This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hybrid Feedback for Global Tracking on Matrix Lie Groups SO(3)SO(3) and SE(3)SE(3)

Miaomiao Wang and Abdelhamid Tayebi This work was supported by the National Sciences and Engineering Research Council of Canada (NSERC), under the grants NSERC-DG RGPIN-2020-06270. Preliminary results of this paper were presented at the 58th IEEE Conferene on Decision and Control, Nice, France, December 2019 [1]. (Corresponding author: Miaomiao Wang.) Miaomiao Wang is with the Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada (e-mail: [email protected]).Abdelhamid Tayebi is with the Department of Electrical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada. He is also with the Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada. (e-mail: [email protected]).
Abstract

We introduce a new hybrid control strategy, which is conceptually different from the commonly used synergistic hybrid approaches, to efficiently deal with the problem of the undesired equilibria that precludes smooth vectors fields on SO(3)SO(3) from achieving global stability. The key idea consists in constructing a suitable potential function on SO(3)×SO(3)\times\mathbb{R} involving an auxiliary scalar variable, with flow and jump dynamics, which keeps the state away from the undesired critical points while, at the same time, guarantees a decrease of the potential function over the flows and jumps. Based on this new hybrid mechanism, a hybrid feedback control scheme for the attitude tracking problem on SO(3)SO(3), endowed with global asymptotic stability and semi-global exponential stability guarantees, is proposed. This control scheme is further improved through a smoothing mechanism that removes the discontinuities in the input torque. The third hybrid control scheme, proposed in this paper, removes the requirement of the angular velocity measurements, while preserving the strong stability guarantees of the first hybrid control scheme. This approach has also been applied to the tracking problem on SE(3)SE(3) to illustrate its advantages with respect to the existing synergistic hybrid approaches. Finally, some simulation results are presented to illustrate the performance of the proposed hybrid controllers.

Index Terms:
Attitude control, Hybrid feedback, Rigid body system, Velocity-free feedback, Matrix Lie group,

I Introduction

The attitude tracking control problem of rigid body systems has been widely investigated in the literature with many applications related to robotics, aerospace and marine engineering, for instance [2, 3, 4, 5, 6, 7]. In particular, geometric control design on Lie groups SO(3)SO(3) and SE(3)SE(3), has generated a great deal of research work [8, 9, 10, 11, 6, 12, 13]. It is well known that achieving global stability results with feedback control schemes designed on Lie groups such as SO(3)SO(3) and SE(3)SE(3), is a fundamentally difficult task due to the topological obstruction of the motion space induced by the fact that these manifolds are not homeomorphic to n\mathbb{R}^{n} and that there is no smooth vector field that can have a global attractor [8]. To achieve almost global asymptotic stability (AGAS), a class of suitable “navigation functions” has been introduced in [8]. In [9], the Riemannian structure of the configuration manifold for a class of mechanical systems, is used to derive a local exponential control law, while in [11], an almost global tracking controller has been proposed for a general class of Lie groups via intrinsic globally-defined error dynamics. It is well known that for any smooth potential function on SO(3)SO(3), there exist at least four critical points where its gradient vanishes [14], and as such, almost global stability is the strongest result that one can achieve in this case.

Using the hybrid dynamical systems framework of [15, 16], a unit-quaternion based hybrid control scheme for global attitude tracking was first proposed in [17], which led thereafter to other variants such as [18, 19, 20]. The use of a “synergistic” family of potential functions to overcome the topological obstruction to global asymptotic stability (GAS) on SO(3)SO(3) has been introduced in [21]. A family of potential functions is “centrally” synergistic, if the identity is the common critical point of all the potential functions in the family. This synergistic hybrid approach was successfully applied to the rigid body attitude control problem in [22], where a hysteresis-based switching mechanism was introduced to avoid all the undesired critical points and ensure some robustness to measurement noise. However, only numerical examples were provided to construct such a synergistic family of potential functions via angular warping on SO(3)SO(3). Inspired by this, a number of hybrid controllers and observers on Lie groups SO(3)SO(3), SE(3)SE(3) and SE2(3)SE_{2}(3) have been proposed in the literature [23, 24, 25, 26, 27, 28, 29, 30, 31]. The work in [26], provides a systematic and comprehensive procedure for the construction of synergistic potential functions on SO(3)SO(3), which is then applied to design velocity-free hybrid attitude stabilization and tracking control schemes [26, 27]. Moreover, a hybrid attitude control scheme on SO(3)SO(3) using an “exp-synergistic” family of potential functions, leading to global exponential stability, has been proposed in [28]. Alternatively, a “non-central” synergistic family of potential functions has been considered in [23] to relax the centrality condition. A similar idea can be found in [25]. Recently, a hybrid control approach on smooth manifolds, relying on a switching logic between local coordinates, has been proposed in [32].

Contributions: In this paper, we propose new hybrid feedback control strategies for the tracking problems on matrix Lie groups SO(3)SO(3) and SE(3)SE(3), leading to GAS guarantees. Some extensions are also proposed to smooth out the discontinuities induced by the control input switching, and to handle the lack of angular velocity measurements. The main novelty and strength of our approach is the fact that it can overcome the compactness condition required in the synergistic hybrid approaches. Therefore, it can be applied to a general class of non-compact matrix Lie groups to generate globally asymptotically stabilizing hybrid feedback laws as demonstrated through the design of a geometric hybrid tracking control scheme on the non-compact manifold SE(3)SE(3). The key idea of our hybrid attitude control strategy consists in using a suitable potential function on SO(3)×SO(3)\times\mathbb{R} involving an auxiliary scalar variable with hybrid dynamics. This scalar variable is governed by some appropriately designed flow dynamics when the state in SO(3)×SO(3)\times\mathbb{R} is away from the undesired critical points, and is governed by an appropriately designed jump strategy when the state is in the neighborhood of the undesired critical points. The flow and jump strategies are designed to ensure a decrease of the potential function over the flows and jumps. In contrast with the synergistic hybrid approaches where a synergistic family of potential functions on SO(3)SO(3) is used [22, 21, 23, 26, 27], our hybrid approach relies on a single potential function on SO(3)×SO(3)\times\mathbb{R} parameterized by the hybrid auxiliary scalar variable. As it is going to be shown later, our approach on top of the hybrid control design simplification, allows to overcome the set compactness assumption (stemming from the diffeomorphism condition of the transformation map) required in the synergistic hybrid approaches. This important advantage, makes our approach a good candidate for the design of hybrid controllers on non-compact manifold such as SE(3)SE(3) where the existing hybrid approaches (for instance, [22, 21, 25, 26, 28, 27, 32]) are not applicable in a straightforward manner. A preliminary version of this work has been presented in [1] without the semi-global exponential stability proof, the control smoothing mechanism and the velocity-free hybrid tracking scheme presented in the present paper.

Organization: The remainder of this paper is organized as follows: Section II provides the preliminaries that will be used throughout this paper. In Section III, we formulate our attitude tracking control problem. In Section IV, a new hybrid mechanism using a potential function on SO(3)×SO(3)\times\mathbb{R} is presented. In Sections V-VII, we present our three hybrid attitude tracking controllers. In Section VIII, we provide a systematic procedure for the construction of the potential function on SO(3)×SO(3)\times\mathbb{R} satisfying all the requirements for the design of our hybrid attitude tracking controllers. In Section IX, our hybrid control strategy is extended to the pose tracking problem on the non-compact Lie group SE(3)SE(3). Simulation results are presented in Section X.

II Preliminaries

II-A Notations and Definitions

The sets of real, non-negative real and natural numbers are denoted by \mathbb{R}, 0\mathbb{R}_{\geq 0} and \mathbb{N}, respectively. We denote by n\mathbb{R}^{n} the nn-dimensional Euclidean space, and by 𝕊n\mathbb{S}^{n} the set of unit vectors in n+1\mathbb{R}^{n+1}. Given two matrices, A,Bm×nA,B\in\mathbb{R}^{m\times n}, their Euclidean inner product is defined as A,B=tr(AB)\langle\langle A,B\rangle\rangle=\operatorname{tr}(A^{\top}B). The Euclidean norm of a vector xnx\in\mathbb{R}^{n} is denoted by x\|x\|, and the Frobenius norm a matrix Xn×mX\in\mathbb{R}^{n\times m} is denoted by XF=tr(XX)\|X\|_{F}=\sqrt{\operatorname{tr}(X^{\top}X)}. For a given symmetric matrix An×nA\in\mathbb{R}^{n\times n}, we define (A)\mathcal{E}(A) as the set of all the unit-eigenvectors of AA, (λiA,viA)(\lambda^{A}_{i},v_{i}^{A}) as the ii-th pair of eigenvalue and eigenvector of AA, and λminA\lambda_{\min}^{A} and λmaxA\lambda_{\max}^{A} as the minimum and maximum eigenvalue of AA, respectively. Let \mathcal{M} be a smooth manifold embedded in n\mathbb{R}^{n} and TxT_{x}\mathcal{M} be the tangent space on \mathcal{M} at point xx\in\mathcal{M}. The gradient of a differentiable real-valued function f:f:\mathcal{M}\to\mathbb{R} at point xx\in\mathcal{M}, denoted by xf(x)Tx\nabla_{x}f(x)\in T_{x}\mathcal{M}, relative to the Riemannian metric ,x:Tx×Tx\langle~{},~{}\rangle_{x}:T_{x}\mathcal{M}\times T_{x}\mathcal{M}\to\mathbb{R} is uniquely defined by f˙(x)=xf(x),ξx\dot{f}(x)=\langle\nabla_{x}f(x),\xi\rangle_{x} for all ξTx\xi\in T_{x}\mathcal{M}. A point xx\in\mathcal{M} is called a critical point of ff if its gradient at xx varnishes (i.e., xf(x)=0\nabla_{x}f(x)=0). A continuously differentiable function f:0f:\mathcal{M}\to\mathbb{R}_{\geq 0} is said to be a potential function on \mathcal{M} with respect to the set 𝒜\mathcal{A}\subset\mathcal{M} if f(x)>0f(x)>0 for all x𝒜x\notin\mathcal{A} and f(x)=0f(x)=0 for all x𝒜x\in\mathcal{A}.

The 3-dimensional Special Orthogonal group is defined by SO(3):={R3×3:RR=RR=I3,det(R)=+1}SO(3):=\left\{R\in\mathbb{R}^{3\times 3}:R^{\top}R=RR^{\top}=I_{3},\det(R)=+1\right\}, and the Lie algebra of SO(3)SO(3) is defined by 𝔰𝔬(3):={Ω3×3:Ω=Ω}\mathfrak{so}(3):=\left\{\Omega\in\mathbb{R}^{3\times 3}:\Omega^{\top}=-\Omega\right\}. The tangent space of SO(3)SO(3) at any base point RR is defined by TRSO(3):={RΩ3×3:RSO(3),Ω𝔰𝔬(3)}T_{R}SO(3):=\{R\Omega\in\mathbb{R}^{3\times 3}:\ R\in SO(3),\Omega\in\mathfrak{so}(3)\}. The inner product in the tangent space TRSO(3)T_{R}SO(3) defines the left invariant metric on SO(3)SO(3) as RΩ1,RΩ2R=Ω1,Ω2\langle R\Omega_{1},R\Omega_{2}\rangle_{R}=\langle\langle\Omega_{1},\Omega_{2}\rangle\rangle for all RSO(3)R\in SO(3) and Ω1,Ω2𝔰𝔬(3)\Omega_{1},\Omega_{2}\in\mathfrak{so}(3). For any RSO(3)R\in SO(3), we define |R|I[0,1]|R|_{I}\in[0,1] as the normalized Euclidean distance on SO(3)SO(3) with respect to the identity I3I_{3}, which is given by |R|I2=tr(I3R)/4|R|_{I}^{2}=\operatorname{tr}(I_{3}-R)/4. Let the map a:×𝕊2SO(3)\mathcal{R}_{a}:\mathbb{R}\times\mathbb{S}^{2}\to SO(3) represent the well-known angle-axis parameterization of the attitude, which is given by a(θ,u):=I3+sin(θ)u×+(1cos(θ))(u×)2\mathcal{R}_{a}(\theta,u):=I_{3}+\sin(\theta)u^{\times}+(1-\cos(\theta))(u^{\times})^{2} with θ\theta\in\mathbb{R} denoting the rotation angle and u𝕊2u\in\mathbb{S}^{2} denoting the rotation axis. For a given vector x:=[x1,x2,x3]3x:=[x_{1},x_{2},x_{3}]^{\top}\in\mathbb{R}^{3}, we define x×x^{\times} as the skew-symmetric matrix given by

x×=[0x3x2x30x1x2x10]x^{\times}=\begin{bmatrix}0&-x_{3}&x_{2}\\ x_{3}&0&-x_{1}\\ -x_{2}&x_{1}&0\end{bmatrix}

and vec()\text{vec}(\cdot) as the inverse operator of the map ()×(\cdot)^{\times}, such that vec(x×)=x\text{vec}(x^{\times})=x. For a matrix A3×3A\in\mathbb{R}^{3\times 3}, we denote a(A):=12(AA)\mathbb{P}_{a}(A):=\frac{1}{2}(A-A^{\top}) as the anti-symmetric projection of AA. Define the composition map ψ:=veca\psi:=\text{vec}\circ\mathbb{P}_{a} such that, for a matrix A=[aij]3×3A=[a_{ij}]\in\mathbb{R}^{3\times 3}, one has ψ(A):=vec(a(A))=12[a32a23,a13a31,a21a12].\psi(A):=\text{vec}(\mathbb{P}_{a}(A))=\frac{1}{2}[a_{32}-a_{23},a_{13}-a_{31},a_{21}-a_{12}]^{\top}. For any A3×3,x3A\in\mathbb{R}^{3\times 3},x\in\mathbb{R}^{3}, one can verify that A,x×=2xψ(A).\langle\langle A,x^{\times}\rangle\rangle=2x^{\top}\psi(A).

II-B Hybrid Systems Framework

Consider a smooth manifold \mathcal{M} embedded in n\mathbb{R}^{n} and its tangent bundle denoted by T=xTxT\mathcal{M}=\bigcup_{x\in\mathcal{M}}T_{x}\mathcal{M}. A general model of a hybrid system is given as [15]:

:{x˙F(x),xx+G(x),x𝒥\mathcal{H}:\begin{cases}\dot{x}~{}~{}\in F(x),&\quad x\in\mathcal{F}\\ x^{+}\in G(x),&\quad x\in\mathcal{J}\end{cases} (1)

where xx\in\mathcal{M} denotes the state, x+x^{+} denotes the state after an instantaneous jump, the flow map F:TF:\mathcal{M}\to T\mathcal{M} describes the continuous flow of xx on the flow set \mathcal{F}\subseteq\mathcal{M}, and the jump map G:G:\mathcal{M}\rightrightarrows\mathcal{M} (a set-valued mapping from \mathcal{M} to \mathcal{M}) describes the discrete jumps of xx on the jump set 𝒥\mathcal{J}\subseteq\mathcal{M}. A solution xx to \mathcal{H} is parameterized by (t,j)0×(t,j)\in\mathbb{R}_{\geq 0}\times\mathbb{N}, where tt denotes the amount of time passed and jj denotes the number of discrete jumps that have occurred. A subset domx0×\operatorname{dom}x\subset\mathbb{R}_{\geq 0}\times\mathbb{N} is a hybrid time domain if for every (T,J)domx(T,J)\in\operatorname{dom}x, the set, denoted by domx([0,T]×{0,1,,J})\operatorname{dom}x\bigcap([0,T]\times\{0,1,\dots,J\}), is a union of finite intervals of the form j=0J([tj,tj+1]×{j})\bigcup_{j=0}^{J}([t_{j},t_{j+1}]\times\{j\}) with a time sequence 0=t0t1tJ+10=t_{0}\leq t_{1}\leq\cdots\leq t_{J+1}. A solution xx to \mathcal{H} is said to be maximal if it cannot be extended by flowing nor jumping, and complete if its domain domx\operatorname{dom}x is unbounded. Let |x|𝒜|x|_{\mathcal{A}} denote the distance of a point xx to a closed set 𝒜\mathcal{A}\subset\mathcal{M}, and then the set 𝒜\mathcal{A} is said to be: stable for \mathcal{H} if for each ϵ>0\epsilon>0 there exists δ>0\delta>0 such that each maximal solution xx to \mathcal{H} with |x(0,0)|𝒜δ|x(0,0)|_{\mathcal{A}}\leq\delta satisfies |x(t,j)|𝒜ϵ|x(t,j)|_{\mathcal{A}}\leq\epsilon for all (t,j)domx(t,j)\in\operatorname{dom}x; globally attractive for \mathcal{H} if every maximal solution xx to \mathcal{H} is complete and satisfies limt+j|x(t,j)|𝒜=0\lim_{t+j\to\infty}|x(t,j)|_{\mathcal{A}}=0 for all (t,j)domx(t,j)\in\operatorname{dom}x; globally asymptotically stable if it is both stable and globally attractive for \mathcal{H}. Moreover, the 𝒜\mathcal{A} is said to be (locally) exponentially stable for \mathcal{H} if there exist κ,λ,μ>0\kappa,\lambda,\mu>0 such that, for any |x(0,0)|𝒜<μ|x(0,0)|_{\mathcal{A}}<\mu, every maximal solution xx to \mathcal{H} is complete and satisfies |x(t,j)|𝒜κexp(λ(t+j))|x(0,0)|𝒜|x(t,j)|_{\mathcal{A}}\leq\kappa\exp(-\lambda(t+j))|x(0,0)|_{\mathcal{A}} for all (t,j)domx(t,j)\in\operatorname{dom}x [33]. We refer the reader to [15, 16] and references therein for more details on hybrid dynamical systems.

III Problem Formulation

The dynamical equations of motion of a rigid body on SO(3)SO(3) are given by

{R˙=Rω×Jω˙=ω×Jω+τ\displaystyle\begin{cases}\dot{R}&=R\omega^{\times}\\ J\dot{\omega}&=-\omega^{\times}J\omega+\tau\end{cases} (2)

where the rotation matrix RR denotes the attitude of the rigid body, ω3\omega\in\mathbb{R}^{3} is the body-frame angular velocity, J=J3×3J=J^{\top}\in\mathbb{R}^{3\times 3} is the inertia matrix (constant and known), and τ3\tau\in\mathbb{R}^{3} is the control torque to be designed.

Let m>0m>0 and let 𝒲dSO(3)×3\mathcal{W}_{d}\subset SO(3)\times\mathbb{R}^{3} be a compact (closed and bounded) subset. Let the desired reference trajectory be generated by the following dynamical system [23]:

R˙r=Rrωr×ω˙r=zzm𝔹}(Rr,ωr)𝒲d\displaystyle\left.\begin{array}[]{rl}\dot{R}_{r}&=R_{r}\omega_{r}^{\times}\\ \dot{\omega}_{r}&=z\\ z&\in m\mathbb{B}\end{array}\right\}(R_{r},\omega_{r})\in\mathcal{W}_{d} (6)

where RrR_{r} and ωr\omega_{r} are the desired rotation and angular velocity, and m𝔹:={x3:xm}m\mathbb{B}:=\{x\in\mathbb{R}^{3}:\|x\|\leq m\} is the closed ball in 3\mathbb{R}^{3}. As shown in [23], every maximal solution to (6) is complete, and any possible solution component ωr\omega_{r} of (6) is Lipschitz continuous with Lipschitz constant mm, but not necessarily differentiable.

Let us consider the left-invariant attitude tracking error Re=RrRR_{e}=R_{r}^{\top}R and the angular velocity tracking error ωe=ωReωr\omega_{e}=\omega-R_{e}^{\top}\omega_{r}. From (2)-(6), one obtains the following error dynamics [23]:

R˙e\displaystyle\dot{R}_{e} =Reωe×\displaystyle=R_{e}\omega_{e}^{\times} (7a)
Jω˙e\displaystyle J\dot{\omega}_{e} =Σ(Re,ωe,ωr)ωeΥ(Re,ωr,z)+τ\displaystyle=\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}-\Upsilon(R_{e},\omega_{r},z)+\tau (7b)

where the functions Υ:SO(3)×3×33\Upsilon:SO(3)\times\mathbb{R}^{3}\times\mathbb{R}^{3}\to\mathbb{R}^{3} and Σ:SO(3)×3×3𝔰𝔬(3)\Sigma:SO(3)\times\mathbb{R}^{3}\times\mathbb{R}^{3}\to\mathfrak{so}(3) are given by

Υ(Re,ωr,z)\displaystyle\Upsilon(R_{e},\omega_{r},z) =JRez+(Reωr)×JReωr\displaystyle=JR_{e}^{\top}z+(R_{e}^{\top}\omega_{r})^{\times}JR_{e}^{\top}\omega_{r} (8a)
Σ(Re,ωe,ωr)\displaystyle\Sigma(R_{e},\omega_{e},\omega_{r}) =(Jωe)×+(JReωr)×\displaystyle=(J\omega_{e})^{\times}+(JR_{e}^{\top}\omega_{r})^{\times}
((Reωr)×J+J(Reωr)×).\displaystyle\qquad-((R_{e}^{\top}\omega_{r})^{\times}J+J(R_{e}^{\top}\omega_{r})^{\times}). (8b)

Note that Σ\Sigma is skew-symmetric, and as such, for each u3u\in\mathbb{R}^{3} one has uΣ(Re,ωe,ωr)u=0u^{\top}\Sigma(R_{e},\omega_{e},\omega_{r})u=0. It is clear that Υ(Re,ωr,z)\Upsilon(R_{e},\omega_{r},z) is known, and Υ(Re,ωr,z)=0\Upsilon(R_{e},\omega_{r},z)=0 if RrR_{r} is constant.

The control objective consists in designing hybrid feedback laws such that the desired equilibrium of the error dynamics (7a)-(8b), i.e., (Re=I3,ωe=0)(R_{e}=I_{3},\omega_{e}=0), is globally asymptotically stable.

IV A new Hybrid Mechanism Using a Single Potential Function on SO(3)×SO(3)\times\mathbb{R}

Let V(R)V(R) be a potential function on SO(3)SO(3) with respect to I3I_{3}. Let RV:RTRSO(3)\nabla_{R}V:R\to T_{R}SO(3) denote the gradient of VV at point RR. According to Lusternik-Schnirelmann theorem [34] and Morse theory [14], a smooth vector field on SO(3)SO(3) can not have a global attractor, and any smooth potential function on SO(3)SO(3) must have at least four critical points. Let the set of all critical points of V(R)V(R) be denoted by ΨV={RSO(3)|RV(R)=0}\Psi_{V}=\{R\in SO(3)|\nabla_{R}V(R)=0\}, and the set of all undesired critical points be denoted by ΨV{I3}\Psi_{V}\setminus\{I_{3}\}.

One possible way to make the desired critical point I3I_{3} a global attractor, consists in generating a non-smooth gradient-based vector field on SO(3)SO(3) through a switching mechanism between a family of potential functions as done in [22, 21, 26]. The potential functions are constructed using a modified trace function and a transformation map 𝒯:SO(3)SO(3)\mathcal{T}:SO(3)\to SO(3) such that all the potential functions share only the desired critical point I3I_{3}. For instance, a transformation map 𝒯(R)=exp(ϑ(R)u×)R\mathcal{T}(R)=\exp(\vartheta(R)u^{\times})R with ϑ(R)=kV(R),k,u𝕊2\vartheta(R)=kV(R),k\in\mathbb{R},u\in\mathbb{S}^{2}, known as the “angular warping”, is considered in [21]. As shown in [21, Theorem 8], 𝒯\mathcal{T} is required to be a diffeomorphism, and to be as such, kk has to be chosen sufficiently small in magnitude (i.e., 2|k|maxRV(R)F<1\sqrt{2}|k|\max\|\nabla_{R}V(R)\|_{F}<1 for all RSO(3)R\in SO(3)). A similar design of the central synergistic family of potential functions can be found in [26], where a different transformation map 𝒯(R)=Rexp(ϑ(R)u×)\mathcal{T}(R)=R\exp(\vartheta(R)u^{\times}) with ϑ(R)=2arcsin(kV(R))\vartheta(R)=2\arcsin(kV(R)) and kk sufficiently small, has been considered. Note that the existence of the parameter kk in [22, 21, 26] is guaranteed mainly due to the fact that SO(3)SO(3) is compact. Alternatively, in [23], a non-central synergistic family of potential functions has been designed based on a modified trace function through constant translation, scaling and biasing. Unfortunately, it is not straightforward to explicitly construct such a family of potential functions, especially when dealing with systems evolving on non-compact manifolds.

To overcome the above mentioned problems, we propose a new approach that does not require the generation of a family of potential functions via a diffeomorphism map, leading to a much simpler design of hybrid control systems on SO(3)SO(3) or other non-compact manifolds. The key idea consists in using a single potential function U:SO(3)×0U:SO(3)\times\mathbb{R}\to\mathbb{R}_{\geq 0}, with respect to the 𝒜o:=(I3,0)\mathcal{A}_{o}:=(I_{3},0), parameterized by a scalar variable θ\theta\in\mathbb{R} that has flow and jump dynamics. In contrast with the previously mentioned synergistic potential functions approaches, where the potential functions are parameterized by a discrete variable, our single potential function UU is adjusted through the continuous flows and the discrete jumps of the auxiliary variable θ\theta such that the resulting non-smooth gradient-based vector field yields a single attractor 𝒜o\mathcal{A}_{o}. The details of the construction of the potential function UU and its properties will be presented later. Let us define the set of all the critical points of UU as

ΨU:={(R,θ)SO(3)×:RU(R,θ)=03×3,θU(R,θ)=0}\Psi_{U}:=\{(R,\theta)\in SO(3)\times\mathbb{R}:\\ \nabla_{R}U(R,\theta)=0_{3\times 3},\nabla_{\theta}U(R,\theta)=0\} (9)

with RU(R,θ)\nabla_{R}U(R,\theta) and θU(R,θ)\nabla_{\theta}U(R,\theta) denoting the gradients of U(R,θ)U(R,\theta) with respect to RR and θ\theta, respectively. Let Θ\Theta\subset\mathbb{R} be a nonempty and finite real set, and consider the following basic assumption for our potential function U(R,θ)U(R,\theta):

Assumption 1 (Basic Assumption).

There exist a potential function UU on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o} and a nonempty finite set Θ\Theta\subset\mathbb{R} such that 𝒜oΨU\mathcal{A}_{o}\in\Psi_{U} and

μU(R,θ)>δ,(R,θ)ΨU{𝒜o}\mu_{U}(R,\theta)>\delta,\quad\forall(R,\theta)\in\Psi_{U}\setminus\{\mathcal{A}_{o}\} (10)

with some constant δ>0\delta>0 and the map μU:SO(3)×0\mu_{U}:SO(3)\times\mathbb{R}\to\mathbb{R}_{\geq 0} is given by

μU(R,θ):=U(R,θ)minθΘU(R,θ).\mu_{U}(R,\theta):=U(R,\theta)-\min_{{\theta}^{\prime}\in\Theta}U(R,{\theta}^{\prime}). (11)
Remark 1.

From the definitions of sets ΨU\Psi_{U} and 𝒜o\mathcal{A}_{o}, the set ΨU{𝒜o}\Psi_{U}\setminus\{\mathcal{A}_{o}\} denotes the set of all the undesired critical points of U(R,θ)U(R,\theta). Assumption 1 implies that for any undesired critical point (R,θ)ΨU{𝒜o}(R,\theta)\in\Psi_{U}\setminus\{\mathcal{A}_{o}\}, there exists another state (R,θ)(R,{\theta}^{\prime}) with θΘ{\theta}^{\prime}\in\Theta such that the value of U(R,θ)U(R,{\theta}^{\prime}) is lower than the value of U(R,θ)U(R,\theta) by a constant gap δ\delta. Hence, one can reset θ\theta (at each jump) to the one leading to the minimum value of UU with a strict decrease such that the state after jump is away from the undesired critical points. This property, together with an appropriately designed feedback over the flows, will guarantee global asymptotic stability of desired equilibrium point (see an example in Fig. 1). This basic assumption is motivated from the synergistic family of potential functions on SO(3)SO(3) proposed in [22, 21, 23].

Refer to caption
Figure 1: Hybrid mechanism using a single potential function on SO(3)×SO(3)\times\mathbb{R}. The point (R,0)(R^{*},0) denotes one of the undesired critical points of U(R,θ)U(R,\theta). The dashed and solid black curves represent the discrete jumps and continuous flows of (R,θ)(R,\theta), respectively.

Once a nonempty finite set Θ\Theta\subset\mathbb{R} and a potential function UU satisfying the basic Assumption 1 are constructed, as it will be shown later, the flow and jump dynamics governing the evolution of θ\theta and in turn of UU will be designed to avoid the undesired critical points, leaving 𝒜o\mathcal{A}_{o} as the unique attractor. In fact, θ\theta flows when the state (R,θ)(R,\theta) is away from the set ΨU{𝒜o}\Psi_{U}\setminus\{\mathcal{A}_{o}\}, and jumps to some θΘ{\theta}^{\prime}\in\Theta leading to minimum value of U(R,θ)U(R,\theta^{\prime})) when the state (R,θ)(R,\theta) is in the neighborhood of the set ΨU{𝒜o}\Psi_{U}\setminus\{\mathcal{A}_{o}\}. We propose the following hybrid dynamics θ\mathcal{H}_{\theta} for θ\theta:

θ:{θ˙=f(R,θ),(R,θ)θ+g(R,θ),(R,θ)𝒥\displaystyle\mathcal{H}_{\theta}:\begin{cases}\dot{\theta}~{}~{}=f(R,\theta),&(R,\theta)\in\mathcal{F}\\ \theta^{+}\in g(R,\theta),&(R,\theta)\in\mathcal{J}\end{cases} (12)

with θ(0,0)\theta(0,0)\in\mathbb{R}. The flow and jump sets are defined as

\displaystyle\mathcal{F} :={(R,θ)SO(3)×:μU(R,θ)δ}\displaystyle:=\left\{(R,\theta)\in SO(3)\times\mathbb{R}:\mu_{U}(R,\theta)\leq\delta\right\} (13a)
𝒥\displaystyle\mathcal{J} :={(R,θ)SO(3)×:μU(R,θ)δ}\displaystyle:=\left\{(R,\theta)\in SO(3)\times\mathbb{R}:\mu_{U}(R,\theta)\geq\delta\right\} (13b)

with μU\mu_{U} defined in (11), and the flow map f:SO(3)×f:SO(3)\times\mathbb{R}\to\mathbb{R} and jump map g:SO(3)×Θg:SO(3)\times\mathbb{R}\rightrightarrows\Theta are defined as

f(R,θ)\displaystyle f(R,\theta) :=kθθU(R,θ)\displaystyle:=-k_{\theta}\nabla_{\theta}U(R,\theta) (14)
g(R,θ)\displaystyle g(R,\theta) :={θΘ:θ=argminθΘU(R,θ)}\displaystyle:=\left\{\theta\in\Theta:\theta=\arg\min\nolimits_{{\theta}^{\prime}\in\Theta}U(R,{\theta}^{\prime})\right\} (15)

with constant scalar kθ>0k_{\theta}>0. By Assumption 1, the design of the jump set 𝒥\mathcal{J} implies that all the undesired critical points are located in the jump set, i.e., ΨU{𝒜o}𝒥\Psi_{U}\setminus\{\mathcal{A}_{o}\}\subset\mathcal{J}. Note that the flow map ff in (14) is nothing else but the negative gradient of UU with respect to θ\theta contributing to driving the state (R,θ)(R,\theta) towards the critical points of UU. The jump map gg in (15) is designed to drive (through jumps) the state (R,θ)(R,\theta) away from the undesired critical points. From the definitions of the jump set 𝒥\mathcal{J} and jump map gg, it is clear that every (R,θ)𝒥(R,\theta)\in\mathcal{J} , one has U(R,θ)U(R,g(R,θ))=U(R,θ)minθΘU(R,θ)=μU(R,θ)δU(R,\theta)-U(R,g(R,\theta))=U(R,\theta)-\min\nolimits_{{\theta}^{\prime}\in\Theta}U(R,{\theta}^{\prime})=\mu_{U}(R,\theta)\geq\delta, which guarantees a minimum decrease of the potential function UU by δ\delta, after each jump.

V Hybrid Feedback Design

We propose the following hybrid feedback tracking control scheme:

τ=Υ(Re,ωr,z)κ(Re,θ,ωe)θ˙=f(Re,θ)(Re,θ)θ+g(Re,θ)(Re,θ)𝒥\displaystyle\underbrace{\begin{array}[]{l}\tau=\Upsilon(R_{e},\omega_{r},z)-\kappa(R_{e},\theta,\omega_{e})\\ \dot{\theta}=f(R_{e},\theta)\end{array}}_{(R_{e},\theta)\in\mathcal{F}}\underbrace{\begin{array}[]{l}\\ \\[-11.38092pt] \theta^{+}\in g(R_{e},\theta)\end{array}}_{(R_{e},\theta)\in\mathcal{J}} (21)

where function Υ\Upsilon is defined in (8a), the flow and jump sets \mathcal{F} and 𝒥\mathcal{J} are defined in (13a) and (13b), respectively, the function κ\kappa is given by

κ(Re,θ,ωe)\displaystyle\kappa(R_{e},\theta,\omega_{e}) :=2kRψ(ReReU(Re,θ))+kωωe\displaystyle:=2k_{R}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))+k_{\omega}\omega_{e} (22)

with constant scalars kR,kω>0k_{R},k_{\omega}>0, and the maps ff and gg (in terms of ReR_{e} and θ\theta) are defined in (14) and (15), respectively. The main difference between the proposed hybrid feedback (21)-(22) with respect to the ones proposed in [23, 27] is the extended hybrid dynamics of the auxiliary variable θ\theta which modifies (continuously) the potential function in the flow set \mathcal{F} and modifies (through jumps) the potential function in the jump set 𝒥\mathcal{J} (i.e., in the neighborhood of the undesired critical points of UU). The gradient of the potential function UU, with the extended hybrid dynamics of θ\theta, is used in the control to force 𝒜o\mathcal{A}_{o} to be a global attractor. Fig. 2 illustrates the proposed hybrid feedback strategy.

Refer to caption
Figure 2: Hybrid feedback strategy for global attitude tracking.

Define the new state space 𝒮:=SO(3)××3×𝒲d\mathcal{S}:=SO(3)\times\mathbb{R}\times\mathbb{R}^{3}\times\mathcal{W}_{d} and the new state x:=(Re,θ,ωe,Rr,ωr)𝒮x:=(R_{e},\theta,\omega_{e},R_{r},\omega_{r})\in\mathcal{S}. In view of (7), (12)-(13) and (21), one has the following hybrid closed-loop system:

{x˙F(x),xc:={x𝒮:(Re,θ)}x+G(x),x𝒥c:={x𝒮:(Re,θ)𝒥}\begin{cases}\dot{x}~{}~{}\in F(x),&x\in\mathcal{F}_{c}:=\{x\in\mathcal{S}:(R_{e},\theta)\in\mathcal{F}\}\\ x^{+}\in G(x),&x\in\mathcal{J}_{c}:=\{x\in\mathcal{S}:(R_{e},\theta)\in\mathcal{J}\}\end{cases} (23)

where the flow and jump maps are given by

F(x)\displaystyle F(x) :=(Reωe×f(Re,θ)J1(Σ(Re,ωe,ωr)ωeκ(Re,θ,ωe))Rrωr×m𝔹)\displaystyle:=\begin{pmatrix}R_{e}\omega_{e}^{\times}\\ f(R_{e},\theta)\\ J^{-1}(\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}-\kappa(R_{e},\theta,\omega_{e}))\\ R_{r}\omega_{r}^{\times}\\ m\mathbb{B}\end{pmatrix} (24)
G(x)\displaystyle G(x) :=(Re,g(Re,θ),ωe,Rr,ωr)\displaystyle:=\begin{pmatrix}R_{e},~{}g(R_{e},\theta),~{}\omega_{e},~{}R_{r},~{}\omega_{r}\end{pmatrix} (25)

with Σ,f,g\Sigma,f,g and κ\kappa defined in (8b), (14), (15) and (22), respectively. One can verify that c𝒥c=𝒮\mathcal{F}_{c}\cup\mathcal{J}_{c}=\mathcal{S}, c\mathcal{F}_{c} and 𝒥c\mathcal{J}_{c} are closed, and the hybrid closed-loop system (23) is autonomous and satisfies the hybrid basic conditions [16, Assumption 6.5]. Now, one can state one of our main results:

Theorem 1.

Let kR,kω,kθ>0k_{R},k_{\omega},k_{\theta}>0 and suppose that Assumption 1 holds. Then, the set 𝒜:={x𝒮:(Re,θ)=𝒜o,ωe=0}\mathcal{A}:=\{x\in\mathcal{S}:(R_{e},\theta)=\mathcal{A}_{o},\omega_{e}=0\} is globally asymptotically stable for the hybrid system (23) and the number of jumps is finite.

Proof.

See Appendix -A. ∎

Remark 2.

As shown in the proof of Theorem 1, Assumption 1 is the key to avoid the undesired equilibrium points and ensure GAS for the closed-loop system (23). Without a strict decrease of the potential function over the jumps, the trajectories may converge to a level set containing one of the undesired equilibrium points.

Now, under the following additional assumptions on the potential function UU, we will show that the proposed hybrid controller achieves exponential stability.

Assumption 2.

There exist constant scalars α1>α2>0\alpha_{1}>\alpha_{2}>0 such that

(R,θ)U(R,θ)\displaystyle\nabla_{(R,\theta)}U(R,\theta) α1U(R,θ),(R,θ)SO(3)×\displaystyle\leq\alpha_{1}U(R,\theta),\quad\forall(R,\theta)\in SO(3)\times\mathbb{R} (26)
(R,θ)U(R,θ)\displaystyle\nabla_{(R,\theta)}U(R,\theta) α2U(R,θ),(R,θ)\displaystyle\geq\alpha_{2}U(R,\theta),\quad\forall(R,\theta)\in\mathcal{F} (27)

with (R,θ)U(R,θ):=ψ(RRU(R,θ))2+|θU(R,θ)|2\nabla_{(R,\theta)}U(R,\theta):=\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|^{2}+|\nabla_{\theta}U(R,\theta)|^{2} and \mathcal{F} defined in (13a).

Assumption 3.

Given the dynamics (7a) and (12), there exist constants cR,cθ>0c_{R},c_{\theta}>0 such that

ψ˙(ReReU(Re,θ))cRωe+cθkθ|θU(Re,θ)|,(Re,θ)\|\dot{\psi}(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|\\ \leq c_{R}\|\omega_{e}\|+c_{\theta}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|,~{}\forall(R_{e},\theta)\in\mathcal{F} (28)

with \mathcal{F} defined in (13a).

Assumptions 2 and 3 impose some bounds on the gradients of the potential function and the time derivative of ψ(ReReU(Re,θ))\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta)). This assumptions are not very restrictive as it is going to be shown later once we present the construction of the potential function in Section VIII.
Let |x|𝒜2:=U(Re,θ)+ωe2|x|_{\mathcal{A}}^{2}:=U(R_{e},\theta)+\|\omega_{e}\|^{2}. Since UU is a potential function on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}, it follows from the definitions of 𝒮\mathcal{S} and 𝒜\mathcal{A} that |x|𝒜=0|x|_{\mathcal{A}}=0 for all x𝒜x\in\mathcal{A}, and |x|𝒜>0|x|_{\mathcal{A}}>0 for all x𝒮𝒜x\in\mathcal{S}\setminus\mathcal{A}. Now, one can state the following result:

Proposition 1.

Let kR,kω,kθ>0k_{R},k_{\omega},k_{\theta}>0 and suppose that Assumption 1-3 hold. Then, for every compact set ΩcSO(3)××3\varOmega_{c}\subset SO(3)\times\mathbb{R}\times\mathbb{R}^{3} and every initial condition x(0,0)Ωc×𝒲dx(0,0)\in\varOmega_{c}\times\mathcal{W}_{d}, the number of jumps is finite, and there exist k,λ>0k,\lambda>0 such that, each maximal solution xx to the hybrid system (23) satisfies

|x(t,j)|𝒜2kexp(λ(t+j))|x(0,0)|𝒜2|x(t,j)|_{\mathcal{A}}^{2}\leq k\exp(-\lambda(t+j))|x(0,0)|_{\mathcal{A}}^{2} (29)

for all (t,j)domx(t,j)\in\operatorname{dom}x

Proof.

See Appendix -B. ∎

Remark 3.

Proposition 1 shows that the tracking error converges exponentially to the set 𝒜\mathcal{A} for each initial condition in the compact set ΩcSO(3)××3\varOmega_{c}\subset SO(3)\times\mathbb{R}\times\mathbb{R}^{3} satisfying 𝒜Ωc×𝒲d\mathcal{A}\subseteq\varOmega_{c}\times\mathcal{W}_{d} (Note that 𝒲d\mathcal{W}_{d} is compact by assumption). It is important to mention that the exponential stability proved in Proposition 1 is referred to as semi-global exponential stability, since the parameters k,λ>0k,\lambda>0 depend on the initial conditions which are restricted to an arbitrary compact subset Ωc×𝒲d𝒮\varOmega_{c}\times\mathcal{W}_{d}\subset\mathcal{S}. Since the number of jumps is finite, the hybrid exponential stability can be viewed as the exponential stability in the classical sense (exponential convergence over time). This situation is sometimes referred to as exponentially stability in the tt-direction [35].

VI Hybrid Feedback With Torque Smoothing Mechanism

In order to remove the discontinuities in the control input τ\tau (caused by the discrete jumps of θ\theta), we propose the following modified hybrid feedback tracking scheme:

τ=Υ(Re,ωr,z)2kRζkωωeθ˙=f(Re,θ)ζ˙=h(Re,θ,ζ)(Re,θ,ζ)^θ+g(Re,θ)ζ+=ζ(Re,θ,ζ)𝒥^\displaystyle\underbrace{\begin{array}[]{l}\tau=\Upsilon(R_{e},\omega_{r},z)-2k_{R}\zeta-k_{\omega}\omega_{e}\\ \dot{\theta}=f(R_{e},\theta)\\ \dot{\zeta}=h(R_{e},\theta,\zeta)\end{array}}_{(R_{e},\theta,\zeta)\in\widehat{\mathcal{F}}}\underbrace{\begin{array}[]{l}\\ \\[-11.38092pt] \theta^{+}\in{g}(R_{e},\theta)\\ \zeta^{+}=\zeta\end{array}}_{(R_{e},\theta,\zeta)\in\widehat{\mathcal{J}}} (37)

where θ(0,0),ζ(0)3\theta(0,0)\in\mathbb{R},\zeta(0)\in\mathbb{R}^{3}, constants kR,kω>0k_{R},k_{\omega}>0, the maps ff and gg are defined in (14) and (15), the function Υ\Upsilon is defined in (8a), and the function hh is given by

h(Re,θ,ζ)\displaystyle h(R_{e},\theta,\zeta) =kζ(ζψ(ReReU(Re,θ)))\displaystyle=-k_{\zeta}(\zeta-\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))) (38)

with constant kζ>0k_{\zeta}>0. In this case, the flow and jump sets are given by

^\displaystyle\widehat{\mathcal{F}} :={(Re,θ,ζ):μW(Re,θ,ζ)δ}\displaystyle:=\{(R_{e},\theta,\zeta)\in\mho:\mu_{W}(R_{e},\theta,\zeta)\leq\delta^{\prime}\} (39)
𝒥^\displaystyle\widehat{\mathcal{J}} :={(Re,θ,ζ):μW(Re,θ,ζ)δ}\displaystyle:=\{(R_{e},\theta,\zeta)\in\mho:\mu_{W}(R_{e},\theta,\zeta)\geq\delta^{\prime}\} (40)

where 0<δ<δ0<\delta^{\prime}<\delta, :=SO(3)××3\mho:=SO(3)\times\mathbb{R}\times\mathbb{R}^{3} and

μW(Re,θ,ζ)\displaystyle\mu_{W}(R_{e},\theta,\zeta) :=W(Re,θ,ζ)minθΘW(Re,θ,ζ)\displaystyle:=W(R_{e},\theta,\zeta)-\min_{{\theta}^{\prime}\in\Theta}W(R_{e},\theta^{\prime},\zeta) (41)
W(Re,θ,ζ)\displaystyle W(R_{e},\theta,\zeta) :=U(Re,θ)+ϱζψ(ReReU(Re,θ))2\displaystyle:=U(R_{e},\theta)+{\varrho}\|\zeta-\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|^{2} (42)

with some ϱ>0\varrho>0 to be designed later. The main difference between this hybrid control scheme and the previous one in (21), is the use of an dynamical variable ζ\zeta that bears the hybrid jumps of θ\theta resulting in a jump-free control signal. As shown in (37)-(38), the dynamics of ζ\zeta allow to relocate the jumps one integrator away from the control torque. This mechanism leads to a continuous torque input since ζ\zeta is continuous (not necessary differentiable due to the discrete jumps of θ\theta in the gradient-based term).

Since UU is a potential function on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o} and ψ(ReReU(Re,θ))=0\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))=0 as (Re,θ)=𝒜o(R_{e},\theta)=\mathcal{A}_{o}, one can show that WW defined in (42) is a potential function on \mho with respect to 𝒜^o:=(Re=I3,θ=0,ζ=0)\widehat{\mathcal{A}}_{o}:=(R_{e}=I_{3},\theta=0,\zeta=0), and the set of its critical points is given by ΨW:={(Re,θ,ζ):(Re,θ)ΨU,ζ=0}\Psi_{W}:=\{(R_{e},\theta,\zeta)\in\mho:(R_{e},\theta)\in\Psi_{U},\zeta=0\}. To ensure that all the undesired critical points of WW are located in the jump set 𝒥^\widehat{\mathcal{J}} in (40), we consider the following assumption:

Assumption 4.

There exists a constant cψ>0c_{\psi}>0 such that ψ(ReReU(Re,θ))cψ\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|\leq c_{\psi} for all (Re,θ)SO(3)×(R_{e},\theta)\in SO(3)\times\mathbb{R}.

Lemma 1.

Let Assumption 1 and 4 hold, and 0<δ<δ0<\delta^{\prime}<\delta and 0<ϱ<(δδ)/cψ20<\varrho<{(\delta-\delta^{\prime})}/{c_{\psi}^{2}}, then the following inequality holds:

μW(Re,θ,ζ)>δ,(Re,θ,ζ)ΨW{𝒜^o}.\displaystyle\mu_{W}(R_{e},\theta,\zeta)>\delta^{\prime},\quad\forall(R_{e},\theta,\zeta)\in\Psi_{W}\setminus\{\widehat{\mathcal{A}}_{o}\}. (43)

The proof of Lemma 1 is given in Appendix -C. From the definition of 𝒥^\widehat{\mathcal{J}} in (40), Lemma 1 implies that all the undesired critical points of WW in (42) are located in the jump set 𝒥^\widehat{\mathcal{J}} (i.e., ΨW{𝒜^o}𝒥^\Psi_{W}\setminus\{\widehat{\mathcal{A}}_{o}\}\subset\widehat{\mathcal{J}}) under Assumption 1, 4 and some small enough positive constant ϱ\varrho.

Define the new state space 𝒮^:=𝒮×3\widehat{\mathcal{S}}:=\mathcal{S}\times\mathbb{R}^{3} and the new state x^:=(x,ζ)𝒮^\hat{x}:=(x,\zeta)\in\widehat{\mathcal{S}}. In view of (7), (12)-(13) and (37)-(38), one has the following hybrid closed-loop system:

{x^˙F^(x^),x^^c:={x^𝒮^:(Re,θ,ζ)^}x^+G^(x^),x^𝒥^c:={x^𝒮^:(Re,θ,ζ)𝒥^}\begin{cases}\dot{\hat{x}}~{}~{}\in\widehat{F}(\hat{x}),&\hat{x}\in\widehat{\mathcal{F}}_{c}:=\{\hat{x}\in\widehat{\mathcal{S}}:(R_{e},\theta,\zeta)\in\widehat{\mathcal{F}}\}\\ \hat{x}^{+}\in\widehat{G}(\hat{x}),&\hat{x}\in\widehat{\mathcal{J}}_{c}:=\{\hat{x}\in\widehat{\mathcal{S}}:(R_{e},\theta,\zeta)\in\widehat{\mathcal{J}}\}\end{cases} (44)

where the flow and jump maps are given by

F^(x^)\displaystyle\widehat{F}(\hat{x}) :=(Reωe×f(Re,θ)J1(Σ(Re,ωe,ωr)ωe2kRζkωωe)Rrωr×m𝔹kζ(ζψ(ReReU(Re,θ))))\displaystyle:=\begin{pmatrix}R_{e}\omega_{e}^{\times}\\ f(R_{e},\theta)\\ J^{-1}(\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}-2k_{R}\zeta-k_{\omega}\omega_{e})\\ R_{r}\omega_{r}^{\times}\\ m\mathbb{B}\\ -k_{\zeta}(\zeta-\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta)))\end{pmatrix} (45)
G^(x^)\displaystyle\widehat{G}(\hat{x}) :=(Re,g(Re,θ),ωe,Rr,ωr,ζ)\displaystyle:=\begin{pmatrix}R_{e},~{}{g}(R_{e},\theta),~{}\omega_{e},~{}R_{r},~{}\omega_{r},~{}\zeta\end{pmatrix} (46)

with Σ,f\Sigma,f and gg defined in (8b), (14) and (15), respectively. One can verify that ^c𝒥c^=𝒮^\widehat{\mathcal{F}}_{c}\cup\widehat{\mathcal{J}_{c}}=\widehat{\mathcal{S}}, ^c\widehat{\mathcal{F}}_{c} and 𝒥^c\widehat{\mathcal{J}}_{c} are closed, and the hybrid closed-loop system (44) satisfies the hybrid basic conditions [16, Assumption 6.5]. The properties of the set 𝒜^:={x^𝒮^:(Re,θ,ζ)=𝒜^o,ωe=0}\widehat{\mathcal{A}}:=\{\hat{x}\in\widehat{\mathcal{S}}:(R_{e},\theta,\zeta)=\widehat{\mathcal{A}}_{o},\omega_{e}=0\} for the closed-loop system (44) are stated in the following theorem:

Theorem 2.

Let kR,kω,kθ>0k_{R},k_{\omega},k_{\theta}>0, and suppose that Assumption 1, 3 and 4 hold. Then, there exist constants kζ>0k^{*}_{\zeta}>0 and 0<δ<δ0<\delta^{\prime}<\delta such that, for every kζ>kζk_{\zeta}>k_{\zeta}^{*} and 0<ϱ<(δδ)/cψ20<\varrho<{(\delta-\delta^{\prime})}/{c_{\psi}^{2}}, the set 𝒜^\widehat{\mathcal{A}} is globally asymptotically stable for the hybrid system (44) and the number of jumps is finite.

Proof.

See Appendix -D. ∎

Following similar steps as in the proof of Proposition 1, one can also show that, under the additional Assumption 2, the proposed hybrid feedback, with the torque smoothing mechanism, guarantees semi-global exponential stability. Note that the high gain condition on kζk_{\zeta} in Theorem 2 can be relaxed by considering the following dynamics for ζ\zeta:

ζ˙\displaystyle\dot{\zeta} =φ(x^)kζ(ζψ(ReReU(Re,θ)))\displaystyle=\varphi(\hat{x})-k_{\zeta}\left(\zeta-\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\right) (47)

where φ(x^):=ψ˙(ReReU(Re,θ))+1ϱωe\varphi(\hat{x}):=\dot{\psi}(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))+\frac{1}{\varrho}\omega_{e} with some constants kζ>0k_{\zeta}>0 and 0<ϱ<(δδ)/cψ20<\varrho<{(\delta-\delta^{\prime})}/{c_{\psi}^{2}}. With this modification, global asymptotic stability is also guaranteed as in Theorem 2, and the proof is omitted here.

VII Hybrid Feedback Without Velocity Measurements

Inspired by the work in [36, 37, 27], we propose a new hybrid feedback for global attitude tracking without using the measurements of angular velocity ω\omega. In practice, obviating the need of the angular velocity measurements is of great interest in applications relying on expensive and prone-to-failure gyroscopes. In the case where gyroscopes are available, this velocity-free tracking controller can also be used as a backup scheme triggered by gyro failure.

Consider the auxiliary state (R¯,θ¯)SO(3)×(\bar{R},\bar{\theta})\in SO(3)\times\mathbb{R} and the following hybrid auxiliary system:

R¯˙=R¯(R~β)×θ¯˙=f(R~,θ¯)(R~,θ¯)R¯+=R¯θ¯+g(R~,θ¯)(R~,θ¯)𝒥\displaystyle\underbrace{\begin{array}[]{l}\dot{\bar{R}}=\bar{R}(\tilde{R}\beta)^{\times}\\ \dot{\bar{\theta}}~{}=f(\tilde{R},\bar{\theta})\end{array}}_{(\tilde{R},\bar{\theta})\in\mathcal{F}}~{}\underbrace{\begin{array}[]{l}\bar{R}^{+}=\bar{R}\\ \bar{\theta}^{+}~{}~{}\in~{}g(\tilde{R},\bar{\theta})\end{array}}_{(\tilde{R},\bar{\theta})\in\mathcal{J}} (52)

where R¯(0)SO(3),θ¯(0,0)\bar{R}(0)\in SO(3),\bar{\theta}(0,0)\in\mathbb{R}, R~=R¯Re\tilde{R}=\bar{R}^{\top}R_{e}, the flow and jump sets \mathcal{F} and 𝒥\mathcal{J} are defined in (13a) and (13b), respectively, and β\beta is given by

β=Γψ(R~R~U(R~,θ¯))\beta=\Gamma\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta})) (53)

with a symmetric positive definite matrix Γ\Gamma. The dynamics of the auxiliary variable R¯\bar{R} are inspired from [37, 27], and the maps ff and gg are given in (14) and (15), respectively.

We propose the following velocity-free hybrid feedback tracking scheme:

τ=Υ(Re,ωr,z)κ¯(Re,θ,R~,θ¯)θ˙=f(Re,θ)(Re,θ)θ+g(Re,θ)(Re,θ)𝒥\displaystyle\underbrace{\begin{array}[]{l}\tau=\Upsilon(R_{e},\omega_{r},z)-\bar{\kappa}(R_{e},\theta,\tilde{R},\bar{\theta})\\ \dot{\theta}=f(R_{e},\theta)\\ \end{array}}_{(R_{e},\theta)\in{\mathcal{F}}}\underbrace{\begin{array}[]{l}\\ \\[-11.38092pt] \theta^{+}\in{g}(R_{e},\theta)\end{array}}_{(R_{e},\theta)\in{\mathcal{J}}} (59)

where the hybrid dynamics of the auxiliary state (R¯,θ¯)(\bar{R},\bar{\theta}) are given in (52), and the function κ¯\bar{\kappa} is given by

κ¯(Re,θ,R~,θ¯):=2kRψ(ReReU(Re,θ))+2kβψ(R~R~U(R~,θ¯))\bar{\kappa}(R_{e},\theta,\tilde{R},\bar{\theta}):=2k_{R}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\\ +2k_{\beta}\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta})) (60)

with constants kR,kβ>0k_{R},k_{\beta}>0. The flow and jump sets \mathcal{F} and 𝒥\mathcal{J} are defined in (13a) and (13b), respectively.

Instead of using the angular velocity tracking error ωe\omega_{e} as in the hybrid controllers (21) and (37), a new term generated from the gradient of U(R~,θ¯)U(\tilde{R},\bar{\theta}) is considered in the design of the control input τ\tau in (59). This term, relying on the output of the auxiliary system (52)-(53), allows to generate the necessary damping in the absence of the angular velocity measurements. In fact, an appropriate design of the input β\beta of the auxiliary system, ensures the convergence of β\beta to ωe\omega_{e} as R~I3\tilde{R}\rightarrow I_{3}, which consequently leads to ReI3R_{e}\rightarrow I_{3} and ωe0\omega_{e}\rightarrow 0. Fig. 3 illustrates the proposed velocity-free hybrid feedback strategy.

Refer to caption
Figure 3: Velocity-free hybrid feedback strategy for global attitude tracking using a hybrid auxiliary system.

Define the new state space 𝒮¯:=𝒮×SO(3)×\overline{\mathcal{S}}:=\mathcal{S}\times SO(3)\times\mathbb{R} and the new state x¯:=(x,R~,θ¯)𝒮¯\bar{x}:=(x,\tilde{R},\bar{\theta})\in\overline{\mathcal{S}}. In view of (7), (12)-(13) and (52)-(59), one has the following closed-loop system:

{x¯˙F¯(x¯),x¯¯c:=c×x¯+G¯(x¯),x¯𝒥¯c:=𝒥¯c1𝒥¯c2\begin{cases}\dot{\bar{x}}~{}~{}\in\overline{F}(\bar{x}),&\bar{x}\in\overline{\mathcal{F}}_{c}:=\mathcal{F}_{c}\times\mathcal{F}\\ \bar{x}^{+}\in\overline{G}(\bar{x}),&\bar{x}\in\overline{\mathcal{J}}_{c}:=\overline{\mathcal{J}}_{c1}\cup\overline{\mathcal{J}}_{c2}\end{cases} (61)

where 𝒥¯c1:=𝒥c×SO(3)×\overline{\mathcal{J}}_{c1}:=\mathcal{J}_{c}\times SO(3)\times\mathbb{R} and 𝒥¯c2:=𝒮×𝒥\overline{\mathcal{J}}_{c2}:=\mathcal{S}\times\mathcal{J}, and the flow and jump maps are given by

F¯(x^)\displaystyle\overline{F}(\hat{x}) :=(Reωe×f(Re,θ)J1(Σ(Re,ωe,ωr)ωeκ¯(Re,θ,R~,θ¯))Rrωr×m𝔹R~(ωeΓψ(R~R~U(R~,θ¯)))×f(R~,θ¯))\displaystyle:=\begin{pmatrix}R_{e}\omega_{e}^{\times}\\ f(R_{e},\theta)\\ J^{-1}(\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}-\bar{\kappa}(R_{e},\theta,\tilde{R},\bar{\theta}))\\ R_{r}\omega_{r}^{\times}\\ m\mathbb{B}\\ \tilde{R}(\omega_{e}-\Gamma\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta})))^{\times}\\ f(\tilde{R},\bar{\theta})\end{pmatrix} (62)
G¯(x¯)\displaystyle\overline{G}(\bar{x}) :=(Re,gθ(Re,θ),ωe,Rr,ωr,R~,gθ¯(R~,θ¯))\displaystyle:=\begin{pmatrix}R_{e},g_{\theta}(R_{e},\theta),\omega_{e},R_{r},\omega_{r},\tilde{R},g_{\bar{\theta}}(\tilde{R},\bar{\theta})\end{pmatrix} (63)

with Σ,f\Sigma,f and gg defined in (8b), (14) and (15), respectively. The function gθ(Re,θ)g_{\theta}(R_{e},\theta) is defined as: gθ(Re,θ)=g(Re,θ)g_{\theta}(R_{e},\theta)=g(R_{e},\theta) if (Re,θ)𝒥(R_{e},\theta)\in\mathcal{J} (i.e., x¯𝒥¯c1\bar{x}\in\overline{\mathcal{J}}_{c1}) otherwise gθ(Re,θ)=θg_{\theta}(R_{e},\theta)=\theta, and the function gθ¯(R~,θ¯)g_{\bar{\theta}}(\tilde{R},\bar{\theta}) is defined as: gθ¯(R~,θ¯)=g(R~,θ¯)g_{\bar{\theta}}(\tilde{R},\bar{\theta})=g(\tilde{R},\bar{\theta}) if (R~,θ¯)𝒥(\tilde{R},\bar{\theta})\in\mathcal{J} (i.e., x¯𝒥¯c2\bar{x}\in\overline{\mathcal{J}}_{c2}) otherwise gθ¯(R~,θ¯)=θ¯g_{\bar{\theta}}(\tilde{R},\bar{\theta})=\bar{\theta}. One can verify that ¯c𝒥c¯=𝒮¯\overline{\mathcal{F}}_{c}\cup\overline{\mathcal{J}_{c}}=\overline{\mathcal{S}}, sets ¯c\overline{\mathcal{F}}_{c} and 𝒥¯c\overline{\mathcal{J}}_{c} are closed, and the hybrid system (61) satisfies the hybrid basic conditions [16, Assumption 6.5]. Now, one can state the following result:

Theorem 3.

Let kR,kβ,kθ>0k_{R},k_{\beta},k_{\theta}>0, Γ=Γ\Gamma=\Gamma^{\top} be positive definite, and suppose that Assumption 1 holds. Then, the set 𝒜¯:={x¯𝒮¯:(Re,θ)=(R~,θ¯)=𝒜o,ωe=0}\overline{\mathcal{A}}:=\{\bar{x}\in\overline{\mathcal{S}}:(R_{e},\theta)=(\tilde{R},\bar{\theta})=\mathcal{A}_{o},\omega_{e}=0\} is globally asymptotically stable for the hybrid system (61) and the number of jumps is finite.

Proof.

See Appendix -E. ∎

Remark 4.

Following similar steps as in the proof of Proposition 1, one can also show that, under the additional Assumptions 2 and 3, the proposed velocity-free hybrid tracking controller guarantees semi-global exponential stability. Moreover, similar to Section VI, the proposed velocity-free hybrid attitude tracking controller (59) can be further extended with a torque smoothing mechanism by filtering the terms ψ(ReReU(Re,θ))\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta)) and ψ(R~R~U(R~,θ¯))\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta})) as in Section VI to obtain a jump-free torque input.

VIII Construction of The Potential Function on SO(3)×SO(3)\times\mathbb{R}

Our proposed designs in the previous sections rely on the existence of a potential function UU on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}, satisfying Assumptions 1-4. In this section, we will provide a systematic procedure for the construction of such potential function using the angular warping techniques inspired by [21].

Consider the following transformation map 𝒯:SO(3)×SO(3)\mathcal{T}:SO(3)\times\mathbb{R}\to SO(3) :

𝒯(R,θ)=Ra(θ,u)\mathcal{T}(R,\theta)=R\mathcal{R}_{a}(\theta,u) (64)

where RSO(3)R\in SO(3), u𝕊2u\in\mathbb{S}^{2} is a constant unit vector and θ\theta\in\mathbb{R} is a real-valued variable with hybrid dynamics specified in Section IV. From (64), 𝒯\mathcal{T} applies a rotation by an angle θ\theta to RR about the unit vector uu. The main difference compared to the transformation maps considered in [21, 22, 23, 26, 28], is that the angular warping angle θ\theta considered in (64) is an independent real-valued variable with hybrid flows and jumps.

Consider a modified trace function V(R)=tr(A(I3R))V(R)=\operatorname{tr}(A(I_{3}-R)) with A=AA=A^{\top} being a positive definite matrix. It follows from [23, 38] that the set of all the critical points of V(R)V(R) is given by ΨV={I3}a(π,(A))\Psi_{V}=\{I_{3}\}\cup\mathcal{R}_{a}(\pi,\mathcal{E}(A)) with (A)\mathcal{E}(A) denoting the set of unit eigenvectors of AA. Let us introduce the following real-valued function on SO(3)×SO(3)\times\mathbb{R} as

U(R,θ)\displaystyle U(R,\theta) =tr(A(I𝒯(R,θ)))+γ2θ2\displaystyle=\operatorname{tr}(A(I-\mathcal{T}(R,\theta)))+\frac{\gamma}{2}\theta^{2} (65)

with some constant γ>0\gamma>0 to be designed. The first term of UU is modified from the potential function VV inspired by [22, 21], and the second term is a quadratic term in θ\theta. From the definition of 𝒯\mathcal{T} in (64), one can easily verify that U(R,θ)0U(R,\theta)\geq 0 for all (R,θ)SO(3)×(R,\theta)\in SO(3)\times\mathbb{R}, and U(R,θ)=0U(R,\theta)=0 if and only if (R=I3,θ=0)(R=I_{3},\theta=0). Hence, UU is a potential function on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}. The following lemma provides useful properties of the potential function UU.

Lemma 2.

Let A=AA=A^{\top} be a positive definite matrix. Consider the potential function UU defined in (65), and the trajectories generated by R˙=Rω×\dot{R}=R\omega^{\times} and θ˙=ν\dot{\theta}=\nu with R(0)SO(3),θ(0),ω3,νR(0)\in SO(3),\theta(0)\in\mathbb{R},\omega\in\mathbb{R}^{3},\nu\in\mathbb{R}. Then, for all (R,θ)SO(3)×(R,\theta)\in SO(3)\times\mathbb{R} the following statements hold:

𝒯˙(R,θ)\displaystyle\dot{\mathcal{T}}(R,\theta) =𝒯(R,θ)(a(θ,u)ω+νu)×\displaystyle=\mathcal{T}(R,\theta)(\mathcal{R}_{a}(\theta,u)^{\top}\omega+\nu u)^{\times} (66a)
ψ(RRU(R,θ))\displaystyle\psi(R^{\top}\nabla_{R}U(R,\theta)) =a(θ,u)ψ(A𝒯(R,θ))\displaystyle=\mathcal{R}_{a}(\theta,u)\psi(A\mathcal{T}(R,\theta)) (66b)
θU(R,θ)\displaystyle\nabla_{\theta}U(R,\theta) =γθ+2uψ(A𝒯(R,θ))\displaystyle=\gamma\theta+2u^{\top}\psi(A\mathcal{T}(R,\theta)) (66c)
𝒜o\displaystyle\mathcal{A}_{o} ΨU:=ΨV×{0}\displaystyle\in\Psi_{U}:=\Psi_{V}\times\{0\} (66d)
ψ˙(RRU(R,θ))\displaystyle\dot{\psi}(R^{\top}\nabla_{R}U(R,\theta)) =𝒟R(R,θ)ω+𝒟θ(R,θ)ν\displaystyle=\mathcal{D}_{R}(R,\theta)\omega+\mathcal{D}_{\theta}(R,\theta)\nu (66e)

where 𝒟R(R,θ):=a(θ,u)E(A𝒯(R,θ))a(θ,u)3×3\mathcal{D}_{R}(R,\theta):=\mathcal{R}_{a}(\theta,u)E(A\mathcal{T}(R,\theta))\mathcal{R}_{a}^{\top}(\theta,u)\in\mathbb{R}^{3\times 3} with E(A):=12(tr(A)I3A),A3×3E(A):=\frac{1}{2}(\operatorname{tr}(A)I_{3}-A^{\top}),\forall A\in\mathbb{R}^{3\times 3}, and 𝒟θ(R,θ):=a(θ,u)E(A𝒯(R,θ))u(a(θ,u)ψ(A𝒯(R,θ)))×u3\mathcal{D}_{\theta}(R,\theta):=\mathcal{R}_{a}(\theta,u)E(A\mathcal{T}(R,\theta))u-(\mathcal{R}_{a}(\theta,u)\psi(A\mathcal{T}(R,\theta)))^{\times}u\in\mathbb{R}^{3}.

Proof.

See Appendix -F. ∎

Remark 5.

Note that in (66a), we obtain a different form of the time derivative of the transformation map 𝒯\mathcal{T} on SO(3)×SO(3)\times\mathbb{R} compared to [21, Theorem 6] and [26, Lemma 1]. As mentioned before, the transformation map 𝒯\mathcal{T} in [21] and [26] needs to be a (local) diffeomorphism to obtain the new set of critical points of the potential functions after transformation. In our approach, the set of critical points of the potential function UU on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}, denoted by ΨU\Psi_{U} in (66d), can be easily obtained from (66b) and (66c) without any additional conditions. Moreover, from (66d), the set ΨU\Psi_{U} is given by a simple extension of the set ΨV\Psi_{V} with θ{0}\theta\in\{0\}. This property allows us to set the state (R,θ)(R,\theta) away from the undesired critical points in ΨU{𝒜o}\Psi_{U}\setminus\{\mathcal{A}_{o}\} by resetting the variable θ\theta to some non-zero values, which is the key of our reset mechanism proposed in Section IV.

We define the set of parameters 𝒫U:={Θ,A,u,γ,δ}\mathcal{P}_{U}:=\{\Theta,A,u,\gamma,\delta\} with a finite non-empty real-valued set Θ\Theta\subset\mathbb{R}, a matrix A=A3×3A=A^{\top}\in\mathbb{R}^{3\times 3}, a unit vector u𝕊2u\in\mathbb{S}^{2}, and constant scalars γ,δ>0\gamma,\delta>0. The following proposition verifies all the conditions in Assumption 1-4 required by Section V-VII.

Proposition 2.

Consider the potential function UU defined in (65). Then, Assumptions 2-4 hold for any γ>0,u𝕊2\gamma>0,u\in\mathbb{S}^{2} and A=AA=A^{\top} being positive definite. Moreover, the basic Assumption 1 holds given the set 𝒫U\mathcal{P}_{U} defined as follows:

𝒫U:{Θ={|θi|(0,π],i=1,,m}A=A:0<λ1Aλ2A<λ3Au=α1v1A+α2v2A+α3v3A𝕊2γ<4Δπ2δ<(4Δπ2γ)θM22,θM:=supθΘ|θ|\displaystyle\mathcal{P}_{U}:\left\{\begin{array}[]{l}\Theta=\{|\theta_{i}|\in(0,\pi],i=1,\cdots,m\}\\ A=A^{\top}:0<\lambda_{1}^{A}\leq\lambda_{2}^{A}<\lambda_{3}^{A}\\ u=\alpha_{1}v_{1}^{A}+\alpha_{2}v_{2}^{A}+\alpha_{3}v_{3}^{A}\in\mathbb{S}^{2}\\ \gamma<\frac{4\Delta^{*}}{\pi^{2}}\\ \delta<(\frac{4\Delta^{*}}{\pi^{2}}-\gamma)\frac{\theta_{M}^{2}}{2},\ \theta_{M}:=\sup_{\theta^{\prime}\in\Theta}|\theta^{\prime}|\end{array}\right. (72)

where scalars α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3} and Δ\Delta^{*} are given as per one of the following three cases:

  • 1)

    if λ1A=λ2A\lambda_{1}^{A}=\lambda_{2}^{A}, α32=1λ2Aλ3A\alpha_{3}^{2}=1-\frac{\lambda_{2}^{A}}{\lambda_{3}^{A}} and Δ=λ1A(1λ2Aλ3A)\Delta^{*}=\lambda_{1}^{A}(1-\frac{\lambda_{2}^{A}}{\lambda_{3}^{A}}).

  • 2)

    if λ2Aλ1Aλ3Aλ3Aλ1A\lambda_{2}^{A}\geq\frac{\lambda_{1}^{A}\lambda_{3}^{A}}{\lambda^{A}_{3}-\lambda_{1}^{A}}, αi2=λiAλ2A+λ3A,i{2,3}\alpha_{i}^{2}=\frac{\lambda_{i}^{A}}{\lambda_{2}^{A}+\lambda_{3}^{A}},i\in\{2,3\} and Δ=λ1A\Delta^{*}=\lambda_{1}^{A}.

  • 3)

    if λ1A<λ2A<λ1Aλ3Aλ3Aλ1A\lambda_{1}^{A}<\lambda_{2}^{A}<\frac{\lambda_{1}^{A}\lambda_{3}^{A}}{\lambda^{A}_{3}-\lambda_{1}^{A}}, αi2=14jiλjA(l=13kl3λlAλkA),i{1,2,3}\alpha_{i}^{2}=1-\frac{4\prod_{j\neq i}\lambda_{j}^{A}}{(\sum_{l=1}^{3}\sum_{k\neq l}^{3}\lambda_{l}^{A}\lambda^{A}_{k})},i\in\{1,2,3\} and Δ=4jλjAl=13kl3λlAλkA.\Delta^{*}=\frac{4\prod_{j}\lambda_{j}^{A}}{\sum_{l=1}^{3}\sum_{k\neq l}^{3}\lambda_{l}^{A}\lambda^{A}_{k}}.

with (λiA,viA)(\lambda_{i}^{A},v_{i}^{A}) denoting the ii-th pair of eigenvalue-eigenvector of matrix AA.

Proof.

See Appendix -G

Remark 6.

As shown in the proof of Proposition 2, Assumption 1 holds if there exists a unit vector u𝕊2u\in\mathbb{S}^{2} such that one has Δ=minv(A)Δ(v,u)>0\Delta^{*}=\min_{v\in\mathcal{E}(A)}\Delta(v,u)>0, where Δ(u,v)=u(tr(A)I3A2vAv(I3vv))u\Delta(u,v)=u^{\top}\left(\operatorname{tr}(A)I_{3}-A-2v^{\top}Av(I_{3}-vv^{\top})\right)u. Proposition 2 provides a design option for the potential function UU through the choice of the set 𝒫U\mathcal{P}_{U} given in (72). Inspired by [26], the unit vector uu is designed in terms of the eigenvalues and eigenvectors of the matrix AA with 0<λ1Aλ2A<λ3A0<\lambda_{1}^{A}\leq\lambda_{2}^{A}<\lambda_{3}^{A}. The choice of the unit vector uu in Proposition 2 is optimal in terms of supu𝕊2(minv(A)Δ(v,u))\sup_{u\in\mathbb{S}^{2}}(\min_{v\in\mathcal{E}(A)}\Delta(v,u)) (see [26, Proposition 2] for more details).

Remark 7.

Note that a decrease in the value of γ\gamma results in an increase of the gap δ\delta (strengthening the robustness to measurement noise). However, it may slow down the convergence of θ\theta as per (14), leading to lower convergence rates for the overall closed-loop system. Hence, the parameter γ\gamma needs to be carefully chosen via a trade-off between the robustness to measurement noise and the convergence rates of the overall closed-loop system. The performance of the closed-loop system, in terms of convergence rates, with different choices of γ\gamma is illustrated in the simulation section.

IX Extension to Global Pose Tracking on SE(3)SE(3)

In this section, we extend our previous hybrid control strategy on SO(3)SO(3) to the 3-dimensional Special Euclidean group SE(3)SE(3), defined as

SE(3):={X=[Rp01]4×4:RSO(3),p3}\displaystyle SE(3):=\left\{X=\begin{bmatrix}R&p\\ 0&1\end{bmatrix}\in\mathbb{R}^{4\times 4}:R\in SO(3),p\in\mathbb{R}^{3}\right\}

with RR and pp denoting the rotation and position, respectively. The Lie algebra of SE(3)SE(3), denoted by 𝔰𝔢(3)\mathfrak{se}(3), is defined as

𝔰𝔢(3):={U=[ω×v00]4×4:ω×𝔰𝔬(3),v3}\displaystyle\mathfrak{se}(3):=\left\{U=\begin{bmatrix}\omega^{\times}&v\\ 0&0\end{bmatrix}\in\mathbb{R}^{4\times 4}:\omega^{\times}\in\mathfrak{so}(3),v\in\mathbb{R}^{3}\right\}

with ω\omega and vv denoting the angular and linear velocities, respectively. The definitions of the maps ()(\cdot)^{\wedge}, ψ¯\bar{\psi}, the adjoint action map Ad\operatorname{Ad} and the adjoint operator ad\operatorname{ad}, and their properties are given in Appendix -H.

We consider the following fully actuated system on SE(3)SE(3)

{X˙=Xξ𝕀ξ˙=adξ𝕀ξ+uc\displaystyle\begin{cases}\dot{X}&=X\xi^{\wedge}\\ \mathbb{I}\dot{\xi}&=\operatorname{ad}_{\xi}^{\top}\mathbb{I}\xi+u_{c}\end{cases} (73)

where XSE(3)X\in SE(3) denotes the pose of a rigid body system, ξ=[ω,v]6\xi=[\omega^{\top},v^{\top}]^{\top}\in\mathbb{R}^{6} denotes the group velocity, 𝕀=diag(J,mI3)6×6\mathbb{I}=\operatorname{diag}(J,mI_{3})\in\mathbb{R}^{6\times 6} denotes the inertia matrix, and uc=[τ,f]6u_{c}=[\tau^{\top},f^{\top}]^{\top}\in\mathbb{R}^{6} with ff and τ\tau denoting the force and torque inputs, respectively. Similar to (6), the desired reference trajectory is generated by the following dynamical system:

X˙r=Xrξrξ˙r=zzm𝔹}(Xr,ξr)𝒲d\displaystyle\left.\begin{array}[]{rl}\dot{X}_{r}&=X_{r}\xi_{r}^{\wedge}\\ \dot{\xi}_{r}&=z\\ z&\in m\mathbb{B}\end{array}\right\}(X_{r},\xi_{r})\in\mathcal{W}_{d} (77)

where m𝔹:={x6:xm},m>0m\mathbb{B}:=\{x\in\mathbb{R}^{6}:\|x\|\leq m\},m>0, 𝒲d\mathcal{W}_{d} denotes a compact subset of SE(3)×6SE(3)\times\mathbb{R}^{6}, and XrX_{r} and ξr\xi_{r} are the desired pose and group velocity, respectively.

Define the pose tracking error Xe=Xr1XX_{e}=X_{r}^{-1}X and the group velocity tracking error ξe=ξAdXe1ξr\xi_{e}=\xi-\operatorname{Ad}_{X_{e}}^{-1}\xi_{r}. From (73)-(77), one obtains the following error dynamics:

X˙e\displaystyle\dot{X}_{e} =Xeξe\displaystyle=X_{e}\xi_{e}^{\wedge} (78a)
𝕀ξ˙e\displaystyle\mathbb{I}\dot{\xi}_{e} =Σ(Xe,ξe,ξr)ξeΥ(Xe,ξr,z)+uc\displaystyle=\Sigma(X_{e},\xi_{e},\xi_{r})\xi_{e}-\Upsilon(X_{e},\xi_{r},z)+u_{c} (78b)

where the functions Υ:SE(3)×6×66\Upsilon:SE(3)\times\mathbb{R}^{6}\times\mathbb{R}^{6}\to\mathbb{R}^{6} and Σ:SE(3)×6×66×6\Sigma:SE(3)\times\mathbb{R}^{6}\times\mathbb{R}^{6}\to\mathbb{R}^{6\times 6} are given by

Σ(Xe,ξe,ξr)\displaystyle\Sigma(X_{e},\xi_{e},\xi_{r}) :=adξe𝕀ad𝕀AdXe1ξr\displaystyle:=\operatorname{ad}_{\xi_{e}}^{\top}\mathbb{I}-\operatorname{ad}_{\mathbb{I}\operatorname{Ad}_{X_{e}}^{-1}\xi_{r}}^{\top}
+(adAdXe1ξr𝕀𝕀adAdXe1ξr)\displaystyle~{}~{}~{}~{}~{}~{}~{}+(\operatorname{ad}_{\operatorname{Ad}_{X_{e}}^{-1}\xi_{r}}^{\top}\mathbb{I}-\mathbb{I}\operatorname{ad}_{\operatorname{Ad}_{X_{e}}^{-1}\xi_{r}}) (79a)
Υ(Xe,ξr,z)\displaystyle\Upsilon(X_{e},\xi_{r},z) :=adAdXe1ξr𝕀AdXe1ξr+𝕀AdXe1z.\displaystyle:=-\operatorname{ad}_{\operatorname{Ad}_{X_{e}}^{-1}\xi_{r}}^{\top}\mathbb{I}\operatorname{Ad}_{X_{e}}^{-1}\xi_{r}+\mathbb{I}\operatorname{Ad}_{X_{e}}^{-1}z. (79b)

Note that the error dynamics in (78) have similar structure as in (7), and the equality ξeΣ(Xe,ξe,ξr)ξe=0\xi_{e}^{\top}\Sigma(X_{e},\xi_{e},\xi_{r})\xi_{e}=0 holds. Let V(Xe)V(X_{e}) be a potential function on SE(3)SE(3) with respect to I4I_{4}. Hence, given the following smooth gradient-based feedback

uc=Υ(Xe,ξr,z)2kXψ¯(Xe1XeV(Xe))kξξe,u_{c}=\Upsilon(X_{e},\xi_{r},z)-2k_{X}\bar{\psi}(X_{e}^{-1}\nabla_{X_{e}}V(X_{e}))-k_{\xi}\xi_{e}, (80)

the equilibrium point (I4,0)(I_{4},0) of the closed-loop system (78)-(80) can be shown to be AGAS.

Now, we will illustrate the difficulty of the application of the synergistic hybrid approach on SE(3)SE(3). Applying the “angular-warping” technique from [21] directly on SE(3)SE(3), one has the transformation map 𝒯:SE(3)SE(3)\mathcal{T}:SE(3)\to SE(3) as 𝒯(Xe)=exp(ϑ(Xe)u)Xe\mathcal{T}(X_{e})=\exp(\vartheta(X_{e})u^{\wedge})X_{e} with ϑ(Xe)=kV(Xe)\vartheta(X_{e})=kV(X_{e}) and k,u6k\in\mathbb{R},u\in\mathbb{R}^{6}. Repeating the results in [21, Theorem 6], one obtains 𝒯˙(Xe)=𝒯(Xe)(Θ¯(Xe)ξe)\dot{\mathcal{T}}(X_{e})=\mathcal{T}(X_{e})(\bar{\Theta}(X_{e})\xi_{e})^{\wedge} with Θ¯(Xe)=I6+2kAdXe1uψ¯(Xe1XeV(Xe))\bar{\Theta}(X_{e})=I_{6}+2k\operatorname{Ad}_{X_{e}}^{-1}u\bar{\psi}(X_{e}^{-1}\nabla_{X_{e}}V(X_{e}))^{\top}. To guarantee that 𝒯\mathcal{T} is a diffeomorphism as in [21, Theorem 8], one way is to show that matrix Θ¯(Xe)\bar{\Theta}(X_{e}) is invertible on SE(3)SE(3), i.e., det(Θ¯(Xe))=1+2|k|uψ¯(Xe1XeV(Xe))0\det(\bar{\Theta}(X_{e}))=1+2|k|\|u\|\|\bar{\psi}(X_{e}^{-1}\nabla_{X_{e}}V(X_{e}))\|\neq 0 for all XeSE(3)X_{e}\in SE(3). However, the choice of the scalar kk is difficult due to the fact that SE(3)SE(3) is non-compact and the upper bound of XeV(Xe)F\|\nabla_{X_{e}}V(X_{e})\|_{F} cannot be a priori determined. To avoid this issue, an alternative design for hybrid feedback on SE(3)SE(3) with GAS guarantees has been proposed in [24], which combines a hybrid attitude feedback relying on a synergistic family of potential functions on SO(3)SO(3) and a smooth linear feedback for the vector states. The key of this approach is that it separates the non-compact Lie group SE(3)SE(3) into a compact Lie group SO(3)SO(3) and a linear space 3\mathbb{R}^{3} and, as such, the control is designed on SO(3)×3SO(3)\times\mathbb{R}^{3} rather than on SE(3)SE(3) directly. Our approach, however, is not restricted to compact manifolds and can handle the design of geometric hybrid control schemes directly on SE(3)SE(3).

Let UU be a potential function on SE(3)×SE(3)\times\mathbb{R} with respect to 𝒜o:=(I4,0)\mathcal{A}_{o}^{\prime}:=(I_{4},0) and Θ\Theta\subset\mathbb{R} be a nonempty finite set. We propose the following hybrid feedback tracking scheme:

uc=Υ(Xe,ξr,z)kξξe2kXψ¯(Xe1XeU(Xe,θ))θ˙=f(Xe,θ)(Xe,θ)θ+g(Xe,θ)(Xe,θ)𝒥\displaystyle\underbrace{\begin{array}[]{l}u_{c}=\Upsilon(X_{e},\xi_{r},z)-k_{\xi}\xi_{e}\\ \qquad-2k_{X}\bar{\psi}(X_{e}^{-1}\nabla_{X_{e}}U(X_{e},\theta))\\ \dot{\theta}~{}=f(X_{e},\theta)\end{array}}_{(X_{e},\theta)\in\mathcal{F}}\underbrace{\begin{array}[]{l}\\ \\ \\[-11.38092pt] \theta^{+}\in g(X_{e},\theta)\end{array}}_{(X_{e},\theta)\in\mathcal{J}} (88)

where kX,kξ>0,θ(0,0)k_{X},k_{\xi}>0,\theta(0,0)\in\mathbb{R}, Υ\Upsilon is defined in (79b), the flow map f:SE(3)×f:SE(3)\times\mathbb{R}\to\mathbb{R} and the jump map g:SE(3)×g:SE(3)\times\mathbb{R}\to\mathbb{R} are defined as

f(Xe,θ)\displaystyle f(X_{e},\theta) :=kθθU(Xe,θ)\displaystyle:=-k_{\theta}\nabla_{\theta}U(X_{e},\theta) (89)
g(Xe,θ)\displaystyle g(X_{e},\theta) :={θΘ:θ=argminθΘU(Xe,θ)}\displaystyle:=\left\{\theta\in\Theta:\theta=\arg\min\nolimits_{{\theta}^{\prime}\in\Theta}U(X_{e},{\theta}^{\prime})\right\} (90)

with kθ>0k_{\theta}>0, and the flow and jump sets are given as

\displaystyle\mathcal{F} :={(Xe,θ)SE(3)×:μU(Xe,θ)δ}\displaystyle:=\left\{(X_{e},\theta)\in SE(3)\times\mathbb{R}:\mu_{U}(X_{e},\theta)\leq\delta\right\} (91a)
𝒥\displaystyle\mathcal{J} :={(Xe,θ)SE(3)×:μU(Xe,θ)δ}\displaystyle:=\left\{(X_{e},\theta)\in SE(3)\times\mathbb{R}:\mu_{U}(X_{e},\theta)\geq\delta\right\} (91b)

with some δ>0\delta>0 and the map μU:SE(3)×\mu_{U}:SE(3)\times\mathbb{R}\to\mathbb{R} given as

μU(Xe,θ):=U(Xe,θ)minθΘU(Xe,θ).\mu_{U}(X_{e},\theta):=U(X_{e},\theta)-\min\nolimits_{{\theta}^{\prime}\in\Theta}U(X_{e},\theta^{\prime}). (92)

The proposed hybrid feedback (88) is modified from (21) and designed on SE(3)SE(3), in terms of the geometric tracking errors Xe,ξeX_{e},\xi_{e} and a general potential function UU on SE(3)×SE(3)\times\mathbb{R}. Now, one can state the following result:

Theorem 4.

Let kX,kξ,kθ>0k_{X},k_{\xi},k_{\theta}>0 and suppose that there exist a potential function UU on SE(3)×SE(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}^{\prime} and a nonempty finite set Θ\Theta\subset\mathbb{R} such that 𝒜oΨU\mathcal{A}_{o}^{\prime}\in\Psi_{U} with ΨU\Psi_{U} denoting the set of all critical points of UU and

μU(X,θ)>δ,(X,θ)ΨU{𝒜o}\mu_{U}(X,\theta)>\delta,\quad\forall(X,\theta)\in\Psi_{U}\setminus\{\mathcal{A}_{o}^{\prime}\} (93)

with some constant δ>0\delta>0 and μU\mu_{U} defined in (92). Then, the set 𝒜:={xSE(3)××6×𝒲d:(Xe,θ)=𝒜o,ξe=0}\mathcal{A}^{\prime}:=\{x\in SE(3)\times\mathbb{R}\times\mathbb{R}^{6}\times\mathcal{W}_{d}:(X_{e},\theta)=\mathcal{A}_{o}^{\prime},\xi_{e}=0\} is globally asymptotically stable for the closed-loop system (78) with the hybrid feedback (88), and the number of jumps is finite.

The proof of Theorem 4 can be conducted by following the same steps as in the proof of Theorem 1, and therefore is omitted here. It is important to point out that the key condition of Theorem 4 is that the basic Assumption 1 holds for SE(3)SE(3) (i.e., inequality (93)). To complete the hybrid feedback design on SE(3)SE(3), we need to construct a potential function UU on SE(3)×SE(3)\times\mathbb{R} such that inequality (93) holds.

Consider the following transformation map 𝒯:SE(3)×SE(3)\mathcal{T}:SE(3)\times\mathbb{R}\to SE(3) :

𝒯(X,θ):=Xexp(θu¯)\mathcal{T}(X,\theta):=X\exp(\theta\bar{u}^{\wedge}) (94)

where XSE(3)X\in SE(3), u¯6\bar{u}\in\mathbb{R}^{6} is a constant vector and θ\theta\in\mathbb{R} is a real-valued variable with hybrid dynamics specified in (88)-(90). For the sake of simplicity, let 𝒯X,θ:=𝒯(X,θ)\mathcal{T}_{X,\theta}:=\mathcal{T}(X,\theta). Let us introduce the following potential function on SE(3)×SE(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}^{\prime}

U(X,θ)\displaystyle U(X,\theta) =12tr((I4𝒯X,θ)𝔸(I4𝒯X,θ))+γ2θ2\displaystyle=\frac{1}{2}\operatorname{tr}((I_{4}-\mathcal{T}_{X,\theta})\mathbb{A}(I_{4}-\mathcal{T}_{X,\theta})^{\top})+\frac{\gamma}{2}\theta^{2} (95)

with a symmetric positive definite matrix 𝔸4×4\mathbb{A}\in\mathbb{R}^{4\times 4} and a constant γ>0\gamma>0 to be designed. Let ΨV\Psi_{V} denote the set of critical points of potential function V(X)=12tr((I4X)𝔸(I4X))V(X)=\frac{1}{2}\operatorname{tr}((I_{4}-X)\mathbb{A}(I_{4}-X)^{\top}) on SE(3)SE(3), which can be computed as per [30, Lemma 5]. The following proposition provides some useful properties of the potential function UU on SE(3)×SE(3)\times\mathbb{R}:

Proposition 3.

Let 𝔸=𝔸\mathbb{A}=\mathbb{A}^{\top} be a positive definite matrix. Consider the potential function UU defined in (95), and the trajectories generated by X˙=Xξ\dot{X}=X\xi^{\wedge} and θ˙=ν\dot{\theta}=\nu with X(0)SE(3),θ(0),ξ6,νX(0)\in SE(3),\theta(0)\in\mathbb{R},\xi\in\mathbb{R}^{6},\nu\in\mathbb{R}. Then, for all (X,θ)SE(3)×(X,\theta)\in SE(3)\times\mathbb{R}, the following statements hold:

𝒯˙X,θ\displaystyle\dot{\mathcal{T}}_{X,\theta} =𝒯X,θ(Adexp(θu¯)1ξ+νu¯)\displaystyle=\mathcal{T}_{X,\theta}(\operatorname{Ad}_{\exp(\theta\bar{u}^{\wedge})}^{-1}\xi+\nu\bar{u})^{\wedge} (96a)
ψ¯(X1XU(X,θ))\displaystyle\bar{\psi}(X^{-1}\nabla_{X}U(X,\theta)) =Adexp(θu¯)ψ¯((I4𝒯X,θ1)𝔸)\displaystyle=\operatorname{Ad}_{\exp(\theta\bar{u}^{\wedge})}^{-\top}\bar{\psi}((I_{4}-\mathcal{T}_{X,\theta}^{-1})\mathbb{A}) (96b)
θU(X,θ)\displaystyle\nabla_{\theta}U(X,\theta) =γθ+2u¯ψ¯((I4𝒯X,θ1)𝔸)\displaystyle=\gamma\theta+2\bar{u}^{\top}\bar{\psi}((I_{4}-\mathcal{T}_{X,\theta}^{-1})\mathbb{A}) (96c)
𝒜o\displaystyle\mathcal{A}_{o}^{\prime} ΨU:=ΨV×{0}\displaystyle\in\Psi_{U}:=\Psi_{V}\times\{0\} (96d)

Moreover, choosing u¯=[u,0]\bar{u}=[u^{\top},0]^{\top}, 𝔸=diag(A,1)\mathbb{A}=\operatorname{diag}(A,1) and the set of parameters 𝒫U={Θ,A,u,γ,δ}\mathcal{P}_{U}=\{\Theta,A,u,\gamma,\delta\} defined in (72) one has

U(X,θ)=tr((I3Ra(θ,u))A)+12p2+γ2θ2U(X,\theta)=\operatorname{tr}((I_{3}-R\mathcal{R}_{a}(\theta,u))A)+\frac{1}{2}\|p\|^{2}+\frac{\gamma}{2}\theta^{2}

and the condition (93) in Theorem 4 holds.

The proof of this Proposition can be conducted using similar steps as in the proof of Lemma 2 and Proposition 1, and hence omitted.

X Simulation

In this section, numerical simulations are presented to illustrate the performance of the proposed hybrid feedback controllers. We make use of the HyEQ Toolbox in Matlab [39]. The hybrid controller (21) is referred to as ‘Basic Hybrid’, the hybrid controller with torque smoothing mechanism in (37) is referred to as ‘Smooth Hybrid’, and the velocity-free hybrid controller in (59) is referred to as ‘Velocity-Free Hybrid’. For comparison purposes, we also consider the following classical smooth non-hybrid controller, referred to as ‘Non-Hybrid’:

τ=Υ(Re,ωr,z)2kRψ(ARe)kωωe\displaystyle\tau=\Upsilon(R_{e},\omega_{r},z)-2k_{R}\psi(AR_{e})-k_{\omega}\omega_{e} (97)

which is modified from the hybrid controller (21) by taking θ0\theta\equiv 0. The inertia matrix of the system is taken as J=diag(0.0159,0.0150,0.0297)J=\operatorname{diag}(0.0159,0.0150,0.0297) obtained from a quadrotor UAV in [40]. The reference rotation and angular velocity are generated by (6) with Rr(0)=I3R_{r}(0)=I_{3}, ωr(0)=0\omega_{r}(0)=0 and z(t)=[sin(0.1t),cos(0.3t),0.1]z(t)=[\sin(0.1t),-\cos(0.3t),0.1]^{\top}. For the set 𝒫U\mathcal{P}_{U} in Proposition 2, we choose Θ={θM}\Theta=\{\theta_{M}\} with θM=0.9π\theta_{M}=0.9\pi, A=diag([2,4,6])A=\operatorname{diag}([2,4,6]), γ<4Δπ2=8π2\gamma<\frac{4\Delta^{*}}{\pi^{2}}=\frac{8}{\pi^{2}}, δ<(4Δπ2γ)θM22\delta<(\frac{4\Delta^{*}}{\pi^{2}}-\gamma)\frac{{\theta_{M}}^{2}}{2}, u=[0,2/5,3/5]u=[0,\sqrt{{2}/{5}},\sqrt{{3}/{5}}]^{\top} and Δ=λ1A=2\Delta^{*}=\lambda_{1}^{A}=2 as per case 2) in Proposition 2 (i.e., λ2A>λ1Aλ3A/(λ3Aλ1A)\lambda_{2}^{A}>{\lambda_{1}^{A}\lambda_{3}^{A}}/(\lambda^{A}_{3}-\lambda_{1}^{A})).

In our first simulation, three different choices of γ\gamma such as 3π2,5π2,7π2\frac{3}{\pi^{2}},\frac{5}{\pi^{2}},\frac{7}{\pi^{2}} are considered in the hybrid controller (21). For each γ\gamma, the constant gap δ\delta is chosen as δ=410(4Δπ2γ)θM2\delta=\frac{4}{10}(\frac{4\Delta^{*}}{\pi^{2}}-\gamma)\theta_{M}^{2}. Moreover, the gain parameters are chosen as kR=1.5,kω=0.2,kθ=50k_{R}=1.5,k_{\omega}=0.2,k_{\theta}=50, and the initial conditions are chosen as ω(0)=0\omega(0)=0, R(0)=a(πϵ,u)R(0)=\mathcal{R}_{a}(\pi-\epsilon,u) with ϵ=109,u=[0,0,1]\epsilon=10^{-9},u=[0,0,1]^{\top} and θ(0,0)=0\theta(0,0)=0, which ensures that initial (Re,θ)(R_{e},\theta) is close to one of the undesired critical points of UU. Same gains and initial conditions are considered in the non-hybrid controller (97). The simulation results are given in Fig. 4. As one can see, for the basic hybrid feedback, the variable θ\theta in (12) jumps from 0 to 0.9π0.9\pi at t=0t=0 and then converges to zero as tt\to\infty. Moreover, the tracking errors (Re,ωe)(R_{e},\omega_{e}) of both controllers converge to zero as tt\to\infty. One can also see that the hybrid controller (21) improves the convergence rate as compared to the non-hybrid controller (97), and an increase in the value of γ\gamma leads to an increase in the convergence rate of the tracking errors.

Refer to caption
Figure 4: Simulation results for the hybrid feedback (21) with different choices of parameter γ\gamma.

Our second simulation presents a comparison between the three proposed hybrid controllers in the presence of measurements noise. The noisy measurements of attitude and angular velocity are given as Ry=Rexp(nR×)R_{y}=R\exp(n_{R}^{\times}) with zero-mean Gaussian noise nR𝒩(0,0.01I3)n_{R}\sim\mathcal{N}(0,0.01I_{3}), and ωy=ω+nω\omega_{y}=\omega+n_{\omega} with zero-mean Gaussian noise nω𝒩(0,0.01I3)n_{\omega}\sim\mathcal{N}(0,0.01I_{3}). Same initial conditions for R,θR,\theta and ω\omega are chosen as in the previous simulation, and in addition R¯(0)=R(0)\bar{R}(0)=R(0)^{\top}, θ¯(0,0)=0\bar{\theta}(0,0)=0 and ζ(0)=0\zeta(0)=0 are considered. We choose γ=7π2\gamma=\frac{7}{\pi^{2}} and δ=410(4Δπ2γ)θM2=0.324\delta=\frac{4}{10}(\frac{4\Delta^{*}}{\pi^{2}}-\gamma)\theta_{M}^{2}=0.324 for UU, and δ=0.162\delta^{\prime}=0.162 and ϱ=0.0146\varrho=0.0146 for WW defined in (42). Moreover, the gain parameters are chosen as follows:

kRk_{R} kωk_{\omega} kθk_{\theta} kζk_{\zeta} kβk_{\beta} Γ\Gamma
Basic Hybrid 1.5 0.2 50 - - -
Smooth Hybrid 1.5 0.2 50 150 - -
Velocity-Free Hybrid 1.5 - 50 - 3 30I3I_{3}

Note that kβk_{\beta} and Γ\Gamma are chosen such that 2kβΓ1=kω2k_{\beta}\Gamma^{-1}=k_{\omega}. The simulation results are given in Fig. 5. For all controllers, the tracking errors Re,ωeR_{e},\omega_{e} and θ\theta converge to zero, after one second. Through an appropriate gain tuning, the three hybrid tracking controllers exhibit a quite similar performance. Note that the velocity-free hybrid controller is more sensitive to noise as shown in the plot of the control torque, which is mainly due to the large gain Γ\Gamma involved in the an auxiliary system (52) to overcome the lack of angular velocity measurements.

Refer to caption
Figure 5: Simulation results for different hybrid feedback with noisy measurements.

XI Conclusion

Three different hybrid feedback control schemes for the attitude tracking problem on SO(3)SO(3), leading to global asymptotic stability, have been proposed. As an instrumental tool in our design, a new potential function on SO(3)×SO(3)\times\mathbb{R}, involving a potential function on SO(3)SO(3) and a scalar variable θ\theta, has been proposed. The scalar variable θ\theta is governed by hybrid dynamics designed to prevent the extended state in SO(3)×SO(3)\times\mathbb{R} from reaching the undesired critical points, while guaranteeing a decrease of the potential function after each jump. In fact, embedding the manifold SO(3)SO(3) in the higher dimensional space SO(3)×SO(3)\times\mathbb{R} allows to modify the critical points on SO(3)SO(3) by tying them to θ=0\theta=0. This embedding mechanism provides an easier handling of the critical points on the extended manifold SO(3)×SO(3)\times\mathbb{R} through the hybrid dynamics of the scalar variable θ\theta.
A global hybrid attitude tracking controller is designed from the gradient of the potential function with the full knowledge of the system state. For practical purposes, two extensions have been proposed: A hybrid attitude tracking controller with jump-free control torque and a velocity-free hybrid attitude tracking controller. The proposed hybrid strategy, involving a single potential function on SO(3)×SO(3)\times\mathbb{R}, on top of being simpler than the existing hybrid approaches involving a synergistic family of potential functions, shows a great potential for other applications involving non-compact manifolds where the synergistic hybrid approaches may not be applicable. This fact has been demonstrated through the design of a globally asymptotically stabilizing (geometric) hybrid feedback for the tracking control problem on the non-compact manifold SE(3)SE(3).

-A Proof of Theorem 1

Consider the following Lyapunov function candidate:

(x)=kRU(Re,θ)+12ωeJωe.\mathcal{L}(x)=k_{R}U(R_{e},\theta)+\frac{1}{2}\omega_{e}^{\top}J\omega_{e}. (98)

Since UU is a potential function on SO(3)×SO(3)\times\mathbb{R} with respect to 𝒜o\mathcal{A}_{o}, and J=JJ=J^{\top} is positive definite, one can verify that \mathcal{L} is positive definite on 𝒮\mathcal{S} with respect to 𝒜\mathcal{A}. The time derivative of \mathcal{L} along the flows of (23) is given by

˙(x)\displaystyle\dot{\mathcal{L}}(x) =kRU˙(Re,θ)ωeκ(Re,θ,ωe)\displaystyle=k_{R}\dot{U}(R_{e},\theta)-\omega_{e}^{\top}\kappa(R_{e},\theta,\omega_{e}) (99)

where we used ωeΣ(Re,ωe,ωr)ωe=0\omega_{e}^{\top}\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}=0. From (7a) and (12), one obtains

U˙(Re,θ)\displaystyle\dot{U}(R_{e},\theta) =ReU(Re,θ),Reωe×Re+θU(Re,θ),θ˙\displaystyle=\langle\nabla_{R_{e}}U(R_{e},\theta),R_{e}\omega_{e}^{\times}\rangle_{R_{e}}+\langle\langle\nabla_{\theta}U(R_{e},\theta),\dot{\theta}\rangle\rangle
=ReReU(Re,θ),ωe×+θU(Re,θ)θ˙\displaystyle=\langle\langle R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta),\omega_{e}^{\times}\rangle\rangle+\nabla_{\theta}U(R_{e},\theta)\dot{\theta}
=2ωeψ(ReReU(Re,θ))kθ|θU(Re,θ)|2\displaystyle=2\omega_{e}^{\top}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))-k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|^{2} (100)

where we made use of the property A,x×=2xψ(A)\langle\langle A,x^{\times}\rangle\rangle=2x^{\top}\psi(A). Substituting (22) and (100) into (99), one can further show that

˙(x)\displaystyle\dot{\mathcal{L}}(x) =2kRωeψ(ReReU(Re,θ))kRkθ|θU(Re,θ)|2\displaystyle=2k_{R}\omega_{e}^{\top}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))-k_{R}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|^{2}
ωe(2kRψ(ReReU(Re,θ))+kωωe)\displaystyle~{}~{}~{}-\omega_{e}^{\top}(2k_{R}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))+k_{\omega}\omega_{e})
=kωωe2kRkθ|θU(Re,θ)|20\displaystyle=-k_{\omega}\|\omega_{e}\|^{2}-k_{R}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|^{2}\leq 0 (101)

for all xcx\in\mathcal{F}_{c}. Thus, \mathcal{L} is non-increasing along the flows of (23). Moreover, in view of (23) and (98), for any x𝒥cx\in\mathcal{J}_{c}, one has x+(Re,g(Re,θ),ωe,Rr,ωr)x^{+}\in(R_{e},g(R_{e},\theta),\omega_{e},R_{r},\omega_{r}) and

(x+)(x)\displaystyle\mathcal{L}(x^{+})-\mathcal{L}(x) =kR(U(Re,θ)minθΘU(Re,θ))\displaystyle=-k_{R}\left(U(R_{e},\theta)-\min_{{\theta}^{\prime}\in\Theta}U(R_{e},{\theta}^{\prime})\right)
=kRμU(Re,θ)<kRδ\displaystyle=-k_{R}\mu_{U}(R_{e},\theta)<-k_{R}\delta (102)

where we made use of the fact μU(Re,θ)>δ\mu_{U}(R_{e},\theta)>\delta for all x𝒥cx\in\mathcal{J}_{c}. Thus, \mathcal{L} is strictly decreasing over the jumps of (23). From (101) and (102), one concludes that the set 𝒜{\mathcal{A}} is stable as per [15, Theorem 23], and every maximal solution to (23) is bounded. Moreover, in view of (101) and (102), one obtains (x(t,j))(x(tj,j))\mathcal{L}(x(t,j))\leq\mathcal{L}(x(t_{j},j)) and (x(tj,j))(x(tj,j1))kRδ\mathcal{L}(x(t_{j},j))\leq\mathcal{L}(x(t_{j},j-1))-k_{R}\delta for all (t,j),(tj,j),(tj,j1)domx(t,j),(t_{j},j),(t_{j},j-1)\in\operatorname{dom}x with (t,j)(tj,j)(tj,j1)(t,j)\succeq(t_{j},j)\succeq(t_{j},j-1). Hence, it is clear that 0(x(t,j))(x(0,0))jkRδ0\leq\mathcal{L}(x(t,j))\leq\mathcal{L}(x(0,0))-jk_{R}\delta for all (t,j)domx(t,j)\in\operatorname{dom}x, which leads to j(x(0,0))/(kRδ):=JM,j\leq\left\lceil{\mathcal{L}(x(0,0))}/{(k_{R}\delta)}\right\rceil:=J_{M}, where \lceil\cdot\rceil denotes the ceiling function. This shows that the number of jumps is finite and depends on the initial conditions.

Next, we will show the global attractivity of 𝒜\mathcal{A}. Applying the invariance principle for hybrid systems given in [41, Theorem 4.7], one concludes from (101) and (102) that any solution xx to the hybrid system (23) must converge to the largest invariant set contained in 𝒲:={xc|θU(Re,θ)=0,ωe=0}.\mathcal{W}:=\left\{x\in\mathcal{F}_{c}~{}|~{}\nabla_{\theta}U(R_{e},\theta)=0,\omega_{e}=0\right\}. For each x𝒲x\in\mathcal{W}, from ωe0\omega_{e}\equiv 0 one has ω˙e=0\dot{\omega}_{e}=0. It follows from (7b), (21) and (22) that ψ(ReReU(Re,θ))=0\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))=0. Using this fact, together with θU(Re,θ)0\nabla_{\theta}U(R_{e},\theta)\equiv 0, one can show that (Re,θ)ΨU(R_{e},\theta)\in\Psi_{U} with ΨU\Psi_{U} defined in (9). Thus, any solution xx to the hybrid system (23) must converge to the largest invariant set contained in 𝒲:={xc|(Re,θ)ΨU,ωe=0}.{\mathcal{W}}^{\prime}:=\left\{x\in\mathcal{F}_{c}~{}|~{}(R_{e},\theta)\in\mathcal{F}\cap\Psi_{U},\omega_{e}=0\right\}. By Assumption 1, one has 𝒜oΨU\mathcal{A}_{o}\in\Psi_{U} and μU(Re,θ)=minθΘU(Re,θ)0\mu_{U}(R_{e},\theta)=-\min_{{\theta}^{\prime}\in\Theta}U(R_{e},{\theta}^{\prime})\leq 0 as (Re,θ)=𝒜o(R_{e},{\theta})=\mathcal{A}_{o}. It follows from (10) and (13a)-(13b) that 𝒜oΨU\mathcal{A}_{o}\in\mathcal{F}\cap\Psi_{U} and (ΨU{𝒜o})=\mathcal{F}\cap(\Psi_{U}\setminus\{\mathcal{A}_{o}\})=\emptyset. Then, applying simple set-theoretic arguments, one obtains ΨU((ΨU{𝒜o}))({𝒜o})={𝒜o}={𝒜o}.\mathcal{F}\cap\Psi_{U}\subset(\mathcal{F}\cap(\Psi_{U}\setminus\{\mathcal{A}_{o}\}))\cup(\mathcal{F}\cap\{\mathcal{A}_{o}\})=\emptyset\cup\{\mathcal{A}_{o}\}=\{\mathcal{A}_{o}\}. It follows from 𝒜oΨU\mathcal{A}_{o}\in\mathcal{F}\cap\Psi_{U} and ΨU{𝒜o}\mathcal{F}\cap\Psi_{U}\subset\{\mathcal{A}_{o}\} that ΨU={𝒜o}\mathcal{F}\cap\Psi_{U}=\{\mathcal{A}_{o}\}. Consequently, from the definitions of 𝒲{\mathcal{W}}^{\prime} and 𝒜\mathcal{A}, it follows that 𝒲=𝒜{\mathcal{W}}^{\prime}=\mathcal{A}.

Note that the closed-loop system (23) satisfies the hybrid basic conditions [16, Assumption 6.5], F(x)T(x)F(x)\subset T_{\mathcal{F}}(x) for any xc𝒥cx\in\mathcal{F}_{c}\setminus\mathcal{J}_{c} with T(x)T_{\mathcal{F}}(x) denoting the tangent cone to c\mathcal{F}_{c} at the point xx, G(𝒥c)c𝒥c=𝒮G(\mathcal{J}_{c})\subset\mathcal{F}_{c}\cup\mathcal{J}_{c}=\mathcal{S}, and every maximal solution to (23) is bounded. Therefore, by virtue of [16, Proposition 6.10], it follows that every maximal solution to (23) is complete. Finally, one can conclude that the set 𝒜\mathcal{A} is globally asymptotically stable for the hybrid system (23). This completes the proof.

-B Proof of Proposition 1

Consider the following Lyapunov function candidate:

ε(x)=(x)+εωeJψ(ReReU(Re,θ))\displaystyle\mathcal{L}_{\varepsilon}(x)=\mathcal{L}(x)+\varepsilon\omega_{e}^{\top}J\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta)) (103)

where ε>0\varepsilon>0 and (x)\mathcal{L}(x) is given in (98). From (26), one has ψ(ReReU(Re,θ))2α1U(Re,θ)\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|^{2}\leq\alpha_{1}U(R_{e},\theta), and consequently, one can show that

λminP1|x|𝒜2ε(x)λmaxP2|x|𝒜2,x𝒮\displaystyle\lambda_{\min}^{P_{1}}|x|_{\mathcal{A}}^{2}\leq\mathcal{L}_{\varepsilon}(x)\leq\lambda_{\max}^{P_{2}}|x|_{\mathcal{A}}^{2},\quad\forall x\in\mathcal{S} (104)

where matrices P1P_{1} and P2P_{2} are given as

P1=[kRεα1λmaxJ2εα1λmaxJ2λminJ2],P2=[kRεα1λmaxJ2εα1λmaxJ2λmaxJ2].\displaystyle P_{1}=\begin{bmatrix}k_{R}&\frac{-\varepsilon\sqrt{\alpha_{1}}\lambda_{\max}^{J}}{2}\\ \frac{-\varepsilon\sqrt{\alpha_{1}}\lambda_{\max}^{J}}{2}&\frac{\lambda_{\min}^{J}}{2}\end{bmatrix},P_{2}=\begin{bmatrix}k_{R}&\frac{\varepsilon\sqrt{\alpha_{1}}\lambda_{\max}^{J}}{2}\\ \frac{\varepsilon\sqrt{\alpha_{1}}\lambda_{\max}^{J}}{2}&\frac{\lambda_{\max}^{J}}{2}\end{bmatrix}.

To guarantee that P1P_{1} and P2P_{2} are positive definite, it is sufficient to choose ε<(1/λmaxJ)2kRλminJ/α1:=ε1\varepsilon<({1}/{\lambda_{\max}^{J}})\sqrt{2k_{R}\lambda_{\min}^{J}/\alpha_{1}}:=\varepsilon^{*}_{1}.

Since the set Ωc×𝒲d\varOmega_{c}\times\mathcal{W}_{d} is compact by assumption, there exists a constant scalar 0\mathcal{L}^{*}\geq 0 such that :=supxΩc×𝒲d(x)\mathcal{L}^{*}:=\sup_{x\in\varOmega_{c}\times\mathcal{W}_{d}}\mathcal{L}(x). We define the following compact set Ω:={x𝒮:(x)}.\varOmega_{\mathcal{L}}:=\{x\in\mathcal{S}:\mathcal{L}(x)\leq\mathcal{L}^{*}\}. It is clear that x(0,0)Ωc×𝒲dΩx(0,0)\in\varOmega_{c}\times\mathcal{W}_{d}\subseteq\varOmega_{\mathcal{L}} and 𝒜Ω\mathcal{A}\subseteq\varOmega_{\mathcal{L}}. As shown in the proof of Theorem 1, (x)\mathcal{L}(x) is non-increasing in both flow and jump sets. Hence, for any x(0,0)Ωc×𝒲d𝒮x(0,0)\in\varOmega_{c}\times\mathcal{W}_{d}\subset\mathcal{S}, one has x(t,j)Ωx(t,j)\in\varOmega_{\mathcal{L}} for all (t,j)domx(t,j)\in\operatorname{dom}x and the number of jumps is bounded by JM:=/(kRδ)J_{M}:=\left\lceil{\mathcal{L}^{*}}/{(k_{R}\delta)}\right\rceil. Using the facts ψ(ReReU(Re,θ))2α1U(Re,θ)α1kR\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|^{2}\leq\alpha_{1}U(R_{e},\theta)\leq\frac{\alpha_{1}}{k_{R}}\mathcal{L}^{*} and ωeJωe2\omega_{e}^{\top}J\omega_{e}\leq 2\mathcal{L}^{*}, it follows that there exist constants cψ,cωe>0c_{\psi},c_{\omega_{e}}>0 such that ψ(ReReU(Re,θ))cψ\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|\leq c_{\psi} and ωecωe\|\omega_{e}\|\leq c_{\omega_{e}} for all (t,j)domx(t,j)\in\operatorname{dom}x. Let cωr:=supt0ωr(t)c_{\omega_{r}}:=\sup_{t\geq 0}\|\omega_{r}(t)\| since 𝒲d\mathcal{W}_{d} is compact by assumption. Hence, from (8b), (22)-(24) and (28), for all xΩcx\in\varOmega_{\mathcal{L}}\cap\mathcal{F}_{c} one obtains

ddtωeJψ(ReReU(Re,θ))\displaystyle\frac{d}{dt}\omega_{e}^{\top}J\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))
(Σ(Re,ωe,ωr)ωeκ(Re,θ,ωe))ψ(ReReU(Re,θ))\displaystyle~{}\leq(\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}-\kappa(R_{e},\theta,\omega_{e}))^{\top}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))
+λmaxJωe(cRωe+cθkθ|θU(Re,θ)|)\displaystyle\qquad+\lambda_{\max}^{J}\|\omega_{e}\|(c_{R}\|\omega_{e}\|+c_{\theta}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|)
cψλmaxJωe2+3cωrλmaxJωeψ(ReReU(Re,θ))\displaystyle~{}\leq c_{\psi}\lambda_{\max}^{J}\|\omega_{e}\|^{2}+3c_{\omega_{r}}\lambda_{\max}^{J}\|\omega_{e}\|\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|
2kRψ(ReReU(Re,θ))2\displaystyle\qquad-2k_{R}\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|^{2}
+kωωeψ(ReReU(Re,θ))\displaystyle\qquad+k_{\omega}\|\omega_{e}\|\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|
+λmaxJωe(cRωe+cθkθ|θU(Re,θ)|)\displaystyle\qquad+\lambda_{\max}^{J}\|\omega_{e}\|(c_{R}\|\omega_{e}\|+c_{\theta}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|)
η[2kR0(3cωrλmaxJ+kω)200cθkθλmaxJ2(3cωrλmaxJ+kω)2cθkθλmaxJ2λmaxJ(cψ+cR)]Pεη\displaystyle~{}\leq\eta^{\top}\underbrace{\begin{bmatrix}-2k_{R}&0&\frac{(3c_{\omega_{r}}\lambda_{\max}^{J}+k_{\omega})}{2}\\ 0&0&\frac{c_{\theta}k_{\theta}\lambda_{\max}^{J}}{2}\\ \frac{(3c_{\omega_{r}}\lambda_{\max}^{J}+k_{\omega})}{2}&\frac{c_{\theta}k_{\theta}\lambda_{\max}^{J}}{2}&\lambda_{\max}^{J}(c_{\psi}+c_{R})\end{bmatrix}}_{P_{\varepsilon}}\eta (105)

where η:=[ψ(ReReU(Re,θ)),|θU(Re,θ)|,ωe]3\eta:=[\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|,|\nabla_{\theta}U(R_{e},\theta)|,\|\omega_{e}\|]^{\top}\in\mathbb{R}^{3}, and the following facts ψ(ReReU(Re,θ))cψ\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|\leq c_{\psi}, ωrcωr\|\omega_{r}\|\leq c_{\omega_{r}}, and (Σ(Re,ωe,ωr)ωe)ψ(ReReU(Re,θ))=((Jωe)×ωe+(JReωr)×ωe(Reωr)×Jωe+J(Reωr)×ωe)ψ(ReReU(Re,θ))3cωrλmaxJωeψ(ReReU(Re,θ))+cψλmaxJωe2(\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e})^{\top}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))=((J\omega_{e})^{\times}\omega_{e}+(JR_{e}^{\top}\omega_{r})^{\times}\omega_{e}-(R_{e}^{\top}\omega_{r})^{\times}J\omega_{e}+J(R_{e}^{\top}\omega_{r})^{\times}\omega_{e})^{\top}\\ \psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\leq 3c_{\omega_{r}}\lambda_{\max}^{J}\|\omega_{e}\|\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|\\ +c_{\psi}\lambda_{\max}^{J}\|\omega_{e}\|^{2}, were used.

Therefore, from (101) and (105), the time derivative of ε\mathcal{L}_{\varepsilon} along the flows of (23) can be written as

˙ε(x)\displaystyle\dot{\mathcal{L}}_{\varepsilon}(x) =˙(x)+εddtωeJψ(ReReU(Re,θ))\displaystyle=\dot{\mathcal{L}}(x)+\varepsilon\frac{d}{dt}\omega_{e}^{\top}J\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))
kωωe2kRkθθU(Re,θ)2εηPεη\displaystyle\leq-k_{\omega}\|\omega_{e}\|^{2}-k_{R}k_{\theta}\|\nabla_{\theta}U(R_{e},\theta)\|^{2}-\varepsilon\eta^{\top}P_{\varepsilon}\eta
=η([0000kRkθ000kω]εPε)P3η\displaystyle=-\eta^{\top}\underbrace{\left(\begin{bmatrix}0&0&0\\ 0&k_{R}k_{\theta}&0\\ 0&0&k_{\omega}\end{bmatrix}-\varepsilon P_{\varepsilon}\right)}_{P_{3}}\eta (106)

for all xΩcx\in\varOmega_{\mathcal{L}}\cap\mathcal{F}_{c}. Let ηij=[ηi,ηj],i,j{1,2,3}\eta_{ij}=[\eta_{i},\eta_{j}]^{\top},i,j\in\{1,2,3\} with ηi\eta_{i} denoting the ii-th element of the vector η\eta. From (106) and the definition of PεP_{\varepsilon} in (105), one has

ηP3η\displaystyle\eta^{\top}P_{3}\eta =η13[2εkRε(3cωrλmaxJ+kω)2ε(3cωrλmaxJ+kω)2kω2ελmaxJ(cψ+cR)2]η13\displaystyle=-\eta_{13}^{\top}\begin{bmatrix}2\varepsilon k_{R}&-\frac{\varepsilon(3c_{\omega_{r}}\lambda_{\max}^{J}+k_{\omega})}{2}\\ -\frac{\varepsilon(3c_{\omega_{r}}\lambda_{\max}^{J}+k_{\omega})}{2}&\frac{k_{\omega}-2\varepsilon\lambda_{\max}^{J}(c_{\psi}+c_{R})}{2}\end{bmatrix}\eta_{13}
η23[kRkθεcθkθλmaxJ2εcθkθλmaxJ2kω2]η23\displaystyle\quad-\eta_{23}^{\top}\begin{bmatrix}k_{R}k_{\theta}&-\frac{\varepsilon c_{\theta}k_{\theta}\lambda_{\max}^{J}}{2}\\ -\frac{\varepsilon c_{\theta}k_{\theta}\lambda_{\max}^{J}}{2}&\frac{k_{\omega}}{2}\end{bmatrix}\eta_{23}

To ensure that P3P_{3} is positive definite, it is sufficient to choose ε<min{4kRkω(3cωrλmaxJ+kω)2+8kRλmaxJ(cψ+cR),2kωkRkθcθkθλmaxJ}:=ε2.\varepsilon<\min\{\frac{4k_{R}k_{\omega}}{(3c_{\omega_{r}}\lambda_{\max}^{J}+k_{\omega})^{2}+8k_{R}\lambda_{\max}^{J}(c_{\psi}+c_{R})},\frac{2\sqrt{k_{\omega}k_{R}k_{\theta}}}{c_{\theta}k_{\theta}\lambda_{\max}^{J}}\}:=\varepsilon^{*}_{2}. From (27), one can show that for any xcx\in\mathcal{F}_{c}, η2=ψ(ReReU(Re,θ))2+|θU(Re,θ)|2+ωe2α2U(Re,θ)+ωe2cη|x|𝒜2\|\eta\|^{2}=\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|^{2}+|\nabla_{\theta}U(R_{e},\theta)|^{2}+\|\omega_{e}\|^{2}\geq\alpha_{2}U(R_{e},\theta)+\|\omega_{e}\|^{2}\geq c_{\eta}|x|_{\mathcal{A}}^{2} with cη:=min{α2,1}c_{\eta}:=\min\{\alpha_{2},1\}. Hence, from the definition of |x|𝒜2|x|_{\mathcal{A}}^{2} and (106), the time derivative of ε\mathcal{L}_{\varepsilon} can be rewritten as

˙ε(x)\displaystyle\dot{\mathcal{L}}_{\varepsilon}(x) λminP3η2cηλminP3|x|𝒜2,xΩc.\displaystyle\leq-\lambda_{\min}^{P_{3}}\|\eta\|^{2}\leq-c_{\eta}\lambda_{\min}^{P_{3}}|x|_{\mathcal{A}}^{2},~{}\forall x\in\varOmega_{\mathcal{L}}\cap\mathcal{F}_{c}. (107)

Thus, ε\mathcal{L}_{\varepsilon} has an exponential decrease over the flows of (23).

On the other hand, from (25), (102) and (103) one obtains

ε(x+)ε(x)\displaystyle\mathcal{L}_{\varepsilon}(x^{+})-\mathcal{L}_{\varepsilon}(x) (x+)(x)+2εcψcωeλmaxJ\displaystyle\leq\mathcal{L}(x^{+})-\mathcal{L}(x)+2\varepsilon c_{\psi}c_{\omega_{e}}\lambda_{\max}^{J}
kRδ+2εcψcωeλmaxJ\displaystyle\leq-k_{R}\delta+2\varepsilon c_{\psi}c_{\omega_{e}}\lambda_{\max}^{J}
<0,xΩ𝒥c\displaystyle<0,\quad\forall x\in\varOmega_{\mathcal{L}}\cap\mathcal{J}_{c} (108)

where ε\varepsilon is chosen as ε<min{ε1,ε2,kRδ2cψcωeλmaxJ}\varepsilon<\min\{\varepsilon^{*}_{1},\varepsilon^{*}_{2},\frac{k_{R}\delta}{2c_{\psi}c_{\omega_{e}}\lambda_{\max}^{J}}\}, and we made use of the facts ψ(ReReU(Re,θ))cψ\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|\leq c_{\psi} and ωecωe\|\omega_{e}\|\leq c_{\omega_{e}}. Thus, ε\mathcal{L}_{\varepsilon} is strictly decreasing over the jumps of (23). Using similar arguments as the ones used at the end of the proof of Theorem 1, it follows that every maximal solution to (23) is complete. In view of (104), (107) and (108), one can show that ε(x(t,j))exp(λt)ε(x(0,0))exp(λJM)exp(λ(t+j))ε(x(0,0))\mathcal{L}_{\varepsilon}(x(t,j))\leq\exp(-\lambda t)\mathcal{L}_{\varepsilon}(x(0,0))\leq\exp(\lambda J_{M})\exp(-\lambda(t+j))\mathcal{L}_{\varepsilon}(x(0,0)) for all (t,j)domx(t,j)\in\operatorname{dom}x and x(0,0)Ωc×𝒲dΩx(0,0)\in\varOmega_{c}\times\mathcal{W}_{d}\subseteq\varOmega_{\mathcal{L}} with λ:=cηλminP3/λmaxP2\lambda:={c_{\eta}\lambda_{\min}^{P_{3}}}/{\lambda_{\max}^{P_{2}}} and JMJ_{M} denoting the maximum number of jumps. Letting k:=exp(λJM)λmaxP2/λminP1k:=\exp(\lambda J_{M})\lambda_{\max}^{P_{2}}/\lambda_{\min}^{P_{1}} and making use of (104), one concludes that |x(t,j)|𝒜2kexp(λ(t+j))|x(0,0)|𝒜2|x(t,j)|_{\mathcal{A}}^{2}\leq k\exp(-\lambda(t+j))|x(0,0)|_{\mathcal{A}}^{2} for all (t,j)domx(t,j)\in\operatorname{dom}x. This completes the proof.

-C Proof of Lemma 1

From the definitions of 𝒜^o\widehat{\mathcal{A}}_{o} and ΨW\Psi_{W}, one has 𝒜^oΨW\widehat{\mathcal{A}}_{o}\in\Psi_{W} and ΨW{𝒜^o}={(Re,θ,ζ):(Re,θ)ΨU{𝒜o},ζ=0}\Psi_{W}\setminus\{\widehat{\mathcal{A}}_{o}\}=\{(R_{e},\theta,\zeta)\in\mho:(R_{e},\theta)\in\Psi_{U}\setminus\{\mathcal{A}_{o}\},\zeta=0\}. By Assumption 1, it follows from (10) that μU(Re,θ)>δ\mu_{U}(R_{e},\theta)>\delta for all (Re,θ,ζ)ΨW{𝒜^o}(R_{e},\theta,\zeta)\in\Psi_{W}\setminus\{\widehat{\mathcal{A}}_{o}\}. In view of the definitions of WW and μW\mu_{W} in (41)-(42), for any (Re,θ,ζ)ΨW{𝒜^o}(R_{e},\theta,\zeta)\in\Psi_{W}\setminus\{\widehat{\mathcal{A}}_{o}\} one can show that

μW(Re,θ,ζ)\displaystyle\mu_{W}(R_{e},\theta,\zeta)
=W(Re,θ,0)minθΘW(Re,θ,0)\displaystyle\quad=W(R_{e},\theta,0)-\min_{{\theta}^{\prime}\in\Theta}W(R_{e},{\theta}^{\prime},0)
=U(Re,θ)+ϱψ(ReReU(Re,θ))2\displaystyle\quad=U(R_{e},\theta)+{\varrho}\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},{\theta}))\|^{2}
minθΘ(U(Re,θ)+ϱψ(ReReU(Re,θ))2)\displaystyle\qquad-\min_{{\theta}^{\prime}\in\Theta}\left(U(R_{e},{\theta}^{\prime})+{\varrho}\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},{\theta}^{\prime}))\|^{2}\right)
μU(Re,θ)ϱcψ2>δϱcψ2\displaystyle\quad\geq\mu_{U}(R_{e},\theta)-{\varrho}c_{\psi}^{2}>\delta-{\varrho}c_{\psi}^{2} (109)

where we made use of the facts ψ(RRU(R,θ))=0\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|=0 for all (R,θ)ΨU{𝒜o}(R,\theta)\in\Psi_{U}\setminus\{\mathcal{A}_{o}\} and ψ(RRU(R,θ))cψ\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|\leq c_{\psi} for all (R,θ)SO(3)×(R,\theta)\in SO(3)\times\mathbb{R} thanks to Assumption 4. By choosing ϱ<(δδ)/cψ2\varrho<{(\delta-\delta^{\prime})}/{c_{\psi}^{2}}, one concludes (43). This completes the proof.

-D Proof of Theorem 2

Consider the following Lyapunov function candidate:

^(x^)=kRW(Re,θ,ζ)+12ωeJωe\widehat{\mathcal{L}}(\hat{x})=k_{R}W(R_{e},\theta,\zeta)+\frac{1}{2}\omega_{e}^{\top}J\omega_{e} (110)

where WW in (42) is a potential function on \mho with respect to 𝒜^o\widehat{\mathcal{A}}_{o}. For the sake of simplicity, we will use the following notations ψ:=ψ(ReReU(Re,θ))\psi:=\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta)) and ψ˙:=ddtψ(ReReU(Re,θ))\dot{\psi}:=\frac{d}{dt}\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta)). From Assumption 1, it follows that ψ=0\psi=0 for all (Re,θ)𝒜o(R_{e},\theta)\in\mathcal{A}_{o}. Hence, one can verify that ^\widehat{\mathcal{L}} is positive definite on 𝒮^\widehat{\mathcal{S}} with respect to 𝒜^\widehat{\mathcal{A}}. In view of (8b), (28), (38) and (45), the time derivative of ^\widehat{\mathcal{L}} along the flows of (44) is given by

^˙(x^)\displaystyle\dot{\widehat{\mathcal{L}}}(\hat{x}) =2kRωeψkRkθ|θU(Re,θ)|2ωe(2kRζ+kωωe)\displaystyle=2k_{R}\omega_{e}^{\top}\psi-k_{R}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|^{2}-\omega_{e}^{\top}(2k_{R}\zeta+k_{\omega}\omega_{e})
+2kRϱ(ζψ)(ψ˙kζ(ζψ))\displaystyle~{}~{}~{}+{2k_{R}}{\varrho}(\zeta-\psi)^{\top}(-\dot{\psi}-{k}_{\zeta}(\zeta-\psi))
kωωe2kRkθ|θU(Re,θ)|22kRkζϱζψ2\displaystyle\leq-k_{\omega}\|\omega_{e}\|^{2}-k_{R}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|^{2}-{2k_{R}k_{\zeta}}{\varrho}\|\zeta-\psi\|^{2}
+2kRψζωe+2kRϱζψψ˙\displaystyle\quad+2k_{R}\|\psi-\zeta\|\|\omega_{e}\|+{2k_{R}}{\varrho}\|\zeta-\psi\|\|\dot{\psi}\|
ηP4η\displaystyle\leq-\eta^{\top}{P_{4}}\eta (111)

where η=[ωe,|θU(Re,θ)|,ψζ]\eta=[\|\omega_{e}\|,|\nabla_{\theta}U(R_{e},\theta)|,\|\psi-\zeta\|]^{\top} and

P4:=[kω0kR(1+cRϱ)0kRkθkRcθkθϱkR(1+cRϱ)kRcθkθϱ2kRkζϱ].\displaystyle P_{4}:=\begin{bmatrix}k_{\omega}&0&-k_{R}(1+{c_{R}}{\varrho})\\ 0&k_{R}k_{\theta}&-{k_{R}c_{\theta}k_{\theta}}{\varrho}\\ -k_{R}(1+{c_{R}}{\varrho})&-{k_{R}c_{\theta}k_{\theta}}{\varrho}&{2k_{R}k_{\zeta}}{\varrho}\end{bmatrix}.

Similar to the matrix P3P_{3} in (106), to guarantee that the matrix P4P_{4} is positive definite, it is sufficient to choose kζ>max{kR(1+ϱcR)2/ϱkω,cθ2kθϱ}:=kζ.k_{\zeta}>\max\left\{{k_{R}(1+\varrho c_{R})^{2}}/{\varrho k_{\omega}},{c_{\theta}^{2}k_{\theta}}{\varrho}\right\}:=k_{\zeta}^{*}. Hence, the time derivative of ^\widehat{\mathcal{L}} along the flows of (44) can be rewritten as

^˙(x^)\displaystyle\dot{\widehat{\mathcal{L}}}(\hat{x}) λminP4η20,x^^c.\displaystyle\leq-\lambda_{\min}^{P_{4}}\|\eta\|^{2}\leq 0,\quad\forall\hat{x}\in\widehat{\mathcal{F}}_{c}. (112)

Thus, ^\widehat{\mathcal{L}} is non-increasing along the flows of (44). Moreover, in view of (42)-(44) and (110), for any x^𝒥^c\hat{x}\in\widehat{\mathcal{J}}_{c}, one has x^+=(Re,θ+,ζ,ωe,Rr,ωr)\hat{x}^{+}=(R_{e},{\theta}^{+},\zeta,\omega_{e},R_{r},\omega_{r}) with θ+g(Re,θ){\theta}^{+}\in{g}(R_{e},\theta), and

^(x^+)^(x^)\displaystyle\widehat{\mathcal{L}}(\hat{x}^{+})-\widehat{\mathcal{L}}(\hat{x}) =kR(W(Re,θ,ζ)W(Re,θ+,ζ))\displaystyle=-k_{R}(W(R_{e},\theta,\zeta)-W(R_{e},{\theta}^{+},\zeta))
=kRμW(Re,θ,ζ)\displaystyle=-k_{R}\mu_{W}(R_{e},\theta,\zeta)
<kRδ\displaystyle<-k_{R}\delta^{\prime} (113)

where we made use of (43) in Lemma 1. Thus, ^\widehat{\mathcal{L}} is strictly decreasing over the jumps of the hybrid system (44). It follows from (112) and (113) that the set 𝒜^\widehat{\mathcal{A}} is stable as per [15, Theorem 23], and the maximum number of jumps is given by JM:=^(x^(0,0))/(kRδ)J_{M}:=\lceil{\widehat{\mathcal{L}}(\hat{x}(0,0))}/{(k_{R}\delta^{\prime})}\rceil. Moreover, applying the invariance principle in [41, Theorem 4.7], any maximal solution to (44) must converge to the largest invariant set contained in 𝒲^:={x^^c:θU(Re,θ)=0,ωe=0,ζ=ψ}.\widehat{\mathcal{W}}:=\{\hat{x}\in\widehat{\mathcal{F}}_{c}:\nabla_{\theta}U(R_{e},\theta)=0,\omega_{e}=0,\zeta=\psi\}. From ωe0\omega_{e}\equiv 0, one has ω˙e0\dot{\omega}_{e}\equiv 0, which in view of (7b) and (37), implies that ζ=ψ(ReReU(Re,θ))=0\zeta=\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))=0. Then, it follows from ζ=ψ(ReReU(Re,θ))=θU(Re,θ)=0\|\zeta\|=\|\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|=\nabla_{\theta}U(R_{e},\theta)=0 that (Re,θ,ζ)ΨW(R_{e},\theta,\zeta)\in\Psi_{W}. Thus, any solution to (44) must converge to the largest invariant set contained in 𝒲^:={x^^c|(Re,θ,ζ)^ΨW,ωe=0}\widehat{{\mathcal{W}}}^{\prime}:=\{\hat{x}\in\widehat{\mathcal{F}}_{c}~{}|~{}(R_{e},\theta,\zeta)\in\widehat{\mathcal{F}}\cap\Psi_{W},\omega_{e}=0\}. Similar to the proof of Theorem 1, applying simple set-theoretic arguments, one obtains ^ΨW={𝒜^o}\widehat{\mathcal{F}}\cap\Psi_{W}=\{\widehat{\mathcal{A}}_{o}\} and 𝒲^=𝒜^\widehat{\mathcal{W}}^{\prime}=\widehat{\mathcal{A}}. Moreover, following similar arguments as the ones used at the end of the proof of Theorem 1, one can show that every maximal solution to (44) is complete. Finally, one can conclude that the set 𝒜^\widehat{\mathcal{A}} is globally asymptotically stable for the hybrid system (44). This completes the proof.

-E Proof of Theorem 3

Consider the following Lyapunov function candidate:

¯(x¯)=kRU(Re,θ)+kβU(R~,θ¯)+12ωeJωe.\overline{\mathcal{L}}(\bar{x})=k_{R}U(R_{e},\theta)+k_{\beta}U(\tilde{R},\bar{\theta})+\frac{1}{2}\omega_{e}^{\top}J\omega_{e}. (114)

Since UU is a potential function on SO(3)×SO(3)\times\mathbb{R}, one can verify that ¯\overline{\mathcal{L}} is positive definite on 𝒮¯\overline{\mathcal{S}} with respect to 𝒜¯\overline{\mathcal{A}}. The time derivative of ¯\overline{\mathcal{L}} along the flows of (61) is given by

¯˙(x¯)\displaystyle\dot{\overline{\mathcal{L}}}(\bar{x}) =kRU˙(Re,θ)+kβU˙(R~,θ¯)ωeκ¯(Re,θ,R~,θ¯)\displaystyle=k_{R}\dot{U}(R_{e},\theta)+k_{\beta}\dot{U}(\tilde{R},\bar{\theta})-\omega_{e}^{\top}\bar{\kappa}(R_{e},\theta,\tilde{R},\bar{\theta}) (115)

where we made use of the fact ωeΣ(Re,ωe,ωr)ωe=0\omega_{e}^{\top}\Sigma(R_{e},\omega_{e},\omega_{r})\omega_{e}=0. From (7a) and (52), one obtains R~˙=R~(ωeβ)×\dot{\tilde{R}}=\tilde{R}(\omega_{e}-\beta)^{\times}. From (12), (14) and (52), one obtains

U˙(R~,θ¯)=2(ωeβ)ψ(R~R~U(R~,θ¯))kθ|θ¯U(R~,θ¯)|2.\dot{U}(\tilde{R},\bar{\theta})=2(\omega_{e}-\beta)^{\top}\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta}))\\ -k_{\theta}|\nabla_{\bar{\theta}}U(\tilde{R},\bar{\theta})|^{2}. (116)

Substituting (53), (60), (100) and (116) into (115), the time derivative of ¯\overline{\mathcal{L}} along the flows of (61) can be rewritten as

¯˙(x¯)\displaystyle\dot{\overline{\mathcal{L}}}(\bar{x}) =kRkθ|θU(Re,θ)|2kβkθ|θ¯U(R~,θ¯)|2\displaystyle=-k_{R}k_{\theta}|\nabla_{\theta}U(R_{e},\theta)|^{2}-k_{\beta}k_{\theta}|\nabla_{\bar{\theta}}U(\tilde{R},\bar{\theta})|^{2}
2kβψ(R~R~U(R~,θ¯))Γψ(R~R~U(R~,θ¯))\displaystyle~{}~{}~{}-2k_{\beta}\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta}))^{\top}\Gamma\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta})) (117)

for all x¯¯c\bar{x}\in\overline{\mathcal{F}}_{c}. Since the matrix Γ\Gamma is symmetric positive definite, ¯˙\dot{\overline{\mathcal{L}}} is negative semi-definite in the flow set and ¯\overline{\mathcal{L}} is non-increasing along the flows of (61). For any x¯𝒥¯c\bar{x}\in\overline{\mathcal{J}}_{c}, one obtains x¯+(Re,g(Re,θ),ωe,Rr,ωr,R~,θ¯)\bar{x}^{+}\in(R_{e},g(R_{e},\theta),\omega_{e},R_{r},\omega_{r},\tilde{R},\bar{\theta}) if x¯𝒥¯c1𝒥¯c2\bar{x}\in\overline{\mathcal{J}}_{c1}\setminus\overline{\mathcal{J}}_{c2}, x¯+(Re,θ,ωe,Rr,ωr,R~,g(R~,θ¯))\bar{x}^{+}\in(R_{e},\theta,\omega_{e},R_{r},\omega_{r},\tilde{R},g(\tilde{R},\bar{\theta})) if x¯𝒥¯c2𝒥¯c1\bar{x}\in\overline{\mathcal{J}}_{c2}\setminus\overline{\mathcal{J}}_{c1}, or x¯+(Re,g(Re,θ),ωe,Rr,ωr,R~,g(R~,θ¯))\bar{x}^{+}\in(R_{e},g(R_{e},\theta),\omega_{e},R_{r},\omega_{r},\tilde{R},g(\tilde{R},\bar{\theta})) if x¯𝒥¯c1𝒥¯c2\bar{x}\in\overline{\mathcal{J}}_{c1}\cap\overline{\mathcal{J}}_{c2}. Similar to (102), in view of (61) and (114), one can show that

¯(x¯+)¯(x¯)\displaystyle\overline{\mathcal{L}}(\bar{x}^{+})-\overline{\mathcal{L}}(\bar{x}) <kδ\displaystyle<-k^{*}\delta (118)

for all x¯𝒥¯c\bar{x}\in\overline{\mathcal{J}}_{c} with k:=min{kR,kβ}k^{*}:=\min\{k_{R},k_{\beta}\}. Thus, ¯\overline{\mathcal{L}} is strictly decreasing over the jumps of (61) on 𝒥¯c\overline{\mathcal{J}}_{c}. Similar to the proof of Theorem 1, from (117) and (118) one concludes that the set 𝒜¯\overline{\mathcal{A}} is stable as per [15, Theorem 23], and the number of jumps is bounded by JM:=¯(x¯(0,0))/(kδ)J_{M}:=\left\lceil{\overline{\mathcal{L}}(\bar{x}(0,0))}/{(k^{*}\delta)}\right\rceil.

Next, we will show the global attractivity of set 𝒜¯\overline{\mathcal{A}}. Applying the invariance principle for hybrid systems given in [41, Theorem 4.7], one obtains that every solution x¯\bar{x} to (61) must converge to the largest invariant set contained in 𝒲¯:={x¯¯c:θU(Re,θ)=0,ψ(R~R~U(R~,θ¯))=0,θ¯U(R~,θ¯)=0}.\overline{\mathcal{W}}:=\{\bar{x}\in\overline{\mathcal{F}}_{c}:\nabla_{\theta}U(R_{e},\theta)=0,\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta}))=0,\nabla_{\bar{\theta}}U(\tilde{R},\bar{\theta})=0\}. For each x¯𝒲¯\bar{x}\in\overline{\mathcal{W}}, it follows that θU(Re,θ)=0\nabla_{\theta}U(R_{e},\theta)=0 and (R~,θ¯)ΨU(\tilde{R},\bar{\theta})\in\mathcal{F}\cap\Psi_{U}. Similar to the proof of Theorem 1, one has (R~,θ¯)ΨU={𝒜o}(\tilde{R},\bar{\theta})\in\mathcal{F}\cap\Psi_{U}=\{\mathcal{A}_{o}\}. From R~I3\tilde{R}\equiv I_{3} one obtains R~˙=0\dot{\tilde{R}}=0 and ωeβ=0\omega_{e}-\beta=0. Recall the definition of β\beta in (53), it follows from (R~,θ¯)=𝒜o(\tilde{R},\bar{\theta})=\mathcal{A}_{o} that ωe=β=0\omega_{e}=\beta=0. From ωe0\omega_{e}\equiv 0, one has ω˙e=0\dot{\omega}_{e}=0. Since ωe=ω˙e=0\omega_{e}=\dot{\omega}_{e}=0 and ψ(R~R~U(R~,θ¯))=0\psi(\tilde{R}^{\top}\nabla_{\tilde{R}}U(\tilde{R},\bar{\theta}))=0, it follows from (7b), (59) and (60) that ψ(ReReU(Re,θ))=0\psi(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))=0. Using this fact, together with θU(Re,θ)=0\nabla_{\theta}U(R_{e},\theta)=0, one can show that (Re,θ)=𝒜o(R_{e},\theta)=\mathcal{A}_{o}. Hence, one verifies that 𝒲¯=𝒜¯\overline{\mathcal{W}}=\overline{\mathcal{A}} from the definitions of 𝒲¯\overline{\mathcal{W}} and 𝒜¯\overline{\mathcal{A}}. Using similar arguments as the ones used at the end of the proof of Theorem 1, it follows that every maximal solution to (61) is complete. Finally, one can conclude that the set 𝒜¯\overline{\mathcal{A}} is globally asymptotically stable for the hybrid system (61). This completes the proof.

-F Proof of Lemma 2

From (64), the time derivative of the transformation map 𝒯\mathcal{T} along the trajectories of R˙=Rω×\dot{R}=R\omega^{\times} and θ˙=ν\dot{\theta}=\nu is given by

𝒯˙(R,θ)\displaystyle\dot{\mathcal{T}}(R,\theta) =Rω×a(θ,u)+νRa(θ,u)u×\displaystyle=R\omega^{\times}\mathcal{R}_{a}(\theta,u)+\nu R\mathcal{R}_{a}(\theta,u)u^{\times}
=𝒯(R,θ)(a(θ,u)ω+νu)×\displaystyle=\mathcal{T}(R,\theta)(\mathcal{R}_{a}(\theta,u)^{\top}\omega+\nu u)^{\times}

where we made use of the facts: a(θ,u)=exp(θu×)\mathcal{R}_{a}(\theta,u)=\exp(\theta u^{\times}) and ˙a(θ,u)=ddtexp(θu×)=a(θ,u)νu×\dot{\mathcal{R}}_{a}(\theta,u)=\frac{d}{dt}\exp(\theta u^{\times})=\mathcal{R}_{a}(\theta,u)\nu u^{\times}. The gradients RU(R,θ)\nabla_{R}U(R,\theta) and θU(R,θ)\nabla_{\theta}U(R,\theta) can be computed from the differential of UU in an arbitrary tangential direction (Rω×,ν)TRSO(3)×(R\omega^{\times},\nu)\in T_{R}SO(3)\times\mathbb{R}, which is given as

U˙(R,θ)\displaystyle\dot{U}(R,\theta) =RU(R,θ),Rω×R+θU(R,θ),ν\displaystyle=\langle\nabla_{R}U(R,\theta),R\omega^{\times}\rangle_{R}+\langle\langle\nabla_{\theta}U(R,\theta),\nu\rangle\rangle
=RRU(R,θ),ω×+θU(R,θ),ν\displaystyle=\langle\langle R^{\top}\nabla_{R}U(R,\theta),\omega^{\times}\rangle\rangle+\langle\langle\nabla_{\theta}U(R,\theta),\nu\rangle\rangle
=2ωψ(RRU(R,θ))+νθU(R,θ)\displaystyle=2\omega^{\top}\psi(R^{\top}\nabla_{R}U(R,\theta))+\nu\nabla_{\theta}U(R,\theta) (119)

where we made use of the property A,x×=2xψ(A)\langle\langle A,x^{\times}\rangle\rangle=2x^{\top}\psi(A). On the other hand, from (65) and (66a) the time derivative of UU can be directly obtained as

U˙(R,θ)\displaystyle\dot{U}(R,\theta) =tr(A𝒯(R,θ)(a(θ,u)ω+νu)×)+γθν\displaystyle=\operatorname{tr}(-A\mathcal{T}(R,\theta)(\mathcal{R}_{a}(\theta,u)^{\top}\omega+\nu u)^{\times})+\gamma\theta\nu
=A𝒯(R,θ),(a(θ,u)ω+νu)×+γθν\displaystyle=\langle\langle A\mathcal{T}(R,\theta),(\mathcal{R}_{a}(\theta,u)^{\top}\omega+\nu u)^{\times}\rangle\rangle+\gamma\theta\nu
=a(A𝒯(R,θ)),(a(θ,u)ω+νu)×+γθν\displaystyle=\langle\langle\mathbb{P}_{a}(A\mathcal{T}(R,\theta)),(\mathcal{R}_{a}(\theta,u)^{\top}\omega+\nu u)^{\times}\rangle\rangle+\gamma\theta\nu
=2ωa(θ,u)ψ(A𝒯(R,θ))\displaystyle=2\omega^{\top}\mathcal{R}_{a}(\theta,u)\psi(A\mathcal{T}(R,\theta))
+ν(2uψ(A𝒯(R,θ))+γθ)\displaystyle\qquad\qquad\qquad+\nu\left(2u^{\top}\psi(A\mathcal{T}(R,\theta))+\gamma\theta\right) (120)

where we made use of the facts: (x×)=x×(x^{\times})^{\top}=-x^{\times}, tr(AB)=A,B\operatorname{tr}(A^{\top}B)=\langle\langle A,B\rangle\rangle and A,x×=2xψ(A)\langle\langle A,x^{\times}\rangle\rangle=2x^{\top}\psi(A) and ψ(a(A))=ψ(A)\psi(\mathbb{P}_{a}(A))=\psi(A) for all x3,A,B3×3x\in\mathbb{R}^{3},A,B\in\mathbb{R}^{3\times 3}. In view of (119) and (120), one can easily obtain (66b) and (66c).

In view of (66b) and (66c), it follows from |θU(R,θ)|=0|\nabla_{\theta}U(R,\theta)|=0 and ψ(RRU(R,θ))=0\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|=0 that ψ(A𝒯(R,θ))=θ=0\|\psi(A\mathcal{T}(R,\theta))\|=\theta=0. Recall the definition of 𝒯(R,θ)\mathcal{T}(R,\theta) in (64), one can further show that ψ(A𝒯(R,θ))=ψ(AR)=0\psi(A\mathcal{T}(R,\theta))=\psi(AR)=0 since 𝒯(R,θ)=I3\mathcal{T}(R,\theta)=I_{3} as θ=0\theta=0. Using the fact ψ(AR)=0\psi(AR)=0, one obtains a(AR)=0\mathbb{P}_{a}(AR)=0, which implies that AR=RAAR=R^{\top}A from the definition of the map a\mathbb{P}_{a}. Applying [21, Lemma 2], one obtains RΨV={I3}a(π,(A))R\in\Psi_{V}=\{I_{3}\}\cup\mathcal{R}_{a}(\pi,\mathcal{E}(A)) with (A)\mathcal{E}(A) denoting the set of eigenvectors of AA. Using this result, together with θ=0\theta=0, one can conclude that the set of all the critical points of U(R,θ)U(R,\theta) in (11) is given as ΨU=ΨV×{0}\Psi_{U}=\Psi_{V}\times\{0\} and 𝒜oΨU\mathcal{A}_{o}\in\Psi_{U}, which gives (66d).

On the other hand, applying the properties of ψ\psi given in [29, Lemma 1], the time derivative of ψ(A𝒯(R,θ))\psi(A\mathcal{T}(R,\theta)) is given by ψ˙(A𝒯(R,θ))=E(A𝒯(R,θ))(a(θ,u)ω+vu)\dot{\psi}(A\mathcal{T}(R,\theta))=E(A\mathcal{T}(R,\theta))(\mathcal{R}_{a}^{\top}(\theta,u)\omega+vu) along the trajectories of R˙=Rω×\dot{R}=R\omega^{\times} and θ˙=v\dot{\theta}=v. Then, in view of (66a)-(66b), the time derivative of ψ(RRU(R,θ))\psi(R^{\top}\nabla_{R}U(R,\theta)) is given by

ψ˙(RRU(R,θ))\displaystyle\dot{\psi}(R^{\top}\nabla_{R}U(R,\theta))
=˙a(θ,u)ψ(A𝒯(R,θ))+a(θ,u)ψ˙(A𝒯(R,θ))\displaystyle\quad=\dot{\mathcal{R}}_{a}(\theta,u)\psi(A\mathcal{T}(R,\theta))+\mathcal{R}_{a}(\theta,u)\dot{\psi}(A\mathcal{T}(R,\theta))
=(a(θ,u)ψ(A𝒯(R,θ)))×vu\displaystyle\quad=-\left(\mathcal{R}_{a}(\theta,u)\psi(A\mathcal{T}(R,\theta))\right)^{\times}vu
+a(θ,u)E(A𝒯(R,θ))(a(θ,u)ω+vu)\displaystyle\qquad~{}+\mathcal{R}_{a}(\theta,u)E(A\mathcal{T}(R,\theta))(\mathcal{R}_{a}^{\top}(\theta,u)\omega+vu)
=𝒟R(R,θ)ω+𝒟θ(R,θ)v.\displaystyle\quad=\mathcal{D}_{R}(R,\theta)\omega+\mathcal{D}_{\theta}(R,\theta)v. (121)

This completes the proof.

-G Proof of Proposition 2

For the sake of simplicity, let 𝒯=𝒯(R,θ)\mathcal{T}=\mathcal{T}(R,\theta). From [29, Lemma 2], one has the following properties for any 𝒯SO(3)\mathcal{T}\in SO(3):

4λminA¯|𝒯|I2\displaystyle 4\lambda_{\min}^{\bar{A}}|\mathcal{T}|_{I}^{2} tr(A(I𝒯))4λmaxA¯|𝒯|I2\displaystyle\leq\operatorname{tr}(A(I-\mathcal{T}))\leq 4\lambda_{\max}^{\bar{A}}|\mathcal{T}|_{I}^{2} (122)
ψ(A𝒯)2\displaystyle\|\psi(A\mathcal{T})\|^{2} =αA(𝒯)tr(A¯(I3𝒯))\displaystyle=\alpha_{A}(\mathcal{T})\operatorname{tr}(\underline{A}(I_{3}-\mathcal{T})) (123)

where matrices A¯=12(tr(A)I3A),A¯=tr(A¯2)I32A¯2\bar{A}=\frac{1}{2}(\operatorname{tr}(A)I_{3}-A),\underline{A}=\operatorname{tr}(\bar{A}^{2})I_{3}-2\bar{A}^{2} are symmetric positive definite as matrix AA is symmetric positive definite, and αA(𝒯)=1|𝒯|I2cos2(u,A¯u)\alpha_{A}(\mathcal{T})=1-|\mathcal{T}|_{I}^{2}\cos^{2}\measuredangle(u,\bar{A}u) with (,)\measuredangle(~{},~{}) denoting the angle between two vectors and uu denoting the axis of the rotation matrix 𝒯\mathcal{T}. Using the facts 12(tr(A¯)I3A¯)=A¯2\frac{1}{2}(\operatorname{tr}(\underline{A})I_{3}-\underline{A})=\bar{A}^{2} and αA(𝒯)<1,𝒯SO(3)\alpha_{A}(\mathcal{T})<1,\forall\mathcal{T}\in SO(3), one obtains from (122) that

4αA(𝒯)(λminA¯)2|𝒯|I2\displaystyle 4\alpha_{A}(\mathcal{T})(\lambda_{\min}^{\bar{A}})^{2}|\mathcal{T}|_{I}^{2} ψ(A𝒯)24(λmaxA¯)2|𝒯|I2.\displaystyle\leq\|\psi(A\mathcal{T})\|^{2}\leq 4(\lambda_{\max}^{\bar{A}})^{2}|\mathcal{T}|_{I}^{2}. (124)

From (66b) and (124), one can show that Assumption 3 holds by choosing cψ2λmaxA¯c_{\psi}\geq 2\lambda_{\max}^{\bar{A}} since that ψ(RRU(R,θ))2a(θ,u)ψ(A𝒯)4(λmaxA¯)2|𝒯|I24(λmaxA¯)2\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|^{2}\leq\|\mathcal{R}_{a}(\theta,u)\psi(A\mathcal{T})\|\leq 4(\lambda_{\max}^{\bar{A}})^{2}|\mathcal{T}|_{I}^{2}\leq 4(\lambda_{\max}^{\bar{A}})^{2} for all (R,θ)SO(3)×(R,\theta)\in SO(3)\times\mathbb{R}.

Next, we are going to verify the conditions in Assumption 2. From (65), (66b)-(66c) and (122)-(124), one can show that

ψ(RRU(R,θ))2+|θU(R,θ)|2\displaystyle\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|^{2}+|\nabla_{\theta}U(R,\theta)|^{2}
=ψ(A𝒯)2+|γθ|2+4|uψ(A𝒯)|2+4γθuψ(A𝒯)\displaystyle\quad=\|\psi(A\mathcal{T})\|^{2}+|\gamma\theta|^{2}+4|u^{\top}\psi(A\mathcal{T})|^{2}+4\gamma\theta u^{\top}\psi(A\mathcal{T})
7ψ(A𝒯)2+3γ2|θ|2\displaystyle\quad\leq 7\|\psi(A\mathcal{T})\|^{2}+3\gamma^{2}|\theta|^{2}
28(λmaxA¯)2|𝒯|I2+3γ2|θ|2\displaystyle\quad\leq 28(\lambda_{\max}^{\bar{A}})^{2}|\mathcal{T}|_{I}^{2}+3\gamma^{2}|\theta|^{2}
7(λmaxA¯)2λminA¯tr(A(I𝒯))+6γ(γ2|θ|2)\displaystyle\quad\leq\frac{7(\lambda_{\max}^{\bar{A}})^{2}}{\lambda_{\min}^{\bar{A}}}\operatorname{tr}(A(I-\mathcal{T}))+6\gamma\left(\frac{\gamma}{2}|\theta|^{2}\right)
α1U(R,θ),(R,θ)SO(3)×\displaystyle\quad\leq\alpha_{1}U(R,\theta),\quad\forall(R,\theta)\in SO(3)\times\mathbb{R} (125)

where α1:=max{7(λmaxA¯)2λminA¯,6γ}\alpha_{1}:=\max\{\frac{7(\lambda_{\max}^{\bar{A}})^{2}}{\lambda_{\min}^{\bar{A}}},6\gamma\}, and we made use of the facts u=1\|u\|=1, |uψ(A𝒯)|uψ(A𝒯)=ψ(A𝒯)|u^{\top}\psi(A\mathcal{T})|\leq\|u\|\|\psi(A\mathcal{T})\|=\|\psi(A\mathcal{T})\| and 4γθuψ(A𝒯)4|γθ|ψ(A𝒯)2|γθ|2+2ψ(A𝒯)24\gamma\theta u^{\top}\psi(A\mathcal{T})\leq 4|\gamma\theta|\|\psi(A\mathcal{T})\|\leq 2|\gamma\theta|^{2}+2\|\psi(A\mathcal{T})\|^{2}. On the other hand, from the definition of \mathcal{F} in (13a), one has (R,θ)ΨU{𝒜o}(R,\theta)\notin\Psi_{U}\setminus\{\mathcal{A}_{o}\} for all (R,θ)(R,\theta)\in\mathcal{F}. This implies that 𝒯ΨV{I3}=a(π,(A¯))\mathcal{T}\notin\Psi_{V}\setminus\{I_{3}\}=\mathcal{R}_{a}(\pi,\mathcal{E}(\bar{A})). Hence, one obtains αA(𝒯)=1|𝒯|I2cos2(u,A¯u)>0\alpha_{A}(\mathcal{T})=1-|\mathcal{T}|_{I}^{2}\cos^{2}\measuredangle(u,\bar{A}u)>0 for all (R,θ)(R,\theta)\in\mathcal{F}. Letting αA:=inf(R,θ)αA(𝒯)>0\alpha_{A}^{*}:=\inf_{(R,\theta)\in\mathcal{F}}\alpha_{A}(\mathcal{T})>0, it follows from (124) that ψ(A𝒯)24αA(λminA¯)2|𝒯|I2\|\psi(A\mathcal{T})\|^{2}\geq 4\alpha_{A}^{*}(\lambda_{\min}^{\bar{A}})^{2}|\mathcal{T}|_{I}^{2} for all (R,θ)(R,\theta)\in\mathcal{F}. From (65), (66b)-(66c) and (122)-(124), one can show that

ψ(RRU(R,θ))2+|θU(R,θ)|2\displaystyle\|\psi(R^{\top}\nabla_{R}U(R,\theta))\|^{2}+|\nabla_{\theta}U(R,\theta)|^{2}
a(θ,u)ψ(A𝒯)2+18|γθ+2uψ(A𝒯)|2\displaystyle\quad\geq\|\mathcal{R}_{a}(\theta,u)\psi(A\mathcal{T})\|^{2}+\frac{1}{8}|\gamma\theta+2u^{\top}\psi(A\mathcal{T})|^{2}
ψ(A𝒯)2+18(12|γθ|24|uψ(A𝒯)|2)\displaystyle\quad\geq\|\psi(A\mathcal{T})\|^{2}+\frac{1}{8}\left(\frac{1}{2}|\gamma\theta|^{2}-4|u^{\top}\psi(A\mathcal{T})|^{2}\right)
12ψ(A𝒯)2+116γ2|θ|2\displaystyle\quad\geq\frac{1}{2}\|\psi(A\mathcal{T})\|^{2}+\frac{1}{16}\gamma^{2}|\theta|^{2}
2αA(λminA¯)2|𝒯|I2+116γ2|θ|2\displaystyle\quad\geq 2\alpha_{A}^{*}(\lambda_{\min}^{\bar{A}})^{2}|\mathcal{T}|_{I}^{2}+\frac{1}{16}\gamma^{2}|\theta|^{2}
αA(λminA¯)22λmaxA¯tr(A(I𝒯))+γ8(γ2|θ|2)\displaystyle\quad\geq\frac{\alpha_{A}^{*}(\lambda_{\min}^{\bar{A}})^{2}}{2\lambda_{\max}^{\bar{A}}}\operatorname{tr}(A(I-\mathcal{T}))+\frac{\gamma}{8}\left(\frac{\gamma}{2}|\theta|^{2}\right)
α2U(R,θ),(R,θ)\displaystyle\quad\geq\alpha_{2}U(R,\theta),\quad\forall(R,\theta)\in\mathcal{F} (126)

where α2:=min{αA(λminA¯)22λmaxA¯,γ8}\alpha_{2}:=\min\{\frac{\alpha_{A}^{*}(\lambda_{\min}^{\bar{A}})^{2}}{2\lambda_{\max}^{\bar{A}}},\frac{\gamma}{8}\}, and we made use of the facts: |uψ(A𝒯)|uψ(A𝒯)ψ(A𝒯)|u^{\top}\psi(A\mathcal{T})|\leq\|u\|\|\psi(A\mathcal{T})\|\leq\|\psi(A\mathcal{T})\|, 4γθuψ(A𝒯)4|γθ||uψ(A𝒯)|12|γθ|28|uψ(A𝒯)|24\gamma\theta u^{\top}\psi(A\mathcal{T})\geq-4|\gamma\theta||u^{\top}\psi(A\mathcal{T})|\geq-\frac{1}{2}|\gamma\theta|^{2}-8|u^{\top}\psi(A\mathcal{T})|^{2}. From the definitions of α1,α2\alpha_{1},\alpha_{2} and using the fact 6γ>γ8,γ>06\gamma>\frac{\gamma}{8},\forall\gamma>0, it is clear that α1>α2\alpha_{1}>\alpha_{2}.

Now, we are going to verify the conditions in Assumption 4. Applying the definitions of 𝒟R(R,θ)\mathcal{D}_{R}(R,\theta) and 𝒟θ(R,θ)\mathcal{D}_{\theta}(R,\theta), for each (R,θ)SO(3)×(R,\theta)\in SO(3)\times\mathbb{R} one can show that 𝒟R(R,θ)F=E(A𝒯(R,θ))FA¯F\|\mathcal{D}_{R}(R,\theta)\|_{F}=\|E(A\mathcal{T}(R,\theta))\|_{F}\leq\|\bar{A}\|_{F} and 𝒟θ(R,θ)E(A𝒯(R,θ))F+ψ(A𝒯(R,θ)A¯F+2λmaxA¯\|\mathcal{D}_{\theta}(R,\theta)\|\leq\|E(A\mathcal{T}(R,\theta))\|_{F}+\|\psi(A\mathcal{T}(R,\theta)\|\leq\|\bar{A}\|_{F}+2\lambda_{\max}^{\bar{A}} using the facts: u=1\|u\|=1, E(AR)FA¯F\|E(AR)\|_{F}\leq\|\bar{A}\|_{F} and ψ(AR2λmaxA¯\|\psi(AR\|\leq 2\lambda_{\max}^{\bar{A}} for any RSO(3)R\in SO(3) as per [29, Lemma 2]. It follows from (14) and (66e) that

ψ˙(ReReU(Re,θ))\displaystyle\|\dot{\psi}(R_{e}^{\top}\nabla_{R_{e}}U(R_{e},\theta))\|
𝒟R(Re,θ)ωe+kθ𝒟θ(Re,θ)|θU(Re,θ)|\displaystyle\quad\leq\|\mathcal{D}_{R}(R_{e},\theta)\omega_{e}\|+k_{\theta}\|\mathcal{D}_{\theta}(R_{e},\theta)\||\nabla_{\theta}U(R_{e},\theta)|
A¯Fω+kθ(A¯F+2λmaxA¯)|θU(Re,θ)|\displaystyle\quad\leq\|\bar{A}\|_{F}\|\omega\|+k_{\theta}(\|\bar{A}\|_{F}+2\lambda_{\max}^{\bar{A}})|\nabla_{\theta}U(R_{e},\theta)|

for all (Re,θ)SO(3)×(R_{e},\theta)\in SO(3)\times\mathbb{R}. By choosing cRA¯Fc_{R}\geq\|\bar{A}\|_{F} and cθA¯F+2λmaxA¯c_{\theta}\geq\|\bar{A}\|_{F}+2\lambda_{\max}^{\bar{A}}, one can conclude that inequality (28) is satisfied for all (Re,θ)(R_{e},\theta)\in\mathcal{F}.

Finally, we are going to verify the conditions in Assumption 1. From (66d) and ΨV={I3}a(π,(A))\Psi_{V}=\{I_{3}\}\cup\mathcal{R}_{a}(\pi,\mathcal{E}(A)), one obtains that ΨU{𝒜o}={(R,θ)SO(3)×:R=a(π,v),v(A),θ=0}\Psi_{U}\setminus\{\mathcal{A}_{o}\}=\{(R,\theta)\in SO(3)\times\mathbb{R}:R=\mathcal{R}_{a}(\pi,v),v\in\mathcal{E}(A),\theta=0\}. Let λvA¯\lambda^{\bar{A}}_{v} be the eigenvalue of A¯\bar{A} associated to the eigenvector v(A¯)(A)v\in\mathcal{E}(\bar{A})\equiv\mathcal{E}(A). For any v(A)v\in\mathcal{E}(A) and θ\theta\in\mathbb{R}, one can show that

U(a(π,v),0)\displaystyle U(\mathcal{R}_{a}(\pi,v),0) =V(a(π,v))=4vA¯v=4λvA¯\displaystyle=V(\mathcal{R}_{a}(\pi,v))=4v^{\top}\bar{A}v=4\lambda_{v}^{\bar{A}} (127)
U(a(π,v),θ)\displaystyle U(\mathcal{R}_{a}(\pi,v),\theta) =V(a(π,v)a(θ,u))+γ2θ2\displaystyle=V(\mathcal{R}_{a}(\pi,v)\mathcal{R}_{a}(\theta,u))+\frac{\gamma}{2}\theta^{2}
=V(a(π,v))+γ2θ2\displaystyle=V(\mathcal{R}_{a}(\pi,v))+\frac{\gamma}{2}\theta^{2}
+tr(Aa(π,v)(Ia(θ,u)))\displaystyle~{}~{}~{}+\operatorname{tr}(A\mathcal{R}_{a}(\pi,v)(I-\mathcal{R}_{a}(\theta,u)))
=4λvA¯+γ2θ22sin2(θ2)Δ(v,u)\displaystyle=4\lambda_{v}^{\bar{A}}+\frac{\gamma}{2}\theta^{2}-2\sin^{2}\left(\frac{\theta}{2}\right)\Delta(v,u) (128)

where Δ(u,v)=u(tr(A)IA2vAv(I3vv))u\Delta(u,v)=u^{\top}\left(\operatorname{tr}(A)I-A-2v^{\top}Av(I_{3}-vv^{\top})\right)u, and we made use of the facts: a(θ,u)=I3+sin(θ)u×+(1cos(θ))(u×)2\mathcal{R}_{a}(\theta,u)=I_{3}+\sin(\theta)u^{\times}+(1-\cos(\theta))(u^{\times})^{2}, Aa(π,v)=A(I+2(v×)2)=2AvvAA\mathcal{R}_{a}(\pi,v)=A(I+2(v^{\times})^{2})=2Avv^{\top}-A and tr(Aa(π,v)(Ia(θ,u)))=2sin2(θ2)Δ(u,v)\operatorname{tr}(A\mathcal{R}_{a}(\pi,v)(I-\mathcal{R}_{a}(\theta,u)))=-2\sin^{2}(\frac{\theta}{2})\Delta(u,v). Let Δ=minv(A)Δ(v,u)>0\Delta^{*}=\min_{v\in\mathcal{E}(A)}\Delta(v,u)>0, γ<4Δπ2\gamma<\frac{4\Delta^{*}}{\pi^{2}} and δ<(4Δπ2γ)θM22\delta<(\frac{4\Delta^{*}}{\pi^{2}}-\gamma)\frac{\theta_{M}^{2}}{2}. In view of (11), (127) and (128), for any (R,θ)ΨU{𝒜o}(R,\theta)\in\Psi_{U}\setminus\{\mathcal{A}_{o}\}, one can show that

μU(R,θ)\displaystyle\mu_{U}(R,\theta) =U(a(π,v),0)minθΘU(a(π,v),θ)\displaystyle=U(\mathcal{R}_{a}(\pi,v),0)-\min_{{\theta}^{\prime}\in\Theta}U(\mathcal{R}_{a}(\pi,v),{\theta}^{\prime})
=maxθΘ(2sin2(θ2)Δ(v,u)γ2θ2)\displaystyle=\max_{{\theta^{\prime}}\in\Theta}\left(2\sin^{2}\left(\frac{{\theta}^{\prime}}{2}\right)\Delta(v,u)-\frac{\gamma}{2}{\theta^{\prime}}^{2}\right)
2sin2(θM2)Δ(v,u)γ2θM2\displaystyle\geq 2\sin^{2}\left(\frac{{\theta}_{M}}{2}\right)\Delta(v,u)-\frac{\gamma}{2}\theta_{M}^{2}
(4Δπ2γ)θM22>δ\displaystyle\geq\left(\frac{4\Delta^{*}}{\pi^{2}}-\gamma\right)\frac{\theta_{M}^{2}}{2}>\delta

where we made use of the facts θM=supθΘ|θ|\theta_{M}=\sup_{\theta^{\prime}\in\Theta}|\theta^{\prime}|, |sin(θ2)||θ|π|\sin(\frac{\theta}{2})|\geq\frac{|\theta|}{\pi} and 2sin2(θ2)Δ(v,u)γ2θ202\sin^{2}\left(\frac{{\theta}}{2}\right)\Delta(v,u)-\frac{\gamma}{2}{\theta}^{2}\geq 0 for all |θ|[0,π]|\theta|\in[0,\pi]. Given the set 𝒫U\mathcal{P}_{U} in (72), it follows from [26, Proposition 2] that Δ>0\Delta^{*}>0. This completes the proof.

-H Useful properties on SE(3)SE(3)

In this subsection, we first introduce some definitions of the maps ()(\cdot)^{\wedge}, ψ¯\bar{\psi}, adjoint action map Ad\operatorname{Ad} and adjoint operator ad\operatorname{ad}. For all ξ=[ω,v]\xi=[\omega^{\top},v^{\top}]^{\top} with ω,v3\omega,v\in\mathbb{R}^{3}, we define the map ():6𝔰𝔢(3)(\cdot)^{\wedge}:\mathbb{R}^{6}\to\mathfrak{se}(3) as

ξ=[ω×v00]𝔰𝔢(3).\xi^{\wedge}=\begin{bmatrix}\omega^{\times}&v\\ 0&0\end{bmatrix}\in\mathfrak{se}(3). (129)

Motivated by [30], we introduce the following map ψ¯:4×46\bar{\psi}:\mathbb{R}^{4\times 4}\to\mathbb{R}^{6} given as:

ψ¯(𝔸)=[ψ(A)12b],𝔸=[Abcd]4×4\displaystyle\bar{\psi}(\mathbb{A})=\begin{bmatrix}\psi(A)\\ \frac{1}{2}b\end{bmatrix},~{}~{}\forall\mathbb{A}=\begin{bmatrix}A&b\\ c^{\top}&d\end{bmatrix}\in\mathbb{R}^{4\times 4} (130)

with A3×3,b,c3,dA\in\mathbb{R}^{3\times 3},b,c\in\mathbb{R}^{3},d\in\mathbb{R}. Similar to the map ψ\psi, one has the following identities:

𝔸,y\displaystyle\langle\langle\mathbb{A},y^{\wedge}\rangle\rangle =2yψ¯(𝔸)\displaystyle=2y^{\top}\bar{\psi}(\mathbb{A}) (131)
ψ¯(X(I4X)𝔸)\displaystyle\bar{\psi}(X^{\top}(I_{4}-X)\mathbb{A}) =ψ¯((I4X1)𝔸)\displaystyle=-\bar{\psi}((I_{4}-X^{-1})\mathbb{A}) (132)

for all 𝔸4×4,y6\mathbb{A}\in\mathbb{R}^{4\times 4},y\in\mathbb{R}^{6}. We define the adjoint operator ad:66×6\operatorname{ad}:\mathbb{R}^{6}\to\mathbb{R}^{6\times 6} as

adξ=[ω×0v×ω×]6×6,ξ=[ωv]\operatorname{ad}_{\xi}=\begin{bmatrix}\omega^{\times}&0\\ v^{\times}&\omega^{\times}\end{bmatrix}\in\mathbb{R}^{6\times 6},\quad\forall\xi=\begin{bmatrix}\omega\\ v\end{bmatrix} (133)

and the adjoint map Ad:SE(3)6×6\operatorname{Ad}:SE(3)\to\mathbb{R}^{6\times 6} as

AdX=[R0p×RR]6×6,X=[Rp01].\operatorname{Ad}_{X}=\begin{bmatrix}R&0\\ p^{\times}R&R\end{bmatrix}\in\mathbb{R}^{6\times 6},\quad\forall X=\begin{bmatrix}R&p\\ 0&1\end{bmatrix}. (134)

One can also verify the following identities:

AdX1\displaystyle\operatorname{Ad}_{X^{-1}} =AdX1\displaystyle=\operatorname{Ad}_{X}^{-1} (135a)
AdXAdY\displaystyle\operatorname{Ad}_{X}\operatorname{Ad}_{Y} =AdXY\displaystyle=\operatorname{Ad}_{XY} (135b)
XxX1\displaystyle Xx^{\wedge}X^{-1} =(AdXx)\displaystyle=(\operatorname{Ad}_{X}x)^{\wedge} (135c)
det(AdX)\displaystyle\det(\operatorname{Ad}_{X}) =1\displaystyle=1 (135d)
adxx\displaystyle\operatorname{ad}_{x}x =0\displaystyle=0 (135e)
adxy\displaystyle\operatorname{ad}_{x}y =adyx\displaystyle=-\operatorname{ad}_{y}x (135f)

for all X,YSE(3),x,y6X,Y\in SE(3),x,y\in\mathbb{R}^{6}. Moreover, along the trajectories X˙=Xξ\dot{X}=X\xi^{\wedge} with (X,ξ)SE(3)×6(X,\xi)\in SE(3)\times\mathbb{R}^{6}, one has

ddtAdX=AdXadξ,ddtAdX1=adξAdX1.\displaystyle\frac{d}{dt}\operatorname{Ad}_{X}=\operatorname{Ad}_{X}\operatorname{ad}_{\xi},\quad\frac{d}{dt}\operatorname{Ad}_{X}^{-1}=-\operatorname{ad}_{\xi}\operatorname{Ad}_{X}^{-1}. (136)

References

  • [1] M. Wang and A. Tayebi, “A new hybrid control strategy for the global attitude tracking problem,” in Proc. of the IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 7222–7227.
  • [2] P. Crouch, “Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models,” IEEE Transactions on Automatic Control, vol. 29, no. 4, pp. 321–331, 1984.
  • [3] B. Wie, H. Weiss, and A. Arapostathis, “Quaternion feedback regulator for spacecraft eigenaxis rotations,” AIAA J. Guidance Control, vol. 12, no. 3, pp. 375–380, 1989.
  • [4] J.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,” IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148–1162, 1991.
  • [5] K. Y. Pettersen and O. Egeland, “Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 112–115, 1999.
  • [6] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-body attitude control,” IEEE control systems magazine, vol. 31, no. 3, pp. 30–51, 2011.
  • [7] R. Naldi, M. Furci, R. G. Sanfelice, and L. Marconi, “Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 97–112, 2017.
  • [8] D. E. Koditschek, “The application of total energy as a Lyapunov function for mechanical control systems,” Contemporary mathematics, vol. 97, pp. 131–157, 1989.
  • [9] F. Bullo and R. M. Murray, “Tracking for fully actuated mechanical systems: A geometric framework,” Automatica, vol. 35, no. 1, pp. 17–34, 1999.
  • [10] S. P. Bhat and D. S. Bernstein, “A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon,” Systems & Control Letters, vol. 39, no. 1, pp. 63–70, 2000.
  • [11] D. S. Maithripala, J. M. Berg, and W. P. Dayawansa, “Almost-global tracking of simple mechanical systems on a general class of Lie groups,” IEEE Transactions on Automatic Control, vol. 51, no. 2, pp. 216–225, 2006.
  • [12] T. Lee, “Robust adaptive attitude tracking on SO(3) with an application to a quadrotor UAV,” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1924–1930, 2012.
  • [13] D. Invernizzi, M. Lovera, and L. Zaccarian, “Dynamic attitude planning for trajectory tracking in thrust-vectoring UAVs,” IEEE Transactions on Automatic Control, vol. 65, no. 1, pp. 453–460, 2020.
  • [14] M. Morse, The calculus of variations in the large.   American Mathematical Soc., 1934, vol. 18.
  • [15] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,” IEEE Control Systems, vol. 29, no. 2, pp. 28–93, 2009.
  • [16] ——, Hybrid Dynamical Systems: modeling, stability, and robustness.   Princeton University Press, 2012.
  • [17] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Quaternion-based hybrid control for robust global attitude tracking,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2555–2566, 2011.
  • [18] R. Schlanbusch, E. I. Grøtli, A. Loria, and P. J. Nicklasson, “Hybrid attitude tracking of rigid bodies without angular velocity measurement,” Systems & Control Letters, vol. 61, no. 4, pp. 595–601, 2012.
  • [19] R. Schlanbusch and E. I. Grøtli, “Hybrid certainty equivalence control of rigid bodies with quaternion measurements,” IEEE Transactions on Automatic Control, vol. 60, no. 9, pp. 2512–2517, 2014.
  • [20] H. Gui and G. Vukovich, “Global finite-time attitude tracking via quaternion feedback,” Systems & Control Letters, vol. 97, pp. 176–183, 2016.
  • [21] C. G. Mayhew and A. R. Teel, “Synergistic potential functions for hybrid control of rigid-body attitude,” in Proceedings of American Control Conference (ACC), 2011.   IEEE, 2011, pp. 875–880.
  • [22] ——, “Hybrid control of rigid-body attitude with synergistic potential functions,” in Proceedings of American Control Conference (ACC), 2011.   IEEE, 2011, pp. 287–292.
  • [23] ——, “Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3),” IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2730–2742, 2013.
  • [24] P. Casau, R. G. Sanfelice, R. Cunha, and C. Silvestre, “A globally asymptotically stabilizing trajectory tracking controller for fully actuated rigid bodies using landmark-based information,” International Journal of Robust and Nonlinear Control, vol. 25, no. 18, pp. 3617–3640, 2015.
  • [25] T. Lee, “Global exponential attitude tracking controls on SO(3),” IEEE Transactions on Automatic Control, vol. 60, no. 10, p. 2837–2842, 2015.
  • [26] S. Berkane and A. Tayebi, “Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 495–501, 2017.
  • [27] S. Berkane, A. Abdessameud, and A. Tayebi, “Hybrid output feedback for attitude tracking on SO(3),” IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3956–3963, 2018.
  • [28] ——, “Hybrid global exponential stabilization on SO(3),” Automatica, vol. 81, pp. 279–285, 2017.
  • [29] ——, “Hybrid attitude and gyro-bias observer design on SO(3),” IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 6044–6050, 2017.
  • [30] M. Wang and A. Tayebi, “Hybrid pose and velocity-bias estimation on SE(3) using inertial and landmark measurements,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3399–3406, 2019.
  • [31] ——, “Hybrid nonlinear observers for inertial navigation using landmark measurements,” IEEE Transactions on Automatic Control, vol. 65, no. 12, pp. 5173–5188, 2020.
  • [32] P. Casau, R. Cunha, R. G. Sanfelice, and C. Silvestre, “Hybrid control for robust and global tracking on smooth manifolds,” IEEE Transactions on Automatic Control, vol. 65, no. 5, pp. 1870–1885, 2020.
  • [33] A. R. Teel, F. Forni, and L. Zaccarian, “Lyapunov-based sufficient conditions for exponential stability in hybrid systems,” IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1591–1596, 2013.
  • [34] L. Ljusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationnels.   Paris, France: Hermann, 1934.
  • [35] P. Casau, C. G. Mayhew, R. G. Sanfelice, and C. Silvestre, “Robust global exponential stabilization on the n-dimensional sphere with applications to trajectory tracking for quadrotors,” Automatica, vol. 110, p. 108534, 2019.
  • [36] A. Tayebi, “Unit quaternion observer based attitude stabilization of a rigid spacecraft without velocity measurement,” in Proc. of the 45th IEEE Conference on Decision and Control (CDC), 2006, pp. 1557–1561.
  • [37] ——, “Unit quaternion-based output feedback for the attitude tracking problem,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1516–1520, 2008.
  • [38] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on the special orthogonal group,” IEEE Transactions on automatic control, vol. 53, no. 5, pp. 1203–1218, 2008.
  • [39] R. Sanfelice, D. Copp, and P. Nanez, “A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) Toolbox,” in Proc. of the 16th international conference on Hybrid systems: computation and control, 2013, pp. 101–106.
  • [40] M. Wang, “Attitude control of a quadrotor UAV: Experimental results:,” Master’s thesis, Lakehead University, 2015.
  • [41] R. G. Sanfelice, R. Goebel, and A. R. Teel, “Invariance principles for hybrid systems with connections to detectability and asymptotic stability,” IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2282–2297, 2007.