This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Impact of the Hawking Effect on the Fully Entangled Fraction of Three-qubit States in Schwarzschild Spacetime

Guang-Wei Mi1    Xiaofen Huang1    Shao-Ming Fei2    Tinggui Zhang1 [email protected] 1School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
2School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract

Wu et al. [J. High Energ. Phys. 2023, 232 (2023)] first found that the fidelity of quantum teleportation with a bipartite entangled resource state, completely determined by the fully entangled fraction (FEF) characterized by the maximal fidelity between the given quantum state and the set of maximally entangled states, can monotonically increase in Schwarzschild spacetime. We investigated the Hawking effect on the FEF of quantum states in tripartite systems. In this paper, we show that the Hawking effect of a black hole may both decrease and increase the FEF in Schwarzschild spacetime. For an initial X-type state, we found that the Hawking effect of the black hole has both positive and negative impacts on the FEF of Dirac fields, depending on the selection of initial states. For an initial W-like state, the Hawking effect of the black hole has only a positive impact on the FEF of Dirac fields, independent of the selection of initial states. Our results provide an insightful view of quantum teleportation in multipartite systems under the influence of Hawking effects, from the perspective of quantum information and general relativity.

pacs:
03.67.Mn, 03.67.Hk

I Introduction

Quantum teleportation plays a vital role in quantum information processing, serving as a fundamental concept in various quantum tasks and contributing significantly to the advancement of quantum technologies such as quantum communication, quantum computing, and quantum networks Nielsen.2000 ; Braunstein.2005 ; Kimble.2008 ; Weedbrook.2012 ; Wilde.2013 . Bennett et al. first proposed quantum teleportation in 1993 Bennett.1993 . The core idea of a quantum teleportation protocol is to utilize the characteristics of quantum entanglement to transmit information to spatially separated receivers while achieving information concealment Pirandola.2015 . The basic scheme of quantum teleportation serves as a fundamental component in the advancement of various quantum technologies, including quantum repeaters Briegel.1998 , quantum gate teleportation Gottesman.1999 , measurement-based quantum computing Raussendorf.2001 , and port-based teleportation Ishizaka.2008 .

Let HH be a dd-dimensional Hilbert space. If a bipartite quantum state ρHH\rho\in H\otimes H is used as a physical resource in quantum teleportation, the fidelity of the teleportation reads F(ρ)=f(ρ)d+1d+1F(\rho)=\frac{f(\rho)d+1}{d+1}, where f(ρ)f(\rho) is the fully entangled fraction (FEF) spop , f(ρ)=maxϕϕ|ρ|ϕf(\rho)=\mathop{\max}_{\phi}\langle\phi|\rho|\phi\rangle, with the maximization over all maximally entangled states |ϕ|\phi\rangle cdjw .

The development of black-hole physics can be traced to the early 20th century. In 1915, Albert Einstein proposed the theory of general relativity, which describes the geometric nature of gravity. The equations of general relativity predicted that objects with mass concentrated in a very small region would form black holes. Although progress has been made in the field of black-hole physics, many questions remain unresolved, such as the black-hole information paradox Danielsson.1993 ; Anglin.1995 ; Giddings.2002 , black-hole singularity Alwis.1993 ; Anderson.1993 and event horizon structure Jensen.1995 ; Cvetic.1997 .

In recent decades, the theory of relativistic quantum information has emerged in an attempt to address the problem of unifying general relativity and quantum mechanics Asher.2004 . The Hawking effect of a black hole has a negative impact on quantum steering, entanglement, discord, coherence, and the fidelity of quantum teleportation for bosonic fields in the context of curved spacetime Fuentes-Schuller.2005 ; Alsing.2006 ; Pan.2008 ; Martn-Martnez.2010 ; Wang.2010 ; Esfahani.2011 ; Xu.2014 ; Wang.2014 ; Bruschi.2014 ; D.E.Bruschi.2014 ; Hosseinidehaj.2015 ; Wang.2016 ; He.2016 ; Huang.2018 ; Shahbazi.2020 ; Wu.2022 ; Bhattacharya.2022 ; Zeng.2022 ; Wushumin.2022 ; txsf ; J. Ariadna ; Qiang ; Dong19 ; Dong20 . For example, Torres-Arenas et al. presented the entanglement measures of tripartite W-states in a noninertial frame through the coordinate transformation between Minkowski and Rindler J. Ariadna . Qiang et al. presented analytical concurrences for bipartite and tripartite entanglements simultaneously of Dirac fields in noninertial frames Qiang . However, Wu et al. proposed a different viewpoint Wu.2023 . They found that as the Hawking temperature increases, the fidelity of quantum teleportation may increase monotonically, rather than necessarily decrease monotonically in a bipartite system. Naturally, we are curious about the impact of the Hawking effect of black holes on teleportation fidelity in tripartite systems. However, in many-body systems, the fidelity of quantum teleportation has not been fully established.

The aim of this study was to generalize the FEF of bipartite systems to the multipartite case. We explored the FEF of multipartite states for Dirac fields in Schwarzschild spacetime. We suppose that Alice, Bob, and Charlie initially share an X-type state or a W-like state. Alice and Bob remain stationary in an asymptotically flat region, while Charlie positions himself near the event horizon of the black hole. For an X-type state, we discovered that the Hawking effect of the black hole has both positive and negative impacts on the FEF of Dirac fields, depending on the selection of the initial states. For a W-like state, the Hawking effect of the black hole has only a positive impact on the FEF of Dirac fields, independent of the selection of the initial states. Consequently, the Hawking effect of the black hole can not only decrease but also increase the FEF in Schwarzschild spacetime.

The rest of this paper is organized as follows. Section II discusses the calculation of the multipartite FEF and the lower bounds of NN-qubit states. In particular, we introduce the FEF for X-type states of tripartite systems. Section III presents our investigation of the influence of the Hawking effect on the FEF with the X-type state in Schwarzschild spacetime. As discussed in Section IV, we investigated the influence of the Hawking effect on the FEF with the W-like state in Schwarzschild spacetime. Conclusions are presented in Section V.

II MULTIPARTITE FEF OF NN-QUBIT STATES

We consider the NN-qubit (N2)(N\geq 2) systems HNH^{\otimes N} with d=2d=2. Denote {|0,|1}\{|0\rangle,|1\rangle\} the computational basis of HH. Then, the multipartite FEF of the NN-qubit state ρ\rho in HNH^{\otimes N} is given by Xujianwei.2016

f(ρ)=maxU1,,UNϕ|(i=1NUi)ρ(i=1NUi)|ϕ,\displaystyle f(\rho)=\mathop{\max}_{U_{1},\ldots,U_{N}}\langle\phi|(\otimes^{N}_{i=1}U^{\dagger}_{i})\rho(\otimes^{N}_{i=1}U_{i})|\phi\rangle, (1)

where max runs over all 2×22\times 2 unitary matrices U1,U2,U_{1},U_{2}, ,UN\ldots,U_{N} and |ϕ|\phi\rangle is the GHZ state,

|ϕ=12(|000+|111).\displaystyle|\phi\rangle=\frac{1}{\sqrt{2}}(|00\ldots 0\rangle+|11\ldots 1\rangle). (2)

Generally, it is challenging to calculate f(ρ)f(\rho) analytically. We can calculate the lower bounds given by

f(ρ)maxmkϕ|(σm1σmN)ρ(σm1σmN)|ϕ=:fl(ρ),\displaystyle\begin{aligned} f(\rho)&\geq\mathop{\max}\limits_{m_{k}}\langle\phi|(\sigma_{m_{1}}\otimes\cdots\otimes\sigma_{m_{N}})\rho(\sigma_{m_{1}}\otimes\cdots\otimes\sigma_{m_{N}})|\phi\rangle\\ &=:f_{l}(\rho),\end{aligned} (3)

where mk{0,1,2,3}m_{k}\in\{0,1,2,3\}, σ0=I\sigma_{0}=I, and σ1=X\sigma_{1}=X, σ2=Y\sigma_{2}=Y and σ3=Z\sigma_{3}=Z are the standard Pauli matrices.

Example 1.

Consider the FEF of the bipartite X-type state,

ρX=(ρ1100ρ140ρ22ρ2300ρ23ρ330ρ1400ρ44),\displaystyle\rho_{X}=\left(\begin{array}[]{cccc}\rho_{11}&0&0&-\rho_{14}\\ 0&\rho_{22}&-\rho_{23}&0\\ 0&-\rho_{23}&\rho_{33}&0\\ -\rho_{14}&0&0&\rho_{44}\\ \end{array}\right), (8)

where ρ11+ρ22+ρ33+ρ44=1\rho_{11}+\rho_{22}+\rho_{33}+\rho_{44}=1, ρ22ρ33|ρ23|2\rho_{22}\rho_{33}\geq|\rho_{23}|^{2} and ρ11ρ44|ρ14|2\rho_{11}\rho_{44}\geq|\rho_{14}|^{2}.

From (3), we obtain fl(ρX)=maxϕ|(σm1σm2)ρ(σm1σm2)|ϕf_{l}(\rho_{X})=\mathop{\max}\langle\phi|(\sigma_{m_{1}}\otimes\sigma_{m_{2}})\rho(\sigma_{m_{1}}\otimes\sigma_{m_{2}})|\phi\rangle, where |ϕ=12(|00+|11)|\phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) and max runs over all Pauli matrices σi\sigma_{i}, i=0,1,2,3i=0,1,2,3. We obtain (see Appendix A)

fl(ρX)=12(00|+11|)(σ0σ2)ρ(σ0σ2)(|00+|11)=12(ρ22+ρ33+2ρ23).\displaystyle\begin{aligned} f_{l}(\rho_{X})&=\frac{1}{2}(\langle 00|+\langle 11|)(\sigma_{0}\otimes\sigma_{2})\rho(\sigma_{0}\otimes\sigma_{2})(|00\rangle+|11\rangle)\\ &=\frac{1}{2}(\rho_{22}+\rho_{33}+2\rho_{23}).\end{aligned}

In this case, m1=0m_{1}=0 and m2=2m_{2}=2. In fact, the lower bound flf_{l} obtained here is the same as the real ff in Badziag.2000 .

Example 2.

Consider the following tripartite X-type states,

ρX=(ρ11000000ρ180ρ2200000000ρ3300000000ρ4400000000ρ5500000000ρ6600000000ρ770ρ18000000ρ88),\displaystyle\rho_{X}=\left(\begin{array}[]{cccccccc}\rho_{11}&0&0&0&0&0&0&-\rho_{18}\\ 0&\rho_{22}&0&0&0&0&0&0\\ 0&0&\rho_{33}&0&0&0&0&0\\ 0&0&0&\rho_{44}&0&0&0&0\\ 0&0&0&0&\rho_{55}&0&0&0\\ 0&0&0&0&0&\rho_{66}&0&0\\ 0&0&0&0&0&0&\rho_{77}&0\\ -\rho_{18}&0&0&0&0&0&0&\rho_{88}\end{array}\right), (17)

where ρ11+ρ22+ρ33+ρ44+ρ55+ρ66+ρ77+ρ88=1\rho_{11}+\rho_{22}+\rho_{33}+\rho_{44}+\rho_{55}+\rho_{66}+\rho_{77}+\rho_{88}=1 and we assume ρ11ρ88|ρ18|2\rho_{11}\rho_{88}\geq|\rho_{18}|^{2}.

From (3), the FEF is estimated by

fl(ρX)=12(ρ11+ρ88+2ρ18),\displaystyle f_{l}(\rho_{X})=\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}), (18)

with ρ11+ρ8812\rho_{11}+\rho_{88}\geq\frac{1}{2} and ρ1812(1ρ11ρ88)\rho_{18}\geq\frac{1}{2}(1-\rho_{11}-\rho_{88}); see the detailed analysis in Appendix B.

III HAWKING EFFECT ON THE FEF OF X-TYPE STATE IN SCHWARZSCHILD SPACETIME

We considered the Hawking effect on the FEF of the X-type state in Schwarzschild spacetime. The X-type states are of particular significance in quantum information, especially in the research of quantum entanglement. Rau has made excellent contributions to the study of X-type states and provided the algebraic characterization of X-type states Rau.2009 . Moreover, in 2010 Rau studied the generalized NN-qubit X-type states and their symmetries Rau.2010 , giving rise to a comprehensive understanding of the properties of the X-type states.

Assume that Alice, Bob, and Charlie initially share an X-type state for three Unruh modes at an asymptotically flat region of a Schwarzschild black hole; then, Alice and Bob remain in the asymptotically flat region, while Charlie lingers near the event horizon of the black hole. Charlie uses his excited detector to probe the thermal Fermi-Dirac particle distribution. The Unruh vacuum state and the excited state of the fermionic mode in the Schwarzschild spacetime can be written as Wu.2023

|0u=1eωT+1|00001eωT+eωT+2|0101+1eωT+eωT+2|10101eωT+1|1111\displaystyle\begin{aligned} |0\rangle_{u}&=\frac{1}{e^{-\frac{\omega}{T}}+1}|0000\rangle-\frac{1}{\sqrt{e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2}}|0101\rangle\\ &+\frac{1}{\sqrt{e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2}}|1010\rangle-\frac{1}{e^{\frac{\omega}{T}}+1}|1111\rangle\end{aligned} (19)

and

|1u=qR[1eωT+1|10001eωT+1|1101]+qL[1eωT+1|0001+1eωT+1|1011],\displaystyle\begin{aligned} |1\rangle_{u}&=q_{R}[\frac{1}{\sqrt{e^{-\frac{\omega}{T}}+1}}|1000\rangle-\frac{1}{\sqrt{e^{\frac{\omega}{T}}+1}}|1101\rangle]\\ &+q_{L}[\frac{1}{\sqrt{e^{-\frac{\omega}{T}}+1}}|0001\rangle+\frac{1}{\sqrt{e^{\frac{\omega}{T}}+1}}|1011\rangle],\end{aligned} (20)

where T=18πMT=\frac{1}{8\pi M} is the Hawking temperature with MM the mass of the black hole. ω\omega is frequency. |mmnn=|mkout+|mkin|nkout|nkin+|mm^{{}^{\prime}}n^{{}^{\prime}}n\rangle=|m_{k}\rangle^{+}_{out}|m^{{}^{\prime}}_{-k}\rangle^{-}_{in}\\ |n^{{}^{\prime}}_{-k}\rangle^{-}_{out}|n_{k}\rangle^{+}_{in}, where {|mkout+}\{|m_{k}\rangle^{+}_{out}\} and {|mkin}\{|m_{-k}\rangle^{-}_{in}\} are the orthonormal bases for the exterior and interior regions (denoted by the subscripts {out,in}\{out,in\}) of the Schwarzschild black hole, respectively. The superscripts {+,}\{+,-\} represent fermions and anti-fermions, respectively. The coefficients qRq_{R} and qLq_{L} in (20) satisfy |qR|2+|qL|2=1|q_{R}|^{2}+|q_{L}|^{2}=1.

Because Charlie is unable to access the modes within the event horizon of the black hole, we trace out the inaccessible modes. The reduced density matrix ρXABCout\rho^{ABC_{out}}_{X} is of the type (17), with all the nonzero entries given by

ρ1,1ABCout=(eωT+1)1ρ11+|qL|2(eωT+1)1ρ22,ρ3,3ABCout=|qR|2ρ22,ρ4,4ABCout=(eωT+1)1ρ11+|qL|2(eωT+1)1ρ22,ρ5,5ABCout=(eωT+1)1ρ33+|qL|2(eωT+1)1ρ44,ρ7,7ABCout=|qR|2ρ44,ρ8,8ABCout=(eωT+1)1ρ33+|qL|2(eωT+1)1ρ44,ρ9,9ABCout=(eωT+1)1ρ55+|qL|2(eωT+1)1ρ66,ρ11,11ABCout=|qR|2ρ66,ρ12,12ABCout=(eωT+1)1ρ55+|qL|2(eωT+1)1ρ66,ρ13,13ABCout=(eωT+1)1ρ77+|qL|2(eωT+1)1ρ88,ρ15,15ABCout=|qR|2ρ88,ρ16,16ABCout=(eωT+1)1ρ77+|qL|2(eωT+1)1ρ88,ρ1,4ABCout=(eωT+eωT+2)12[ρ11+|qL|2ρ22],ρ5,8ABCout=(eωT+eωT+2)12[ρ33+|qL|2ρ44],ρ9,12ABCout=(eωT+eωT+2)12[ρ55+|qL|2ρ66],ρ13,16ABCout=(eωT+eωT+2)12[ρ77+|qL|2ρ88],ρ1,15ABCout=qR(eωT+1)12ρ18,ρ4,15ABCout=qR(eωT+1)12ρ18,ρ14ABCout=ρ41ABCout,ρ58ABCout=ρ85ABCout,ρ9,12ABCout=ρ12,9ABCout,ρ13,16ABCout=ρ16,13ABCout,ρ1,15ABCout=ρ15,1ABCout,ρ4,15ABCout=ρ15,14ABCout.\displaystyle\begin{aligned} &\rho^{ABC_{out}}_{1,1}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{11}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{22},\\ &\rho^{ABC_{out}}_{3,3}=|q_{R}|^{2}\rho_{22},\\ &\rho^{ABC_{out}}_{4,4}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{11}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}\rho_{22},\\ &\rho^{ABC_{out}}_{5,5}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{33}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{44},\\ &\rho^{ABC_{out}}_{7,7}=|q_{R}|^{2}\rho_{44},\\ &\rho^{ABC_{out}}_{8,8}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{33}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}\rho_{44},\\ &\rho^{ABC_{out}}_{9,9}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{55}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{66},\\ &\rho^{ABC_{out}}_{11,11}=|q_{R}|^{2}\rho_{66},\\ &\rho^{ABC_{out}}_{12,12}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{55}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}\rho_{66},\\ &\rho^{ABC_{out}}_{13,13}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{77}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{88},\\ &\rho^{ABC_{out}}_{15,15}=|q_{R}|^{2}\rho_{88},\\ &\rho^{ABC_{out}}_{16,16}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{77}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}\rho_{88},\\ &\rho^{ABC_{out}}_{1,4}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}[\rho_{11}+|q_{L}|^{2}\rho_{22}],\\ &\rho^{ABC_{out}}_{5,8}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}[\rho_{33}+|q_{L}|^{2}\rho_{44}],\\ &\rho^{ABC_{out}}_{9,12}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}[\rho_{55}+|q_{L}|^{2}\rho_{66}],\\ &\rho^{ABC_{out}}_{13,16}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}[\rho_{77}+|q_{L}|^{2}\rho_{88}],\\ &\rho^{ABC_{out}}_{1,15}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{18},\\ &\rho^{ABC_{out}}_{4,15}=q_{R}(e^{\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{18},\\ &\rho^{ABC_{out}}_{14}=\rho^{ABC_{out}}_{41},~{}~{}~{}\rho^{ABC_{out}}_{58}=\rho^{ABC_{out}}_{85},\\ &\rho^{ABC_{out}}_{9,12}=\rho^{ABC_{out}}_{12,9},~{}~{}~{}\rho^{ABC_{out}}_{13,16}=\rho^{ABC_{out}}_{16,13},\\ &\rho^{ABC_{out}}_{1,15}=\rho^{ABC_{out}}_{15,1},~{}~{}~{}\rho^{ABC_{out}}_{4,15}=\rho^{ABC_{out}}_{15,14}.\end{aligned}

Assume that Charlie’s detector exclusively detects fermionic modes, i.e., the antifermionic modes remain unexcited in a single detector upon fermion detection. Consequently, by tracing out the antifermionic mode {|nkout}\{|n^{{}^{\prime}}_{-k}\rangle^{-}_{out}\} beyond the event horizon of the Schwarzschild black hole, we obtain

ρXS=(ρ11S000000ρ18S0ρ22S00000000ρ33S00000000ρ44S00000000ρ55S00000000ρ66S00000000ρ77S0ρ18S000000ρ88S),\displaystyle\rho^{S}_{X}=\left(\begin{array}[]{cccccccc}\rho^{S}_{11}&0&0&0&0&0&0&-\rho^{S}_{18}\\ 0&\rho^{S}_{22}&0&0&0&0&0&0\\ 0&0&\rho^{S}_{33}&0&0&0&0&0\\ 0&0&0&\rho^{S}_{44}&0&0&0&0\\ 0&0&0&0&\rho^{S}_{55}&0&0&0\\ 0&0&0&0&0&\rho^{S}_{66}&0&0\\ 0&0&0&0&0&0&\rho^{S}_{77}&0\\ -\rho^{S}_{18}&0&0&0&0&0&0&\rho^{S}_{88}\\ \end{array}\right), (29)

where

ρ11s=(eωT+1)1ρ11+|qL|2(eωT+1)1ρ22,ρ22s=(eωT+1)1ρ11+[|qR|2+|qL|2(eωT+1)1]ρ22,ρ33s=(eωT+1)1ρ33+|qL|2(eωT+1)1ρ44,ρ44s=(eωT+1)1ρ33+[|qR|2+|qL|2(eωT+1)1]ρ44,ρ55s=(eωT+1)1ρ55+|qL|2(eωT+1)1ρ66,ρ66s=(eωT+1)1ρ55+[|qR|2+|qL|2(eωT+1)1]ρ66,ρ77s=(eωT+1)1ρ77+|qL|2(eωT+1)1ρ88,ρ88s=(eωT+1)1ρ77+[|qR|2+|qL|2(eωT+1)1]ρ88,ρ18s=qR(eωT+1)12ρ18.\displaystyle\begin{aligned} &\rho^{s}_{11}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{11}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{22},\\ &\rho^{s}_{22}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{11}+[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{22},\\ &\rho^{s}_{33}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{33}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{44},\\ &\rho^{s}_{44}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{33}+[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{44},\\ &\rho^{s}_{55}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{55}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{66},\\ &\rho^{s}_{66}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{55}+[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{66},\\ &\rho^{s}_{77}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{77}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{88},\\ &\rho^{s}_{88}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{77}+[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{88},\\ &\rho^{s}_{18}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{18}.\\ \end{aligned}

Assuming that

(eωT+1)1ρ11+|qL|2(eωT+1)1ρ22+(eωT+1)1ρ77+[|qR|2+|qL|2(eωT+1)1]ρ8812,\displaystyle\begin{aligned} (e^{-\frac{\omega}{T}}+&1)^{-1}\rho_{11}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{22}+(e^{\frac{\omega}{T}}+1)^{-1}\rho_{77}\\ &+[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{88}\geq\frac{1}{2},\end{aligned}

we obtain from (18???)

fl(ρXS)=12{(eωT+1)1ρ11+|qL|2(eωT+1)1ρ22+(eωT+1)1ρ77+2qR(eωT+1)12ρ18+[|qR|2+|qL|2(eωT+1)1]ρ88}.\displaystyle\begin{aligned} f_{l}(\rho^{S}_{X})&=\frac{1}{2}\{(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{11}+|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{22}\\ &+(e^{\frac{\omega}{T}}+1)^{-1}\rho_{77}+2q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{18}\\ &+[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{88}\}.\end{aligned} (30)

The difference of f(ρXS)f(\rho^{S}_{X}) between Hawking temperatures T=T0T=T_{0} and T=0T=0 is given by

ΔTfl(ρXS(T0))fl(ρXS(T=T0))fl(ρXS(T=0))=12{(ρ77ρ11|qL|2ρ22+|qL|2ρ88)(eωT+1)12qRρ18[1(eωT+1)12]}.\displaystyle\begin{aligned} \Delta_{T}f_{l}(\rho^{S}_{X}(T_{0}))&\equiv f_{l}(\rho^{S}_{X}(T=T_{0}))-f_{l}(\rho^{S}_{X}(T=0))\\ &=\frac{1}{2}\{(\rho_{77}-\rho_{11}-|q_{L}|^{2}\rho_{22}+|q_{L}|^{2}\rho_{88})\\ &\cdot(e^{\frac{\omega}{T}}+1)^{-1}-2q_{R}\rho_{18}[1-(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}]\}.\end{aligned}

Δfl(ρXS(T0))>0\Delta f_{l}(\rho^{S}_{X}(T_{0}))>0 (<0<0) implies that fl(ρXS)T|T0>0\frac{\partial f_{l}(\rho^{S}_{X})}{\partial T}|_{T_{0}}>0 (<0<0).

Next, we investigated the variation of fl(ρXS)f_{l}(\rho^{S}_{X}) with respect to the Hawking temperature TT through several examples. As shown in Fig. 1 (GHZ state) and Fig. 2, it is evident that the fully entangled fraction fl(ρXS)f_{l}(\rho^{S}_{X}) exhibits a monotonic decrease with increasing Hawking temperature TT. Furthermore, we observe that fl(ρXS)f_{l}(\rho^{S}_{X}) is a monotonically increasing function of the frequency ω\omega and qRq_{R}. Note that the fully entangled fraction fl(ρXS)f_{l}(\rho^{S}_{X}) depends on the selection of the Unruh modes. An Unruh mode with qR=1q_{R}=1 is optimal. Consequently, the FEF can be preserved by selecting the high-frequency mode for maximally entangled states in Schwarzschild spacetime.

Refer to caption
Figure 1: Lower bound of FEF fl(ρXS)f_{l}(\rho^{S}_{X}) as a function of Hawking temperature TT for different ω\omega and qRq_{R}. The initial parameters are fixed as ρ11=ρ88=ρ18=12\rho_{11}=\rho_{88}=\rho_{18}=\frac{1}{2} and ρ22=ρ77=0\rho_{22}=\rho_{77}=0, which correspond to the GHZ states.
Refer to caption
Figure 2: Lower bound of FEF fl(ρXS)f_{l}(\rho^{S}_{X}) as a function of Hawking temperature TT for different ω\omega and qRq_{R}. The initial parameters are fixed as ρ11=ρ88=ρ18=13\rho_{11}=\rho_{88}=\rho_{18}=\frac{1}{3} and ρ22=ρ77=16\rho_{22}=\rho_{77}=\frac{1}{6}.

As shown in Fig. 3, fl(ρXS)f_{l}(\rho^{S}_{X}) increases monotonically as the Hawking temperature TT increases. This result implies that the Hawking effect of the black hole has a beneficial impact on the FEF. Consequently, the Hawking effect may result in a positive impact on the overall fidelity of quantum teleportation. Additionally, we observe that fl(ρXS)f_{l}(\rho^{S}_{X}) increases with increasing qRq_{R}. This result again demonstrates that the FEF depends on the choice of the Unruh modes, and the Unruh mode with qR=1q_{R}=1 is always optimal for the FEF. However, an increase in the frequency ω\omega has a by-effect on the FEF.

Refer to caption
Figure 3: Lower bound of FEF fl(ρXS)f_{l}(\rho^{S}_{X}) as a function of Hawking temperature TT for different ω\omega and qRq_{R}. The initial parameters are fixed as ρ11=0.1,ρ22=0,ρ77=0.4,ρ88=0.5\rho_{11}=0.1,\rho_{22}=0,\rho_{77}=0.4,\rho_{88}=0.5 and ρ18=0.2\rho_{18}=0.2.

As shown in Fig. 4, for qR=1q_{R}=1, fl(ρXS)f_{l}(\rho^{S}_{X}) initially rises to its peak value and subsequently decreases consistently as the Hawking temperature TT increases. This result indicates that the FEF for the single-mode approximation is both positively and negatively affected by the Hawking effect. It is evident that the maximum fidelity is contingent upon the Hawking temperature TT and the frequency ω\omega. Interestingly, for qR=0.9q_{R}=0.9 and qR=0.8q_{R}=0.8, fl(ρXS)f_{l}(\rho^{S}_{X}) exhibits a monotonic increase as the Hawking temperature TT increases. Therefore, we can conclude that for different types of Unruh modes, the FEF exhibits entirely distinct properties with increasing Hawking temperature TT. That is, the Hawking effect of the black hole has both positive and negative impacts on the FEF of Dirac fields for the X-type state.

Refer to caption
Figure 4: Lower bound of FEF fl(ρXS)f_{l}(\rho^{S}_{X}) as a function of Hawking temperature TT for different ω\omega and qRq_{R}. The initial parameters are fixed as ρ11=4233,ρ22=0,ρ77=2323,ρ88=13\rho_{11}=\frac{4-2\sqrt{3}}{3},\rho_{22}=0,\rho_{77}=\frac{2\sqrt{3}-2}{3},\rho_{88}=\frac{1}{3} and ρ18=313\rho_{18}=\frac{\sqrt{3}-1}{3}.

IV HAWKING EFFECT ON THE FEF WITH W-LIKE STATE IN SCHWARZSCHILD SPACETIME

We considered the following W-like states of the tripartite systems:

ρW=ρ22|001001|+ρ23|001010|+ρ25|001100|+ρ32|010001|+ρ33|010010|+ρ33|010100|+ρ52|100001|+ρ53|100010|+ρ55|100100|.\displaystyle\begin{aligned} \rho_{W}&=\rho_{22}|001\rangle\langle 001|+\rho_{23}|001\rangle\langle 010|+\rho_{25}|001\rangle\langle 100|\\ &+\rho_{32}|010\rangle\langle 001|+\rho_{33}|010\rangle\langle 010|+\rho_{33}|010\rangle\langle 100|\\ &+\rho_{52}|100\rangle\langle 001|+\rho_{53}|100\rangle\langle 010|+\rho_{55}|100\rangle\langle 100|.\end{aligned}

The density matrix is given by

ρW=(000000000ρ22ρ230ρ250000ρ32ρ330ρ35000000000000ρ52ρ530ρ55000000000000000000000000000),\displaystyle\rho_{W}=\left(\begin{array}[]{cccccccc}0&0&0&0&0&0&0&0\\ 0&\rho_{22}&\rho_{23}&0&\rho_{25}&0&0&0\\ 0&\rho_{32}&\rho_{33}&0&\rho_{35}&0&0&0\\ 0&0&0&0&0&0&0&0\\ 0&\rho_{52}&\rho_{53}&0&\rho_{55}&0&0&0\\ 0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0\\ \end{array}\right), (39)

where ρ22+ρ33+ρ55=1\rho_{22}+\rho_{33}+\rho_{55}=1.

For the state (39), the lower bound of FEF is given by

fl(ρW)=12ρ22\displaystyle\begin{aligned} f_{l}(\rho_{W})=\frac{1}{2}\rho_{22}\end{aligned} (40)

with ρ2212\rho_{22}\geq\frac{1}{2}; see the detailed analysis in Appendix C.

Consider that Alice, Bob, and Charlie initially share a W-like state for three Unruh modes at an asymptotically flat region of the Schwarzschild black hole. Afterwards, Alice and Bob stay in a region that approaches flatness, whereas Charlie remains close to the event horizon of the black hole. Charlie intends to utilize his excited detector to investigate the thermal Fermi-Dirac particle distribution. Because Charlie is unable to access the modes within the event horizon of the black hole, we trace out the inaccessible modes and derive the density matrix ρWABCout\rho^{ABC_{out}}_{W} according to (19) and (20); see Appendix D).

Assume that Charlie’s detector exclusively detects fermionic modes, indicating that the antifermionic modes remain unexcited in a single detector upon fermion detection. Consequently, it is necessary for us to trace out the antifermionic mode {|nkout}\{|n^{{}^{\prime}}_{-k}\rangle^{-}_{out}\} beyond the event horizon of the Schwarzschild black hole. Then, we obtain

ρWS=(ρ11S00000000ρ22Sρ23S0ρ25S0000ρ32Sρ33S0ρ35S000000ρ44S0ρ46S000ρ52Sρ53S0ρ55S000000ρ64S0ρ66S000000000000000000),\displaystyle\rho^{S}_{W}=\left(\begin{array}[]{cccccccc}\rho^{S}_{11}&0&0&0&0&0&0&0\\ 0&\rho^{S}_{22}&\rho^{S}_{23}&0&\rho^{S}_{25}&0&0&0\\ 0&\rho^{S}_{32}&\rho^{S}_{33}&0&\rho^{S}_{35}&0&0&0\\ 0&0&0&\rho^{S}_{44}&0&\rho^{S}_{46}&0&0\\ 0&\rho^{S}_{52}&\rho^{S}_{53}&0&\rho^{S}_{55}&0&0&0\\ 0&0&0&\rho^{S}_{64}&0&\rho^{S}_{66}&0&0\\ 0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0\end{array}\right), (49)

where

ρ11s=|qL|2(eωT+1)1ρ22,ρ22s=[|qR|2+|qL|2(eωT+1)1]ρ22,ρ33s=(eωT+1)1ρ33,ρ44s=(eωT+1)1ρ33,ρ55s=(eωT+1)1ρ55,ρ66s=(eωT+1)1ρ55,ρ23s=qR(eωT+1)12ρ23,ρ25s=qR(eωT+1)12ρ25,ρ32s=qR(eωT+1)12ρ32,ρ35s=(eωT+1)1ρ35,ρ46s=(eωT+1)1ρ35,ρ52s=qR(eωT+1)12ρ52,ρ53s=(eωT+1)1ρ53,ρ64s=(eωT+1)1ρ53,\displaystyle\begin{aligned} &\rho^{s}_{11}=|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{22},\\ &\rho^{s}_{22}=[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{22},\\ &\rho^{s}_{33}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{33},\\ &\rho^{s}_{44}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{33},\\ &\rho^{s}_{55}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{55},\\ &\rho^{s}_{66}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{55},\\ &\rho^{s}_{23}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{23},\\ &\rho^{s}_{25}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{25},\\ &\rho^{s}_{32}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{32},\\ &\rho^{s}_{35}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{35},\\ &\rho^{s}_{46}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{35},\\ &\rho^{s}_{52}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{52},\\ &\rho^{s}_{53}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{53},\\ &\rho^{s}_{64}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{53},\\ \end{aligned}

Assume that ρWS\rho^{S}_{W} satisfies the condition

ρ22s=[|qR|2+|qL|2(eωT+1)1]ρ2212.\displaystyle\begin{aligned} \rho^{s}_{22}=[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{22}\geq\frac{1}{2}.\end{aligned}

We obtain

fl(ρWS)=12[|qR|2+|qL|2(eωT+1)1]ρ22\displaystyle\begin{aligned} f_{l}(\rho^{S}_{W})=\frac{1}{2}[|q_{R}|^{2}+|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}]\rho_{22}\end{aligned} (50)

and

ΔTfl(ρWS(T))fl(ρWS(T=T0))F(ρWS(T=0))=12|qL|2(eωT+1)1ρ22.\displaystyle\begin{aligned} \Delta_{T}f_{l}(\rho^{S}_{W}(T))&\equiv f_{l}(\rho^{S}_{W}(T=T_{0}))-F(\rho^{S}_{W}(T=0))\\ &=\frac{1}{2}|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}\rho_{22}.\end{aligned}

Therefore, Δfl(ρWS(T0))>0\Delta f_{l}(\rho^{S}_{W}(T_{0}))>0 implies fl(ρWS)T|T0>0\frac{\partial f_{l}(\rho^{S}_{W})}{\partial T}|_{T_{0}}>0 and fl(ρWS)T|T0<0\frac{\partial f_{l}(\rho^{S}_{W})}{\partial T}|_{T_{0}}<0 implies Δfl(ρWS(T0))<0\Delta f_{l}(\rho^{S}_{W}(T_{0}))<0.

We illustrate the fluctuation pattern of FEF fl(ρWS)f_{l}(\rho^{S}_{W}) with respect to the Hawking temperature TT by an example. Fig. 5 presents the relationship between the lower bound of FEF fl(ρWS)f_{l}(\rho^{S}_{W}) and the Hawking temperature TT for different ω\omega, qRq_{R} and initial parameters. The result shows that for qR=1q_{R}=1, fl(ρWS)f_{l}(\rho^{S}_{W}) is a constant number 38\frac{3}{8}. For qR=0.9q_{R}=0.9 and qR=0.8q_{R}=0.8, fl(ρWS)f_{l}(\rho^{S}_{W}) monotonically increases as the Hawking temperature TT increases, regardless of the initial parameters. We also discovered that fl(ρWS)f_{l}(\rho^{S}_{W}) increases with increasing qRq_{R}, and the Unruh mode with qR=1q_{R}=1 is optimal. However, fl(ρWS)f_{l}(\rho^{S}_{W}) decreases with increasing ω\omega. Therefore, it is recommended to use low-frequency modes to improve the FEF. We found that the Hawking effect of the black hole has a positive impact on the FEF of Dirac fields for the W-like state.

Refer to caption
Figure 5: Lower bound of FEF fl(ρXS)f_{l}(\rho^{S}_{X}) as a function of Hawking temperature TT for different ω\omega and qRq_{R}. The initial parameters are fixed as ρ22=0.75\rho_{22}=0.75.

V Conclusion

In this study, we investigated the lower bound of FEF of Dirac fields among the users in Schwarzschild spacetime for tripartite systems. Alice, Bob, and Charlie initially share an X-type state or a W-like state. Alice and Bob stay still in an asymptotically flat region, while Charlie situates himself close to the event horizon of the black hole. For an X-type state, we found that the Hawking effect of the black hole has both positive and negative impacts on the FEF of Dirac fields, depending on the selection of the initial states. For a W-like state, the Hawking effect of the black hole has a positive impact on the FEF of Dirac fields, independent of the selection of the initial states. Hence, the Hawking effect of the black hole may both decrease and increase the FEF in Schwarzschild spacetime.

Furthermore, the choice of Unruh modes affects the lower bound of FEF. We found that the Unruh mode with qR=1q_{R}=1 is always optimal. Furthermore, from Fig. 4 we can conclude that for different types of Unruh modes, the FEF exhibits entirely distinct properties with increasing Hawking temperature TT. Wu et al. Wu.2023 obtained some surprising results that overturned the belief that the Hawking effect of the black hole can only destroy the fidelity of quantum teleportation in a bipartite system. Our results show that the Hawking effect may either decrease or increase the FEF lower bound, which may provide an insightful view from the perspective of quantum information and general relativity, and highlight further studies on the fidelity of many-body quantum states under Hawking effects.

Acknowledgements.
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 12204137, 12075159 and 12171044 and the specific research fund of the Innovation Platform for Academicians of Hainan Province under Grant No. YSPTZX202215 and the Hainan Academician Workstation.

Appendix A The FEF of Example 1

According to (3), we obtained the different lower bounds of FEF for (8) for different m1m_{1} and m2m_{2} as shown in Table 1.

Table 1: The lower bound of FEF of Example 1.
m1m_{1} m2m_{2} FEFFEF m1m_{1} m2m_{2} FEFFEF m1m_{1} m2m_{2} FEFFEF m1m_{1} m2m_{2} FEFFEF
0 0 12(ρ11+ρ442ρ14)\frac{1}{2}(\rho_{11}+\rho_{44}-2\rho_{14}) 11 0 12(ρ22+ρ332ρ23)\frac{1}{2}(\rho_{22}+\rho_{33}-2\rho_{23}) 22 0 12(ρ22+ρ33+2ρ23)\frac{1}{2}(\rho_{22}+\rho_{33}+2\rho_{23}) 33 0 12(ρ11+ρ44+2ρ14)\frac{1}{2}(\rho_{11}+\rho_{44}+2\rho_{14})
0 11 12(ρ22+ρ332ρ23)\frac{1}{2}(\rho_{22}+\rho_{33}-2\rho_{23}) 11 11 12(ρ11+ρ442ρ14)-\frac{1}{2}(\rho_{11}+\rho_{44}-2\rho_{14}) 22 11 12(ρ11+ρ44+2ρ14)-\frac{1}{2}(\rho_{11}+\rho_{44}+2\rho_{14}) 33 11 12(ρ22+ρ33+2ρ23)-\frac{1}{2}(\rho_{22}+\rho_{33}+2\rho_{23})
0 22 12(ρ22+ρ33+2ρ23)\frac{1}{2}(\rho_{22}+\rho_{33}+2\rho_{23}) 11 22 12(ρ11+ρ44+2ρ14)-\frac{1}{2}(\rho_{11}+\rho_{44}+2\rho_{14}) 22 22 12(ρ11+ρ442ρ14)-\frac{1}{2}(\rho_{11}+\rho_{44}-2\rho_{14}) 33 22 12(ρ22+ρ332ρ23)-\frac{1}{2}(\rho_{22}+\rho_{33}-2\rho_{23})
0 33 12(ρ11+ρ44+2ρ14)\frac{1}{2}(\rho_{11}+\rho_{44}+2\rho_{14}) 11 33 12(ρ22+ρ33+2ρ23)-\frac{1}{2}(\rho_{22}+\rho_{33}+2\rho_{23}) 22 33 12(ρ22+ρ332ρ23)-\frac{1}{2}(\rho_{22}+\rho_{33}-2\rho_{23}) 33 33 12(ρ11+ρ442ρ14)-\frac{1}{2}(\rho_{11}+\rho_{44}-2\rho_{14})

.

Appendix B The FEF of (17)

According to (3), we obtained the different lower bounds of FEF for (17) for different m1m_{1}, m2m_{2} and m3m_{3} as shown in Table 2.

Table 2: The lower bounds of FEF of (17).
m1m_{1} m2m_{2} m3m_{3} FEFFEF m1m_{1} m2m_{2} m3m_{3} FEFFEF m1m_{1} m2m_{2} m3m_{3} FEFFEF m1m_{1} m2m_{2} m3m_{3} FEFFEF
0 0 0 12(ρ11+ρ882ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18}) 11 0 0 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55}) 22 0 0 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55}) 33 0 0 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18})
0 0 11 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77}) 11 0 11 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66}) 22 0 11 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66}) 33 0 11 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77})
0 0 22 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77}) 11 0 22 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66}) 22 0 22 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66}) 33 0 22 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77})
0 0 33 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}) 11 0 33 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 22 0 33 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 33 0 33 12(ρ11+ρ882ρ18)-\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18})
0 11 0 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66}) 11 11 0 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77}) 22 11 0 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77}) 33 11 0 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66})
0 11 11 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 11 11 11 12(ρ11+ρ882ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18}) 22 11 11 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}) 33 11 11 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55})
0 11 22 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 11 11 22 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}) 22 11 22 12(ρ11+ρ882ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18}) 33 11 22 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55})
0 11 33 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66}) 11 11 33 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77}) 22 11 33 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77}) 33 11 33 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66})
0 22 0 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66}) 11 22 0 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77}) 22 22 0 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77}) 33 22 0 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66})
0 22 11 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 11 22 11 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}) 22 22 11 12(ρ11+ρ882ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18}) 33 22 11 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55})
0 22 22 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 11 22 22 12(ρ11+ρ882ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18}) 22 22 22 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}) 33 22 22 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55})
0 22 33 12(ρ33+ρ66)-\frac{1}{2}(\rho_{33}+\rho_{66}) 11 22 33 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77}) 22 22 33 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77}) 33 22 33 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66})
0 33 0 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18}) 11 33 0 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 22 33 0 12(ρ44+ρ55)-\frac{1}{2}(\rho_{44}+\rho_{55}) 33 33 0 12(ρ11+ρ882ρ18)-\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18})
0 33 11 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77}) 11 33 11 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66}) 22 33 11 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66}) 33 33 11 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77})
0 33 22 12(ρ22+ρ77)-\frac{1}{2}(\rho_{22}+\rho_{77}) 11 33 22 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66}) 22 33 22 12(ρ33+ρ66)\frac{1}{2}(\rho_{33}+\rho_{66}) 33 33 22 12(ρ22+ρ77)\frac{1}{2}(\rho_{22}+\rho_{77})
0 33 33 12(ρ11+ρ882ρ18)-\frac{1}{2}(\rho_{11}+\rho_{88}-2\rho_{18}) 11 33 33 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55}) 22 33 33 12(ρ44+ρ55)\frac{1}{2}(\rho_{44}+\rho_{55}) 33 33 33 12(ρ11+ρ88+2ρ18)\frac{1}{2}(\rho_{11}+\rho_{88}+2\rho_{18})

.

Appendix C The FEF of (39)

According to (3), we obtained the different lower bounds of FEF for ρW\rho_{W} (39) for different m1m_{1}, m2m_{2}, and m3m_{3} as shown in Table 3.

Table 3: The lower bounds of FEF for ρW\rho_{W} of (39).
m1m_{1} m2m_{2} m3m_{3} FEFFEF m1m_{1} m2m_{2} m3m_{3} FEFFEF m1m_{1} m2m_{2} m3m_{3} FEFFEF m1m_{1} m2m_{2} m3m_{3} FEFFEF
0 0 0 0 11 0 0 12ρ55\frac{1}{2}\rho_{55} 22 0 0 12ρ55\frac{1}{2}\rho_{55} 33 0 0 0
0 0 11 12ρ22\frac{1}{2}\rho_{22} 11 0 11 12ρ33-\frac{1}{2}\rho_{33} 22 0 11 12ρ33-\frac{1}{2}\rho_{33} 33 0 11 -12ρ22\frac{1}{2}\rho_{22}
0 0 22 12ρ22\frac{1}{2}\rho_{22} 11 0 22 12ρ33-\frac{1}{2}\rho_{33} 22 0 22 12ρ33-\frac{1}{2}\rho_{33} 33 0 22 -12ρ22\frac{1}{2}\rho_{22}
0 0 33 0 11 0 33 12ρ55-\frac{1}{2}\rho_{55} 22 0 33 12ρ55-\frac{1}{2}\rho_{55} 33 0 33 0
0 11 0 12ρ33\frac{1}{2}\rho_{33} 11 11 0 12ρ22-\frac{1}{2}\rho_{22} 22 11 0 12ρ22-\frac{1}{2}\rho_{22} 33 11 0 -12ρ33\frac{1}{2}\rho_{33}
0 11 11 12ρ55-\frac{1}{2}\rho_{55} 11 11 11 0 22 11 11 0 33 11 11 12ρ55\frac{1}{2}\rho_{55}
0 11 22 12ρ55-\frac{1}{2}\rho_{55} 11 11 22 0 22 11 22 0 33 11 22 12ρ55\frac{1}{2}\rho_{55}
0 11 33 12ρ33-\frac{1}{2}\rho_{33} 11 11 33 12ρ22\frac{1}{2}\rho_{22} 22 11 33 12ρ22\frac{1}{2}\rho_{22} 33 11 33 12ρ33\frac{1}{2}\rho_{33}
0 22 0 12ρ33\frac{1}{2}\rho_{33} 11 22 0 12ρ22-\frac{1}{2}\rho_{22} 22 22 0 12ρ22-\frac{1}{2}\rho_{22} 33 22 0 -12ρ33\frac{1}{2}\rho_{33}
0 22 11 12ρ55-\frac{1}{2}\rho_{55} 11 22 11 0 22 22 11 0 33 22 11 12ρ55\frac{1}{2}\rho_{55}
0 22 22 12ρ55-\frac{1}{2}\rho_{55} 11 22 22 0 22 22 22 0 33 22 22 12ρ55\frac{1}{2}\rho_{55}
0 22 33 12ρ33-\frac{1}{2}\rho_{33} 11 22 33 12ρ22\frac{1}{2}\rho_{22} 22 22 33 12ρ22\frac{1}{2}\rho_{22} 33 22 33 12ρ33\frac{1}{2}\rho_{33}
0 33 0 0 11 33 0 -12ρ55\frac{1}{2}\rho_{55} 22 33 0 -12ρ55\frac{1}{2}\rho_{55} 33 33 0 0
0 33 11 12ρ22-\frac{1}{2}\rho_{22} 11 33 11 12ρ33\frac{1}{2}\rho_{33} 22 33 11 12ρ33\frac{1}{2}\rho_{33} 33 33 11 12ρ22\frac{1}{2}\rho_{22}
0 33 22 12ρ22-\frac{1}{2}\rho_{22} 11 33 22 12ρ33\frac{1}{2}\rho_{33} 22 33 22 12ρ33\frac{1}{2}\rho_{33} 33 33 22 12ρ22\frac{1}{2}\rho_{22}
0 33 33 0 11 33 33 12ρ55\frac{1}{2}\rho_{55} 22 33 33 12ρ55\frac{1}{2}\rho_{55} 33 33 33 0

.

Appendix D ρWABCout\rho^{ABC_{out}}_{W}

According to (19) and (20), we can rewrite (39). Because Charlie is unable to access the modes within the event horizon of the black hole, we trace over the inaccessible modes and derive the following density matrix ρWABCout\rho^{ABC_{out}}_{W}:

ρWABCout=(ρ11ABCout00ρ14ABCout000000000000000000000000000000ρ33ABCout0ρ35ABCout000ρ39ABCout00ρ3,12ABCout0000ρ41ABCout00ρ44ABCout00000000000000ρ53ABCout0ρ55ABCout00ρ58ABCoutρ59ABCout00ρ5,12ABCout00000000000000000000000000000000000000ρ83ABCout0ρ85ABCout00ρ88ABCoutρ89ABCout00ρ8,12ABCout000000ρ93ABCout0ρ95ABCout00ρ98ABCoutρ99ABCout00ρ9,12ABCout00000000000000000000000000000000000000ρ12,3ABCout0ρ12,5ABCout00ρ12,8ABCoutρ12,9ABCout00ρ12,12ABCout00000000000000000000000000000000000000000000000000000000000000000000),\displaystyle\rho^{ABC_{out}}_{W}=\left(\begin{array}[]{cccccccccccccccc}\rho^{ABC_{out}}_{11}&0&0&\rho^{ABC_{out}}_{14}&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&\rho^{ABC_{out}}_{33}&0&\rho^{ABC_{out}}_{35}&0&0&0&\rho^{ABC_{out}}_{39}&0&0&\rho^{ABC_{out}}_{3,12}&0&0&0&0\\ \rho^{ABC_{out}}_{41}&0&0&\rho^{ABC_{out}}_{44}&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&\rho^{ABC_{out}}_{53}&0&\rho^{ABC_{out}}_{55}&0&0&\rho^{ABC_{out}}_{58}&\rho^{ABC_{out}}_{59}&0&0&\rho^{ABC_{out}}_{5,12}&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&\rho^{ABC_{out}}_{83}&0&\rho^{ABC_{out}}_{85}&0&0&\rho^{ABC_{out}}_{88}&\rho^{ABC_{out}}_{89}&0&0&\rho^{ABC_{out}}_{8,12}&0&0&0&0\\ 0&0&\rho^{ABC_{out}}_{93}&0&\rho^{ABC_{out}}_{95}&0&0&\rho^{ABC_{out}}_{98}&\rho^{ABC_{out}}_{99}&0&0&\rho^{ABC_{out}}_{9,12}&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&\rho^{ABC_{out}}_{12,3}&0&\rho^{ABC_{out}}_{12,5}&0&0&\rho^{ABC_{out}}_{12,8}&\rho^{ABC_{out}}_{12,9}&0&0&\rho^{ABC_{out}}_{12,12}&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ \end{array}\right),

where

ρ11ABCout=|qL|2(eωT+1)1ρ22,ρ14ABCout=ρ41ABCout=|qL|2(eωT+eωT+2)12ρ22,ρ33ABCout=|qR|2ρ22,ρ35ABCout=qR(eωT+1)12ρ23,\displaystyle\allowdisplaybreaks[4]\begin{aligned} &\rho^{ABC_{out}}_{11}=|q_{L}|^{2}(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{22},\\ &\rho^{ABC_{out}}_{14}=\rho^{ABC_{out}}_{41}=|q_{L}|^{2}(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{22},\\ &\rho^{ABC_{out}}_{33}=|q_{R}|^{2}\rho_{22},\\ &\rho^{ABC_{out}}_{35}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{23},\\ \end{aligned}
ρ38ABCout=qR(eωT+1)12ρ23,ρ39ABCout=qR(eωT+1)12ρ25,ρ3,12ABCout=qR(eωT+1)12ρ25,ρ44ABCout=|qL|2(eωT+1)1ρ22,ρ53ABCout=qR(eωT+1)12ρ32,\displaystyle\begin{aligned} &\rho^{ABC_{out}}_{38}=q_{R}(e^{\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{23},\\ &\rho^{ABC_{out}}_{39}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{25},\\ &\rho^{ABC_{out}}_{3,12}=q_{R}(e^{\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{25},\\ &\rho^{ABC_{out}}_{44}=|q_{L}|^{2}(e^{\frac{\omega}{T}}+1)^{-1}\rho_{22},\\ &\rho^{ABC_{out}}_{53}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{32},\\ \end{aligned}
ρ55ABCout=(eωT+1)1ρ33,ρ58ABCout=ρ85ABCout=(eωT+eωT+2)12ρ33,ρ59ABCout=(eωT+1)1ρ35,ρ5,12ABCout=(eωT+eωT+2)12ρ35,ρ83ABCout=qR(eωT+1)12ρ32,ρ88ABCout=(eωT+1)1ρ33,ρ89ABCout=(eωT+eωT+2)12ρ35,ρ8,12ABCout=(eωT+1)1ρ35,ρ93ABCout=qR(eωT+1)12ρ52,ρ95ABCout=(eωT+1)1ρ53,ρ98ABCout=(eωT+eωT+2)12ρ53,ρ99ABCout=(eωT+1)1ρ55,ρ9,12ABCout=ρ12,9ABCout=(eωT+eωT+2)12ρ55,ρ12,3ABCout=qR(eωT+1)12ρ52,ρ12,5ABCout=(eωT+eωT+2)12ρ53,ρ12,8ABCout=(eωT+1)1ρ53,ρ12,12ABCout=(eωT+1)1ρ55.\displaystyle\begin{aligned} &\rho^{ABC_{out}}_{55}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{33},\\ &\rho^{ABC_{out}}_{58}=\rho^{ABC_{out}}_{85}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{33},\\ &\rho^{ABC_{out}}_{59}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{35},\\ &\rho^{ABC_{out}}_{5,12}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{35},\\ &\rho^{ABC_{out}}_{83}=q_{R}(e^{\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{32},\\ &\rho^{ABC_{out}}_{88}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{33},\\ &\rho^{ABC_{out}}_{89}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{35},\\ &\rho^{ABC_{out}}_{8,12}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{35},\\ &\rho^{ABC_{out}}_{93}=q_{R}(e^{-\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{52},\\ &\rho^{ABC_{out}}_{95}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{53},\\ &\rho^{ABC_{out}}_{98}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{53},\\ &\rho^{ABC_{out}}_{99}=(e^{-\frac{\omega}{T}}+1)^{-1}\rho_{55},\\ &\rho^{ABC_{out}}_{9,12}=\rho^{ABC_{out}}_{12,9}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{55},\\ &\rho^{ABC_{out}}_{12,3}=q_{R}(e^{\frac{\omega}{T}}+1)^{-\frac{1}{2}}\rho_{52},\\ &\rho^{ABC_{out}}_{12,5}=(e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2)^{-\frac{1}{2}}\rho_{53},\\ &\rho^{ABC_{out}}_{12,8}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{53},\\ &\rho^{ABC_{out}}_{12,12}=(e^{\frac{\omega}{T}}+1)^{-1}\rho_{55}.\\ \end{aligned}

References

  • (1) M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ.(2000).
  • (2) S.L. Braunstein, P. van Loock, Quantum information theory with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
  • (3) H.J. Kimble, The quantum internet. Nature 453, 1023 (2008).
  • (4) C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012).
  • (5) M.M. Wilde, Quantum Information Theory, Cambridge Univ. Press. (2013).
  • (6) C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).
  • (7) S. Pirandola, J. Eisert, C. Weedbrook et al., Advances in quantum teleportation, Nature Photon 9, 641 (2015).
  • (8) H.J. Briegel, W. Duer, J.I. Cirac, P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81, 5932 (1998).
  • (9) D. Gottesman, I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999).
  • (10) R. Raussendorf, H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
  • (11) S. Ishizaka, T. Hiroshima, Asymptotic teleportation scheme as a universal programmable quantum processor, Phys. Rev. Lett. 101, 240501 (2008).
  • (12) S. Popescu, Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72, 797 (1994).
  • (13) C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996).
  • (14) U. H. Danielsson, M. Schiffer, Quantum mechanics, common sense, and the black hole information paradox, Phys. Rev. D 48, 4779 (1993).
  • (15) J. R. Anglin, R. Laflamme, W. H. Zurek, J. P. Paz, Decoherence and recoherence in an analogue of the black hole information paradox, Phys. Rev. D 52, 2221 (1995).
  • (16) S. B. Giddings, M. Lippert, Precursors, black holes, and a locality bound, Phys. Rev. D 65, 024006 (2002).
  • (17) S. P. de Alwis, Black Hole Physics from Liouville Theory, Phys. Lett. B 300, 330 (1993).
  • (18) W. G. Anderson, P. R. Brady, R. Camporesi, Vacuum Polarisation and the Black Hole Singularity, Class.Quant.Grav. 10, 497 (1993).
  • (19) B. Jensen, Stability of black hole event horizons, Phys. Rev. D 51, 5511 (1995).
  • (20) M. Cvetic, F. Larsen, General rotating black holes in string theory: Greybody factors and event horizons, Phys. Rev. D 56, 4994 (1997).
  • (21) A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76, 93 (2004).
  • (22) I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in non-inertial frames, Phys. Rev. Lett. 95, 120404 (2005).
  • (23) P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74, 032326 (2006).
  • (24) Q. Pan and J. Jing, Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole, Phys. Rev. D 78, 065015 (2008)
  • (25) E. Martn-Martnez, L. J. Garay and J. Lun, Unveiling quantum entanglement degradation near a Schwarzschild black hole, Phys. Rev. D 82, 064006 (2010).
  • (26) J. Wang, Q. Pan and J. Jing, Entanglement redistribution in the Schwarzschild spacetime, Phys. Lett. B 692, 202 (2010).
  • (27) B. N. Esfahani, M. Shamirzai and M. Soltani, Reduction of entanglement degradation and teleportation improvement in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 84 025024 (2011).
  • (28) S. Xu, X.K. Song, J.D. Shi and L. Ye, How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole, Phys. Rev. D 89, 065022 (2014).
  • (29) J. Wang, J. Jing and H. Fan, Quantum discord and measurement-induced disturbance in the background of dilaton black holes, Phys. Rev. D 90, 025032 (2014).
  • (30) D. E. Bruschi et al., Quantum estimation of the Schwarzschild spacetime parameters of the Earth, Phys. Rev. D 90, 124001 (2014).
  • (31) D. E. Bruschi et al., Spacetime effects on satellite-based quantum communications, Phys. Rev.D 90, 045041 (2014).
  • (32) N. Hosseinidehaj and R. Malaney, Gaussian entanglement distribution via satellite, Phys. Rev. A 91, 022304 (2015).
  • (33) J. Wang, H. Cao, J. Jing and H. Fan, Gaussian quantum steering and its asymmetry in curved spacetime, Phys. Rev. D 93, 125011 (2016).
  • (34) J. He, S. Xu and L. Ye, Measurement-induced-nonlocality for Dirac particles in Garfinkle-Horowitz-Strominger dilation space-time, Phys. Lett. B 756, 278 (2016).
  • (35) J.L. Huang, W.C. Gan, Y. Xiao, F.W. Shu and M.H. Yung, Holevo Bound of Entropic Uncertainty in Schwarzschild Spacetime, Eur. Phys. J. C 78, 545 (2018).
  • (36) F. Shahbazi, S. Haseli, H. Dolatkhah and S. Salimi, Entropic uncertainty relation in garfinkle-horowitz-strominger dilation black hole, JCAP 10,047 (2020) .
  • (37) S.M. Wu and H.S. Zeng, Genuine tripartite nonlocality and entanglement in curved spacetime, Eur. Phys. J. C 82, 4 (2022).
  • (38) S. Bhattacharya and N. Joshi, Entanglement degradation in multi-event horizon spacetimes, Phys. Rev. D 105, 065007 (2022).
  • (39) S.M. Wu, Y.T. Cai, W.J. Peng and H.S. Zeng, Genuine N-partite entanglement and distributed relationships in the background of dilation black holes, Eur. Phys. J. C 82, 412 (2022).
  • (40) S.M. Wu and H.S. Zeng, Fermionic steering and its monogamy relations in Schwarzschild spacetime, Eur. Phys. J. C 82, 716 (2022).
  • (41) T. Zhang, X. Wang and S.M. Fei, Hawking effect can generate physically inaccessible genuine tripartite nonlocality, Eur. Phys. J. C 83, 607 (2023).
  • (42) A. J. Torres-Arenas, Q. Dong, G.H. Sun, W.C. Qiang and S.H. Dong, Entanglement measures of W-state in noninertial frames, Phys. Lett. B 789, 93 (2019).
  • (43) W.C. Qiang, G.H. Sun, Q. Dong and S.H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98, 022320 (2018).
  • (44) Q. Dong, A. J. Torres-Arenas, G.H. Sun, W.C. Qiang and S.H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14, 21603 (2019).
  • (45) Q. Dong, A. J. Torres-Arenas, G.H. Sun, and S.H. Dong, Tetrapartite entanglement features of W-Class state in uniform acceleration, Front. Phys. 15, 11602 (2020).
  • (46) S.M. Wu, X.W. Fan, R.D. Wang, H.Y. Wu, X.L. Huang and H.S. Zeng, Does Hawking effect always degrade fidelity of quantum teleportation in Schwarzschild spacetime?, J. High Energ. Phys. 2023, 232 (2023).
  • (47) J. Xu, Multipartite Fully Entangled Fraction, Int. J. Theor. Phys. 55, 2904 (2016).
  • (48) P. Badziag, M. Horodecki, P. Horodecki and R. Horodecki, Local environment can enhance fidelity of quantum teleportation, Phys. Rev. A 62, 012311 (2000).
  • (49) A. R. P. Rau, Algebraic characterization of X-states in quantum information, J. Phys. A: Math. Theor 42, 412002 (2009).
  • (50) S. Vinjanampathy and A. R. P. Rau, Generalized X states of N qubits and their symmetries, Phys. Rev. A 82, 032336 (2010).