This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ian G. Macdonald: Works of Art

Arun Ram   email: [email protected]

Abstract

Ian Macdonald’s works changed our perspective on so many parts of algebraic combinatorics and formal power series. This talk will display some selected works of the art of Ian Macdonald, representative of different periods of his oeuvre, and analyze how they resonate, both for the past development of our subject and for its future.

111AMS Subject Classifications: Primary 01A70; Secondary 05E05.

Acknowledgments. First and foremost my thanks go to Ian Macdonald for his teaching, companionship and for giving me bunches of handwritten notes and copies of his books over the years. I am so grateful that circumstances were such that I was able to convey these thanks directly to him in person in June 2023. I thank David Lumsden, Ziheng Zhou, Alex Shields and Dhruv Gupta for energy and insight as we worked through Ian Macdonald’s unpublished manuscript on the nn-line. I thank Chris Macdonald for reaching out to provide scans and files of the nn-line manuscript. I am very grateful to Laura Colmenarejo, Persi Diaconis and Ole Warnaar for helpful suggestions and revisions on this tribute article.

1 Preamble

This paper was prepared for the occasion of a lecture in tribute to Ian G. Macdonald, delivered at FPSAC 2024 in Bochum, Germany on 22 July 2024. I want to express thanks to the Executive Committee of FPSAC, the Organizing Committee of FPSAC 2024, and to the whole of our FPSAC 2024 community for making this lecture a possibility and for considering me for its delivery. Macdonald is my hero, and to be asked to play such a role in his legacy touches me deeply.


[Uncaptioned image][Uncaptioned image]Ian G. MacdonaldThe Symmetric Functions Bible\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.6}]{Macdonald.png}}}\phantom{TTTT}&\vbox{\hbox{\includegraphics[scale={0.6}]{SFHPAmazoninAd.png}}}\\ \\ \hbox{Ian G. Macdonald}&\hbox{The Symmetric Functions Bible}\end{matrix}

The image of Ian G. Macdonald is from https://sites.google.com/view/garsiafest/mementos

2 Tableaux and Macdonald polynomials

One of our favorite formulas is the formula for the Schur polynomial as a sum over semistandard Young tableaux (SSYTs),

sλ=TB(λ)xT,whereB(λ)={SSYTs of shape λ}andxT=x1(#1sinT)xn(#nsinT).s_{\lambda}=\sum_{T\in B(\lambda)}x^{T},\qquad\hbox{where}\qquad\begin{array}[]{c}B(\lambda)=\{\hbox{SSYTs of shape $\lambda$}\}\\ \hbox{and}\\ x^{T}=x_{1}^{\mathrm{(\#1s\ in\ }T)}\cdots x_{n}^{\mathrm{(\#}n\mathrm{s\ in\ }T)}.\end{array}

It is most amazing that if δ=(n1,,2,1,0)\delta=(n-1,\ldots,2,1,0) then

sλ=aλ+δaδ,whereaμ=wSn(1)(w)wxμs_{\lambda}=\frac{a_{\lambda+\delta}}{a_{\delta}},\qquad\hbox{where}\qquad a_{\mu}=\sum_{w\in S_{n}}(-1)^{\ell(w)}wx^{\mu}

with xμ=x1μ1xnμnx^{\mu}=x_{1}^{\mu_{1}}\cdots x_{n}^{\mu_{n}} if μ=(μ1,,μn)\mu=(\mu_{1},\ldots,\mu_{n}). This second formula for the Schur polynomial is the “Weyl character formula”, which (in this type A case) was one of the first definitions of the Schur function (Jacobi 1841, according to Macdonald).

Macdonald pointed out something spectacular. The first formula for the Schur polynomial is the special case q=tq=t of the formula

Pλ(q,t)=TB(λ)xTψT(q,t),where ψT(q,t) is given by (2.2) below,P_{\lambda}(q,t)=\sum_{T\in B(\lambda)}x^{T}\psi_{T}(q,t),\qquad\hbox{where $\psi_{T}(q,t)$ is given by \eqref{psidef} below,}

and the second formula for the Schur polynomial is a special case of

Pλ(q,qt)=Aλ+δ(q,t)Aδ(q,t),whereAμ(q,t)=wSn(t12)(w)TwEμ(q,t)P_{\lambda}(q,qt)=\frac{A_{\lambda+\delta}(q,t)}{A_{\delta}(q,t)},\qquad\hbox{where}\quad A_{\mu}(q,t)=\sum_{w\in S_{n}}(-t^{-\frac{1}{2}})^{\ell(w)}T_{w}E_{\mu}(q,t)

with TwT_{w} and Eμ(q,t)E_{\mu}(q,t) as defined (2.3) and (2.4) below. Maybe we think Schur polynomials are cool, but the Macdonald polynomials Pλ(q,t)P_{\lambda}(q,t) are two parameters cooler.


T=34224411123colegλ(b)legλ(b)coarmλ(b)armλ(b)bT=\begin{matrix}\leavevmode\hbox to142.66pt{\vbox to85.76pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.47638pt}{11.97083pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{28.45276pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.92914pt}{11.97083pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{28.45276pt}\pgfsys@lineto{56.90552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {} {{}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{2.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{2.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{2.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.47638pt}{40.42358pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@lineto{28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.92914pt}{40.42358pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{56.90552pt}\pgfsys@lineto{56.90552pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.3819pt}{40.42358pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{85.35828pt}{56.90552pt}\pgfsys@lineto{85.35828pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.83466pt}{40.42358pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{113.81104pt}{56.90552pt}\pgfsys@lineto{113.81104pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {} {} {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{4.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{4.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.47638pt}{68.87634pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{85.35828pt}\pgfsys@lineto{28.45276pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{85.35828pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.92914pt}{68.87634pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{85.35828pt}\pgfsys@lineto{56.90552pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.3819pt}{68.87634pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{85.35828pt}{85.35828pt}\pgfsys@lineto{85.35828pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.83466pt}{68.87634pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{113.81104pt}{85.35828pt}\pgfsys@lineto{113.81104pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{126.28741pt}{68.87634pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{142.2638pt}{85.35828pt}\pgfsys@lineto{142.2638pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {} {} {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{85.35828pt}\pgfsys@lineto{5.0pt}{85.35828pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{5.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\qquad\qquad\begin{matrix}\leavevmode\hbox to144.54pt{\vbox to144.86pt{\pgfpicture\makeatletter\hbox{\hskip 2.07999pt\lower-142.46379pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{142.2638pt}{0.0pt}\pgfsys@lineto{142.2638pt}{-28.45276pt}\pgfsys@lineto{113.81104pt}{-28.45276pt}\pgfsys@lineto{113.81104pt}{-85.35828pt}\pgfsys@lineto{56.90552pt}{-85.35828pt}\pgfsys@lineto{56.90552pt}{-113.81104pt}\pgfsys@lineto{28.45276pt}{-113.81104pt}\pgfsys@lineto{28.45276pt}{-142.2638pt}\pgfsys@lineto{0.0pt}{-142.2638pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}{}{{{}{}}}{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07999pt}{2.39998pt}\pgfsys@curveto{-1.69998pt}{0.95998pt}{-0.85318pt}{0.28pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85318pt}{-0.28pt}{-1.69998pt}{-0.95998pt}{-2.07999pt}{-2.39998pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{}{{}}\pgfsys@moveto{71.1319pt}{-0.4pt}\pgfsys@lineto{71.1319pt}{-36.58867pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{71.1319pt}{-0.2pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{71.1319pt}{-36.78867pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{74.6649pt}{-20.24432pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\scriptstyle{\mathrm{coleg}_{\lambda}(b)}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{{{}{}}}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{71.1319pt}{-48.76959pt}\pgfsys@lineto{71.1319pt}{-84.95828pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{71.1319pt}{-48.5696pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{71.1319pt}{-85.15828pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{74.6649pt}{-68.61394pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\scriptstyle{\mathrm{leg}_{\lambda}(b)}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{{{}{}}}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.4pt}{-42.67914pt}\pgfsys@lineto{65.04143pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.2pt}{-42.67914pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.24142pt}{-42.67914pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.98666pt}{-37.39613pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\scriptstyle{\mathrm{coarm}_{\lambda}(b)}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{{{}{}}}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{77.22235pt}{-42.67914pt}\pgfsys@lineto{113.41104pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{77.02235pt}{-42.67914pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{113.61104pt}{-42.67914pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{83.88821pt}{-37.39613pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\scriptstyle{\mathrm{arm}_{\lambda}(b)}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{}\pgfsys@moveto{71.1319pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {{}\pgfsys@rect{65.65306pt}{-49.48436pt}{10.95767pt}{13.61044pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{68.98607pt}{-46.15135pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}
Pλ(q,t)=TB(λ)xTψT(q,t).P_{\lambda}(q,t)=\sum_{T\in B(\lambda)}x^{T}\psi_{T}(q,t).

2.1 (q,t)(q,t)-hooks and the bosonic Macdonald polynomials Pλ(q,t)P_{\lambda}(q,t)

Let λn0\lambda\in\mathbb{Z}^{n}_{\geq 0} with λ1λn\lambda_{1}\geq\cdots\geq\lambda_{n} so that λ\lambda is a partition of length at most nn.

A box in λ\lambda is a pair b=(r,c)b=(r,c) with r{1,,n}r\in\{1,\dots,n\} and c{1,,λr}c\in\{1,\ldots,\lambda_{r}\}.

Identify λ\lambda with its set of boxes so that

λ={(r,c)|(r,c) is a box in λ}.\lambda=\{(r,c)\ |\ \hbox{$(r,c)$ is a box in $\lambda$}\}.

For a box b=(r,c)b=(r,c) in λ\lambda define

armλ(b)\displaystyle\mathrm{arm}_{\lambda}(b) =armλ(r,c)={(r,c)λ|c>c}and\displaystyle=\mathrm{arm}_{\lambda}(r,c)=\{(r,c^{\prime})\in\lambda\ |\ c^{\prime}>c\}\qquad\hbox{and}
legλ(b)\displaystyle\mathrm{leg}_{\lambda}(b) =legλ(r,c)={(r,c)λ|r>r}.\displaystyle=\mathrm{leg}_{\lambda}(r,c)=\{(r^{\prime},c)\in\lambda\ |\ r^{\prime}>r\}.

A SSYT (semistandard Young tableau) of shape λ\lambda filled from {1,,n}\{1,\ldots,n\} is a function

T:λ{1,,n}such thatT\colon\lambda\to\{1,\ldots,n\}\qquad\hbox{such that}
  1. (a)

    If (r,c),(r+1,c)λ(r,c),(r+1,c)\in\lambda then T(r,c)<T(r,c+1)T(r,c)<T(r,c+1),  <\begin{matrix}\leavevmode\hbox to28.85pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-14.42638pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{-14.22638pt}\pgfsys@lineto{0.0pt}{-14.22638pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{-14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.33748pt}{-9.61319pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$<$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

  2. (b)

    If (r,c),(r,c+1)λ(r,c),(r,c+1)\in\lambda then T(r,c)T(r,c+1)T(r,c)\leq T(r,c+1).   

    \begin{matrix}\leavevmode\hbox to14.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-28.65276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{-28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-14.22638pt}\pgfsys@lineto{14.22638pt}{-14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.25348pt}{-18.11528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\rotatebox{90.0}{$\geq$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

Let

B(λ)={SSYTs of shape λ filled from {1,,n}}.B(\lambda)=\{\hbox{SSYTs of shape $\lambda$ filled from $\{1,\ldots,n\}$}\}.

Let TB(λ)T\in B(\lambda) and let bλb\in\lambda. Let T(b)T(b) denote the entry in box bb of TT. Let i{1,,n}i\in\{1,\ldots,n\} with i>T(b)i>T(b). Define the ii-restricted arm length, ii-restricted leg length, and ii-restricted (q,t)(q,t)-hook length by

a(b,<i)=Card{barmλ(b)|T(b)<i},l(b,<i)=Card{blegλ(b)|T(b)<i},andhT(b,<i)=1tqa(b,<i)tl(b,<i)1qqa(b,<i)tl(b,<i).\begin{array}[]{l}a(b,<i)=\mathrm{Card}\{b^{\prime}\in\mathrm{arm}_{\lambda}(b)\ |\ T(b^{\prime})<i\},\\ \\ l(b,<i)=\mathrm{Card}\{b^{\prime}\in\mathrm{leg}_{\lambda}(b)\ |\ T(b^{\prime})<i\},\end{array}\qquad\hbox{and}\qquad h_{T}(b,<i)=\frac{1-t\cdot q^{a(b,<i)}t^{l(b,<i)}}{1-q\cdot q^{a(b,<i)}t^{l(b,<i)}}. (2.1)

For a column strict tableau TB(λ)T\in B(\lambda) define

ψT(q,t)=bλψT(b),whereψT(b)=i>T(b),iT(armλ(b))iT(legλ(b))hT(b,<i)hT(b,<i+1).\psi_{T}(q,t)=\prod_{b\in\lambda}\psi_{T}(b),\qquad\hbox{where}\qquad\psi_{T}(b)=\prod_{i>T(b),i\in T(\mathrm{arm}_{\lambda}(b))\atop i\not\in T(\mathrm{leg}\lambda(b))}\frac{h_{T}(b,<i)}{h_{T}(b,<i+1)}. (2.2)

The bosonic Macdonald polynomial is Pλ(q,t)[x1,,xn]P_{\lambda}(q,t)\in\mathbb{C}[x_{1},\ldots,x_{n}] given by

Pλ(q,t)=TB(λ)xTψT(q,t),wherexT=x1(#1sinT)xn(#nsinT).P_{\lambda}(q,t)=\sum_{T\in B(\lambda)}x^{T}\psi_{T}(q,t),\qquad\hbox{where}\quad x^{T}=x_{1}^{\mathrm{(\#1s\ in\ }T)}\cdots x_{n}^{\mathrm{(\#}n\mathrm{s\ in\ }T)}.

The Schur polynomial is

sλ=Pλ(t,t)=Pλ(0,0)=TB(λ)xT.s_{\lambda}=P_{\lambda}(t,t)=P_{\lambda}(0,0)=\sum_{T\in B(\lambda)}x^{T}.

2.2 Electronic and fermionic Macdonald polynomials

For i{1,,n1}i\in\{1,\ldots,n-1\} and f[x1,,xn]f\in\mathbb{C}[x_{1},\ldots,x_{n}] define

(sif)(x1,,xn)=f(x1,,xi1,xi+1,xi,xi+2,,xn)(s_{i}f)(x_{1},\ldots,x_{n})=f(x_{1},\ldots,x_{i-1},x_{i+1},x_{i},x_{i+2},\ldots,x_{n})

and

Tif=t12f+(1+si)t12t12xi1xi+11xi1xi+1f.T_{i}f=-t^{-\frac{1}{2}}f+(1+s_{i})\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}}x_{i}^{-1}x_{i+1}}{1-x_{i}^{-1}x_{i+1}}f.

If wSnw\in S_{n} and w=si1siw=s_{i_{1}}\cdots s_{i_{\ell}} is a reduced word for ww as a product of sis_{i}s then write

Tw=Ti1Tiandw=si1si.T_{w}=T_{i_{1}}\cdots T_{i_{\ell}}\qquad\hbox{and}\qquad w=s_{i_{1}}\cdots s_{i_{\ell}}. (2.3)

For i{1,n1}i\in\{1\ldots,n-1\} let

i=(1+si)1xixi+1.\partial_{i}=(1+s_{i})\frac{1}{x_{i}-x_{i+1}}.

The electronic Macdonald polynomial Eμ=Eμ(q,t)E_{\mu}=E_{\mu}(q,t) is recursively determined by

  1. (E0)

    E(0,,0)=1E_{(0,\ldots,0)}=1,

  2. (E1)

    E(μn+1,μ1,,μn1)=qμnx1Eμ(x2,,xn,q1x1),E_{(\mu_{n}+1,\mu_{1},\ldots,\mu_{n-1})}=q^{\mu_{n}}x_{1}E_{\mu}(x_{2},\ldots,x_{n},q^{-1}x_{1}),

  3. (E2)

    If (μ1,,μn)n0(\mu_{1},\ldots,\mu_{n})\in\mathbb{Z}^{n}_{\geq 0} and μi>μi+1\mu_{i}>\mu_{i+1} then

    Esiμ=(ixitxii+(1t)qμiμi+1tvμ(i)vμ(i+1)1qμiμi+1tvμ(i)vμ(i+1))Eμ,E_{s_{i}\mu}=\Big{(}\partial_{i}x_{i}-tx_{i}\partial_{i}+\frac{(1-t)q^{\mu_{i}-\mu_{i+1}}t^{v_{\mu}(i)-v_{\mu}(i+1)}}{1-q^{\mu_{i}-\mu_{i+1}}t^{v_{\mu}(i)-v_{\mu}(i+1)}}\Big{)}E_{\mu}, (2.4)

    where vμSnv_{\mu}\in S_{n} is the minimal length permutation such that vμμv_{\mu}\mu is weakly increasing.

The monomial xμx^{\mu} is xμ=x1μ1xnμnx^{\mu}=x_{1}^{\mu_{1}}\cdots x_{n}^{\mu_{n}}. The world of Macdonald polynomials replaces the monomials xμx^{\mu} with electronic Macdonald polynomials EμE_{\mu} and replaces the action of permutations ww by the operators TwT_{w}.

Let δ=(n1,n2,,2,1,0)\delta=(n-1,n-2,\ldots,2,1,0) and let λ=(λ1,,λn)n\lambda=(\lambda_{1},\ldots,\lambda_{n})\in\mathbb{Z}^{n} with λ1λn\lambda_{1}\geq\cdots\geq\lambda_{n}. Let w0w_{0} be the longest element of SnS_{n} so that (w0)=(n2)\ell(w_{0})=\binom{n}{2}. Then define

Aλ+δ(q,t)=wSn(t12)(w)(w0)TwEλ+δ(q,t)andaλ+δ=wSn(1)(w)(w0)wxλ+δ.A_{\lambda+\delta}(q,t)=\sum_{w\in S_{n}}(-t^{-\frac{1}{2}})^{\ell(w)-\ell(w_{0})}T_{w}E_{\lambda+\delta}(q,t)\qquad\hbox{and}\qquad a_{\lambda+\delta}=\sum_{w\in S_{n}}(-1)^{\ell(w)-\ell(w_{0})}wx^{\lambda+\delta}.

The Aλ+δ(q,t)A_{\lambda+\delta}(q,t) are the fermionic Macdonald polynomials (see [CR22, Intro] for motivation for the ‘electronic’, ‘bosonic’, ‘fermionic’ terminology).

2.3 The Weyl character formula

The “Weyl character formula” in the next theorem gives a formula for the bosonic Macdonald polynomial as a quotient of two fermionic Macdonald polynomials. When q=t=0q=t=0 this formula becomes the formula for the Schur function as a quotient of two determinants.

Theorem 2.1.

Let λ=(λ1,,λn)0n\lambda=(\lambda_{1},\ldots,\lambda_{n})\in\mathbb{Z}_{\geq 0}^{n} with λ1λn\lambda_{1}\geq\cdots\geq\lambda_{n}.

Pλ(q,qt)=Aλ+δ(q,t)Aδ(q,t)andsλ=aλ+δaδ.P_{\lambda}(q,qt)=\frac{A_{\lambda+\delta}(q,t)}{A_{\delta}(q,t)}\qquad\hbox{and}\qquad s_{\lambda}=\frac{a_{\lambda+\delta}}{a_{\delta}}.
Aδ(q,t)=i<j(xitxj)andaδ=i<j(xixj).A_{\delta}(q,t)=\prod_{i<j}(x_{i}-tx_{j})\qquad\hbox{and}\qquad a_{\delta}=\prod_{i<j}(x_{i}-x_{j}).

3 Can you do type B?

Having worked something out for type A, a natural next problem for our community is to work it out for type B. Here Macdonald has something interesting to say.

Which type B?

Because, as Macdonald worked out in his 1972 paper on affine root systems,

there are 9 different type Bs.

A diagram showing these is given in Section 3.1.

But, there is something wonderful here. The type (C,C)(C^{\vee},C) root system is one of the type Bs and

all other type Bs are obtained by specializations from type (C,C)(C^{\vee},C).

This means that, if one wants to compute Macdonald polynomials for any one of the 9 different type Bs, then all one has to do, is compute the Macdonald polynomials for type (C,C)(C^{\vee},C) and then specialize parameters as appropriate.

Each of the affine root systems of classical type is a subset of the \mathbb{Z}-vector space spanned by symbols ε1,,εn\varepsilon_{1},\ldots,\varepsilon_{n} and 12δ\frac{1}{2}\delta,

V=-span{ε1,,εn,12δ}.V_{\mathbb{Z}}=\hbox{$\mathbb{Z}$-span}\{\varepsilon_{1},\ldots,\varepsilon_{n},\hbox{$\frac{1}{2}$}\delta\}.

The affine Weyl group WW is the group of \mathbb{Z}-linear transformations of VV_{\mathbb{Z}} generated by the transformations s0,s1,,sns_{0},s_{1},\ldots,s_{n} given by: for λ=λ1ε1++λnεn+k2δ\lambda=\lambda_{1}\varepsilon_{1}+\cdots+\lambda_{n}\varepsilon_{n}+\frac{k}{2}\delta,

s0λ\displaystyle s_{0}\lambda =λ1ε1+λ2ε2++λnεn+(k2+λ1)δ,\displaystyle=-\lambda_{1}\varepsilon_{1}+\lambda_{2}\varepsilon_{2}+\cdots+\lambda_{n}\varepsilon_{n}+\big{(}\hbox{$\frac{k}{2}$}+\lambda_{1})\delta,
snλ\displaystyle s_{n}\lambda =λ1ε1++λn1εn1λnεn+k2δ,and\displaystyle=\lambda_{1}\varepsilon_{1}+\cdots+\lambda_{n-1}\varepsilon_{n-1}-\lambda_{n}\varepsilon_{n}+\hbox{$\frac{k}{2}$}\delta,\qquad\hbox{and}
siλ\displaystyle s_{i}\lambda =λ1ε1++λi1εi1+λi+1εi+λiεi+1+λi+2εi+2++λnεn+k2δ,\displaystyle=\lambda_{1}\varepsilon_{1}+\cdots+\lambda_{i-1}\varepsilon_{i-1}+\lambda_{i+1}\varepsilon_{i}+\lambda_{i}\varepsilon_{i+1}+\lambda_{i+2}\varepsilon_{i+2}+\cdots+\lambda_{n}\varepsilon_{n}+\hbox{$\frac{k}{2}$}\delta,

for i{1,,n1}i\in\{1,\ldots,n-1\}. Each of the affine root systems of classical type is defined by which orbits of the affine Weyl group WW that it contains. Let

O1\displaystyle O_{1} =Wαn=Wεn={±εi+rδ|i{1,,n},r},\displaystyle=W\cdot\alpha_{n}=W\cdot\varepsilon_{n}=\{\pm\varepsilon_{i}+r\delta\ |\ i\in\{1,\ldots,n\},r\in\mathbb{Z}\},
O2\displaystyle O_{2} =W2αn=W2εn={±2εi+2rδ|i{1,,n},r},\displaystyle=W\cdot 2\alpha_{n}=W\cdot 2\varepsilon_{n}=\{\pm 2\varepsilon_{i}+2r\delta\ |\ i\in\{1,\ldots,n\},r\in\mathbb{Z}\},
O3\displaystyle O_{3} =Wα0=W(ε1+12δ)={±(εi+12(2r+1)δ|i{1,,n},r},\displaystyle=W\cdot\alpha_{0}=W\cdot(-\varepsilon_{1}+\hbox{$\frac{1}{2}$}\delta)=\{\pm(\varepsilon_{i}+\hbox{$\frac{1}{2}$}(2r+1)\delta\ |\ i\in\{1,\ldots,n\},r\in\mathbb{Z}\},
O4\displaystyle O_{4} =W2α0=W(2ε1+δ)={±2εi+(2r+1)δ|i{1,,n},r},\displaystyle=W\cdot 2\alpha_{0}=W\cdot(-2\varepsilon_{1}+\delta)=\{\pm 2\varepsilon_{i}+(2r+1)\delta\ |\ i\in\{1,\ldots,n\},r\in\mathbb{Z}\},
O5\displaystyle O_{5} =Wα1=W(ε1ε2)={±(εi+εj)+rδ±(εiεj)+rδ|i,j{1,,n},i<j,r},\displaystyle=W\cdot\alpha_{1}=W\cdot(\varepsilon_{1}-\varepsilon_{2})=\left\{\begin{array}[]{l}\pm(\varepsilon_{i}+\varepsilon_{j})+r\delta\\ \pm(\varepsilon_{i}-\varepsilon_{j})+r\delta\end{array}\ \Big{|}\ i,j\in\{1,\ldots,n\},i<j,r\in\mathbb{Z}\right\},

where

2α0=2ε1+δα0=ε1+12δ2αn=2εnαn=εnαi=εiεi+1.\begin{matrix}\leavevmode\hbox to271.36pt{\vbox to25.81pt{\pgfpicture\makeatletter\hbox{\hskip 58.37033pt\lower-12.68127pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.81699pt}{-3.18pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to7.49pt{\vbox to6.36pt{\pgfpicture\makeatletter\hbox{\hskip 5.01346pt\lower-3.18pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope{{}} \pgfsys@setlinewidth{0.4pt}\pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-1.60799pt}{3.18pt}\pgfsys@curveto{-0.82799pt}{1.5pt}{1.272pt}{0.06pt}{2.472pt}{0.0pt}\pgfsys@curveto{1.272pt}{-0.06pt}{-0.82799pt}{-1.5pt}{-1.60799pt}{-3.18pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{151.61679pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.42271pt}\pgfsys@lineto{28.45276pt}{-1.42271pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.42271pt}\pgfsys@lineto{28.45276pt}{1.42271pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{142.2638pt}{-1.42271pt}\pgfsys@lineto{170.71655pt}{-1.42271pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{142.2638pt}{1.42271pt}\pgfsys@lineto{170.71655pt}{1.42271pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-57.37033pt}{-9.87683pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2\alpha_{0}=-2\varepsilon_{1}+\delta$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-48.64813pt}{5.18796pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\alpha_{0}=-\varepsilon_{1}+\frac{1}{2}\delta$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{172.96655pt}{0.0pt}\pgfsys@curveto{172.96655pt}{1.24265pt}{171.9592pt}{2.25pt}{170.71655pt}{2.25pt}\pgfsys@curveto{169.4739pt}{2.25pt}{168.46655pt}{1.24265pt}{168.46655pt}{0.0pt}\pgfsys@curveto{168.46655pt}{-1.24265pt}{169.4739pt}{-2.25pt}{170.71655pt}{-2.25pt}\pgfsys@curveto{171.9592pt}{-2.25pt}{172.96655pt}{-1.24265pt}{172.96655pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{170.71655pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{170.71655pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{173.64896pt}{-9.37685pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2\alpha_{n}=2\varepsilon_{n}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{173.64896pt}{4.13794pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\alpha_{n}=\varepsilon_{n}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{30.70276pt}{0.0pt}\pgfsys@curveto{30.70276pt}{1.24265pt}{29.6954pt}{2.25pt}{28.45276pt}{2.25pt}\pgfsys@curveto{27.21011pt}{2.25pt}{26.20276pt}{1.24265pt}{26.20276pt}{0.0pt}\pgfsys@curveto{26.20276pt}{-1.24265pt}{27.21011pt}{-2.25pt}{28.45276pt}{-2.25pt}\pgfsys@curveto{29.6954pt}{-2.25pt}{30.70276pt}{-1.24265pt}{30.70276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{59.15552pt}{0.0pt}\pgfsys@curveto{59.15552pt}{1.24265pt}{58.14816pt}{2.25pt}{56.90552pt}{2.25pt}\pgfsys@curveto{55.66287pt}{2.25pt}{54.65552pt}{1.24265pt}{54.65552pt}{0.0pt}\pgfsys@curveto{54.65552pt}{-1.24265pt}{55.66287pt}{-2.25pt}{56.90552pt}{-2.25pt}\pgfsys@curveto{58.14816pt}{-2.25pt}{59.15552pt}{-1.24265pt}{59.15552pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{116.06104pt}{0.0pt}\pgfsys@curveto{116.06104pt}{1.24265pt}{115.05368pt}{2.25pt}{113.81104pt}{2.25pt}\pgfsys@curveto{112.56839pt}{2.25pt}{111.56104pt}{1.24265pt}{111.56104pt}{0.0pt}\pgfsys@curveto{111.56104pt}{-1.24265pt}{112.56839pt}{-2.25pt}{113.81104pt}{-2.25pt}\pgfsys@curveto{115.05368pt}{-2.25pt}{116.06104pt}{-1.24265pt}{116.06104pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{113.81104pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{144.5138pt}{0.0pt}\pgfsys@curveto{144.5138pt}{1.24265pt}{143.50644pt}{2.25pt}{142.2638pt}{2.25pt}\pgfsys@curveto{141.02115pt}{2.25pt}{140.0138pt}{1.24265pt}{140.0138pt}{0.0pt}\pgfsys@curveto{140.0138pt}{-1.24265pt}{141.02115pt}{-2.25pt}{142.2638pt}{-2.25pt}\pgfsys@curveto{143.50644pt}{-2.25pt}{144.5138pt}{-1.24265pt}{144.5138pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{142.2638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{142.2638pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{59.15552pt}{0.0pt}\pgfsys@curveto{59.15552pt}{1.24265pt}{58.14816pt}{2.25pt}{56.90552pt}{2.25pt}\pgfsys@curveto{55.66287pt}{2.25pt}{54.65552pt}{1.24265pt}{54.65552pt}{0.0pt}\pgfsys@curveto{54.65552pt}{-1.24265pt}{55.66287pt}{-2.25pt}{56.90552pt}{-2.25pt}\pgfsys@curveto{58.14816pt}{-2.25pt}{59.15552pt}{-1.24265pt}{59.15552pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{59.83792pt}{5.24573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{30.90276pt}{0.0pt}\pgfsys@lineto{54.45552pt}{0.0pt}\pgfsys@moveto{116.26103pt}{0.0pt}\pgfsys@lineto{139.8138pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{59.35551pt}{0.0pt}\pgfsys@lineto{111.36104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}.

With these notations the irreducible affine root systems of classical type (and the appropriate specializations for obtaining the Macdonald polynomials of each type from the Macdonald polynomials of type (C,C)(C^{\vee},C)) are given by the following diagram. The middle notation for each root system is the notation in Macdonald [Mac03, §1.3], the right notation is that of Bruhat-Tits [BT72] and the leftt notation is that of Kac [Kac, Ch. 6].

3.1 The poset of affine root systems of classical type

(Cn,Cn)=C-BCnIIO4O3O2O1O5O5O5O5Pμ(x;q,tn1/2,un1/2,t01/2,u01/2,t)\begin{matrix}(C^{\vee}_{n},C_{n})=\hbox{C-BC}_{n}^{\mathrm{II}}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to17.94pt{\pgfpicture\makeatletter\hbox{\hskip 3.67638pt\lower-8.96886pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.7964pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.49425pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.06703pt}\pgfsys@lineto{21.33957pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.06703pt}\pgfsys@lineto{21.33957pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{-1.06703pt}\pgfsys@lineto{128.03741pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{1.06703pt}\pgfsys@lineto{128.03741pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{0.0pt}\pgfsys@curveto{23.58957pt}{1.24265pt}{22.58221pt}{2.25pt}{21.33957pt}{2.25pt}\pgfsys@curveto{20.09692pt}{2.25pt}{19.08957pt}{1.24265pt}{19.08957pt}{0.0pt}\pgfsys@curveto{19.08957pt}{-1.24265pt}{20.09692pt}{-2.25pt}{21.33957pt}{-2.25pt}\pgfsys@curveto{22.58221pt}{-2.25pt}{23.58957pt}{-1.24265pt}{23.58957pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{87.60828pt}{0.0pt}\pgfsys@curveto{87.60828pt}{1.24265pt}{86.60092pt}{2.25pt}{85.35828pt}{2.25pt}\pgfsys@curveto{84.11563pt}{2.25pt}{83.10828pt}{1.24265pt}{83.10828pt}{0.0pt}\pgfsys@curveto{83.10828pt}{-1.24265pt}{84.11563pt}{-2.25pt}{85.35828pt}{-2.25pt}\pgfsys@curveto{86.60092pt}{-2.25pt}{87.60828pt}{-1.24265pt}{87.60828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.68156pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.78947pt}{0.0pt}\pgfsys@lineto{40.22897pt}{0.0pt}\pgfsys@moveto{87.80792pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{82.90796pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},u_{n}^{1/2},t_{0}^{1/2},u_{0}^{1/2},t)\end{matrix}(Cn,BCn)=C-BCnIO3O2O1O5O5O5O5Pμ(x;q,tn1/2,un1/2,t01/2,t01/2,t)\begin{matrix}(C^{\vee}_{n},BC_{n})=\hbox{C-BC}_{n}^{\mathrm{I}}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to17.94pt{\pgfpicture\makeatletter\hbox{\hskip 3.67638pt\lower-8.96886pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.7964pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 5.01346pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.49425pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.06703pt}\pgfsys@lineto{21.33957pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.06703pt}\pgfsys@lineto{21.33957pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{-1.06703pt}\pgfsys@lineto{128.03741pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{1.06703pt}\pgfsys@lineto{128.03741pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{0.0pt}\pgfsys@curveto{23.58957pt}{1.24265pt}{22.58221pt}{2.25pt}{21.33957pt}{2.25pt}\pgfsys@curveto{20.09692pt}{2.25pt}{19.08957pt}{1.24265pt}{19.08957pt}{0.0pt}\pgfsys@curveto{19.08957pt}{-1.24265pt}{20.09692pt}{-2.25pt}{21.33957pt}{-2.25pt}\pgfsys@curveto{22.58221pt}{-2.25pt}{23.58957pt}{-1.24265pt}{23.58957pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{87.60828pt}{0.0pt}\pgfsys@curveto{87.60828pt}{1.24265pt}{86.60092pt}{2.25pt}{85.35828pt}{2.25pt}\pgfsys@curveto{84.11563pt}{2.25pt}{83.10828pt}{1.24265pt}{83.10828pt}{0.0pt}\pgfsys@curveto{83.10828pt}{-1.24265pt}{84.11563pt}{-2.25pt}{85.35828pt}{-2.25pt}\pgfsys@curveto{86.60092pt}{-2.25pt}{87.60828pt}{-1.24265pt}{87.60828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.68156pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.78947pt}{0.0pt}\pgfsys@lineto{40.22897pt}{0.0pt}\pgfsys@moveto{87.80792pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{82.90796pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},u_{n}^{1/2},t_{0}^{1/2},t_{0}^{1/2},t)\end{matrix}(BCn,Cn)=C-BCnIVO4O2O1O5O5O5O5Pμ(x;q,tn1/2,un1/2,t01/2,1,t)\begin{matrix}(BC_{n},C_{n})=\hbox{C-BC}_{n}^{\mathrm{IV}}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to17.94pt{\pgfpicture\makeatletter\hbox{\hskip 3.67638pt\lower-8.96886pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.7964pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.49425pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.06703pt}\pgfsys@lineto{21.33957pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.06703pt}\pgfsys@lineto{21.33957pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{-1.06703pt}\pgfsys@lineto{128.03741pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{1.06703pt}\pgfsys@lineto{128.03741pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{0.0pt}\pgfsys@curveto{23.58957pt}{1.24265pt}{22.58221pt}{2.25pt}{21.33957pt}{2.25pt}\pgfsys@curveto{20.09692pt}{2.25pt}{19.08957pt}{1.24265pt}{19.08957pt}{0.0pt}\pgfsys@curveto{19.08957pt}{-1.24265pt}{20.09692pt}{-2.25pt}{21.33957pt}{-2.25pt}\pgfsys@curveto{22.58221pt}{-2.25pt}{23.58957pt}{-1.24265pt}{23.58957pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{87.60828pt}{0.0pt}\pgfsys@curveto{87.60828pt}{1.24265pt}{86.60092pt}{2.25pt}{85.35828pt}{2.25pt}\pgfsys@curveto{84.11563pt}{2.25pt}{83.10828pt}{1.24265pt}{83.10828pt}{0.0pt}\pgfsys@curveto{83.10828pt}{-1.24265pt}{84.11563pt}{-2.25pt}{85.35828pt}{-2.25pt}\pgfsys@curveto{86.60092pt}{-2.25pt}{87.60828pt}{-1.24265pt}{87.60828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.68156pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.78947pt}{0.0pt}\pgfsys@lineto{40.22897pt}{0.0pt}\pgfsys@moveto{87.80792pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{82.90796pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},u_{n}^{1/2},t_{0}^{1/2},1,t)\end{matrix}Dn+1(2)=Cn=C-BnO3O1O5O5O5O5Pμ(x;q,tn12,tn1/2,t01/2,t01/2,t)\begin{matrix}D_{n+1}^{(2)}=C_{n}^{\vee}=\hbox{C-B}_{n}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to11.42pt{\pgfpicture\makeatletter\hbox{\hskip 3.67638pt\lower-2.45pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.7964pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 5.01346pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.49425pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.06703pt}\pgfsys@lineto{21.33957pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.06703pt}\pgfsys@lineto{21.33957pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{-1.06703pt}\pgfsys@lineto{128.03741pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{1.06703pt}\pgfsys@lineto{128.03741pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{0.0pt}\pgfsys@curveto{23.58957pt}{1.24265pt}{22.58221pt}{2.25pt}{21.33957pt}{2.25pt}\pgfsys@curveto{20.09692pt}{2.25pt}{19.08957pt}{1.24265pt}{19.08957pt}{0.0pt}\pgfsys@curveto{19.08957pt}{-1.24265pt}{20.09692pt}{-2.25pt}{21.33957pt}{-2.25pt}\pgfsys@curveto{22.58221pt}{-2.25pt}{23.58957pt}{-1.24265pt}{23.58957pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{87.60828pt}{0.0pt}\pgfsys@curveto{87.60828pt}{1.24265pt}{86.60092pt}{2.25pt}{85.35828pt}{2.25pt}\pgfsys@curveto{84.11563pt}{2.25pt}{83.10828pt}{1.24265pt}{83.10828pt}{0.0pt}\pgfsys@curveto{83.10828pt}{-1.24265pt}{84.11563pt}{-2.25pt}{85.35828pt}{-2.25pt}\pgfsys@curveto{86.60092pt}{-2.25pt}{87.60828pt}{-1.24265pt}{87.60828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.68156pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.78947pt}{0.0pt}\pgfsys@lineto{40.22897pt}{0.0pt}\pgfsys@moveto{87.80792pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{82.90796pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{\frac{1}{2}},t_{n}^{1/2},t_{0}^{1/2},t_{0}^{1/2},t)\end{matrix}(Bn,Bn)=B-BCnO2O1O5O5O5O5O5O5Pμ(x;q,tn1/2,un1/2,1,1,t)\begin{matrix}(B_{n},B_{n}^{\vee})=\hbox{B-BC}_{n}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to32.64pt{\pgfpicture\makeatletter\hbox{\hskip-17.6631pt\lower-16.32057pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{133.83382pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{128.03741pt}{-1.06703pt}\pgfsys@lineto{149.37698pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{128.03741pt}{1.06703pt}\pgfsys@lineto{149.37698pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{151.62698pt}{0.0pt}\pgfsys@curveto{151.62698pt}{1.24265pt}{150.61963pt}{2.25pt}{149.37698pt}{2.25pt}\pgfsys@curveto{148.13434pt}{2.25pt}{147.12698pt}{1.24265pt}{147.12698pt}{0.0pt}\pgfsys@curveto{147.12698pt}{-1.24265pt}{148.13434pt}{-2.25pt}{149.37698pt}{-2.25pt}\pgfsys@curveto{150.61963pt}{-2.25pt}{151.62698pt}{-1.24265pt}{151.62698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{149.37698pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.37698pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{146.70003pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{146.70003pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{66.2687pt}{0.0pt}\pgfsys@curveto{66.2687pt}{1.24265pt}{65.26135pt}{2.25pt}{64.0187pt}{2.25pt}\pgfsys@curveto{62.77606pt}{2.25pt}{61.7687pt}{1.24265pt}{61.7687pt}{0.0pt}\pgfsys@curveto{61.7687pt}{-1.24265pt}{62.77606pt}{-2.25pt}{64.0187pt}{-2.25pt}\pgfsys@curveto{65.26135pt}{-2.25pt}{66.2687pt}{-1.24265pt}{66.2687pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{64.0187pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.0187pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.34207pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{-13.87057pt}\pgfsys@curveto{23.58957pt}{-12.62793pt}{22.58221pt}{-11.62057pt}{21.33957pt}{-11.62057pt}\pgfsys@curveto{20.09692pt}{-11.62057pt}{19.08957pt}{-12.62793pt}{19.08957pt}{-13.87057pt}\pgfsys@curveto{19.08957pt}{-15.11322pt}{20.09692pt}{-16.12057pt}{21.33957pt}{-16.12057pt}\pgfsys@curveto{22.58221pt}{-16.12057pt}{23.58957pt}{-15.11322pt}{23.58957pt}{-13.87057pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-13.87057pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{-13.87057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{-9.3183pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{13.87057pt}\pgfsys@curveto{23.58957pt}{15.11322pt}{22.58221pt}{16.12057pt}{21.33957pt}{16.12057pt}\pgfsys@curveto{20.09692pt}{16.12057pt}{19.08957pt}{15.11322pt}{19.08957pt}{13.87057pt}\pgfsys@curveto{19.08957pt}{12.62793pt}{20.09692pt}{11.62057pt}{21.33957pt}{11.62057pt}\pgfsys@curveto{22.58221pt}{11.62057pt}{23.58957pt}{12.62793pt}{23.58957pt}{13.87057pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{13.87057pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{13.87057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{6.80386pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.39365pt}{12.53531pt}\pgfsys@lineto{40.62477pt}{1.33519pt}\pgfsys@moveto{23.39365pt}{-12.53531pt}\pgfsys@lineto{40.62477pt}{-1.33519pt}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{61.56847pt}{0.0pt}\pgfsys@moveto{109.14742pt}{0.0pt}\pgfsys@lineto{125.58693pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{66.46843pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},u_{n}^{1/2},1,1,t)\end{matrix}A2n(2)=BCn=C-BCnIIIO4O1O5O5O5O5Pμ(x;q,tn1/2,tn1/2,t01/2,1,t)\begin{matrix}A_{2n}^{(2)}=BC_{n}=\hbox{C-BC}_{n}^{\mathrm{III}}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to17.94pt{\pgfpicture\makeatletter\hbox{\hskip 3.67638pt\lower-8.96886pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.7964pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.49425pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.06703pt}\pgfsys@lineto{21.33957pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.06703pt}\pgfsys@lineto{21.33957pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{-1.06703pt}\pgfsys@lineto{128.03741pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{1.06703pt}\pgfsys@lineto{128.03741pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{0.0pt}\pgfsys@curveto{23.58957pt}{1.24265pt}{22.58221pt}{2.25pt}{21.33957pt}{2.25pt}\pgfsys@curveto{20.09692pt}{2.25pt}{19.08957pt}{1.24265pt}{19.08957pt}{0.0pt}\pgfsys@curveto{19.08957pt}{-1.24265pt}{20.09692pt}{-2.25pt}{21.33957pt}{-2.25pt}\pgfsys@curveto{22.58221pt}{-2.25pt}{23.58957pt}{-1.24265pt}{23.58957pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{87.60828pt}{0.0pt}\pgfsys@curveto{87.60828pt}{1.24265pt}{86.60092pt}{2.25pt}{85.35828pt}{2.25pt}\pgfsys@curveto{84.11563pt}{2.25pt}{83.10828pt}{1.24265pt}{83.10828pt}{0.0pt}\pgfsys@curveto{83.10828pt}{-1.24265pt}{84.11563pt}{-2.25pt}{85.35828pt}{-2.25pt}\pgfsys@curveto{86.60092pt}{-2.25pt}{87.60828pt}{-1.24265pt}{87.60828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.68156pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.78947pt}{0.0pt}\pgfsys@lineto{40.22897pt}{0.0pt}\pgfsys@moveto{87.80792pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{82.90796pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},t_{n}^{1/2},t_{0}^{1/2},1,t)\end{matrix}Cn(1)=Cn=CnO4O2O5O5O5O5Pμ(x;q,tn1/2,1,t012,1,t)\begin{matrix}C_{n}^{(1)}=C_{n}=C_{n}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to17.94pt{\pgfpicture\makeatletter\hbox{\hskip 3.67638pt\lower-8.96886pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.7964pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.49425pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 5.01346pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-1.06703pt}\pgfsys@lineto{21.33957pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{1.06703pt}\pgfsys@lineto{21.33957pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{-1.06703pt}\pgfsys@lineto{128.03741pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{106.69785pt}{1.06703pt}\pgfsys@lineto{128.03741pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{2.25pt}{0.0pt}\pgfsys@curveto{2.25pt}{1.24265pt}{1.24265pt}{2.25pt}{0.0pt}{2.25pt}\pgfsys@curveto{-1.24265pt}{2.25pt}{-2.25pt}{1.24265pt}{-2.25pt}{0.0pt}\pgfsys@curveto{-2.25pt}{-1.24265pt}{-1.24265pt}{-2.25pt}{0.0pt}{-2.25pt}\pgfsys@curveto{1.24265pt}{-2.25pt}{2.25pt}{-1.24265pt}{2.25pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.67638pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{0.0pt}\pgfsys@curveto{23.58957pt}{1.24265pt}{22.58221pt}{2.25pt}{21.33957pt}{2.25pt}\pgfsys@curveto{20.09692pt}{2.25pt}{19.08957pt}{1.24265pt}{19.08957pt}{0.0pt}\pgfsys@curveto{19.08957pt}{-1.24265pt}{20.09692pt}{-2.25pt}{21.33957pt}{-2.25pt}\pgfsys@curveto{22.58221pt}{-2.25pt}{23.58957pt}{-1.24265pt}{23.58957pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{87.60828pt}{0.0pt}\pgfsys@curveto{87.60828pt}{1.24265pt}{86.60092pt}{2.25pt}{85.35828pt}{2.25pt}\pgfsys@curveto{84.11563pt}{2.25pt}{83.10828pt}{1.24265pt}{83.10828pt}{0.0pt}\pgfsys@curveto{83.10828pt}{-1.24265pt}{84.11563pt}{-2.25pt}{85.35828pt}{-2.25pt}\pgfsys@curveto{86.60092pt}{-2.25pt}{87.60828pt}{-1.24265pt}{87.60828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.68156pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.78947pt}{0.0pt}\pgfsys@lineto{40.22897pt}{0.0pt}\pgfsys@moveto{87.80792pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{82.90796pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},1,t_{0}^{\frac{1}{2}},1,t)\end{matrix}Bn(1)=Bn=BnO1O5O5O5O5O5O5Pμ(x;q,tn1/2,tn1/2,1,1,t)\begin{matrix}B_{n}^{(1)}=B_{n}=B_{n}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to32.64pt{\pgfpicture\makeatletter\hbox{\hskip-17.6631pt\lower-16.32057pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{133.83382pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 1.4pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{128.03741pt}{-1.06703pt}\pgfsys@lineto{149.37698pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{128.03741pt}{1.06703pt}\pgfsys@lineto{149.37698pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{151.62698pt}{0.0pt}\pgfsys@curveto{151.62698pt}{1.24265pt}{150.61963pt}{2.25pt}{149.37698pt}{2.25pt}\pgfsys@curveto{148.13434pt}{2.25pt}{147.12698pt}{1.24265pt}{147.12698pt}{0.0pt}\pgfsys@curveto{147.12698pt}{-1.24265pt}{148.13434pt}{-2.25pt}{149.37698pt}{-2.25pt}\pgfsys@curveto{150.61963pt}{-2.25pt}{151.62698pt}{-1.24265pt}{151.62698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{149.37698pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.37698pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{146.70003pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{66.2687pt}{0.0pt}\pgfsys@curveto{66.2687pt}{1.24265pt}{65.26135pt}{2.25pt}{64.0187pt}{2.25pt}\pgfsys@curveto{62.77606pt}{2.25pt}{61.7687pt}{1.24265pt}{61.7687pt}{0.0pt}\pgfsys@curveto{61.7687pt}{-1.24265pt}{62.77606pt}{-2.25pt}{64.0187pt}{-2.25pt}\pgfsys@curveto{65.26135pt}{-2.25pt}{66.2687pt}{-1.24265pt}{66.2687pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{64.0187pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.0187pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.34207pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{-13.87057pt}\pgfsys@curveto{23.58957pt}{-12.62793pt}{22.58221pt}{-11.62057pt}{21.33957pt}{-11.62057pt}\pgfsys@curveto{20.09692pt}{-11.62057pt}{19.08957pt}{-12.62793pt}{19.08957pt}{-13.87057pt}\pgfsys@curveto{19.08957pt}{-15.11322pt}{20.09692pt}{-16.12057pt}{21.33957pt}{-16.12057pt}\pgfsys@curveto{22.58221pt}{-16.12057pt}{23.58957pt}{-15.11322pt}{23.58957pt}{-13.87057pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-13.87057pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{-13.87057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{-9.3183pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{13.87057pt}\pgfsys@curveto{23.58957pt}{15.11322pt}{22.58221pt}{16.12057pt}{21.33957pt}{16.12057pt}\pgfsys@curveto{20.09692pt}{16.12057pt}{19.08957pt}{15.11322pt}{19.08957pt}{13.87057pt}\pgfsys@curveto{19.08957pt}{12.62793pt}{20.09692pt}{11.62057pt}{21.33957pt}{11.62057pt}\pgfsys@curveto{22.58221pt}{11.62057pt}{23.58957pt}{12.62793pt}{23.58957pt}{13.87057pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{13.87057pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{13.87057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{6.80386pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.39365pt}{12.53531pt}\pgfsys@lineto{40.62477pt}{1.33519pt}\pgfsys@moveto{23.39365pt}{-12.53531pt}\pgfsys@lineto{40.62477pt}{-1.33519pt}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{61.56847pt}{0.0pt}\pgfsys@moveto{109.14742pt}{0.0pt}\pgfsys@lineto{125.58693pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{66.46843pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},t_{n}^{1/2},1,1,t)\end{matrix}A2n1(2)=Bn=B-CnO2O5O5O5O5O5O5Pμ(x;q,tn1/2,1,1,1,t)\begin{matrix}A_{2n-1}^{(2)}=B_{n}^{\vee}=\hbox{B-C}_{n}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to32.64pt{\pgfpicture\makeatletter\hbox{\hskip-17.6631pt\lower-16.32057pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{133.83382pt}{-1.4pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to6.41pt{\vbox to2.8pt{\pgfpicture\makeatletter\hbox{\hskip 5.01346pt\lower-1.4pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.79999pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-0.94147pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-0.94147pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{128.03741pt}{-1.06703pt}\pgfsys@lineto{149.37698pt}{-1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{128.03741pt}{1.06703pt}\pgfsys@lineto{149.37698pt}{1.06703pt}\pgfsys@stroke\pgfsys@invoke{ } {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{151.62698pt}{0.0pt}\pgfsys@curveto{151.62698pt}{1.24265pt}{150.61963pt}{2.25pt}{149.37698pt}{2.25pt}\pgfsys@curveto{148.13434pt}{2.25pt}{147.12698pt}{1.24265pt}{147.12698pt}{0.0pt}\pgfsys@curveto{147.12698pt}{-1.24265pt}{148.13434pt}{-2.25pt}{149.37698pt}{-2.25pt}\pgfsys@curveto{150.61963pt}{-2.25pt}{151.62698pt}{-1.24265pt}{151.62698pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{149.37698pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.37698pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{146.70003pt}{-7.06664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{66.2687pt}{0.0pt}\pgfsys@curveto{66.2687pt}{1.24265pt}{65.26135pt}{2.25pt}{64.0187pt}{2.25pt}\pgfsys@curveto{62.77606pt}{2.25pt}{61.7687pt}{1.24265pt}{61.7687pt}{0.0pt}\pgfsys@curveto{61.7687pt}{-1.24265pt}{62.77606pt}{-2.25pt}{64.0187pt}{-2.25pt}\pgfsys@curveto{65.26135pt}{-2.25pt}{66.2687pt}{-1.24265pt}{66.2687pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{64.0187pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.0187pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.34207pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{-13.87057pt}\pgfsys@curveto{23.58957pt}{-12.62793pt}{22.58221pt}{-11.62057pt}{21.33957pt}{-11.62057pt}\pgfsys@curveto{20.09692pt}{-11.62057pt}{19.08957pt}{-12.62793pt}{19.08957pt}{-13.87057pt}\pgfsys@curveto{19.08957pt}{-15.11322pt}{20.09692pt}{-16.12057pt}{21.33957pt}{-16.12057pt}\pgfsys@curveto{22.58221pt}{-16.12057pt}{23.58957pt}{-15.11322pt}{23.58957pt}{-13.87057pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-13.87057pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{-13.87057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{-9.3183pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{13.87057pt}\pgfsys@curveto{23.58957pt}{15.11322pt}{22.58221pt}{16.12057pt}{21.33957pt}{16.12057pt}\pgfsys@curveto{20.09692pt}{16.12057pt}{19.08957pt}{15.11322pt}{19.08957pt}{13.87057pt}\pgfsys@curveto{19.08957pt}{12.62793pt}{20.09692pt}{11.62057pt}{21.33957pt}{11.62057pt}\pgfsys@curveto{22.58221pt}{11.62057pt}{23.58957pt}{12.62793pt}{23.58957pt}{13.87057pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{13.87057pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{13.87057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{6.80386pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.39365pt}{12.53531pt}\pgfsys@lineto{40.62477pt}{1.33519pt}\pgfsys@moveto{23.39365pt}{-12.53531pt}\pgfsys@lineto{40.62477pt}{-1.33519pt}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{61.56847pt}{0.0pt}\pgfsys@moveto{109.14742pt}{0.0pt}\pgfsys@lineto{125.58693pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{66.46843pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,t_{n}^{1/2},1,1,1,t)\end{matrix}Dn(1)=Dn=DnO5O5O5O5O5O5O5O5Pμ(x;q,1,1,1,1,t)\begin{matrix}D_{n}^{(1)}=D_{n}=D_{n}\\ \begin{matrix}\leavevmode\hbox to135.39pt{\vbox to26.24pt{\pgfpicture\makeatletter\hbox{\hskip-17.6631pt\lower-13.11978pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{44.92914pt}{0.0pt}\pgfsys@curveto{44.92914pt}{1.24265pt}{43.92178pt}{2.25pt}{42.67914pt}{2.25pt}\pgfsys@curveto{41.4365pt}{2.25pt}{40.42914pt}{1.24265pt}{40.42914pt}{0.0pt}\pgfsys@curveto{40.42914pt}{-1.24265pt}{41.4365pt}{-2.25pt}{42.67914pt}{-2.25pt}\pgfsys@curveto{43.92178pt}{-2.25pt}{44.92914pt}{-1.24265pt}{44.92914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.00258pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{66.2687pt}{0.0pt}\pgfsys@curveto{66.2687pt}{1.24265pt}{65.26135pt}{2.25pt}{64.0187pt}{2.25pt}\pgfsys@curveto{62.77606pt}{2.25pt}{61.7687pt}{1.24265pt}{61.7687pt}{0.0pt}\pgfsys@curveto{61.7687pt}{-1.24265pt}{62.77606pt}{-2.25pt}{64.0187pt}{-2.25pt}\pgfsys@curveto{65.26135pt}{-2.25pt}{66.2687pt}{-1.24265pt}{66.2687pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{64.0187pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.0187pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.34207pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{108.94785pt}{0.0pt}\pgfsys@curveto{108.94785pt}{1.24265pt}{107.94049pt}{2.25pt}{106.69785pt}{2.25pt}\pgfsys@curveto{105.4552pt}{2.25pt}{104.44785pt}{1.24265pt}{104.44785pt}{0.0pt}\pgfsys@curveto{104.44785pt}{-1.24265pt}{105.4552pt}{-2.25pt}{106.69785pt}{-2.25pt}\pgfsys@curveto{107.94049pt}{-2.25pt}{108.94785pt}{-1.24265pt}{108.94785pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69785pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.02106pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{130.28741pt}{0.0pt}\pgfsys@curveto{130.28741pt}{1.24265pt}{129.28006pt}{2.25pt}{128.03741pt}{2.25pt}\pgfsys@curveto{126.79477pt}{2.25pt}{125.78741pt}{1.24265pt}{125.78741pt}{0.0pt}\pgfsys@curveto{125.78741pt}{-1.24265pt}{126.79477pt}{-2.25pt}{128.03741pt}{-2.25pt}\pgfsys@curveto{129.28006pt}{-2.25pt}{130.28741pt}{-1.24265pt}{130.28741pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.36053pt}{4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{-10.66978pt}\pgfsys@curveto{23.58957pt}{-9.42714pt}{22.58221pt}{-8.41978pt}{21.33957pt}{-8.41978pt}\pgfsys@curveto{20.09692pt}{-8.41978pt}{19.08957pt}{-9.42714pt}{19.08957pt}{-10.66978pt}\pgfsys@curveto{19.08957pt}{-11.91243pt}{20.09692pt}{-12.91978pt}{21.33957pt}{-12.91978pt}\pgfsys@curveto{22.58221pt}{-12.91978pt}{23.58957pt}{-11.91243pt}{23.58957pt}{-10.66978pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-10.66978pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{-10.66978pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{-6.11752pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.58957pt}{10.66978pt}\pgfsys@curveto{23.58957pt}{11.91243pt}{22.58221pt}{12.91978pt}{21.33957pt}{12.91978pt}\pgfsys@curveto{20.09692pt}{12.91978pt}{19.08957pt}{11.91243pt}{19.08957pt}{10.66978pt}\pgfsys@curveto{19.08957pt}{9.42714pt}{20.09692pt}{8.41978pt}{21.33957pt}{8.41978pt}\pgfsys@curveto{22.58221pt}{8.41978pt}{23.58957pt}{9.42714pt}{23.58957pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{10.66978pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.33957pt}{10.66978pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.6631pt}{3.60309pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{151.62698pt}{-10.66978pt}\pgfsys@curveto{151.62698pt}{-9.42714pt}{150.61963pt}{-8.41978pt}{149.37698pt}{-8.41978pt}\pgfsys@curveto{148.13434pt}{-8.41978pt}{147.12698pt}{-9.42714pt}{147.12698pt}{-10.66978pt}\pgfsys@curveto{147.12698pt}{-11.91243pt}{148.13434pt}{-12.91978pt}{149.37698pt}{-12.91978pt}\pgfsys@curveto{150.61963pt}{-12.91978pt}{151.62698pt}{-11.91243pt}{151.62698pt}{-10.66978pt}\pgfsys@closepath\pgfsys@moveto{149.37698pt}{-10.66978pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.37698pt}{-10.66978pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{146.70003pt}{-6.11752pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{151.62698pt}{10.66978pt}\pgfsys@curveto{151.62698pt}{11.91243pt}{150.61963pt}{12.91978pt}{149.37698pt}{12.91978pt}\pgfsys@curveto{148.13434pt}{12.91978pt}{147.12698pt}{11.91243pt}{147.12698pt}{10.66978pt}\pgfsys@curveto{147.12698pt}{9.42714pt}{148.13434pt}{8.41978pt}{149.37698pt}{8.41978pt}\pgfsys@curveto{150.61963pt}{8.41978pt}{151.62698pt}{9.42714pt}{151.62698pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{149.37698pt}{10.66978pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{149.37698pt}{10.66978pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{146.70003pt}{3.60309pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$O_{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{23.53079pt}{9.57407pt}\pgfsys@lineto{40.48764pt}{1.09563pt}\pgfsys@moveto{23.53079pt}{-9.57407pt}\pgfsys@lineto{40.48764pt}{-1.09563pt}\pgfsys@moveto{45.12895pt}{0.0pt}\pgfsys@lineto{61.56847pt}{0.0pt}\pgfsys@moveto{109.14742pt}{0.0pt}\pgfsys@lineto{125.58693pt}{0.0pt}\pgfsys@moveto{130.22823pt}{-1.09566pt}\pgfsys@lineto{147.18507pt}{-9.5741pt}\pgfsys@moveto{130.22823pt}{1.09566pt}\pgfsys@lineto{147.18507pt}{9.5741pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{66.46843pt}{0.0pt}\pgfsys@lineto{104.24744pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\\ P_{\mu}(x;q,1,1,1,1,t)\end{matrix}GLnGL_{n}\emptyset

4 Circles and Lines

Though I don’t travel often to England, whenever a trip did bring me to England I liked to try to stop in and visit Ian and his wife Greta if I could manage it. Greta passed away in 2019, and I saw Ian at his place two times after that. The last time was in June of 2023. When I first arrived, Ian emphatically told me he hadn’t thought about mathematics in 15 years. He pointed to the Sudoku puzzles and the newspapers on his table as evidence. We chatted about mutual friends in mathematics and other memories.

One evening during my visit, Ian and his sister and I went across the road for dinner – fish and chips and beer. During that dinner it came out in conversation with Ian’s sister – Ian had indeed recently been fiddling with some mathematics, and Ian told me about the Clifford circle for the nn-line. After dinner, when I was back at his place chatting; at some point, Ian lifted himself out of his chair, walked over to the other side of the room, picked up a manuscript, and gifted it to me. He explained that that was what he had been fiddling with and that it was a supplementary chapter to a book he had written just after high school on circles and triangles. It seems that the manuscript to the book was lost, but I was being given the supplementary chapter. I didn’t quite know what to make of that, but I carefully packed it in my suitcase for my trip home.

After Ian passed away, his son kindly sent me scans of the original handwritten manuscript of the supplementary chapter and the tex source of the printed copy that Ian gave to me. Since the topic was lines and circles in the plane, I got a few undergraduates together to work through the manuscript.

The author of this manuscript was a talented math student right out of high school. He clearly had not read our key reference for symmetric functions – his notations for symmetric functions are certainly nonstandard for anyone that has read the Symmetric Functions Bible. This student shows a penchant for thorough work and thinking. For the first main theorem appearing in the manuscript he gives 6 or 7 different proofs, all from different points of view, before moving on to generalizations. This high school student is incredibly deft with classical and projective geometry and complex numbers (linear equations, determinants, lemniscates, cardiods, deltoids, Euler lines, coaxal systems, Newton identities for symmetric functions, etc). Some of the induction proofs are a little bit clumsy – it seems that this student has not been formally taught ‘proof by induction’ like we might do in a first proof course for undergraduates. The command and thoroughness that this student exhibits extends to his referencing of the literature – in our modern times most of our community has no idea of the main players of classical intersection geometry any more. But this high school student was on top of this literature. If there were one piece of advice that I’d give to this student, it would be to read the books of Ian Macdonald and improve his writing style by emulating the master (admittedly, these books were not yet available).

After getting a feel for the contents of this high school student’s manuscript I began to understand Macdonald’s early trajectory in mathematics. He did Tripos at Cambridge and had some exposure to the professors there. Particularly from the vantage of Hodge, Pedoe and Todd, intersection theory and its connection to cohomology was “in the air” but not fully developed. Indeed, in his 1958 paper, Macdonald thanks “Dr. J.A. Todd for his interest and helpful advice”. By the time of his 1962 paper, Macdonald was clearly following the work of Grothendieck, and had understood that cohomology was an efficient way to compute intersections of the type that he had been computing in high school. In his 1962 paper he already wields the tools of sheaves and cohomology like a master and writes, “we obtain natural proofs of the results of an earlier paper [5] which were there obtained laboriously by classical methods.” It is truly amazing to see how this high school student’s interest in intersections in classical geometry led him to the very forefront of the technology of cohomology and algebraic geometry that was being vigorously developed at the time and to his proof of an important case of the Weil conjectures.

By 1962, without a Ph.D., Ian Macdonald was no longer a high school student, but had followed his nose to already become a mature mathematician of the highest caliber and a great expositior.

[Uncaptioned image]A diagram from Ian Macdonald’s 1947 manuscript on the n-line\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.65}]{fromMacdonaldManuscript.png}}}\\ \\ \hbox{A diagram from Ian Macdonald's 1947 manuscript on the $n$-line}\end{matrix}

4.1 Clifford’s nn-line chain


Two generic lines 1\ell_{1} and 2\ell_{2} intersect in a point A12A_{12}. The point A12A_{12} is the Clifford point of the 22-line.

\begin{matrix}\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} \tkzDefPoints{4/2/A,-4/1/B} \tkzDrawLine[color = blue](A,B) \tkzLabelLine[pos=-0.25](A,B){$\ell_{1}$} \tkzDefPoints{-0.5/6/C,-1.5/0/D} \tkzDrawLine[color = blue](C,D) \tkzLabelLine[pos=-0.25](C,D){$\ell_{2}$} \par\tkzInterLL(A,B)(C,D) \tkzGetPoint{A_{12}} \tkzDrawPoint(A_{12}) \tkzLabelPoint[below left](A_{12}){$A_{12}$} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

Each pair of lines in a generic 33-line {1,2,3}\{\ell_{1},\ell_{2},\ell_{3}\} intersect in a point, and these three points determine a circle cc. The circle cc is the Clifford circle of the 33-line.

\begin{matrix}\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} \tkzDefPoints{4/2/A,-4/1/B} \tkzDrawLine[color = blue](A,B) \tkzLabelLine[pos=-0.25](A,B){$\ell_{1}$} \tkzDefPoints{-0.5/6/C,-1.5/0/D} \tkzDrawLine[color = blue](C,D) \tkzLabelLine[pos=-0.25](C,D){$\ell_{2}$} \tkzDefPoints{-1/6/E, 2/0/F} \tkzDrawLine[color = blue](E,F) \tkzLabelLine[pos=-0.25](E,F){$\ell_{3}$} \par\tkzInterLL(A,B)(C,D) \tkzGetPoint{A_{12}} \tkzDrawPoint(A_{12}) \tkzLabelPoint[below left](A_{12}){$A_{12}$} \tkzInterLL(A,B)(E,F) \tkzGetPoint{A_{13}} \tkzDrawPoint(A_{13}) \tkzLabelPoint[below, yshift=-5, xshift=-3](A_{13}){$A_{13}$} \tkzInterLL(C,D)(E,F) \tkzGetPoint{A_{23}} \tkzDrawPoint(A_{23}) \tkzLabelPoint[above left, xshift=-2, yshift=-2](A_{23}){$A_{23}$} \par\tkzDefCircle[circum](A_{12},A_{13},A_{23}) \tkzGetPoint{C_4} \tkzDrawCircle[thick, black](C_4,A_{12}) \tkzLabelCircle[below](C_4,A_{12})(250){$c$} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

Each triple of lines in a generic 44-line {1,2,3,,4}\{\ell_{1},\ell_{2},\ell_{3},,\ell_{4}\} determines a Clifford circle, giving the circles c1,c2,c3,c4c_{1},c_{2},c_{3},c_{4}. These four circles intersect in a point WW. The point WW is the Clifford point of the 44-line.

\begin{matrix}\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\tkzDefPoints{4/2/A,-4/1/B} \tkzDrawLine[color = blue](A,B) \tkzLabelLine[pos=-0.25](A,B){$\ell_{1}$} \tkzDefPoints{-0.5/6/C,-1.5/0/D} \tkzDrawLine[color = blue](C,D) \tkzLabelLine[pos=-0.25](C,D){$\ell_{2}$} \tkzDefPoints{-1/6/E, 2/0/F} \tkzDrawLine[color = blue](E,F) \tkzLabelLine[pos=-0.25](E,F){$\ell_{3}$} \tkzDefPoints{-4/5/G,4/1.5/H} \tkzDrawLine[color = blue](G,H) \tkzLabelLine[pos=-0.25](G,H){$\ell_{4}$} \par\tkzInterLL(A,B)(C,D) \tkzGetPoint{A_{12}} \tkzDrawPoint(A_{12}) \tkzLabelPoint[below left](A_{12}){$A_{12}$} \tkzInterLL(A,B)(E,F) \tkzGetPoint{A_{13}} \tkzDrawPoint(A_{13}) \tkzLabelPoint[below, yshift=-5, xshift=-3](A_{13}){$A_{13}$} \tkzInterLL(A,B)(G,H) \tkzGetPoint{A_{14}} \tkzDrawPoint(A_{14}) \tkzLabelPoint[below right, xshift=-4, yshift=-3](A_{14}){$A_{14}$} \tkzInterLL(C,D)(E,F) \tkzGetPoint{A_{23}} \tkzDrawPoint(A_{23}) \tkzLabelPoint[above left, xshift=-2, yshift=-2](A_{23}){$A_{23}$} \tkzInterLL(C,D)(G,H) \tkzGetPoint{A_{24}} \tkzDrawPoint(A_{24}) \tkzLabelPoint[left, xshift=-1](A_{24}){$A_{24}$} \tkzInterLL(E,F)(G,H) \tkzGetPoint{A_{34}} \tkzDrawPoint(A_{34}) \tkzLabelPoint[below left, yshift=-7, xshift=2](A_{34}){$A_{34}$} \par\tkzDefCircle[circum](A_{23},A_{24},A_{34}) \tkzGetPoint{C_1} \tkzDrawCircle[thick, black](C_1,A_{23}) \tkzLabelCircle[above right](C_1,A_{23})(-50){$c_{1}$} \tkzDefCircle[circum](A_{13},A_{14},A_{34}) \tkzGetPoint{C_2} \tkzDrawCircle[thick, black](C_2,A_{13}) \tkzLabelCircle[right](C_2,A_{13})(180){$c_{2}$} \tkzDefCircle[circum](A_{12},A_{14},A_{24}) \tkzGetPoint{C_3} \tkzDrawCircle[thick, black](C_3,A_{12}) \tkzLabelCircle[right](C_3,A_{12})(200){$c_{3}$} \tkzDefCircle[circum](A_{12},A_{13},A_{23}) \tkzGetPoint{C_4} \tkzDrawCircle[thick, black](C_4,A_{12}) \tkzLabelCircle[above left](C_4,A_{12})(250){$c_{4}$} \par\tkzInterCC[common=A_{34}](C_1,A_{23})(C_2,A_{13}) \tkzGetFirstPoint{W} \tkzLabelPoint[above right](W){$W$} \par\par\tkzDrawPoint(W) \par\par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

Each 44-tuple of lines in a generic 55-line {1,2,3,,4,5}\{\ell_{1},\ell_{2},\ell_{3},,\ell_{4},\ell_{5}\} determines a Clifford point, giving the points p1,p2,p3,p4,p5p_{1},p_{2},p_{3},p_{4},p_{5}. These five points lie on a circle CC. The circle CC is the Clifford circle of the 55-line. \quad\ldots\quad and so on \quad\ldots\quad

4.2 Ian Macdonald’s general formulation

Let y1,,yn×y_{1},\ldots,y_{n}\in\mathbb{C}^{\times}. For i{1,,n}i\in\{1,\ldots,n\} let i\ell_{i} be the line consisting of the points in \mathbb{C} that are equidistant from 0 and yiy_{i}. The set of nn lines is the nn-line ={1,,n}\mathcal{L}=\{\ell_{1},\ldots,\ell_{n}\}, where

i={z|z¯=ti(zyi)},whereti=yi¯yi.0yii\ell_{i}=\{z\in\mathbb{C}\ |\ \bar{z}=t_{i}(z-y_{i})\},\qquad\hbox{where}\quad t_{i}=\frac{-\overline{y_{i}}}{y_{i}}.\qquad\quad\begin{matrix}\leavevmode\hbox to123.52pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 4.58301pt\lower-28.65276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.25pt}{-1.1111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.25pt}{-6.7552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.56104pt}{-1.1111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{{}}{}\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{112.01334pt}{-5.68578pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$y_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{113.81104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{-28.45276pt}\pgfsys@lineto{56.90552pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{63.91699pt}{20.06514pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\ell_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{56.90552pt}{8.5359pt}\pgfsys@lineto{113.81104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{56.90552pt}{-8.5359pt}\pgfsys@lineto{113.81104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{56.90552pt}{14.22638pt}\pgfsys@lineto{113.81104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{56.90552pt}{-14.22638pt}\pgfsys@lineto{113.81104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

For k{0,1,,n1}k\in\{0,1,\ldots,n-1\}, define

ck()=y1t1n1kg1()+y2t2n1kg2()++yntnn1kgn(),c_{k}(\mathcal{L})=\frac{y_{1}t_{1}^{n-1-k}}{g_{1}(\mathcal{L})}+\frac{y_{2}t_{2}^{n-1-k}}{g_{2}(\mathcal{L})}+\cdots+\frac{y_{n}t_{n}^{n-1-k}}{g_{n}(\mathcal{L})},

where

gj()=(tjt1)(tjt2)(tjtj1)(tjtj+1)(tjtj+2)(tjtn),g_{j}(\mathcal{L})=(t_{j}-t_{1})(t_{j}-t_{2})\cdots(t_{j}-t_{j-1})(t_{j}-t_{j+1})(t_{j}-t_{j+2})\cdots(t_{j}-t_{n}),

for j{1,,n}j\in\{1,\ldots,n\}.

Theorem 4.1 (Clifford’s chain).

Let ={1,,n}\mathcal{L}=\{\ell_{1},\ldots,\ell_{n}\} be an nn-line (satisfying an appropriate genericity condition).

Case nn even: Each (n1)(n-1)-subset of the nn-line determines a Clifford circle, and these nn Clifford circles intersect in a unique point p()p(\mathcal{L}). Let k>0k\in\mathbb{Z}_{>0} such that n=2kn=2k and let a1,,ak1a_{1},\ldots,a_{k-1}\in\mathbb{C} be given by

(a1a2ak1)=(c2()ck()ck()c2k2())1(c1()c2()ck1()).\begin{pmatrix}a_{1}\\ a_{2}\\ \vdots\\ a_{k-1}\end{pmatrix}=\begin{pmatrix}c_{2}(\mathcal{L})&\cdots&c_{k}(\mathcal{L})\\ \vdots&&\vdots\\ c_{k}(\mathcal{L})&\cdots&c_{2k-2}(\mathcal{L})\end{pmatrix}^{-1}\begin{pmatrix}-c_{1}(\mathcal{L})\\ -c_{2}(\mathcal{L})\\ \vdots\\ -c_{k-1}(\mathcal{L})\end{pmatrix}.

Then

p()=c0()+a1c1()+a2c2()++ak1ck1()p(\mathcal{L})=c_{0}(\mathcal{L})+a_{1}c_{1}(\mathcal{L})+a_{2}c_{2}(\mathcal{L})+\cdots+a_{k-1}c_{k-1}(\mathcal{L})

is the Clifford point of the nn-line ={1,,2k}\mathcal{L}=\{\ell_{1},\ldots,\ell_{2k}\}.

Case nn odd: Each (n1)(n-1)-subset of the nn-line determines a Clifford point, and these nn Clifford points lie on a unique circle C()C(\mathcal{L}). Let k>0k\in\mathbb{Z}_{>0} such that n=2k+1n=2k+1. The Clifford circle C()C(\mathcal{L}) is given by

C()={A()θB()|θU1()},whereU1()={θ|θθ¯=1},C(\mathcal{L})=\{A(\mathcal{L})-\theta B(\mathcal{L})\ |\ \theta\in U_{1}(\mathbb{C})\},\qquad\hbox{where}\qquad U_{1}(\mathbb{C})=\{\theta\in\mathbb{C}\ |\ \theta\bar{\theta}=1\},
A()=det(c0()ck1()c1()ck()ck1()c2k2())det(c2()ck()ck()c2k2())andB()=det(c1()ck()ck()c2k1())det(c2()ck()ck()c2k2()).A(\mathcal{L})=\frac{\det\begin{pmatrix}c_{0}(\mathcal{L})&\cdots&c_{k-1}(\mathcal{L})\\ c_{1}(\mathcal{L})&\cdots&c_{k}(\mathcal{L})\\ \vdots&&\vdots\\ c_{k-1}(\mathcal{L})&\cdots&c_{2k-2}(\mathcal{L})\end{pmatrix}}{\det\begin{pmatrix}c_{2}(\mathcal{L})&\cdots&c_{k}(\mathcal{L})\\ \vdots&&\vdots\\ c_{k}(\mathcal{L})&\cdots&c_{2k-2}(\mathcal{L})\end{pmatrix}}\qquad\hbox{and}\qquad B(\mathcal{L})=\frac{\det\begin{pmatrix}c_{1}(\mathcal{L})&\cdots&c_{k}(\mathcal{L})\\ \vdots&&\vdots\\ c_{k}(\mathcal{L})&\cdots&c_{2k-1}(\mathcal{L})\end{pmatrix}}{\det\begin{pmatrix}c_{2}(\mathcal{L})&\cdots&c_{k}(\mathcal{L})\\ \vdots&&\vdots\\ c_{k}(\mathcal{L})&\cdots&c_{2k-2}(\mathcal{L})\end{pmatrix}}.
[Uncaptioned image]The first page of the high school student’s manuscript\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.5}]{MacPage1.png}}}\\ \\ \hbox{The first page of the high school student's manuscript}\end{matrix}


5 The symmetric product of a curve Σ\Sigma

After high school Macdonald served in the military and then did the Mathematical Tripos at Trinity. After finishing at Cambridge in 1952, at the insistence of his father, Macdonald took competitive exams for a civil service job (i.e. a government job). He “stuck it out for five years” in a civil service job before leaving his good secure job for a temporary (1957–1960) position at Manchester and then another temporary position (1960–1963) at Exeter University. Then he became “Fellow and Tutor in Mathematics” at Magdalen College at Oxford until 1972.

In 1958, Macdonald’s first paper appeared in Proceedings of the Cambridge Philosophical Society. Very likely this study arose as a continuation of his study of intersections of lines and circles. The paper is entitled “Some enumerative formulae for algebraic curves”. In Part I, Macdonald gives a generalization of de Jonquières formula and Part II makes contact with Schur functions and Schubert conditions in intersection theory. It shows a mastery of the methods of the classical Italian algebraic geometry school. This paper is a significant development of his high school knowledge of intersection theory. Even so, it hardly gives any hint of the amazing achievement that was to come next.

By 1962, Macdonald had understood that intersection numbers of families of ourves could be computed by using cohomology as a tool. In his paper on the cohomology of symmetric products of an algebraic curve [Mac62b] he states “in particular we obtain natural proofs of the results of an earlier paper [Mac58] which were there obtained laboriously by classical methods.”

5.1 The cohomology of a symmetric product of a curve

Let Σ\Sigma be a curve.

\begin{matrix}\leavevmode\hbox to266.46pt{\vbox to79.5pt{\pgfpicture\makeatletter\hbox{\hskip 19.41846pt\lower-39.7485pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@curveto{19.21846pt}{39.54851pt}{37.68706pt}{39.54851pt}{56.90552pt}{28.45276pt}\pgfsys@curveto{66.51474pt}{22.90489pt}{75.74905pt}{22.90489pt}{85.35828pt}{28.45276pt}\pgfsys@curveto{104.57674pt}{39.54851pt}{123.04533pt}{39.54851pt}{142.2638pt}{28.45276pt}\pgfsys@curveto{151.87302pt}{22.90489pt}{161.10733pt}{22.90489pt}{170.71655pt}{28.45276pt}\pgfsys@curveto{189.93501pt}{39.54851pt}{208.40361pt}{39.54851pt}{227.62207pt}{28.45276pt}\pgfsys@curveto{246.84053pt}{17.35701pt}{246.84053pt}{-17.35701pt}{227.62207pt}{-28.45276pt}\pgfsys@curveto{208.40361pt}{-39.54851pt}{189.93501pt}{-39.54851pt}{170.71655pt}{-28.45276pt}\pgfsys@curveto{161.10733pt}{-22.90489pt}{151.87302pt}{-22.90489pt}{142.2638pt}{-28.45276pt}\pgfsys@curveto{123.04533pt}{-39.54851pt}{104.57674pt}{-39.54851pt}{85.35828pt}{-28.45276pt}\pgfsys@curveto{75.74905pt}{-22.90489pt}{66.51474pt}{-22.90489pt}{56.90552pt}{-28.45276pt}\pgfsys@curveto{37.68706pt}{-39.54851pt}{19.21846pt}{-39.54851pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{-19.21846pt}{-17.35701pt}{-19.21846pt}{17.35701pt}{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{11.38092pt}{2.84544pt}\pgfsys@curveto{22.76228pt}{-7.11319pt}{34.14322pt}{-7.11319pt}{45.52458pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@curveto{22.76228pt}{5.69046pt}{34.14322pt}{5.69046pt}{42.67914pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{96.7392pt}{2.84544pt}\pgfsys@curveto{108.12056pt}{-7.11319pt}{119.5015pt}{-7.11319pt}{130.88286pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{99.58466pt}{0.0pt}\pgfsys@curveto{108.12056pt}{5.69046pt}{119.5015pt}{5.69046pt}{128.03741pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{182.09747pt}{2.84544pt}\pgfsys@curveto{193.47884pt}{-7.11319pt}{204.85977pt}{-7.11319pt}{216.24113pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{184.94293pt}{0.0pt}\pgfsys@curveto{193.47884pt}{5.69046pt}{204.85977pt}{5.69046pt}{213.39569pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}

The nnth symmetric power of Σ\Sigma is

Σ(n)=Σn/Sn,wherew(p1,,pn)=(pw1(1),,pw1(n)),\Sigma(n)=\Sigma^{n}/S_{n},\qquad\hbox{where}\quad w\cdot(p_{1},\ldots,p_{n})=(p_{w^{-1}(1)},\ldots,p_{w^{-1}(n)}),

for wSnw\in S_{n} and (p1,,pn)Σn(p_{1},\ldots,p_{n})\in\Sigma^{n}.

Cohomology is a creature (more precisely, a functor) that eats spaces and outputs graded rings.

spacesHΣ(n)H(Σ(n),)graded rings\hbox{spaces}\qquad\qquad\begin{matrix}\leavevmode\hbox to184.23pt{\vbox to130.39pt{\pgfpicture\makeatletter\hbox{\hskip 53.66788pt\lower-65.19594pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}{{}} {}{}{}\pgfsys@moveto{-49.28174pt}{-28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{-49.28174pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{}{{{{}{}{}{}}} {{}{}{}{}}}{} {} {}{}{}\pgfsys@moveto{-49.28174pt}{-28.45276pt}\pgfsys@curveto{-33.56754pt}{-55.67065pt}{1.23486pt}{-64.99594pt}{28.45276pt}{-49.28174pt}\pgfsys@curveto{43.02008pt}{-40.8713pt}{53.1207pt}{-26.44681pt}{56.04153pt}{-9.88135pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{}{{{{}{}{}{}}}{{}{}{}{}}}{} {} {}{}{}\pgfsys@moveto{-49.28174pt}{28.45276pt}\pgfsys@curveto{-33.56754pt}{55.67065pt}{1.23486pt}{64.99594pt}{28.45276pt}{49.28174pt}\pgfsys@curveto{43.02008pt}{40.8713pt}{53.1207pt}{26.44681pt}{56.04153pt}{9.88135pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{-49.28174pt}{-28.45276pt}\pgfsys@lineto{-48.12656pt}{-17.51682pt}\pgfsys@lineto{-39.42538pt}{-22.7622pt}\pgfsys@lineto{-37.43176pt}{-13.6242pt}\pgfsys@lineto{-29.56903pt}{-17.07166pt}\pgfsys@lineto{-26.73697pt}{-9.73157pt}\pgfsys@lineto{-19.71268pt}{-11.3811pt}\pgfsys@lineto{-16.04218pt}{-5.83893pt}\pgfsys@lineto{-9.85632pt}{-5.69055pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{-49.28174pt}{28.45276pt}\pgfsys@lineto{-48.12656pt}{17.51682pt}\pgfsys@lineto{-39.42538pt}{22.7622pt}\pgfsys@lineto{-37.43176pt}{13.6242pt}\pgfsys@lineto{-29.56903pt}{17.07166pt}\pgfsys@lineto{-26.73697pt}{9.73157pt}\pgfsys@lineto{-19.71268pt}{11.3811pt}\pgfsys@lineto{-16.04218pt}{5.83893pt}\pgfsys@lineto{-9.85632pt}{5.69055pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{}{{{{}{}{}{}}} {{}{}{}{}}}{} {} {}{}{}\pgfsys@moveto{56.04153pt}{9.88135pt}\pgfsys@curveto{53.83237pt}{9.88135pt}{52.04153pt}{5.40427pt}{52.04153pt}{-0.11865pt}\pgfsys@curveto{52.04153pt}{-5.64157pt}{53.83237pt}{-10.11865pt}{56.04153pt}{-10.11865pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.04153pt}{9.88135pt}\pgfsys@lineto{67.77814pt}{8.3222pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.04153pt}{-9.88135pt}\pgfsys@lineto{67.77814pt}{-8.3222pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }{}\pgfsys@moveto{68.28644pt}{0.0pt}\pgfsys@moveto{70.28644pt}{0.0pt}\pgfsys@curveto{70.28644pt}{4.41833pt}{69.39102pt}{8.0pt}{68.28644pt}{8.0pt}\pgfsys@curveto{67.18185pt}{8.0pt}{66.28644pt}{4.41833pt}{66.28644pt}{0.0pt}\pgfsys@curveto{66.28644pt}{-4.41833pt}{67.18185pt}{-8.0pt}{68.28644pt}{-8.0pt}\pgfsys@curveto{69.39102pt}{-8.0pt}{70.28644pt}{-4.41833pt}{70.28644pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28644pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.96248pt}{24.38472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$H^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{}\pgfsys@moveto{-39.83368pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-50.33487pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma(n)$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{}\pgfsys@moveto{102.43008pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.63306pt}{-2.81804pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$H^{*}(\Sigma(n),\mathbb{Z})$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{matrix}\qquad\qquad\hbox{graded rings}

In spite of the frightening teeth, cohomologies are really quite friendly (it is the spaces that are dangerous). How does one write down the cohomology H(X;)H^{*}(X;\mathbb{Z}) of a space XX? Well, H(X,)H^{*}(X,\mathbb{Z}) is a graded ring and a graded ring is written down in a presentation by generators and relations. Macdonald’s 1962 paper gives an elegant presentation of the graded ring H(Σ(n),)H^{*}(\Sigma(n),\mathbb{Z}), the cohomology of the nnth symmetric product of a curve Σ\Sigma.

Theorem 5.1.

Let Σ\Sigma be a curve of genus gg. The cohomology ring H(Σ(n),)H^{*}(\Sigma(n),\mathbb{Z}) is the \mathbb{Z}-algebra presented by generators

ξ1,,ξg,ξ1,,ξg,η\xi_{1},\ldots,\xi_{g},\quad\xi_{1}^{\prime},\ldots,\xi_{g}^{\prime},\quad\eta

and relations

If i,j{1,,g}i,j\in\{1,\ldots,g\} then

ξiξj=ξjξi,ξiξj=ξjξi,ξiξj=ξjξi,\xi_{i}\xi_{j}=-\xi_{j}\xi_{i},\qquad\xi_{i}^{\prime}\xi_{j}^{\prime}=-\xi_{j}^{\prime}\xi_{i}^{\prime},\qquad\xi_{i}\xi_{j}^{\prime}=-\xi_{j}^{\prime}\xi_{i},
ξiη=ηξi,ξiη=ηξi,\xi_{i}\eta=\eta\xi_{i},\qquad\qquad\xi_{i}^{\prime}\eta=\eta\xi_{i}^{\prime},

If a,b,c,q0a,b,c,q\in\mathbb{Z}_{\geq 0} and a+b+2c+q=n+1a+b+2c+q=n+1 and i1,,ia,j1,,jb,k1,,kci_{1},\ldots,i_{a},j_{1},\ldots,j_{b},k_{1},\ldots,k_{c} are distinct elements of {1,,g}\{1,\ldots,g\} then

ξi1ξiaξj1ξjb(ξk1ξk1η)(ξkcξkcη)ηq=0.\xi_{i_{1}}\cdots\xi_{i_{a}}\xi^{\prime}_{j_{1}}\cdots\xi^{\prime}_{j_{b}}(\xi_{k_{1}}\xi^{\prime}_{k_{1}}-\eta)\cdots(\xi_{k_{c}}\xi^{\prime}_{k_{c}}-\eta)\eta^{q}=0.

5.2 The Weil conjectures for the symmetric product Σ(n)\Sigma(n) of a curve

Weil’s famous conjectures about zeta functions of algebraic varieties are from his paper of 1949 [We49]. These conjectures stimulated a huge effort which included the development of étale cohomology and \ell-adic cohomology. The Weil conjectures were proved in the 1960s and 70s: the proof of the rationality conjecture came in 1960 (Dwork), the proof of the functional equation and Betti numbers connection in 1965 (Grothendieck school) and the analogue of the Riemann hypothesis in 1974 (Deligne). In 1962, Macdonald proved Weil’s conjectures in an important special case: “… we calculate the zeta function of Σ(n)\Sigma(n) and verify Weil’s conjectures in this case.”

The zeta function Z(t)Z(t) of an algebraic variety XX is an exponential generating function for the number of points of XX over the finite fields 𝔽qn\mathbb{F}_{q^{n}},

ddtlogZ(t)=n>0Card(X(𝔽qn))tn1.\frac{d\ }{dt}\log Z(t)=\sum_{n\in\mathbb{Z}_{>0}}\mathrm{Card}(X(\mathbb{F}_{q^{n}}))t^{n-1}.

Let Σ\Sigma be a curve of genus gg and assume that ρ1,,ρ2g\rho_{1},\ldots,\rho_{2g}\in\mathbb{C} are such that

Z1(t)=(1ρ1t)(1ρ2gt)(1t)(1qt)is the zeta function of Σ.Z_{1}(t)=\frac{(1-\rho_{1}t)\cdots(1-\rho_{2g}t)}{(1-t)(1-qt)}\qquad\hbox{is the zeta function of $\Sigma$.}

Let ϕ0(t)=1t\phi_{0}(t)=1-t and, for k{1,,2g}k\in\{1,\ldots,2g\}, let

ϕk(t)=1i1<<ik2g(1ρi1ρikt).\phi_{k}(t)=\prod_{1\leq i_{1}<\cdots<i_{k}\leq 2g}(1-\rho_{i_{1}}\cdots\rho_{i_{k}}t).

Then define

Fk(t)={ϕk(t)ϕk2(t)ϕk4(t),if k{0,1,,n},F2nk(qknt),if k{n+1,,2n}.F_{k}(t)=\begin{cases}\phi_{k}(t)\phi_{k-2}(t)\phi_{k-4}(t)\cdots,&\hbox{if $k\in\{0,1,\ldots,n\}$,}\\ F_{2n-k}(q^{k-n}t),&\hbox{if $k\in\{n+1,\ldots,2n\}$.}\end{cases}
Corollary 5.2.

The Weil conjectures hold for Σ(n)\Sigma(n). More specifically,

The zeta function of Σ(n)\Sigma(n) is

Zn(t)=F1(t)F3(t)F2n1(t)F0(t)F2(t)F2n(t).Z_{n}(t)=\frac{F_{1}(t)F_{3}(t)\cdots F_{2n-1}(t)}{F_{0}(t)F_{2}(t)\cdots F_{2n}(t)}.

The Riemann hypothesis for Σ(n)\Sigma(n) holds:

All roots of Zn(t) have absolute value in {q120,q121,q122,,q122n}.\hbox{All roots of $Z_{n}(t)$ have absolute value in }\quad\{q^{-\frac{1}{2}\cdot 0},q^{-\frac{1}{2}\cdot 1},q^{-\frac{1}{2}\cdot 2},\ldots,q^{-\frac{1}{2}\cdot 2n}\}.

The functional equation for Σ(n)\Sigma(n) is

Zn(1qnt)=(q12nt)(1)n(2g2n)Zn(t).Z_{n}\big{(}\hbox{$\frac{1}{q^{n}t}$}\big{)}=(-q^{-\frac{1}{2}n}t)^{(-1)^{n}\binom{2g-2}{n}}Z_{n}(t).

6 I.G. Macdonald as influencer

6.1 Deligne-Lusztig 1976

In Lecture Notes in Math. 131, T. Springer precisely states conjectures of Macdonald about complex representations of finite groups of Lie type. Looking back at these references, one gathers that the notes of Macdonald on Hall polynomials that were circulating in the late 1960’s eventuallly became Chapter IV of his book on Symmetric functions and Hall polynomials. T. Springer’s expositions appearing in [Spr70] make it clear that, by 1968, Ian Macdonald had understood how the type GLnGL_{n} story from J.A. Green’s 1955 paper could be reshaped for a statement for general Lie types. Macdonald’s conjectures were proved by Deligne and Lusztig in 1976.


[Uncaptioned image]\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.6}]{DeligneLusztigScreenshot.png}}}\\ \end{matrix}

6.2 Maulik-Yun 2013

It is still the case that most topologists and geometers view Macdonald’s computation of the cohomology of the symmetric product of a curve [Mac62b] as his most well known achievement. In recent years the study of moduli spaces of curves and related cohomological Hall algebras has become an important part of geometry and mathematical physics, and Macdonald’s study of symmetric products of curves continues to be an important stimulus for research in this direction today.

[Uncaptioned image]\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.5}]{MaulikYunpage1240618.png}}}\\ \end{matrix}

6.3 Casselman 2012

An announcement of Macdonald’s computation of the spherical function for pp-adic groups appeared in 1968, and the full details appeared in his book published by the University of Madras in 1971. From the point of view of symmetric function theory, Macdonald proved that the favorite formula [Mac, Ch. III (2.1)] for the Hall-Littlewood polynomial

Pλ(x;t)=1vλ(t)wSnw(x1λ1xnλni<jxitxjxixj)P_{\lambda}(x;t)=\frac{1}{v_{\lambda}(t)}\sum_{w\in S_{n}}w\Big{(}x_{1}^{\lambda_{1}}\cdots x_{n}^{\lambda_{n}}\prod_{i<j}\frac{x_{i}-tx_{j}}{x_{i}-x_{j}}\Big{)}

generalizes to all Lie types and is a formula for the spherical function for G/KG/K where GG is the corresponding pp-adic group G=G(p)G=G(\mathbb{Q}_{p}) and K=G(p)K=G(\mathbb{Z}_{p}) is a maximal compact subgroup of GG.

[Uncaptioned image]\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.55}]{CasselmanScreenshot.png}}}\end{matrix}

6.4 V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1982

Macdonald’s work on pp-adic groups drew him into the combinatorics of affine root systems and he made a thorough classification and study of affine root systems and affine Weyl groups, resulting in his 1972 paper entitled “Affine root systems and Dedekind’s η\eta-function”. This study brought him into contact with affine Kac-Moody Lie algebras and formulas for characters of their representations.


[Uncaptioned image]\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.6}]{KacInfDimLieScreenshot.png}}}\end{matrix}

7 I.G. Macdonald as translator

One of Ian Macdonald’s great silent contributions to the mathematical community was his work as a translator.

7.1 I.G. Macdonald as translator: Bourbaki

I.G. Macdonald was the first translator of Bourbaki into English. It is not clear how much of Bourbaki Macdonald translated as the publisher did not list the translator in the published English versions. A best guess is that the volumes which appeared in English between 1966 and 1974 were translated by Macdonald. These volumes comprise more than 2500 pages.


  1. Bourbaki, General Topology Parts I and II 1966, vii+437 pp. and iv+363 pp.

  2. Bourbaki, Theory of Sets 1968, viii+414 pp.

  3. Bourbaki, Commutative Algebra 1972, xxiv+625 pp.

  4. Bourbaki, Algebra 1974, xxiii+709 pp.


7.2 I.G. Macdonald as translator: Dieudonné

I.G. Macdonald’s work as a translator of Dieudonné’s Treatise on Analysis is documented in [Mar] and he is explicitly listed as translator in the English version of Dieudonné’s Panorama of Pure Mathematics, which appeared in 1982. Together, these volumes amount to more than 2300 pages.


  1. Dieudonné, Foundations of Modern Analysis 1960 and 1969, xiv+361 pp.

  2. Dieudonné, Treatise on Analysis Vol. II 1970 and 1976, xviii+387 pp.

  3. Dieudonné, Treatise on Analysis Vol. III 1972, xvii+388 pp.

  4. Dieudonné, Treatise on Analysis Vol. IV 1974, xiv+444 pp.

  5. Dieudonné, Treatise on Analysis Vol. V 1977, xiv+243 pp.

  6. Dieudonné, Treatise on Analysis Vol. VI 1978, xi+239 pp

  7. Dieudonné, A panorama of pure mathematics 1982, x+289 pp.

8 I.G. Macdonald for my students

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about Lie groups, do you have a reference that you can recommend?” I usually find myself saying, “How about the notes of Macdonald?”

  1. Algebraic structure of Lie groups, Cambridge University Press, 1980. https://doi.org/10.1017/CBO9780511662683.005

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about algebraic groups, do you have a reference that you can recommend?” I usually find myself saying, “How about the notes of Macdonald?”

  1. Linear algebraic groups, in Lectures on Lie Groups and Lie Algebras, Cambridge University Press 1995 https://doi.org/10.1017/CBO9781139172882

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about reflection groups, do you have a reference that you can recommend?” I usually find myself saying, “How about the notes of Macdonald?”

  1. Reflection groups, unpublished notes 1991. Available at http://math.soimeme.org/\scriptstyle\simarunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about algebraic geometry, do you have a reference that you can recommend?” I usually find myself saying, “How about the book of Macdonald?”

  1. Algebraic Geometry - Introduction to schemes, published by W.A. Benjamin 1968. Available at http://math.soimeme.org/\scriptstyle\simarunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about Haar measure, spherical functions and harmonic analysis, do you have a reference that you can recommend?” I usually find myself saying, “How about the book of Macdonald?”

  1. Spherical functions on a group of pp-adic type, University of Madras 1971. Available at http://math.soimeme.org/\scriptstyle\simarunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about Kac-Moody Lie algebras, do you have a reference that you can recommend?” I usually find myself saying, “How about the notes of Macdonald?”

  1. Kac-Moody Lie algebras, unpublished notes 1983. Available at http://math.soimeme.org/\scriptstyle\simarunram/resources.html

Every once in a while, not infrequently, a student comes by my office and says “I’d like to learn about flag varieties and Schubert varieties, do you have a reference that you can recommend?” I usually find myself saying, “How about the notes of Macdonald?”

  1. Notes on Schubert polynomials: Appendix: Schubert varieties. Published by LACIM 1991. Available at http://math.soimeme.org/\scriptstyle\simarunram/resources.html

9 I.G.  Macdonald as an author of books

“If you see a gap in the literature, write a book to fill it.” – I.G. Macdonald

  1. Atiyah-Macdonald, Introduction to commutative algebra 1969

  2. Spherical functions on a group of p-adic type 1971

  3. Symmetric functions and Hall polynomials First Edition 1979

  4. Kac-Moody Lie algebras: unpublished notes 1983

  5. Hypergeometric functions: unpublished notes 1987

  6. Reflection groups: unpublished notes 1991

  7. Schubert polynomials 1991

  8. Symmetric functions and Hall polynomials Second Edition 1995

  9. Linear algebraic groups: in Lectures on Lie groups and Lie algebras 1995

  10. Affine Hecke algebras and orthogonal polynomials 2003


9.1 The first book: Algebraic Geometry - Introduction to Schemes 1968

[Uncaptioned image]\begin{matrix}\vbox{\hbox{\includegraphics[scale={0.5}]{MacAlgebraicGeometry.png}}}\\ \end{matrix}

References

  • [1]
  • [2]

10.1 Publications of I.G. Macdonald

  • [Mac58] I.G. Macdonald, Some enumerative formulae for algebraic curves, Proc. Cambridge Philos. Soc. 54 (1958) 399-416, MR0095171.
  • [Mac60] I.G. Macdonald, Jordan algebras with three generators, Proc. London Math. Soc. (3) 10 (1960) 395-408, MR0126473.
  • [Mac62a] I.G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962) 563-568, MR0143204.
  • [Mac62b] I.G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319-343, MR0151460.
  • [Mac62c] I.G. Macdonald, Duality over complete local rings, Topology 1 (1962) 213-235, MR0151491.
  • [Mac63] I.G. Macdonald, The volume of a lattice polyhedron, Proc. Cambridge Philos. Soc. 59 (1963) 719-726, MR0154188.
  • [ABMM67] A.O.L. Atkin, P. Bratley, I.G. Macdonald, J.K.S. McKay, Some computations for m-dimensional partitions, Proc. Cambridge Philos. Soc. 63 (1967) 1097-1100, MR0217029.
  • [Mac68a] I.G. Macdonald, Spherical functions on a 𝔭\mathfrak{p}-adic Chevalley group, Bull. Amer. Math. Soc. 74 (1968) 520-525, MR0222089.
  • [Mac68b] I.G. Macdonald, Algebraic Geometry. Introduction to schemes, W.A. Benjamin 1968, MR0238845.
  • [AM69] M.F Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley 1969, MR0242802.
  • [Mac71a] I.G. Macdonald, On the degrees of the irreducible representations of symmetric groups, Bull. London Math. Soc. 3 (1971) 189-192, MR0289677.
  • [Mac71b] I.G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971) 181-192, MR0298542.
  • [Mac71c] I.G. Macdonald, Harmonic analysis on semi-simple groups, Actes du Congrès International des Mathématiciens (Nice 1970), Tome 2, Gauthier-Villars 1971, 331-335, MR0419691.