This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hypercubic Decomposition of
Verma Supermodules and
Semibricks Realizing the
Khovanov Algebra of Defect One

Shunsuke Hirota
Abstract

We study some variants of Verma modules of basic Lie superalgebras obtained via changing Borel subalgebras. These allow us to demonstrate that the principal block of 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1) is realized as (non-Serre) full subcategories of any atypical block of BGG category π’ͺ\mathcal{O} of basic Lie superalgebras.

1 Introduction

1.1 Main Result

Classical BGG category π’ͺ\mathcal{O} has been historically important in representation theory. Its super analog has been extensively studied in recent years and is regarded as a highly non-trivial and intriguing object. It is remarkable that, regarding character theory, our understanding has greatly advanced due to successes such as categorification theory. (For example, see [8, 5].) In general, many classical aspects of category π’ͺ\mathcal{O} related to 𝔰​𝔩​(2)\mathfrak{sl}(2) have been generalized to the super analog by numerous authors [10, 16, 17]. Yet, the theory unique to the super caseβ€”particularly the theory surrounding 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1), an intriguing counterpart to 𝔰​𝔩​(2)\mathfrak{sl}(2) in the super worldβ€”still appears to have a room for further exploration.

Indeed, the main result of our present work provides a new direction concerning the 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1)-like aspects of the super category π’ͺ\mathcal{O} through appropriate ”semibricks”. Experts in the super category π’ͺ\mathcal{O} are well aware that the atypical block contains long exact sequences of Verma modules Mπ”Ÿβ€‹(Ξ»)M^{\mathfrak{b}}(\lambda) (induced from Borel subalgebra π”Ÿ\mathfrak{b}) and this observation evokes a connection to 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1). The theorem stated below is nothing but a formalization of this intuition.

A semibrick is, in simple terms, a class of objects in an abelian category that satisfy Schur’s lemma. By a classical result of Ringel [18] (presented here as TheoremΒ 3.13), it is known that taking the β€œfiltration closure” of a semibrick yields an extension-closed abelian full subcategory (i.e. wide subcategory). In case of the module category of finite-dimensional algebras, this concept has been shown to correspond bijectively to key structures and has been actively studied in that context in recent years [1].

Theorem 1.1 (#​J=1\#J=1 case of TheoremΒ 3.24).

Let us consider a basic Lie superalgebra 𝔀\mathfrak{g}. Let π”Ÿ\mathfrak{b} be a Borel subalgebra of 𝔀\mathfrak{g}, Ξ±\alpha a π”Ÿ\mathfrak{b}-isotropic simple root, and Ξ»\lambda a weight orthogonal to Ξ±\alpha. Then the collection of images Mπ”Ÿ+rΞ±β€‹π”Ÿβ€‹(Ξ»+n​α)M^{\mathfrak{b}+r_{\alpha}\mathfrak{b}}(\lambda+n\alpha) of all nonzero homomorphisms between π”Ÿ\mathfrak{b}-Verma modules Mπ”Ÿβ€‹(Ξ»+n​α)β†’Miπ”Ÿβ€‹(Ξ»+(n+1)​α)M^{\mathfrak{b}}(\lambda+n\alpha)\to M_{i}^{\mathfrak{b}}(\lambda+(n+1)\alpha), for all integers nn, forms a semibrick H​(Ξ±,Ξ»)H(\alpha,\lambda).

Furthermore, let Filt⁑H​(Ξ±,Ξ»)\operatorname{Filt}H(\alpha,\lambda) denote the filtration closure of H​(Ξ±,Ξ»)H(\alpha,\lambda) in the category π’ͺ\mathcal{O}. There exists a functor

Filt⁑H​(Ξ±,Ξ»)⟢π’ͺ0​(𝔀​𝔩​(1|1)),\operatorname{Filt}H(\alpha,\lambda)\longrightarrow\mathcal{O}_{0}(\mathfrak{gl}(1|1)),

which establishes an equivalence of categories.

This theorem implies that the principal block of 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1) is embedded into the super category π’ͺ\mathcal{O} in many ways. A crucial point here is that this embedding forms a wide subcategory, not a Serre subcategory. Indeed, the left-hand side category generally does not contain the actual simple modules Lπ”Ÿβ€‹(Ξ»)L^{\mathfrak{b}}(\lambda), among others.

In general, the problems involving Lπ”Ÿβ€‹(Ξ»)L^{\mathfrak{b}}(\lambda), including the super Kazhdan-Lusztig conjecture [8, 5], are highly nontrivial. On the other hand, if we treat ”bricks” as simple objects instead of actual simple modules and take a coarse perspective on the super category π’ͺ\mathcal{O}, this theorem suggests that the situation becomes much more familiar and well-understood. As a corollary, all problems concerning E​x​t1Ext^{1} groups between Verma modules or their variants contained in this category reduce to problems in 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1).

It is notable that this theorem only becomes apparent through the process of changing Borel subalgebras. In particular, when constructing a module corresponding to indecomposable projective modules, we considered a module induced from the smaller solvable Lie superalgebra, which is the intersection of two adjacent Borel subalgebras.

Mπ”Ÿβ€‹(Ξ»βˆ’Ξ±)M^{\mathfrak{b}}(\lambda-\alpha)Mπ”Ÿβ€‹(Ξ»)M^{\mathfrak{b}}(\lambda)Mπ”Ÿβ€‹(Ξ»+Ξ±)M^{\mathfrak{b}}(\lambda+\alpha)Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±)M^{\mathfrak{b}\cap r_{\alpha}\mathfrak{b}}(\lambda-\alpha)Mπ”Ÿ+rΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±)M^{\mathfrak{b}+r_{\alpha}\mathfrak{b}}(\lambda-\alpha)Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{\alpha}\mathfrak{b}}(\lambda)Mπ”Ÿ+rΞ±β€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}+r_{\alpha}\mathfrak{b}}(\lambda)……MrΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’2​α)M^{r_{\alpha}\mathfrak{b}}(\lambda-2\alpha)MrΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±)M^{r_{\alpha}\mathfrak{b}}(\lambda-\alpha)MrΞ±β€‹π”Ÿβ€‹(Ξ»)M^{r_{\alpha}\mathfrak{b}}(\lambda)

This diagram depicts the key modules and homomorphisms in TheoremΒ 1.1.

An exact sequence (this is an almost split sequence in Filt⁑H​(Ξ±,Ξ»)\operatorname{Filt}H(\alpha,\lambda) in the sense of Auslander-Reiten [2])

0β†’Mπ”Ÿ+rΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±)β†’Mπ”Ÿβ€‹(Ξ»)β†’Mπ”Ÿ+rΞ±β€‹π”Ÿβ€‹(Ξ»)β†’00\to M^{\mathfrak{b}+r_{\alpha}\mathfrak{b}}(\lambda-\alpha)\to M^{\mathfrak{b}}(\lambda)\to M^{\mathfrak{b}+r_{\alpha}\mathfrak{b}}(\lambda)\to 0

shows that Verma modules have a natural decomposition. (These modules also appear in references such as [19] and [8].)

More generally, by simultaneously handling nn mutually orthogonal odd isotropic simple roots, Mπ”Ÿβ€‹(Ξ»)M^{\mathfrak{b}}(\lambda) can be decomposed into 2n2^{n} π”Ÿ\mathfrak{b}-highest weight modules of the form Mπ”Ÿ+rJβ€‹π”Ÿβ€‹(ΞΌ)M^{\mathfrak{b}+r_{J}\mathfrak{b}}(\mu), based on the intuition of hyperqube QnQ_{n}. As a consequence, similarly, we can construct a semibrick that realizes the principal block for 𝔀​𝔩​(1|1)βŠ•n\mathfrak{gl}(1|1)^{\oplus n} (TheoremΒ 3.24).

As we see from ExampleΒ 3.16 and ExampleΒ 3.17, we can also construct a natural semibrick in a different direction, distinct from TheoremΒ 1.1. In particular, we can realize many categories of modules over the preprojective algebra of type A2A_{2}. For such a semibrick, the Verma modules play the role of indecomposable projective modules. This construction may be generalized further and is considered an interesting problem in itself, closely related to the contents of [14], especially [14, Remark 4.13].

1.2 Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Syu Kato, for his patient and extensive guidance throughout the preparation of master’s thesis, as well as for his helpful suggestions and constructive feedback. The author is also grateful to Istvan Heckenberger for pointing out some errors. The author is also grateful to Shun-Jen Cheng for valuable discussions, which helped in identifying several mistakes. The author would like to thank the Kumano Dormitory community at Kyoto University for their generous financial and living assistance.

2 Preliminaries

Fix the base field kk as an algebraically closed field of characteristic 0.

From now on, we will denote by 𝔀\mathfrak{g} a finite dimensional Lie superalgebra. We denote the even and odd parts of 𝔀\mathfrak{g} as 𝔀0Β―\mathfrak{g}_{\overline{0}} and 𝔀1Β―\mathfrak{g}_{\overline{1}}, respectively.

In this text, whenever we refer to ”dimension”, we mean the dimension as a vector space, forgetting the β„€/2​℀\mathbb{Z}/2\mathbb{Z}-grading (not the dimension in the sense of the theory of symmetric tensor categories in [13], i.e., the superdimension).

We consider the category 𝔀​-sMod\mathfrak{g}\text{-sMod}, where morphisms respects β„€/2​℀\mathbb{Z}/2\mathbb{Z}-grading. (This is the module category of a monoid object in the monoidal category of super vector spaces in the sense of [13].)

Let 𝔀​-smod\mathfrak{g}\text{-smod} denote the full subcategory of 𝔀​-sMod\mathfrak{g}\text{-sMod} consisting of finite-dimensional modules.

The parity shift functor Ξ \Pi on 𝔀​-sMod\mathfrak{g}\text{-sMod} is an exact functor that acts by preserving the underlying 𝔀\mathfrak{g}-module structure but reversing the β„€/2​℀\mathbb{Z}/2\mathbb{Z}-grading, while also preserving all morphisms.

Theorem 2.1 (PBW Theorem, [17] Theorem 6.1.2).

Let 𝔀\mathfrak{g} be a finite-dimensional Lie superalgebra, and let x1,…,xnx_{1},\dots,x_{n} be a β„€/2​℀\mathbb{Z}/2\mathbb{Z}-homogeneous basis of 𝔀\mathfrak{g}. Then

{x1a1​…​xnan∣aiβˆˆβ„€β‰₯0​ if ​xiβˆˆπ”€0Β―,Β and ​ai∈{0,1}​ if ​xiβˆˆπ”€1Β―}\{x_{1}^{a_{1}}\dots x_{n}^{a_{n}}\mid a_{i}\in\mathbb{Z}_{\geq 0}\text{ if }x_{i}\in\mathfrak{g}_{\overline{0}},\text{ and }a_{i}\in\{0,1\}\text{ if }x_{i}\in\mathfrak{g}_{\overline{1}}\}

forms a basis for U​(𝔀)U(\mathfrak{g}), the universal enveloping algebra of 𝔀\mathfrak{g}.

From now on, our 𝔀\mathfrak{g} will be a direct sum of one of the finite-dimensional basic Lie superalgebras from the following list:

𝔰​𝔩​(m|n),mβ‰ n,𝔀​𝔩​(m|n),𝔬​𝔰​𝔭​(m|2​n),D​(2,1;Ξ±),G​(3),F​(4).\mathfrak{sl}(m|n),\,m\neq n,\,\mathfrak{gl}(m|n),\,\mathfrak{osp}(m|2n),\,D(2,1;\alpha),\,G(3),\,F(4).

For concrete definitions, we refer to [17] and [7].

Definition 2.2 ([17, 7]).

A Cartan subalgebra of the reductive Lie algebra 𝔀0Β―\mathfrak{g}_{\overline{0}} is denoted by π”₯\mathfrak{h}.

A basic Lie superalgebra 𝔀\mathfrak{g} has a supersymmetric, superinvariant, even bilinear form ⟨,⟩\langle\,,\,\rangle, which induces a bilinear form (,)(\,,\,) on π”₯βˆ—\mathfrak{h}^{*} via duality. The root space 𝔀α\mathfrak{g}_{\alpha} associated with α∈π”₯βˆ—\alpha\in\mathfrak{h}^{*} is defined as 𝔀α:={xβˆˆπ”€βˆ£[h,x]=α​(h)​x​for all ​h∈π”₯}.\mathfrak{g}_{\alpha}:=\{x\in\mathfrak{g}\mid[h,x]=\alpha(h)x\,\text{for all }h\in\mathfrak{h}\}. The set of roots Ξ”\Delta is defined as Ξ”:={α∈π”₯βˆ—βˆ£π”€Ξ±β‰ 0}βˆ–{0}.\Delta:=\{\alpha\in\mathfrak{h}^{*}\mid\mathfrak{g}_{\alpha}\neq 0\}\setminus\{0\}. Each 𝔀α\mathfrak{g}_{\alpha} is either purely even or purely odd and is one-dimensional (our list does not include 𝔰​𝔩​(n|n)\mathfrak{sl}(n|n) and 𝔭​𝔰​𝔩​(n|n)\mathfrak{psl}(n|n)). Therefore, the notions of even roots and odd roots are well defined. An odd root Ξ±\alpha is said to be isotropic if (Ξ±,Ξ±)=0(\alpha,\alpha)=0. The sets of all even roots, even positive roots, odd roots and odd isotropic roots are denoted by Ξ”0Β―\Delta_{\overline{0}}, Ξ”0Β―+\Delta_{\overline{0}}^{+}, Ξ”1Β―\Delta_{\overline{1}} and Ξ”βŠ—\Delta_{\otimes}, respectively.

Definition 2.3 ([17, 7]).

We fix a Borel subalgebra π”Ÿ0Β―\mathfrak{b}_{\overline{0}} of 𝔀0Β―\mathfrak{g}_{\overline{0}}. The set of all Borel subalgebras π”Ÿ\mathfrak{b} of 𝔀\mathfrak{g} that contain π”Ÿ0Β―\mathfrak{b}_{\overline{0}} is denoted by 𝔅​(𝔀)\mathfrak{B(g)}.

For a Borel subalgebra π”Ÿβˆˆπ”…β€‹(𝔀)\mathfrak{b}\in\mathfrak{B(g)}, we express the triangular decomposition of 𝔀\mathfrak{g} as 𝔀=π”«π”Ÿβˆ’βŠ•π”₯βŠ•π”«π”Ÿ+,\mathfrak{g}=\mathfrak{n}^{\mathfrak{b}-}\oplus\mathfrak{h}\oplus\mathfrak{n}^{\mathfrak{b}+}, where π”Ÿ=π”₯βŠ•π”«π”Ÿ+\mathfrak{b}=\mathfrak{h}\oplus\mathfrak{n}^{\mathfrak{b}+}.

The sets of positive roots, odd positive roots, and odd isotropic positive roots corresponding to π”Ÿ\mathfrak{b} are denoted by Ξ”π”Ÿ+\Delta^{\mathfrak{b}+}, Ξ”1Β―π”Ÿ+\Delta_{\overline{1}}^{\mathfrak{b}+}, and Ξ”βŠ—π”Ÿ+\Delta_{\otimes}^{\mathfrak{b}+}, respectively. The set of simple roots (basis) corresponding to Ξ”π”Ÿ+\Delta^{\mathfrak{b}+} is denoted by Ξ π”Ÿ\Pi^{\mathfrak{b}}. We define Ξ βŠ—π”Ÿ:=Ξ π”Ÿβˆ©Ξ”βŠ—\Pi_{\otimes}^{\mathfrak{b}}:=\Pi^{\mathfrak{b}}\cap\Delta_{\otimes}.

Theorem 2.4 (Odd reflection [17] 3.5).

For Ξ±βˆˆΞ βŠ—π”Ÿ\alpha\in\Pi_{\otimes}^{\mathfrak{b}}, define rΞ±π”ŸβˆˆMap⁑(Ξ π”Ÿ,Ξ”)r^{\mathfrak{b}}_{\alpha}\in\operatorname{Map}(\Pi^{\mathfrak{b}},\Delta) by

rΞ±π”Ÿβ€‹(Ξ²)={βˆ’Ξ±(Ξ²=Ξ±),Ξ±+Ξ²(Ξ±+Ξ²βˆˆΞ”),Ξ²(otherwise).r^{\mathfrak{b}}_{\alpha}(\beta)=\begin{cases}-\alpha&(\beta=\alpha),\\ \alpha+\beta&(\alpha+\beta\in\Delta),\\ \beta&(\text{otherwise}).\end{cases}

for Ξ²βˆˆΞ π”Ÿ\beta\in\Pi^{\mathfrak{b}}. (When there is no risk of confusion, rΞ±π”Ÿr_{\alpha}^{\mathfrak{b}} is abbreviated as rΞ±r_{\alpha}.) A Borel subalgebra rΞ±β€‹π”Ÿβˆˆπ”…β€‹(𝔀)r_{\alpha}\mathfrak{b}\in\mathfrak{B(g)} exists, with the corresponding basis given by Ξ rΞ±β€‹π”Ÿ:={rΞ±π”Ÿβ€‹(Ξ²)}Ξ²βˆˆΞ π”Ÿ.\Pi^{r_{\alpha}\mathfrak{b}}:=\{r^{\mathfrak{b}}_{\alpha}(\beta)\}_{\beta\in\Pi^{\mathfrak{b}}}.

It should be noted that the linear transformation of π”₯βˆ—\mathfrak{h}^{*} induced by an odd reflection does not necessarily map a Borel subalgebra to another Borel subalgebra.

Let π”Ÿβˆˆπ”…β€‹(𝔀)\mathfrak{b}\in\mathfrak{B(g)}. We define s​π’ͺs\mathcal{O} to be the full subcategory of 𝔀\mathfrak{g}-sMod, consisting of locally π”Ÿ\mathfrak{b}-finite, π”₯\mathfrak{h}-semisimple modules with finite-dimensional weight spaces. According to TheoremΒ 2.1, the structure as an abelian category depends only on π”Ÿ0Β―\mathfrak{b}_{\overline{0}} (however, the highest weight structure depends strongly on π”Ÿ\mathfrak{b}).

The following is well-known. See, [3, Lemma 2.2] or [6, Proposition 2.2.3].

Lemma 2.5.

We can choose p∈Map⁑(π”₯βˆ—,β„€/2​℀)p\in\operatorname{Map}(\mathfrak{h}^{*},\mathbb{Z}/2\mathbb{Z}) such that

π’ͺ:={M∈s​π’ͺ∣deg⁑MΞ»=p​(Ξ»)​ forΒ β€‹Ξ»βˆˆπ”₯βˆ—,MΞ»β‰ 0}\mathcal{O}:=\{M\in s\mathcal{O}\mid\deg M_{\lambda}=p(\lambda)\text{ for }\lambda\in\mathfrak{h}^{*},M_{\lambda}\neq 0\}

forms a Serre subcategory.

From this point onward, we ignore the parity and work within π’ͺ\mathcal{O}.

Definition 2.6.

Let kΞ»π”Ÿ=k​vΞ»π”Ÿk_{\lambda}^{\mathfrak{b}}=kv_{\lambda}^{\mathfrak{b}} be the one-dimensional π”Ÿ\mathfrak{b}-module corresponding to λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}. The π”Ÿ\mathfrak{b}-Verma module with highest weight Ξ»\lambda is defined by

Mπ”Ÿβ€‹(Ξ»)=U​(𝔀)βŠ—U​(π”Ÿ)kΞ»π”Ÿ.M^{\mathfrak{b}}(\lambda)=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}k_{\lambda}^{\mathfrak{b}}.

(Here, the parity of kΞ»π”Ÿk_{\lambda}^{\mathfrak{b}} is chosen so that Mπ”Ÿβ€‹(Ξ»)∈π’ͺM^{\mathfrak{b}}(\lambda)\in\mathcal{O}.) Its projective cover in π’ͺ\mathcal{O} is denoted by Pπ”Ÿβ€‹(Ξ»)P^{\mathfrak{b}}(\lambda), while the simple top is denoted by Lπ”Ÿβ€‹(Ξ»)L^{\mathfrak{b}}(\lambda). Similarly, for the even part 𝔀0Β―\mathfrak{g}_{\overline{0}}, the corresponding Verma module, projective cover in BGG category, and simple module are denoted by M0¯​(Ξ»)M_{\overline{0}}(\lambda), P0¯​(Ξ»)P_{\overline{0}}(\lambda), and L0¯​(Ξ»)L_{\overline{0}}(\lambda), respectively.

For a module MM in the category π’ͺ\mathcal{O}, the character ch⁑M\operatorname{ch}M is a formal sum that encodes the dimensions of the weight spaces of MM. Specifically, if MM has a weight space decomposition M=⨁λMΞ»M=\bigoplus_{\lambda}M_{\lambda}, then ch⁑M:=βˆ‘Ξ»dimMλ​eΞ»,\operatorname{ch}M:=\sum_{\lambda}\dim M_{\lambda}e^{\lambda}, where Ξ»\lambda runs over the weights of MM and eΞ»e^{\lambda} denotes the formal exponential corresponding to the weight Ξ»\lambda.

3 Variants of Verma Modules

We retain the setting of sectionΒ 2.

3.1 Adjusted Borel subalgebras

Definition 3.1.

Let Ξ”π”žβŠ†Ξ”1Β―π”Ÿ\Delta^{\mathfrak{a}}\subseteq\Delta^{\mathfrak{b}}_{\overline{1}}, and define

π”ž:=β¨Ξ±βˆˆΞ”0Β―+βŠ”Ξ”π”žπ”€Ξ±.\mathfrak{a}:=\bigoplus_{\alpha\in\Delta^{+}_{\overline{0}}\sqcup\Delta^{\mathfrak{a}}}\mathfrak{g}_{\alpha}.

Let π”ž=π”₯βŠ•π”«π”ž\mathfrak{a}=\mathfrak{h}\oplus\mathfrak{n}_{\mathfrak{a}}.

For λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}, we call the above π”ž\mathfrak{a} a Ξ»\lambda-adjusted Borel subalgebra if the following defines a well-defined one-dimensional representation of π”ž\mathfrak{a}:

h​vΞ»π”ž=λ​(h)​vΞ»π”žfor any ​h∈π”₯,andnπ”žβ€‹vΞ»π”ž=0.hv_{\lambda}^{\mathfrak{a}}=\lambda(h)v_{\lambda}^{\mathfrak{a}}\quad\text{for any }h\in\mathfrak{h},\quad\text{and}\quad n_{\mathfrak{a}}v_{\lambda}^{\mathfrak{a}}=0.

We denote this representation by kΞ»π”ž=k​vΞ»π”ž.k_{\lambda}^{\mathfrak{a}}=kv_{\lambda}^{\mathfrak{a}}.

Definition 3.2.

Let π”ž\mathfrak{a} denote a Ξ»\lambda-adjusted Borel subalgebra. For λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}, define

Mπ”žβ€‹(Ξ»):=U​(𝔀)βŠ—U​(π”ž)kΞ»π”ž.M^{\mathfrak{a}}(\lambda):=U(\mathfrak{g})\otimes_{U(\mathfrak{a})}k_{\lambda}^{\mathfrak{a}}.

It is easy to see that Mπ”žβ€‹(Ξ»)M^{\mathfrak{a}}(\lambda) belongs to π’ͺ\mathcal{O}. We will simply write x​vΞ»π”žxv_{\lambda}^{\mathfrak{a}} instead of xβŠ—vΞ»π”žx\otimes v_{\lambda}^{\mathfrak{a}}.

Example 3.3.
  1. 1.

    If [π”«π”ž,π”«π”ž]∩π”₯=0[\mathfrak{n}_{\mathfrak{a}},\mathfrak{n}_{\mathfrak{a}}]\cap\mathfrak{h}=0, then π”ž\mathfrak{a} is a Ξ»\lambda-adjusted Borel subalgebra for any λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}.

  2. 2.

    If π”ž=π”Ÿ0Β―\mathfrak{a}=\mathfrak{b}_{\overline{0}}, then Mπ”žβ€‹(Ξ»)=Ind𝔀0¯𝔀⁑M0¯​(Ξ»)M^{\mathfrak{a}}(\lambda)=\operatorname{Ind}_{\mathfrak{g}_{\overline{0}}}^{\mathfrak{g}}M_{\overline{0}}(\lambda), where Ξ”π”ž=βˆ…\Delta^{\mathfrak{a}}=\varnothing.

  3. 3.

    If π”ž=π”Ÿ\mathfrak{a}=\mathfrak{b}, then Mπ”žβ€‹(Ξ»)=Mπ”Ÿβ€‹(Ξ»)M^{\mathfrak{a}}(\lambda)=M^{\mathfrak{b}}(\lambda), where Ξ”π”ž=Ξ”1Β―π”Ÿ+\Delta^{\mathfrak{a}}=\Delta_{\overline{1}}^{\mathfrak{b}^{+}}.

  4. 4.

    The intersection of Ξ»\lambda-adjusted Borel subalgebras is a Ξ»\lambda-adjusted Borel subalgebra.

  5. 5.

    Let 𝔀=𝔀​𝔩​(1|1)\mathfrak{g}=\mathfrak{gl}(1|1) and let Ξ±\alpha be an odd root. Then, 𝔀\mathfrak{g} itself is a Ξ»\lambda-adjusted Borel subalgebra if and only if λ∈k​α\lambda\in k\alpha.

Below, we summarize fundamental results derived from the PBW theorem and Frobenius reciprocity.

Proposition 3.4.

Let π”ž\mathfrak{a} denote a Ξ»\lambda-adjusted Borel subalgebra. The character of Mπ”žβ€‹(Ξ»)M^{\mathfrak{a}}(\lambda) is given by

ch⁑Mπ”žβ€‹(Ξ»)=eΞ»β€‹βˆΞ²βˆˆΞ”1Β―βˆ–Ξ”π”ž(1+eΞ²)βˆΞ³βˆˆΞ”0Β―+(1βˆ’eβˆ’Ξ³).\operatorname{ch}M^{\mathfrak{a}}(\lambda)=e^{\lambda}\frac{\prod_{\beta\in\Delta_{\overline{1}}\setminus\Delta^{\mathfrak{a}}}(1+e^{\beta})}{\prod_{\gamma\in\Delta_{\overline{0}}^{+}}(1-e^{-\gamma})}.

In particular, we have Ξ»=λ′⇔Mπ”žβ€‹(Ξ»)≃Mπ”žβ€‹(Ξ»β€²)\lambda=\lambda^{\prime}\iff M^{\mathfrak{a}}(\lambda)\simeq M^{\mathfrak{a}}(\lambda^{\prime}).

Proposition 3.5.

Let π”ž\mathfrak{a} denote a Ξ»\lambda-adjusted Borel subalgebra. Let M∈π’ͺM\in\mathcal{O} and v∈MΞ»v\in M_{\lambda} such that π”žβ€‹v=0\mathfrak{a}v=0. Then there exists a unique homomorphism

Mπ”žβ€‹(Ξ»)β†’MsendingvΞ»π”žβ†¦v.M^{\mathfrak{a}}(\lambda)\to M\quad\text{sending}\quad v_{\lambda}^{\mathfrak{a}}\mapsto v.

In particular, if π”žβ€²βŠ†π”ž\mathfrak{a}^{\prime}\subseteq\mathfrak{a} is an inclusion of Ξ»\lambda-adjusted Borel subalgebras, then Mπ”žβ€‹(Ξ»)M^{\mathfrak{a}}(\lambda) is a quotient of Mπ”žβ€²β€‹(Ξ»)M^{\mathfrak{a}^{\prime}}(\lambda).

Hereafter, when we write Ext1\operatorname{Ext}^{1}, we mean Extπ’ͺ1\operatorname{Ext}^{1}_{\mathcal{O}} unless otherwise specified. The following Lemma is a generalization of [15, Propsition 3.1] and serves as a fundamental result in this subsection.

Lemma 3.6.

Let M∈π’ͺM\in\mathcal{O}, and let π”ž\mathfrak{a} be a Ξ»\lambda-adjusted Borel subalgebra. If MΞ»+Ξ²=0M_{\lambda+\beta}=0 for all Ξ²βˆˆΞ”0Β―+βŠ”Ξ”π”ž\beta\in\Delta^{+}_{\overline{0}}\sqcup\Delta^{\mathfrak{a}}, then

Ext1⁑(M,Mπ”žβ€‹(Ξ»))=0.\operatorname{Ext}^{1}(M,M^{\mathfrak{a}}(\lambda))=0.

Proof. Suppose we have a short exact sequence in π’ͺ\mathcal{O}:

0β†’Mβ†’Eβ†’πœ“Mπ”žβ€‹(Ξ»)β†’0.0\to M\to E\xrightarrow{\psi}M^{\mathfrak{a}}(\lambda)\to 0.

A preimage vv of vΞ»π”žv_{\lambda}^{\mathfrak{a}} in EE also satisfies π”žβ€‹v=0\mathfrak{a}v=0 by assumption. Therefore, by the universal property of Mπ”žβ€‹(Ξ»)M^{\mathfrak{a}}(\lambda), the sequence splits. β–‘\square

3.2 Hypercubic decomposition of Verma modules

In this subsection, we focus on Ξ»\lambda-adjusted Borel subalgebras, which are important for our study.

Definition 3.7.

Let π”Ÿβˆˆπ”…β€‹(𝔀)\mathfrak{b}\in\mathfrak{B}(\mathfrak{g}) and λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}. Let Ξ π”Ÿ={Ξ±i}i∈I\Pi^{\mathfrak{b}}=\{\alpha_{i}\}_{i\in I}. A subset JβŠ‚IJ\subset I is called a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection if {Ξ±j}j∈J\{\alpha_{j}\}_{j\in J} is a collection of distinct isotropic π”Ÿ\mathfrak{b}-simple roots that are pairwise orthogonal and orthogonal to Ξ»\lambda.

Let Ξ£Jπ”Ÿ\Sigma^{\mathfrak{b}}_{J} denote the sum of the simple roots indexed by JJ. Let EJπ”ŸE_{J}^{\mathfrak{b}} (resp. FJπ”ŸF_{J}^{\mathfrak{b}}) denote the product of the π”Ÿ\mathfrak{b}-positive (resp. π”Ÿ\mathfrak{b}-negative) root vectors indexed by JJ. This product is independent of the order of multiplication.

Simple roots that are orthogonal to each other are unaffected by mutual odd reflections. Therefore, the Borel subalgebra rJβ€‹π”Ÿr_{J}\mathfrak{b} determined by applying the sequence of odd reflections indexed by JJ to π”Ÿ\mathfrak{b} is well-defined and independent of the order of the indices.

Lemma 3.8.

Let JJ be a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection, and let Jβ€²βŠ†JJ^{\prime}\subseteq J. Then the following hold:

  1. 1.

    Jβ€²J^{\prime} is a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection;

  2. 2.

    JJ is a (π”Ÿ,λ±ΣJβ€²π”Ÿ)(\mathfrak{b},\lambda\pm\Sigma^{\mathfrak{b}}_{J^{\prime}})-hypercubic collection;

  3. 3.

    π”Ÿβˆ©rJβ€²β€‹π”Ÿβˆ©rJβ€‹π”Ÿ=π”Ÿβˆ©rJβ€‹π”ŸβŠ†π”€\mathfrak{b}\cap r_{J^{\prime}}\mathfrak{b}\cap r_{J}\mathfrak{b}=\mathfrak{b}\cap r_{J}\mathfrak{b}\subseteq\mathfrak{g} is a Ξ»\lambda-adjusted Borel subalgebra;

  4. 4.

    π”Ÿ+rJβ€²β€‹π”Ÿ+rJβ€‹π”Ÿ=π”Ÿ+rJβ€‹π”ŸβŠ†π”€\mathfrak{b}+r_{J^{\prime}}\mathfrak{b}+r_{J}\mathfrak{b}=\mathfrak{b}+r_{J}\mathfrak{b}\subseteq\mathfrak{g} is a Ξ»\lambda-adjusted Borel subalgebra;

  5. 5.

    EJπ”Ÿ=FJrJβ€‹π”ŸandΞ£Jπ”Ÿ=βˆ’Ξ£JrJβ€‹π”ŸE_{J}^{\mathfrak{b}}=F_{J}^{r_{J}\mathfrak{b}}\quad\text{and}\quad\Sigma_{J}^{\mathfrak{b}}=-\Sigma_{J}^{r_{J}\mathfrak{b}};

  6. 6.

    ch⁑Mπ”Ÿβ€‹(Ξ»)=ch⁑MrJβ€‹π”Ÿβ€‹(Ξ»βˆ’Ξ£Jπ”Ÿ)\operatorname{ch}M^{\mathfrak{b}}(\lambda)=\operatorname{ch}M^{r_{J}\mathfrak{b}}(\lambda-\Sigma^{\mathfrak{b}}_{J});

  7. 7.

    dimHom⁑(Mπ”Ÿβ€‹(Ξ»),MrJβ€‹π”Ÿβ€‹(Ξ»βˆ’Ξ£Jπ”Ÿ))=1\dim\operatorname{Hom}\big{(}M^{\mathfrak{b}}(\lambda),M^{r_{J}\mathfrak{b}}(\lambda-\Sigma^{\mathfrak{b}}_{J})\big{)}=1, and the image of this nonzero homomorphism is isomorphic to Mπ”Ÿ+rJβ€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}+r_{J}\mathfrak{b}}(\lambda);

  8. 8.

    dimHom⁑(Mπ”Ÿβ€‹(Ξ»),Mπ”Ÿβ€‹(Ξ»+Ξ£Jπ”Ÿ))=1,\dim\operatorname{Hom}(M^{\mathfrak{b}}(\lambda),M^{\mathfrak{b}}(\lambda+\Sigma^{\mathfrak{b}}_{J}))=1, and the image of this nonzero homomorphism is isomorphic to Mπ”Ÿ+rJβ€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}+r_{J}\mathfrak{b}}(\lambda).

Proof. Statements (1) through (5) are clear from orthogonality.

For (6), it is well known, as also stated in [8, Lemma 6.9].

For (7), since the characters are equal by (6), it is clear that the dimension of the Hom space is 1.

The image of this homomorphism is a module generated by EJπ”Ÿβ€‹vΞ»βˆ’Ξ£Jπ”ŸrJβ€‹π”ŸE_{J}^{\mathfrak{b}}v_{\lambda-\Sigma^{\mathfrak{b}}_{J}}^{r_{J}\mathfrak{b}}, so the claim follows from TheoremΒ 2.1, PropositionΒ 3.4 and PropositionΒ 3.5.

For (8), since we have #​{DβŠ‚Ξ”π”Ÿ+βˆ£βˆ‘Ξ²βˆˆDΞ²=Ξ£Jπ”Ÿ}=1,\#\bigl{\{}D\subset\Delta^{\mathfrak{b}+}\mid\sum_{\beta\in D}\beta=\Sigma_{J}^{\mathfrak{b}}\bigr{\}}=1, it follows that dimMπ”Ÿβ€‹(Ξ»+Ξ£Jπ”Ÿ)Ξ»=1.\dim M^{\mathfrak{b}}(\lambda+\Sigma_{J}^{\mathfrak{b}})_{\lambda}=1. Thus, the Hom space is one-dimensional.

The image of the nonzero homomorphism is a submodule of Mπ”Ÿβ€‹(Ξ»+Ξ£Jπ”Ÿ)M^{\mathfrak{b}}(\lambda+\Sigma^{\mathfrak{b}}_{J}) generated by FJπ”Ÿβ€‹vΞ»+Ξ£Jπ”Ÿπ”ŸF_{J}^{\mathfrak{b}}v_{\lambda+\Sigma^{\mathfrak{b}}_{J}}^{\mathfrak{b}}, so the claim follows from TheoremΒ 2.1, PropositionΒ 3.4 and PropositionΒ 3.5. β–‘\square

Lemma 3.9.

Let JJ be a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection. Then, Mπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}(\lambda) has a simple top Lπ”Ÿβ€‹(Ξ»)L^{\mathfrak{b}}(\lambda). In particular, it is indecomposable.

Proof. The PBW basis for Mπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}(\lambda) can be written in the form of PBW monomials as

F​FJ1π”Ÿβ€‹EJ2π”Ÿβ€‹vΞ»π”Ÿβˆ©rJβ€‹π”Ÿ,FF_{J_{1}}^{\mathfrak{b}}E_{J_{2}}^{\mathfrak{b}}v_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}},

where J1,J2βŠ‚JJ_{1},J_{2}\subset J, and FF is a product of independent π”Ÿ\mathfrak{b}-negative root vectors that cannot be indexed by JJ.

By orthogonality, it is easy to see that the submodule generated by elements of the form

FJ1π”Ÿβ€‹EJ2π”Ÿβ€‹vΞ»π”Ÿβˆ©rJβ€‹π”ŸF_{J_{1}}^{\mathfrak{b}}E_{J_{2}}^{\mathfrak{b}}v_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}}

that are not equal to vΞ»π”Ÿβˆ©rJβ€‹π”Ÿv_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}} does not contain vΞ»π”Ÿβˆ©rJβ€‹π”Ÿv_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}}.

By TheoremΒ 2.1, PropositionΒ 3.4 and PropositionΒ 3.5, we have the following isomorphism:

Mπ”Ÿβˆ©rJβ€‹π”Ÿ(Ξ»)/βˆ‘J1βŠ‚J,J2βŠ‚J,(J1,J2)β‰ (J,J)U(𝔀)FJ1π”ŸEJ2π”ŸvΞ»π”Ÿβˆ©rJβ€‹π”Ÿβ‰…Mπ”Ÿ+rJβ€‹π”Ÿ(Ξ»).\left.M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}(\lambda)\middle/\sum_{J_{1}\subset J,J_{2}\subset J,(J_{1},J_{2})\neq(J,J)}U(\mathfrak{g})F_{J_{1}}^{\mathfrak{b}}E_{J_{2}}^{\mathfrak{b}}v_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\right.\cong M^{\mathfrak{b}+r_{J}\mathfrak{b}}(\lambda).

Thus, Mπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}(\lambda) has a simple top Lπ”Ÿβ€‹(Ξ»)L^{\mathfrak{b}}(\lambda) and is therefore indecomposable. β–‘\square

Remark 3.10.

Let Ξ±βˆˆΞ βŠ—π”Ÿ\alpha\in\Pi_{\otimes}^{\mathfrak{b}}. Then Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{\alpha}{\mathfrak{b}}}(\lambda) is indecomposable if and only if (Ξ»,Ξ±)β‰ 0(\lambda,\alpha)\neq 0.

Indeed, we have the following exact sequences:

0β†’MrΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±)β†’Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»)β†’MrΞ±β€‹π”Ÿβ€‹(Ξ»)β†’00\to M^{r_{\alpha}{\mathfrak{b}}}(\lambda-\alpha)\to M^{\mathfrak{b}\cap r_{\alpha}{\mathfrak{b}}}(\lambda)\to M^{r_{\alpha}{\mathfrak{b}}}(\lambda)\to 0

and

0β†’Mπ”Ÿβ€‹(Ξ»+Ξ±)β†’Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»)β†’Mπ”Ÿβ€‹(Ξ»)β†’0.0\to M^{\mathfrak{b}}(\lambda+\alpha)\to M^{\mathfrak{b}\cap r_{\alpha}{\mathfrak{b}}}(\lambda)\to M^{\mathfrak{b}}(\lambda)\to 0.

If (Ξ»,Ξ±)β‰ 0(\lambda,\alpha)\neq 0, then MrΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±)≃Mπ”Ÿβ€‹(Ξ»)M^{r_{\alpha}{\mathfrak{b}}}(\lambda-\alpha)\simeq M^{\mathfrak{b}}(\lambda) and MrΞ±β€‹π”Ÿβ€‹(Ξ»)≃Mπ”Ÿβ€‹(Ξ»+Ξ±)M^{r_{\alpha}{\mathfrak{b}}}(\lambda)\simeq M^{\mathfrak{b}}(\lambda+\alpha).

Therefore,

Ext1⁑(Mπ”Ÿβ€‹(Ξ»+Ξ±),Mπ”Ÿβ€‹(Ξ»))=Ext1⁑(MrΞ±β€‹π”Ÿβ€‹(Ξ»),MrΞ±β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±))=0\operatorname{Ext}^{1}(M^{\mathfrak{b}}(\lambda+\alpha),M^{\mathfrak{b}}(\lambda))=\operatorname{Ext}^{1}(M^{r_{\alpha}\mathfrak{b}}(\lambda),M^{r_{\alpha}\mathfrak{b}}(\lambda-\alpha))=0

by LemmaΒ 3.6. Thus Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{\alpha}{\mathfrak{b}}}(\lambda) is not indecomposable.

If (Ξ»,Ξ±)=0(\lambda,\alpha)=0, the claim follows as a special case of LemmaΒ 3.9. Thus Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{\alpha}{\mathfrak{b}}}(\lambda) is indecomposable.

3.3 Semibricks

Here, following [12], we review the basics of semibricks.

Definition 3.11.

Let β„°\mathcal{E} be an additive category.

  • β€’

    An object SS in β„°\mathcal{E} is called a brick if Endℰ⁑(S)=k\operatorname{End}_{\mathcal{E}}(S)=k.

  • β€’

    A collection SS of all bricks in β„°\mathcal{E} is called a semibrick if Homℰ⁑(S,T)=0\operatorname{Hom}_{\mathcal{E}}(S,T)=0 holds for every pairwise nonisomorphic elements SS and TT in β„°\mathcal{E}.

From here on, let π’œ\mathcal{A} denote an abelian category.

  • β€’

    We denote by simβ‘π’œ\operatorname{sim}\mathcal{A} the collection of isomorphism classes of simple objects in π’œ\mathcal{A}.

  • β€’

    For a collection π’ž\mathcal{C} of objects in π’œ\mathcal{A}, we denote by Filtβ‘π’ž\operatorname{Filt}\mathcal{C} the subcategory of π’œ\mathcal{A} consisting of objects Xβˆˆπ’œX\in\mathcal{A} such that there exists a chain 0=X0βŠ‚X1βŠ‚β‹―βŠ‚Xl=X0=X_{0}\subset X_{1}\subset\cdots\subset X_{l}=X of submodules with Xi/Xiβˆ’1βˆˆπ’žX_{i}/X_{i-1}\in\mathcal{C} for each ii. We call this the filtration closure of π’ž\mathcal{C} in π’œ\mathcal{A}.

We say that an abelian category π’œ\mathcal{A} is length if simβ‘π’œ\operatorname{sim}\mathcal{A} is a set and π’œ=Filt⁑(simβ‘π’œ)\mathcal{A}=\operatorname{Filt}(\operatorname{sim}\mathcal{A}) holds.

For example, categories such as 𝔀​-smod\mathfrak{g}\text{-smod}, s​π’ͺs\mathcal{O} and π’ͺ\mathcal{O} are length categories, but 𝔀​-sMod\mathfrak{g}\text{-sMod} is not a length category.

Definition 3.12.

A full subcategory 𝒲\mathcal{W} of π’œ\mathcal{A} is called a wide subcategory if it is closed under kernels, cokernels, and extensions. In other words, it is an extension-closed sub-abelian category.

The following is a classical result by Ringel.

Theorem 3.13 ([18] 2.1, [12] 2.5).

Let π’œ\mathcal{A} be an abelian category. Then the assignments S↦Filt⁑SS\mapsto\operatorname{Filt}S and 𝒲↦sim⁑𝒲\mathcal{W}\mapsto\operatorname{sim}\mathcal{W} establish a one-to-one correspondence between the following two classes.

  • (1)

    The class of semibricks SS in π’œ\mathcal{A}.

  • (2)

    The class of length wide subcategories 𝒲\mathcal{W} in π’œ\mathcal{A}.

For example, a Serre subcategory is the only wide subcategory that can be obtained by applying Filt\operatorname{Filt} to a subclass of simβ‘π’œ\operatorname{sim}\mathcal{A}.

Lemma 3.14.

Fix π”Ÿβˆˆπ”…β€‹(𝔀)\mathfrak{b}\in\mathfrak{B}(\mathfrak{g}). Consider the collection of π”Ÿ\mathfrak{b}-highest weight modules {S​(Ξ»)}Ξ»βˆˆΞ›\{S(\lambda)\}_{\lambda\in\Lambda}, where the π”Ÿ\mathfrak{b}-highest weight of S​(Ξ»)S(\lambda) is Ξ»\lambda. If for any pair Ξ»,Ξ»β€²βˆˆΞ›\lambda,\lambda^{\prime}\in\Lambda, S​(Ξ»)Ξ»β€²=0S(\lambda)_{\lambda^{\prime}}=0, then {S​(Ξ»)}Ξ»βˆˆΞ›\{S(\lambda)\}_{\lambda\in\Lambda} is a semibrick.

Proof. Since endomorphisms of the π”Ÿ\mathfrak{b}-highest weight module send the π”Ÿ\mathfrak{b}-highest weight vector to a π”Ÿ\mathfrak{b}-highest weight vector (or 0), it is a brick. If S​(Ξ»)Ξ»β€²=0S(\lambda)_{\lambda^{\prime}}=0, then by the property that homomorphisms preserve weights and any homomorphism sending a π”Ÿ\mathfrak{b}-highest weight vector to zero is zero, we have Hom⁑(S​(Ξ»β€²),S​(Ξ»))=0\operatorname{Hom}(S(\lambda^{\prime}),S(\lambda))=0. This proves the hom-orthogonality. β–‘\square

The following examples arise naturally, although they are in a different direction from the main theorem.

Suppose λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}, and let Ξ±1\alpha_{1} and Ξ±3\alpha_{3} be π”Ÿ\mathfrak{b}-simple odd isotropic roots such that

(Ξ»,Ξ±1)=(Ξ»,Ξ±3)=0.(\lambda,\alpha_{1})=(\lambda,\alpha_{3})=0.

Denote by M1M_{1} and M3M_{3} the images of the nonzero homomorphisms from Mr1β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1)M^{r_{1}\mathfrak{b}}(\lambda-\alpha_{1}) and Mr3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±3)M^{r_{3}\mathfrak{b}}(\lambda-\alpha_{3}) to Mπ”Ÿβ€‹(Ξ»)M^{\mathfrak{b}}(\lambda), respectively, which are unique up to scalar multiples. Define M2M_{2} as the quotient M2=Mπ”Ÿβ€‹(Ξ»)/(M1+M3)M_{2}=M^{\mathfrak{b}}(\lambda)/(M_{1}+M_{3}).

Lemma 3.15.

Under the above assumptions, we have:

M1∩M3={0if ​(Ξ±1,Ξ±3)β‰ 0,Mπ”Ÿ+r1​r3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1βˆ’Ξ±3)if ​(Ξ±1,Ξ±3)=0.M_{1}\cap M_{3}=\begin{cases}0&\text{if }(\alpha_{1},\alpha_{3})\neq 0,\\ M^{\mathfrak{b}+r_{1}r_{3}\mathfrak{b}}(\lambda-\alpha_{1}-\alpha_{3})&\text{if }(\alpha_{1},\alpha_{3})=0.\end{cases}

Proof. Let f1f_{1}, f3f_{3}, and ff be the root vectors corresponding to βˆ’Ξ±1-\alpha_{1}, βˆ’Ξ±3-\alpha_{3}, and the even root βˆ’Ξ±1βˆ’Ξ±3-\alpha_{1}-\alpha_{3}, respectively.

If (Ξ±1,Ξ±3)β‰ 0(\alpha_{1},\alpha_{3})\neq 0, then we have

f1​f3​vΞ»π”Ÿ+f3​f1​vΞ»π”Ÿ=f​vΞ»π”Ÿ.f_{1}f_{3}v_{\lambda}^{\mathfrak{b}}+f_{3}f_{1}v_{\lambda}^{\mathfrak{b}}=fv_{\lambda}^{\mathfrak{b}}.

Suppose there exist y,z∈U​(π”«βˆ’)y,z\in U(\mathfrak{n}^{-}) such that

y​f1​vΞ»π”Ÿ=z​f3​vΞ»π”Ÿ.yf_{1}v_{\lambda}^{\mathfrak{b}}=zf_{3}v_{\lambda}^{\mathfrak{b}}.

Using the notation from the PBW theorem TheoremΒ 2.1, express yy in the basis where xn=f1x_{n}=f_{1} and xnβˆ’1=f3x_{n-1}=f_{3}.

Define y1y_{1} as the sum of PBW monomials in yy where f3f_{3} does not appear. Since terms containing f1f_{1} in yy can be ignored, we write

(yβˆ’y1)​f1​vΞ»π”Ÿ=y2​f3​f1​vΞ»π”Ÿ(y-y_{1})f_{1}v_{\lambda}^{\mathfrak{b}}=y_{2}f_{3}f_{1}v_{\lambda}^{\mathfrak{b}}

for some y2y_{2}, where y2y_{2} is the sum of PBW monomials in which neither f1f_{1} nor f3f_{3} appears.

Then, we obtain

y​f1​vΞ»π”Ÿ=(y1+y2​f3)​f1​vΞ»π”Ÿ=y1​f1​vΞ»π”Ÿβˆ’y2​f1​f3​vΞ»π”Ÿ+y2​f​vΞ»π”Ÿ.yf_{1}v_{\lambda}^{\mathfrak{b}}=(y_{1}+y_{2}f_{3})f_{1}v_{\lambda}^{\mathfrak{b}}=y_{1}f_{1}v_{\lambda}^{\mathfrak{b}}-y_{2}f_{1}f_{3}v_{\lambda}^{\mathfrak{b}}+y_{2}fv_{\lambda}^{\mathfrak{b}}.

Here, using the notation from the PBW theorem TheoremΒ 2.1, the right-hand side is expressed in the PBW basis where xn=f3x_{n}=f_{3} and xnβˆ’1=f1x_{n-1}=f_{1}.

Since we can assume that z​f3​vΞ»π”Ÿzf_{3}v_{\lambda}^{\mathfrak{b}} is already represented in this PBW basis, it cannot be equal to y​f1​vΞ»π”Ÿyf_{1}v_{\lambda}^{\mathfrak{b}} unless y1=y2=0y_{1}=y_{2}=0.

Therefore, M1M_{1}, which is generated by f1​vΞ»π”Ÿf_{1}v_{\lambda}^{\mathfrak{b}}, and M3M_{3}, which is generated by f3​vΞ»π”Ÿf_{3}v_{\lambda}^{\mathfrak{b}}, must intersect trivially.

If (Ξ±1,Ξ±3)=0(\alpha_{1},\alpha_{3})=0, then we have

f1​f3​vΞ»π”Ÿ+f3​f1​vΞ»π”Ÿ=0.f_{1}f_{3}v_{\lambda}^{\mathfrak{b}}+f_{3}f_{1}v_{\lambda}^{\mathfrak{b}}=0.

Thus, M1∩M3M_{1}\cap M_{3} is the submodule generated by f1​f3​vΞ»π”Ÿf_{1}f_{3}v_{\lambda}^{\mathfrak{b}}, which is Mπ”Ÿ+r1​r3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1βˆ’Ξ±3)M^{\mathfrak{b}+r_{1}r_{3}\mathfrak{b}}(\lambda-\alpha_{1}-\alpha_{3}). β–‘\square

Example 3.16.

Under the above setting, assuming (Ξ±1,Ξ±3)β‰ 0(\alpha_{1},\alpha_{3})\neq 0, the following forms a semibrick by LemmaΒ 3.14 and LemmaΒ 3.15:

Z​(π”Ÿ,Ξ»,Ξ±1,Ξ±3):={M1,M2,M3}.Z(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}):=\{M_{1},M_{2},M_{3}\}.

Let Filt⁑Z​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Z(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) denote the filtration closure of Z​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)Z(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) in the category π’ͺ\mathcal{O}.

By LemmaΒ 3.15, since M1+M3β‰…M1βŠ•M3M_{1}+M_{3}\cong M_{1}\oplus M_{3}, the corresponding projective covers of M1,M2M_{1},M_{2} and M3M_{3} in Filt⁑Z​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Z(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) are

Mr1β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1),Mπ”Ÿβ€‹(Ξ»),andMr3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±3),M^{r_{1}\mathfrak{b}}(\lambda-\alpha_{1}),\quad M^{\mathfrak{b}}(\lambda),\quad\text{and}\quad M^{r_{3}\mathfrak{b}}(\lambda-\alpha_{3}),

respectively (these are Ext-orthogonal to the three bricks by LemmaΒ 3.6).

The composition of the homomorphisms between the three projective covers can be easily computed since their characters are the same. In particular, it can be verified that Filt⁑Z​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Z(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) is equivalent to the category of finite-dimensional modules over a finite-dimensional algebra defined by the following quiver and relations.

123aabbccdd

The relations are:

a​b=b​a=c​d=d​c=0.ab=ba=cd=dc=0.

On the other hand, let N3N_{3} and N2N_{2} be the images of the nonzero homomorphisms from Mr3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±3)M^{r_{3}\mathfrak{b}}(\lambda-\alpha_{3}) and Mπ”Ÿβ€‹(Ξ»)M^{\mathfrak{b}}(\lambda) to Mr1β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1)M^{r_{1}\mathfrak{b}}(\lambda-\alpha_{1}), respectively. Then, the set

Z​(r1β€‹π”Ÿ,Ξ»,Ξ±1,Ξ±3):={Mr1β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1)/N2,N2/N3,N3}Z(r_{1}\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}):=\{M^{r_{1}\mathfrak{b}}(\lambda-\alpha_{1})/N_{2},N_{2}/N_{3},N_{3}\}

also forms a semibrick, and the projective covers of the bricks in Filt⁑Z​(r1β€‹π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Z(r_{1}\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) are again

Mr1β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1),Mπ”Ÿβ€‹(Ξ»),andMr3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±3).M^{r_{1}\mathfrak{b}}(\lambda-\alpha_{1}),\quad M^{\mathfrak{b}}(\lambda),\quad\text{and}\quad M^{r_{3}\mathfrak{b}}(\lambda-\alpha_{3}).

Therefore, Filt⁑Z​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Z(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) and Filt⁑Z​(r1β€‹π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Z(r_{1}\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) are equivalent as categories.

Example 3.17.

Under the above setting, assuming (Ξ±1,Ξ±3)=0(\alpha_{1},\alpha_{3})=0, define M4:=Mπ”Ÿ+r1​r3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1βˆ’Ξ±3)M_{4}:=M^{\mathfrak{b}+r_{1}r_{3}\mathfrak{b}}(\lambda-\alpha_{1}-\alpha_{3}). Then, the following forms a semibrick by LemmaΒ 3.14 and LemmaΒ 3.15:

Y​(π”Ÿ,Ξ»,Ξ±1,Ξ±3):={M1/M4,M2,M3/M4​M4}.Y(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}):=\{M_{1}/M_{4},M_{2},M_{3}/M_{4}M_{4}\}.

Let Filt⁑Y​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Y(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) denote the filtration closure of Y​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)Y(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) in the category π’ͺ\mathcal{O}.

The corresponding projective covers of M1/M4,M2,M3/M4,M4M_{1}/M_{4},M_{2},M_{3}/M_{4},M_{4} in Filt⁑Y​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Y(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) are

Mr1β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1),Mπ”Ÿβ€‹(Ξ»),Mr3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±3),andMr1​r3β€‹π”Ÿβ€‹(Ξ»βˆ’Ξ±1βˆ’Ξ±3),M^{r_{1}\mathfrak{b}}(\lambda-\alpha_{1}),\quad M^{\mathfrak{b}}(\lambda),\quad M^{r_{3}\mathfrak{b}}(\lambda-\alpha_{3}),\quad\text{and}\quad M^{r_{1}r_{3}\mathfrak{b}}(\lambda-\alpha_{1}-\alpha_{3}),

respectively (these are Ext-orthogonal to the three bricks by LemmaΒ 3.6).

The composition of the homomorphisms between the three projective covers can be easily computed since their characters are the same. In particular, it can be verified that Filt⁑Y​(π”Ÿ,Ξ»,Ξ±1,Ξ±3)\operatorname{Filt}Y(\mathfrak{b},\lambda,\alpha_{1},\alpha_{3}) is equivalent to the category of finite-dimensional modules over a finite-dimensional algebra defined by the following quiver and relations.

2134aabbccddeeffgghh

The relations are:

a​b=b​a=c​d=d​c=g​h=h​g=e​f=f​e=b​c​h=c​h​e=h​e​b=e​b​c=a​f​g=f​g​d=g​d​a=d​a​f=0.ab=ba=cd=dc=gh=hg=ef=fe=bch=che=heb=ebc=afg=fgd=gda=daf=0.

3.4 Representation Theory of 𝔀​𝔩​(1|1)βŠ•n\mathfrak{gl}(1|1)^{\oplus n}

In this subsection, let 𝔀=𝔀​𝔩​(1|1)βŠ•n\mathfrak{g}=\mathfrak{gl}(1|1)^{\oplus n}. Then,

𝔀0Β―=π”Ÿ0Β―=π”₯β‰…(𝔀​𝔩​(1)βŠ•π”€β€‹π”©β€‹(1))βŠ•n.\mathfrak{g}_{\overline{0}}=\mathfrak{b}_{\overline{0}}=\mathfrak{h}\cong(\mathfrak{gl}(1)\oplus\mathfrak{gl}(1))^{\oplus n}.

By embedding each ii-th copy of 𝔀​𝔩​(1|1)\mathfrak{gl}(1|1) into 𝔀​𝔩​(n|n)\mathfrak{gl}(n|n) via the assignments:

E11↦Ei​i,E12↦Ei,nβˆ’i+1,E21↦Enβˆ’i+1,i,E22↦Enβˆ’i+1,nβˆ’i+1.E_{11}\mapsto E_{ii},\quad E_{12}\mapsto E_{i,n-i+1},\quad E_{21}\mapsto E_{n-i+1,i},\quad E_{22}\mapsto E_{n-i+1,n-i+1}.

and by identifying their Cartan subalgebras. Let Ei​iβˆˆπ”€β€‹π”©β€‹(n|n)E_{ii}\in\mathfrak{gl}(n|n) be associated with the dual basis elements Ξ΅i\varepsilon_{i} for 1≀i≀2​n1\leq i\leq 2n, and define Ξ΄i=Ξ΅n+i\delta_{i}=\varepsilon_{n+i} for 1≀i≀n1\leq i\leq n. We have

Ξ”=Ξ”1Β―=Ξ”βŠ—={Β±(Ξ΅iβˆ’Ξ΄nβˆ’i+1)∣i=1,…,n}.\Delta=\Delta_{\overline{1}}=\Delta_{\otimes}=\{\pm(\varepsilon_{i}-\delta_{n-i+1})\mid i=1,\dots,n\}.

Let π”Ÿst\mathfrak{b}_{\mathrm{st}} be the standard Borel subalgebra such that

Ξ”π”Ÿst+=Ξ”1Β―π”Ÿst+=Ξ”βŠ—π”Ÿst+=Ξ π”Ÿst+=Ξ βŠ—π”Ÿst+={Ξ΅iβˆ’Ξ΄nβˆ’i+1∣i=1,…,n}.\Delta^{\mathfrak{b}_{\mathrm{st}}+}=\Delta^{\mathfrak{b}_{\mathrm{st}}+}_{\overline{1}}=\Delta^{\mathfrak{b}_{\mathrm{st}}+}_{\otimes}=\Pi^{\mathfrak{b}_{\mathrm{st}}+}=\Pi^{\mathfrak{b}_{\mathrm{st}}+}_{\otimes}=\{\varepsilon_{i}-\delta_{n-i+1}\mid i=1,\dots,n\}.

The graph whose vertices are the Borel subalgebras of 𝔀​𝔩​(1|1)βŠ•n\mathfrak{gl}(1|1)^{\oplus n} and whose edges correspond to odd reflections between them can be naturally identified with the hypercube graph QnQ_{n}.

The Verma module is 2n2^{n}-dimensional, therefore s​π’ͺ=𝔀​-smods\mathcal{O}=\mathfrak{g}\text{-smod}.

Let the block containing the trivial module (i.e., the principal block) be denoted by π’ͺ0​(𝔀​𝔩​(1|1)βŠ•n)\mathcal{O}_{0}(\mathfrak{gl}(1|1)^{\oplus n}).

We denote Ξ»=m1​(Ξ΅1βˆ’Ξ΄1)+β‹―+mn​(Ξ΅nβˆ’Ξ΄n)\lambda=m_{1}(\varepsilon_{1}-\delta_{1})+\dots+m_{n}(\varepsilon_{n}-\delta_{n}) more compactly as the tuple (m1,…,mn)(m_{1},\dots,m_{n}).

Then,

π’ͺ0(𝔀𝔩(1|1)βŠ•n)=Filt{Lπ”Ÿst(m1,…,mn)}(m1,…,mn)βˆˆβ„€n.\mathcal{O}_{0}(\mathfrak{gl}(1|1)^{\oplus n})=\operatorname{Filt}\{L^{\mathfrak{b}_{\text{st}}}(m_{1},\dots,m_{n})\}_{(m_{1},\dots,m_{n})\in\mathbb{Z}^{n}}.

I={1,2,…,n}I=\{1,2,\dots,n\} is clearly a (π”Ÿst,0)(\mathfrak{b}_{\text{st}},0)-hypercubic collection.

Remark 3.18.

𝔀=π”Ÿst+rIβ€‹π”Ÿst\mathfrak{g}=\mathfrak{b}_{\text{st}}+r_{I}\mathfrak{b}_{\text{st}} is a (m1,…,mn)(m_{1},\dots,m_{n})-adjusted Borel subalgebra, and

Mπ”Ÿst+rIβ€‹π”Ÿst​(m1,…,mn)=Lπ”Ÿst​(m1,…,mn)M^{\mathfrak{b}_{\text{st}}+r_{I}\mathfrak{b}_{\text{st}}}(m_{1},\dots,m_{n})=L^{\mathfrak{b}_{\text{st}}}(m_{1},\dots,m_{n})

is one-dimensional.

𝔀0Β―=π”Ÿ0Β―=π”₯=π”Ÿst∩rIβ€‹π”Ÿst\mathfrak{g}_{\overline{0}}=\mathfrak{b}_{\overline{0}}=\mathfrak{h}=\mathfrak{b}_{\text{st}}\cap r_{I}\mathfrak{b}_{\text{st}} is also a (m1,…,mn)(m_{1},\dots,m_{n})-adjusted Borel subalgebra, and

Mπ”Ÿst∩rIβ€‹π”Ÿst​(m1,…,mn)=Pπ”Ÿst​(m1,…,mn)=Ind𝔀0¯𝔀⁑P0¯​(m1,…,mn)M^{\mathfrak{b}_{\text{st}}\cap r_{I}\mathfrak{b}_{\text{st}}}(m_{1},\dots,m_{n})=P^{\mathfrak{b}_{\text{st}}}(m_{1},\dots,m_{n})=\operatorname{Ind}^{\mathfrak{g}}_{\mathfrak{g}_{\overline{0}}}P_{\overline{0}}(m_{1},\dots,m_{n})

.

Remark 3.19.

As is well known, π’ͺ0​(𝔀​𝔩​(1|1))\mathcal{O}_{0}(\mathfrak{gl}(1|1)) is simply the category of finite-dimensional representations of the path algebra K1∞K_{1}^{\infty} of the infinite quiver:

aβˆ’2a_{-2}bβˆ’2b_{-2}aβˆ’1a_{-1}bβˆ’1b_{-1}a0a_{0}b0b_{0}a1a_{1}b1b_{1}a2a_{2}b2b_{2}β‹―\cdotsβ‹―\cdots

modulo the relations ai​bi=biβˆ’1​aiβˆ’1a_{i}b_{i}=b_{i-1}a_{i-1} and ai​ai+1=0=bi+1​bia_{i}a_{i+1}=0=b_{i+1}b_{i} for all iβˆˆβ„€i\in\mathbb{Z}.

As described in [4], K1∞K_{1}^{\infty} is the simplest nontrivial example of an algebra that belongs to the class of (generalized) Khovanov algebras. As shown in [4] (originally due to Serganova) any atypicality 1 block of 𝔀​𝔩​(m|n)\mathfrak{gl}(m|n)-smod is equivalent to π’ͺ0​(𝔀​𝔩​(1|1))\mathcal{O}_{0}(\mathfrak{gl}(1|1)).

3.5 Realizing the Principal Block of 𝔀​𝔩​(1|1)βŠ•n\mathfrak{gl}(1|1)^{\oplus n}

Let JJ be a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection of size nn.

Definition 3.20.

As defined in [4](5.6), for Mβˆˆπ”€β€‹-sModM\in\mathfrak{g}\text{-sMod}, we define

Homfin⁑(⨁(mj)j∈Jβˆˆβ„€JMπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj),M):=\operatorname{Hom}^{\text{fin}}\biggl{(}\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)},M\biggr{)}:=
⨁(mj)j∈Jβˆˆβ„€JHom⁑(Mπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj),M)βŠ†\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}\operatorname{Hom}\biggl{(}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)},M\biggr{)}\subseteq
Hom⁑(⨁(mj)j∈Jβˆˆβ„€JMπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj),M).\operatorname{Hom}\biggl{(}\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)},M\biggr{)}.

In particular, we define:

Endfin⁑(⨁(mj)j∈Jβˆˆβ„€JMπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj)):=\operatorname{End}^{\text{fin}}\biggl{(}\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)}:=
Homfin⁑(⨁(mj)j∈Jβˆˆβ„€JMπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj),⨁(mj)j∈Jβˆˆβ„€JMπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj)).\operatorname{Hom}^{\text{fin}}\biggl{(}\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)},\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)}.

This algebra is not unital but locally unital, and it is not finite-dimensional but locally finite-dimensional.

Proposition 3.21.

The algebra structure of

Endfin⁑(⨁(mj)j∈Jβˆˆβ„€JMπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»+βˆ‘j∈Jmj​αj))\operatorname{End}^{\text{fin}}\biggl{(}\bigoplus_{(m_{j})_{j\in J}\in\mathbb{Z}^{J}}M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)}

depends only on the size of JJ, and it does not depend on 𝔀\mathfrak{g}, π”Ÿ\mathfrak{b}, or Ξ»\lambda.

Proof. Let J1,J2βŠ‚JJ_{1},J_{2}\subset J. By TheoremΒ 2.1, PropositionΒ 3.4 and PropositionΒ 3.5, we have the following isomorphism:

U(𝔀)FJ1π”ŸEJ2π”ŸvΞ»π”Ÿβˆ©rJβ€‹π”Ÿ/βˆ‘J1βŠ‚J1β€²βŠ‚J,J2βŠ‚J2β€²βŠ‚J,(J1β€²,J2β€²)β‰ (J1,J2)U(𝔀)FJ1β€²π”ŸEJ2β€²π”ŸvΞ»π”Ÿβˆ©rJβ€‹π”Ÿβ‰…Mπ”Ÿ+rJβ€‹π”Ÿ(Ξ»βˆ’Ξ£J1π”Ÿ+Ξ£J2π”Ÿ).\left.U(\mathfrak{g})F_{J_{1}}^{\mathfrak{b}}E_{J_{2}}^{\mathfrak{b}}v_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\middle/\sum_{J_{1}\subset J_{1}^{\prime}\subset J,J_{2}\subset J_{2}^{\prime}\subset J,(J_{1}^{\prime},J_{2}^{\prime})\neq(J_{1},J_{2})}U(\mathfrak{g})F_{J_{1}^{\prime}}^{\mathfrak{b}}E_{J_{2}^{\prime}}^{\mathfrak{b}}v_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\right.\cong M^{\mathfrak{b}+r_{J}\mathfrak{b}}(\lambda-\Sigma_{J_{1}}^{\mathfrak{b}}+\Sigma_{J_{2}}^{\mathfrak{b}}).

The module Mπ”Ÿβˆ©rJβ€‹π”Ÿβ€‹(Ξ»)M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}(\lambda) is filtered by 4n4^{n} bricks of the form Mπ”Ÿ+rJβ€‹π”Ÿβ€‹(Ξ»βˆ’Ξ£J1π”Ÿ+Ξ£J2π”Ÿ)M^{\mathfrak{b}+r_{J}\mathfrak{b}}(\lambda-\Sigma_{J_{1}}^{\mathfrak{b}}+\Sigma_{J_{2}}^{\mathfrak{b}}), and the relations between these bricks are determined by the relations between their highest weight vectors of the form FJ1π”Ÿβ€‹EJ2π”Ÿβ€‹vΞ»π”Ÿβˆ©rJβ€‹π”ŸF_{J_{1}}^{\mathfrak{b}}E_{J_{2}}^{\mathfrak{b}}v_{\lambda}^{\mathfrak{b}\cap r_{J}\mathfrak{b}}.

By the orthogonality of the roots, we can see that this structure does not depend on 𝔀\mathfrak{g}, π”Ÿ\mathfrak{b}, or Ξ»\lambda.

β–‘\square

Remark 3.22.

In particular, applying the above when JJ has size 1, by RemarkΒ 3.18, we obtain the following:

For π”Ÿβˆˆπ”…β€‹(𝔀)\mathfrak{b}\in\mathfrak{B}(\mathfrak{g}), λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}, Ξ±βˆˆΞ βŠ—π”Ÿ\alpha\in\Pi_{\otimes}^{\mathfrak{b}}, if (Ξ»,Ξ±)=0(\lambda,\alpha)=0, then there is an isomorphism of algebras:

Endfin⁑(⨁nβˆˆβ„€Mπ”Ÿβˆ©rΞ±β€‹π”Ÿβ€‹(Ξ»+n​α))β‰…K1∞.\operatorname{End}^{\text{fin}}\left(\bigoplus_{n\in\mathbb{Z}}M^{\mathfrak{b}\cap r_{\alpha}\mathfrak{b}}(\lambda+n\alpha)\right)\cong K_{1}^{\infty}.
Proposition 3.23.

Let JJ be a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection. Then, the set

H(J,Ξ»):={Mπ”Ÿ+rJβ€‹π”Ÿ(Ξ»+βˆ‘j∈JmjΞ±j))∣(mj)j∈Jβˆˆβ„€J}H(J,\lambda):=\{M^{\mathfrak{b}+r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)}\mid(m_{j})_{j\in J}\in\mathbb{Z}^{J}\}

forms a semibrick. Moreover, Mπ”Ÿβˆ©rJβ€‹π”Ÿ(Ξ»+βˆ‘j∈JmjΞ±j))M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)} is the projective cover of Mπ”Ÿ+rJβ€‹π”Ÿ(Ξ»+βˆ‘j∈JmjΞ±j))M^{\mathfrak{b}+r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)} in H​(J,Ξ»)H(J,\lambda) .

Proof. The set H​(J,Ξ»)H(J,\lambda) forms a semibrick by PropositionΒ 3.4 and LemmaΒ 3.14. By LemmaΒ 3.9, Mπ”Ÿβˆ©rJβ€‹π”Ÿ(Ξ»+βˆ‘j∈JmjΞ±j))M^{\mathfrak{b}\cap r_{J}\mathfrak{b}}\biggl{(}\lambda+\sum_{j\in J}m_{j}\alpha_{j}\biggr{)}\biggr{)} is indecomposable. Its projectivity in H​(J,Ξ»)H(J,\lambda) follows from LemmaΒ 3.6.

β–‘\square

Theorem 3.24.

Let JJ be a (π”Ÿ,Ξ»)(\mathfrak{b},\lambda)-hypercubic collection of size nn.

Let Filt⁑H​(J,Ξ»)\operatorname{Filt}H(J,\lambda) denote the filtration closure of H​(J,Ξ»)H(J,\lambda) in the category π’ͺ\mathcal{O}.

Then, there exists a functor

Filt⁑(H​(J,Ξ»))⟢π’ͺ0​(𝔀​𝔩​(1|1)βŠ•n),\operatorname{Filt}(H(J,\lambda))\longrightarrow\mathcal{O}_{0}(\mathfrak{gl}(1|1)^{\oplus n}),

establishing an equivalence of categories.

Proof. Β By PropositionΒ 3.21 and The locally finite version of abstract Morita theory, we have that Filt⁑(H​(J,Ξ»))\operatorname{Filt}(H(J,\lambda)) is independent of 𝔀,π”Ÿ,\mathfrak{g},\mathfrak{b}, and Ξ»\lambda. See [4, Theorem 5.11] for details.

In particular, when 𝔀=𝔀​𝔩​(1|1)βŠ•n\mathfrak{g}=\mathfrak{gl}(1|1)^{\oplus n}, it follows from PropositionΒ 3.23 and RemarkΒ 3.18 that

Filt⁑(H​(J,Ξ»))=π’ͺ0​(𝔀​𝔩​(1|1)βŠ•n).\operatorname{Filt}(H(J,\lambda))=\mathcal{O}_{0}(\mathfrak{gl}(1|1)^{\oplus n}).

β–‘\square

Remark 3.25.

s​π’ͺs\mathcal{O} is not a wide subcategory of 𝔀​-​sMod\mathfrak{g}\text{-}\mathrm{sMod} (see Exercise 3.1 in [15]). Thus, taking the filtration closure within π’ͺ\mathcal{O} is essential. We also note that s​π’ͺs\mathcal{O} is a (extention full) Serre subcategory of the category of weight modules [11, 9].

References

  • Asai [2020] Sota Asai. Semibricks. International Mathematics Research Notices, 2020(16):4993–5054, 2020.
  • Auslander and Reiten [1975] Maurice Auslander and Idun Reiten. Representation theory of artin algebras iii almost split sequences. Communications in Algebra, 3(3):239–294, 1975.
  • Brundan [2014] Jonathan Brundan. Representations of the general linear lie superalgebra in the bgg category . In Developments and Retrospectives in Lie Theory: Algebraic Methods, pages 71–98. Springer, 2014.
  • Brundan and Stroppel [2012] Jonathan Brundan and Catharina Stroppel. Highest weight categories arising from khovanov’s diagram algebra iv: the general linear supergroup. Journal of the European Mathematical Society, 14(2):373–419, 2012.
  • Brundan etΒ al. [2017] Jonathan Brundan, Ivan Losev, and Ben Webster. Tensor product categorifications and the super kazhdan–lusztig conjecture. International Mathematics Research Notices, 2017(20):6329–6410, 2017.
  • Chen and Coulembier [2020] Chih-Whi Chen and Kevin Coulembier. The primitive spectrum and category for the periplectic lie superalgebra. Canadian Journal of Mathematics, 72(3):625–655, 2020.
  • Cheng and Wang [2012] Shun-Jen Cheng and Weiqiang Wang. Dualities and representations of Lie superalgebras. American Mathematical Soc., 2012.
  • Cheng etΒ al. [2015] Shun-Jen Cheng, Ngau Lam, Weiqiang Wang, etΒ al. The brundan-kazhdan-lusztig conjecture for general linear lie superalgebras. Duke Mathematical Journal, 164(4):617–695, 2015.
  • Coulembier and Mazorchuk [2015] Kevin Coulembier and Volodymyr Mazorchuk. Some homological properties of category π’ͺ\mathcal{O}. iii. Advances in Mathematics, 283:204–231, 2015. doi: 10.1016/j.aim.2015.06.019.
  • Coulembier and Mazorchuk [2016] Kevin Coulembier and Volodymyr Mazorchuk. Primitive ideals, twisting functors and star actions for classical lie superalgebras. Journal fΓΌr die reine und angewandte Mathematik, 2016(718):207–253, 2016.
  • Delorme [1980] PΒ Delorme. Extensions in the bernsten-gelfand-gelfand category o. Funct Anal. Appl, 14:77–78, 1980.
  • Enomoto [2021] Haruhisa Enomoto. Schur’s lemma for exact categories implies abelian. Journal of Algebra, 584:260–269, 2021.
  • Etingof etΒ al. [2015] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories, volume 205. American Mathematical Soc., 2015.
  • Hirota [2025] Shunsuke Hirota. Categorification of rainbow paths on odd reflection graphs through homomorphisms between verma supermodules. arXiv preprint arXiv:2502.14274, 2025.
  • Humphreys [2021] JamesΒ E Humphreys. Representations of semisimple Lie algebras in the BGG category O, volumeΒ 94. American Mathematical Soc., 2021.
  • Mazorchuk [2014] Volodymyr Mazorchuk. Parabolic category π’ͺ\mathcal{O} for classical lie superalgebras. In Advances in Lie Superalgebras, pages 149–166. Springer, 2014.
  • Musson [2012] IanΒ Malcolm Musson. Lie superalgebras and enveloping algebras, volume 131. American Mathematical Soc., 2012.
  • Ringel [1976] ClausΒ Michael Ringel. Representations of k-species and bimodules. Journal of Algebra, 41:269–302, 1976. URL https://api.semanticscholar.org/CorpusID:122262365.
  • Serganova [2011] Vera Serganova. Kac–moody superalgebras and integrability. Developments and trends in infinite-dimensional Lie theory, pages 169–218, 2011.

Shunsuke Hirota
Department of Mathematics, Kyoto University
Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502, Kyoto
E-mail address: [email protected]