+18i=12Id(λ2(Ωi,|′′[0,x])λ2(Ωi,′′[0,x]))𝑑x.\displaystyle+\frac{1}{8}\sum_{i=1}^{2}\int_{I^{\prime}_{d}}(\lambda^{2}(\Omega^{\prime\prime}_{i,|}\cap[0,x])-\lambda^{2}(\Omega^{\prime\prime}_{i,\sim}\cap[0,x]))dx.

Combining with (4.37) and (4.38), we obtain

(4.39) 𝔼L22(PΩ)𝔼L22(PΩ|)=1N3[8𝔼(L22(PΩ′′))8𝔼(L22(PΩ|′′))].\mathbb{E}L_{2}^{2}(P_{\Omega^{*}_{\sim}})-\mathbb{E}L_{2}^{2}(P_{\Omega^{*}_{|}})=\frac{1}{N^{3}}\cdot[8\mathbb{E}(L_{2}^{2}(P_{\Omega^{\prime\prime}_{\sim}}))-8\mathbb{E}(L_{2}^{2}(P_{\Omega^{\prime\prime}_{|}}))].

Combining with (4.19), (4.27) and (4.30), the proof is completed.

4.2. Proof of Theorem 3.5

According to the definition of L2L_{2}-discrepancy, for point set PΩb,={s1,s2,,sN}P_{\Omega^{*}_{b,\sim}}=\{s_{1},s_{2},\ldots,s_{N}\}, it is easy to see

(4.40) 𝔼L22(DN,PΩb,)=PΩb,[0,1]d|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω.\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{b,\sim}})=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega.

Let

I=Ω1,b,Ω2,b,.I_{\sim}=\Omega^{*}_{1,b,\sim}\cup\Omega^{*}_{2,b,\sim}.

By (4.40), we obtain

(4.41) 𝔼L22(DN,PΩb,)\displaystyle\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{b,\sim}}) =PΩb,[0,1]d|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
=PΩb,[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
+PΩb,I|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω.\displaystyle+\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega.
Refer to caption
Figure 11.

First, we focus on II_{\sim}, it can easily be seen

(4.42) PΩb,I|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
=PΩb,I|λ([0,z)[O,z))+λ([O,z))1Ni=1N𝟏[0,z)[O,z)(si)1Ni=1N𝟏[O,z)(si)|2𝑑z𝑑ω.\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I_{\sim}}|\lambda([0,z)\setminus[O^{\prime},z))+\lambda([O^{\prime},z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}dzd\omega.

Let Ωz=[0,z)[O,z)\Omega_{z}=[0,z)\setminus[O^{\prime},z), if we divide II_{\sim} into three parts, then (4.42) implies

PΩb,I|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
=PΩb,I+II+III|λ(Ωz)+λ([O,z))1Ni=1N𝟏Ωz(si)1Ni=1N𝟏[O,z)(si)|2𝑑z𝑑ω.\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I+II+III}|\lambda(\Omega_{z})+\lambda([O^{\prime},z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}dzd\omega.
Refer to caption
Figure 12. Division of the integral region I

We divide the computation process into two steps.

The first step, we compute

(4.43) PΩb,I+II|λ(Ωz)+λ([O,z))1Ni=1N𝟏Ωz(si)1Ni=1N𝟏[O,z)(si)|2𝑑z𝑑ω\displaystyle\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I+II}|\lambda(\Omega_{z})+\lambda([O^{\prime},z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}dzd\omega
=I+IIPΩb,|λ(Ωz)+λ([O,z))1Ni=1N𝟏Ωz(si)1Ni=1N𝟏[O,z)(si)|2𝑑ω𝑑z.\displaystyle=\int_{I+II}\int_{P_{\Omega^{*}_{b,\sim}}}|\lambda(\Omega_{z})+\lambda([O^{\prime},z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}d\omega dz.

Since

(4.44) 𝔼(1Ni=1N𝟏Ωz(si))=λ(Ωz),\mathbb{E}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i}))=\lambda(\Omega_{z}),

and

(4.45) 𝔼(1Ni=1N𝟏[O,z)(si))=4md28md2Nb2λ([O,z)).\mathbb{E}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))=\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}}\cdot\lambda([O^{\prime},z)).

If we set

(siVi)=λ(Vi)λ(Ωi,b,)\mathbb{P}(s_{i}\in V_{i})=\frac{\lambda(V_{i})}{\lambda(\Omega^{*}_{i,b,\sim})}

for i=1,2,i=1,2, and

(siUi)=λ(Ui)λ(Qi)\mathbb{P}(s_{i}\in U_{i})=\frac{\lambda(U_{i})}{\lambda(Q_{i})}

for i=3,4,,N.i=3,4,\ldots,N.

Then, (4.43) can be converted to

(4.46) I+IIPΩb,|𝔼(1Ni=1N𝟏Ωz(si))+𝔼(1Ni=1N𝟏[O,z)(si))+(14md28md2Nb2)λ([O,z))\displaystyle\int_{I+II}\int_{P_{\Omega^{*}_{b,\sim}}}|\mathbb{E}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i}))+\mathbb{E}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))+(1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda([O^{\prime},z))
1Ni=1N𝟏Ωz(si)1Ni=1N𝟏[O,z)(si)|2dωdz\displaystyle-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}d\omega dz
=I+IIVar(1Ni=1N𝟏[0,z)[O,z)(si))𝑑z+I+IIVar(1Ni=1N𝟏[O,z)(si))\displaystyle=\int_{I+II}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(s_{i}))dz+\int_{I+II}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))
+|(14md28md2Nb2)λ([O,z))|2dz.\displaystyle+|(1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda([O^{\prime},z))|^{2}dz.
Var(1Ni=1N𝟏[O,z)(si))=1N2λ([O,z)])λ(I+II)(1λ([O,z)])λ(I+II)).\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))=\frac{1}{N^{2}}\cdot\frac{\lambda([O^{\prime},z)])}{\lambda(I+II)}\cdot(1-\frac{\lambda([O^{\prime},z)])}{\lambda(I+II)}).
λ(I+II)=2Nb241md2.\lambda(I+II)=\frac{2}{N}-\frac{b^{2}}{4}\cdot\frac{1}{m^{d-2}}.

Thus,

Var(1Ni=1N𝟏[O,z)(si))+|(14md28md2Nb2)λ([O,z))|2\displaystyle\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))+|(1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda([O^{\prime},z))|^{2}
=1N48m2b2λ([O,z)])+(188m2b2)λ2([O,z)]).\displaystyle=\frac{1}{N}\cdot\frac{4}{8-m^{2}b^{2}}\cdot\lambda([O^{\prime},z)])+(1-\frac{8}{8-m^{2}b^{2}})\cdot\lambda^{2}([O^{\prime},z)]).

The equation of the dividing line is the following

Z2=12Z1+32b2.Z_{2}=-\frac{1}{2}Z_{1}+\frac{3}{2}-\frac{b}{2}.

Besides, set t=bmt=bm, thus,

Iλ([O,z))\displaystyle\int_{I}\lambda([O^{\prime},z)) =12m1b11m1(Z11+2m)(Z21+1m)dZ1dZ2\displaystyle=\int_{1-\frac{2}{m}}^{1-b}\int_{1-\frac{1}{m}}^{1}(Z_{1}-1+\frac{2}{m})(Z_{2}-1+\frac{1}{m})dZ_{1}dZ_{2}\cdot
11m111m111m1i=3d(Zi1+1m)\displaystyle\int_{1-\frac{1}{m}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\prod_{i=3}^{d}(Z_{i}-1+\frac{1}{m})
=(t24t+4)(12m2)d.\displaystyle=(t^{2}-4t+4)\cdot(\frac{1}{2m^{2}})^{d}.
IIλ([O,z))\displaystyle\int_{II}\lambda([O^{\prime},z)) =1b111mZ12+32b2(Z11+2m)(Z21+1m)dZ1dZ2\displaystyle=\int_{1-b}^{1}\int_{1-\frac{1}{m}}^{-\frac{Z_{1}}{2}+\frac{3}{2}-\frac{b}{2}}(Z_{1}-1+\frac{2}{m})(Z_{2}-1+\frac{1}{m})dZ_{1}dZ_{2}\cdot
11m111m111m1i=3d(Zi1+1m)\displaystyle\int_{1-\frac{1}{m}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\prod_{i=3}^{d}(Z_{i}-1+\frac{1}{m})
=(t424+2t333t2+4t)(12m2)d.\displaystyle=(-\frac{t^{4}}{24}+\frac{2t^{3}}{3}-3t^{2}+4t)\cdot(\frac{1}{2m^{2}})^{d}.
Iλ2([O,z))\displaystyle\int_{I}\lambda^{2}([O^{\prime},z)) =12m1b11m1(Z11+2m)2(Z21+1m)2dZ1dZ2\displaystyle=\int_{1-\frac{2}{m}}^{1-b}\int_{1-\frac{1}{m}}^{1}(Z_{1}-1+\frac{2}{m})^{2}(Z_{2}-1+\frac{1}{m})^{2}dZ_{1}dZ_{2}\cdot
11m111m111m1(i=3d(Zi1+1m))2\displaystyle\int_{1-\frac{1}{m}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}(\prod_{i=3}^{d}(Z_{i}-1+\frac{1}{m}))^{2}
=(t3+6t212t+8)(13m3)d.\displaystyle=(-t^{3}+6t^{2}-12t+8)\cdot(\frac{1}{3m^{3}})^{d}.
IIλ2([O,z))\displaystyle\int_{II}\lambda^{2}([O^{\prime},z)) =1b111mZ12+32b2(Z11+2m)2(Z21+1m)2dZ1dZ2\displaystyle=\int_{1-b}^{1}\int_{1-\frac{1}{m}}^{-\frac{Z_{1}}{2}+\frac{3}{2}-\frac{b}{2}}(Z_{1}-1+\frac{2}{m})^{2}(Z_{2}-1+\frac{1}{m})^{2}dZ_{1}dZ_{2}\cdot
11m111m111m1i=3d(Zi1+1m)\displaystyle\int_{1-\frac{1}{m}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\prod_{i=3}^{d}(Z_{i}-1+\frac{1}{m})
=(t6160+3t5203t42+7t315t2+12t)(13m3)d.\displaystyle=(-\frac{t^{6}}{160}+\frac{3t^{5}}{20}-\frac{3t^{4}}{2}+7t^{3}-15t^{2}+12t)\cdot(\frac{1}{3m^{3}})^{d}.

The second step, for area zz\inIII, we have,

λ(Ω2,1)=14(Z1+2Z2+b3)2i=3d(Zi1+1m),\lambda(\Omega_{2,1})=\frac{1}{4}(Z_{1}+2Z_{2}+b-3)^{2}\cdot\prod_{i=3}^{d}(Z_{i}-1+\frac{1}{m}),

and

λ(Ω2,2)=(Z11+2m)(Z21+1m)i=3d(Zi1+1m)λ(Ω2,1).\lambda(\Omega_{2,2})=(Z_{1}-1+\frac{2}{m})(Z_{2}-1+\frac{1}{m})\cdot\prod_{i=3}^{d}(Z_{i}-1+\frac{1}{m})-\lambda(\Omega_{2,1}).
Refer to caption
Figure 13. Division of the integral region II

Furthermore, we have

(4.47) PΩb,III|λ(Ωz)+λ([O,z))1Ni=1N𝟏Ωz(si)1Ni=1N𝟏[O,z)(si)|2𝑑z𝑑ω\displaystyle\int_{P_{\Omega^{*}_{b,\sim}}}\int_{III}|\lambda(\Omega_{z})+\lambda([O^{\prime},z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}dzd\omega
=IIIPΩb,|λ(Ωz)+λ([O,z))1Ni=1N𝟏Ωz(si)1Ni=1N𝟏[O,z)(si)|2𝑑ω𝑑z\displaystyle=\int_{III}\int_{P_{\Omega^{*}_{b,\sim}}}|\lambda(\Omega_{z})+\lambda([O^{\prime},z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{\Omega_{z}}(s_{i})-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i})|^{2}d\omega dz
IIIVar(1Ni=1N𝟏[0,z)[O,z)(si))𝑑z+IIIVar(1Ni=1N𝟏[O,z)(si))\displaystyle\int_{III}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(s_{i}))dz+\int_{III}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))
+|(14md2Nb2)λ(Ω2,1)+(14md28md2Nb2)λ(Ω2,2)|2dz.\displaystyle+|(1-\frac{4m^{d-2}}{Nb^{2}})\cdot\lambda(\Omega_{2,1})+(1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda(\Omega_{2,2})|^{2}dz.

Besides,

Var(1Ni=1N𝟏[O,z)(si))+|(14md2Nb2)λ(Ω2,1)+(14md28md2Nb2)λ(Ω2,2)|2\displaystyle\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))+|(1-\frac{4m^{d-2}}{Nb^{2}})\cdot\lambda(\Omega_{2,1})+(1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda(\Omega_{2,2})|^{2}
=Var(1Ni=1N𝟏[O,z)(si))+|(14md2Nb2)λ(Ω2,1)|2+|(14md28md2Nb2)λ(Ω2,2)|2\displaystyle=\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(s_{i}))+|(1-\frac{4m^{d-2}}{Nb^{2}})\cdot\lambda(\Omega_{2,1})|^{2}+|(1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda(\Omega_{2,2})|^{2}
+2((14md2Nb2)λ(Ω2,1))((14md28md2Nb2)λ(Ω2,2))\displaystyle+2((1-\frac{4m^{d-2}}{Nb^{2}})\cdot\lambda(\Omega_{2,1}))((1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda(\Omega_{2,2}))
=4Nm2b2λ(Ω2,1)+48NNm2b2λ(Ω2,2)+(18m2b2)λ2(Ω2,1)+(188m2b2)λ2(Ω2,2)\displaystyle=\frac{4}{Nm^{2}b^{2}}\lambda(\Omega_{2,1})+\frac{4}{8N-Nm^{2}b^{2}}\lambda(\Omega_{2,2})+(1-\frac{8}{m^{2}b^{2}})\lambda^{2}(\Omega_{2,1})+(1-\frac{8}{8-m^{2}b^{2}})\lambda^{2}(\Omega_{2,2})
+2((14md2Nb2)λ(Ω2,1))((14md28md2Nb2)λ(Ω2,2)).\displaystyle+2((1-\frac{4m^{d-2}}{Nb^{2}})\cdot\lambda(\Omega_{2,1}))((1-\frac{4m^{d-2}}{8m^{d-2}-Nb^{2}})\cdot\lambda(\Omega_{2,2})).

Moreover, we have,

IIIλ(Ω2,2)𝑑Z1𝑑Z2Zd\displaystyle\int_{III}\lambda(\Omega_{2,2})dZ_{1}dZ_{2}\ldots Z_{d}
=1b112Z1+32b2111m111m1λ(Ω2,2)𝑑Z1𝑑Z2Zd\displaystyle=\int_{1-b}^{1}\int_{-\frac{1}{2}Z_{1}+\frac{3}{2}-\frac{b}{2}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\lambda(\Omega_{2,2})dZ_{1}dZ_{2}\ldots Z_{d}
=2t3+6t23(12m2)d,\displaystyle=\frac{-2t^{3}+6t^{2}}{3}(\frac{1}{2m^{2}})^{d},
IIIλ2(Ω2,2)𝑑Z1𝑑Z2Zd\displaystyle\int_{III}\lambda^{2}(\Omega_{2,2})dZ_{1}dZ_{2}\ldots Z_{d}
=1b112Z1+32b2111m111m1λ2(Ω2,2)𝑑Z1𝑑Z2Zd\displaystyle=\int_{1-b}^{1}\int_{-\frac{1}{2}Z_{1}+\frac{3}{2}-\frac{b}{2}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\lambda^{2}(\Omega_{2,2})dZ_{1}dZ_{2}\ldots Z_{d}
=(t6809t5120+9t4818t33+9t2)(13m3)d,\displaystyle=(\frac{t^{6}}{80}-\frac{9t^{5}}{120}+\frac{9t^{4}}{8}-\frac{18t^{3}}{3}+9t^{2})(\frac{1}{3m^{3}})^{d},
IIIλ(Ω2,1)𝑑Z1𝑑Z2Zd\displaystyle\int_{III}\lambda(\Omega_{2,1})dZ_{1}dZ_{2}\ldots Z_{d}
=1b112Z1+32b2111m111m1λ(Ω2,1)𝑑Z1𝑑Z2Zd\displaystyle=\int_{1-b}^{1}\int_{-\frac{1}{2}Z_{1}+\frac{3}{2}-\frac{b}{2}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\lambda(\Omega_{2,1})dZ_{1}dZ_{2}\ldots Z_{d}
=t424(12m2)d,\displaystyle=\frac{t^{4}}{24}(\frac{1}{2m^{2}})^{d},
IIIλ2(Ω2,1)𝑑Z1𝑑Z2Zd\displaystyle\int_{III}\lambda^{2}(\Omega_{2,1})dZ_{1}dZ_{2}\ldots Z_{d}
=1b112Z1+32b2111m111m1λ2(Ω2,1)𝑑Z1𝑑Z2Zd\displaystyle=\int_{1-b}^{1}\int_{-\frac{1}{2}Z_{1}+\frac{3}{2}-\frac{b}{2}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\lambda^{2}(\Omega_{2,1})dZ_{1}dZ_{2}\ldots Z_{d}
=9t6960(13m3)d,\displaystyle=\frac{9t^{6}}{960}(\frac{1}{3m^{3}})^{d},
IIIλ(Ω2,1)λ(Ω2,2)𝑑Z1𝑑Z2Zd\displaystyle\int_{III}\lambda(\Omega_{2,1})\lambda(\Omega_{2,2})dZ_{1}dZ_{2}\ldots Z_{d}
=1b112Z1+32b2111m111m1λ(Ω2,1)λ(Ω2,2)𝑑Z1𝑑Z2Zd\displaystyle=\int_{1-b}^{1}\int_{-\frac{1}{2}Z_{1}+\frac{3}{2}-\frac{b}{2}}^{1}\int_{1-\frac{1}{m}}^{1}\ldots\int_{1-\frac{1}{m}}^{1}\lambda(\Omega_{2,1})\lambda(\Omega_{2,2})dZ_{1}dZ_{2}\ldots Z_{d}
=(9t611529t5240+9t448)(13m3)d.\displaystyle=(-\frac{9t^{6}}{1152}-\frac{9t^{5}}{240}+\frac{9t^{4}}{48})(\frac{1}{3m^{3}})^{d}.

Therefore, we have

(4.48) 𝔼L22(DN,PΩb,)\displaystyle\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{b,\sim}}) =PΩb,[0,1]d|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
=PΩb,[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
+PΩb,I|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle+\int_{P_{\Omega^{*}_{b,\sim}}}\int_{I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
=PΩb,[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
+IVar(1Ni=1N𝟏[0,z)[O,z)(si))𝑑z+[(t424+4)48t2+t26](12m3)d\displaystyle+\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(s_{i}))dz+[(-\frac{t^{4}}{24}+4)\cdot\frac{4}{8-t^{2}}+\frac{t^{2}}{6}]\cdot(\frac{1}{2m^{3}})^{d}
+[(18t2)9t6960+(188t2)(t6160+9t51203t48+8)\displaystyle+[(1-\frac{8}{t^{2}})\cdot\frac{9t^{6}}{960}+(1-\frac{8}{8-t^{2}})\cdot(\frac{t^{6}}{160}+\frac{9t^{5}}{120}-\frac{3t^{4}}{8}+8)
+2(14t2)(148t2)(9t611529t5240+9t448)](13m3)d.\displaystyle+2(1-\frac{4}{t^{2}})(1-\frac{4}{8-t^{2}})\cdot(-\frac{9t^{6}}{1152}-\frac{9t^{5}}{240}+\frac{9t^{4}}{48})]\cdot(\frac{1}{3m^{3}})^{d}.

According to t=mbt=mb, and let

P2(b)=m2b23+16243m2b2+43,P_{2}(b)=\frac{m^{2}b^{2}}{3}+\frac{16}{24-3m^{2}b^{2}}+\frac{4}{3},
P3(b)=m4b440114m2b24035240+6m3b33m5b5+352405m2b2.P_{3}(b)=-\frac{m^{4}b^{4}}{40}-\frac{114m^{2}b^{2}}{40}-\frac{352}{40}+\frac{6m^{3}b^{3}-3m^{5}b^{5}+352}{40-5m^{2}b^{2}}.

We obtain

(4.49) 𝔼L22(DN,PΩb,)\displaystyle\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{b,\sim}}) =PΩb,[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω\displaystyle=\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega
+IVar(1Ni=1N𝟏[0,z)[O,z)(si))𝑑z+P2(b)(12m3)d+P3(b)(13m3)d.\displaystyle+\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(s_{i}))dz+P_{2}(b)\cdot(\frac{1}{2m^{3}})^{d}+P_{3}(b)\cdot(\frac{1}{3m^{3}})^{d}.

For jittered grid area [0,1]dI[0,1]^{d}\setminus I_{\sim} and [0,z)[O,z)[0,z)\setminus[O^{\prime},z), it is clear that

(4.50) PΩb,[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(si)|2𝑑z𝑑ω+IVar(1Ni=1N𝟏[0,z)[O,z)(si))𝑑z\displaystyle\int_{P_{\Omega^{*}_{b,\sim}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(s_{i})|^{2}dzd\omega+\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(s_{i}))dz
=PΩ|[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(xi)|2𝑑z𝑑η+IVar(1Ni=1N𝟏[0,z)[O,z)(xi))𝑑z.\displaystyle=\int_{P_{\Omega^{*}_{|}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(x_{i})|^{2}dzd\eta+\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(x_{i}))dz.

For jittered sampling point set PΩ|={x1,x2,,xN}P_{\Omega^{*}_{|}}=\{x_{1},x_{2},\ldots,x_{N}\},

(4.51) 𝔼L22(DN,PΩ|)\displaystyle\mathbb{E}L_{2}^{2}(D_{N},P_{\Omega^{*}_{|}}) =PΩ|[0,1]d|λ([0,z))1Ni=1N𝟏[0,z)(xi)|2𝑑z𝑑η\displaystyle=\int_{P_{\Omega^{*}_{|}}}\int_{[0,1]^{d}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(x_{i})|^{2}dzd\eta
=PΩ|[0,1]dI|λ([0,z))1Ni=1N𝟏[0,z)(xi)|2𝑑z𝑑η\displaystyle=\int_{P_{\Omega^{*}_{|}}}\int_{[0,1]^{d}\setminus I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(x_{i})|^{2}dzd\eta
+PΩ|I|λ([0,z))1Ni=1N𝟏[0,z)(xi)|2𝑑z𝑑η.\displaystyle+\int_{P_{\Omega^{*}_{|}}}\int_{I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(x_{i})|^{2}dzd\eta.

Besides,

(4.52) PΩ|I|λ([0,z))1Ni=1N𝟏[0,z)(xi)|2𝑑z𝑑η\displaystyle\int_{P_{\Omega^{*}_{|}}}\int_{I_{\sim}}|\lambda([0,z))-\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)}(x_{i})|^{2}dzd\eta
=IVar(1Ni=1N𝟏[0,z)[O,z)(xi))𝑑z+IVar(1Ni=1N𝟏[O,z)(xi))𝑑z.\displaystyle=\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[0,z)\setminus[O^{\prime},z)}(x_{i}))dz+\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(x_{i}))dz.

Easy to obtain

(4.53) IVar(1Ni=1N𝟏[O,z)(xi))𝑑z=412d1N3513d1N3.\int_{I_{\sim}}\text{Var}(\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}_{[O^{\prime},z)}(x_{i}))dz=4\cdot\frac{1}{2^{d}}\cdot\frac{1}{N^{3}}-5\cdot\frac{1}{3^{d}}\cdot\frac{1}{N^{3}}.

Therefore, from (4.49),(4.50),(4.51),(4.52) and (4.53), we have the desired result.

5. Conclusion

We study expected L2L_{2}-discrepancy under two classes of partitions, and we give explicit formulas, these results improve the expected L2L_{2}-discrepancy formula on jittered sampling. It should be pointed out that the results presented here for the Class of partition models I and II need to be improved, they are all based on the strict condition N=mdN=m^{d} of grid-based partition. The expected discrepancy of stratified sampling under general equal measure partition models will be investigated in future research and we hope to give some more applications in function approximation.

References

  • [1] J. Dick and F. Pillichshammer, On the mean square weighted L2L_{2} discrepancy of randomized digital (t,m,s)(t,m,s)-nets over 2\mathbb{Z}_{2}, Acta Arith., 117(2005), 371-403.
  • [2] L. L. Cristea, J. Dick and F. Pillichshammer, On the mean square weighted L2L_{2} discrepancy of randomized digital nets in prime base, J. Complexity, 22(2006), 605-629.
  • [3] J. Dick and F. Pillichshammer, Discrepancy theory and quasi-Monte Carlo integration. In: W. W. L. Chen, A. Srivastav, G. Travaglini(eds.), Panoramy in Discrepancy Theory, Springer Verlag, Cham, 2014, 539-619.
  • [4] J. Dick, A. Hinrichs and F. Pillichshammer, A note on the periodic L2L_{2}-discrepancy of Korobov’s pp-sets, Arch. Math. (Basel), 115(2020), 67-78.
  • [5] M. Kiderlen and F. Pausinger, On a partition with a lower expected L2L_{2}-discrepancy than classical jittered sampling, J. Complexity, 70(2022), https://doi.org/10.1016/j.jco.2021.101616.
  • [6] M. Kiderlen and F. Pausinger, Discrepancy of stratified samples from partitions of the unit cube, Monatsh. Math., 195(2021), 267-306.
  • [7] N. Kirk and F. Pausinger, On the expected L2L_{2}-discrepancy of jittered sampling, arXiv preprint arXiv:2208.08924, 2022.
  • [8] F. Pausinger, M. Rachh, S. Steinerberger, Optimal jittered sampling for two points in the unit square, Statist.Probab. Lett., 132(2018), 55–61.